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Preface

This volume contains the proceedings of the 19th International Conference onRelational
and Algebraic Methods in Computer Science (RAMiCS 2021), which was held at
the Centre International de Rencontres Mathématiques in Marseille, France, during
November 2–5, 2021.

The RAMiCS conferences aim to bring together a community of researchers to
advance the development and dissemination of relation algebras, Kleene algebras, and
similar algebraic formalisms. Topics covered range from mathematical foundations to
applications as conceptual and methodological tools in computer science and beyond.
More than 30 years after its foundation in 1991 in Warsaw, Poland, RAMiCS, initially
named “Relational Methods in Computer Science,” remains a main venue in this field.
The series merged with the workshops on Applications of Kleene Algebra in 2003
and adopted its current name in 2009. Previous events were organized in Dagstuhl,
Germany (1994), Paraty, Brazil (1995), Hammamet, Tunisia (1997), Warsaw, Poland
(1998), Québec, Canada (2000), Oisterwijk, TheNetherlands (2001),Malente, Germany
(2003), St. Catharines, Canada (2005), Manchester, UK (2006), Frauenwörth, Germany
(2008),Doha,Qatar (2009),Rotterdam,TheNetherlands (2011),Cambridge,UK(2012),
Marienstatt, Germany (2014), Braga, Portugal (2015), Lyon, France (2017), Groningen,
The Netherlands (2018), and Palaiseau, France (2020, online).

RAMiCS 2021 attracted 35 submissions, of which 29 were selected for presentation
by the Program Committee. Each submission was evaluated according to high academic
standards by at least three independent reviewers and scrutinized further during two
weeks of intense electronic discussion. The organizers are very grateful to all Program
Committee members for this hard work, including the lively and constructive debates,
and to the external reviewers for their generous help and expert judgments. Without this
dedication, we could not have assembled such a high-quality program; we hope that all
authors have benefitted from these efforts.

Apart from the submitted articles, this volume features the abstracts of the
presentations of the three invited speakers: Marcelo Frias, Barbara König, and Dmitriy
Zhuk. We are delighted that all three invited speakers accepted our invitation to present
their work at the conference.

Last, but not least, we would like to thank the members of the RAMiCS Steering
Committee for their support and advice. We gratefully acknowledge financial and
administrative support by the Centre International de RencontresMathématiques and the
Laboratoire d’Informatique et Systèmes and financial support by the Institut Archimède
Mathématiques-Informatique, Aix-Marseille Université, the Métropole Aix-Marseille
Provence, and the Conseil Départemental des Bouches-du-Rhône.
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We also appreciate the excellent facilities offered by the EasyChair conference
administration system and Anna Kramer’s help in publishing this volume with Springer.
Finally, we are indebted to all authors and participants for supporting this conference.

August 2021 Uli Fahrenberg
Mai Gehrke

Luigi Santocanale
Michael Winter
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Relational Tight Field Bounds for Distributed Analysis
of Programs

Marcelo F. Frias

Instituto Tecnológico de Buenos Aires and CONICET, Argentina

Relational tight field bounds [1] are an abstraction of the semantics of data structures.
In the presence of appropriate symmetry-breaking predicates, these bounds can be com-
puted automatically and allow to dramatically speed up bug-finding using SAT-solving.
In this lecture, after giving an introduction to tight field bounds and symmetry-breaking
predicates, I will present a general technique for distributing program analyses. As exam-
ples, I will show how the technique allows one to distribute SAT-based bug-finding [2]
as well as symbolic execution over complex data types.

References
1. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: efficient SAT-based bounded
verification using symmetry breaking and tight Bounds. IEEE Trans. Softw. Eng. 39(9), 1283–
1307 (2013)

2. Rosner, N., et al.: Parallel bounded analysis in code with rich invariants by refinement of field
bounds. ISSTA 2013, 23–33 (2013)



Fixpoint Games

Barbara König

Universität Duisburg-Essen

Solving fixpoint equations is a recurring problem in several domains: the result of a dataflow
analysis can be characterized as either a least or greatest fixpoint. It is well-known that
bisimilarity - the largest bisimulation - admits a characterization as a greatest fixpoint and
furthermore μ-calculus model-checking requires to solve systems of nested fixpoint equations.

Often, these fixpoint equations or equation systems are defined over powerset lattices, how-
ever in several applications - such as lattice-valued or real-valued μ-calculi - the lattice under
consideration is not a powerset.

Hence we extend the notion of fixpoint games (or unfolding games, introduced by Venema)
to games for equation systems over more general lattices. In particular continuous lattices admit
a very elegant characterization of the solution.

We will also describe how to define progress measures which describe winning strategies for
the existential players and explain how abstractions and up-to functions can be integrated into the
framework.

(Joint work with Paolo Baldan, Tommaso Padoan, Christina Mika-Michalski).



Quantified Constraint Satisfaction Problem:
Towards the Classification of Complexity

Dmitriy Zhuk

Lomonosov Moscow State University

The Quantified Constraint Satisfaction Problem (QCSP) is the generalization of the Constraint
Satisfaction problem (CSP) where we are allowed to use both existential and universal
quantifiers. Formally, the QCSP over a constraint language Γ is the problem to evaluate a
sentence of the form

∀x1∃y1∀x2∃y2 . . . ∀xn∃yn (R1(. . . ) ∧ · · · ∧ Rs(. . . )),

where R1, . . . , Rs are relations from Γ . While CSP remains in NP for any Γ , QCSP(Γ ) can
be PSpace-hard, as witnessed by Quantified 3-Satisfiability or Quantified Graph 3-Colouring. For
many years there was a hope that for any constraint language the QCSP is either in P, NP-complete,
or PSpace-complete. Moreover, a very simple conjecture describing the complexity of the QCSP
was suggested by Hubie Chen. However, in 2018 together with Mirek Olšák and Barnaby Martin
we discovered constraint languages for which the QCSP is coNP-complete, DP-complete, and
even ΘP

2 -complete, which refutes the Chen conjecture. Despite the fact that we described the
complexity for each constraint language on a 3-element domain with constants, we did not hope
to obtain a complete classification.

This year I obtained several results that make me believe that such a classification is closer
than it seems. First, I obtained an elementary proof of the PGP reduction, which allows to reduce
the QCSP to the CSP. Second, I showed that there is a gap between ΠP

2 and PSpace, and found
a criterion for the QCSP to be PSpace-hard. In the talk I will discuss the above and some other
results.
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Amalgamation Property for Varieties
of BL-algebras Generated by One Chain

with Finitely Many Components

Stefano Aguzzoli1 and Matteo Bianchi2(B)

1 Department of Computer Science, Università degli Studi di Milano, Via Celoria 18,
20133 Milano, Italy

aguzzoli@di.unimi.it
2 Independent researcher, Milano, Italy

matteob@gmail.com

Abstract. BL-algebras are the algebraic semantics for Hájek’s Basic
Logic BL, the logic of all continuous t-norms and their residua. Every
BL-chain can be decomposed (up to isomorphism) as an ordinal sum of
non-trivial Wajsberg hoops - called components - with the first bounded.
In this paper we study the amalgamation property for the varieties of
BL-algebras generated by one BL-chain with finitely many components.

Keywords: BL-algebras · Hoops · Amalgamation property · Ordinal
sums · Lattices of varieties

1 Introduction

BL-algebras are the algebraic semantics for the Basic Logic BL, introduced in
[Háj98]. The class of all BL-algebras forms a variety, which is called BL. As
shown in [CEGT00] BL is the logic of all continuous t-norms and their residua,
whence it is one of the major mathematical fuzzy logic (see [CHN11]) which are
useful to formally deal with vagueness and uncertainty.

In [AM03] there is a general result concerning the structure of the totally
ordered BL-algebras, BL-chains. Every BL-chain is isomorphic to an ordinal
sum of totally ordered Wajsberg hoops, with the first bounded. Moreover, the
same paper provides a full description of the subdirectly irreducible members
of every variety of BL-algebras generated by one BL-chain with finitely many
components. Using these ingredients, in our recent work [AB21a] we classified
the finite model property for all the BL-algebras generated by a finite set of
BL-chains with finitely many components.

In this paper we focus on the amalgamation property (AP), for some vari-
eties of BL-algebras. We recall that the AP for a variety of BL-algebras corre-
sponds to the deductive interpolation property for the associated logic. This is
a well established topic, since the amalgamation property for BL and some of
its subvarieties was shown in [Mon06], and in [CMM11] the analysis was further
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 1–18, 2021.
https://doi.org/10.1007/978-3-030-88701-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88701-8_1&domain=pdf
http://orcid.org/0000-0002-3896-7853
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2 S. Aguzzoli and M. Bianchi

extended. In [MMT14] the case of GBL-algebras (a far-reaching generalization of
BL-algebras) was also tackled, by providing a partial classification. Nevertheless,
the study of the AP for varieties of BL-algebras is far from over, since the lattice
of varieties of BL-algebras itself is uncountable and its structure is still poorly
understood. The present paper is an additional contribution to this topic, since
we will provide a full classification of the AP for all the varieties of BL-algebras
generated by one BL-chain with finitely many components.

The paper is structured as follows. After introducing in Sect. 2 some prelim-
inary results, in Sect. 3 we tackle the investigation of the AP for the varieties
of BL-algebras generated by one finite chain with finitely many components. In
Sect. 4 we discuss some open problems and future work.

2 Preliminaries

2.1 BL-algebras

Definition 1 ([Háj98]). A BL-algebra is an algebra (A, ∗,⇒,∧,∨, 0, 1) such
that:

(i) (A,∧,∨, 0, 1) is a bounded lattice with minimum 0 and maximum 1.
(ii) (A, ∗, 1) is a commutative monoid.
(iii) (∗,⇒) forms a residuated pair: z ∗ x ≤ y iff z ≤ x ⇒ y for all x, y, z ∈ A.
(iv) The following identities hold, for all x, y ∈ A:

(x ⇒ y) ∨ (y ⇒ x) = 1. (Prelinearity)

x ∧ y = x ∗ (x ⇒ y). (Divisibility)

A totally ordered BL-algebra is called a BL-chain.

Every algebra ([0, 1], ∗,⇒,min,max, 0, 1), where ∗ is a continuous t-norm, and ⇒
is its residuum, is a BL-algebra ([CHN11]), called standard BL-algebra. Two well-
known examples are the standard MV-algebra [0, 1]�L and the standard Gödel-
algebra [0, 1]G. In [0, 1]�L we have x ∗ y = max{0, x + y − 1}, and x ⇒ y =
min{1, 1 − x + y}. In [0, 1]G it holds that x ∗ y = min{x, y}, whilst x ⇒ y = 1 if
x ≤ y, and x ⇒ y = y if x > y. We define ¬x

def= x ⇒ 0.

2.2 BL-algebras and Ordinal Sums

Every BL-chain can be decomposed as an ordinal sum of hoops. Before stating
the result, we need some preparation.

Definition 2 ([EGHM03]). A hoop is an algebra A = (A, ∗,⇒, 1) of type
(2, 2, 0) such that:

(i) (A, ∗, 1) is a commutative monoid,
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(ii) ⇒ is a binary operation satisfying the following properties:
– x ⇒ x = 1,
– x ∗ (x ⇒ y) = y ∗ (y ⇒ x),
– x ⇒ (y ⇒ z) = (x ∗ y) ⇒ z.

A bounded hoop is an algebra A = (A, ∗,⇒, 0, 1) such that (A, ∗,⇒, 1) is a hoop,
and 0 ≤ x for all x ∈ A. The binary relation ≤ on A is defined as x ≤ y if and
only if x ⇒ y = 1. It follows from the hoop axioms that this binary relation is
indeed a partial order. An unbounded hoop is a hoop without minimum.

A Wajsberg hoop is a hoop A satisfying

(x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.

A cancellative hoop is a hoop satisfying

x ⇒ (x ∗ y) = y.

It is well known that bounded Wajsberg hoops are term-equivalent to MV-
algebras (see [AFM07], and [CDM99] for MV-algebras). We also recall that the
variety of Wajsberg hoops WH contains all cancellative hoops. In particular,
the class of totally ordered cancellative hoops coincides with the class of totally
ordered unbounded Wajsberg hoops. The class of all cancellative hoops forms a
variety, called CH. Of course CH � WH. BL-chains can be obtained by means
of the ordinal sum construction.

Definition 3. Let (I,≤) be a totally ordered set with minimum 0. For all i ∈ I,
let Ai = (Ai, ∗i,⇒i, 1) be a hoop such that for i �= j, Ai ∩ Aj = {1}. Then⊕

i∈I Ai is called the ordinal sum of the family {Ai}i∈I , whose universe is given
by

⋃
i∈I Ai, and whose operations ⇒, ∗ are given by:

x ⇒ y
def
=

⎧
⎪⎨

⎪⎩

x ⇒i y if x, y ∈ Ai,

y if j < i, x ∈ Ai, y ∈ Aj ,

1 if i < j, 1 �= x ∈ Ai, y ∈ Aj .

x ∗ y
def
=

⎧
⎪⎨

⎪⎩

x ∗i y if x, y ∈ Ai,

y if j < i, x ∈ Ai, 1 �= y ∈ Aj ,

x if i < j, 1 �= x ∈ Ai, y ∈ Aj .

The hoops Ai are called components. When I is finite, for example I =
{0, . . . , k}, we sometimes use the notation A0 ⊕ · · · ⊕ Ak, in place of

⊕
i∈I Ai.

As shown in [AM03] every BL-chain is canonically representable as an ordinal
sum of hoops.

Theorem 1 ([AM03]). For every BL-chain A there are a unique (up to order-
isomorphisms) totally ordered set (I,≤) with minimum 0 and a unique (up to
isomorphisms) family {Ai | i ∈ I} of non-trivial totally ordered Wajsberg hoops
where A0 is bounded, such that A ∼=

⊕
i∈I Ai.
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Observe that the idempotent elements in any ordinal sum of Wajsberg hoops are
exactly 1 and the bottoms of every component with minimum. Let A be a BL-
chain. With #A we denote the number of the components of A, i.e., #A = |I|,
in the decomposition of A described in Theorem 1.

Remark 1. – By slight abuse of terminology we shall often consider ordinal
sums

⊕
i∈I Ai, where there are some Ai (with i �= min I) being MV-chains,

with the obvious meaning that we are actually considering the 0-free reduct
of each such Ai.

– By slight abuse of notation we shall sometimes consider ordinal sums
⊕

i∈I Ai

where two or more components have elements in common distinct from 1 (for
example, Ai = Aj for some i �= j ∈ I). In such cases we tacitly mean to
consider an ordinal sum

⊕
i∈I Bi, with Bi � Ai for every i ∈ I and Bi ∩Bj =

{1} for i �= j.
– Unless stated otherwise, from now on we assume that all the ordinal sums of

Wajsberg hoops that we consider have non-trivial components.

It is possible to capture the property that a BL-chain A has at most n compo-
nents (#A ≤ n), equationally.

Lemma 1 ([AM03, Lemma 4.2]). Let A be a BL-chain. Then #A ≤ n if and
only if it satisfies the following equation:

n−1∧

i=0

((xi+1 ⇒ xi) ⇒ xi) ⇒
(

n∨

i=0

xi

)

= 1. (λn)

Consider the set C∞ = {x ∈ Z : x ≤ 0}. The hoop C∞ = (C∞, ∗,⇒, 1) is
defined as follows, for x, y ∈ C∞:

– 1C∞ = 0,
– x ∗C∞ y = x + y,

– x ⇒C∞ y =

{
0 if x ≤Z y,

y − x otherwise.

A direct inspection shows that C∞ is a cancellative hoop, and it is known that
V(C∞) = CH. In general, CH is generated by each of its non-trivial chains.
We assume that the reader is acquainted with some basic notions of univer-
sal algebra, and we refer to [BS81] for more details. If K is a class of BL-
chains, H(K),S(K),P(K), I(K),Pu(K) denote, respectively, the classes of all
the homomorphic images, subalgebras, direct products, isomorphic algebras and
ultraproducts of members of K. If A is a BL-chain, with V(A) we denote the
variety generated by A, i.e., HSP(A) [BS81]: similarly, if K is a class of
BL-chains, then V(K) indicates the variety generated by them. For example
V(2) = B, where 2 is the two-element Boolean algebra, and B is the variety of
Boolean algebras. Let R, Q, Z be the additive totally ordered abelian groups
over, respectively, real, rational and integer numbers. For k ≥ 2, let Qk be the
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totally ordered abelian subgroup of Q, with carrier { a
k−1 : a ∈ Z}. As it is cus-

tomary, given two lattice ordered abelian groups S, T , with S ×lex T we denote
the lattice ordered abelian group obtained as the lexicographic product of S and
T . With Γ we denote Mundici’s gamma functor1: see [CDM99] for details. For
n ≥ 2 we define Ln

def= Γ (Qn, 1) and Kn
def= Γ (Z ×lex Z, (n − 1, 0)). Finally,

we define [0, 1]�L
def= Γ (R, 1). The radical of a totally ordered Wajsberg hoop

(MV-chain) A, is the intersection of all the maximal filters of A, and will be
denoted by Rad(A). Let A be an MV-chain. We say that A has a finite rank if
A/Rad(A) � Lk, for some k (in this case rank(A) = k), whilst A has infinite
rank if A/Rad(A) is an infinite simple MV-chain. We can define mutatis mutan-
dis the same notion for a totally ordered Wasjberg hoop2: the only difference
is that A/Rad(A) would be the 0-free reduct of a simple MV-chain (finite or
infinite). For k ≥ 1 we define Pk as 2⊕ C∞ ⊕ · · · ⊕ C∞︸ ︷︷ ︸

k times

. For k ≥ 1, Pk generates

a variety, called Pk, where P1 is the variety of product algebras. We refer the
reader to [AB19] for further details. For k ≥ 2 we define Gk as 2 ⊕ · · · ⊕ 2

︸ ︷︷ ︸
k−1 times

. Gk

is a Gödel-chain (G-chain, for short) with k elements: see [CHN11] for further
details. Let A be a BL-chain or the 0-free reduct of an MV-chain (i.e., a totally
ordered Wajsberg hoop with minimum). We define A+ def= {x ∈ A : x > ¬x} and
A− def= {x ∈ A : x ≤ ¬x}. If A is a totally ordered Wajsberg hoop with minimum
m, here ¬x stands for x ⇒ m. Let A be a BL-chain or a totally ordered Wajsberg
hoop. With Si(A) we denote the class of the subdirectly irreducible algebras in
V(A). Finally, given a non-trivial variety L of BL-algebras (Wajsberg hoops),
with Ch(L) we denote the class of all the non-trivial chains in L. Every non-
trivial variety L of BL-algebras is generated by its chains, i.e., L = V(Ch(L)).
To simplify the notation, if A is a BL-chain (a totally ordered Wajsberg hoop),
we will write Ch(A) instead of Ch(V(A)).

3 Amalgamation Property for Varieties Generated
by One BL-chain with Finitely Many Components

We start with the definition of the amalgamation property. With ↪→ we denote
an embedding between algebras.

Definition 4. We say that a class K of BL-algebras has the amalgamation
property (AP) if for every 5-tuple (called V-formation) (A,B, C, i, j), where

A,B, C ∈ K and A i
↪−→ B, A j

↪−→ C, there is a triple (called amalgam) (D, h, k),

with D ∈ K, B h
↪−→ D, C k

↪−→ D, such that h ◦ i = k ◦ j.
1 Γ establishes a categorical equivalence between abelian l-groups with a strong order
unit (G, u) and MV-algebras, by equipping the interval [0, u] of G with MV-algebraic
operations obtained by truncation of the group ones. On arrows Γ acts by restriction.

2 Note that every non-trivial totally ordered cancellative hoop A does not have rank,
since A/Rad(A) is an infinite cancellative hoop.
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For the varieties of BL-algebras a sufficient condition for the AP is the following.

Theorem 2 ([Mon06,MMT14]). Let L be a non-trivial variety of BL-algebras.
If Ch(L) enjoys the AP then the same holds for L.

In this section we will provide a full classification of the AP for the varieties
of BL-algebras generated by one BL-chain with finitely many components. We
start with the following result.

Lemma 2 ([AB21b]). Let L be a variety of BL-algebras such that every chain
has finitely many components. Then there are k, h such that:

(i) Every chain in L has at most k components.
(ii) Every chain in L is such that the rank of a component, if finite, is at most

h.

Lemma 3. Let L be a variety of BL-algebras. Then the following are equivalent.

(i) L contains neither G4 nor P2.
(ii) Every chain A =

⊕
i∈I Ai in L is such that |I| ≤ 3, there is at most one

i ∈ I \ {0} such that Ai is infinite, and there is at most one j ∈ I \ {0} such
that Aj is bounded.

Proof. Let L be a variety of BL-algebras.

(ii) ⇒ (i) Immediate, as G4 and P2 do not satisfy condition (ii).
(i) ⇒ (ii) Assume that condition (i) holds true, and pick A =

⊕
i∈I Ai ∈

Ch(L). If |I| > 3, then there are i �= j ∈ I \ {0} such that Ai,Aj are either
both bounded or both cancellative. But then G4 ↪→ A (since the subalgebra of
A generated by its idempotent elements is a G-chain with at least 4 elements)
or P2 ↪→ A (since C∞ embeds into every infinite totally ordered cancellative
hoop, see [AFM07]), in contrast with condition (i). So we must have |I| ≤ 3.
Suppose now that there are i, j ∈ I \ {0} such that Ai,Aj are both infinite.
Assume w.l.o.g. that i < j. By [AM03, Theorem 7.9], P2 ∈ Si(2⊕Ai⊕Aj), but
then P2 ∈ L, in contrast with condition (i). So there is at most one i ∈ I \{0}
such that Ai is infinite. Suppose now that there are i, j ∈ I \ {0} such that
Ai,Aj are both bounded. This would imply that G4 ↪→ A, in contrast with
condition (i). Whence all the requirements of condition (ii) are satisfied, and
the proof is settled.

��

Theorem 3. Let L be a variety of BL-algebras such that every chain has finitely
many components. If L contains G4 or P2, then L does not have the AP.

Proof. Let L be a variety of BL-algebras such that every chain has finitely many
components. By Lemma 2 there is n ∈ N which is the largest number of compo-
nents of a chain in L.
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Suppose first that L contains G4. Since every chain has at most n components,
then every G-chain in L has at most n + 1 elements. Let 4 ≤ k ≤ n + 1 be the
cardinality of the largest G-chain in L.

Pick now the V-formation (B, C,D, i, j), such that B � Gk−1, C � Gk and
D � Gk. Assume that the lattice reducts of B, C,D are, respectively, b1 < · · · <
bk−1, c1 < · · · < ck, d1 < · · · < dk. Let us define i, j as follows:

– i(b1) = c1, i(bk−1) = ck.
– For 2 ≤ r ≤ k − 2, i(br) = cr.
– j(b1) = d1, j(bk−1) = dk.
– For 2 ≤ r ≤ k − 2, j(br) = dr+1.

It is immediate to see that i, j are embeddings.
We now show that there is no amalgam in L for the V-formation (B, C,D, i, j).
Suppose by contradiction that there is an amalgam (E , l,m) for (B, C,D, i, j),

with E ∈ L. Then we must have that l(i(b)) = m(j(b)), for every b ∈ B, and
hence an easy computation shows that S = l(C) ∪ m(D) has k + 1 elements,
and its elements are ordered (in E) as follows3: 0 = l(c1) = m(d1) < l(c2) <
l(c3) = m(d2) < · · · < l(ck−1) = m(dk−2) < m(dk−1) < 1 = l(ck) = m(dk).
We now show that S is a subuniverse of E . Note that every element of S is
idempotent. Also, since l(i(B)) = S \ {m(dk−1)} and m(j(B)) = S \ {l(c2)},
then the operations ∗ and ⇒ coincide with the ones of a G-chain, over S \
{m(dk−1)} and S \ {l(c2)}. Then, to show that S is a subuniverse of E we only
need to check that m(dk−1) ⇒ l(c2) ∈ S. Clearly m(dk−1) ⇒ l(c2) ≥ l(c2),
and by monotonicity, m(dk−1) ⇒ l(c2) ≤ l(ck−1) ⇒ l(c2) = l(c2). This proves
m(dk−1) ⇒ l(c2) = l(c2) ∈ S. Whence S is a subuniverse of E .

Let S be the subalgebra of E with carrier S. It is immediate to see that
S � Gk+1, and clearly S ∈ L. However this is not possible, as the largest G-
chain (up to isomorphisms) in L is Gk.

Whence we conclude that (B, C,D, i, j) cannot have an amalgam in L, and
the AP fails for L.

Suppose, finally, that L contains P2. The proof strategy is very similar to
the G4 case, with the difference that instead of the idempotent elements we take
in account the number of cancellative components. Remember that every chain
in L has at most n components. Let h be the maximum number of cancellative
components of a chain in L: clearly 2 ≤ h ≤ n − 1. This means that L contains
P1, . . . ,Ph.

Pick now the V-formation (B, C,D, i, j), such that B � Ph−1, C � Ph and
D � Ph.

More specifically we have that B = 2⊕B1⊕· · ·⊕Bh−1, C = 2⊕C1⊕· · ·⊕Ch,D =
2⊕D1 ⊕· · ·⊕Dh, and all the Br’s, Cs’s, Dt’s are isomorphic to C∞. Let us define
i, j as follows:

– i(0) = 0, i(1) = 1.
– For 1 ≤ r ≤ h − 1, i maps isomorphically Br in Cr.

3 To use this proof strategy is essential that k ≥ 4.
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– j(0) = 0, j(1) = 1.
– For 1 ≤ r ≤ h − 1, j maps isomorphically Br in Dr+1.

It is immediate to see that i, j are embeddings.
We now show that there is no amalgam in L for the V-formation (B, C,D, i, j).
Suppose by contradiction that there is an amalgam (E , l,m) for (B, C,D, i, j),

with E ∈ L. Then we must have that l(i(b)) = m(j(b)), for every b ∈ B, and
hence an easy check shows that the elements of S = l(C) ∪ m(D) are ordered
(in E) as follows4: 0 < l(C1) \ {1} < l(C2) \ {1} = m(D1) \ {1} < · · · <
l(Ch) \ {1} = m(Dh−1) \ {1} < m(Dh) \ {1} < 1. So, S contains the elements of
h + 1 totally ordered cancellative hoops, with the top element 1 in common. We
now show that S is a subuniverse of E . Since l(i(B)) = S \ (m(Dh) \ {1}) and
m(j(B)) = S \ (l(C1)\{1}), then the operations ∗ and ⇒ of l(i(B)) and m(j(B))
coincide with the ones of a chain isomorphic to Ph, over S \ (m(Dh) \ {1}) and
S \ (l(C1) \ {1}), respectively. Then, to show that S is a subuniverse of E we
only need to check that x ⇒ y ∈ S, for every x ∈ m(Dh) \ {1}, and every
y ∈ l(C1) \ {1}. Clearly x ⇒ y ≥ y, and by monotonicity, x ⇒ y ≤ z ⇒ y = y,
for every z ∈ l(Ch)\{1}. This proves x ⇒ y = y ∈ S. Whence S is a subuniverse
of E . Let S be the subalgebra of E with carrier S. It is immediate to see that
S � Ph+1, and clearly S ∈ L. However this is not possible, as no chain in L has
more than h cancellative components. Whence we conclude that (B, C,D, i, j)
cannot have an amalgam in L, and the AP fails for L. The proof is settled. ��

Lemma 4. Let A be a simple MV-chain, and let B =
⊕

i∈I Bi be a BL-chain
such that B0 = 2 and |I| ≥ 2 ( i.e., B is an SBL-chain with at least two compo-
nents). Suppose that there is a BL-algebra C such that A ↪→ C and B ↪→ C. Then
A ⊕

⊕
i∈I\{0} Bi ↪→ C.

Proof. Let A, B as above, and assume that there is a BL-algebra C such that

A i
↪−→ C and B j

↪−→ C. Let D be the subalgebra of C generated by i(A) ∪ j(B).
We now show that x ∗D y = x, for every x ∈ i(A \ {1}) and y ∈ j(B \ {0}).
Pick x ∈ i(A \ {1}) and y ∈ j(B \ {0}). It is easy to check that ¬¬x =

x and ¬y = 0. Now, D is isomorphic to a subdirect product E of a family
of subdirectly irreducible BL-chains {Er : r ∈ R}. Then there are two tuples
〈xr〉r∈R, 〈yr〉r∈R ∈ E which correspond - via the isomorphism between D and E
- to x and y, respectively.

Since ¬y = 0, every yr in 〈yr〉r∈R is either 1 or it belongs to a component of
Er which is different from the first-one. Indeed, if not we would have ¬ys > 0,
for some s ∈ R, and this would imply ¬y > 0, a contradiction.

Since ¬¬x = x, every xr in 〈xr〉r∈R belongs to the first component of Er.
Indeed, if not we would have ¬¬xs �= xs, for some s ∈ R, and then x �= ¬¬x, a
contradiction. Since A is simple, then x is nilpotent, i.e., xn = 0, for some n.
This implies that xr < 1 for every r ∈ R.

4 To use this proof strategy it is essential that h ≥ 2. For every l(Ci) (m(Di), respec-
tively), the elements are ordered as in the chain l(Ci) (m(Di), respectively).
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From the previous observations we have that xr < yr, for every xr in 〈xr〉r∈R

and every yr in 〈yr〉r∈R. Then an easy computation shows that xr ∗ yr = xr,
for every r ∈ R, and hence x ∗ y = x. Moreover we have that y ⇒ x = x, since
yr ⇒ xr = xr, for every xr in 〈xr〉r∈R and every yr in 〈yr〉r∈R. This means that
i(A) ∪ j(B) is closed under ∗D and ⇒D, and it contains 0 and 1. Moreover we
have that x ∧D y = x, as x ∗D y ≤ x ∧D y ≤ x, and since i(A) and j(B) are
both chains we conclude that i(A) ∪ j(B) is a totally ordered subuniverse of C.
Then we have D � A⊕i∈I\{0} Bi, and hence the theorem’s claim is an immediate
consequence. ��

Remark 2. Note that Lemma 4 does not hold, in general, if we remove the
assumption that A is simple. For example, consider Chang’s MV-algebra K2

and 2⊕ L3, as well as their direct product K2 × 2⊕ L3. It is very easy to check
that K2 ↪→ K2×2⊕L3 and 2⊕L3 ↪→ K2×2⊕L3. However K2⊕L3 �↪→ K2×2⊕L3.

Proposition 1. Let A =
⊕

i∈I Ai be a BL-chain. Suppose that:

– |I| ≥ 2, i.e., A has at least two components.
– A0 is an MV-chain with infinite rank such that Lk �↪→ A0, for some k ≥ 3 or

A0 is an infinite MV-chain with rank k ≥ 3, and Lk �↪→ A0.

Then V(A) does not have the AP.

Proof. Let A be a BL-chain as above. Since A0 is an infinite MV-chain with
infinite rank or rank k, then Lk ∈ V(A0) � V(A). Pick now the V-formation
(2,A,Lk, i, j), where i, j are defined in the unique and obvious way. Suppose
that there is an amalgam (D, l,m), with D ∈ V(A). By Lemma 4, D contains
E = Lk ⊕

⊕
i∈I\{0} Ai as a subalgebra. Since Lk �↪→ A0, by [AM03, Lemma 4.6]

the equation5 e
def= (((y ⇒ x) ⇒ x) ∗ ((k − 2)x ⇔ ¬x)) ⇒ (x ∨ y) = 1 is such

that A |= e, whilst E �|= e. Whence E /∈ V(A), and we conclude that V(A) does
not have the AP. ��

We recall the following construction, introduced in [Jen03].

Definition 5. Let A be a totally ordered Wajsberg hoop. The disconnected rota-
tion of A is an algebra denoted by A∗ and defined as follows. Let A′ = {(a, 0) :
a ∈ A}. We define an order ≤A′ on A′ such that (A′,≤A′) and (A,≤A) are

dually isomorphic. Let A∗ def
= A ∪ A′. We extend the orders ≤A and ≤A′ to an

order ≤A∗ in A∗, by putting a <A∗ b for every a ∈ A′, b ∈ A. For every a ∈ A∗

we define a′ = (a, 0) if a ∈ A, and a′ = b if a = (b, 0) ∈ A′.

5 Here x ⇔ y stands for (x ⇒ y) ∗ (y ⇒ x). Moreover x � y
def
= (x ⇒ (x ∗ y)) ⇒ y,

whilst nx is defined inductively by 0x = 0 and n(x) = (n − 1)x � x.
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Finally, we take the following operations in A∗. 1A∗
def
= 1A, 0A∗

def
= (1A)′,

∧A∗ is the minimum w.r.t. ≤A∗ , ∨A∗ is the maximum w.r.t. ≤A∗ ,

a ∗A∗ b
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a ∗A b if a, b ∈ A,

(a ⇒A b′)′ if a ∈ A, b ∈ A′,
(b ⇒A a′)′ if a ∈ A′, b ∈ A,

0A∗ if a, b ∈ A′.

a ⇒A∗ b
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a ⇒A b if a, b ∈ A,

(a ∗A b′)′ if a ∈ A, b ∈ A′,
1A∗ if a ∈ A′, b ∈ A,

b′ ⇒A a′ if a, b ∈ A′.

Theorem 4 ([NEG05, Theorem 9]). Let A be a totally ordered cancellative hoop.
Then A∗ is isomorphic to a perfect MV-chain. Conversely, every perfect MV-
chain is isomorphic to the disconnected rotation of a totally ordered cancellative
hoop.

Let A be a totally ordered Wajsberg hoop. With Ar we denote the 0-free reduct
of A∗.

Lemma 5. (i) Let A be a totally ordered cancellative hoop, and let B be a
totally ordered Wajsberg hoop with minimum. If A ↪→ B, then Ar ↪→ B.

(ii) Let A,B be two totally ordered cancellative hoops. If A ↪→ B, then Ar ↪→ Br.
(iii) Let A be an infinite totally ordered Wajsberg hoop with minimum. Then,

for every B ∈ Ch(CH), Br ∈ V(A).

Proof. (i) Let A,B as above, and suppose that A i
↪−→ B. Let C be the subalgebra

of B generated by i(A) ∪ {0}, where 0 is the minimum of B. Of course
i(A) ∪ ¬i(A) ⊆ C, where ¬i(A) = {¬x : x ∈ i(A)}. We show that also the
other inclusion holds. Since A is a cancellative hoop, then i(A) ⊆ Rad(B) ⊆
B+: this means that i(A) is closed under ∗,⇒, and i(A) ∩ ¬i(A) = ∅.
As an easy check shows, ¬i(A) cannot contain a negation fixpoint, and
hence ¬i(A) ⊆ B−, which implies that ¬i(A) is closed under ∗ (notice
that 0 ∈ ¬i(A)). Since B has an involutive negation, then i(A) ∪ ¬i(A)
is closed under ∗,¬. To show that i(A) ∪ ¬i(A) is a subuniverse of B, it
remains to show that given x, y ∈ ¬i(A), with x > y > 0, and y ∈ ¬i(A),
x ⇒ y ∈ i(A)∪¬i(A). Suppose first x ∈ ¬i(A). As it is well known, on MV-
algebras it holds that x ⇒ y = (¬y) ⇒ (¬x). since the negation is involutive
¬y,¬x ∈ i(A), and hence x ⇒ y = (¬y) ⇒ (¬x) ∈ i(A). Suppose, finally,
that x ∈ i(A). Notice that x ⇒ y = ¬x ⊕ y = ¬(x ∗ ¬y). Since the negation
is involutive then ¬y ∈ i(A), and since i(A) is closed under ∗ we conclude
that x ∗ ¬y ∈ i(A). Then x ⇒ y = ¬(x ∗ ¬y) ∈ ¬i(A).
This means that i(A) ∪ ¬i(A) is a subuniverse of B, and hence C = i(A) ∪
¬i(A). By [Jen03, Definition 5] an easy check shows that C � Ar. Then we
conclude that Ar ↪→ B.
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(ii) Immediate, by the definition of disconnected rotation.
(iii) Let A be an infinite totally ordered Wajsberg hoop with minimum. By

[AP02, Corollary 2.3] we know that there is an MV-chain A′ such that A
is the 0-free reduct of A′, and Ch(A) = Sh(Ch(A′)), where Sh(Ch(A′))
denotes the class of 0-free subreducts of Ch(A′). Since A′ is infinite, then
C ⊆ V(A′). By Theorem 4 we conclude that for every B ∈ Ch(CH), Br ∈
V(A). ��

Theorem 5. (i) Let A be an MV-chain. Then Ch(A) has the AP.
(ii) Let A be a totally ordered Wajsberg hoop. Then Ch(A) has the AP.

Proof. (i) Assume first that A is an MV-chain. If A has infinite rank, then
V(A) = MV. Then, as shown in [Mun88,Mon06] Ch(A) has the AP.
If A has a finite rank, then (see [CDM99]) either V(A) = V(Kn) or
V(A) = V(Ln), for some n ≥ 2. The rest of the proof is very similar to
the one [NL00, Proposition 4], with some modifications. Let (B, C,D, i, j)
be a V-formation with B, C,D ∈ Ch(A). By [Mun88,Mon06] there exists an
amalgam (E , h, k), where E is an MV-chain. By [NL00, Lemma 6, Proposi-
tion 7], Ch(A) ∩ S(E) has a largest element E0. Since h(C), k(D) ∈ IS(E),
then both C and D embeds into E0. Consider now (E0, h1, k1), where
h1 : C → E0 and k1 : D → E0 are maps such that h1(x) = h(x), and
k1(y) = k(y), for every x ∈ C, y ∈ D. An easy check shows that (E0, h1, k1)
is an amalgam for (B, C,D, i, j), and clearly E0 ∈ Ch(A).

(ii) Suppose first that A is an unbounded Wajsberg hoop, i.e., A is an infinite
cancellative hoop. Then by [AFM07, Theorem 6.3], V(A) is the variety CH

of cancellative hoops, and as shown in [Mon06] Ch(A) has the AP.
Finally, assume that A is a totally ordered Wajsberg hoop with minimum.
This means that A is the 0-free reduct of an MV-chain, say A′. Then V(A)
can contain 0-free reducts of MV-chains and, possibly, cancellative hoops.
Let (B, C,D, i, j) be a V-formation with B, C,D ∈ Ch(A). Let us define
(B′, C′,D′, i1, j1) as follows. For E ∈ {B, C,D}, E ′ = Er if E is a cancellative
hoop, and E ′ = E if E is a Wajsberg hoop with minimum. The maps i1 :
B′ → C′, and j1 : B′ → D′ are defined as follows.

i1(x) =

⎧
⎪⎨

⎪⎩

i(x) if B = B′

i(x) if B′ = Br and x > ¬B′x.

¬B′(i(¬B′x)) if B′ = Br and x ≤ ¬B′x.

j1(x) =

⎧
⎪⎨

⎪⎩

j(x) if B = B′

j(x) if B′ = Br and x > ¬B′x.

¬B′(j(¬B′x)) if B′ = Br and x ≤ ¬B′x.

The maps i1, j1 are well-defined, since by Lemma 5, B ↪→ B′, C ↪→ C′, and
D ↪→ D′. Since (B, C,D, i, j) is a V-formation, using Lemma 5 it can be
easily checked that (B′, C′,D′, i1, j1) is a V-formation as well. By Lemma 5
we also have that B′, C′,D′ ∈ Ch(A). By the construction we have that
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B′, C′,D′ are the 0-free reducts of three MV-chains, say B′′, C′′,D′′. Then
we can construct a V-formation (B′′, C′′,D′′, i2, j2), where i2 and j2 maps
the elements in the same way of i1 and j1, respectively. By 1) there is an
amalgam (E , h, k) for (B′′, C′′,D′′, i2, j2), where E ∈ Ch(A′). Then, by call-
ing E ′ the 0-free reduct of E , we can construct an amalgam (E ′, h1, k1) for
the V-formation (B′, C′,D′, i1, j1), where h1 and j1 maps the elements in
the same way of h and k, respectively. Clearly E ′ ∈ Ch(A).
Consider now (E ′, h2, j2), where h2 : C → E ′, and k2 : D → E ′ are such
that h2(x) = h1(x), for every x ∈ C, and k2(y) = k1(y), for every y ∈ D.
The maps h2, k2 are well-defined, since by Lemma 5, C ↪→ C′, and D ↪→ D′.
It is straightforward to check that (E ′, h2, j2) is an amalgam for
(B, C,D, i, j).
The proof is settled. ��

Proposition 2 ([AB21b]). Let A =
⊕k

i=0 Ai be a BL-chain. Define As =
⊕k−1

i=0 Ai ⊕ Bk, where:

– Bk = Ak if Ak is finite.
– Bk is the 0-free reduct of [0, 1]�L if Ak has infinite rank.
– Bk is the 0-free reduct of Kn if Ak is non-simple and with rank n.
– Bk = C∞ if Ak is an infinite cancellative hoop.

Then As is subdirectly irreducible, and V(A) = V(As).

Lemma 6 ([AM03]).

– Let
⊕

i∈I Ai be a non-trivial BL-chain. Then ISPu(
⊕

i∈I Ai) = I(
⊕

i∈I

SPu(Ai)), where
⊕

i∈I SPu(Ai) = {
⊕

i∈I Bi : Bi ∈ SPu(Ai)}.
– If A is an infinite totally ordered cancellative hoop, then ISPu(A) = Ch(CH).
– If A is a totally ordered Wajsberg hoop with infinite rank, and for every n ≥ 2,

Ln ↪→ A, then ISPu(A) = Ch(A).
– If A is a totally ordered Wajsberg hoop with rank(A) = n, and Ln ↪→ A, then

ISPu(A) = Ch(A). If in addition A is also finite, then6 ISPu(A) = IS(A) =
Ch(A).

We can finally state our main result.

Theorem 6. Let L be a variety of BL-algebras generated by one chain with
finitely many components. Then the following are equivalent:

(i) L has the AP.
(ii) Every BL-chain A =

⊕
i∈I Ai such that V(A) = L satisfies the following

conditions.
• |I| ≤ 3.

6 The assumption that Ch(A) does not contain trivial chains is essential. Indeed, if A
is non-trivial, then ISPu(A) does not contain trivial algebras.
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• There is at most one i ∈ I \ {0} such that Ai is infinite, and there is at
most one j ∈ I \ {0} such that Aj is bounded.

• If |I| ≥ 2 then the following ones hold.
∗ If A0 has infinite rank, then Lk ↪→ A0, for every k ≥ 2.
∗ If A0 is infinite and rank(A0) = k, then Lk ↪→ A0.

Proof. Let L be a variety of BL-algebras generated by one chain with finitely
many components.

(i) ⇒ (ii) Suppose that condition 2 does not hold. The results of Lemma 3
plus an easy check show that the hypothesis of Theorem 3 or Proposition 1
are satisfied, and we conclude that L does not have the AP.
(ii) ⇒ (i) Let A =

⊕
i∈I Ai be a BL-chain such that V(A) = L. By hypoth-

esis A satisfies condition (ii), which implies #A ≤ 3. Our proof strategy is
to prove the AP for Ch(A). By Theorem 2 this implies that L = V(A) has
the AP as well. We distinguish the cases #A = 1, #A = 2, and #A = 3.

#A = 1. In this case A is an MV-chain, and by [NL00], L has the AP.
#A = 2. We have that A = A0 ⊕ A1. By Proposition 2, V(A) = V(As),
and As = A0⊕As

1. An easy check shows that As satisfies 2) as well as the
hypothesis of [AM03, Theorems 7.4,7.6]: by inspecting the proof of [AM03,
Theorem 7.6] we have Ch(A) = Ch(As) = ISPu(As). Let (B, C,D, i, j)
be a V-formation in Ch(A). Since, by Lemma 1, every chain in V(A) has
at most two components, without loss of generality we can assume that
B = B0 ⊕ B1, C = C0 ⊕ C1, D = D0 ⊕ D1, possibly with the trivial algebra
as second component. Because of the operations of an ordinal sum, i and
j can only map the first (second) component of B into the first (second)
component of, respectively, C and D. By Theorem 5 and Lemma 6, for
n ∈ {0, 1} we can find an amalgam (En, hn, kn) of (Bn, Cn,Dn, i�Bn

, j�Bn
),

with E0 ∈ Ch(A0) = ISPu(A0), and E1 ∈ Ch(As
1) = ISPu(As

1). Pick
now (E0 ⊕ E1, h, k), where:

– h(x) = h0(x) if x ∈ C0, and h(x) = h1(x) otherwise.
– k(x) = k0(x) if x ∈ D0, and k(x) = k1(x) otherwise.

From this and Lemma 6, a direct inspection shows that (E0⊕E1, h, k) is an
amalgam of (B, C,D, i, j), and E0 ⊕ E1 ∈ ISPu(As) = Ch(As) = Ch(A).
#A = 3. We have that A = A0 ⊕ A1 ⊕ A2. Since 2) holds true, the only
possibility is that exactly one among A1 and A2 is finite, and the other one
is an infinite cancellative hoop. Let us assume that A1 is finite, and A2 is
cancellative: we will omit the other case since the proof remains basically
identical, mutatis mutandis. An easy check shows that A satisfies both 2)
and the hypothesis of [AM03, Theorems 7.4,7.6]. By inspecting the proof
of [AM03, Theorem 7.6] we have Ch(A) = ISPu(A) = I({R ⊕ S ⊕ T :
R ∈ SPu(A0),S ∈ SPu(A1), T ∈ SPu(A2)}, where the last equality is
due to Lemma 6. By Lemma 6, if H,K are, respectively, a cancellative
totally ordered hoop, and a finite totally ordered Wajsberg hoop, then
ISPu(H) = {R : R ∈ Ch(CH)}, and ISPu(K) = IS(K). This means
that for every C ∈ Ch(A), if C = C0 ⊕ C1 (i.e., #C = 2), then either
C1 ∈ ISPu(A2) and hence it is a cancellative hoop or C1 ∈ ISPu(A1) =
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IS(A1), i.e., C1 is a finite Wajsberg hoop embeddable into A1. Of course,
if C ∈ Ch(A) has three components, i.e., C = C0 ⊕ C1 ⊕ C2, then C1 is a
cancellative hoop, whilst C2 is a finite Wajsberg hoop embeddable into A1.
Let (B, C,D, i, j) be a V-formation in Ch(A). If both C and D have at
most two components, then we can find an amalgam by using the same
argument used for the case #A = 2. Suppose then that either C or D has
three components, w.l.o.g. #C = 3. We have three subcases.

∗ #D = 1. This implies that #B = 1. By our previous observa-
tions we know that B0, C0,D0 ∈ Ch(A0) = ISPu(A0). Whence by
Theorem 5 we can find an amalgam (E0, h, k) for the V-formation
(B0, C0,D0, i�B0

, j�B0
), where E0 ∈ Ch(A0) = ISPu(A0). Consider

now (E0 ⊕ C1 ⊕ C2, r, s), where r : C → E0 ⊕ C1 ⊕ C2, and s : D →
E0 ⊕ C1 ⊕ C2 are maps defined as follows.

· r(i) = h(i), for i ∈ C0, and r(i) = i if i ∈ C1 ∪ C2.
· s(i) = k(i), for i ∈ D0, and s(i) = i if i ∈ D1 ∪ D2.

A direct inspection shows that (E0 ⊕ C1 ⊕ C2, r, s) is an amalgam for
(B, C,D, i, j), and E0 ⊕ C1 ⊕ C2 ∈ ISPu(A) = Ch(A).
∗ #D = 2. This implies that 1 ≤ #B ≤ 2. We can assume that
#B = 2, i.e., B = B0 ⊕ B1, as the proof for the case #B = 1
can be obtained by replacing B1 with the trivial Wajsberg hoop. As
in the #D = 1 case, we can find an amalgam (E0, h, k) for the V-
formation (B0, C0,D0, i�B0

, j�B0
), where E0 ∈ Ch(A0) = ISPu(A0).

By hypothesis D = D0 ⊕D1, and from the previous parts of the proof
we know that D1 is either an infinite cancellative hoop or a finite
Wajsberg hoop such that D1 ∈ IS(A1). We now analyze these two
subcases.

· D1 is cancellative. Then both C2 and D1 belongs to ISPu(A2).
Since we assumed #B = 2, then B1 ∈ ISPu(A2) (i.e., B1 is an
infinite cancellative hoop). Whence i(B1) ⊆ C2, and j(B1) ⊆ D1.
Consider the V-formation (B1, C2,D1, i�B1

, j�B1
). By Theorem 5

we can find an amalgam (E1, v, w), where E1 ∈ Ch(WH) =
ISPu(A2). Consider now (E0 ⊕ C1 ⊕ E1, r, s), where r : C →
E0 ⊕ C1 ⊕ E1, and s : D → E0 ⊕ C1 ⊕ E1 are maps defined as
follows.

r(i) =

⎧
⎪⎨

⎪⎩

h(i) if i ∈ C0,

i if i ∈ C1

v(i) if i ∈ C2

s(i) =

{
k(i) if i ∈ D0,

w(i) if i ∈ D1

A direct inspection shows that (E0 ⊕ C1 ⊕ E1, r, s) is an amalgam
for (B, C,D, i, j), and E0 ⊕ C1 ⊕ E1 ∈ ISPu(A) = Ch(A).

· D1 is finite. Then both C1 and D1 belongs to ISPu(A1) = IS(A1).
Since we assumed #B = 2, then B1 ∈ IS(A1) (i.e., B1 is a
finite Wajsberg hoop). Whence i(B1) ⊆ C1, and j(B1) ⊆ D1.
Consider the V-formation (B1, C1,D1, i�B1

, j�B1
). By Theorem 5

we can find an amalgam (E1, v, w), where E1 ∈ Ch(A1) = IS(A1).
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Consider now (E0 ⊕ E1 ⊕ C2, r, s), where r : C → E0 ⊕ E1 ⊕ C2, and
s : D → E0 ⊕ E1 ⊕ C2 are maps defined as follows.

r(i) =

⎧
⎪⎨

⎪⎩

h(i) if i ∈ C0,

v(i) if i ∈ C1

i if i ∈ C2

s(i) =

{
k(i) if i ∈ D0,

w(i) if i ∈ D1

it is easy to check that (E0 ⊕ E1 ⊕ C2, r, s) is an amalgam for
(B, C,D, i, j), and E0 ⊕ E1 ⊕ C2 ∈ ISPu(A) = Ch(A).

∗ #D = 3. By Theorem 5 we can find an amalgam (E0, h, k) for the
V-formation (B0, C0,D0, i�B0

, j�B0
), where E0 ∈ Ch(A0) = ISPu(A0).

We distinguish the cases #B = 2, and #B = 3. The case #B = 1
can be omitted, since it is a subcase of #B = 2, when the second
component of B is the trivial Wajsberg hoop.

· #B = 2. We have that B1 is either cancellative or finite.
If B1 is cancellative, then B1, C2,D2 ∈ ISPu(A2) = Ch(A2),
which means that they are all cancellative hoops. Since C1 and
D1 are finite Wajsberg hoops, then i(B1) ⊆ C2 and j(B1) ⊆ D2.
By Theorem 5 we can find an amalgam (E2, v, w), with E2 ∈
ISPu(A2) = Ch(A2) for the V-formation (B1, C2,D2, i�B1

, j�B1
).

Moreover, by hypothesis C1,D1 ∈ IS(A1), which means that there

are two embeddings l,m such that C1
l

↪−→ A1 and D1
m

↪−→ A1.
Consider now (E0 ⊕ A1 ⊕ E2, r, s), where r : C → E0 ⊕ A1 ⊕ E2,
and s : D → E0 ⊕ A1 ⊕ E2 are maps defined as follows.

r(i) =

⎧
⎪⎨

⎪⎩

h(i) if i ∈ C0,

l(i) if i ∈ C1

v(i) if i ∈ C2

s(i) =

⎧
⎪⎨

⎪⎩

k(i) if i ∈ D0,

m(i) if i ∈ D1,

w(i) if i ∈ C2

A direct inspection shows that (E0 ⊕ A1 ⊕ E2, r, s) is an amalgam
for (B, C,D, i, j), and E0 ⊕ A1 ⊕ E2 ∈ ISPu(A) = Ch(A).
If B1 is finite, then B1, C1,D1 ∈ ISPu(A1) = Ch(A1), which
means that they are all finite Wajsberg hoops. Since C2 and D2

are cancellative hoops, then i(B1) ⊆ C1 and j(B1) ⊆ D1.
By Theorem 5 we can find an amalgam (E1, l,m), with E1 ∈
IS(A1) = Ch(A1) for the V-formation (B1, C1,D1, i�B1

, j�B1
).

By Theorem 5 we can find an amalgam (E2, v, w), with E2 ∈
ISPu(A2) = Ch(A2) for the V-formation (TH , C2,D2, i�TH

, j�TH
),

where TH is the trivial Wajsberg hoop.
Consider now (E0 ⊕A1 ⊕E2, r, s), where r : C → E0 ⊕E1 ⊕E2, and
s : D → E0 ⊕ A1 ⊕ E2 are maps defined as follows.

r(i) =

⎧
⎪⎨

⎪⎩

h(i) if i ∈ C0,

l(i) if i ∈ C1

v(i) if i ∈ C2

s(i) =

⎧
⎪⎨

⎪⎩

k(i) if i ∈ D0,

m(i) if i ∈ D1,

w(i) if i ∈ C2
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A direct inspection shows that (E0 ⊕ E1 ⊕ E2, r, s) is an amalgam
for (B, C,D, i, j), and E0 ⊕ E1 ⊕ E2 ∈ ISPu(A) = Ch(A).

· #B = 3. In this case B1, C1,D1 ∈ IS(A1) = Ch(A1), and
hence they are all finite Wajsberg hoops, whilst B2, C2,D2 ∈
ISPu(A2) = Ch(A2), which means that they are all cancella-
tive hoops. In particular i(B1) ⊆ C1, i(B2) ⊆ C2, j(B1) ⊆ D1, and
i(B2) ⊆ D2; moreover i(B0) ⊆ C0, and j(B0) ⊆ D0. By Theorem 5
we can find an amalgam (E1, l,m), with E1 ∈ IS(A1) = Ch(A1),
for the V-formation (B1, C1,D1, i�B1

, j�B1
). Using again Theorem 5

we can also find an amalgam (E2, v, w), with E2 ∈ ISPu(A2) =
Ch(A2) for the V-formation (B2, C2,D2, i�B2

, j�B2
).

Consider now (E0 ⊕ E1 ⊕ E2, r, s), where r : C → E0 ⊕ E1 ⊕ E2, and
s : D → E0 ⊕ E1 ⊕ E2 are maps defined as follows.

r(i) =

⎧
⎪⎨

⎪⎩

h(i) if i ∈ C0,

l(i) if i ∈ C1

v(i) if i ∈ C2

s(i) =

⎧
⎪⎨

⎪⎩

k(i) if i ∈ D0,

m(i) if i ∈ D1,

w(i) if i ∈ C2

A direct inspection shows that (E0 ⊕ E1 ⊕ E2, r, s) is an amalgam
for (B, C,D, i, j), and E0 ⊕ E1 ⊕ E2 ∈ ISPu(A) = Ch(A).

The proof is settled. ��

4 Discussion and Open Problems

In this paper we studied the AP for the varieties of BL-algebras generated by
one BL-chain with finitely many components. Future works will be devoted to
generalize these results to a larger family of varieties. A first step could be the
study of the AP for the varieties of BL-algebras generated by a finite set S of
BL-chains with finitely many components. As shown in [AB21b] these varieties
coincide with the small varieties of BL-algebras, i.e., the varieties of BL-algebras
whose lattice of subvarieties is finite. We have some partial results in this direc-
tion, but the main issue is that for many of these varieties the AP for the class of
chains fails to holds, making the analysis of the AP for the whole variety harder.
One may argue that the requirement on the finiteness of S is quite strong, but as
the following result shows, one should be careful when removing this restriction.

Theorem 7. Every variety of BL-algebras is generated by some set of BL-chains
with finitely many components.

Proof. As shown in [AB21b] every variety of BL-algebras L is equal to the join
of a family of strictly join irreducible varieties, let us say L =

∨
i∈I Li. Further

it is shown in [AB21b] that every Li is generated by one BL-chain with finitely
many components, say Ai. As a consequence L = V(S), where S = {Ai : i ∈ I},
and clearly S is a set of BL-chains with finitely many components. ��

So, by removing the restriction on the finiteness of S we get the whole lattice of
varieties of BL-algebras L(BL), which is uncountable and poorly known.
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Abstract. A distributive lattice-ordered magma (d�-magma) (A, ∧, ∨, ·)
is a distributive lattice with a binary operation · that preserves joins in
both arguments, and when · is associative then (A, ∨, ·) is an idempotent
semiring. A d�-magma with a top � is unary-determined if x·y = (x·�∧y)
∨(x∧�·y). These algebras are term-equivalent to a subvariety of distribu-
tive lattices with � and two join-preserving unary operations p, q. We
obtain simple conditions on p, q such that x·y = (px ∧ y) ∨ (x ∧ qy) is
associative, commutative, idempotent and/or has an identity element.
This generalizes previous results on the structure of doubly idempotent
semirings and, in the case when the distributive lattice is a Heyting alge-
bra, it provides structural insight into unary-determined algebraic models
of bunched implication logic. We also provide Kripke semantics for the
algebras under consideration, which leads to more efficient algorithms
for constructing finite models.

Keywords: Distributive lattice-ordered magmas · Bunched
implication algebras · Idempotent semirings · Enumerating finite
models

1 Introduction

Idempotent semirings (A,∨, ·) play an important role in several areas of com-
puter science, such as network optimization, formal languages, Kleene algebras
and program semantics. In this setting they are often assumed to have con-
stants 0, 1 that are the additive and multiplicative identity respectively, with 0
also being an absorbing element. However semirings are usually only assumed to
have two binary operations +, · that are associative such that + is also commu-
tative and · distributes over + from the left and right [9]. They are (additively)
idempotent if x + x = x, hence + is a (join) semilattice, and doubly idempotent
if x · x = x as well. If · is also commutative then it defines a meet semilattice.
The special case when these two semilattices coincide corresponds exactly to the
variety of distributive lattices, which have a well understood structure theory.

In [1] a complete structural description was given for finite commutative dou-
bly idempotent semirings where either the multiplicative semilattice is a chain,
or the additive semilattice is a Boolean algebra. Here we show that the second
c© Springer Nature Switzerland AG 2021
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description can be significantly generalized to the setting where the additive
semilattice is a distributive lattice, dropping the assumptions of finiteness, mul-
tiplicative commutativity and idempotence in favor of the algebraic condition
x·y = (px∧y)∨ (x∧qy) for two unary join-preserving operations p, q. While this
property is quite restrictive in general, it does hold in all idempotent Boolean
magmas and expresses a binary operation in terms of two simpler unary opera-
tions. A full structural description of all (finite) idempotent semirings is unlikely,
but in the setting of unary-determined idempotent semirings progress is possible.

In Sect. 2 we provide the needed background and prove a term-equivalence
between a subvariety of top-bounded d�-magmas and a subvariety of top-boun-
ded distributive lattices with two unary operators. This is then specialized to
cases where · is associative, commutative, idempotent or has an identity element.
In the next section we show that when the distributive lattice is a Brouwerian
algebra or Heyting algebra, then · is residuated if and only if both p and q
are residuated. This establishes a connection with bunched implication alge-
bras (BI-algebras) that are the algebraic semantics of bunched implication logic
[14], used in the setting of separation logic for program verification, including
reasoning about pointers [16] and concurrent processes [13]. Section 4 contains
Kripke semantics for d�-magmas, called Birkhoff frames, and for the two unary
operators p, q. This establishes the connection to the previous results in [1] and
leads to the main result (Theorem 15) that preorder forest P -frames capture
a larger class of multiplicatively idempotent BI-algebras and doubly idempo-
tent semirings. Although the heap models of BI-algebras used in applications
are not (multiplicatively) idempotent, they contain idempotent subalgebras and
homomorphic images, hence a characterization of unary-determined idempotent
BI-algebras does provide insight into the general case. In Sect. 5, as an applica-
tion, we count the number of such algebras up to isomorphism if their partial
order is an antichain and also if it is a chain.

2 A Term-Equivalence Between Distributive Lattices
with Operators

A distributive lattice-ordered magma, or d�-magma, is an algebra (A,∧,∨, ·) such
that (A,∧,∨) is a distributive lattice and · distributes over ∨, i. e., x(y ∨ z) =
xy ∨xz and (x∨ y)z = xz ∨ yz for all x, y, z ∈ A. If the distributive lattice has a
top element � or a bottom element ⊥ then it is called �-bounded or ⊥-bounded,
or simply bounded if both exist. A d�-magma A is normal and · is a normal
operation if A is ⊥-bounded and satisfies x·⊥ = ⊥ = ⊥·x. Similarly, a unary
operation f on A is an operator if it satisfies f(x∨y) = fx∨fy, and it is normal
if f⊥ = ⊥. For brevity and to reduce the number of nested parentheses, we
write function application as fx rather than f(x), with the convention that it
has priority over · hence, e.g., fxy = (f(x))·y (this convention ensures unique
readability). Note that since operators distribute over ∨ in each argument, they
are order-preserving in each argument. The operation f is said to be inflationary
if x ≤ fx for all x ∈ A.
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A binary operation · is said to be idempotent if xx = x for all x ∈ A,
commutative if xy = yx and associative if (xy)z = x(yz). A semigroup is a set
with an associative operation, a band is a semigroup that is also idempotent, and
a semilattice is a commutative band. As usual, a semilattice is partially ordered
by x � y ⇐⇒ xy = x, and in this case xy is the meet operation with respect
to �. We also use this terminology with the prefix d�, in which case the magma
operation satisfies the corresponding identities.

A d�-magma is called unary-determined if it is �-bounded and satisfies the
identity

x·y = (x·� ∧ y) ∨ (x ∧ �·y).

As examples, we mention that all doubly-idempotent semirings with a Boolean
join-semilattice are unary-determined (see Lemma 3). Complete and atomic ver-
sions of such semirings are studied in [1], and the results from that paper are gen-
eralized here to unary-determined d�-magmas with point-free algebraic proofs.
This is an improvement since the algebraic results apply to all members of the
variety, while the previous results applied only to complete and atomic algebras.

A d�pq-algebra is a �-bounded distributive lattice with two unary operators
p, q that satisfy

x ∧ p� ≤ qx, x ∧ q� ≤ px.

These two equational axioms are needed for our first result which shows that
unary-determined d�-magmas and d�pq-algebras are term-equivalent. This means
that although the two varieties are based on different sets of fundamental oper-
ations (called the signature of each class), each fundamental operation of an
algebra in one variety is identical to a term-operation constructed from funda-
mental operations of an algebra in the other variety (and vice versa). From the
point of view of category theory, term-equivalent varieties are model categories
of the same Lawvere theory.

Although unary-determined d�-magmas and d�pq-algebras seem rather spe-
cial, they are simpler than general d�-magmas, yet include interesting idempotent
semirings (as reducts).

Theorem 1. (1) Let (A,∧,∨,�, p, q) be a d�pq-algebra and define x·y = (px ∧
y) ∨ (x ∧ qy). Then (A,∧,∨,�, ·) is a unary-determined d�-magma and p, q
are given by px = x·� and qx = �·x.

(2) Let (A,∧,∨,�, ·) be a unary-determined d�-magma and define px = x·�,
qx = �·x. Then (A,∧,∨,�, p, q) is a d�pq-algebra and · is definable from
p, q via x·y = (px ∧ y) ∨ (x ∧ qy).

Proof. (1) Assume p, q are unary operators on a �-bounded distributive lattice
(A,∧,∨,�), and xy = (px ∧ y) ∨ (x ∧ qy). Then

x(y ∨ z) = (px ∧ (y ∨ z)) ∨ (x ∧ q(y ∨ z))
= (px ∧ y) ∨ (px ∧ z) ∨ (x ∧ qy) ∨ (x ∧ qz)
= (px ∧ y) ∨ (x ∧ qy) ∨ (px ∧ z) ∨ (x ∧ qz)
= xy ∨ xz.
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A similar calculation shows that (x ∨ y)z = xz ∨ yz, hence · is an operator.
Since p, q satisfy x ∧ q·� ≤ px, it follows that x·� = (px ∧ �) ∨ (x ∧ q·�) =

px ∨ (x ∧ q�) = px, and similarly �·x = qx is implied by x ∧ p� ≤ qx. Now the
identity xy = (x·� ∧ y) ∨ (x ∧ �·y) holds by definition.

(2) Assume (A,∧,∨,�, ·) is a unary-determined d�-magma, and define px =
x·�, qx = �·y. Then p, q are unary operators and px = x·� = (x·� ∧ �) ∨ (x ∧
��) = px ∨ (x ∧ q�), hence x ∧ q� ≤ px. The inequation x ∧ p� ≤ qx is proved
similarly. The operation · can be recovered from p, q since xy = (px∧y)∨(x∧qy)
follows from the identity we assumed. ��

The preceding theorem shows that unary-determined d�-magmas and d�pq-
algebras are “essentially the same”, and we can choose to work with the signature
that is preferred in a given situation. The unary operators of d�pq-algebras are
simpler to handle, while the binary operator · is familiar in the semiring setting.
Next we examine how standard properties of · are captured by identities in the
language of d�pq-algebras.

Lemma 2. Let (A,∧,∨,�, p, q) be a d�pq-algebra and define x·y = (px ∧ y) ∨
(x ∧ qy).

(1) The operator · is commutative if and only if p = q.
(2) If p = q then · is associative if and only if p((px ∧ y) ∨ (x ∧ py)) = (px ∧

py) ∨ (x ∧ ppy).
(3) The operator · is idempotent if and only if p and q are inflationary, if and

only if p� = � = q�.
(4) If · is idempotent then it is associative if and only if

p((px ∧ y) ∨ (x ∧ qy)) = (px ∧ py) ∨ (x ∧ qy) and

q((px ∧ y) ∨ (x ∧ qy)) = (px ∧ y) ∨ (qx ∧ qy).

(5) The operator · has an identity 1 if and only if p1=�=q1 and (px∨qx)∧1 ≤
x.

(6) If · has an identity then · is idempotent.

Proof. (1) Assuming xy = yx, we clearly have x·� = �·x, hence px = qx. The
converse makes use of commutativity of ∧ and ∨: xy = (px ∧ y) ∨ (x ∧ py) =
(py ∧ x) ∨ (y ∧ px) = yx.

(2) Assume p = q. If · is associative then (xy)� = x(y�), so by the previous
theorem, p(xy) = xpy, which translates to

p((px ∧ y) ∨ (x ∧ py)) = (px ∧ py) ∨ (x ∧ ppy) (∗).

Conversely, suppose (∗) holds, and note that p(xy) = p(yx) by (1), hence

p((px ∧ y) ∨ (x ∧ py)) = (px ∧ py) ∨ (ppx ∧ y) = (px ∧ py) ∨ (x ∧ ppy) ∨ (ppx ∧ y) (∗∗).
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It suffices to prove (xy)z ≤ x(yz) since then z(yx) ≤ (zy)x follows by
commutativity. Now

(xy)z = [p((px ∧ y) ∨ (x ∧ py)) ∧ z] ∨ [((px ∧ y) ∨ (x ∧ py)) ∧ pz]

= [((px ∧ py) ∨ (x ∧ ppy)) ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz] using (∗)

= [px ∧ py ∧ z] ∨ [x ∧ ppy ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz]

≤ [px ∧ py ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz] ∨ [x ∧ y ∧ ppz] ∨ [x∧ppy∧z]

= [px ∧ py ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ ((py ∧ pz) ∨ (y ∧ ppz) ∨ (ppy ∧ z))]

= [px ∧ ((py ∧ z) ∨ (y ∧ pz))] ∨ [x ∧ p((py ∧ z) ∨ (y ∧ pz))] using (∗∗)

= x(yz).

(3) If · is idempotent, then x = xx ≤ x·� = px and x ≤ �·x = qx. Conversely,
if p, q are inflationary then xx = (px ∧ x) ∨ (x ∧ qy) = x ∨ x = x, hence
· is idempotent. For the second equivalence, if p� = � = q� then p, q
are inflationary since they satisfy x ∧ p� ≤ qx, x ∧ q� ≤ px. The reverse
implication holds because x ≤ px, qx implies � ≤ p�, q�.

(4) Assume · is idempotent and associative. Then (�·x)� = �(x·�), hence qpx =
pqx. Furthermore, pqx = �·x·� = �xx� = (qx)(px) = (pqx∧px)∨(qx∧qpx).
By (3) p, q are inflationary, so px ≤ pqx and qx ≤ qpx. Therefore pqx =
px ∨ qx. Now we translate (xy)� = x(y�) to obtain p(xy) = x(py), hence

p((px ∧ y) ∨ (x ∧ qy)) = (px ∧ py) ∨ (x ∧ qpy) = (px ∧ py) ∨ (x ∧ (py ∨ qy))
= (px ∧ py) ∨ (x ∧ py) ∨ (x ∧ qy) = (px ∧ py) ∨ (x ∧ qy) since x ≤ px by (3).

The identity q((px ∧ y) ∨ (x ∧ qy)) = (px ∧ y) ∨ (qx ∧ qy) has a similar proof.
Conversely, assume the two identities hold. Then using distributivity

(xy)z = [p((px ∧ y) ∨ (x ∧ qy)) ∧ z] ∨ [((px ∧ y) ∨ (x ∧ qy)) ∧ qz]
= [px ∧ py ∧ z] ∨ [x ∧ qy ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ qy ∧ qz]
= [px ∧ py ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ qy ∧ qz] since x∧qy∧z ≤ x∧qy∧qz

= [px ∧ py ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ py ∧ z] ∨ [x ∧ qy ∧ qz]
= [px ∧ ((py ∧ z) ∨ (y ∧ qz))] ∨ [x ∧ q((py ∧ z) ∨ (y ∧ qz))] = x(yz).

(5) Assume x has an identity 1. Then p1 = 1� = � = �1 = q1 and x = x1 =
(px ∧ 1) ∨ (x ∧ q1) = (px ∧ 1) ∨ x, so px ∧ 1 ≤ x and similarly qx ∧ 1 ≤ x.
Therefore (px ∨ qx) ∧ 1 = (px ∧ 1) ∨ (qx ∧ 1) ≤ x.
Conversely, suppose p1 = � = q1 and (px ∨ qx) ∧ 1 ≤ x. Then x1 =
(px ∧ 1) ∨ (x ∧ q1) = (px ∧ 1) ∨ x = x since px ∧ 1 ≤ x. Likewise 1x = x.

(6) This follows from (3) since x = x1 ≤ x·� = px and x = 1x ≤ qx. ��
Note that if A also has a bottom bound ⊥ then p, q are normal if and only if

· is normal, hence the term-equivalence preserves normality.
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Table 1. The number of algebras of cardinality n up to isomorphism.

Cardinality n = 2 3 4 5 6 7 8

1 Normal d�-magmas 2 20 1116

2 Normal d�pq-algebras 2 6 46 3435

3 Normal comm. d�-semigroups 2 8 57 392 3212

4 Normal assoc. d�p-algebras 2 4 13 35 109 315 998

5 Normal comm. idem. d�-semigroups 1 2 8 25 97 366

6 Normal assoc. idem. d�p-algebras 1 2 7 18 57 163 521

7 Normal comm. idem. d�-monoids 1 2 6 15 44 115 326

8 Normal assoc. idem. d�p1-algebras 1 2 5 10 24 47 108

9 Distributive lattices 1 1 2 3 5 8 15

This term-equivalence is useful since distributive lattices with unary opera-
tors are considerably simpler than distributive lattices with binary operators. In
particular, (2) and (4) show that associativity can be replaced by one or two 2-
variable identities in this variety. This provides more efficient ways to construct
associative operators from a (pair of) unary operator(s) on a distributive lat-
tice. The variety of �-bounded distributive lattices is obtained as a subvariety
of d�pq-algebras that satisfy px = x = qx, or a subvariety of unary determined
d�-magmas that satisfy x · y = x ∧ y.

For small cardinalities, Table 1 shows the number of algebras that are unary-
determined (shown in the even numbered rows) for several subvarieties of normal
d�-magmas. As seen from rows 5–8, under the assumption of associativity, com-
mutativity and idempotence of ·, the property of being unary-determined is a
relatively mild restriction compared to the general case of normal d�-magmas.

A Boolean magma is a Boolean algebra with a binary operator. The next
lemma shows that if the operator is idempotent, then it is always unary-deter-
mined, hence the results in the current paper generalize the theorems about
idempotent Boolean nonassociative quantales in [1].

Lemma 3. Every idempotent Boolean magma (A,∧,∨,¬,⊥,�, ·) is unary-de-
termined, i.e., satisfies xy = (x·� ∧ y) ∨ (x ∧ �·y).

Proof. Idempotence is equivalent to x ∧ y ≤ xy ≤ x ∨ y since (x ∧ y)2 ≤ xy ≤
(x ∨ y)2 holds in all partially ordered algebras where · is an order-preserving
binary operation. The following calculation

x·� ∧ y = x(y ∨ ¬y) ∧ y = (xy ∧ y) ∨ (x(¬y)) ∧ y)
≤ xy ∨ ((x ∨ ¬y) ∧ y) = xy ∨ (x ∧ y) ∨ (¬y ∧ y) = xy

and a similar one for x ∧ �·y ≤ xy prove that xy ≥ (x·� ∧ y) ∨ (x ∧ �·y).
Using Boolean negation, the opposite inequation is equivalent to

xy ∧ ¬(x·� ∧ y) ≤ x ∧ �·y.
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By De Morgan’s law it suffices to show (xy ∧ ¬(x·�)) ∨ (xy ∧ ¬y) ≤ x ∧ �·y.
Since xy ≤ x·�, the first meet disappears. Next, by idempotence, xy ∧ ¬y ≤
(x ∨ y) ∧ ¬y = (x ∧ ¬y) ∨ (y ∧ ¬y) ≤ x and finally xy ∧ ¬y ≤ xy ≤ �·y. ��

3 BI-algebras from Heyting Algebras and Residuated
Unary Operations

We now recall some basic definitions about residuated operations, adjoints and
residuated lattices. For an overview and additional details we refer to [6]. A
Brouwerian algebra (A,∧,∨,→,�) is a �-bounded lattice such that → is the
residual of ∧, i.e.,

x ∧ y ≤ z ⇐⇒ y ≤ x → z.

Since → is the residual of ∧, we have that ∧ is join-preserving, so the lattice
is distributive [6, Lemma 4.1]. The �-bound is included as a constant since it
always exists when a meet-operation has a residual: x ∧ y ≤ x always holds,
hence y ≤ (x → x) = �. A Heyting algebra is a bounded Brouwerian algebra
with a constant ⊥ denoting the bottom element.

A dual operator is an n-ary operation on a lattice that preserves meet in
each argument. A residual or upper adjoint of a unary operation p on a poset A
is a unary operation p∗ such that

px ≤ y ⇐⇒ x ≤ p∗y

for all x, y ∈ A. If A is a lattice, then the existence of a residual guarantees that
p is an operator and p∗ is a dual operator [6, Lemma 3.5]. Moreover, if A is
bounded, then p⊥ = ⊥ and p∗� = �.

A binary operation · on a poset is residuated if there exist a left residual \
and a right residual / such that

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

A residuated �-magma (A,∧,∨, ·, \, /) is a lattice with a residuated binary oper-
ation. In this case · is an operator and \, / are dual operators in the “numerator”
argument. In the “denominator” \, / map joins to meets, hence they are order
reversing. A residuated Brouwerian-magma is a residuated �-magma expanded
with →,� such that (A,∧,∨,→,�) is a Brouwerian algebra.

A residuated lattice is a residuated �-magma with · associative and a constant
1 that is an identity element, i.e., (A, ·, 1) is a monoid. A generalized bunched
implication algebra, or GBI-algebra, (A,∧,∨,→,�, ·, 1, \, /) is a �-bounded
residuated lattice with a residual → for the meet operation, i.e., (A,∧,∨,→,�)
is a Brouwerian algebra. A GBI-algebra is called a bunched implication algebra
(BI-algebra) if · is commutative and A also has a bottom element, denoted by the
constant ⊥, hence a BI-algebra has a Heyting algebra reduct. These algebras are
the algebraic semantics for bunched implication logic, which is the propositional
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part of separation logic, a Hoare logic used for reasoning about memory refer-
ences in computer programs. In this setting the operation · is usually denoted
by ∗, the left residual \ is denoted −∗, and / can be omitted since x/y = y−∗x.

Note that the property of being a residual can be expressed by inequalities
(p∗ is a residual of p if and only if p(p∗x) ≤ x ≤ p∗(px) for all x, and p, p∗ are
order preserving), hence the classes of all Brouwerian algebras, Heyting alge-
bras, residuated �-magmas, residuated Brouwerian-magmas, residuated lattices,
(G)BI-algebras, and pairs of residuated unary maps on a lattice are varieties
(see e.g. [6, Theorem 2.7, Lemma 3.2.]). Recall also that a �-bounded magma is
unary-determined if it satisfies the identity xy = (x·� ∧ y) ∨ (x ∧ �·y).

We are now ready to prove a result that upgrades the term-equivalence of
Theorem 1 to Brouwerian algebras with two pairs of residuated maps and unary-
determined residuated Brouwerian-magmas.

Theorem 4. (1) Let (A,∧,∨,→,�, p, p∗, q, q∗) be a Brouwerian algebra with
unary operators p, q and their residuals p∗, q∗ such that x∧p� ≤ qx, x∧q� ≤
px. If we define x·y = (px ∧ y) ∨ (x ∧ qy),

x\y = (px → y) ∧ q∗(x → y) and x/y = p∗(y → x) ∧ (qy → x)

then (A,∧,∨,�, ·, \, /) is a unary-determined residuated Brouwerian-magma
and the unary operations are recovered by px = x·�, p∗x = x/�, qx = �·x
and q∗x = �\x.

(2) Let (A,∧,∨,→,�, ·, \, /) be a unary-determined residuated Brouwerian-
magma and define px = x·�, p∗x = x/�, qx = �·x and q∗x = �\x. Then
(A,∧,∨,→, �, p, p∗, q, q∗) is a Brouwerian algebra with a unary operators
p, q and dual operators p∗, q∗ that satisfies x ∧ p� ≤ qx, x ∧ q� ≤ px.

Proof. (1) The following calculation shows that · is residuated.

x · y ≤ z ⇐⇒ (px ∧ y) ∨ (x ∧ qy) ≤ z ⇐⇒ px ∧ y ≤ z and x ∧ qy ≤ z

⇐⇒ y ≤ px → z and y ≤ q∗(x → z) ⇐⇒ y ≤ (px → z) ∧ q∗(x → z)

hence x\z = (px → z)∧q∗(x → z) and similarly z/y = p∗(y → z)∧(qy → z).
By Theorem 1 it follows that px = x·�, qx = �·x and xy = (x·�∧y)∨(x∧�·y).
Since x·� ≤ y ⇐⇒ x ≤ y/� we obtain p∗(x) = x/�, and similarly q∗(x) =
�\x.

(2) Since · is residuated it follows that p∗ and q∗ are the unary residuals of p, q
respectively. The remaining parts hold by Theorem 1. ��

Recall that a closure operator p is an order-preserving unary function on
a poset such that x ≤ px = ppx. A d�p-algebra where p is a closure operator
is called a d�p-closure algebra. If · is idempotent and associative then x·� =
x(��) = (x�)�, so px = x·� is a closure operator.

Lemma 5. Assume A is a d�p-closure algebra and let x·y = (px∧ y)∨ (x∧ py).
Then · is associative if and only if px ∧ py ≤ p((px ∧ y) ∨ (x ∨ py)).
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Proof. By Lemma 2 · is associative if and only if the identity p((px ∧ y) ∨ (x ∨
py)) = (px∧py)∨(x∧py) holds. This is equivalent to px∧py ≤ p((px∧y)∨(x∨py))
since x ∧ py ≤ px ∧ py, p(px ∧ y) ≤ ppx ∧ py = px ∧ py and similarly p(x ∧ py) ≤
px ∧ py. ��
Hence the preceding theorems specialize to a term-equivalence for a subvariety
of unary-determined BI-algebras as follows:

Corollary 6. 1. Let (A,∧,∨,→,�,⊥, p, p∗, 1) be a Heyting algebra with a clo-
sure operator p, residual p∗ and constant 1 such that px ∧ py ≤ p((px ∧ y) ∨
(x ∧ py)), p1 = � and px ∧ 1 ≤ x. If we define x∗y = (px ∧ y) ∨ (x ∧ py) and
x−∗y = (px → y)∧p∗(x∧y) then (A,∧,∨,�,→, ∗,−∗, 1) is a unary-determined
BI-algebra and x∗� ∧ y∗� ≤ ((x∗� ∧ y) ∨ (x ∧ y∗�))∗� holds.

2. Let (A,∧,∨,→,�,⊥, ∗,−∗, 1) be a unary-determined BI-algebra, and define
px = x∗� and p∗x = �−∗x. Then (A,∧,∨,→, �,⊥, p, p∗, 1) is a Heyting
algebra with a closure operator p that has p∗ as residual and satisfies px∧py ≤
p((px ∧ y) ∨ (x ∧ py)), p1 = � and px ∧ 1 ≤ x.

By Lemma 2 (6) unary-determined BI-algebras satisfy x∗x = x, which does not
hold in BI-algebras that model applications (e.g., heap storage). However, as
mentioned in the introduction, they are members of the variety of BI-algebras,
and understanding their properties via this term-equivalence is useful for the
general theory. E.g., structural results about algebraic object (such as rings)
often start by investigating the idempotent algebras, followed by sets of idempo-
tent elements in more general algebras. Line 8 in Table 1 also shows that finite
unary-determined BI-algebras are not rare (normal join-preserving operators are
automatically residuated in the finite case, hence the algebras counted in Line 8
are indeed term-equivalent to unary-determined BI-algebras).

4 Relational Semantics for d�-magmas

We now briefly recall relational semantics for bounded distributive lattices with
operators and then apply correspondence theory to derive first-order conditions
for the equational properties of the preceding sections.

An element in a lattice is completely join-irreducible if it is not the supremum
of all the elements strictly below it. The set of all completely join-irreducible ele-
ments of a lattice A is denoted by J(A), and it is partially ordered by restricting
the order of A to J(A). For example, if A is a Boolean lattice, then J(A) = At(A)
is the antichain of atoms, i.e., all elements immediately above the bottom ele-
ment. The set M(A) of completely meet-irreducible elements is defined dually.
A lattice is perfect if it is complete (i.e., all joins and meets exist) and every
element is a join of completely join-irreducibles and a meet of completely meet-
irreducibles. For a Boolean algebra, the notion of perfect is equivalent to being
complete (i.e., joins and meets of all subsets exist) and atomic (i.e., every non-
bottom element has an atom below it).

Recall that for a poset W = (W,≤), a downset is a subset X such that
y ≤ x ∈ X implies y ∈ X. As in modal logic, W is considered a set of “worlds” or
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states. We let D(W) be the set of all downsets of W, and (D(W),∩,∪) the lattice
of downsets. The collection D(W) is a perfect distributive lattice with infinitary
meet and join given by (arbitrary) intersections and unions. The following result,
due to Birkhoff [2] for lattices of finite height, shows that up to isomorphism
all perfect distributive lattices arise in this way. The poset J(D(W)) contains
exactly the principal downsets ↓x = {y ∈ W | y ≤ x}.

Theorem 7 ([3, 10.29]). For a lattice A the following are equivalent:

1. A is distributive and perfect.
2. A is isomorphic to the lattice of downsets of a partial order.

Note that the set of upsets of a poset is also a perfect distributive lattice,
and if it is ordered by reverse inclusion then this lattice is isomorphic to the
downset lattice described above. It is also well known that the maps J and D
are functors for a categorial duality between the category of posets with order-
preserving maps and the category of perfect distributive lattices with complete
lattice homomorphisms (i.e., maps that preserve arbitrary joins and meets).

A complete operator on a complete lattice is an operation that is either
completely join-preserving, completely meet-preserving, maps all arbitrary meets
to joins or all arbitrary joins to meets in each argument. A lattice-ordered algebra
is called perfect if its lattice reduct is perfect and every fundamental operation on
it is a complete operator. The duality between the category of perfect distributive
lattices and posets extends to the category of perfect distributive lattices with
(a fixed signature of) complete operators. The corresponding poset category has
additional relations of arity n + 1 for each operator of arity n, and the relations
have to be upward or downward closed in each argument. For example, a binary
relation Q ⊆ W 2 is upward closed in the second argument if xQy ≤ z =⇒ xQz.
Here xQy ≤ z is an abbreviation for xQy and y ≤ z.

Perfect distributive lattices with operators are algebraic models for many log-
ics, including relevance logic, intuitionistic logic, Hajek’s basic logic, �Lukasiewicz
logic and bunched implication logic [6,7]. In such an algebra A, a join-preserving
binary operation is determined by a ternary relation R on J(A) given by

xRyz ⇐⇒ x ≤ yz.

The notation xRyz is shorthand for (x, y, z) ∈ R. For b, c ∈ A the product bc is
recovered as

∨{x ∈ J(A) | xRyz for some y ≤ b and z ≤ c}.
The relational structure (J(A),≤, R) is an example of a Birkhoff frame. In

general, a Birkhoff frame [5] is a triple W = (W,≤, R) where (W,≤) is a poset,
and R ⊆ W 3 satisfies the following three properties (downward closure in the
1st, and upward closure in the 2nd and 3rd argument):

(R1) u ≤ xRyz =⇒ uRyz

(R2) xRyz & y ≤ v =⇒ xRvz

(R3) xRyz & z ≤ w =⇒ xRyw.
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A Birkhoff frame W defines the downset algebra D(W) = (D(W),
⋂

,
⋃

, ·)
by

Y · Z = {x ∈ W | xRyz for some y ∈ Y and z ∈ Z}.

The property (R1) ensures that Y · Z ∈ D(W).
In relevance logic [4] similar ternary frames are known as Routley-Meyer

frames. In that setting upsets are used to recover the distributive lattice-ordered
relevance algebra, and this choice implies that J(A) with the induced order
from A is dually isomorphic to (W,≤). Another difference is that Routley-Meyer
frames have a unary relation and axioms to ensure it is a left identity element
of the · operation.

The duality between perfect d�-magmas and Birkhoff frames is recalled below.
Here we assume that the binary operation on a complete d�-magma is a complete
operator, i.e., distributes over arbitrary joins in each argument. Such algebras
are also known as nonassociative quantales or prequantales.

Theorem 8 ([5]).

1. If A is a perfect d�-magma and R ⊆ J(A)3 is defined by xRyz ⇔ x ≤ yz
then J(A) = (J(A),≤, R) is a Birkhoff frame, and A ∼= D(J(A)).

2. If W is a Birkhoff frame then D(W) is a perfect d�-magma, and W ∼=
(J(D(W)),⊆, R↓), where (↓x, ↓y, ↓z) ∈ R↓ ⇔ xRyz.

A ternary relation R is called commutative if xRyz =⇒ xRzy for all x, y, z.
The justification for this terminology is provided by the following result.

Lemma 9. For any Birkhoff frame W, D(W) is commutative if and only if R
is commutative.

Lemma 10. Let W be a Birkhoff frame. Then D(W) is idempotent if and only
if xRxx and (xRyz =⇒ x ≤ y or x ≤ z) for all x, y, z ∈ W .

Proof. Assume D(W) is idempotent, and let x ∈ W . Then ↓x · ↓x = ↓x since
↓x ∈ D(W). From x ∈ ↓x we deduce x ∈ ↓x · ↓x, whence it follows that xRyz
for some y ∈ ↓x, z ∈ ↓x. Therefore xRyz for y ≤ x, z ≤ x, which implies xRxx
by (R2) and (R3).

Next assume xRyz holds. Then x ∈ ↓{y, z}·↓{y, z} = ↓{y, z} by idempotence.
Hence for some w ∈ {y, z} we have x ≤ w, and it follows that x ≤ y or x ≤ z.

For the converse, assume xRxx and (xRyz =⇒ x ≤ y or x ≤ z) for all
x, y, z ∈ W and let X ∈ D(W). From xRxx we obtain X ⊆ X · X.

For the reverse inclusion, let x ∈ X · X. Then xRyz holds for some y, z ∈ X.
By assumption xRyz implies x ≤ y or x ≤ z. Since X is a downset, x ≤ y =⇒
x ∈ X and x ≤ z =⇒ x ∈ X. Hence X · X = X. ��

The previous two results are examples of correspondence theory, since they
show that an equational property on a perfect d�-magma corresponds to a first-
order condition on its Birkhoff frame.

The relational semantics of a perfect d�pq-magma is given by a PQ-frame,
which is a partially-ordered relational structure (W,≤, P,Q) such that P,Q are
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binary relations on W , u ≤ xPy ≤ v =⇒ uPv and u ≤ xQy ≤ v =⇒
uQv. Relations with this property are called weakening relations [5,11], and
this is what ensures that if we define p(Y ) = {x | ∃y(xPy & y ∈ Y )} for a
downset Y , then p is a complete normal join-preserving operator that produces a
downset, and P is uniquely determined by xPy ⇔ x ∈ p(↓y). Similarly, a normal
operator q is defined from Q, and uniquely determines Q. The residual p′ of p is
a completely meet-preserving operator, defined by p′(Y ) = {x | ∀y(yPx ⇒ y ∈
Y )}, and likewise for q′. If P = Q then we omit Q and refer to (W,≤, P ) simply
as a P -frame.

We now list some correspondence results for d�pq-magmas. We begin with
a theorem that restates the term-equivalence of Theorem 1 as a definitional
equivalence on frames. A direct proof of this result is straightforward, but it also
follows from Theorem 1 by correspondence theory.

Theorem 11. (1) Let (W,≤, P,Q) be a PQ-frame such that x ≤ y & xPz ⇒
xQy and x ≤ y & xQz ⇒ xPy. If we define xRyz ⇔ (xPy & x ≤ z) or (x ≤
y & xQz) then (W,≤, R) is a Birkhoff frame, and P,Q are obtained from R
via xPy ⇔ ∃z(xRyz) and xQy ⇔ ∃z(xRzy).

(2) Let (W,≤, R) be a Birkhoff frame that satisfies xRyz ⇔ (∃z(xRyz) & x ≤
z) or (x ≤ y & ∃z(xRzy)) and define xPy ⇔ ∃z(xRyz), xQy ⇔ ∃z(xRzy).
Then (W,≤, P,Q) is a PQ-frame in which x ≤ y & xPz ⇒ xQy and x ≤
y & xQz ⇒ xPy hold.

Note that the universal formula x ≤ y & xPz =⇒ xQy corresponds to the
d�pq-magma axiom Y ∧ p� ≤ qY .

A significant advantage of PQ-frames over Birkhoff frames is that binary
relations have a graphical representation in the form of directed graphs (whereas
ternary relations are 3-ary hypergraphs that are more complicated to draw).
Equational properties from Lemma 2, Corollary 6 correspond to the following
first-order properties on PQ-frames.

Lemma 12. Assume A is a perfect d�pq-algebra and W = (W,≤, P,Q) is its
corresponding PQ-frame. The constant 1 ∈ A (when present) is assumed to
correspond to a downset E ⊆ W . Then

(1) a ≤ pa holds in A if and only if P is reflexive,
(2) ppa ≤ pa holds in A if and only if P is transitive,
(3) pa = qa holds in A if and only if P = Q,
(4) p1 = � holds in A if and only if ∀x∃y(y ∈ E & xPy) holds in W,
(5) pa ∧ 1 ≤ a holds in A if and only if x ∈ E & xPy ⇒ x ≤ y holds in W,
(6) pa ∧ pb ≤ p((pa ∧ b) ∨ (a ∧ pb)) holds in A if and only if

wPx & wPy ⇒ ∃v(wPv & (vPx & v ≤ y or v ≤ x & vPy)) holds in W.

Proof. (1)–(3) These correspondences are well known from modal logic.
(4) For x ∈ J(A) and E = ↓1 we have x ≤ p1 if and only if there exists

y ∈ J(A) such that y ≤ 1 and x ≤ py, or equivalently, y ∈ E and xPy.
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(5) In the forward direction, let a = ↓y. Then it follows that x ∈ p(↓y) ∩ E
implies x ∈ ↓y, and consequently x ∈ E & xPy =⇒ x ≤ y.

In the other direction, let Y be a downset of W and assume x ∈ pY ∩ E.
Then x ∈ E and xPy for some y ∈ Y . Hence x ≤ y, or equivalently x ∈ ↓y ⊆ Y .
Thus, pY ∩ E ⊆ Y , so the algebra A satisfies pa ∧ 1 ≤ a for all a ∈ A.

(6) In the forward direction, let a = ↓x and b = ↓y. Then it follows from the
inequation that w ∈ p↓x∩↓y =⇒ w ∈ p((p↓x∩↓y)∪ (↓x∩ p↓y)) for all w ∈ W .
This in turn implies wPx & wPy =⇒ ∃v(wPv & v ∈ (p↓x ∩ ↓y) ∪ (↓x ∩ p↓y)),
which translates to the given first-order condition.

In the reverse direction, let X,Y be downsets of W and assume w ∈ pX ∩pY .
Then wPx and wPy for some x ∈ X and y ∈ Y . It follows that there exists
a v ∈ W such that (wPv & (vPx & v ≤ y or v ≤ x & vPy)), hence v ∈
(pX ∩ Y ) ∪ (X ∩ pY ). Therefore w ∈ p(pX ∩ Y ) ∪ (X ∩ pY ). ��

Recall that a ternary relation R is commutative if xRyz ⇔ xRzy for all x, y.
From Theorem 11 we also obtain the following result.

Corollary 13. Let (W,≤, P,Q) be a PQ-frame and define R as in
Theorem 11(1). Then R is commutative if and only if xPy ⇔ xQy for all
x, y ∈ W .

This corollary shows that in the commutative setting a PQ-frame only needs
one of the two binary relations. Hence we define W = (W,≤, P ) to be a P-frame
if P is a weakening relation, i.e., u ≤ xPy ≤ v =⇒ uPv.

We now turn to the problem of ensuring that the binary operation of a
d�-magma is associative. For Birkhoff frames the following characterization of
associativity is well known from relation algebras [10] (in the Boolean case) and
from the Routley-Meyer semantics for relevance logic [4] in general.

Lemma 14. Let W = (W,≤, R) be a Birkhoff frame. Then D(W) is an asso-
ciative �-magma if and only if ∀wxyz(∃u(uRxy &wRuz) ⇔ ∃v(vRyz &wRxv)).
If R is commutative then the equivalence can be replaced by the implication
∀uwxyz(uRxy &wRuz ⇒ ∃v(vRyz &wRxv)).

This lemma is another correspondence result that follows from translating
w ∈ (XY )Z ⇔ w ∈ X(Y Z) for X,Y,Z ∈ D(W). In the commutative case
(XY )Z ⊆ X(Y Z) implies the reverse inclusion, hence only one of the implica-
tions is needed. We now show that for a large class of P -frames the 5-variable
universal-existential formula for associativity can be replaced by simpler univer-
sal formulas with only three variables.

A preorder forest P -frame is a P -frame such that P is a preorder (i.e. reflexive
and transitive) and satisfies the formula

(Pforest) xPy and xPz =⇒ x ≤ y or x ≤ z or yPz or zPy.

Note that since P is a weakening relation, reflexivity of P implies that ≤ ⊆ P
because xPx and x ≤ y implies xPy.
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It is interesting to visualize the properties that define preorder forest P -
frames by implications between Hasse diagrams with ≤-edges (solid) and P -
edges (dotted) as in Fig. 1. However, one needs to keep in mind that dotted lines
could be horizontal (if xPy and yPx) and that any line could be a loop if two
variables refer to the same element.

Fig. 1. The (Pforest) axiom. The partial order ≤ and the preorder P are denoted by
solid lines and dotted lines respectively.

We are now ready to state the main result. We use the algebraic characteri-
zation of associativity in Lemma 2.

Theorem 15. Let W = (W,≤, P ) be a preorder forest P -frame and D(W) its
corresponding downset algebra. Then the operation x·y = (px ∧ y) ∨ (x ∧ py) is
associative in D(W).

Proof. Let W = (W,≤, P ) be a preorder forest P -frame and D(W) its d�p-
algebra of downsets with operator p. Since P is a preorder, D(W) is a d�p-
closure algebra. By Lemma 5, a d�p-closure algebra is associative if and only if
p(x) ∧ p(y) ≤ p(p(x) ∧ y) ∨ (x ∧ p(y)). By Lemma 12 this is equivalent to the
frame property

(∗) xPy & xPz ⇒ ∃w(xPw & (wPy & w ≤ z or w ≤ y & wPz)).

We now show that this frame property holds in W. We know that P is
reflexive and (Pforest) holds.

Assume xPy and xPz. By (Pforest) there are four cases:

1. x ≤ y: take w = x. Then xPx, x ≤ y and xPz, hence (∗) holds.
2. x ≤ z: again take w = x. Then the other disjunct of (∗) holds.
3. yPz: take w = y. Then xPy, y ≤ y and yPz, hence (∗) holds.
4. zPy: take w = z. Then xPz, zPy and y ≤ y, hence again (∗) holds. ��

The universal class of preorder forest P -frames is strictly contained in the
class of all P -frames in which x·y is associative. In fact the latter class is
not closed under substructures, hence not a universal class: W = {0, 1, 2, 3},
≤ = idW ∪ {(0, 1), (0, 2), (0, 3)}, P = ≤ ∪ {(1, 0), (1, 2), (1, 3)} is a P -frame with
associative · (use e.g. Lemma 5), but restricting ≤, P to the subset {1, 2, 3} gives
a P -frame where · fails to be associative, hence (Pforest) also fails.

A d�-semilattice is an associative commutative idempotent distributive �-
magma. The point of the previous result is that it allows the construction of per-
fect associative commutative idempotent d�-magmas and idempotent bunched
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Fig. 2. All 40 preorder forest P -frames (W, ≤, P ) with up to 3 elements. Solid lines
show (W, ≤), dotted lines show the additional edges of P , and the identity (if it exists)
is the set of black dots. The first row shows the lattice of downsets, and the Boolean
quantales from [1] appear in the first three columns.

implication algebras from preorder forest P -frames. This is much simpler than
constructing the ternary relation R of the Birkhoff frame of such algebras. For
example the Hasse diagrams for all the preorder forest P -frames with up to 3
elements are shown in Fig. 2, with the preorder P given by dotted lines and
ovals. The corresponding ternary relations can be calculated from P , but would
have been hard to include in each diagram.

We now examine when a preorder forest P -frame will have an identity ele-
ment. For any P -frame W we define E = {x ∈ W | ∀y(xPy ⇒ x ≤ y)}.

Lemma 16. Let W be a P -frame. Then E is an identity element for · in the
downset algebra D(W) if and only if E is a downset and pE = W .
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Proof. In the forward direction, E is certainly a downset and it follows from
Lemma 2(5) that pE = W since W is the top element in D(W).

Conversely, by the definition of E, if x ∈ E then xPy ⇒ x ≤ y holds for all
y ∈ W . Hence by Lemma 12(5) for all X ∈ D(W) we have pX ∩ E ⊆ X. Since
pE = W together with Lemma 2(5), it follows that E is an identity element in
the downset algebra. ��

5 Counting Preorder Forests and Linear P -frames

In the case when the poset (W,≤) is an antichain, a preorder forest P is simply
a preorder P ⊆ W 2 such that xPy and xPz implies yPz or zPy. A preorder
tree is a connected component of a preorder forest. A rooted preorder forest is
defined to have an equivalence class of P -maximal elements in each component.
For finite preorder forests this is always the case. Let Fn denote the number of
preorder forests and Tn the number of preorder trees with n elements (up to
isomorphism). We also let F0 = 1.

A preorder forest has singleton roots if the P -maximal equivalence class of
each component is a singleton set. The number of preorder forests and trees with
singleton roots is denoted by F s

n and T s
n respectively.

Note that every preorder forest gives rise to a unique preorder tree with a
singleton root by adding one new element r such that for all x ∈ W we have
xPr. It follows that T s

n = Fn−1 (Table 2).

Table 2. Number of preorder trees and forests (up to isomorphism)

Cardinality n = 1 2 3 4 5 6 7

Preorder trees Tn = 1 2 5 13 37 108 337

cn = 1 5 16 57 186 668

Preorder forests Fn = 1 3 8 24 71 224

Preorder trees with singleton roots T s
n = 1 1 3 8 24 71 224

csn = 1 3 10 35 121 438

Preorder forests with singleton roots F s
n = 1 2 5 14 41 127

Every preorder tree with a non-singleton root equivalence class and n ele-
ments is obtained from a preorder tree with n − 1 elements by adding one more
element to the root equivalence class. Hence for n > 0 we have Tn = Fn−1+Tn−1.
The Euler transform of Tn is used to calculate the next value of Fn as follows:

cn =
∑

d|n
d · Tn Fn =

1
n

n∑

k=1

ck · Fn−k.

Since preorder forests with singleton roots are disjoint unions of preorder trees
with singleton roots, F s

n is calculated by an Euler transform from T s
n.



Unary-Determined Distributive �-magmas 35

Corollary 17. The sequence F s
n is the Euler transform of T s

n.

While it is difficult to count preorder forest P -frames in general, it is simple to
count the linear ones. Let Ln be the number of linearly ordered preorder forest
P -frames with n elements. Note that (P3) is actually redundant for linearly
ordered frames.

Theorem 18. For linearly ordered forest P -frames Ln = 2n−1. In the algebraic
setting there are 2n−2 unary-determined commutative doubly idempotent linear
semirings with n elements, and n − 1 of them have an identity element.

Proof. Let W be a linearly ordered P -frame with elements W = {1 < 2 < · · · <
n} such that P is transitive and (P0) holds. Then each possible relation P on W
is determined by choosing a subset S of the edges {(2, 1), (3, 2), . . . , (n, n − 1)}
and defining P to be the transitive closure of S ∪ ≤. Since there are n − 1 such
edges to choose from, the number of p-frames is 2n−1.

Let A be a unary-determined commutative doubly idempotent linear semir-
ing with n elements. Then the P -frame W associated with A has n−1 elements,
is linearly ordered, and P is reflexive and transitive since · is idempotent and
associative. Hence there are 2n−2 such algebras.

By Lemma 16, the subset E = {x ∈ W | ∀y(xPy ⇒ x ≤ y)} will be an
identity of the downset algebra if and only if it is a downset of W and p(E) = W .
This will only be the case if there exists an element w ∈ W such that for all
y ∈ W we have y ≥ w if and only if wPy. Every choice of w ∈ W determines
one such P , hence there are n − 1 algebras with an identity element. ��

6 Conclusion

We showed that unary-determined d�-magmas have a simple algebraic structure
given by two unary operators and that their relational frames are definitionally
equivalent to frames with two binary relations. The complex algebras of these
frames are complete distributive lattices with completely distributive operators,
hence they have residuals and can be considered Kripke semantics for unary-
determined bunched implication algebras and bunched implication logic. Asso-
ciativity of the binary operator for idempotent unary-determined algebras can
be checked by an identity with 2 rather than 3 variables, and for the frames
by a 3-variable universal formula rather than a 6-variable universal-existential
formula. All idempotent Boolean magmas are unary-determined, hence these
results significantly extend the structural characterization of idempotent atomic
Boolean quantales in [1] and relate them to bunched implication logic. As an
application we counted the number of preorder forest P -frames with n elements
for which the partial order is an antichain, as well as the number of linearly
ordered preorder P -frames.

Acknowledgments. The investigations in this paper made use of Prover9/ Mace4
[12]. In particular, parts of Lemma 2 and Theorem 11 were developed with the help of
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Prover9 (short proofs were extracted from the output) and the results in Table 1 were
calculated with Mace4. The remaining results in Sections 2–4 were proved manually,
and later also checked with Prover9.
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Abstract. We study convolution and residual operations within con-
volution quantales of maps from partial abelian semigroups and effect
algebras into value quantales, thus generalising separating conjunction
and implication of separation logic to quantitative settings. We show
that effect algebras lift to Girard convolution quantales, but not the
standard partial abelian monoids used in separation logic. It follows that
the standard assertion quantales of separation logic do not admit a linear
negation relating convolution and its right adjoint. We consider alterna-
tive dualities for these operations on convolution quantales using boolean
negations, some old, some new, relate them with properties of the under-
lying partial abelian semigroups and outline potential uses.

1 Introduction

Separation logic and linear logic reason about resources. Both, in fact, have pow-
erset quantale semantics that lift certain monoids. The phase quantale seman-
tics of linear logic is even a Girard quantale [26]: it admits a dualising element
that relates the quantalic mutltiplication with its residuals in the way negation
relates conjunction and implication in classical logic. For the standard statelet
and heaplet models of separation logic [6], previous work [3,4] suggests that such
a linear negation between separating conjunction and implication is impossible.
But an algebraic account is missing.

We investigate the relationship between the standard models of separation
logic and Girard quantales in the more general setting of convolution quantales
formed by spaces of functions from partial monoids to quantales [7,12,14]. These
yield quantale-valued semantics for linear and separation logic with applications
in quantitative, for instance probabilistic program verification [16].

The classical heaplet models of separation logic are generalised effect alge-
bras [17], but lack the greatest element present in effect algebras [15]. Effect
algebras, in turn, are equipped with an orthosupplementation that seems suit-
able for extending previous lifting results from generalised effect algebras to
convolution quantales to those from effect algebras and Girard quantales.

We prove that this extension works: effect algebras lift to commutative Girard
quantales and in particular phase semantics for linear logic. We also show that
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 37–53, 2021.
https://doi.org/10.1007/978-3-030-88701-8_3
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it is impossible to lift generalised effect algebras without a greatest element
that way. This rules out a linear negation between separating conjunction and
implication over the classical heaplet models. Further, we present a read-only
heaplet model that forms an effect algebra and makes linear negation available
to separation logic in some situations, and we outline its use.

We generalise these lifting and impossibility results to cover partial abelian
monoids with several units, as in the statelet models of separation logic [6], and
from powersets to convolution quantales, for quantitative applications.

Beyond these results, we show how separating conjunction and implication in
convolution quantales relate to operations in value quantales and partial abelian
monoids. In the absence of linear negation, we follow [5] in studying the effect
of boolean negation on separating conjunction and implication. This leads to
operations of septraction and coimplication [2,5] as well as some new ones. We
also expose the symmetries and dualities between these operations in boolean
convolution quantales. Boolean negation may not be the most natural duality for
quantales, but the resulting operations are at least useful for program verifica-
tion [2]. Finally, we constrast these results with a non-boolean assertion quantale
for separation logic based on Alexandrov topologies for posets that captures the
sub-heaplet and sub-statelet orderings more faithfully than the standard one.

Our main results have been checked with the Isabelle/HOL proof assis-
tant.1 Our Isabelle theories already contain more general lifting results for non-
commutative partial monoids and Girard quantales appropriate for the non-
commutative linear logics originally studied by Yetter [26]. These, however, are
beyond the scope of this paper.

2 Partial Abelian Monoids and Effect Algebras

We recall the basics of partial abelian monoids. Most of the development has
been formalised with Isabelle [11]. Most results are known in the special case of
generalised effect algebras [17].

A partial abelian semigroup (PAS) is a structure (S,⊕,D) with domain of
definition D ⊆ S × S for the partial composition ⊕ : S × S → S (or ⊕ : D → S)
such that, for all x, y, z ∈ S, D x y and D (x ⊕ y) z imply that D y z, D x (y ⊕ z)
and (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), and D xy implies that D y x and x ⊕ y = y ⊕ x.

We identify sets and predicates. The above associativity and commutativity
axioms state that if one side of the equation is defined, then so is the other, and
both are equal. This notion of equality is known as Kleene equality. We write
x � y for it. Hence, more briefly, (x ⊕ y) ⊕ z � x ⊕ (y ⊕ z) and x ⊕ y � y ⊕ x.

Units of a PAS S can be defined like for (object-free) categories: e ∈ S is a
unit in S if there exists an x ∈ S such that x � e ⊕ x and for all x, y ∈ S if
y � e⊕x then y = x. A partial abelian monoid (PAM) is a PAS S in which every
element has a unit: ∀x ∈ S.∃e ∈ E. D ex, writing E for the set of units of S.
1 Most results on partial abelian monoids, more generally relational monoids, and

(convolution) quantales can be found in the Archive of Formal Proofs [11,24]. The
complete formalisation can be found online http://hoefner-online.de/ramics21.

http://hoefner-online.de/ramics21
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Every element of a PAM has precisely one unit, different units cannot be
composed and total PAMs have precisely one unit [8].

PAMs and related partial algebras appear across mathematics. They are
instances of relational semigroups and monoids or multisemigroups and mul-
timonoids, see [7,13] for details. Relational monoids, in particular, are monoids
in the category Rel equipped with the canonical monoidal structure.

In any PAM S, the divisibility preorder is defined, for all x, y ∈ S, by x 	 y
iff x ⊕ z � y for some z ∈ S. Hence x 	 y iff x ⊕ z � y has a solution in z. This
preorder is a precongruence: x 	 y and D z x imply z ⊕ x 	 z ⊕ y (and D y z).
A subtraction can now be defined.

A PAM S is cancellative if x ⊕ z � y ⊕ z imply x = y for all x, y, z ∈ S.

Lemma 2.1. In a cancellative PAM, x 	 y implies x ⊕ z � y for exactly one z.

One can thus write y 
 x for this solution.

Lemma 2.2. In a cancellative PAM,

1. x ⊕ z � y ⇔ x 	 y ∧ z = y 
 x,
2. D xy ⇒ (x ⊕ y) 
 x = y and x 	 y ⇒ x ⊕ (y 
 x) = y,
3. D xy ⇒ x 	 x ⊕ y and x 	 y ⇒ y 
 x 	 y.

By Lemma 2.2 (1) and (2), x ⊕ ( ) and ( ) 
 x are inverses up-to definedness.
Finally, a PAM is positive if D xy and x ⊕ y ∈ E imply x ∈ E.

Lemma 2.3. In any positive cancellative PAM, 	 is a partial order in which all
units are 	-minimal.

Cancellative positive PAMs with a single unit E = {0} are known as gener-
alised effect algebras (GEAs) [17] in the foundations of quantum mechanics. The
resource monoids used in separation logic [6] are nothing but GEAs.

Example 2.4 (Heaplets). Partial maps X ⇀ Y form a GEA H with D η1 η2 iff
dom η1 ∩ dom η2 = ∅, η1 ⊕ η2 = η1 ∪ η2 and E = {ε}, where ε : X ⇀ Y is
the empty partial function. By definition, dom ε = ∅. These are the heaplets of
separation logic. Alternatively, heaplets have been modelled as a GEA of finite
partial maps X ⇀fin Y . The latter captures the fact that programs use finitely
many variables and heaps can always be extended. The former admits full heaps
where no additional memory can be allocated. ��
Example 2.5 (Generalised Heaplets). Heaplet models readily generalise to addi-
tions defined as union whenever heaplets coincide where they overlap: D η1 η2 iff
η1 x = η2 x for all x ∈ η1 ∩ dom η2. The resulting PAM is not cancellative. ��

An effect algebra (EA) [15] is a PAM S with single unit 0 and orthosupplement
( )⊥ : S → S such that for each x ∈ S, x⊥ is the unique element satisfying
x ⊕ x⊥ = 0⊥ and if D x 0⊥, then x = 0. It is standard to write 1 for 0⊥. It
follows that x⊥⊥ = x. The following fact is well known.
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Proposition 2.6. Every EA is a GEA with greatest element 1 = 0⊥ while every
GEA with greatest element 1 is an EA with ( )⊥ = 1 
 ( ).

Example 2.7. PAM H from Example 2.4 is not an EA: it is cancellative positive,
but has no greatest element when |Y | > 1. Replacing any m �→ n ∈ η by m �→ n′

with n �= n′ in heaplet η yields an incomparable heaplet. ��
Statelet models of separation logic [6] are based on the following coproduct.

Lemma 2.8. Let X be a set and (S,⊕,D,E) a PAM.

1. (X ×S, ⊕̂, D̂, Ê) forms a PAM with D̂ (x1, y1) (x2, y2) iff x1 = x2 and D y1 y2,
(x1, y1) ⊕̂ (x2, y2) = (x1, y1 ⊕ y2) and Ê (x, e) iff x ∈ X and e ∈ E.

2. If S is cancellative or positive, then so is X × S.

Example 2.9 (Statelets). The PAM H from Example 2.4 is formed by (finite)
partial functions X ⇀ Y . Program stores can be modelled as a set Z (e.g. a
function from variables to values). Lemma 2.8 then shows that Z × (X ⇀ Y )
forms a cancellative positive PAM with many units E = {(z, ε) | z ∈ Z}. ��

3 Convolution Quantales over PAMs

We apply a lifting construction for functions from partial monoids, and even
ternary relations with suitable algebraic properties, to quantales, so that a gen-
eralised quantale-weighted separating conjunction arises as a convolution and
a quantale-weighted separating implication as its right adjoint [13,14]. A sim-
ple instance yields the assertion algebra of separation logic [12]—a convolution
quantale of functions from the PAM of statelets into the quantale of booleans.

A quantale [23] is a structure (Q,≤, ·, 1) such that (Q,≤) is a complete lattice,
(Q, ·, 1) a monoid, and · preserves arbitrary sups in both arguments. We write∨

X for the sup of X ⊆ Q,
∧

X for its inf, ∨ for the binary sup and ∧ for the
binary inf. We write ⊥ =

∨ ∅ for the least element of the lattice and � =
∧ ∅

for its greatest element. It follows that ⊥ is a zero of multiplication.
A quantale is commutative if its monoid is abelian, and boolean if its complete

lattice is a boolean algebra. We write x for the boolean complement of x in Q.
As quantalic multiplication preserves sups in both arguments, it has two right

adjoints, x\( ) of x · ( ) and ( )/x of ( ) · x, for all x ∈ Q, given, as usual, by

x\z =
∨

{y | x · y ≤ z} and z/x =
∨

{y | y · x ≤ z},

and related by the Galois connection y ≤ x\z ⇔ x · y ≤ z ⇔ x ≤ z/y. The
residuals coincide in commutative quantales: y/x = x\y. As right adjoints, x\( )
and ( )/x preserve infs and therefore x · y =

∧{z | y ≤ x\z} =
∧{z | x ≤ z/y}.

Example 3.1

1. Every frame is a commutative quantale and hence every complete boolean
algebra. In the latter, finite sups and infs are related by De Morgan duality;
the residual is definable as x → y = x ∨ y.
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2. The booleans B = {f, t} form a two-element commutative quantale with · as
∧/min,

∨
as max and \ as boolean implication →. Predicates over a PAM S

are functions S → B; BS is isomorphic to PS. ��
We now fix a PAM (S,⊕,D,E) and a commutative quantale (Q,≤, ·, 1). We

equip the function space QS with quantalic operations following [14]. Sups, infs
and the order extend pointwise from Q to QS . Thus ⊥ = λx. ⊥ and � = λx. �
in QS . We define the convolution of f, g : S → Q and the unit idE : S → Q as

(f ∗ g) x =
∨

x�y⊕z

f y · g z and idE x =

{
1 if x ∈ E,

⊥ otherwise.

The following lifting result characterises the convolution algebra on QS .

Theorem 3.2 ([14]). If S is a PAM and Q a commutative quantale, then the
convolution algebra (QS ,≤, ∗, idE) is a commutative quantale.

In addition, properties, such as being boolean lift from Q to the convolution
quantale QS . As an instance of Theorem 3.2, Q = B yields the commutative
powerset quantale (PS,⊆, ∗, E) over the PAM S.

Cancellative PAMs give us an arguably more elegant variant of convolution.

Lemma 3.3. If S is cancellative, then (f ∗ g)x =
∨

y�x f y · g (x 
 y).

Remark 3.4. Lemma 2.8 yields the following instance of Theorem 3.2: if X is a
set, then QX×S is a quantale with (f ∗ g) (x, y) =

∨
y�y1⊕y2

f (x, y1) · g (x, y2)
and idE (x, y) = idE y, where, in the second identity, the left E is on X × S and
the right one on S.

The right adjoint f −∗ ( ) of f ∗ ( ) in QS is f −∗ h =
∨{g | f ∗ g ≤ h}. In

quantalic notation, f −∗ g = f\g.

Theorem 3.5. In every PAM S,

1. (f −∗ g)x =
∧

z=x⊕y f y\g z =
∧

D x y f y\g (x ⊕ y),
2. (f −∗ g)x =

∧
x=z�y f y\g z, if S is cancellative.

Proof.

1. Suppose D xy. Then f y · (f −∗ g)x ≤ (f ∗ (f −∗ g)) (x ⊕ y) ≤ g (x ⊕ y), thus
∀y. (f −∗ g)x ≤ f y\g (x⊕y) and finally (f −∗ g)x ≤ ∧{f y\g (x⊕y), | D xy}
by the adjunction and properties of inf.
Conversely, suppose D xz and let ϕx =

∧{f y\g (x ⊕ y) | D xy}. Then
ϕx ≤ f z\g (x ⊕ z), f z · ϕx ≤ g (x ⊕ z) by the adjunction and f ∗ ϕ ≤ g by
definition of convolution. Finally, ϕx ≤ (

∨{h | f ∗ h ≤ g}) x = (f −∗ g)x.
2. Immediate from (1) using Lemma 2.2(1).

��
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Example 3.6 (Powerset Lifting). Theorem 3.2 shows that the convolution alge-
bra (PS,⊆, ∗, E), for Q = B, is a commutative quantale of predicates over any
PAM (S,⊕, E), in fact a boolean atomic one. For the PAM on X × S and in
particular for statelets, convolution is separating conjunction and its residual
separating implication (a.k.a. magic wand):

f ∗ g = {(x, y1) ⊕ (x, y2) | (x, y1) ∈ f ∧ (x, y2) ∈ g ∧ D y1 y2},

f −∗ g = {(x, y) | ∀y′. (x, y′) ∈ f ∧ D y y′ → (x, y ⊕ y′) ∈ g}
= {(x, y1 
 y2) | (x, y2) ∈ f ∧ y2 	 y1 → (x, y1) ∈ g},

where the second step requires cancellation. This powerset quantale is the stan-
dard assertion algebra of separation logic. These set-based operations are also
described in [9]. ��

4 PAMs and Girard Quantales

Additional operations have been defined on quantales. A linear negation is
inspired by linear logic—a classical multiplicative negation that coincides with
boolean negation if · is ∧ .

Formally, an element d of a quantale Q is dualising if (d/x)\d = x = d/(x\d)
for all x ∈ Q. An element c ∈ Q is cyclic if c/x = x\c for all x ∈ Q. A Girard
quantale [23,26] is a quantale with a cyclic dualising element d.

This definition is meant for non-commutative quantales; in the commutative
case all elements are cyclic. A linear negation can be defined as xd = x\d (which
is then the same as d/x). It has many features of classical negation: it is involu-
tive, reverses the order and all sups and infs, hence in particular 0 and �; and
it allows expressing residuation in terms of multiplication and vice versa:

x\y =
(
yd · x

)d
and x · y =

(
y\xd

)d
.

Moreover, dd = 1 and therefore 1d = d, (
∨

X)d =
∧{xd | x ∈ X} and

(
∧

X)d =
∨{xd | x ∈ X} [23]. Also d = � implies � = ⊥. In a boolean

Girard quantale, where the underlying complete lattice is a boolean algebra,
both negations commute: xd = xd.

First we show that any EA gives rise to a commutative Girard quantale. In
any EA S we define X⊥ = {x⊥ | x ∈ X} for X ⊆ S. Then X⊥ = {x | x⊥ ∈ X},
X⊥⊥ = X and X

⊥
= X⊥ because x⊥⊥ = x. Also note that 0⊥ = 1 [23].

Proposition 4.1. Let (S,⊕, 0,⊥ ) be an EA. Then (PS,⊆, ∗, {0}) is a commu-
tative Girard quantale with dualising element Δ = S − {1}.
Proof. Theorem 3.2 implies that every PAM lifts to a powerset quantale. It thus
remains to check that Δ is a dualising element, that is, XΔΔ = X for any X ⊆ S.
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First we compute XΔ:

XΔ = {y | ∀x ∈ X. D xy → x ⊕ y ∈ Δ}
= {y | ¬∃x ∈ X. x ⊕ y � 1}
= {y | ¬∃x ∈ X. x = y⊥}
= {y | y⊥ ∈ X}
= X

⊥
,

using the definition of ( )⊥ in the second step. Then XΔΔ = X follows imme-
diately from the equations preceding this theorem. ��

As a sanity check, ΔΔ = Δ
⊥

= {1}⊥ = {1⊥} = {0}. Next we show that
commutative Girard quantales contain EAs.

Lemma 4.2. Let x /∈ Δ in a commutative powerset Girard quantale over set S
with unit {0}. Then {x}Δ = {0} and {x} = Δ.

Proof. We have x /∈ Δ ⇔ {x} ⊆ Δ ⇔ ΔΔ ⊆ {x}Δ ⇔ {0} ⊆ {x}Δ. It then
follows that {x}Δ = {0} because if S − {0} = {0} ⊂ {x}Δ, then {x}Δ = S
and therefore {x}ΔΔ = SΔ = ∅ �= {x}, a contradiction. Finally, therefore,

{x} = {x}ΔΔ = {0}Δ
= {0}Δ = Δ. ��

It follows that Δ is a singleton set. We call its element 1.

Proposition 4.3. Let S be a positive PAM and PS a commutative Girard quan-
tale with unit {0} and dualising element Δ. Then S is an EA.

Proof. For every convolution quantale QS , S forms a PAM [7]. It remains to check

the two EA axioms. For any x ∈ S, we abbreviate {x}⊥ = {x}Δ
. By Lemma 4.2,

Δ = {1}. Then {x}⊥ = {x}Δ = {y | D xy ∧ x ⊕ y ∈ Δ} = {y | x ⊕ y � 1}, for

all x ∈ S. Also, {x}⊥ �= ∅ because otherwise {x}ΔΔ
= S �= {x}. For each x ∈ S

there thus is a y ∈ S such that x ⊕ y � 1, that is, 1 is the greatest element of S.
It also follows that {x} ∗ {x}⊥ = {1} and {0}⊥ = {1} using Lemma 4.2.

Next we show that S is cancellative. Suppose {x} ∗ {y} = {x} ∗ {z}. Then,
using {x}∗{y} = {x⊕y}, we have {x⊕y}∗{x⊕y}⊥ = {x⊕z}∗{x⊕y}⊥ = {1}
and therefore {y} = ({x} ∗ {x ⊕ y}⊥)⊥ = {z}.

Cancellativity implies that x ⊕ y � 1 for at most one y by Lemma 2.1. Thus
{x}⊥ is a singleton set, and we call its element x⊥. It satisfies {x⊥} = {x}⊥ and
therefore {x} ∗ {x⊥} = {1}, which verifies the first EA axiom.

Moreover, 	 is a partial order that extends to singleton sets. For the second
EA axiom, now suppose D x 1. Then {1} 	 {x} ∗ {1} by Lemma 2.2(3) and
therefore {1} = {x} ∗ {1}. Yet {1} = {0} ∗ {0⊥} = {0} ∗ {1} and x = 0, once
again by cancellativity. ��
We leave the question whether positivity is derivable open.
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Corollary 4.4. Let S be a GEA without greatest element. Then the commutative
quantale PS is not Girard.

In particular, therefore, the standard heaplet model of separation logic, which
is not an EA by Example 2.7, does not give rise to Girard quantales. Con-
sequently, separating conjunction and implication over the heaplet models in
Example 2.4 cannot be related by a quantalic linear negation. Next we give an
alternative no-Girard proof for heaplets that extends to statelets.

Theorem 4.5. The unital commutative quantale (PH,⊆, ∗, {ε}) over the PAM
H of heaplets is not Girard.

Proof. Let Δ be a dualising element in PH. By a remark above, we know Δ �= H.
In fact, we can show that there are two (different) heaplets outside of Δ. Then,
by Lemma 4.2, this yields a contradiction.

Claim: ∃υ1, υ2 with υ1, υ2 �∈ Δ and υ1 �= υ2.

Proof of Claim. There are exotic cases where this is not the case, e.g., when
either X or Y of type X ⇀ Y have cardinality 1.

Example 2.4 shows two standard models for heaplets: arbitrary partial func-
tions and finite mappings.

In the former we can characterise a full heap using heaplets η with dom(η) =
X. When |Y | > 1—in most standard models it is Z—there are at least two
different full heaplets (Example 2.7). It suffices to show that any heaplet ζ with
dom(ζ) = X is not part of Δ. We use the equality xd = xd and the equivalence
∃η′. D η η′ ∧ η′ ∈ X ∧ η ⊕ η′ ∈ Δ ⇔ ∀η′. D η η′ ∧ η′ ∈ X → η ⊕ η′ ∈ Δ, as in
Proposition 4.1. Using ζ for η, X = {ε} and the fact that the only heaplet that
can be added to ζ is the empty heaplet ε (D ζ η ⇔ η = ε) yields

ζ �∈ Δ ⇔ ∀η′. D ζ η′ ∧ η′ �= ε → ζ ⊕ η′ ∈ Δ

⇔ ∀η′. f → ζ ⊕ η′ ∈ Δ ⇔ t

Now consider the model of finite mappings. We follow [22] and assume that
the partial functions are of type Z ⇀fin Y . We know there exists one heaplet υ
with υ �∈ Δ, for otherwise the algebra collapses. Next we assume that {υ} is a
dualising element and derive a contradiction. In the heaplet model we have

({υ}/{υ})\{υ} = ({υ} −∗ {υ}) −∗ {υ} = {η | ∀η′. D η η′ ∧ η ⊕ η′ = υ → η′ = ε}
If {υ} is a dualising element, this set equates to {υ}. However, every heaplet υ′

that is strictly larger than υ, i.e. υ ≺ υ′ is an element of this set as well, since
υ′ ⊕ η′ �= υ, for all η′, and therefore the antecedent inside the set evaluates to
false. Since υ is a finite mapping and the set of locations is Z, we can always
find a larger heaplet υ′. ��

Theorem 4.5 holds in the standard heaplet models (Examples 2.4 and 2.5)
of separation logic and generalises easily to statelets. It shows in particular that
separating conjunction and separating implications over PAMs of statelets cannot
be related by a linear negation. Similar results are claimed in [3,4], but not in a
quantalic setting.



Effect Algebras, Girard Quantales and Complementation in Separation Logic 45

5 Binative PAMs and Girard Convolution Quantales

We now generalise Proposition 4.1 to PAMs with multiple units and general
convolution quantales. This yields the main lifting theorem in this paper.

EAs generalise to several units. An element x of a PAS S is maximal if
x⊕y � x for all y. A PAS S is orthosupplemented if x⊕x⊥ is defined and maximal
for all x ∈ S, and if z is maximal, then x⊕y � z iff y = x⊥. Orthosupplemented
PAMs are automatically PASs, and e⊥ is maximal for each e ∈ E.

Example 5.1. (Read-only-heaplets). Heaplets become an orthosupplemented
PAM Hro with many units when switching to total maps X → Y × B. We
define domt η = {x ∈ X | ∃y ∈ Y. η x = (y, t)} and write π1, π2 for the cartesian
projections. We define heaplet composition by D η1 η2 iff domt η1 ∩ domt η1 = ∅
and π1 ◦ η1 = π1 ◦ η2, and (η1 ⊕ η2)x = ((π1 ◦ η1)x, (π2 ◦ η1 ∨ π2 ◦ η2)x).
We define the set of units as E = {η ∈ Hro | domt η = ∅}. Finally, we define
orthosupplementation by η⊥ x = (y, b) ⇔ η x = (y, b).

In this model, we denote ownership of locations by the boolean flag. Such
heaplets are “read-only” in the sense that if the composition of heaplets η1 and
η2 is defined, they must agree on the values at each location in memory, and
updating one requires updating the other. Hence, for any f : Hro → Hro, we
have D η1 η2 ⇒ D (f η1) η2 ⇒ π1 ◦ (f η1) = π1 ◦ η2. ��

A generalised heaplet model mapping natural numbers to sets of integers and
a second model reminiscent of a PAM with abelian group-like negative elements
have been studied by Brotherston and Calcagno [3] among many other mod-
els relevant to separation logic. Both yield models of classical logic of bunched
implication and thus probably Girard quantales. Both of these models have a
single unit. They are thus quite different to the one in Example 5.1.

We generalise orthosupplementation further to cover more models. A PAS S
is binative if it is equipped with a function ( )⊥ : S → S such that D xx⊥, for
all x ∈ S, and, for all x, y, z ∈ S, x ⊕ x⊥ � y ⊕ z implies y = z⊥. Thus x = x⊥⊥

holds because x ⊕ x⊥ � x ⊕ x⊥. We call (x, x⊥) the binates of S.
Intuitively, binativity generalises positivity for PAMs from units to binates.

Lemma 5.2. Every binative PAS S is a cancellative PAM with

E = {(x ⊕ x⊥)⊥ | x ∈ S}.

Proof. For cancellation, suppose x ⊕ y � x ⊕ z. Then (x ⊕ y) ⊕ (x ⊕ y)⊥ �
(x ⊕ y) ⊕ (x ⊕ z)⊥, hence (x ⊕ y) ⊕ (x ⊕ y)⊥ � y ⊕ (x ⊕ (x ⊕ z)⊥) and therefore
z = y = (x ⊕ (x ⊕ z)⊥)⊥ by binativity.

For the units, x ⊕ x⊥ ⊕ (x ⊕ x⊥)⊥ � x⊥ ⊕ x ⊕ (x ⊕ x⊥)⊥ by commutativity.
Then, by binativity, x = x⊥⊥ = x ⊕ (x ⊕ x⊥)⊥. ��
Example 5.3 (Binative PAMs).

1. Orthosupplemented PASs are binative PASs where compositions of binates
are maximal. Equivalently, positive binative PASs are orthosupplemented.
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2. EAs are binative PASs with single unit 0 and greatest element 1.
3. Abelian Groupoids are binative semigroups with ( )⊥ a inverse and binates

composing to units.
4. Partial deterministic CBI models [21] are precisely binative PASs with single

unit 0 and the composition of any binate equals 0⊥ .2

We now generalise Theorem 4.1.

Theorem 5.4. Let S be a binative PAM and (Q, ·,≤, d) a commutative Girard
quantale. Then (QS ,≤, ∗,Δ) is a commutative Girard quantale with

Δx =

{
d if x = y ⊕ y⊥ for some y ∈ S,

� otherwise.

Proof. Relative to Theorem 3.2 we need to check fΔΔ = f for all f : S → Q.
Define f⊥ x = f (x⊥) and fd x = (f x)d. Then f⊥⊥ = f = fdd and f⊥d = fd⊥.
First we compute

fΔ x =
∧

D x y

f y\Δ (x ⊕ y) = fd x⊥ ∧
∧

D xy

y 	=x⊥

f y\� = f⊥d x ∧ � = f⊥d x.

Binativity is used in the second step. Hence fΔΔ = f⊥d⊥d = f⊥⊥dd = f . ��
A natural question is whether Theorem 5.4 could be generalised by restricting

D xx⊥ while avoiding the collapse into a monoid. But if QS and Q are both
unital and 1 �= ⊥ in Q, then the underlying PAS must be unital, too, and thus
a PAM [7, Proposition 4.1]. Girard quantales, in particular, are unital [23].

Theorem 5.4 generalises further to non-abelian binative semigroups and non-
commutative Girard quantales, yet this is beyond the scope of this paper. A
proof can be found in our Isabelle theories.

6 Using Linear Negation in Separation Logic

Statelets do not lift to a Girard quantale. It is therefore natural to ask how the
lifting results in the previous section might be applied. We show that lifting
assertions on ordinary heaps to those on read-only heaps makes it possible to
use linear negation for reasoning about resources that lack binativity.

Separation logic allows enriching a Hoare triple with a frame

∀R. {P ∗ R}C {Q ∗ R},

which states that the execution of C only modifies the resources whose own-
ership is asserted by P . If these are assertions over a standard heap, then the
validity of adding a frame means the only variables that C touches are claimed
2 CBI models are relational monoids, deterministic means that results of compositions

are singletons, partial deterministic that they are singletons or empty.
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by P . However, if they are assertions on a read-only heap, a triple can only be
enriched with a frame if C does not mutate the heap. This restriction is some-
what artificial: if a frame R only specifies the values of the heap portion it owns,
then C would be free to mutate.

Hence we lift R to 〈R〉, where 〈 〉 : P H → P Hro asserts R over the heap
where (v, t) is kept and (v, f) is discarded. Note that 〈 〉 is an injective quantale
morphism: 〈P ∗ Q〉 = 〈P 〉 ∗ 〈Q〉, 〈∨ S〉 = (

∨
x ∈ S.〈x〉) and even〈�〉 = �,

hence a quantale embedding. We can thus obtain triples

∀R. {P ∗ 〈R〉}C {Q ∗ 〈R〉},
where C is free to mutate the resource described by P . What does linear negation
mean in this setting? If we take (p → −) to be the assertion that only the
address p is allocated, and (p ↪→ −) says that at least p is allocated, then for
boolean negation we have that (p → −) says that if p is allocated, then some
other address is, and (p ↪→ −) says that p is not allocated. For linear negation

we have (p ↪→ −)d = (p ↪→ −)
⊥

= (p ↪→ −), and (p → −)d = (p → −)
⊥

, which
says that if p is not allocated, then some other address is not.

With a PAM that cannot be lifted to a Girard quantale, and a binative
PAM seemingly unsuitable for standard applications of separation logic, we have
obtained an enriched assertion language taking the best parts of both. It might
therefore be fruitful to find binative semigroups that can serve as targets for
embeddings, rather than taken as resource models directly.

7 Other Residuals

A linear negation is not available in separation logic, but −∗ has been dualised,
perhaps less naturally, with respect to boolean negation on the boolean assertion
quantale. The resulting operation is known as septraction [5,25]. We study it in
convolution quantales over a PAM without boolean complementation.

We define the septraction operation more generally as the convolution of
f, g : S → Q, where S is a PAM and Q a commutative quantale, as

(f −� g) x =
∨

x⊕y=z

f y · g z.

The only difference to separating conjunction is that the supremum in y
and z is now taken over x ⊕ y = z rather than x = y ⊕ z. In the ternary
relation ( ) ⊕ ( ) = ( ), septraction is thus separating conjunction up-to an
exchange of variables. In such a general relational setting it has been shown that
a convolution −� is associative if and only if the dual ternary relation satisfies a
relational associativity law [7]. For S, this clearly cannot be expected. Similarly,
a unit exists in the convolution algebra if and only if the underlying PAM or
relational structure has units [7]. It has also been shown that associativity of the
ternary relation is not needed to make the convolution operation sup-preserving
in both arguments [13]. These results specialise as follows.
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Lemma 7.1

1. If S is a PAM and Q a complete lattice equipped with sup-preserving opera-
tion ·, then −� preserves all sups on QS.

2. The operation −� need not be associative, commutative or have a unit, even
for the PAMs of heaplets and statelets and for Q = B.

It follows that −� has two residuals: the right adjoints of f −� ( ) and
( ) −� f . The first one has already been studied for the PAM H and Q = B

as (separating) coimplication [2]; it is suitable for symbolic reasoning within
separation logic. Here we define it abstractly on the convolution quantale QS as

f �∗ h =
∨

{g | f −� g ≤ h}.

As a right adjoint, coimplication preserves infs, but is neither associative nor
commutative. It does not have a unit either.

In Sect. 3 we have related separating conjunction and implication in QS to
corresponding operations in S and Q. For −�, a simple substitution yields

(f −� g) x =
∨

D x y

f y · g (x ⊕ y).

The name “septraction” is motivated by the following fact.

Lemma 7.2. If S is a cancellative PAM and Q a quantale, then

(f −� g) x =
∨

x�z

f (z 
 x) · g z.

Similar results hold for �∗.

Theorem 7.3. If S is a PAM and Q a quantale, then

1. (f �∗ g)x =
∧

x=y⊕z f y\g z,
2. (f �∗ g)x =

∧
y�x f y\g (x 
 y) if S is cancellative.

So far, we have considered septraction and coimplication in isolation. Even
when they occur together with separating conjunction and magic wand in one
single PAM, the target algebra Q could still be a double quantale with different
monoidal multiplications for separating conjunction and septraction and differ-
ent residuals for magic wand and coimplication—yet these two operations could
also coincide, like in the following example.

Example 7.4. (Powerset Lifting) For the PAM on X × S and in particular for
statelets,

f −� g = {(x, y) | ∃y′. D y y′ ∧ (x, y′) ∈ f ∧ (x, y ⊕ y′) ∈ g},

f �∗ g = {(x, y) | ∀y′, y′′. y � y′ ⊕ y′′ ∧ (x, y′) ∈ f → (x, y′′) ∈ g}
= {(x, y) | ∀y′. y′ 	 y ∧ (x, y′) ∈ f → (x, y 
 y′) ∈ g},

where the second step for �∗ requires cancellation. ��



Effect Algebras, Girard Quantales and Complementation in Separation Logic 49

Fig. 1. Relationship between operators of separation logic

In boolean quantales, boolean complementation relates separating conjunc-
tion and coimplication on one hand, and septraction and magic wand on the
other hand. In fact, this is how septraction and coimplication were originally
defined for powerset quantales [2,5].

Theorem 7.5. Let S be a PAM and Q a boolean quantale, Then, in QS,

f �∗ g = f ∗ g and f −� g = f −∗ g.

The relation between separating conjunction, implication, septraction and coim-
plication is also shown in Fig. 1.

Using the adjunction between −� and �∗, a complete method for generat-
ing strongest postconditions in separation logic is available [2]. It enables the
transformation of any given Hoare triple—enriched with a frame—into a rule
for forward reasoning. Symmetrically, the adjunction between ∗ and −∗ yield a
method for backward reasoning, generating weakest preconditions. Ideas for this
go back to the origins of separation logic [22].

To the best of our knowledge, the second right adjoint of septraction men-
tioned above has not been studied within the setting of separation logic. We
define it abstractly on the convolution quantale QS as

g �∗ h =
∨

{f | f −� g ≤ h}.

The adjunction implies that preserves infs, but is neither associative nor com-
mutative. It does not have a unit either.

Theorem 7.6. If S is a PAM and Q a quantale, then

(f �∗ g)x =
∧

D x y

f (x ⊕ y)\g y.

Example 7.7 (Powerset Lifting). For the PAM on X × S,

f �∗ g = {(x, y) | ∀y′. D y y′ ∧ (x, y ⊕ y′) ∈ f → (x, y′) ∈ g}.

��
Boolean complementation relates this right adjoint back to magic wand.
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Theorem 7.8. Let S be a PAM and Q a boolean quantale, Then, in QS,

f �∗ g = f −∗ g.

This fact completes Fig. 1. I reveals an interesting asymmetry, which emerges
from the fact that coimplication has a contrapositive f �∗ g = −g �∗ −f ,
whereas −∗ does not.

Theorems 7.5 and 7.8 suggest looking at the boolean dual f −∗ g as well. In
the PAM on X × S this equates to {(x, y) | ∃y′.D y y′ ∧ (x, y′) ∈ f ∧ y ⊕ y′ ∈ g}.
However, this is the same as f −� g and and therefore the residual is g �∗ f .
Hence we stay in the setting of the well-known operators of separation logic.

Finally, we summarise these residuals in boolean Girard quantales.

Theorem 7.9. Let S be a binative PAS and Q a boolean Girard quantale. Then
in QS,

1. f �∗ g = f ∗ g and f −� g = f −∗ g,
2. f ∗ g = (f −∗ gd)d and f −� g = (f �∗ gd)d,
3. f �∗ g = (f −∗ g⊥)⊥ and f ∗ g = (f −� g⊥)⊥.

Item (1) has been copied from Theorem 7.5. The first part of (2) follows directly
from linear negation of Girard quantales (see Sect. 4). The remaining identities
follow Theorem 5.4. This combines the different strands of this paper, showing
that in a boolean Girard quantale, such as the assertions over an effect algebra,
there are three dualities—a boolean, a linear, and a binative one.

8 Another Assertion Quantale for Separation Logic

The standard assertion quantale of separation logic is also somewhat unnatural
mathematically in that it does not reflect the order 	 on heaplets and statelets:
it is not the case that {x} ⊆ {y} iff x 	 y. We present an alternative that
supports such more fine-grained comparisons.

We fix a cancellative positive PAM S. Then 	 is a partial order for which
the units are minimal by Lemma 2.3. For each x ∈ S, x↓ = {y | y 	 x}; for each
X ⊆ S, X↓ is the image of X under ↓. We write P↓S for the set of downsets in
S—the closed sets of the Alexandrov topology over 	.

We also need the following Riesz decomposition property [18] of S: for all
x, y1, y2 ∈ S, x 	 y1 ⊕ y2 implies that there exist x1, x2 ∈ S such that x1 	 y1,
x2 	 y2 and x1 ⊕ x2 	 y1 ⊕ y2. It obviously holds in the heaplet and statelet
models of separation logic.

Proposition 8.1. Let S be a cancellative positive PAM that satisfies the Riesz
decomposition property. Then P↓S forms a commutative quantale.
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Proof. Relative to Theorem 3.2 we need to check that {e} is closed for each
e ∈ E, which is the case due to positivity (Lemma 2.3), and that the quantalic
multiplication and sups preserve downsets. First, using Riesz decomposition,

(X ∗ Y )↓ = {z | ∃x ∈ X, y ∈ Y. z 	 x ⊕ y ∧ D xy}
⊆ {x′ ⊕ y′ | ∃x ∈ X, y ∈ Y. x′ 	 x ∧ y′ 	 y ∧ D x′ y′}
= X↓ ∗ Y ↓.

Hence (X↓ ∗ Y ↓)↓ = X↓ ∗ Y ↓, by extensivity and transitivity of ↓ . Second,
it is routine to check that (

⋃
i∈I Xi)↓ =

⋃
i∈I(Xi↓), for all I and therefore

(
⋃

i Xi↓)↓ =
⋃

i(Xi↓) by transitivity of ↓. (Similarly, (
⋂

i Xi↓)↓ =
⋂

i(Xi↓),
which is not strictly needed in the proof). ��
Obviously, (X↓)↓ need not be equal to X↓: in the two-element poset defined by
p ≺ q, for instance, {q} = {p}↓ is not closed. The quantale P↓S is therefore not
boolean in general. Many of the theorems in Sect. 7 fail. Whether this quantale is
Girard is open as well. On one hand, the dualising set Δ used in Proposition 4.1
is closed. On the other hand, residuals are sups taken on the whole of PS, so we
should not expect that they preserve downsets. Similar models based on upclosed
PAMs are well known as intuitionistic or affine assertion algebras of separation
logic. See [19] for an overview and general approach.

9 Conclusion

In the context of convolution algebras of functions from partial abelian semi-
groups into commutative quantales, we have explored the standard operations of
separation logic—separating conjunction and implication—and some less known
ones (septraction, coimplication and a second right adjoint of septraction). Due
to the generality of the approach, it can be used with weighted assertions. The
Lawvere quantale makes them available in fuzzy settings, the well known iso-
morphic quantale on the unit interval to probabilistic reasoning.

As the combination of boolean complementation with the quantalic multipli-
cation is somewhat unnatural, we have also investigated the link with the linear
negation of Girard quantales. We have established a correspondence between
effect algebras and commutative powerset Girard quantales, but shown that gen-
eralised effect algebras, where a greatest element is missing, cannot be lifted to
such quantales. Our results imply that the classical heaplet and statelet models
of separation logic do not admit a linear negation; separating conjunction and
implication are therefore independent. Yet we have also shown how these models
can be embedded into effect algebras and thus made linear negation available
for separation logic in some cases.

We have generalised the lifting of effect algebras to binative partial semi-
groups and extended it from powerset quantales to arbitrary convolution Girard
quantales. In this paper we only consider commutative algebras, but liftings for
non-commutative algebras can be found in our Isabelle theories. We believe that
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these results are only stepping stones towards more general ones for binative
relational monoids or multimonoids. In this setting one may consider the binary
operations of separation logic as binary modalities and the underlying monoidal
structures as ternary Kripke frames, as in the Jónsson-Tarski duality for boolean
algebras with operators. The correspondence between effect algebras and com-
mutative powerset Girard quantales is then a modal correspondence based on
this duality. For convolution algebras we expect modal correspondence trian-
gles between properties of relational monoids, value quantales and convolution
quantales [7]. All this, and the relationship of other models that appear within
the vast literature on separation logic (see for instance [1,20]), remains to be
explored with a view on linear negation.

Other research questions relate to the generalisation of the adjunctions and
dualities between the operations in Sect. 7 to non-commutative algebras, to their
counterparts in convolution Girard quantales over effect algebras, where linear
negation is present, to their status in the setting of non-boolean quantales, as the
one introduced in Sect. 8 or those for affine and intuitionistic separation logic,
and finally their generalisation to the setting of enriched categories [10].
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Abstract. We present a technique for the relational computation of sets
R of relations. It is based on a specification of a relation R to belong to
R by means of an inclusion s ⊆ t, where s and t are relation-algebraic
expressions constructed from a vector model of R in a specific way. To get
the inclusion, we apply properties of a mapping that transforms relations
into their vectors models and, if necessary, point-wise reasoning. The
desired computation of R via a relation-algebraic expression r is then
immediately obtained from s ⊆ t using a result of [3]. Compared with a
direct development of r from a logical specification of R to belong to R,
the proposed technique is much more simple. We demonstrate its use by
some classes of specific relations and also show some applications.

1 Introduction

Reduced ordered binary decision diagrams (ROBDDs) are a very efficient data
structure for the representation of sets and relations. This is also proved by
numerous applications of RelView, a ROBDD-based tool for the manipulation
and visualisation of relations and relational programming. The use of ROBDDs
often leads to an amazing computational power of RelView, in particular, if
the solution of a hard problem is based on the computation of a subset R of
a powerset 2X . See e.g., [2–4] for such applications. In certain situations X
is a direct product, which means that RelView is used to compute a set R
of relations. This is e.g., the case in [2], where R is the set of solutions of a
timetabling problem and RelView is used to get solutions. Also in [5] a set
R of relations is computed, viz. the set of up-closed multirelations on a given
set. Experiments with RelView then lead to an appropriate definition of an
approximation order for modeling computations which also may be infinite. A
third example is [4]. Here R equals the set of pre-orders on a given set and Rel-
View-results show a variant of the Kuratowski closure-complement-theorem,
with closure-interior relatives instead of closure-complement relatives.

In this paper we present a general technique for the relational computation
of sets R of relations. It is based on a specification of a relation R to belong to R
by means of an inclusion s ⊆ t, where s and t are relation-algebraic expressions
constructed from a vector model s of R in a specific way. Such expressions are
introduced in [3] and can be seen as the syntactical counterparts of the vector
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 54–71, 2021.
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predicates of [7]. To get the specification s ⊆ t, we frequently apply properties
of a mapping that transforms a relation to its vector model, but also argue
point-wisely if this helps. The desired computation of R via a relation-algebraic
expression r is then obtained from s ⊆ t in one step using a general result
proved in [3]. Compared with the technique that directly develops r from a
logical specification of the relation R to belong to R, the proposed technique is
much more simple. We demonstrate its use by some classes of specific relations
and also show some applications and how the expressions r can be implemented
as RelView-programs and then evaluated using the tool.

2 Relation-Algebraic Preliminaries

Given sets X and Y , we write R : X ↔ Y if R is a (binary) relation with
source X and target Y , i.e., a subset of the direct product X × Y . If the sets
X and Y of the type X ↔ Y of R are finite, we may consider R as a Boolean
matrix with |X| rows and |Y | columns. Since a matrix interpretation of relations
is well suited for many purposes and also used by RelView as the main possi-
bility to visualise relations, in the following we often use matrix terminology and
notation. Especially, we speak about entries/components, rows and columns of
a relation/matrix and write Rx,y instead of (x, y) ∈ R or xR y.

We assume the reader to be familiar with the five basic operations on rela-
tions, written as RT (transposition), R (complementation), R ∪ S (union), R ∩ S
(intersection) and R;S (composition), the two basic predicates, written as R ⊆ S
(inclusion) and R = S (equality), and the three special relations, written as O
(empty relation), L (universal relation) and I (identity relation).

We denote the set of relations of type X ↔ Y by [X ↔ Y ] instead of 2X×Y .
For each type X ↔ Y then [X ↔ Y ] together with the Boolean operations
∪, ∩ and − and the constants O : X ↔ Y and L : X ↔ Y forms a complete
Boolean lattice, where the lattice order is given by inclusion. Further well-known
laws of relations are, for instance, (RT)T = R, (R; S)T = ST; RT, Q; (R ∩ S) ⊆
Q; R ∩ Q; S, Q; (R ∪ S) = Q; R ∪ Q; S and R

T
= RT, for all relations Q, R

and S (of fitting types). We assume that transposition and complementation
bind stronger than composition and composition binds stronger than union and
intersection.

The theoretical framework for these laws and many others to hold is that
of a (heterogeneous) relation algebra, introduced in [9] as generalisation of a
(homogeneous) relation algebra in the sense of A. Tarski and further developed
in [10,11], for example. The five operations and three constants of this algebraic
structure are denoted as those of the set-theoretic relations. As usual, in relation-
algebraic expressions we overload the symbols O, L and I, i.e., avoid the binding
of types to them. The axioms of a relation algebra are those of a complete
Boolean lattice for ∪, ∩, −, O and L (with lattice order ⊆), that composition is
associative and possesses identity relations as neutral elements, that the Schröder
equivalences QT; S ⊆ R iff Q; R ⊆ S iff S; RT ⊆ Q hold, for all relations Q, R
and S, and that R �= O implies L;R; L = L, for all relations R. In later proofs we
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shall mention only the Schröder equivalences and “non-obvious” consequences of
the axioms like Q; R∩S ⊆ (Q∩S; RT); (R∩QT; S), for all relations Q, R and S,
called Dedekind rule. Well-known laws as those presented above or in Sect. 2.1
to 2.3 of [10] remain unmentioned.

Relation algebra as just introduced can express exactly the formulae of first-
order predicate logic with at most two free variables and all in all at most three
variables. The expressive power of full first-order predicate logic is obtained if
projection relations or equivalent notions are assumed to exist. Because of the
intended applications in later sections, in this paper we consider set-theoretic
relations only. But we treat them, as far as possible, with relation-algebraic
means. So, for all direct products X ×Y the two projection relations exist, which
we denote as π : X × Y ↔ X and ρ : X × Y ↔ Y . We always assume a pair
u from a direct product to be of the form u = (u1, u2). This allows to describe
π and ρ point-wisely by πu,x iff u1 = x and ρu,y iff u2 = y, for all u ∈ X × Y ,
x ∈ X and y ∈ Y . In [10] it is shown that the formulae πT; π = I, ρT; ρ = I,
π; πT ∩ ρ; ρT = I and πT; ρ = L specify projection relations up to isomorphism
and imply π and ρ to be surjective functions. Recall that R is a function (in the
relational sense) if it is univalent, specified by RT; R ⊆ I, and total, specified by
R; L = L or, equivalently, by I ⊆ R;RT, and R is surjective iff RT is total.

Based on the projection relations π : X × Y ↔ X and ρ : X × Y ↔ Y for
two relations R : X ↔ Z and S : Y ↔ Z their left pairing is defined by [[R,S]
:= π; R ∩ ρ; S, thereby being of type X × Y ↔ Z. Using point-wise notation,
from this we get that [[R,S]u,z iff Ru1,z and Su2,z, for all u ∈ X × Y and z ∈ Z.
The counterpart to the left pairing, with now Z ↔ X × Y as type, is the right
pairing [R,S]] of two relations R : Z ↔ X and S : Z ↔ Y . To get the desired
property that [R,S]]z,u iff Rz,u1 and Sz,u2 , for all z ∈ Z and u ∈ X × Y , the
notion is defined as [R,S]] := R;πT ∩ S; ρT. In Sect. 3 we will use that for all
relations R1 : Z1 ↔ X, R2 : X ↔ Z2, S1 : Z1 ↔ Y and S2 : Y ↔ Z2 from the
univalence of R1 and S1 or the univalence of R2 and S2 the subsequent Eq. (1)
follows:

[R1, S1]]; [[R2, S2] = R1; R2 ∩ S1; S2 (1)

A relation-algebraic proof of this fact can be found in [1]. For a point-wise proof
of (1) it is not necessary that R1 and S1 are both univalent or R2 and S2 are
both univalent. But, as shown by R. Maddux in [8], a proof of (1) that only is
based on the axioms of a relation algebra, the above axiomatisation of projection
relations and the definitions of left pairings and right pairings is impossible.

If the two arguments of a right pairing with reference to the projection rela-
tions π : X × Y ↔ X and ρ : X × Y ↔ Y are compositions α; R and β; S,
respectively, with α : Z × U ↔ Z and β : Z × U ↔ U as projection relations of
a further direct product Z × U and relations R : Z ↔ X and S : U ↔ Y , then
we define R ‖ S := [α; R, β; S]] as the parallel composition of R and S, thereby
being of type Z × U ↔ X × Y . Using a point-wise notation we have (R‖S)u,v
iff Ru1,v1 and Su2,v2 , for all u ∈ Z × U and v ∈ X × Y .

In the next sections we also will use the relation-level equivalents of the
set-theoretic symbol ‘∈’ as basic relations. These are the membership relations
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M : X ↔ 2X and point-wisely described by Mx,Y iff x ∈ Y , for all x ∈ X
and Y ∈ 2X . There exists a relation-algebraic axiomatisation of membership
relations which specifies these up to isomorphism. See e.g., [11]. But for the
applications of the present paper the above point-wise description suffices.

3 Vectors and the Modeling of Sets and Relations

In this paper we use (relational) vectors to model sets. A vector is a relation s
such that s = s; L. In the Boolean matrix interpretation this means that each
row of s consists only of ones or only of zeros. As the targets of vectors are
irrelevant, we only consider vectors of type X ↔ 11, with a specific singleton
set 11 := {⊥} as common target. Such vectors correspond to Boolean column
vectors and, therefore, as in linear algebra we write sx instead of sx,⊥.

By definition s : X ↔ 11 models (or is a vector model of ) the subset Y of X
if for all x ∈ X we have x ∈ Y iff sx. This means that precisely those entries of s
are 1 that correspond to an element of Y . Obviously, the mapping (in the usual
mathematical sense) set : [X ↔ 11] → 2X , defined by set(s) = {x ∈ X | sx}, for
all s : X ↔ 11, is a Boolean lattice isomorphism from ([X ↔ 11],∪,∩,− ,O, L)
to (2X ,∪,∩,− , ∅,X), with the inverse mapping set−1 : 2X → [X ↔ 11] given by
set−1(Y ) = Y × {⊥}, for all Y ∈ 2X .

A general technique to compute for a subset Y of a given set X a vector
model s : X ↔ 11 is to start with an arbitrary element x from X and a logical
specification ϕ(x) of x to belong to Y . Using the point-wise descriptions of
relational constants and operations, e.g., of those introduced in Sect. 2, then the
formula ϕ(x) is transformed step-by-step into the form sx, where now s is a
relation-algebraic expression of type X ↔ 11, i.e., a vector expression. From the
equivalence of ϕ(x) and the relationship sx, for all x ∈ X, it follows set(s) = Y
and, hence, s relation-algebraically specifies the vector s we are looking for.

If the just sketched technique is applied for the development of a vector that
models a subset R of a powerset 2X , then the starting point is a formula ϕ(Y )
that specifies the arbitrarily given set Y from 2X to belong to R. In such a case
the development of the relationship sY from ϕ(Y ) frequently becomes lengthy,
cumbersome and error-prone if carried out by hand. To considerable simplify
the development of s, in [3] instead of Y and ϕ(Y ) a vector model s : X ↔ 11
of Y and a relation-algebraic specification of set(s) to belong to R are taken as
starting point. E.g., if R : X ↔ X is the adjacency relation of a directed graph
G = (X,R) and the goal is to get a vector model stable(R) : 2X ↔ 11 of the
set R of stable vertex sets of G, then instead of starting with ∀x, y : Rx,y ∧ y ∈
Y ⇒ x �∈ Y as formula ϕ(Y ) one starts with R; s ⊆ s, with an arbitrary vector
s : X ↔ 11, since set(s) ∈ R iff R; s ⊆ s. Decisive for this approach to work
are vector expressions of a specific syntactic form, which in [3] are introduced as
follows.

Definition 3.1. Given s : X ↔ 11, the set V(s) of typed column-wise
extendible vector expressions over s is inductively defined as follows:
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a) We have s ∈ V(s) and its type is X ↔ 11.
b) If v : Y ↔ 11 is different from s, then v ∈ V(s) and its type is Y ↔ 11.
c) If s ∈ V(s) is of type Y ↔ 11, then s ∈ V(s) and its type is Y ↔ 11.
d) If s, t ∈ V(s) are of type Y ↔ 11, then s∪ t ∈ V(s) and s∩ t ∈ V(s) and their

types are Y ↔ 11.
e) If s ∈ V(s) is of type Y ↔ 11 and R is a relation-algebraic expression of type

Z ↔ Y in which s does not occur, then R; s ∈ V(s) and its type is Z ↔ 11.

So, the vector expressions from V(s) are built from s using other vectors and
as operations only complementation, union, intersection and left-composition
with a relation different from s. They can be seen as syntactical counterparts of
B. Kehden’s vector predicates, which are introduced in [7] as mappings in the
usual mathematical sense for the relational treatment of evolutionary algorithms.

In s ∈ V(s) the vector s can be seen as a variable in the logical sense. Using
this interpretation, we define next the replacement of s in s by R as in [3].

Definition 3.2. Given s : X ↔ 11, s ∈ V(s) and R : X ↔ Z, we define s[R/s]
as follows, using induction on the structure of s:

a) s[R/s] = R.
b) v[R/s] = v; L, with L : 11 ↔ Z.
c) t[R/s] = t[R/s].
d) (t ∪ u)[R/s] = t[R/s] ∪ u[R/s] and (t ∩ u)[R/s] = t[R/s] ∩ u[R/s].
e) (R; t)[R/s] = R; (t[R/s]).

For all s : X ↔ 11, s ∈ V(s) of type Y ↔ 11 and R : X ↔ Z the type of
s[R/s] is Y ↔ Z; see [3]. So, for R as membership relation M : X ↔ 2X we
get Y ↔ 2X as type of s[M/s]. As main result in [3] the following theorem is
shown. It states a general procedure for developing a vector model of a subset
R of 2X .

Theorem 3.1. Assume R to be a subset of the powerset 2X . If it is specified as
R = {set(s) | s : X ↔ 11 ∧ s ⊆ t}, with s, t ∈ V(s) both of type Y ↔ 11, then

r := L; (s[M/s] ∩ t[M/s])
T

: 2X ↔ 11

(where L : 11 ↔ Y and M : X ↔ 2X) is a vector model of R.

For R being the set of stable vertex sets of the directed graph G = (X,R) we
get R = {set(s) | s : X ↔ 11 ∧ R; s ⊆ s}. As R; s ∈ V(s) and s ∈ V(s),

Theorem 3.1 yields stable(R) = L; (R;M ∩ M)
T

as vector model of the set R.
In Sect. 4 we will apply Theorem 3.1 for the computation of sets of relations.

This means that R is a subset of a set [X ↔ Y ], the vector s of the specification
of R in Theorem 3.1 has type X × Y ↔ 11 and r has type [X ↔ Y ] ↔ 11. Since
in such a case s models a relation, instead of set(s) the notation rel(s) is used.
This leads to su iff rel(s)u1,u2 , for all u ∈ X × Y . In [10] a relation-algebraic
specification of the mapping rel : [X × Y ↔ 11] → [X ↔ Y ] is given, viz.
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rel(s) = πT; (s; L ∩ ρ), for all s : X × Y ↔ 11, where π : X × Y ↔ X and
ρ : X × Y ↔ Y are the projection relations of X × Y and L : 11 ↔ Y . In [10]
also the inverse mapping, which we denote as vec : [X ↔ Y ] → [X × Y ↔ 11],
is specified with relation-algebraic means. Translating the specification of [10]
into a version with a left pairing, we get vec(R) = [[R, I]; L, for all R : X ↔ Y ,
where I : Y ↔ Y and L : Y ↔ 11. With relation-algebraic means the following
theorem is shown in [10].

Theorem 3.2. The mappings rel and vec are Boolean lattice isomorphisms
from ([X × Y ↔ 11],∪,∩,− ,O, L) to ([X ↔ Y ],∪,∩,− ,O, L) and vice versa
and mutually inverse.

For typing reasons, the mapping vec neither can distribute over compositions
nor commutate with transpositions. Instead we have the following two results,
which also decisively will be used later. The first one, published in [7] deals with
vector models of compositions.

Theorem 3.3. Assume Q,R and S (of fitting types) to be given. Then we have
vec(Q;R;S) = (Q‖ST); vec(R).

The second result shows how vec(RT) can be reduced to vec(R). We formulate
and prove it only for relations for which source and target coincide, so-called
homogeneous relations, since this suffices for our later applications.

Theorem 3.4. Given R : X ↔ X, we have vec(RT) = [ρ, π]]; vec(R), where
π : X2 ↔ X and ρ : X2 ↔ X are the projection relations of X2.

Proof. First, we apply the definition of vec(R) in combination with (1) and get

[ρ, π]]; vec(R) = [ρ, π]]; [[R, I]; L = (ρ; R ∩ π; I); L = (ρ; R ∩ π); L.

Next, the definitions of vec(RT) and [[RT, I] yield

vec(RT) = [[RT, I]; L = (π; RT ∩ ρ; I); L = (π; RT ∩ ρ); L.

Now, the proof is concluded by the following calculation:

(ρ; R ∩ π); L ⊆ (ρ ∩ π; RT); (R ∩ ρT; π); L Dedekind rule
⊆ (π; RT ∩ ρ); L
⊆ (π ∩ ρ; R); (RT ∩ πT; ρ); L Dedekind rule
⊆ (ρ; R ∩ π); L

��
If a vector model of a subset R of [X ↔ Y ] is specified as vector expression r, it
is simple to compute a relation of R. We select an injective and surjective vector
p, i.e., a (relational) point p, such that p ⊆ r. With the membership relation
M : X × Y ↔ [X ↔ Y ] then M; p : X × Y ↔ 11 is the vector model of a
relation R ∈ R and, hence, R itself is obtained via R = rel(M; p). In RelView
for the selection of a point from a vector there exists a pre-defined operation
point.
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4 Computing Sets of Specific Relations

In Sect. 2 we have mentioned relation-algebraic specifications of a relation R to
be univalent, total and surjective, respectively. R is injective iff RT is univalent.
Based on these specifications and using the Schröder equivalences, Theorem 3.2
and Theorem 3.3, in [2] the following equivalences are shown.

Theorem 4.1. Assume s : X × Y ↔ 11 to be given and let π : X × Y ↔ X
and ρ : X × Y ↔ Y be the projection relations of X × Y . Then we have:

rel(s) univalent ⇐⇒ (I‖ I); s ⊆ s rel(s) total ⇐⇒ L ⊆ πT; s
rel(s) injective ⇐⇒ (I‖ I); s ⊆ s rel(s) surjective ⇐⇒ L ⊆ ρT; s

Each side of the four inclusions of Theorem 4.1 is a column-wise extendible vector
expression over s. Hence, Theorem 3.1 is applicable and immediately yields the
following vector models of type [X ↔ Y ] ↔ 11 of the sets of univalent, total,
injective and surjective relations of type X ↔ Y :

unival(X,Y ) := L; ((I‖ I);M ∩ M)
T

total(X,Y ) := L; πT;M
T

injec(X,Y ) := L; ((I‖ I);M ∩ M)
T

surjec(X,Y ) := L; ρT;M
T

The types of the basic relations of these four specifications easily can be derived
from the typing rules of the relational operations. E.g., in case of unival(X,Y )
the universal relation has type 11 ↔ X × Y , the left identity relation of I‖ I has
type X ↔ X, the right one has type Y ↔ Y and the type of the membership
relation is X × Y ↔ [X ↔ Y ]. Therefore, in the remainder of the paper we
make no mention of types of basic relations in such specifications.

Obviously, conjunction of relational properties corresponds to intersection of
the corresponding vector models such that, for example, vector models of the
sets of functions and bijective relations of type X ↔ Y can be specified as
follows:

funct(X,Y ) := unival(X,Y ) ∩ total(X,Y )
bijec(X,Y ) := injec(X,Y ) ∩ surjec(X,Y )

Now, we consider some important properties of homogeneous relations. Recall
that R : X ↔ X is reflexive iff I ⊆ R, irreflexive iff R ⊆ I, symmetric iff
R ⊆ RT, antisymmetric iff R ∩ RT ⊆ I, asymmetric iff R ∩ RT ⊆ O, transitive iff
R;R ⊆ R and complete iff I ⊆ R∪RT. Except transitivity, from Theorem 3.2 and
Theorem 3.4 we immediately get the following specifications of these properties
of a relation R by means of the vector model s := vec(R).

Theorem 4.2. Assume s : X2 ↔ 11 to be given and let π : X2 ↔ X and
ρ : X2 ↔ X be the projection relations of X2. Then we have:

rel(s) reflexive ⇐⇒ vec(I) ⊆ s

rel(s) irreflexive ⇐⇒ s ⊆ vec(I)
rel(s) symmetric ⇐⇒ s ⊆ [ρ, π]]; s

rel(s) antisymmetric ⇐⇒ s ∩ [ρ, π]]; s ⊆ vec(I)
rel(s) asymmetric ⇐⇒ s ∩ [ρ, π]]; s ⊆ O

rel(s) complete ⇐⇒ vec(I) ⊆ s ∪ [ρ, π]]; s
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Again all sides of the six inclusions of Theorem 4.2 are column-wise extendible
vector expressions over s. So, a combination of Theorem 4.2 with Theorem 3.1
(and vec(I); L = vec(I); L in the second case) immediately yields the following
vector models of type [X ↔ X] ↔ 11 of the sets of reflexive, irreflexive, sym-
metric, antisymmetric, asymmetric and complete relations of type X ↔ X:

refl(X) := L; (vec(I); L ∩ M)
T

begineqnarray∗ − 0.0mm]irrefl(X) := L; (M ∩ vec(I); L)
T

symm(X) := L; (M ∩ [ρ, π]];M)
T

antisymm(X) := L; (M ∩ [ρ, π]];M ∩ vec(I); L)
T

asymm(X) := L; (M ∩ [ρ, π]];M)
T

compl(X) := L; (vec(I); L ∩ M ∩ [ρ, π]];M)
T

The right-hand side of refl(X) already can be found in [4], with a direct derivation
from the point-wise description ∀x, y : Rx,y of the reflexivity of R. The other
vector models are not part of [4].

Given s : X2 ↔ 11, in the next theorem we also specify the transitivity of
rel(s) by means of an inclusion between column-wise extendible vector expres-
sions over s in such a way that Theorem 3.1 again can be used and directly
yields a vector model trans(X) : [X ↔ X] ↔ 11 of the set of transitive rela-
tions of type X ↔ X. The two-fold occurrence of R within the left-hand side of
R;R ⊆ R prevents an application of Theorem 3.3. Instead we use the following
lemma. It is a special case of an unpublished theorem of M. Winter (where R
and S may be heterogeneous), told to the author as a private communication.
The relation-algebraic proof of M. Winter is too complex and too long to be
presented here.

Lemma 4.1. Assume R : X ↔ X and S : X ↔ X to be given. Furthermore,
let π : X2 ↔ X and ρ : X2 ↔ X be the projection relations of X2 and
α : X2 × X2 ↔ X2 and β : X2 × X2 ↔ X2 be the projection relations of
X2 × X2. Then we have vec(R;S) = CT; [[vec(R), vec(S)], where

C := (I ∩ α; ρ;πT;βT); (π‖ρ) : X2 × X2 ↔ X2.

Proof. Let arbitrary pairs (u, v) ∈ X2 ×X2 and (w, z) ∈ X2 ×X2 be given. The
definition of the projection relations and of the relational composition yields

(α; ρ; πT; βT)(u,v),(w,z) ⇐⇒ u2 = z1.

To enhance readability, in the following we abbreviate in formulae conjunctions
of equations as equational chain. Then the above equivalence implies

(I ∩ α; ρ; πT; βT)(u,v),(w,z) ⇐⇒ u1 = w1 ∧ u2 = w2 = z1 = v1 ∧ v2 = z2.
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Using this equivalence and the definition of C in the first step, for all pairs
(u, v) ∈ X2 × X2 and (x, y) ∈ X2 we now calculate as follows:

C(u,v),(x,y) ⇐⇒ ∃w, z :
u1 = w1 ∧ u2 = w2 = z1 = v1 ∧ v2 = z2 ∧ (π‖ρ)(w,z),(x,y)

⇐⇒ ∃w, z :
u1 = w1 ∧ u2 = w2 = z1 = v1 ∧ v2 = z2 ∧ w1 = x ∧ z2 = y

⇐⇒ u1 = x ∧ v2 = y ∧ u2 = v1

As a consequence, we get for all pairs (x, y) ∈ X2 the following equivaleces,
which show the claim:

(CT; [[vec(R), vec(S)])(x,y) ⇐⇒ ∃u, v : C(u,v),(x,y) ∧ [[vec(R), vec(S)](u,v)
⇐⇒ ∃u, v : u1 = x ∧ v2 = y ∧

u2 = v1 ∧ vec(R)u ∧ vec(S)v
⇐⇒ ∃a : vec(R)(x,a) ∧ vec(S)(a,y)
⇐⇒ ∃a : Rx,a ∧ Sa,y

⇐⇒ (R;S)x,y
⇐⇒ vec(R;S)(x,y)

��
Here is the announced specification of transitivity,

Theorem 4.3. Assume s : X2 ↔ 11 to be given. With C : X2 × X2 ↔ X2 as
defined in Lemma 4.1 we have:

rel(s) transitive ⇐⇒ CT; [[s, s] ⊆ s

Proof. The claim follows from the calculation

rel(s) transitive ⇐⇒ rel(s); rel(s) ⊆ rel(s)
⇐⇒ vec(rel(s); rel(s)) ⊆ vec(rel(s))

⇐⇒ CT; [[vec(rel(s)), vec(rel(s))] ⊆ vec(rel(s))

⇐⇒ CT; [[s, s] ⊆ s,

where we use the definition of transitivity, then Theorem 3.2, then Lemma 4.1
and, finally, again Theorem 3.2. ��
Left pairings of column-wise extendible vector expressions are again column-
wise extendible vector expressions. As a consequence, both sides of the inclusion
of Theorem 4.3 are column-wise extendible vector expressions over s. Hence,
Theorem 3.1 is applicable and at once yields the following specification:

trans(X) := L; (CT; [[M,M] ∩ M)
T

A lengthy direct derivation of a specification of trans(X) from the point-wise
description ∀x, y, z : Rx,y ∧ Ry,z ⇒ Rx,z of the transitivity of R can be found
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in [4]. Experiments with the RelView-implementations of both versions have
shown that the second one is less efficient than the above specification.

Intersections of the above specifications directly allow to get vector models of
the set of pre-orders, partial orders, equivalence relations, tournaments and many
other well-known classes of homogeneous relations. To give an example, if we
want to model the set of proper involutions (that is, of self-inverse permutations
without fixpoints) on X, we can do this as follows:

propInvolut(X) := funct(X,X) ∩ bijec(X,X) ∩ symm(X) ∩ irrefl(X)

Next, we treat three classes of specific strict-orders which play a prominent
role in preference modeling, viz. weak-orders, semi-orders and interval-orders. A
relation R : X ↔ X is a weak-order if it is asymmetric and negatively transitive,
where the latter means R to be transitive. For defining semi-orders and interval-
orders we need the notions of semi-transitivity of R, defined as R;R;R

T ⊆ R, and
of R to be a Ferrers relation, defined as R;R

T
; R ⊆ R. Then R is a semi-order if

it is irreflexive, semi-transitive and a Ferrers relation. If it is only an irreflexive
Ferrers relation, it is an interval-order. Usually, these classes of relations are not
defined in such a way. For instance, interval-orders < are defined by assigning
intervals of the real line to the elements of the carrier sets and then x < y holds
iff the interval assigned to x is completely left of that assigned to y. The above
relation-algebraic specifications can be found in [11].

We want to apply our technique also to specify vector models weakOrd(X),
semiOrd(X) and intOrd(X) of type [X ↔ X] ↔ 11 of the sets of weak-orders,
semi-orders and interval-orders of type X ↔ X. Decisive for that is the following
theorem. In it we treat the basic properties of the above definitions not been
addressed until now.

Theorem 4.4. Assume s : X2 ↔ 11 to be given. With C : X2 × X2 ↔ X2

as defined in Lemma 4.1 and π : X2 ↔ X and ρ : X2 ↔ X as the projection
relations of X2 we have:

rel(s) negatively transitive ⇐⇒ CT; [[s, s] ⊆ s

rel(s) semi-transitive ⇐⇒ CT; [[s, s] ⊆ CT; [[s, s]
rel(s) Ferrers relation ⇐⇒ CT; [[[ρ, π]]; s, s] ⊆ CT; [[[ρ, π]]; s, s]

Proof. To prove the first claim, we start as follows, where we use the definition
of negative transitivity and Theorem 3.2:

rel(s) negatively transitive ⇐⇒ rel(s); rel(s) ⊆ rel(s)
⇐⇒ rel(s); rel(s) ⊆ rel(s)

The remaining steps are as in the proof of Theorem 4.3, with s instead of s.
In case of the second claim, we start with the definition of semi-transitivity,

use then one of the Schröder equivalences and then Theorem 3.2, leading to the
following calculation:



64 R. Berghammer

rel(s) semi-transitive ⇐⇒ rel(s); rel(s); rel(s)
T ⊆ rel(s)

⇐⇒ rel(s); rel(s) ⊆ rel(s); rel(s)

⇐⇒ vec(rel(s); rel(s)) ⊆ vec(rel(s); rel(s))

Next, we transform the left-hand side of the last inclusion as follows:

vec(rel(s); rel(s)) = CT; [[vec(rel(s)), vec(rel(s))] Lemma 4.1

= CT; [[vec(rel(s)), vec(rel(s))] Theorem 3.2

= CT; [[s, s] Theorem 3.2

In a similar way vec(rel(s); rel(s)) = CT; [[s, s] can be shown and we are done.
Also in case of the third claim we start with the definition of a Ferrers relation,

use then one of the Schröder equivalences and then Theorem 3.2. This yields:

rel(s) Ferrers relation ⇐⇒ rel(s); rel(s)
T
; rel(s) ⊆ rel(s)

⇐⇒ rel(s)T; rel(s) ⊆ rel(s)
T
; rel(s)

⇐⇒ vec(rel(s)T; rel(s)) ⊆ vec(rel(s)
T
; rel(s))

The treatment of both sides of the last inclusion is rather similar to the calcu-
lation in the proof of the second claim. In case of the left-hand side we have:

vec(rel(s)T; rel(s)) = CT; [[vec(rel(s)T), vec(rel(s))] Lemma 4.1

= CT; [[[ρ, π]]; vec(rel(s)), vec(rel(s))] Theorem 3.4

= CT; [[[ρ, π]]; vec(rel(s)), vec(rel(s))] Theorem 3.2

= CT; [[[ρ, π]]; s, s] Theorem 3.2

Eqution vec(rel(s)
T
; rel(s)) = CT; [[[ρ, π]]; s, s] can be shown in a similar way. ��

All sides of the three inclusions of Theorem 4.4 are column-wise extendible vector
expressions over s. Hence, Theorem 3.1 immediately yields the following vector
models of type [X ↔ X] ↔ 11 of the sets of relations Theorem 4.4 deals with:

negTrans(X) := L; (CT; [[M,M] ∩ M)
T

semiTrans(X) := L; (CT; [[M,M] ∩ CT; [[M,M]
T

ferrers(X) := L; (CT; [[[ρ, π]];M,M] ∩ CT; [[[ρ, π]];M,M])
T

From the definitions of weak-orders, semi-orders and Ferrers relations we now
obtain the vector models weakOrd(X), semiOrd(X) and intOrd(X) we are look-
ing for by means of intersections as follows:

weakOrd(X) := asymm(X) ∩ negTrans(X)
semiOrd(X) := irrefl(X) ∩ semiTrans(X) ∩ ferrers(X)
intOrd(X) := irrfl(X) ∩ ferrers(X)
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There are situations where each relation of the set R of relations we want
to compute is contained in a given relation R or contains R. This is e.g., the
case if R : X ↔ X is a partial order and R is the set of linear extensions of R,
i.e., of the superrelations of R which are partial orders and complete. Having a
vector model suprel(R) of type [X ↔ X] ↔ 11 of the set of superrelations of R
at hand, it immediately allows to specify a vector model of type [X ↔ X] ↔ 11
of the set of linear extensions of R as follows:

linExt(R) := refl(X) ∩ antisymm(X) ∩ trans(X) ∩ compl(X) ∩ suprel(R)

To get a specification of suprel(R) and also of the vector model subrel(R) of
the set of subrelations of R, we use the following theorem, which is a direct
consequence of Theorem 3.2.

Theorem 4.5. Assume s : X × Y ↔ 11 and R : X ↔ Y to be given. Then we
have:

R ⊆ rel(s) ⇐⇒ vec(R) ⊆ s rel(s) ⊆ R ⇐⇒ s ⊆ vec(R)

The sides of the two inclusions of Theorem 4.5 are column-wise extendible vec-
tor expressions over s. Using Theorem 3.1 we, therefore, immediately get the
following specifications of suprel(R) and subrel(R):

suprel(R) := L; (vec(R); L ∩ M)
T

subrel(R) := L; (M ∩ vec(R); L
T

We close this section with an application of subrel(R), where R : X ↔ X
is again a partial order. Recall that a closure operator with respect to R is an
extensive, idempotent and monotone mapping on X. If it is considered as a
function C : X ↔ X in the relational sense, then extensiveness is described by
C ⊆ R, idempotency by C; C ⊆ C and monotonicity by R;C ⊆ C; R. In the
next theorem we show how the homomorphism property R;F ⊆ F ;S of F with
respect to R and S can be specified in terms of the vector model of F .

Theorem 4.6. Assume s : X × Y ↔ 11 and R : X ↔ X and S : Y ↔ Y to
be given. Then we have:

R; rel(s) ⊆ rel(s);S ⇐⇒ (R‖ I); s ⊆ (I‖ST); s

Proof. The following calculation shows the claim, where we use Theorem 3.2,
then Theorem 3.3 and finally again Theorem 3.2:

R; rel(s) ⊆ rel(s); S ⇐⇒ vec(R; rel(s); I) ⊆ vec(I; rel(s); S)
⇐⇒ (R‖ IT); vec(rel(s)) ⊆ (I‖ST); vec(rel(s))
⇐⇒ (R‖ I); s ⊆ (I‖ST); s

��
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As both sides of the inclusion of Theorem 4.6 are column-wise extendible vec-
tor expressions over s, Theorem 3.1 yields the following vector model of type
[X ↔ Y ] ↔ 11 for the set of relations which satisfy the homomorphism property
with respect to R : X ↔ X and S : Y ↔ Y :

homProp(R,S) := L; ((R‖ I);M ∩ (I‖ST);M)
T

And here is the specification of the vector model of type [X ↔ X] ↔ 11 for the
set of closure operators with respect to the partial order R : X ↔ X:

closOp(R) := funct(X,X) ∩ suprel(R) ∩ trans(X) ∩ homProp(R,R)

5 Applications and Implementation

Each specification of the vector models of Sect. 4 immediately can be imple-
mented within the programming language of RelView. To demonstrate this, we
consider the following RelView-program for injec(X,Y ), where (since RelView
knows relations as the only data type) the two inputs X and Y are homogeneous
relations the carrier sets of which determine the sets X and Y .

injec(X,Y)
DECL XxY = PROD(X,Y);

pi, M, L
BEG pi = p-1(XxY); M = epsi(pi); L = Ln1(pi)^

RETURN -(L*(parcomp(-I(X),I(Y))*M & M))^
END.

In the program’s declaration part a relational direct product XxY for X ×Y and
variables pi for the projection relation π : X × Y ↔ X, M for the membership
relation M : X × Y ↔ [X ↔ Y ] and L for the universal relation L : 11 ↔ X × Y
are introduced. The three assignments of the body then compute these rela-
tions by means of three pre-defined RelView-operations and store them in pi,
M and L. Finally, the return-clause – a direct translation of the specification
of injec(X,Y ) into RelView-code – computes the result. In this RelView-
expression a small RelView-program parcomp for computing parallel composi-
tions is used.

If relation algebra is extended by projection relations and membership rela-
tions, the expressive power of full second-order predicate logic is obtained. This
logic allows to specify for each set X the size-comparison relation S : 2X ↔ 2X

such that SA,B iff |A| ≤ |B|, for all A,B ∈ 2X . As usual in set theory, |A| ≤ |B|
means that there exists an injective mapping f : A → B. As first application of
the results of Sect. 4 we present a relation-algebraic specification of S. To this
end, we introduce the right residual R \ S := RT; S and the symmetric quotient
syq(R,S) := (R \ S) ∩ (R \ S) of relations R : X ↔ Y and S : X ↔ Z. Then
both, R \ S and syq(R,S) have type Y ↔ Z and for all y ∈ Y and z ∈ Z they
point-wisely are described as follows:

(R \ S)y,z ⇐⇒ ∀x : Rx,y ⇒ Sx,z syq(R,S)y,z ⇐⇒ ∀x : Rx,y ⇔ Sx,z (2)
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Besides these two derived relational operations we need the projection relations
π : X2 ↔ X and ρ : X2 ↔ X of X2 and two membership relations. Since the
latter have different types, we use different symbols. For that of type X ↔ 2X

we use M as before, for that of type X2 ↔ [X ↔ X] we use M. After these
preparations we can prove the following result.

Theorem 5.1. For all size-comparison relations S : 2X ↔ 2X we have:

S = (syq(M, πT;M) ∩ L; inject(X,X)T); ((ρT;M) \ M)

Proof. Assume arbitrary sets A,B ∈ 2X to be given. Using the right description
of (2), for all R : X ↔ X we obtain

syq(M, πT;M)A,R ⇐⇒ ∀x : Mx,A ⇔ (πT;M)x,R
⇐⇒ ∀x : x ∈ A ⇔ ∃u : πu,x ∧ Mu,R

⇐⇒ ∀x : x ∈ A ⇔ ∃y : Rx,y

⇐⇒ A = dom(R),

where dom(R) denotes the domain of R. Similarly, using the left description of
(2), for all R : X ↔ X we get ((ρT;M) \ M)R,B iff ran(R) ⊆ B, where ran(R)
denotes the range of R. As a consequence, the relationship

((syq(M, πT;M) ∩ L; injec(X,X)T); ((ρT;M) \ M))A,B (3)

holds iff there exists an injective relation R : X ↔ X such that A = dom(R)
and ran(R) ⊆ B. Restricting the source of R to A and the target of R to B
we get that (3) holds iff there exists an injective relation S : A ↔ B such that
A = dom(S) and ran(S) ⊆ B. Hence, S is also total. The Axiom of Choice
implies that S contains a function as a subrelation. So, an injective relation
S : A ↔ B exists iff an injective function F : A ↔ B exists, i.e., iff SA,B . ��
Translated into a RelView-program, the specification of the size-comparison
relations of Theorem 5.1 looks as follows:

sizeComp(X)
DECL XxX = PROD(X,X);

pi, rho, M, MM
BEG pi = p-1(XxX); rho = p-2(XxX); M = epsi(X); MM = epsi(pi)

RETURN (syq(M,pi^*MM) & Ln1(M)*injec(X,X)^)*((rho^*MM)\M)
END.

Systematic experiments are an accepted means for doing science and mean-
while they have also become important in mathematics and computer science.
They are used, e.g., for gaining insight and intuition, for identifying properties
and for testing conjectures. In the following we demonstrate how RelView and
the results of Sect. 4 can be used in that regard.

For given R : X ↔ X and S : Y ↔ Y a relation F : X ↔ Y is a
homomorphism from R to S if it is a function and satisfies the homomorphism
property R;F ⊆ F ; S. If F is a bijective function and satisfies R;F = F ; S,
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then it is an isomorphism from R to S. By an intersection of the vector models
funct(X,Y ) and homProp(R,S) of Sect. 4 we get the following vector model of
type [X ↔ Y ] ↔ 11 for the set of homomorphisms from R to S:

hom(R,S) := funct(X,Y ) ∩ homProp(R,S)

The equation R;F = F ;S is equivalent to R;F ⊆ F ; S and F ;S ⊆ R;F . To
obtain a vector model of the set of relations F which satisfy F ;S ⊆ R;F , we can
proceed as in the case of homProp(R,S). Doing so, we finally get the following
vector model of type [X ↔ Y ] ↔ 11 for the set of isomorphisms from R to S:

iso(R,S) := hom(R,S) ∩ bijec(X,Y ) ∩ L; ((I‖ST);M ∩ (R‖ I);M)
T

There exist relations R and S with a bijective homomorphism from R to S
that is not an isomorphism – even if the types of R and S are equal. We have
investigated the still stronger restriction R = S. To this end, we formulated the
equation hom(R,R) ∩ bijec(X,X) = iso(R,R) as a RelView-program. Then
we executed it for all relations R : X ↔ X on X = {1, . . . , n}, with 1 ≤ n ≤ 5.
Doing so, the relations R were computed by a loop through all points p contained
in L : [X ↔ X] ↔ 11 and using R = rel(M; p) as explained at the end of
Sect. 3. In each case the result was ‘true’. This and a generalisation to again two
relations R and S (which was obtained by an analysis of a previous proof of the
specific case R = S) led to Theorem 5.2 below. To our knowledge, it seems not
been published until now. For the proof of Theorem 5.2 we need the following
properties, for all relations Q, R and S, where, again as in set theory, |A| = |B|
means that there exists a bijective mapping f : A → B:

|RT| = |R| Q univalent =⇒ |R ∩ QT; S| ≤ |Q; R ∩ S| (4)

The equation is obvious. The implication is shown in [6] by Y. Kawahara. Both
properties are part of an axiomatisation of the cardinality of relations in [6].

Theorem 5.2. Assume R : X ↔ X, S : Y ↔ Y and F : X ↔ Y to be
given such that |R| = |S| and F is a bijective function. Then |R;F | = |F ;S|.
Furthermore, if R is finite and R;F ⊆ F ;S, then R;F = F ;S.

Proof. The following calculation shows |F ; S| = |S|:

|S| = |S ∩ FT; L| F surjective
≤ |F ; S ∩ L| F univalent, implication of (4)
= |L ∩ FTT; S|
≤ |FT; L ∩ S| F injective, implication of (4)
= |S| F surjective

If we replace in this calculation S by RT and F by FT, we get |FT; RT| = |RT|
and the equation of (4) yields |R;F | = |(R; F )T| = |FT; RT| = |RT| = |R|.
Altogether, we have |R; F | = |R| = |S| = |F ; S|.
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Now, let R be finite. Then |R| = |R; F | = |F ; S| shows that F ; S is finite. By
the usual definition of finitenes in set theory there is no Q such that Q ⊂ F ;S
and |Q| = |F ; S| or, equivalently, for all Q from Q ⊆ F ;S and |Q| = |F ; S| it
follows Q = F ; S. So, R;F ⊆ F ; S and |R; F | = |F ; S| imply R;F = F ;S. ��
In particular, already a bijective homomorphism on a finite relation (or a graph)
is an automorphism. Notice that neither X nor Y nor F have to be finite.
Finiteness of R and S, however, is necessary as the following example by M.
Winter shows. Consider R : Z ↔ Z and F : Z ↔ Z, defined by Rx,y iff x ≥ 0
and x = y and Fx,y iff x + 1 = y, for all x, y ∈ Z. Then F is a bijective function.
Simple calculations show (R; F )x,y iff x ≥ 0 and x + 1 = y and (F ; R)x,y iff
x ≥ −1 and x+1 = y, for all x, y ∈ Z. From these properties we get R;F ⊂ F ;R.

In 1969 D. Scott presented a partially ordered set (D,≤) that is isomorphic
to the partially ordered set ([D→D],�) of continuous mappings on D ordered
by the function order induced by ≤, i.e., by f � g iff f(x) ≤ g(x), for all
x ∈ D. The set D is the inverse limit of a retraction sequence starting with
(X0,≤0), where X0 := {⊥,�} and ⊥ ≤0 �, and continued by Xn+1 as set of
monotone mappings on Xn and ≤n+1 as function order induced by ≤n. In [12]
the construction is described in detail, the partially ordered sets (X1,≤1) and
(X2,≤2) are presented and it is noted that |X3| = 120 549. We have used Rel-
View to verify this number and even have been able to compute ≤3. Decisive for
that is the following relation-algebraic specification of the function order, where
inj(v) : F ↔ [X ↔ X] is the injective embedding induced by v, that is, the
identity function.

Theorem 5.3. Let R : X ↔ X be a partial order, v : [X ↔ X] ↔ 11 be the
vector model of a set F of functions and F : F ↔ F be the function order
induced by R. Then we have F = inj(v);MT; (R‖R);M; inj(v)T.

Proof. For all F,G ∈ F we calculate as follows to show the claim:

FF,G ⇐⇒ ∀u, v : Fu1,u2 ∧ Gv1,v2 ∧ Ru1,v1 ⇒ Ru2,v2

⇐⇒ ¬∃u, v : Fu1,u2 ∧ Gv1,v2 ∧ Ru1,v1 ∧ Ru2,v2

⇐⇒ ¬∃u, v : Fu1,u2 ∧ (R‖R)u,v ∧ Gv1,v2

⇐⇒ ¬∃u : u ∈ F ∧ ∃v : (R‖R)u,v ∧ v ∈ G

⇐⇒ ¬∃u : (M; inj(v)T)u,F ∧ ∃v : (R‖R)u,v ∧ (M; inj(v)T)v,G
⇐⇒ ¬∃u : (inj(v);MT)F,u ∧ ((R‖R);M; inj(v)T)u,G
⇐⇒ inj(v);MT; (R‖R);M; inj(v)TF,G

��
RelView contains a pre-defined operation inj for computing injective embed-
dings. If we take F as set of monotone functions and suppose hom to implement
hom(R,S), then the following RelView-program computes ≤n+1 from ≤n.
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functOrder(R)
DECL XxX = PROD(R,R);

Inj, M
BEG Inj = inj(hom(R,R)); M = epsi(p-1(XxX))*Inj^

RETURN -(M^*parcomp(R,-R)*M)
END.

The following three pictures show the partial orders ≤0, ≤1 and ≤2 as Boolean
RelView-matrices, where a black (white) square means a 1-entry (0-entry).

On a PC with 2 CPUs of type Intel R© Xeon R© E5-2698, each with 20 cores
and 3.60 GHz base frequency, 512 GByte RAM and running Arch Linux 5.2.0,
RelView needs 31.36 s to compute the partial order ≤3 as a ROBDD with
2 500 126 nodes and to report that its carrier set consists of 120 549 elements
and its Boolean matrix has 1 805 247 020 1-entries. It is noteworthy that only
0.02 s suffice for the evaluation of hom(R,R), i.e., for the computation of the
vector model of the set of mappings on X2 which are ≤2-monotone.

6 Concluding Remarks

We have applied our technique to some other classes of relations including rect-
angles, matchings, Aumann contact relations, difunctional relations, Noetherian
relations and bipartitions respectively bichromatic partitions of relations. By it
we also obtained the vector model of [5] for the set of up-closed multirelations
in a simple way.

During the past 30 years RelView proved to be an excellent tool for sup-
porting work with relations, especially the development of relational algorithms.
But it only is able to treat set-theoretic relations on finite carrier sets. For this
reason results that seem to confirm an abstract relation-algebraic property are
to handle with some care. Namely, it may happen that the considered prop-
erty holds for all set-theoretic relations on finite carrier sets but not in case of
infinite carrier sets. It is known that there are even properties that hold for all
set-theoretic relations (i.e., also with infinite carrier sets) but not in axiomatic
relation algebras. Theorem 5.2 is an example for the first situation and Eq. (1)
is an examples for the second one. But, fortunately, such situations are rare.
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comments and suggestions.
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Criteria for Relations to Have Kernels
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Abstract. We investigate four well-known criteria for the existence of
kernels in directed graphs/relations which can be tested efficiently, viz.
to be irreflexive and symmetric, to be progressively finite, to be bipartite
and to satisfy Richardson’s criterion. The numerical data, obtained by
the evaluation of relation-algebraic problem specifications using Rel-
View show that even the most general of them is very far away from a
characterisation of the class of directed graphs/relations having kernels.

1 Introduction

When written as a logical formula, most mathematical theorems have the form

∀x : Φ(x) ⇒ Ψ(x),

where x is a list of variables, each variable ranges over a certain class of math-
ematical objects, Ψ(x) describes the property one is actually interested in and
Φ(x) describes a property that ensures Ψ(x). Mostly, one tries to get Φ(x) as
general as possible. Whenever Ψ(x) is equivalent to Φ(x) it characterises the
class of mathematical objects for which Ψ(x) holds. An example is the fixpoint
theorem of A. Tarski (see [12]). Here there is only one variable x that ranges
over the class of lattices, Φ(x) describes that x is complete and Ψ(x) describes
that each monotonic function on x has a least fixpoint. That in this case Φ(x)
and Ψ(x) are equivalent is an immediate consequence of a theorem of A. Davis,
published in [6]. Other prominent examples are characterisations of classes of
mathematical objects by means of forbidden substructures, e.g., that a lattice is
modular iff it does not contain a sublattice isomorphic to the pentagon-lattice
N5 (R. Dedekind, see [7]) and that a finite graph is planar iff it does not contain
a subgraph that is a subdivision of the Kuratowski graph K5 or the Kuratowski
graph K3,3 (K. Kuratowski, see [9]).

In this paper we investigate kernels within graphs. A kernel of a directed
graph is a subset K of the set of vertices such that no pair of vertices of K
is connected by an edge and from each vertex outside of K there is an edge
to a vertex of K. This concept is introduced in [13] by J. von Neumann and
O. Morgenstern as a generalisation of a solution of a cooperative game. In [5]
V. Chvatal shows that determining whether a directed graph possesses a kernel
is NP-complete.
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Mapping kernels the aforementioned formula results in x ranging over the
class of directed graphs, Ψ(x) describes that x has a kernel and Φ(x) describes
a sufficient criterion for this property. Hence, with Ψ(x) as just introduced, it is
very unlikely to get a Φ(x) such that Φ(x) and Ψ(x) are equivalent and Φ(x) can
be computed efficiently.

There exist a series of sufficient criteria for the existence of kernels which
can be tested efficiently. An interesting question is how close these are to a
characterisation of the class of directed graphs having kernels. To this end, in
this paper we present for all vertex sets X up to 7 vertices the number of directed
graphs g = (X,R) having kernels. Then we consider the four most popular
criteria for the existence of kernels and present for each criterion the number
of directed graphs g = (X,R) which satisfy it. These numerical data show that
even in case of the most general of the four criteria, the absence of cycles of
odd length (as shown by M. Richardson in [10]), only a very small portion of
the directed graphs with kernels satisfy the criterion. We may conclude that the
criteria are very far away from a characterisation of the class of directed graphs
having kernels.

In case of 7 vertices there are 5.62 · 1014 directed graphs and 1.88 · 1014 of
them have kernels. Only 1.62 · 1010 of them satisfy Richardson’s criterion. We
have been able to compute the numerical data for such large numbers of directed
graphs using only their adjacency relations R, relation-algebraic problem spec-
ifications and RelView for the evaluation of the latter. RelView is a tool
for the manipulation and visualisation of relations and relational programming.
It uses reduced ordered binary decision diagrams (ROBDDs) for implementing
relations. See [3,4] for more details. Besides the excellent and manifold capa-
bilities of relations and relation algebra in problem solving, this paper again
demonstrates the amazing computational power of RelView.

2 Relational Preliminaries

If X and Y are given sets, a subset of the direct product X × Y is a relation with
source X and target Y . We denote the set of all relations with source X and
target Y (i.e., the powerset 2X×Y ) by [X ↔ Y ] and write R : X ↔ Y instead
of R ∈ [X ↔ Y ]. In such a case X ↔ Y is called the type of R. A (typed)
relation corresponds to a Boolean matrix. This interpretation is well suited for
many purposes and also used as one of the graphical representations of relations
within RelView. Therefore, in this paper we also use matrix terminology and
notation for relations. In particular, we write Rx,y instead of (x, y) ∈ R or xR y.

We will use the following five basic operations on relations: R (complementa-
tion), R ∪ S (union), R ∩ S (intersection), RT (transposition) and R;S (compo-
sition). We assume that transposition and complementation bind stronger than
composition and composition binds stronger than union and intersection. As
derived operation we will use the right residual of two relations with the same
source, defined by R \S := RT; S. If R : X ↔ Y and S : X ↔ Z, from the typ-
ing rules and the point-wise definitions of complementation, transposition and
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composition we get R \ S : Y ↔ Z and, given arbitrary y ∈ Y and z ∈ Z, that
(R \ S)y,z iff for all x ∈ X from Rx,y it follows Sx,z.

Besides the just mentioned operations, we will use the three special relati-
ons O (empty relation), L (universal relation) and I (identity relation). Here we
overload the symbols, i.e., avoid the binding of types to them. Finally, if R is
included in S we write R ⊆ S and R = S means their equality.

Relation algebra as just introduced can express exactly those formulae of
first-order predicate logic which contain at most two free variables and all in
all at most three variables. The expressive power of full first-order predicate
logic is obtained by means of projection relations or equivalent notions. In this
paper we always assume that a pair u from a direct product is of the form
u = (u1, u2). This allows to describe the meaning of the projection relations
π : X × Y ↔ X and ρ : X × Y ↔ Y of a direct product X × Y by πu,x iff
u1 = x and ρu,y iff u2 = y, for all u ∈ X × Y , x ∈ X and y ∈ Y . Based on the
projection relations π : X × Y ↔ X and ρ : X × Y ↔ Y for R : X ↔ Z and
S : Y ↔ Z their left pairing is defined by [[R,S] := π;R ∩ ρ; S, thereby being
of type X × Y ↔ Z. Using point-wise notation we have [[R,S]u,z iff Ru1,z and
Su2,z, for all u ∈ X × Y and z ∈ Z. The counterpart to the left pairing, with
now Z ↔ X × Y as type, is the right pairing of R : Z ↔ X and S : Z ↔ Y ,
defined as [R,S]] := R;πT ∩ S; ρT. Point-wisely we get [R,S]]z,u iff Rz,u1 and
Sz,u2 , for all u ∈ X × Y and z ∈ Z. The parallel composition (or product)
R‖S : X × X ′ ↔ Y × Y ′ of R : X ↔ Y and S : X ′ ↔ Y ′, such that (R‖S)u,v
iff Ru1,v1 and Su2,v2 , for all u ∈ X × X ′ and v ∈ Y × Y ′, can be defined by means
of the right pairing. We get the desired property if we define R‖S := [π; R, ρ; S]],
where π : X × X ′ ↔ X and ρ : X × X ′ ↔ X ′ are the projection relations of
X × X ′ and the right pairing is formed with respect to the projection relations
of Y × Y ′.

Assume the projection relations π : X × Y ↔ X and ρ : X × Y ↔ Y of
X × Y and R : X × Y ↔ Z to be given. A property that we will use frequently
in Sect. 4 is the equivalence of ([ρ, π]];R)u,z and R(u2,u1),z, for all u ∈ X × Y and
z ∈ Z.

The relation-level equivalents of the set-theoretic symbol “∈” are the member-
ship relations M : X ↔ 2X , point-wisely defined by Mx,Y iff x ∈ Y , for all x ∈ X
and Y ∈ 2X . By means of projection relations and membership relations the
expressive power of full second-order predicate logic is obtained and this suffices
for our later applications. If the source of a membership relation is a direct prod-
uct and, hence, its target is a set of relations, we use the symbol M instead of M.
An important property of such a membership relation M : X × Y ↔ [X ↔ Y ]
is the equivalence of Mu,R and Ru1,u2 , for all u ∈ X × Y and R : X ↔ Y , which
we also will use frequently later in Sect. 4.

At the end of this section it should be mentioned that – except the parallel
composition – all specific relations and all relational operations and tests we
have introduced in this section are available in the programming language of
RelView. Details will be presented in Sect. 5. See also the Web-site [14].
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3 The Experiments and Their Results

In this section we present the numerical data we already have mentioned in the
introduction. By means of RelView we have been able to count for a given set X
having at most 7 elements the number of directed graphs g = (X,R) possessing
kernels. These numbers are presented in the third column in Table 1. In the
second column the numbers of all directed graphs with vertex set X are given,
i.e., the numbers 2|X|2 , where 1 ≤ |X| ≤ 7. The percentages of the directed
graphs having kernels with regard to the total number of directed graphs are
given in the last column of the table. Notice that the last number of the second
and the last number of the third column of this table are the exact values of the
approximations 5.62 · 1014 and 1.88 · 1014 mentioned in the introduction.

Table 1. Occurrences of kernels within graphs having at most 7 vertices.

|X| All relations Rel. with kernel Percentage

1 2 1 50.00 %

2 16 8 50.00 %

3 512 230 44.92 %

4 65 536 26 346 40.19 %

5 33 554 432 12 378 964 39.98 %

6 68 719 476 736 23 921 882 920 34.80 %

7 562 949 953 421 312 188 553 949 010 868 33.49 %

We investigate four sufficient criteria for the existence of kernels in a directed
graph which can be tested efficiently. That each of them indeed ensures the
existence of kernels is shown in [11] with relation-algebraic means.

The first criterion is that the adjacency relation R is irreflexive and symmet-
ric, that is, g = (X,R) is the directed version of an undirected graph, where each
undirected edge is replaced by two parallel directed edges with opposite direc-
tions. The corresponding numbers are presented in the second column of Table 2
corresponding to 2

|X|(|X|−1)
2 , where 1 ≤ |X| ≤ 7. The second criterion is that

R : X ↔ X is a progressively finite relation in the sense of [11] which means
that there is no non-empty subset A of X such that for each x ∈ A there exists
a y ∈ A with Rx,y. In other words, R is progressively finite iff RT is Noetherian
iff there is no infinite sequence (xn)n∈N in X such that Rxn,xn+1 , for all n ∈ N.
This criterion generalises the criterion “to be cycle-free” of [13] since on a finite
set X the relation R is progressively finite iff it is cycle-free; see [11]. The data
for this criterion (i.e., the number of cycle-free directed graphs g = (X,R) with
1 ≤ |X| ≤ 7), are presented in the third column. The fourth column of the table
shows the number of bipartite directed graphs g = (X,R), with 1 ≤ |X| ≤ 7,
since “to be bipartite” is also a sufficient criterion for the existence of kernels.
In the introduction we already have mentioned Richardson’s criterion stating
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that a graph has no cycles of odd length. The data for this fourth criterion can
be found in the last column of the table. Notice that the theorem of [10] on
the existence of kernels in directed graphs without cycles of odd length assumes
finite graphs. In case of an undirected graph the set of kernels equals the set of
maximal stable sets such that kernels exist if the vertex set is finite. The other
two criteria also hold for infinite graphs.

Each directed graph with a progressively finite relation is cycle-free and, as
a consequence, also does not contain cycles of odd length. From a well-known
theorem of D. König (see [8]) we immediately get that each bipartite directed
graph has no cycles of odd length. Therefore, on finite directed graphs (which are
important in practical applications) Richardson’s criterion is more general than
the criteria “to be cycle-free” and “to be bipartite”, which also is demonstrated
by the numerical data given in Table 2. The last number of the last column is
the exact value of the approximation 1.62 ·1010 mentioned in the introduction. A
comparison of the second and the last column shows that Richardson’s criterion is
also much more general than the first criterion “R is irreflexive and symmetric”.
Notice that, however, neither the first criterion implies Richardson’s criterion
nor vice versa.

Table 2. Number of graphs for the four criteria having at most 7 vertices.

|X| Irr., symm. Progr. finite Bipartite Richardson

1 1 1 1 1

2 2 3 4 4

3 8 25 37 49

4 64 543 829 1 699

5 1 024 29 281 36 616 150 736

6 32 768 3 781 503 3 327 499 32 398 249

7 2 097 152 1 138 779 265 581 809 537 16 230 843 049

At the end of this section it should be mentioned that each of the above four
criteria not only can be tested efficiently but also can be used to obtain efficient
algorithms for computing a kernel of a graph that satisfies the criterion. In case
of Richardson’s criterion such an algorithm is presented in [2]. It is formulated
as a relational while-program and formally derived by means of the assertion
technique and reconstructing a proof of Richardson’s theorem.

4 Computing Classes of Relations Having Kernels

In this section vectors play a central role. A (relational) vector as introduced in
[11] is a relation s : X ↔ Y such that s = s; L, for L : Y ↔ Y . In the Boolean
matrix interpretation this means that each row of s consists only of ones or only
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of zeros. Consequently, the targets of vectors are irrelevant and we only consider
vectors of type X ↔ 11, with a specific singleton set 11 := {⊥} as common target.
Such vectors correspond to Boolean column vectors and, therefore, as in linear
algebra we write sx instead of sx,⊥. For R : 11 ↔ X we retain the notation R⊥,x.

Given a set X and a subset S of X, we call s : X ↔ 11 a vector model of
S (for short s models S) if for all x ∈ X it holds x ∈ S iff sx. If X is a direct
product, say Y × Z, then s models a relation S : Y ↔ Z and we have Su1,u2

iff su, for all u ∈ Y × Z. The computation of s := vec(S) from S can be done
relation-algebraically, as vec(S) = [[S, I]; L, where I : Z ↔ Z and L : Z ↔ 11.

Convention 4.1. For the following we fix a set X. Throughout this section
then π : X2 ↔ X and ρ : X2 ↔ X denote the two projection relations of the
direct product X2 and M : X ↔ 2X and M : X2 ↔ [X ↔ X] are membership
relations.

Instead of working with directed graphs g = (X,R) in the following we work
with their adjacency relations R : X ↔ X (in [11] called associated relation)
and use the notions kernel, cycle, bipartite etc. for R in an obvious way. The
computations we will present consist of relation-algebraic specifications of vector
models of those sets of relations on X which satisfy the first, second, third
respectively fourth of the four sufficient criteria for the existence of kernels we
have mentioned in Sect. 3. In Sect. 5 we will demonstrate how these specifications
rather straightforwardly can be implemented in the programming language of
RelView and the executions of these RelView-programs led to the numerical
data of Sect. 3.

Given R : X ↔ X, from the description of kernels in Sect. 1 we get that a
subset K of X is a kernel of R iff the following two formulae hold, where the
variables x and y range over X:

¬∃x, y : x ∈ K ∧ y ∈ K ∧ Rx,y ∀x : x �∈ K ⇒ ∃y : y ∈ K ∧ Rx,y

The first formula defines K as R-stable and the second one as R-absorbant. As
a consequence, kernels of R are precisely those subsets of X which are R-stable
and R-absorbant at the same time. Based on two auxiliary specifications for
R-stable and R-absorbant subsets, in the following theorem we specify relation-
algebraically a vector model kernel : [X ↔ X] ↔ 11 for the set of relations on
X having kernels. Besides the relations of Convention 4.1 the second projection
relation β : X × 2X ↔ 2X of the direct product X × 2X is used. Notice that
the backslash-symbol used in the second auxiliary specification absorb denotes
the right residual operation.

Theorem 4.1. We consider the following three relation-algebraic specifications:

stable := [MT,MT]];M : 2X ↔ [X ↔ X]

absorb := (β ∩ vec(M); L) \ ((I‖MT);M) : 2X ↔ [X ↔ X]

kernel := (L; (stable ∩ absorb))T : [X ↔ X] ↔ 11
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For all A ∈ 2X and R : X ↔ X then stableA,R iff A is R-stable, absorbA,R iff
A is R-absorbant and kernelR iff R has a kernel.

Proof. Assume arbitrary A ∈ 2X and R : X ↔ X. Then the first claim is shown
by the following calculation, where the variable u ranges over X2:

stableA,R ⇐⇒ [MT,MT]];MA,R

⇐⇒ ¬∃u : [MT,MT]]A,u ∧ Mu,R

⇐⇒ ¬∃u : MT
A,u1

∧ MT
A,u2

∧ Ru1,u2

⇐⇒ ¬∃u : u1 ∈ A ∧ u2 ∈ A ∧ Ru1,u2

⇐⇒ A is R-stable

To prove the second claim, we calculate as follows, where the variables x and y
range over X, the variable u ranges over X2 and the variable B ranges over 2X :

absorbA,R ⇐⇒ ((β ∩ vec(M); L) \ ((I‖MT);M))A,R

⇐⇒ ∀x,B : (β ∩ vec(M); L)(x,B),A ⇒ ((I‖MT);M)(x,B),R

⇐⇒ ∀x,B : B = A ∧ Mx,B ⇒ ∃u : (I‖MT)(x,B),u ∧ Mu,R

⇐⇒ ∀x,B : B = A ∧ x �∈ B ⇒ ∃u : x = u1 ∧ MT
B,u2

∧ Ru1,u2

⇐⇒ ∀x : x �∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

⇐⇒ A is R-absorbant

Finally, we calculate as follows, where the variable A ranges over 2X :

kernelR ⇐⇒ (L; (stable ∩ absorb))⊥,R

⇐⇒ ∃A : L⊥,A ∧ (stable ∩ absorb)A,R

⇐⇒ ∃A : stableA,R ∧ absorbA,R

Together with the first two claims this implies the third claim. ��
We have used the prevalent mathematical theorem-proof-style to emphasise the
result of this theorem and to enhance readability. However, in fact, we have
obtained the relation-algebraic specifications by developing them formally from
the corresponding logical specifications by replacing step-by-step logical con-
structions by equivalent relational ones. This remark also holds for the other
theorems of this section.

The next theorem presents relation-algebraic specifications of vector models
irrefl : [X ↔ X] ↔ 11 and sym : [X ↔ X] ↔ 11 for the set of irreflexive respec-
tively symmetric relations on X such that the intersection irrefl∩sym models the
set of relations on X which satisfy the first sufficient criterion for the existence
of kernels we have mentioned in Sect. 3. Only the three relations π : X2 ↔ X
and ρ : X2 ↔ X and M : X2 ↔ [X ↔ X] of Convention 4.1 are used.
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Theorem 4.2. We consider the following relation-algebraic specifications:

irrefl := L; (M ∩ vec(I); L)
T

: [X ↔ X] ↔ 11

sym := L; (M ∩ [ρ, π]];M)
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then irreflR iff R is irreflexive and symR iff R is symmetric.

Proof. Assume an arbitrary R : X ↔ X. Then the following calculation shows
the first claim, where the variable u ranges over X2:

irreflR ⇐⇒ L; (M ∩ vec(I); L)⊥,R

⇐⇒ ¬∃u : L⊥,u ∧ Mu,R ∧ vec(I)u
⇐⇒ ¬∃u : Ru1,u2 ∧ Iu1,u2

⇐⇒ ¬∃u : Ru1,u2 ∧ u1 = u2

⇐⇒ R is irreflexive

Also in the following calculation the variable u ranges over X2:

symR ⇐⇒ L; (M ∩ [ρ, π]];M)⊥,R

⇐⇒ ¬∃u : L⊥,u ∧ Mu,R ∧ ¬([ρ, π]];M)u,R
⇐⇒ ∀u : Mu,R ⇒ ([ρ, π]];M)u,R
⇐⇒ ∀u : Ru1,u2 ⇒ M(u2,u1),R

⇐⇒ ∀u : Ru1,u2 ⇒ Ru2,u1

⇐⇒ R is symmetric

With this verification of the second claim the proof is complete. ��
The second sufficient criterion for the existence of kernels we have mentioned
in Sect. 3 is “to be progressively finite”. In the following we show how to spec-
ify relation-algebraically a vector model progFin : [X ↔ X] ↔ 11 of the set of
progressively finite relations on X. As in the case of Theorem 4.1 besides the rela-
tions of Convention 4.1 we use the second projection relation β : X × 2X ↔ 2X

of the direct product X × 2X .

Theorem 4.3. We consider the following relation-algebraic specification:

progFin := L;M; (βT ∩ L; vec(M)T); [π, ρ;M]]T;M
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then progFinR iff R is progressively finite.

Proof. To structure the proof, we define the following auxiliary relation:

R := (βT ∩ L; vec(M)T); [π, ρ;M]]T;M : 2X ↔ [X ↔ X]



80 R. Berghammer and M. Kulczynski

Now, assume an arbitrary R : X ↔ X. For all A ∈ 2X we then calculate as
follows, where the variables x and y range over X, the variable B ranges over
2X and the variable u ranges over X2:

RA,R ⇐⇒ (βT ∩ L; vec(M)T); [π, ρ;M]]T;MA,R

⇐⇒ ¬∃x,B : (βT ∩ L; vec(M)T)A,(x,B) ∧ [π, ρ;M]]T;M(x,B),R

⇐⇒ ¬∃x,B : A = B ∧ vec(M)(x,B) ∧ ¬([π, ρ;M]]T;M)(x,B),R

⇐⇒ ¬∃x : vec(M)(x,A) ∧ ¬∃u : [π, ρ;M]]T(x,A),u ∧ Mu,R

⇐⇒ ¬∃x : Mx,A ∧ ¬∃u : [π, ρ;M]]u,(x,A) ∧ Ru1,u2

⇐⇒ ∀x : x ∈ A ⇒ ∃u : u1 = x ∧ u2 ∈ A ∧ Ru1,u2

⇐⇒ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

Using this result, we now calculate as follows, where the variable A ranges over
2X and, as above, the variables x and y range over X:

progFinR ⇐⇒ L;M;R⊥,R

⇐⇒ ¬∃A : (L;M)⊥,A ∧ RA,R

⇐⇒ ¬∃A : (MT; L)A ∧ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

⇐⇒ ¬∃A : A �= ∅ ∧ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

The last formula is the logical specification of R being progressively finite; see
the definition given in Sect. 3. ��
We continue with the third sufficient criterion for the existence of kernels we have
mentioned in Sect. 3, viz. “to be bipartite”. A corresponding relation-algebraic
specification of a vector model bipartite : [X ↔ X] ↔ 11 of the set of bipartite
relations on X is given in the theorem below. In this theorem only the two
membership relations of Convention 4.1 are used.

Theorem 4.4. We consider the following relation-algebraic specification:

bipartite := (M \ ([M,M]] ∪ [M,M]])); L : [X ↔ X] ↔ 11

For all R : X ↔ X then bipartiteR iff R is bipartite.

Proof. Assume an arbitrary R : X ↔ X. Then we calculate as follows, where
the variable A ranges over 2X and the variable u ranges over X2:

bipartiteR ⇐⇒ ((M \ ([M,M]] ∪ [M,M]])); L)R
⇐⇒ ∃A : (M \ ([M,M]] ∪ [M,M]]))R,A ∧ LA

⇐⇒ ∃A : ∀u : Mu,R ⇒ [M,M]]u,A ∨ [M,M]]u,A
⇐⇒ ∃A : ∀u : Ru1,u2 ⇒ (Mu1,A ∧ Mu2,A) ∨ (Mu1,A ∧ Mu2,A)
⇐⇒ ∃A : ∀u : Ru1,u2 ⇒ (u1 ∈ A ∧ u2 �∈ A) ∨ (u1 �∈ A ∧ u2 ∈ A)
⇐⇒ R is bipartite

This completes the proof. ��
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Concerning Richardson’s criterion, we have not been able to specify a vector
model of the set of relations on X without cycles of odd length with purely
relation-algebraic means. Experiments with the RelView tool have shown that
the RelView-implementation of the vector model kernel of Theorem 4.1 seems
to be successfully executable up to |X| = 7 only. For |X| = 8 we cancelled the
computation after about 20 h. Based on this fact, we have decided to consider
one after the other the lengths 1, 3, 5 and 7 of cycles. If |X| ≤ 2, then a relation
on X has no cycle of odd length iff it is irreflexive. As a consequence, the first two
numbers of the last column of the second table of Sect. 3, i.e., the numbers for
|X| = 1 and |X| = 2, are 2|X|(|X|−1), since this expression specifies the number
of irreflexive relations on X. The next three theorems present relation-algebraic
specifications of three vector models with the following meanings:

a) cyc3 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 3.

b) cyc5 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 5.

c) cyc7 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 7.

Since the complement cyc3 models the set of relations on X without cycles of
length 3 and for the complements cyc5 and cyc7 the same applies for length 5
and 7, respectively, the vector

irrefl ∩ cyc3 ∩ cyc5 ∩ cyc7 : [X ↔ X] ↔ 11

models the set of relations on X which have no cycles of length 1, 3, 5 and 7.
Consequently, we get for |X| ≤ 8 that it models the set of relations on X without
cycles of odd length. This way we have obtained the numbers of the last column
of Table 2 for 3 ≤ |X| ≤ 7.

The following relation-algebraic specification of the vector model cyc3 uses
the relations of Convention 4.1 except the membership relation M : X ↔ 2X .
Furthermore, it uses the two projection relations of the direct product X2 × X2,
which we denote as γ : X2 × X2 ↔ X2 and δ : X2 × X2 ↔ X2.

Theorem 4.5. We consider the following relation-algebraic specification:

cyc3 := (L; ([δ, γ]]; (ρ‖π);M ∩ [[M,M] ∩ vec(ρ;πT); L))
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then cyc3R iff R has a cycle of length 3.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. Then we
have

([δ, γ]]; (ρ‖π);M)(u,v),R ⇐⇒ ((ρ‖π);M)(v,u),R ⇐⇒ M(v2,u1),R ⇐⇒ Rv2,u1

and

[[M,M](u,v),R ⇐⇒ Mu,R ∧ Mv,R ⇐⇒ Ru1,u2 ∧ Rv1,v2
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and

(vec(ρ; πT); L)(u,v),R ⇐⇒ vec(ρ; πT)(u,v) ⇐⇒ (ρ; πT)u,v ⇐⇒ u2 = v1.

From these equivalences we get

cyc3R ⇐⇒ (L; ([δ, γ]]; (ρ‖π);M ∩ [[M,M] ∩ vec(ρ; πT); L))⊥,R

⇐⇒ ∃u, v : L⊥,(u,v) ∧ Rv2,u1 ∧ Ru1,u2 ∧ Rv1,v2 ∧ u2 = v1

⇐⇒ ∃x, y, z : Rx,y ∧ Ry,z ∧ Rz,x,

where the variables u and v range over X2 and the variables x, y and z range
over X. The last formula of this calculation is the logical description of R having
a cycle of length 3. ��
In the next theorem we present a relation-algebraic specification of the vector
model cyc5. Precisely, it is based on the same projection relations and mem-
bership relations as Theorem 4.5 and uses two auxiliary specifications for the
construction of paths.

Theorem 4.6. We consider the following relation-algebraic specifications:

R := (π;πT ‖ρ; ρT); ([[M,M] ∩ vec(ρ;πT); L) : X2 × X2 ↔ [X ↔ X]

S := [[[ρ, π]];M, [ρ, π]];M] ∩ [δ, γ]]; (π‖ρ);M : X2 × X2 ↔ [X ↔ X]

cyc5 := (L; (R ∩ S))T : [X ↔ X] ↔ 11

For all R : X ↔ X then cyc5R iff R has a cycle of length 5.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. First, we
treat R and calculate as given below, where the variables a and b range over X2

and the variable x ranges over X:

R(u,v),R ⇐⇒ ∃a, b : (π; πT ‖ρ; ρT)(u,v),(a,b) ∧ ([[M,M] ∩ vec(ρ; πT); L)(a,b),R
⇐⇒ ∃a, b : (π; πT)u,a ∧ (ρ; ρT)v,b ∧ [[M,M](a,b),R ∧ vec(ρ; πT)(a,b)

⇐⇒ ∃a, b : u1 = a1 ∧ v2 = b2 ∧ Ma,R ∧ Mb,R ∧ a2 = b1

⇐⇒ ∃x : M(u1,x),R ∧ M(x,v2),R

⇐⇒ ∃x : Ru1,x ∧ Rx,v2

Hence, R(u,v),R specifies that there exists a path (u1, x, v2) in R. With regard
to S we calculate as follows:

S(u,v),R ⇐⇒ [[[ρ, π]];M, [ρ, π]];M](u,v),R ∧ ([δ, γ]]; (π‖ρ);M)(u,v),R

⇐⇒ ([ρ, π]];M)u,R ∧ ([ρ, π]];M)v,R ∧ ((π‖ρ);M)(v,u),R
⇐⇒ M(u2,u1),R ∧ M(v2,v1),R ∧ M(v1,u2),R

⇐⇒ Rv2,v1 ∧ Rv1,u2 ∧ Ru2,u1
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So, S(u,v),R specifies that (v2, v1, u2, u1) is a path in R. After these preparations
we now prove the claim. We start with the following calculation, where the
variables u and v range over X2 and the variable x ranges over X:

cyc5R ⇐⇒ (L; (R ∩ S))⊥,R

⇐⇒ ∃u, v : L⊥,(u,v) ∧ R(u,v),R ∧ S(u,v),R

⇐⇒ ∃u, v : R(u,v),R ∧ S(u,v),R

⇐⇒ ∃u, v : (∃x : Ru1,x ∧ Rx,v2) ∧ (v2, v1, u2, u1) is a path in R

It remains to verify that the last formula holds iff R has a cycle of length 5.
For the direction “=⇒”, let the formula be true. Then (u1, x, v2, v1, u2, u1) is
a cycle of length 5 in R. For the converse, suppose that R possesses a cycle
(c1, c2, c3, c4, c5, c1) of length 5. We define u := (c1, c5), v := (c4, c3) and x := c2.
Then (u1, x, v2) and (v2, v1, u2, u1) are paths in R and the formula holds. ��
The relation-algebraic specification of the vector model cyc7 is given in the next
theorem. We follow the ideas of Theorem 4.6, but the realisation is far more com-
plex. We use a further projection relation, viz. the second projection relation of
the direct product (X2 × X2)2, which we denote as μ : (X2 × X2)2 ↔ X2 × X2.
Furthermore, we use the auxiliary specification R of Theorem 4.6 and three fur-
ther auxiliary specifications.

Theorem 4.7. With R : X2 × X2 ↔ [X ↔ X] as defined in Theorem 4.6 we
consider the following relation-algebraic specifications:

S := [[[ρ, π]];M, [ρ, π]];M] : X2 × X2 ↔ [X ↔ X]

T := [[[[ρ; ρT, ρ;πT];M, [[π;πT, π; ρT];M] : (X2 × X2)2 ↔ [X ↔ X]

U := (γT ‖γT); (T ∩ μ; δ;M ∩ vec(δ; δT); L) : X2 × X2 ↔ [X ↔ X]

cyc7 := (L; (R ∩ S ∩ U))T : [X ↔ X] ↔ 11

For all R : X ↔ X then cyc7R iff R has a cycle of length 7.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. From the
proof of Theorem 4.6 we already know the following facts, where the variable x
of the left equivalence ranges over X:

R(u,v),R ⇐⇒ ∃x : Ru1,x ∧ Rx,v2 S(u,v),R ⇐⇒ Ru2,u1 ∧ Rv2,v1

So, we have (R ∩ S)(u,v),R iff there exists a path (u2, u1, x, v2, v1) in R. In the
remainder of the proof we show that U(u,v),R iff there is a path (v1, w1, w2, u2)
in R, from which then the claim follows similarly to the last step of the proof of
Theorem 4.6.

First, we concentrate on T. Guided by its source we assume arbitrary pairs
(a, b) ∈ X2 × X2 and (c, d) ∈ X2 × X2 to be given. For all e ∈ X2 we then have

[[ρ; ρT, ρ; πT](a,b),e ⇐⇒ (ρ; ρT)a,e ∧ (ρ; πT)b,e ⇐⇒ a2 = e2 ∧ b2 = e1
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and this implies

([[ρ; ρT, ρ; πT];M)(a,b),R ⇐⇒ M(b2,a2),R ⇐⇒ Rb2,a2 .

In the same way we show that

([[π; πT, π; ρT];M)(c,d),R ⇐⇒ M(c1,d1),R ⇐⇒ Rc1,d1 .

So, altogether, we get:

T((a,b),(c,d)),R ⇐⇒ [[[[ρ; ρT, ρ; πT];M, [[π; πT, π; ρT];M]((a,b),(c,d)),R
⇐⇒ ([[ρ; ρT, ρ; πT];M)(a,b),R ∧ ([[π; πT, π; ρT];M)(c,d),R
⇐⇒ Rb2,a2 ∧ Rc1,d1

Second, we concentrate on U and calculate as follows, where the variables a, b, c, d
and w range over X2:

U(u,v),R ⇐⇒ ((γT ‖γT); (T ∩ μ; δ;M ∩ vec(δ; δT); L))(u,v),R
⇐⇒ ∃a, b, c, d : (γT ‖γT)(u,v),((a,b),(c,d))

∧ (T ∩ μ; δ;M ∩ vec(δ; δT); L)((a,b),(c,d)),R
⇐⇒ ∃a, b, c, d : (γT ‖γT)(u,v),((a,b),(c,d)) ∧ T((a,b),(c,d)),R

∧ (μ; δ;M)((a,b),(c,d)),R ∧ vec(δ; δT)((a,b),(c,d))
⇐⇒ ∃a, b, c, d : γ(a,b),u ∧ γ(c,d),v ∧ Rb2,a2 ∧ Rc1,d1

∧ (δ;M)(c,d),R ∧ (δ; δT)(a,b),(c,d)
⇐⇒ ∃a, b, c, d : a = u ∧ c = v ∧ Rb2,a2 ∧ Rc1,d1 ∧ Md,R ∧ b = d

⇐⇒ ∃w : Rw2,u2 ∧ Rv1,w1 ∧ Mw,R

⇐⇒ ∃w : Rv1,w1 ∧ Rw1,w2 ∧ Rw2,u2

Hence, we have U(u,v),R iff there exists a path (v1, w1, w2, u2) in R as required
to conclude the proof. ��

5 Implementation in RelView

RelView is a specific purpose computer algebra system for the manipulation
and visualisation of relations, relational prototyping and relational program-
ming. Computational tasks can be described by short and concise programs,
which frequently consist of only a few lines that present the relation-algebraic
expressions or formulae of the notions in question. At the beginning of Sect. 4
we have mentioned that all relation-algebraic specifications of the section rather
straightforwardly can be implemented in the programming language of Rel-
View. In the following we will demonstrate this by means of the specifications
kernel, progFin and bipartite.
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Projection relations play a decisive role. Therefore, we start with the follow-
ing two RelView-programs pr1 and pr2, which implement the two projection
relations π : X × Y ↔ X and ρ : X × Y ↔ Y of the direct product X × Y .

pr1(X,Y)
DECL XY = PROD(X,Y)
BEG RETURN p-1(XY) END.

pr2(X,Y)
DECL XY = PROD(X,Y)
BEG RETURN p-2(XY) END.

RelView knows relations as the only data type. In the above programs the
parameters X and Y stand for homogeneous relations and X is assumed as carrier
set of X and Y as carrier set of Y. The declaration XY = PROD(X,Y) introduces XY
as name for the relational direct product (X × Y , π, ρ) in the sense of [11]. In pr1
the return-clause yields the first projection relation π : X × Y ↔ X by means
of the pre-defined RelView-operation p-1 and in pr2 the second projection
relation ρ : X × Y ↔ X is obtained via the pre-defined RelView-operation
p-2.

The following RelView-program par implements the parallel composition
of relations. It immediately is obtained from the definition R ‖S := [π; R, ρ; S]]
using the above RelView-programs pr1 and pr2. A comparison with the def-
inition of the parallel composition shows that * is the RelView-notation for
composition, ^ that for transposition and [ · , · |] that for right pairing.

par(R,S)
DECL pi, rho
BEG pi = pr1(R*R^,S*S^);

rho = pr2(R*R^,S*S^)
RETURN [pi*R,rho*S|]

END.

Also the following RelView-function vec immediately follows from the defi-
nition vec(R) = [[R, I]; L, where the pre-defined RelView-operation I computes
the identity relation of the same type as its argument, the pre-defined RelView-
operation dom computes the composition of its argument with an universal vector
of appropriate type (i.e., a vector that models the domain of the argument) and
[| · , · ] is the RelView-notation for left pairing.

vec(R) = dom([|R,I(R^*R)]).

We now implement kernel as follows, where the parameter X of the RelView-
program kernel stands for a homogeneous relation and the set X of Convention
4.1 is defined as the carrier set of X.
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kernel(X)
DECL M, MM, beta, stable, absorb
BEG M = epsi(X);

MM = epsi(pr1(X,X));
beta = pr2(X,M^*M);
stable = -([M^,M^|]*MM);
absorb = (beta & vec(-M)*L1n(M)) \ par(I(X),M^)*MM
RETURN (L1n(M)*(stable & absorb))^

END.

By means of the pre-defined RelView-operation epsi and the first two assign-
ments the two membership relations M : X ↔ 2X and M : X2 ↔ [X ↔ X] are
computed and stored in the variables M and MM. The third assignment computes
the second projection relation β : X × 2X ↔ 2X of the direct product X × 2X

and stores it in the variable beta. The right-hand sides of the following two
assignments are the RelView-versions of the relation-algebraic specifications of
stable and absorb of Theorem 4.1. Finally, the expression of the return-clause is
the RelView-version of the relation-algebraic specification of kernel of Theorem
4.1, where & means intersection, - means complementation and the pre-defined
RelView-operation L1n computes a transposed universal vector L : 11 ↔ Y
with the target Y equal to that of the argument.

In the same way the relation-algebraic specifications of progFin and bipartite

of Theorem 4.3 and Theorem 4.4 immediately lead to the following two Rel-
View-programs for their computation. In progFin the variable R corresponds
to the auxiliary relation R of the proof of Theorem 4.3 and in bipartite the
symbol | denotes union of relations.

progFin(X)
DECL pi, rho, M, MM, beta, R
BEG pi = pr1(X,X);

rho = pr2(X,X);
M = epsi(X);
MM = epsi(pi);
beta = pr2(X,M^*M);
R = -((beta^ & L1n(M)^*vec(M)^)*-([pi,rho*M|]^*MM))
RETURN -(L1n(X)*M*R)^

END.

bipartite(X)
DECL M, MM
BEG M = epsi(X);

MM = epsi(pr1(X,X))
RETURN dom(MM \ ([|M,-M] | [|-M,M]))

END.

When RelView computes a relation and displays it in the relation window,
it shows in the window’s frame the number of rows, of columns and of 1-entries.
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Using this feature, we have obtained the numerical data of Sect. 3. The running
times (in seconds) of the computations are given in Table 3. A computation of
the vector model of the set of relations on X means the computation of the uni-
versal vector L : [X ↔ X] ↔ 11. In RelView this is possible via the expression
L1n(epsi(pr1(X,X)))^ and practically needs no time (see last column of the
table). For the computation of the numerical data we have used a PC with 2
CPUs of type Intel R© Xeon R© E5-2698, each with 20 cores and 3.60 GHz base
frequency, 512 GByte RAM and running Arch Linux 5.2.0, and version 8.2 of
RelView. This newest version of the tool is described at the Web-site [14] and
the source code is available from Github via [15] and from Zenodo via [16]. The
virtual machine of [16] was built to ease running RelView not only using Linux
but also Microsoft Windows and Mac OSX.

Table 3. Running times within RelView.

|X| Irr., symm. Progr. fin. Bipartite Richardson With kernel All rel.

1 0.0010 0.0012 0.0009 0.0012 0.0015 0.0006

2 0.0026 0.0032 0.0018 0.0067 0.0057 0.0007

3 0.0069 0.0082 0.0053 0.0117 0.0117 0.0007

4 0.0081 0.0172 0.0194 0.0150 0.0171 0.0008

5 0.0169 0.0262 0.0199 0.1807 0.0213 0.0010

6 0.0181 0.1211 0.0833 10.4710 0.3141 0.0011

7 0.0476 1.8771 2.3501 32220.5500 138.6700 0.0011

The amazing computational power obtained by the use of ROBDDs and
RelView becomes clear if we compare the running times of Table 3 with the
times needed in case of a “classical” brute-force approach. If we assume that
some algorithm could generate every relation on a given finite set X and test
the existence of a kernel in, say, 10−6 seconds, it would take 5.62 · 1014 · 10−6

seconds, i.e., more than 17 years, for this task in the case of |X| = 7.

6 Concluding Remarks

There exist some extensions of Richardson’s theorem which allow the existence
of cycles of odd length but demand certain properties for them to hold. In [1] C.
Berge and P. Duchet prove that a finite directed graph g = (X,R) has a kernel
if every cycle of odd length has all its arcs belonging to pairs of parallel arcs,
meaning for each cycle (c1, c2, . . . , cn, c1) of odd length of g also the reversed list
(c1, cn, . . . , c2, c1) is a cycle of g, that is, all cycles of odd length are symmetric.

Although not explicitly mentioned, this criterion of Berge and Duchet
includes g to be irreflexive. This becomes clear if one studies the proof of Proposi-
tion 1.1 of [1] in detail. Roughly the idea is as follows. Suppose X = {x1, . . . , xn}.
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From g then construct a graph g′ by removing all edges (xi, xj) for which i > j
and also (xj , xi) is an edge of g. Since cycles of length 1 do not occur and all
cycles of odd length are assumed as symmetric, this way each cycle of odd length
is split into non-cyclic paths. Hence, the graph g′ has no cycles of odd length.
Richardson’s theorem implies that it has a kernel K and K is also a kernel of g.

In contrast to the four criteria we have mentioned in Sect. 3, testing the
criterion of Berge and Duchet seems to be rather expensive since it requires
to check all cycles of odd length in view of symmetry. The same holds for all
other extensions of Richardson’s theorem mentioned in [1]. We also have been
concerned with the question whether such weaker criteria are satisfied by much
more graphs/relations with kernels than Richardson’s criterion.

To get at least a feeling for their behaviour, we have applied our approach to
the criterion of Berge and Duchet and computed, again for small sets X, the set
of all irreflexive relations on X such that all cycles of odd length are symmetric.
In case of 1 ≤ |X| ≤ 2 the criterion of Berge and Duchet is equivalent to that
of Richardson and, hence, is satisfied by 1 respectively 4 relations on X. For
|X| = 3 the number of relations on X which satisfy the criterion of Berge and
Duchet is 50; this are 2.04% more than the 49 relations on X which satisfy
Richardson’s criterion. For 4 ≤ |X| ≤ 6 the numbers of relations on X which
satisfy the criterion of Berge and Duchet are 1 778 (or 4.64% more than those
which satisfy Richardson’s criterion), 161 254 (or 6.97% more than those which
satisfy Richardson’s criterion) and 35 280 286 (or 8.89% more than those which
satisfy Richardson’s criterion). Hence, the criterion of Berge and Duchet seems
to be only slightly more general than Richardson’s criterion.

In [1] it is also mentioned that the existence of kernels already follows from
the fact that (besides irreflexivety) every cycle of odd length has at least two arcs
belonging to pairs of parallel arcs. This criterion is ascribed to P. Duchet. We
also have checked it and RelView computed for 1 ≤ |X| ≤ 6 the following num-
bers of relations on X which satisfy it: 1, 4, 56, 2 534, 348 064 and 138 636 886.
Compared with Richardson’s criterion we get for 1 ≤ |X| ≤ 6 that Duchet’s
criterion is satisfied by 0%, 0%, 14.28%, 49.14%, 130.90% respectively 327.91%
more relations on X than Richardson’s criterion. Despite these better percent-
ages it still seems to be very far away from a characterisation of the class of
directed graphs having kernels. E.g., in case |X| = 6 it is satisfied by only 0.9%
of the graphs of this class.

Acknowledgment. We thank the referees for their very helpful comments and sug-
gestions.
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6. Davis, A.C.: A characterization of complete lattices. Pac. J. Math. 5(2), 311–319
(1955)
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Abstract. We introduce �r-multisemigroups as duals of modal quan-
tales and study modal correspondences between equations in these multi-
semigroups and the domain and codomain axioms of modal quantales.
Our results yield new insights on the origin of locality in modal semi-
rings and quantales. They also yield construction principles for modal
powerset quantales that cover a wide range of models and applications.

1 Introduction

This work adds to a series on convolution semirings and quantales built over
relational monoids and multimonoids [3,8,12]. It explains the structure of modal
semirings and quantales [7,11], not generally for convolution algebras [12], but
specifically for modal powerset quantales—the standard setting for computa-
tional models in this context. We consider such quantales as boolean algebras
with operators [19]. The quantalic composition is then a binary modality; the
domain and codomain operations needed for defining modal operators are unary
ones. We ask about the dual relational structure in the sense of Jónsson and
Tarski [19] and its equational properties corresponding to the modal quantale
axioms for domain and codomain [7,11] in the sense of modal correspondence
theory. For plain quantales, this is well known: the dual monoidal structure
is a ternary relation equipped with a relational monoid structure and many
units [3,8]—a monoid in the category Rel with the standard tensor. Yet which
relational structure corresponds to domain and codomain?

The standard models of modal semirings and quantales give us a hint: modal
quantales of binary relations, for instance, are powerset liftings of pair groupoids;
modal quantales of paths lift from path categories. We might therefore try to
lift (object-free) categories [23, Chap. XII.5] to modal quantales so that their
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source and target maps match the domain and codomain operations of modal
quantales. Categories, however, are partial monoids, whereas relational monoids
are isomorphic to multimonoids, whose composition maps pairs of elements to
sets, like the shuffle of words. Other examples, such as the lifting of partial
abelian monoids of heaplets to assertion quantales of separation logic, do not
fall into this lifting scheme with categories either. A generalisation is desirable.

We introduce �r-multisemigroups as relational structures in disguise and
the appropriate dual structures to modal powerset quantales. Categories then
arise as partial �r-semigroups (where the image of the multioperation is suitably
restricted) that satisfy a locality property capturing the categorical composition
pattern: two arrows are composable precisely if the target of the first equals the
source of the second. Thus, �r-multisemigroups generalise object-free categories
and related structures such as function systems [28], ordered semigroupoids [21]
and modal semigroups [5] from (partial) operations to multioperations.

Our second main contribution lies in modal correspondences between identi-
ties in families of modal quantales with axioms of varying strength and those of
families of �r-multisemigroups. The most intriguing one holds between the well
studied locality axioms for domain and codomain in modal semirings and quan-
tales and similar identities in �r-multisemigroups, which in turn are equivalent
to the composition pattern for categories mentioned. This explains the origin of
locality of domain and codomain in modal semirings and quantales in terms of
this fundamental pattern. It also makes local �r-multisemigroups the algebras of
choice for constructing modal quantales axiom by axiom.

Our results thus provide a generic construction recipe for modal quantales
from simpler structures: every �r-multisemigroup gives us a modal powerset
quantale for free—and even modal convolution quantales capturing weighted
variants of the models presented in this text. This generalisation is briefly out-
lined at the end of this article, see [12] for details.

All results about �r-multisemigroups and the lifting to modal power-
set quantales have been formalised with Isabelle/HOL1. The proofs for �r-
multisemigroups are straightforward equational calculations that do not need
to be shown on paper. The proof of the powerset lifting has been added because
it yields an intuition for the more complex construction of modal convolution
quantales. Additional proofs, definitions and explanations can be found in [12],
including a glossary of the algebraic structures featured in this text.

2 �r-Multisemigroups and Object-Free Categories

As mentioned in the introduction, the dual of the binary composition of a quan-
tale is a ternary relation. For powerset quantales it is defined on their atom
structure of singleton sets. But instead of a ternary relation R ⊆ X × X × X on
a set X, say, we work with the isomorpic multioperation � : X × X → PX and
the resulting multisemigroups. See [22] for an overview. Henceforth we are using

1 https://github.com/gstruth/lr-multisemigroups.

https://github.com/gstruth/lr-multisemigroups
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“set” naively, so that we can speak, for instance, about the set of all posets and
include large categories as examples.

We extend the multioperation � to PX × PX → PX by

A � B =
⋃

{x � y | x ∈ A and y ∈ B} for all A,B ⊆ X.

We write x�B instead of {x}�B, A�x instead of A�{x}, f(A) for the image
of A under f and drop � when convenient. Finally, � is a partial operation if
|x � y| ≤ 1 and a (total) operation if |x � y| = 1, for all x, y ∈ X.

A multimagma (X,�) is a set X with a multioperation � on X. A multi-
semigroup X is an associative multimagma, it satisfies x � (y � z) = (x � y) � z
for all x, y, z ∈ X. Partial semigroups and semigroups are defined by restricting
the image of � as just explained.

Object-free categories are obtained either by defining source and target maps
on partial semigroups or by equipping partial semigroups with many units [23].
We explore both ways more generally for multisemigroups.

An �r-multimagma is a multimagma X with operations �, r : X → X that
satisfy, for all x, y ∈ X,

x � y �= ∅ ⇒ r(x) = �(y), �(x) � x = {x}, x � r(x) = {x}.

An �r-multisemigroup is an associative �r-multimagma. We call � the source
operation and r the target operation of X. The letters indicate “left” and “right”.

Alternatively, a multimagma X is unital if there exists a set E ⊆ X such
that E � x = {x} = x � E for all x ∈ X. A multimonoid is then a unital
multisemigroup. See [12] for a more detailed discussion.

We briefly summarise the relationship between the two structures. First, in
unital multimagmas, every e ∈ E satisfies e � e = {e} and, if e, e′ ∈ E, then
e � e′ �= ∅ ⇔ e = e′. Units are thus “orthogonal” idempotents. In multimonoids,
every element has therefore precisely one left and one right unit, and this allows
defining source and target maps. Second, the set �(X) of all source elements
in any �r-multisemigroup X equals the set r(X) of all target elements and the
elements of those sets satisfy the unit axioms for multimonoids (see also Sect. 4).
Third, �r-multisemigroups and multimonoids form categories with morphisms
satisfying f(x�1 y) ⊆ f(x)�2 f(y) for multisemigroups (Xi,�i) with i ∈ {1, 2}.
For �r-multisemigroups, morphisms need to preserve � and r as well; for multi-
monoids they need to preserve units. It is then easy to see that the categories of
�r-multisemigroups and multimonoids are isomorphic [12].

Partial �r-semigroups are not yet (object-free) categories—see Examples 7
and 8 below. We need to impose the typical composition pattern of categories:
two morphisms can be composed if the target of the first equals the source of
the second. So we call an �r-multimagma �r-local if

r(x) = �(y) ⇒ x � y �= ∅ for all x, y ∈ X.

We relate this property with notions of locality known from modal semigroups
and semirings in Sect. 4. Example 6 below shows a local �r-multisemigroup with
a proper multioperation that does not form an object-free category.



�r-Multisemigroups, Modal Quantales and the Origin of Locality 93

An �r-multisemigroup X is �r-local if and only if

u ∈ x � y ∧ y � z �= ∅ ⇒ u � z �= ∅ for all u, x, y, z ∈ X.

This implication is expressible in any multimagma. The connection to the two
equivalent formalisations of (object-free) categories in Mac Lane’s book [23] is
thus as follows.

Proposition 1 ([4]). The categories of object-free categories [23, Chap. I.1] and
those of local partial monoids are isomorphic.

Proposition 2. The categories of object-free categories [23, Chap. XII.5] and
those of �r-local partial �r-semigroups are isomorphic.

The morphisms used are those outlined above. Hence local partial �r-semigroups
are categories (when these structures are defined over classes).

3 Examples of �r-Multisemigroups

We start with concrete instances of categories.

Example 3 (Monoids). Monoids are one-object categories. The monoid 1 a→
1, for instance, corresponds to a partial monoid X = {1, a} with composition
defined by 11 = {1} and 1a = a1 = aa = {a}. Obviously, �(a) = 1 = r(a) and
locality follows from totality of composition. �

Multimonoids must have precisely one unit if the multioperation is total (in
the sense that images of compositions cannot be empty).

Example 4 (Pair Groupoids). The pair groupoid (X × X,�, IdX) on set X (or
the universal relation on X) is a local partial �r-semigroup with

(w, x) � (y, z) =

{
{(w, z)} if x = y,

∅ otherwise,

identity relation IdX on X, �((x, y)) = (x, x) and r((x, y)) = (y, y). �
Pair groupoids lift to quantales of binary relations.

Example 5 (Matrix Theories). Elgot’s matricial theories [9] consist of sets MS =⋃
n,m≥0 Sn×m of matrices over a semiring S with matrix multiplication as partial

composition. These form a category with natural numbers as objects and n×m-
matrices as morphisms. Defining � and r to map any M ∈ Sn×m to the identity
matrices �(M) = In and r(M) = Im of the appropriate dimensions, MS forms a
local partial �r-semigroup. Matrix theories become categories of finite relations
if S is the semiring of booleans. �

The next example presents a local proper �r-multisemigroup.
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Example 6 (Shuffle Algebras). The shuffle multimonoid (Σ∗, ‖, {ε}) over the free
monoid Σ∗ has the empty word ε as its unit, and the proper multioperation
‖ : Σ∗ × Σ∗ → PΣ∗ models the standard interleaving of words that respects
the orders of their letters. The shuffle multimonoid is local because ‖ is total
(defined everywhere) and �(w) = ε = r(w). �

Finally, here are two non-local partial semigroups.

Example 7 (Broken Monoid). The monoid in Example 3 becomes a non-local
partial �r-semigroup when composition is broken by imposing aa = ∅. �
Example 8 (Heaplets). The partial abelian monoid of heaplets (H,�, ε) from
separation logic is formed by the set of partial functions X ⇀ Y . Its partial
operation f � g equals f ∪ g if dom(f) ∩ dom(g) is empty and ∅ otherwise. The
unit is the empty partial function ε with empty domain. Locality fails because
�(f) = ε = r(g) always holds while f � g = ∅ if domains of f and g overlap. �

4 �r-Multisemigroups in Context

We have already seen that local partial �r-semigroups are categories. Here we
relate them with Schweizer and Sklar’s function systems [28] and modal semi-
groups [5]. The following property gives us half of our results for free.

Duality (by opposition) for �r-multimagmas arises by interchanging � and
r as well as the arguments of �. The classes of �r-multimagmas and �r-
multisemigroups are closed under this transformation. Locality and partiality
are self-dual. Hence the dual of any property that holds in any of these classes
holds as well.

Lemma 9. In any �r-multimagma, the following laws hold:

1. � ◦ r = r, r ◦ � = � (compatibility),
2. � ◦ � = �, r ◦ r = r (retraction),
3. �(x)�(x) = {�(x)} (idempotency),
4. r(x)�(y) = �(y)r(x) (commutativity),
5. �(�(x)y) = �(x)�(y) and r(xr(y)) = r(x)r(y) (export),
6. �(xy)x ⊆ x�(y) and xr(yx) ⊆ r(y)x (weak twisted).

All proofs have been checked with Isabelle. All laws in Lemma 9 correspond
to axioms for Schweizer and Sklar’s function systems [28] (see [12] for a detailed
comparison), yet generalised to multioperations.

The compatibility laws imply that �(x) = x ⇔ r(x) = x and further that

X� = {x | �(x) = x} = {x | r(x) = x} = Xr.

Moreover, by the retraction laws, X� = �(X) and Xr = r(X).
Lemma 9 also implies that �(x)�(y) = �(y)�(x), r(x)r(y) = r(y)r(x) and

r(x)r(x) = {r(x)}. Further, the orthogonality law �(x)�(y) �= ∅ ⇔ �(x) = �(y)
and its dual hold. As �r-Multimagmas are unital, we may write E for X� or Xr.



�r-Multisemigroups, Modal Quantales and the Origin of Locality 95

Lemma 10. In any �r-multisemigroup, the following laws hold:

1. �(xy) ⊆ �(x�(y)) and r(xy) ⊆ r(r(x)y) (weak locality),
2. xy �= ∅ ⇒ �(xy) = �(x�(y)) and xy �= ∅ ⇒ r(xy) = r(r(x)y) (cond. locality),
3. �(xy) ⊆ {�(x)} and r(xy) ⊆ {r(y)},
4. xy �= ∅ ⇒ �(xy) = {�(x)} and xy �= ∅ ⇒ r(xy) = {r(y)},
5. xy �= ∅ ⇒ �(xy)x = x�(y) and xy �= ∅ ⇒ yr(xy) = r(x)y (cond. twisted).

Proofs have again been checked with Isabelle. The locality and twisted laws
generalise the remaining axioms of function systems. Function systems without
the twisted laws correspond to modal semigroups [5] and therefore semigroups
of binary relations. The twisted laws are specific to semigroups of functions. �r-
Multisemigroups thus generalise function systems and modal semigroups beyond
totality. See [5] for a discussion of related structures studied in semigroups theory
and applications.

5 �r-Locality in Context

Next we return to locality, the specific difference between object-free categories
and partial �r-semigroups according to Sect. 2.

Lemma 11. In any local �r-multisemigroup, the following laws hold:

1. �(xy) = �(x�(y)) and r(xy) = r(r(x)y) (equational locality),
2. �(xy)x = x�(y) and yr(xy) = r(x)y (twisted).

Once again, all proofs have been done with Isabelle. In fact, �r-locality, the
composition pattern of categories, is an equational property. We henceforth refer
to equational locality simply as locality.

Proposition 12. An �r-multisemigroup is �r-local if and only if

�(x�(y)) ⊆ �(xy) and r(r(x)y) ⊆ r(xy).

Proof. Isabelle confirms that the equational locality laws imply �r-locality in
any �r-multimagma. Equality in �r-multisemigroups follows from Lemma 11. �

Locality and weak locality are known from (pre)domain and (pre)codomain
operations for modal semirings [6]. Predomain and precodomain operations are
weakly local, domain and codomain are local. Relative to �r-multisemigroups,
these laws are at powerset level. Modal semirings are meant to model semirings
of binary relations. These in turn are based on pair groupoids, as we shall see.
Equational locality and the equivalent variant

xy �= ∅ ⇔ r(x) = �(y)

of �r-locality thus describe the origin of locality in categories and more generally
�r-multisemigroups. The precise relationship to modal semirings and quantales
is explained in the following sections.

Our final lemma on �r-multisemigroups yields a more fine-grained view on
definedness conditions and �r-locality.
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Lemma 13

1. In any �r-multimagma,

r(x) = �(y) ⇔ r(x)�(y) �= ∅ and r(x)�(y) = ∅ ⇒ xy = ∅.

2. In any local �r-multisemigroup, xy = ∅ ⇔ r(x)�(y) = ∅.
A property analogous to Lemma13(2) is well known from modal semirings [6].
An analogue to �r-locality fails already in the one-element modal semiring.

6 Modal Quantales

We have already extended � : X × X → PX to PX × PX → PX and the
functions �, r : X → X to PX → PX by taking images. We wish to explore the
algebraic structure of such powerset liftings over �r-multimagmas and related
structures. Powerset liftings of relational monoids, and therefore those of �r-
multisemigroups, yield unital quantales [8,26]. But the precise lifting of source
and target operations remains to be explored. This requires some preparation.

A quantale [25] (Q,≤, ·, 1) is a complete lattice (Q,≤) with a monoidal com-
position · with unit 1 that preserves all sups in both arguments. A quantale is
boolean if its lattice reduct is a complete boolean algebra—a complete lattice
and a boolean algebra. Some applications require weaker notions. A prequantale
is a quantale where the associativity law is absent [25].

We write
∨

for the sup and
∧

for the inf operator, and ∨, ∧ for their binary
variants. We also write ⊥ =

∧
Q =

∨ ∅ for the least and � =
∨

Q =
∧ ∅

for the greatest element of Q, and − for boolean complementation (both unary
and binary) if Q is boolean. We write Q1 = {α ∈ Q | α ≤ 1} for the set of
subidentities of Q. In a boolean quantale, Q1 is a complete boolean subalgebra
with complementation λx. 1 − x and composition coinciding with meet [11].

We lift the source and target operations of �r-multisemigroups to domain
and codomain operations at powerset level. Modal quantales of relations, which
are formally lifted from pair groupoids below, provide some intuition:

dom(R) = {(a, a) | ∃b. (a, b) ∈ R}, cod(R) = {(b, b) | ∃a. (a, b) ∈ R}

and hence dom(R) = �(R) and cod(R) = r(R).
More generally, a domain quantale [11] is a quantale (Q,≤, ·, 1) equipped

with a domain operation dom : Q → Q that satisfies, for all α, β ∈ Q,

α ≤ dom(α) · α, dom (α · dom(β)) = dom(α · β), dom(α) ≤ 1,
dom(⊥) = ⊥, dom(α ∨ β) = dom(α) ∨ dom(β).

We call these equations the absorption, locality, subidentity, strictness and
(binary) sup-preservation axiom, respectively. Absorption can be strengthened
to dom(α)α = α. These domain axioms are precisely those of domain semi-
rings [7]. Domain quantales are thus quantales that are also domain semirings.
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Properties of domain semirings therefore translate [11,12]. Interestingly, domain
axioms for

∨
are not needed in domain quantales [11] because dom preserves

arbitrary sups. The interaction of dom with
∧

is weaker and not our concern.
Much of the structure of the domain algebra induced by dom is inherited from

domain semirings as well. In particular, Qdom = {x | dom(x) = x} = dom(Q),
and it follows that the domain algebra (Qdom,≤, ·, 1) is a subquantale of Q that
forms a bounded distributive lattice with · as binary inf [7]. The elements of
Qdom are called domain elements of Q. Yet, by contrast to modal semirings, the
lattice Qdom is complete [11], and if Q is boolean, then Qdom = Q1 is a complete
boolean algebra. For powerset quantales, this complete boolean algebra is atomic.

Quantales are closed under opposition: interchanging the order of composi-
tion in Q yields the quantale Qop; properties translate under this duality. The
dual of dom on a domain quantale is of course a codomain operation cod.

A codomain quantale (Q, cod) is thus simply a domain quantale (Qop, dom).
It satisfies the dual domain axioms. A modal quantale is a domain and codomain
quantale (Q,≤, ·, 1, dom, cod) that satisfies the compatibility axioms

dom ◦ cod = cod and cod ◦ dom = dom.

These force Qdom = Qcod.
Some �r-structures of interest fail to yield associativity or locality laws when

lifted. This requires more general notions.

– A modal prequantale is a prequantale in which the locality axioms for dom and
cod are replaced by the export axiom dom(dom(α)β) = dom(α)dom(β) and
its dual for cod. Then Qdom = dom(Q) = cod(Q) = Qcod is still a complete
distributive lattice, but locality laws for dom and cod are not even derivable
as inequalities.

– A weakly local modal quantale is a modal quantale that satisfies the previous
axioms for dom and cod. The weak locality law dom(αβ) ≤ dom(αdom(β))
and its dual for cod are now derivable, but not the equational laws.

7 Constructing Modal Powerset Quantales

We now construct modal powerset quantales from �r-multisemigroups in the
spirit of modal correspondence theory for boolean algebras with operators. First
we recall the quantalic part.

Proposition 14. Let (X,�, �, r) be an �r-multisemigroup. Then (PX,⊆,�, E)
forms a boolean quantale whose underlying lattice is boolean atomic.

Proof. If (X,�, �, r) is an �r-multisemigroup, then it is isomorphic to a multi-
monoid and further to a relational monoid, and its powerset algebra forms a
quantale [8,26]. The complete lattice on PX is trivially boolean atomic. �
Similarly, �r-multimagmas lift to prequantales.
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Example 15 (Powerset Quantales over �r-Semigroups). The powerset lifting of
any category yields a powerset quantale. It is boolean and has the arrows of the
category as atoms. The pair groupoid on set X lifts to the quantale of binary
relations over X. Its elements are possibly infinite-dimensional boolean-valued
square matrices in which the quantalic composition is matrix multiplication. �
The fact that groupoids can be lifted to algebras of binary relations with an
additional operation of converse was known to Jónsson and Tarski [20].

Proposition 14 combines source and target elements into the unit E of the
powerset quantale. The lifting to modal quantales is more refined. In the follow-
ing theorems, we identify dom(A) with �(A) and cod(A) with r(A) for A ⊆ X.
We develop our main theorem step-by-step from �r-multimagmas.

Lemma 16. Let X be an �r-multimagma. For A,B ⊆ X and A ⊆ PX,

1. �(r(A)) = r(A) and r(�(A)) = �(A) (compatibility),
2. �(A) · A = A and A · r(A) = A (absorption),
3. � (

⋃ A) =
⋃

A∈A �(A) and r (
⋃ A) =

⋃
A∈A r(A) (sup-preservation),

4. f(A)g(B) = g(B)f(A) hold for f, g ∈ {�, r} (commutativity),
5. �(A) ⊆ X� and r(A) ⊆ Xr (subidentity),
6. �(�(A) · B) = �(A)�(B) and r(A · r(B)) = r(A)r(B) (export).

Proof. We show proofs up-to duality.

1. �(r(A)) = {�(r(x)) | x ∈ A} = {r(x) | x ∈ A} = r(A).
2.

�(A)A =
⋃

{�(x)y | x, y ∈ A and �(x)y �= ∅}
=

⋃
{�(x)y | x, y ∈ A, �(x)y �= ∅ and r(�(x)) = �(y)}

=
⋃

{�(x)y | x, y ∈ A, �(x)y �= ∅ and �(x) = �(y)}
=

⋃
{�(y)y | y ∈ A}

=
⋃

{{y} | y ∈ A} = A.

3. � (
⋃ A) = {�(x) | x ∈ ⋃ A} =

⋃{�(A) | A ∈ A}.
4. We only prove the identity for �(A)r(B). The others then follow from (1).

�(A)r(B) =
⋃

{�(x)r(y) | x ∈ A and y ∈ B}
=

⋃
{r(y)�(x) | x ∈ A and y ∈ B}

= r(B)�(A).

5. �(A) = {�(x) | x ∈ A} ⊆ {�(x) | x ∈ X} = {x | �(x) = x} = E.



�r-Multisemigroups, Modal Quantales and the Origin of Locality 99

6.
�(�(A)B) =

⋃
{�(�(x)y) | x ∈ A, y ∈ B and �(x)y �= ∅}

=
⋃

{�(x)�(y) | x ∈ A, y ∈ B, �(x)y �= ∅ and r(�(x)) = �(y)}
=

⋃
{�(x)�(y) | x ∈ A, y ∈ B, �(x)y �= ∅ and �(x) = �(y)}

=
⋃

{�(x)�(y) | x ∈ A, y ∈ B and �(y)y �= ∅}
=

⋃
{�(x)�(y) | x ∈ A and y ∈ B}

= �(A)�(B). �
The proof has also been checked with Isabelle. And now for locality.

Lemma 17. Let X be an �r-multisemigroup and A,B ⊆ X. Then

�(AB) ⊆ �(A�(B)) and r(AB) ⊆ r(r(A)B).

The converse inclusions of these weak locality laws hold if X is local.

Proof. The inclusions hold in any quantale that satisfies the laws of Lemma16.
For the opposite direction, suppose that X is a local �r-multisemigroup. Then,
writing r(x) = �(y) in place of x � y �= ∅ owing to locality,

�(A�(B)) =
⋃

{�(x�(y)) | x ∈ A, y ∈ B and r(x) = �(�(y))}
=

⋃
{�(xy) | x ∈ A, y ∈ B and r(x) = �(y)} = �(AB)

and the opposite result for r is obvious. �
The proofs have again been checked with Isabelle. We can now summarise.

Theorem 18. Let X be an �r-multimagma.

1. Then (PX,⊆,�, E, dom, cod) is a boolean modal prequantale, and the com-
plete boolean algebra is atomic.

2. It is a weakly local modal quantale if X is an �r-multisemigroup.
3. It is a modal quantale if X is a local �r-multisemigroup.

This result highlights the role of weak locality and locality in the three
stages of lifting. Its construction follows one direction of Jónsson-Tarski dual-
ity between relational structures and boolean algebras with operators [13,19],
which it refines. Like in modal logic, it leads to correspondences between iden-
tities in relational structures and boolean algebras with operators. Those lifted
in Lemma 16 and 17 are one direction of these. Their converses are explored in
Sect. 8.

Example 19. (Modal Powerset Quantales over �r-Semigroups)
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1. Any category as a local partial �r-semigroup can be lifted to a modal powerset
quantale. The domain algebra is the entire boolean subalgebra of subidentities
of the quantale, the set of all objects of the category (or its identity arrows).
A modal quantale can thus be obtained from any category.

2. An instance is the modal powerset quantale of binary relations over X lifted
from the pair groupoid on X. Domain and codomain elements are precisely
the subidentity relations below IdX . In the associated matrix algebras, these
correspond to (boolean-valued) sub-diagonal matrices (which may have zeros
along the diagonal) and further to predicates.

3. Recall that the partial �r-semigroup of the broken monoid is only weakly local.
The powerset quantale is only weakly local, too. To check this, we simply
replay the non-locality proof for the partial �r-semigroup with A = {a}:
dom(AA) = dom(∅) = ∅ ⊂ {1} = dom(A{1}) = dom(Adom(A)). Locality of
codomain is ruled out by duality. �
Most models of domain and modal semirings considered in the literature

are powerset structures lifted from categories. Theorem18 yields a uniform con-
struction recipe for all of them. The final example of this section shows that the
twisted laws for function systems do not lift to powersets.

Example 20. The category 1 a→ 2 is a partial local �r-semigroup with X =
{1, a, 2}, � and r defined by �(1) = r(1) = 1 = �(a) and �(2) = r(2) = 2 = r(a)
and composition 11 = 1, 1a = a = a2 and 22 = 2. Then, for A = {1, a} and
B = {2}, A · dom(B) = A · B = {a} ⊂ A = {1} · A = dom(A · B) · A refutes the
twisted law in PX. The opposite law for cod is refuted by a dual example. �

8 Recovering �r-Multisemigroups

We know from Jónsson-Tarski duality that one can find an �r-multisemigroup
within each modal powerset quantale, using its atom structure. Here we prove
correspondence results in this direction. These strengthen the relationship
between locality in modal quantales and �r-multisemigroups further. Parts of
these results are special cases of more general theorems for convolution alge-
bras [3,12].

Proposition 21

1. If PX is a prequantale in which ∅ �= E, then X is an �r-multimagma.
2. If PX is a quantale in which ∅ �= E, then X is an �r-multisemigroup.

Proof. The results are known for unital relational magmas and relational
monoids [3, Proposition 4.1 and Corollary 4.7]. They thus hold for �r-
multimagmas and multisemigroups via the isomorphisms. �

The �r-semigroup X is thus completely determined by the subidentites below
E in PX. We calculate the absorption law for � explicitly as an example:

�(x) � x = {�(x)} � {x} = dom({x}) � {x} = {x},
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where the second step uses domain absorption in modal quantales. The fact
that dom appears in the calculation does not go beyond Proposition 21 because
dom({x}) = {�(x)} ⊆ E in PX.

The next statement adds locality to the picture.

Theorem 22. If PX is a modal quantale in which ∅ �= E, then X is a local
�r-multisemigroup.

Proof. Relative to Proposition 21 it remains to consider locality:

�(x � �(y)) = dom({x}) � dom({y}) = dom({x} � {y}) = �(x � y).

Locality of r follows by duality. �
In light of Jónsson-Tarski duality, these results extend to atomic boolean

quantales. With the lifting results from Sect. 7 they yield in particular a cor-
respondence between locality in �r-multisemigroups and modal powerset quan-
tales. To construct such a quantale one should therefore look for the underlying
�r-multisemigroup, and often, more specifically, the underlying category.

9 Further Examples

We apply our construction to further examples of �r-multisemigroups and modal
convolution quantales. We start with those based on categories.

Path Quantales. A quiver (or digraph) K is formed by a set VK of vertices,
a set EK of edges and source/target maps s, t : EK → VK . The path category
of K has vertices as objects and sequences π = (v1, e1, v2, . . . , vn−1, en−1, vn) :
v1 → vn as arrows in which vertices and edges alternate. Composition π1 · π2

of π1 : v3 → v4 and π2 : v1 → v2 is defined if v2 = v3. It concatenates the
two paths while gluing the common end v2 = v3. Sequences (v) of length 0 are
identities. Path categories are local partial �r-semigroups, with �(π) = (v1) and
r(π) = (vn) for π as above. Theorem 18 shows that the powerset algebra over
the path category of any quiver is a modal quantale—a modal quantale of path
languages.

The path category generated by the one-point quiver with n arrows repre-
sents the free monoid with n generators. The �r-structure and hence the modal
structure is then trivial. Lifting along Theorem18 yields the quantale of formal
languages. Path categories are relevant to computing: they capture execution
sequences of programs, automata or transition systems.

Interval Quantales. Pair groupoids over X become poset categories in which
pairs represent (closed) segments or intervals when the universal relations used
for pair groupoids are generalised to partially or totally ordered relations. Seg-
ments or intervals can be composed like the elements of the pair groupoid; the
units are the singleton intervals. Modal powerset quantales over such categories
yield algebraic semantics for interval logics [17] and interval temporal logics [24]
via the isomorphism between sets and predicates [8]. The modalities lifted from
source and target maps express properties of endpoints of segments and intervals.
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Pomset Quantales. Finite posets form partial �r-multisemigroups with respect
to serial composition, which is the disjoint union of posets with all elements of
the first poset preceding that of the second one in the order of the composition.
The only unit is the empty poset, the algebra is therefore non-local and the
modal structure of the powerset quantale trivial.

Partial words [14] or pomsets are isomorphism classes of finite node-labelled
posets. The serial composition becomes total on pomsets, which yields a monoid
and establishes locality. Pomsets and pomset languages, obtained by powerset
lifting, form a standard model of concurrency.

Pomsets can be equipped with interfaces [29]. The source interface of a pom-
set consists of its minimal elements (with their labels); its target interface of its
maximal elements (again with their labels). Pomsets with interfaces form partial
�r-semigroups with � and r mapping pomsets to their source and target inter-
faces, and composition defined by gluing pomsets on their interfaces whenever
they match and extending the order as in serial composition. The partial �r-
semigroups are local and therefore categories. The modal structure at powerset
level is no longer trivial.

Path Quantales in Topology. A path in a topological space X is a continuous
map f : [0, 1] → X. The source of path f is �(f) = f(0), its target r(f) = f(1).
Paths f and g in X can be composed whenever r(f) = �(g), and then

(f · g)(x) =

{
f(2x) if 0 ≤ x ≤ 1

2 ,

g(2x − 1) if 1
2 ≤ x ≤ 1.

The parameterisation destroys associativity; (X [0,1], ·, �, r) is therefore only a
local partial �r-magma. The powerset lifting to P(X [0,1]) satisfies the properties
of Lemma 16, but even weak locality fails due to the absence of associativity in
X [0,1] and, accordingly, P(X [0,1]). This leads to modal prequantales.

Yet path composition is associative up-to homotopy. The associated local
partial �r-semigroup then lifts to a modal quantale like any other category. Alter-
natively, categories of paths can be defined on intervals of arbitrary length [1].

Higher Path Algebras. A 2-polygraph is a quiver Σ = (s0, t0 : Σ1 → Σ0),
whose edges (or 1-cells) are equipped with a cellular extension. This consists of
a quiver (s1, t1 : Γ → Σ∗), where Σ∗ is the free category generated by Σ and
Γ is a set of globular 2-cells relating parallel 1-cells. A 2-polygraph generates a
2-category pictured in the following diagram:

Σ0 Σ∗
1 Γ ∗

Σ1 Γ

s0

t0

s1

t1

s0

t0

s1

t1

Here, si, ti are the source and target maps induced by the free category
construction, and the globular equations s0t1 = s0s1 and t0t1 = t0s1 hold,
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see [16] for details. In the example of abstract rewriting systems, Σ0 is a carrier
set, Σ1 a set of generating rewrite rules, Γ a set of relations between these rules.

For i ∈ {0, 1}, the set Γ ∗ of freely generated 2-cells forms a local partial
�r-semigroup (Γ ∗,�i, �i, ri), where �i is forward i-composition of 2-cells and
�i = si, ri = ti. By Theorem 18, (PΓ ∗,⊆,�i, Ei, domi, codi) is a modal quantale
with E0 = {11x | x ∈ Σ0} and E1 = {1u | u ∈ Σ1}. Beyond Theorem 18, we get a
globular 2-quantale [2] when combining the two structures. For all A,A′, B,B′ ∈
PΓ ∗, a lax interchange law (A �1 B) �0 (A′ �1 B′) ⊆ (A �0 A′) �1 (B �0 B′)
holds, and also E1 �0 E1 = E1. The absorption laws dom1 ◦ dom0 = dom0 and
cod1◦cod0 = cod0 hold as well. Finally, we recover the globularity conditions that
dom0 ◦ cod1 = dom0, that cod0 ◦ dom1 = cod0 and that dom1 as well as cod1 are
morphisms for �0. This construction generalises to n-polygraphs and globular
n-quantales [2]. Applications include higher dimensional algebraic rewriting [16].

Δ-sets. A presimplicial set [27] K is a sequence of sets (Kn)n≥0, called simplices,
equipped with face maps di,n : Kn → Kn−1, i ∈ {0, . . . , n}, satisfying the
simplicial identities di,n−1 ◦ dj,n = dj−1,n−1 ◦ di,n for all i < j ≤ n (we omit the
extra indices n from now). The set K =

⊔
n≥0 Kn forms an �r-multisemigroup

(K,�, �, r) with

x ∈ y � z ⇔ ∃i. y = si(x) ∧ z = tn−i(x)

and �(x) = s0(x), r(x) = t0(x), where si(x) = (di+1 ◦ di+2 ◦ · · · ◦ dn)(x) and
ti(x) = (d0 ◦ d1 ◦ · · · ◦ dn−i−1)(x) stand for the initial and the final i–face of
x ∈ Kn, respectively. In general, (K,�, �, r) is neither local nor partial. Locality
and partiality hold if K is the nerve of a category (we omit degeneracies).

Also, the set of triples (si(x), x, tj(x)) (x ∈ Kn, 0 ≤ i, j ≤ n), called simplices
with interfaces, forms an �r-multisemigroup Int(K) with

(sp(x), x, tq(x)) ∈ (si(y), y, tj(y)) � (sk(z), z, tl(z))
⇔ sp(x) = si(y) ∧ tj(y) = sk(z) ∧ tq(x) = tl(z) ∧ y = su(x) ∧ z = tn−u+j(x),

for x ∈ Kn, y ∈ Ku, z ∈ Kn−u+j . There is an obvious embedding K � x �→
(s0(x), x, t0(x)) ∈ Int(K) of �r-multisemigroups. Hence Int(K) is again neither
partial nor local in general.

Precubical Sets. A precubical set X [15] is a sequence of sets (Xn)n≥0 equipped
with face maps dε

i : Xn → Xn−1, 1 ≤ i ≤ n, ε ∈ {0, 1}, satisfying the identities
dε

i ◦ dη
j = dη

j−1 ◦ dε
i for i < j and ε, η ∈ {0, 1}. Denote dε

A = dε
a1

◦ · · · ◦ dε
ak

for A = {a1 < · · · < ak} ⊆ [n] and ε ∈ {0, 1}. The precubical set X forms an
�r-semigroup (X,�, �, r) with

x ∈ y � z ⇔ ∃A ⊆ [n]. y = d0A(x) ∧ z = d1[n]\A(x),

�(x) = d0[n](x) ∈ X0, r(x) = d1[n](x) ∈ X0 for all x ∈ Xn. Like the previous
example, the �r-multisemigroup X is neither partial nor local.
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A special case of this example is the shuffle multimonoid (Example 6). Let Σ
be a finite alphabet, Xn the set of all words of length n, and dε

i : Xn → Xn−1

the map that removes the i–th letter. Then X = (Xn, dε
i ) is a precubical set and

the associated �r-multisemigroup (X,�, �, r) is the shuffle multimonoid on Σ.
The domain/codomain structure of the quantale of shuffle languages is trivial,
as there is no element between ∅ and the set containing the empty word.

Assertions Quantales of Separation Logic. The non-local partial �r-
semigroups of heaplets lift to weakly local modal powerset quantales, but once
again with trivial domain/codomain structure. The set {ε} containing the empty
heaplet is the only unit. These form the assertion quantales of separation logic.
The modal structure is again trivial as there is no element between ∅ and {ε}.

10 Discussion

We summarise some additional results and generalisations in this section. See
[12] for details.

Extension to Convolution Algebras. The powerset lifting in Sect. 7 can
be seen as a lifting to function spaces X → 2 and generalised to X → Q for
an arbitrary (modal) quantale Q. The composition � : 2X × 2X → 2X then
generalises to a convolution ∗ : QX → QX → QX with

∨
and · taken in Q:

(f ∗ g)(x) =
∨

x∈y�z

f(y) · g(z).

Theorem 18 also generalises: if X is a local �r-multisemigroup and Q a modal
quantale, then QX is a modal quantale with

Dom(f) =
∨

x∈X

dom(f(x)) · δ�(x),

where δx(y) is 1 if x = y and ⊥ otherwise, and Cod given by duality. The
monoidal identity in QX, idE(x) is 1 if x ∈ E and ⊥ otherwise. Beyond lifting,
there is now a triangle of correspondences between identities in X, Q and QX.
The results in this text thus generalise to modal quantales of weighted languages
or weighted relations, and towards group, incidence or category algebras.

Finite Decomposability. Some �r-multisemigroups in our examples are
finitely decomposable: for every x the fiber �−1(x) = {(y, z) | x ∈ y � z} is
finite. Examples are shuffle quantales, where each word can only be decomposed
into finitely many pairs of words, or quantales of n × m-matrices, where multi-
plications sum over finitely many indices. The sups in convolutions can then be
replaced by sums and quantales by semirings. In modal settings, one can then use
modal semirings [7] and, if X is a finitely decomposable local �r-multisemigroup
and S a modal semiring, then SX forms again a modal semiring.
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Modal Concurrent Quantales. Concurrent semirings and quantales [18] can
be constructed as convolution algebras from concurrent relational semigroups [3],
hence from concurrent local �r-multisemigroups equipped with two multiopera-
tions that satisfy a weak interchange law. In combination with the corresponding
results for modal structures we can construct modal concurrent semirings and
quantales as convolution algebras. Target models are categories of pomsets with
interfaces, with applications in concurrency theory [10,29], and n-polygraphs [2].

Algebras of Modalities. The domain and codomain operations in convolution
algebras support definitions of modal box and diamond operators along the lines
of modal semirings [7] as |f〉π = Dom(f ∗ π), where f ∈ QX and π ∈ (QX)Dom,
and dually 〈f |π = Cod(π ∗ f). In modal quantales, diamonds preserve arbitrary
sups and box operators exist as right adjoints, even if (QX)Dom is not a boolean
algebra. For box and diamond modalities, locality in �r-multisemigroups is cru-
cial. Without it, the action laws |f ∗ g〉 = |f〉 ◦ |g〉, 〈f ∗ g| = 〈g| ◦ 〈f | and their
analogues for boxes would not exist. Our results thus lead to uniform construc-
tion principles for dynamic algebras and predicate transformer algebras based
on more general semantics than Kripke frames, including arbitrary categories,
and weighted variants.

11 Conclusion

We have introduced �r-multisemigroups, related them with categories, and
shown how their source and target operations give rise to the domain and
codomain operations studied previously in the contexts of function systems,
modal semigroups, modal semirings and modal quantales. In particular, we have
explained how the typical composition pattern of categories corresponds to the
well-known locality axioms that appear in such modal algebras. This analysis is
based on a generic lifting construction from �r-multisemigroups to modal quan-
tales and the modal correspondences to which it leads. It captures most known
models of computational interest of modal semirings and quantales, and explains
how additional models for them could be built, including modal-concurrent ones.
For every local �r-multisemigroup we find, we get a dual modal quantale for
free. The approach extends to modal convolution algebras that seem relevant
to quantitative verification, but this requires concepts and proofs beyond these
pages [12].
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modal convolution algebras. CoRR abs/2105.00188 (2021)

13. Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Log. 44, 173–242
(1989)

14. Grabowski, J.: On partial languages. Fund. Inform. 4(2), 427 (1981)
15. Grandis, M.: Directed Algebraic Topology: Models of Non-reversible Worlds. New

Mathematical Monographs. Cambridge University Press (2009)
16. Guiraud, Y., Malbos, P.: Polygraphs of finite derivation type. Math. Struct. Com-

put. Sci. 28(2), 155–201 (2016)
17. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM

38(4), 935–962 (1991)
18. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its

foundations. J. Log. Algebraic Program. 80(6), 266–296 (2011)
19. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math.

73(4), 891–939 (1951)
20. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math.

74(1), 127–162 (1952)
21. Kahl, W.: Relational semigroupoids: abstract relation-algebraic interfaces for finite

relations between infinite types. J. Log. Algeb. Meth. Program. 76(1), 60–89 (2008)
22. Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Portugaliae. Mathematica

71(1), 47–80 (2015)
23. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1998)
24. Moszkowski, B.C.: A complete axiom system for propositional interval temporal

logic with infinite time. Log. Meth. Comput. Sci. 8(3), 1–56 (2012)
25. Rosenthal, K.L.: Quantales and Their Applications. Longman (1990)

https://doi.org/10.1007/978-3-642-04639-1_6
https://doi.org/10.1007/978-3-642-04639-1_6
https://doi.org/10.1007/978-3-030-43520-2_6
https://doi.org/10.1007/978-3-030-43520-2_6


�r-Multisemigroups, Modal Quantales and the Origin of Locality 107

26. Rosenthal, K.L.: Relational monoids, multirelations, and quantalic recognizers.
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29. Winkowski, Józef.: Algebras of partial sequences—a tool to deal with concurrency.
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Abstract. Normalisation strategies give a categorical interpretation of
the notion of contracting homotopy via confluent and terminating rewrit-
ing. This approach relates standardisation to coherence results in the con-
text of higher-dimensional rewriting systems. On the other hand, globu-
lar 2-Kleene algebras provide a formal setting for reasoning about coher-
ence proofs in abstract rewriting systems. In this setting, we formalise
the notion of normalisation strategy and we prove a formal coherence
theorem for convergent abstract rewriting systems.

Keywords: Normalisation strategies · Kleene algebras ·
Formalisation · Coherence · Higher-dimensional rewriting

1 Introduction

As pointed out in [5,29] a central difficulty in formal mathematics is in bal-
ancing readability of specifications and proficient automated proof search. Cap-
turing intuitions while remaining formally rigorous constitutes a first stumbling
block, which ideally should result in a setting that provides correct, automated
proofs which are readable and even illuminating. A powerful formalisation of
abstract rewriting theory may be found in the theory of Kleene algebras. Alge-
braic abstraction allows for simple proofs in which deduction is replaced by
calculation [29]. Proofs in this setting reconstruct intuitive proofs by diagram-
matic reasoning, making Kleene algebras a formal setting well suited to capture
abstract rewriting results. Modal Kleene algebras (MKAs) formalise abstract
rewriting systems (ARS), abstractions of graphs of (1-dimensional) transitions,
especially with respect to termination and normalisation properties [5,29]. This
setting does not suffice to formalise more subtle properties of normalisation
strategies [24], such as standardisation properties, nor for dealing with inher-
ently higher-dimensional transition systems. Indeed, these need a formalisation
of equivalences between paths. This line of work started in [12,20], culminating
in the introduction of a specific axiomatics on a 2-dimensional refinement of
ARSs.

In this work, we are going one step further by giving a formalisation of a
coherent extension of diagrammatic reasoning in the algebraic style of MKAs,
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inspired by coherent presentations in categorical algebra [23], or in algebra [10],
and using a rewriting approach in the line of [27]. In a higher categorical struc-
ture, certain algebraic properties, e.g. associativity of composition, may only
hold up to the existence of higher-dimensional morphisms. Given a collection
of such higher morphisms, coherence is the requirement that the whole struc-
ture is contractible, i.e. all parallel morphisms are linked by higher morphisms.
A coherence theorem states that, given a (generating) collection of such mor-
phisms, coherence is satisfied. The objective is to obtain a minimal collection
of generating higher morphisms. Graph-theoretical methods on string rewriting
systems (SRS) were initiated by Squier in [27] to study coherence problems for
monoids, a two dimensional word problem. The main point is to compute exten-
sions of a SRS by homotopy generators which take the relations amongst the
rewriting paths into account. That is, every pair of zig-zag sequences of rewrit-
ing paths with same source and same target can be paved by compositions of
these generators. In Squier’s approach, when the SRS is convergent, the homo-
topy generators are defined by the confluence diagrams of the critical branchings
of the SRS. This rewriting method for coherence was applied to solve coherence
problems in algebra [4,10,17], and for monoidal categories [14]. Thereby, the
homotopy generators constitute the bottom part of a cofibrant replacement of
the monoid presented by the SRS [10,15]. Squier’s constructions were formu-
lated in the categorical language of polygraphs in [16] for monoids and in [13]
for higher categories.

In this work, we consider the case of ARS. The extension to the case of SRS
will be done in a subsequent work because requires a formalisation of algebraic
contexts and of the critical branching lemma, which constitutes a further devel-
opment of the theory presented here. An ARS is represented by a quiver Φ,
aka a 1-polygraph, see Sect. 2. Parallel zig-zag sequences of rewriting paths are
pairs of 1-cells in the free groupoid Φ�on Φ with same source and same target.
Homotopical generators for the ARS consist of such pairs and form a cellular
extension X of Φ�, see Sect. 2. The coherence theorem for (Φ,X) states that all
parallel 1-cells in Φ� are equal modulo X. When Φ is convergent and X is the
set of confluence diagrams of (critical) branchings, Squier’s method gives a proof
of the coherence theorem for Φ. It is exactly this proof that we formalise in this
article.

This work uses the algebraic setting of a 2-dimensional (globular) version of
MKAs, which model relation algebras and relations among relations, introduced
in [3]. Interestingly enough, these 2-dimensional MKAs are close to Concurrent
Kleene Algebras (CKAs), which introduce an extra algebraic operation modelling
parallel composition, hence equivalences between (1-dimensional) paths.

Structure of the Article, and Main Results. This article is about formal-
ising normalisation strategies and coherence properties in view of automating
proofs. In Sect. 2, we present the categorical formulation of relations among
relations in terms of cellular tilings, and based on Squier’s coherence result. We
then recap the MKA approach for ARS in Sect. 3. Coherent rewriting in globular
modal 2-Kleene algebra, which we introduced in [3], is recalled in Sects. 4 and 5.
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Sections 6 and 7 form the core of our new results, where we first model normal-
isation strategies in 2-MKAs, and prove abstract coherence properties therein.
Our first result, Theorem1, gives a formalisation of a coherent normalising New-
man’s lemma. We thereby deduce our main result, Theorem 2, which formalises
a proof of contractibility via normalisation strategies.

2 Squier’s Theorem for ARS

We consider an ARS as a quiver, i.e. a directed graph with parallel and loop-
ing transitions, which we call a 1-polygraph from the terminology of higher-
dimensional rewriting [2,28]. Denote by Φ := (Φ0, Φ1) a 1-polygraph with source
and target maps s0, t0 : Φ1 → Φ0. We model the reflexive, transitive closure of Φ
by the free 1-category Φ∗ generated by Φ, the underlying graph of which consists
of the directed paths in Φ. Similarly, the symmetric, reflexive, transitive closure
of Φ is modelled by the free 1-groupoid Φ� generated by Φ, its underlying graph
consisting of undirected paths. In both cases the source and target maps are
obtained by naturally extending those of Φ. The vertices (resp. edges) of such
structures will henceforth be referred to as 0-cells (resp. 1-cells), and the set of
i-cells of Φ∗ (resp. Φ�) will be denoted by Φ∗

i (resp. Φ�
i ). The 0-composition of

1-cells x, y is defined when t0(x) = s0(y) and is denoted by x �0 y. The identity
1-cell on a ∈ Φ0 is denoted by 1a and the inverse of a 1-cell x is denoted by x−.
Two 1-cells are parallel when they have the same 0-source and 0-target. Directed
paths correspond to compositions x1 �0 · · · �0 xk, with xi ∈ Φ1. Similarly, undi-
rected paths correspond to finite compositions of elements of Φ1 and their formal
inverses, quotiented by the relations x �0 x− ∼ 1s0(x), for x ∈ Φ1.

A cellular extension X of Φ� is a quiver on the edges of Φ�, i.e. a pair
(Φ�

1 ,X) with source (resp. target) map s1 (resp. t1), such that the globular
relations t0 ◦ s1 = t0 ◦ t1 and s0 ◦ s1 = s0 ◦ t1 are satisfied. The elements of X
are called generating 2-cells and may be thought of as (directed) tiles filling the
space between parallel 1-cells. The pair (Φ,X) is called a (2, 0)-polygraph.

Recall that the 2-cells in a 2-category may be composed in two different
ways. The 0-composition of γ : x ⇒ y and δ : x′ ⇒ y′, where x, y : a → b and
x′, y′ : b → c are pairs of parallel 1-cells, is a 2-cell γ �0 δ : x �0 x′ ⇒ y �0 y′.
The 1-composition of 2-cells α : x ⇒ y and β : y ⇒ z, where x, y, z are parallel
1-cells, is a 2-cell α �1 β : x ⇒ z. A 2-groupoid is a 2-category in which all 1-
and 2-cells are invertible for 0- and 1-composition, respectively. Given a (2, 0)-
polygraph (Φ,X), we consider the free 2-groupoid generated by (Φ,X), denoted
by X�, which has Φ� as its underlying 1-groupoid and containing all finite 0-
and 1-compositions of the generating 2-cells in X and their inverses, as well as
0-compositions with 1-cells of Φ�.

b x′

��
a

x ��

y ��

α
�� d

c
y′

��

The confluence properties of an ARS Φ can be stated
with respect to a cellular extension X of Φ�. This approach
first appeared in [20] under the terminology of commuting
diagrams. A local branching (x, y) of Φ is X-confluent if
there exist 1-cells x′, y′ in Φ∗

1, and a 2-cell α in the free 2-
groupoid X�as in the adjacent diagram. The ARS Φ is locally X-confluent when
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every local branching of Φ is X-confluent. We say that parallel 1-cells f and g
of Φ� are X-congruent if there exists a 2-cell α : f ⇒ g in X�, and that (Φ,X)
is acyclic if all parallel 1-cells of Φ� are X-congruent. The ARS Φ terminates if
it contains no infinite directed paths.

Let us recall the proof that a terminating, locally X-confluent (2, 0)-
polygraph (Φ,X) is acyclic. Firstly note that if an ARS Φ is locally X-confluent
then it is locally confluent so, under the hypothesis of termination, is confluent
by Newman’s lemma. In this case, from every 0-cell a, a normal form, i.e. a
0-cell irreducible by Φ, may be reached in a finite number of steps. Since Φ is
confluent, the normal form of a is unique; we denote it by â.

By local X-confluence and termination, we may therefore choose, for every
0-cell a of Φ, a 1-cell σa : a → â in Φ∗

1. A normalisation strategy σ is a function
Φ0 → Φ�

1 which assigns such a σa to every 0-cell a, under the condition that
σb = 1b for any normal form b. Just as normal forms provide a representative
0-cell for connected components in Φ�, a normalisation strategy is the given of
a representative 1-cell in Φ� among parallel reductions to normal forms.

b σb

��
a

x ��

y 		

α
�� b̂ = ĉ

c σc





Now that we are equipped with a normalisation
strategy σ, we prove by Noetherian induction on the
distance from a normal form that for any branching
(x, y) of Φ∗, there exists a 2-cell α as in the adjacent
diagram. When s0(x) = s0(y) is a normal form, we can
simply use identity 1- and 2-cells to obtain the desired
diagram. For the induction step, we observe that we can write x as x = x1 �0 xr,
where x1 is a 1-cell of Φ and xr is one step closer to a normal form, and simi-
larly for y. By the hypothesis of local confluence and the Noetherian induction
hypothesis, we obtain the result by composing the 2-cells in the diagram on the
left below:

a y1

�����
����

�x1

������
����

αloc.conf.b1
x′���

�����
xr

������
����

αb1

c1 yr

�����
����

�
y′���

����� αc1b

σb �����
���

�� d
σd
����

�����
�σd

����
������

c

σc������
���

�

b̂ d̂ ĉ

b σb

��αxa

x
��

σa

�� â = b̂

Let x : a → b be a 1-cell of Φ∗, consider the branching (x �0 σb, σa) of Φ∗.
Since we cannot reduce any further than normal forms, by the above result, as
well as a rotation of the 2-cell by properties of 2-groupoids, we obtain a 2-cell αx

as pictured above on the right. A similar 2-cell for all inverses of 1-cells may be
found, again using properties of 2-groupoids which we will not develop here. Note
that every 1-cell f : a → b of Φ� can be factorised as f = x1�0y−

1 �0 · · ·�0xp�0y−
p ,

where the xi and yi are 1-cells of Φ∗. Denote by αf the composite 2-cell of X�:

a
x1 ��

σa

��

b1
y−
1 ��

σb1
��αx1�� ��

���
�

a2
��

σa2
��α

y
−
1

�� ��
���
�

· · · �� ap

xp ��

σap

��

bp

y−
p ��

σbp
��αxp�� ��

���
�

b

σb

��α
y

−
p

�� ��
���
�

â â â · · · â â â



112 C. Calk et al.

Compiling all of the above, we obtain the coherence theorem for ARS :

Theorem A. Let Φ be a terminating ARS and X be a cellular extension of Φ�.
If Φ is locally X-confluent, then for every 1-cell f : a → b of Φ�, there exists a
2-cell αf : f �0 σb ⇒ σa in the free 2-groupoid generated by (Φ,X).
Squier’s theorem [27] is deduced from the above result. Indeed, we prove that
for all parallel 1-cells f, g : a → b of Φ�, the composite 2-cell

b
σb

����

�����
�

1b

��
αf

=

a

f ��

σa ��

g ��

â = b̂ σ−
b

�� b

b

σb����

������

1b

��
α−

g =

in X� has source f and target g. This proves that the pair (Φ,X) is acyclic.

Theorem B. Let Φ be a terminating ARS and X be a cellular extension of Φ�.
If Φ is locally X-confluent, then (Φ,X) is acyclic.
This is Squier’s formulation of the coherence theorem for ARSs, and is an imme-
diate consequence of Theorem A, relying solely on the definitions of acyclicity
and of 2-groupoids.

3 Modal 1-Kleene Algebras

In order to fix notation, we recall the definitions of Boolean modal Kleene alge-
bras from [5,6] and of converse from [1]. We adapt one of the converse axioms
in order to establish a natural relationship between domain and conversion akin
to that of inverse semigroups, see e.g. [22].

Semirings. A semiring is a structure (S,+, 0, ·, 1) such that (S,+, 0) is a com-
mutative monoid, (S, ·, 1) is a monoid whose multiplication · (often denoted by
juxtaposition) distributes on the left and the right over the addition +, and 0 is
a left and right annihilator for ·. A dioid is a semiring in which addition is idem-
potent. In this case, the relation defined by x ≤ y ⇔ x + y = y, for all x, y ∈ S,
is a partial order on S, with respect to which addition and multiplication are
monotone, and for which 0 is the minimum.

(Boolean) Domain Semirings. A domain semiring is a dioid S equipped
with a domain operation d : S → S satisfying the following five axioms for all
x, y ∈ S:

x ≤ d(x)x, d(xy) = d(xd(y)), d(x) ≤ 1, d(0) = 0, d(x+y) = d(x)+d(y).

The set Sd of fixpoints of d forms a distributive lattice with + as join and · as
meet, bounded by 0 and 1. We write p, q, r, . . . for elements of Sd and refer to Sd
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as the domain algebra of S. A Boolean domain semiring is a dioid S equipped
with an antidomain operation ad : S → S satisfying the following three axioms:

ad(x)x = 0, ad(xy) ≤ ad(x ad2(y)), ad2(x) + ad(x) = 1,

for all x, y ∈ S. Setting d = ad2, we recover a domain semiring. In the presence
of an antidomain, Sd = ad(S) and ad acts as Boolean complementation on Sd .
We denote the restriction of ad to Sd by ¬.

Modal Semirings. We denote by Sop the opposite of a dioid S, in which the
order of multiplication has been reversed. A codomain (resp. Boolean codomain)
semiring is a dioid equipped with a map r : S → S (resp. ar : S → S) such
that (Sop , r) (resp. (Sop , ar)) is a domain (resp. Boolean domain) semiring. A
modal semiring is a dioid S which is both a domain and codomain semiring, and
satisfies for every x ∈ S, d(r(x)) = r(x) and r(d(x)) = d(x).

Modal Kleene Algebras. A Kleene algebra is a dioid K equipped with an
operation (−)∗ : K → K called the Kleene star, satisfying the following axioms:

i) 1 + xx∗ ≤ x∗ and 1 + x∗x ≤ x∗ (unfold axioms),
ii) z + xy ≤ y ⇒ x∗z ≤ y and z + yx ≤ y ⇒ zx∗ ≤ y (induction axioms),

for all x, y, z ∈ K. The Kleene plus is defined by x+ = xx∗. (Anti-)domain
and (anti-)codomain operations extend to Kleene algebras without additional
axioms. We thus define a (Boolean) modal Kleene algebra, or (Boolean) MKA
for short, as a Kleene algebra that is also a (Boolean) modal semiring.

Converse. A Kleene algebra with converse [1] is a Kleene algebra K equipped
with an involution (−) : K → K that satisfies, for all x, y ∈ K,

(x + y) = x + y, (x · y) = y · x, (x∗) = (x)∗, (x) = x, (1)

and the inequality x ≤ xxx. In this work, we alter the final axiom in order to
relate conversion to the domain operation. We consider an involution (−) : K →
K satisfying axioms (1) and

xx ≥ d(x), (2)

a similar axiom to that found in inverse semigroups [22]. We observe that such
a converse operation exchanges domain and codomain, i.e. d(x) = r(x) and
r(x) = d(x), and that for p ∈ Kd, p = p. A (Boolean) MKA with converse is a
(Boolean) MKA equipped with such a converse operation.

Modalities in Dimension One. Let K be a MKA. For x ∈ K and p ∈ Kd,
we define modal forward and backward diamond operators :

|x〉p = d(xp), 〈x|p = r(px). (3)
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When a statement holds for both forward and backward diamonds, we will write
〈x〉. Note that by monotonicity of domain, the assignment x �→ 〈x〉 is mono-
tone for the point-wise order on operators. When K is a Boolean MKA, we
additionally define modal box operators:

|x]p = ¬|x〉(¬p), [x|p = ¬〈x|(¬p).

These are modal operators in the sense of Boolean algebras with operators [21].
For K with converse, we have |x〉 = 〈x| and 〈x| = |x〉, and similarly for boxes.
Boxes and diamonds form a Galois connection, i.e.

|x〉p ≤ q ⇔ p ≤ [x|q and 〈x|p ≤ q ⇔ p ≤ |x]q. (4)

We have |xy〉 = |x〉 ◦ |y〉, 〈xy| = 〈y| ◦ 〈x|, |xy] = |x] ◦ |y] and [xy| = [y| ◦ [x|
for all x, y ∈ K; in what follows we will denote functional composition of modal
operators simply by juxtaposition. Finally, star unfold and induction axioms lift
to modalities:

|1〉 + |x〉|x∗〉 = |x∗〉, |1〉 + |x〉|x∗〉 = |x∗〉, (5)
|y〉 + |x〉|z〉 ≤ |z〉 ⇒ |x∗〉|y〉 ≤ |z〉, (6)

where the addition is the point-wise lifting of that in Kd.

Rewriting and Modal Kleene Algebras. We recall from [5] formalised prop-
erties of ARS expressed in MKA. An element x ∈ K terminates, or is Noetherian,
provided that for all p ∈ Kd the implication p ≤ |x〉p ⇒ p = 0 holds. The set of
Noetherian elements of K is denoted by N (K). The Galois connections (4) yield
the following equivalent characterisation of termination:

∀p ∈ Kd, |x]p ≤ p ⇒ p = 1.

The exhaustion of an element x ∈ K, denoted by exh(x), is defined by

exh(x) := x∗ · ¬d(x). (7)

The normal forms element of x ∈ K, denoted by nfx, is defined by

nfx := r(exh(x)) ∈ Kd. (8)

Confluence properties are captured in MKA by semi-commutation. Given x, y ∈
K, we say that the ordered pair (x, y) semi-commutes locally if xy ≤ y∗x∗, semi-
commutes if x∗y∗ ≤ y∗x∗, and has the Church-Rosser property if (x + y)∗ ≤
y∗x∗. An element x ∈ K is (locally) confluent (resp. Church-Rosser) if the pair
(x, x) semi-commutes (resp. has the Church-Rosser property). We say that x is
convergent if it is both terminating and confluent. These properties are related
to exhaustion as follows:

Lemma 1 ([5]). Let K be a Boolean modal Kleene algebra and x ∈ K. If x
terminates, then d(exh(x)) = 1. If x is confluent, then exh(x) is deterministic,
i.e. 〈exh(x)||exh(x)〉 ≤ 〈1〉.
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4 Globular 2-Kleene Algebras

In [3], the notion of p-Boolean globular n-Kleene algebra was introduced as a
higher-dimensional extension of MKAs. Here we briefly recall the case of p = 0
and n = 2, and append the notion of converse.

A modal 2-Kleene algebra is a structure (K,+, 0,�i, 1i, di, ri, (−)∗i)i=0,1,
such that for each i ∈ {0, 1}, K is a MKA with respect to i-operations, and
in which the following additional axioms hold:

i) (2-dioid axioms) The lax interchange law : for all A,A′, B,B′ ∈ K,

(A �1 A′) �0 (B �1 B′) ≤ (A �0 B) �1 (A′ �0 B′),

and the 1-unit is an idempotent for 0-multiplication, i.e. 11 �0 11 = 11.
Note that these correspond to the standard concurrent semiring axioms [18],
except that the equality 10 = 11 is normally assumed in this case.

ii) (Domain 2-semiring axioms) The (co-)domain operations satisfy absorption
axioms d1 ◦d0 = d0 and r1 ◦ r0 = r0. The set Kdi

is called the i-dimensional
domain algebra, and is denoted by Ki.

iii) (Kleene star axioms) The 1-star (−)∗1 is a lax morphism with respect to
0-multiplication of 1-dimensional elements on the right (resp. left), i.e. for
all A ∈ K and φ ∈ K1,

φ �0 A∗1 ≤ (φ �0 A)∗1 , (resp. A∗1 �0 φ ≤ (A �0 φ)∗1).

For more details, see [3]. In order to distinguish elements of distinct dimensions,
we denote elements of K0 by p, q, r, . . . , elements of K1 by φ, ψ, ξ, . . . , and general
elements of K by A,B,C, . . . .

As additional conditions, we may ask that a modal 2-Kleene algebra be glob-
ular, Boolean or equipped with converses. These notions are recalled below.

Globular Axioms. A modal 2-Kleene algebra K is globular if the following
globular relations hold for all A,B ∈ K:

d0 ◦ d1 = d0 and d0 ◦ r1 = d0,
r0 ◦ d1 = r0, and r0 ◦ r1 = r0,

d1(A �0 B) = d1(A) �0 d1(B),
r1(A �0 B) = r1(A) �0 r1(B).

d0(A)

d1(A)

��

r1(A)

��
⇓ A r0(A)

As a consequence of the rightmost axioms, K1

is a MKA with respect to 0-operations. An
element A of K will be represented graphically
by the adjacent diagram with respect to its 0-
and 1-domains and codomains.

Boolean Axioms. A modal 2-Kleene algebra is Boolean if it is augmented with
maps ad0 : K → K and ar0 : K → K, such that (K,+, 0,�0, 10, ad0, ar0) is a
Boolean MKA, i.e. ad0 (resp. ar0) satisfies the antidomain (resp. anticodomain)
axioms and d0 = ad2

0 (resp. r0 = ar20). The domain algebra K0 is thus a Boolean
algebra whose complementation, denoted by ¬, is given by the restriction of ad0

(and ar0) to K0.



116 C. Calk et al.

Converses. We will consider modal 2-Kleene algebras with 0-converses, i.e.
equipped with an operation (−) : K1 → K1 such that (K1,+, 0,�0, 10, (−)∗0 , (−))
is a MKA with converse. For a more general notion of converse in higher-
dimensional Kleene algebra, we refer the reader to [3].

Modalities in 2-semirings. Recall from [3], that the i-diamond operators of
a modal 2-Kleene algebra K are defined via the (co-)domain operators in each
dimension. For i ∈ {0, 1}, A ∈ K and φ ∈ Ki,

|A〉i(φ) = di(A �i φ), and 〈A|i(φ) = ri(φ �i A).

These modal operators have all of the properties recalled in Sect. 3 with respect
to i-operations and elements of Ki. Since we are considering Boolean modal
2-Kleene algebras we may additionally define 0-boxes.

Polygraphic Model. Let (Φ,X) be a (2, 0)-polygraph. We define K(Φ,X), the
full 2-path algebra over (Φ,X) as follows. Let X�

2 denote the set of 2-cells in X�.
The carrier set of K(Φ,X) is the power set P(X�

2 ), whose elements, denoted by
A,B,C . . . are sets of 2-cells, which in turn are denoted by α, β, γ . . . Recall that
for each 1-cell x of X�, there exists a unique 2-cell 1x, its identity 2-cell, and
similarly, for each 0-cell a there exists a unique 2-cell 11a

, the identity 2-cell on
its identity 1-cell. For i ∈ {0, 1}, the i-composition, i-source and i-target maps
are thereby defined for cells of any dimension.

For i ∈ {0, 1}, the multiplication �i on K(Φ,X) is the lifting of the compo-
sition operations of X� to the power-set, i.e. for any A,B ∈ K(Φ,X),

A �i B := {α �i β | α ∈ A ∧ β ∈ B ∧ ti(α) = si(β)}.

The units are the sets 10 = {11a
| a ∈ Φ0}, and 11 = {1x | x ∈ Φ�

1 }. The
addition in K(Φ,X) is given by set union; the ordering is therefore given by set
inclusion. The domain and codomain maps are defined by

d0(A) := {11s0(α) | α ∈ A}, r0(A) := {11t0(α) | α ∈ A},

d1(A) := {1s1(α) | α ∈ A}, and r1(A) := {1t1(α) | α ∈ A},

and are thus given by lifting the source and target maps of X� to the power set.
The i-antidomain and i-anticodomain maps are then given by complementation
with respect to the set of i-cells. The i-star is given by A∗i =

⋃
k∈N

Aki , where in
the above, A0i := 1i and Aki := A �i A(k−1)i . For ψ ∈ K(Φ,X)1, the converse
is given by ψ := {1x− | 1x ∈ ψ}.

Proposition 1 ([3]). Let (Φ,X) be a (2, 0)-polygraph. Then, K(Φ,X) is a glob-
ular Boolean modal 2-Kleene algebra.
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5 Coherent Rewriting and Modal 2-Kleene Algebras

We fix K a globular 2-Kleene algebra. Given A ∈ K and φ, φ′ ∈ K1, |A〉1(φ) ≥ φ′

is equivalent to d1(A �1 φ) ≥ φ′ by definition. In terms of quantification over
collections of cells, this means that for every u in φ′, there exist v in φ and α
in A such that the 1-source (resp. 1-target) of α is u (resp. v). This observation
motivates the following definitions from [3]. For φ, ψ in K1, an element A in K
is a local confluence filler for (φ, ψ) if |A〉1(ψ∗0 �0 φ∗0) ≥ φ �0 ψ, is a confluence
filler for (φ, ψ) if |A〉1(ψ∗0 �0 φ∗0) ≥ φ∗0 �0 ψ∗0 , and is a Church-Rosser filler
for (φ, ψ) if |A〉1(ψ∗0 �0 φ∗0) ≥ (ψ + φ)∗0 .

The right (resp. left) whiskering of an element A ∈ K by φ ∈ K1 is the
element A �0 φ (resp. φ �0 A). Recall from [3] that whiskering commutes with
1-diamonds, that is, for all A ∈ K and φ, ψ, φ′, ψ′, γ ∈ K1 such that φ′ ≤ φ,
ψ′ ≤ ψ, and d1(A) ≤ γ, we have:

φ′ �0 |A〉1(γ) �0 ψ′ = |φ′ �0 A �0 ψ′〉1(φ �0 γ �0 ψ). (9)

Fix a (local) confluence filler A of a pair (φ, ψ) of elements in K1. The total
whiskering of A, denoted by Â, is the following element of K:

Â := (φ + ψ)∗0 �0 A �0 (φ + ψ)∗0 . (10)

The 1-star of Â is called the completion of A. Note that this element absorbs
whiskers, that is, for every ξ ≤ (φ + ψ)∗0 ,

ξ �0 Â∗1 ≤ Â∗1 and Â∗1 �0 ξ ≤ Â∗1 . (11)

6 Formalisation of Normalisation Strategies

In this section, we formalise the notion of normalisation strategy, introduced
in [15]. We first define notions of section, skeleton and strategy in one-
dimensional Kleene algebras and show properties thereof. In what follows, we
consider a Boolean MKA K with converse and an element x ∈ K.

i) The equivalence generated by x is the element x� := (x + x)∗. For p ∈ Kd,
the x-saturation of p is the element |x�〉(p) ∈ Kd.

ii) A covering set for x is an element q ∈ Kd such that |x�〉(q) ≥ 1, i.e. whose
x-saturation is total. A section of x is a minimal covering set.

iii) A wide sub of x is an element w ≤ x such that |w〉 = |x〉 and 〈w| = 〈x|. A
skeleton of x is a minimal wide sub.

iv) Given a section s0 of x, a strategy for x relative to s0 is a skeleton σ of x�s0
such that s0σ ≤ s0.

Note that when (Φ,X) is a (2, 0)-polygraph, we describe Φ in K(Φ,X) as the
element φ := {1x |x ∈ Φ1} ∪ {11a

| a ∈ Φ0}. In K(Φ,X)1, which we recall is a
Boolean MKA for 0-operations, the equivalence generated by φ corresponds to
the 1-groupoid Φ�, and a section corresponds to a choice of a representative 0-cell
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for each connected component in Φ�. A wide sub of φ is a subset ψ such that
for any 1-cell x : a → b ∈ Φ1, there exists some parallel 1-cell x′ : a → b ∈ Φ1

such that 1x′ ∈ ψ. A skeleton of φ therefore corresponds to the choice of a single
1-cell amongst the sets of parallel 1-cells in Φ; it is thus not unique and does not
coincide with φ in general. When Φ is convergent and {σa}a∈φ0 is a strategy in
the sense of Sect. 2, then σ = {1σa

|a ∈ φ0} is a strategy for φ in K(φ,X) with
respect to nfφ. This result is proved for any convergent element of a MKA in
Proposition 2.

By definition, a strategy σ satisfies d(σ) = d(x�s0) = 1, and r(σ) =
r(x�s0) = s0. The following lemma states that a strategy contains the asso-
ciated section:

Lemma 2. Given a section s0 of x and a strategy σ for x relative to s0, we
have s0σ = s0 and s0 ≤ σ.

Proof. By hypothesis we have s0σ ≤ s0. Showing that s0σ is a covering set allows
us to deduce by minimality of s0 that s0 ≤ s0σ ≤ σ, which gives both desired
conclusions. Since σ is a strategy relative to x, we know that 〈x�s0| = 〈σ|. We
calculate the saturation of s0σ

〈x�|(s0σ) = r(s0σx�) = 〈x�|〈σ|(s0) = 〈x�|〈x�s0|(s0) ≥ 〈x�|(s0) ≥ 1,

where we used properties of modalities for the first two steps, then the hypothesis
that σ is a strategy. To conclude, we used that 〈x�s0|(s0) ≥ 〈s0|(s0) = s0 and
that s0 is a covering set. ��
By conversion, we also get σs0 = s0 and s0 ≤ σ. This immediately gives the
following properties of a strategy σ relative to a section s0:

σ · σ = σ, σ · σ = σ, σ ≤ σ · σ and σ ≤ σ · σ. (12)

Indeed, σσ = σs0σ = σs0 = σ by the fact that r(σ) = s0 and Lemma 2, the
case of σ follows by conversion. Additionally, s0 ≤ σ so σ = σs0 ≤ σσ and
symmetrically for σ.

Next, we will show that the normal forms and exhaustive iteration of a con-
vergent element give us a section and a strategy, respectively. First, we show:

Lemma 3. Let K a Boolean MKA. For a convergent element x ∈ K, we have
|x�〉 = |exh(x)〉〈exh(x)|.
Proof. One direction holds since exh(x)exh(x) ≤ x∗x∗ ≤ x� so by monotonicity
of taking diamonds and reversal of diamonds by conversion, we get |x�〉 ≥
|exh(x)〉〈exh(x)|. The other inequality is obtained via the star induction law for
modalities (6). Indeed, it suffices to prove that

|1〉 + |x + x〉|exh(x)exh(x)〉 ≤ |exh(x)exh(x)〉.
We prove the inequality for each of the summands. We treat the case of |1〉 first:
by definition,

|exh(x)exh(x)〉(p) = d(x∗¬d(x)r(px∗)) = d(x∗r(px∗)¬d(x)),
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where we used the so-called import-export law [5] r(yp) = r(y)p for codomains
and that multiplication is commutative in Kd. Since p ≤ 1 we have

px∗r(px∗)¬d(x) ≤ x∗r(px∗)¬d(x),

and since (px∗)r(px∗) = px∗, applying domain on both sides yields

|exh(x)exh(x)〉(p) ≥ d(px∗¬d(x)) = pd(exh(x)) = p,

where we used the import-export law for domains d(py) = pd(y) and Lemma 1.
Thus |exh(x)exh(x)〉 ≥ |1〉. The case of |x〉 follows by the star unfold axiom:

|x〉|x∗¬d(x)x∗〉 = |xx∗¬d(x)x∗〉 ≤ |x∗¬d(x)x∗〉.
The final case follows by the hypothesis of confluence:

|x〉|x∗¬d(x)x∗〉 = 〈x||x∗〉〈exh(x)| ≤ 〈x∗||x∗〉〈exh(x)|
≤ |x∗〉〈x∗|〈exh(x)|
≤ |x∗〉〈exh(x)x∗| = |x∗¬d(x)x∗〉,

where we also used exh(x)x∗ = exh(x). Applying the star induction axiom for
modalities, we obtain the result. ��

Now we are ready to relate exhaustion and normal forms to strategies and
sections, respectively:

Proposition 2. If x is convergent, then nfx is a section of x. Furthermore, any
skeleton σ of exh(x) is a strategy for x with respect to nfx, and we have

σ ≤ nfx + x+, σ ≤ nfx + x+ and σσ = nfx

Proof. First we show that nfx is a section. It is a covering set since

|x�〉(nfx) ≥ |exh(x)〉(nfx) = d(exh(x)) = 1

where the last step is by Lemma 1. Suppose now there is some s ∈ Kd such that
s ≤ nfx and s is a covering set. Since s ≤ nfx ≤ ¬d(x), the star unfold and
antidomain axioms give s · exh(x) = s, so 〈exh(x)|(s) = s.

Therefore 1 = |x�〉(s) = |exh(x)〉〈exh(x)|(s) = |exh(x)〉(s), where we used
Lemma 3. This means that

s ≥ 〈exh(x)||exh(x)〉(s) = 〈exh(x)|(1) = r(exh(a)) = nfx,

where the first inequality is by Lemma1, so we may conclude nfx = s, i.e. nfx is
minimal.

Now we show that a skeleton σ of exh(x) is a strategy for x relative to nfx.
Note that |x�nfx〉 = |x�〉〈nfx〉 and 〈x�nfx| = 〈nfx〉〈x�|. By Lemma 3,

|x�nfx〉 = |exh(x)〉〈exh(x)|〈nfx〉 = |exh(x)〉〈nfx〉 = |exh(x)〉,
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since nfxexh(x) = nfx, and exh(x)nfx = exh(x). A symmetric proof gives
〈x�nfx| = 〈exh(x)|. Since σ is a skeleton of exh(x), its diamonds coincide
with those of exh(x) and so, by what precedes, also with those of x�nfx. Since
exh(x) ≤ x�nfx, σ is a wide sub of x�nfx. Minimality of σ as a wide sub follows
from that same inequality plus the hypothesis that it is a skeleton of exh(x). To
conclude, note that nfxσ ≤ nfxexh(x) = nfx. The first inequality follows from

σ ≤ exh(x) = x∗nfx = (1 + xx∗)nfx ≤ nfx + xx∗ = nfx + x+,

where we used the definition of exh(x), the left star unfold axiom, nfx ≤ 1
and the definition of the Kleene plus. The inequality for σ is then obtained by
conversion. Finally, since σ ≤ exh(x) and x is confluent, we get

σσ ≤ exh(x)exh(x) = nfxx∗x∗nfx ≤ nfxx∗x∗nfx = nfx,

where we also used that nfx ≤ ¬d(x) = ¬r(x). ��

7 Abstract Coherence in 2-MKA

Here we state and prove a formalisation of Theorem A in the context of globular
modal 2-Kleene algebras. First we prove the main result of this paper:

Theorem 1 (Coherent normalising Newman’s lemma). Let K be a
Boolean globular 2-Kleene algebra such that

i) (K0,+, 0,�0, 10,¬0) is a complete Boolean algebra,
ii) K1 is continuous with respect to 0-restriction, that is for all ψ,ψ′ ∈ K1 and

(pα)α ⊆ K0 we have ψ �0 sup pα �0 ψ′ = sup (ψ �0 pα �0 ψ′).

Let φ ∈ K1 be convergent and σ be a skeleton of exh(φ). If A is a local
confluence filler for (φ, φ), then |Â∗1〉1(σ �0 σ) ≥ φ

∗0 �0 φ∗0 .

Proof. We denote 0-multiplication by juxtaposition. First, we define a predicate
RNP expressing restricted normalised paving. Given p ∈ K0, let

RNP (p) ⇔ |Â∗1〉1(σσ) ≥ φ
∗0

pφ∗0 .

By completeness of K0, we set r := sup{ p |RNP (p)} and by continuity of
restriction we may infer RNP (r). Furthermore, by downward closure of RNP ,
we have RNP (p) if, and only if, p ≤ r. We thereby deduce:

∀p. (RNP (〈φ|0p) ⇒ RNP (p)) ⇔ ∀p. (〈φ|0p ≤ r ⇒ p ≤ r)
⇔ ∀p. (p ≤ |φ]0r ⇒ p ≤ r)
⇔ |φ]0r ≤ r

where we used the Galois connection (4). Thus, it suffices to show that

∀p. (RNP (〈φ|0p) ⇒ RNP (p))
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in order to conclude that r = 10, by Noethericity of φ. This method constitutes
formalised Noetherian induction for Boolean MKA.
Given p ∈ K0, we denote by pφ the element 〈φ|0(p) = |φ〉0(p). We have

pφ = pφr0(pφ) = pφ〈φ|0(p) ≤ φpφ,

and similarly φp ≤ pφφ. Using the star unfold axioms, we thereby deduce that

φ
∗0

pφ∗0 ≤ φ
∗0

p + φ
∗0

φpφφ∗0 + pφ∗0 ≤ φ
∗0

p + φ
∗0

pφφφpφφ∗0 + pφ∗0 .

We first examine the middle summand:

where we used that A is a local confluence filler for the first step, then com-
mutation of modalities with whiskering (9) and the definition of Â (10) for the
second and third steps. We then use the induction hypothesis RPN(pφ) on the
left instance of φ

∗0
pφφ∗0 , followed by commutation of modalities with whisker-

ing and whisker absorption (11), and then repeat for the instance on the right.
Finally, we used that Â �1 Â∗1 ≤ Â∗1 �1 Â∗1 ≤ Â∗1 , monotonicity of taking
diamonds and σσ = nfφ = r(σ), a consequence of Proposition 2.
It remains to show that φ

∗0
p, pφ∗0 ≤ |Â∗1〉1(σσ). First, observe that we have

σpφ∗0 = σp + σpφ+0

≤ σ + (nfφ + φ
+0)pφ+0

= σ + φ
+0

pφ+0 ≤ σσ + φ
+0

pφ+0 ≤ |Â∗1〉1(σσ).

p
φ∗

��	
		

		


σ










·
σ ��	
		

		 ·


σ








·
The first step is by the unfold axiom, the second uses Proposition 2 to bound
σ. The third step uses the fact that nfφ is a left annihilator for φ+0 since by
definition we have nfφ ≤ ¬d0(φ). Finally we use the fact that σ ≤ σσ (12)
coupled with idK1 = |11〉1 ≤ |Â∗1〉1, i.e. reflexivity of Â∗1 , as well as the bound
established by the previous calculation.

For convergent φ, we have d0(exh(φ)) = d0(φ∗0¬d0(φ)) = 10 by Lemma 1.
Since σ is a skeleton of exh(φ), we have d0(σ) = 10. By the converse axiom (2),
this means that σσ ≥ 10. Therefore,
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pφ∗0 ≤ σσpφ∗0

≤ σ|Â∗1〉1(σσ)

≤ |Â∗1〉1(σσσ) = |Â∗1〉1(σσ),

·
σ ���
��

��
p

φ∗

���
��

��


σ





·
σ ��	
		

		 ·


σ








·
where we used commutation of whisker with modalities and whisker absorp-
tion, as well as σσ = σ (12). A symmetric argument yields φ

∗0
p ≤ |Â∗1〉1(σσ),

concluding the proof. ��
The use of formalised Noetherian induction, as well as the calculation establish-
ing the upper bound for the middle summand, are similar to those in the proof
of Newman’s lemma in [5]. Due to the fact that our result involves confluences
in σ, the bounds for the outer summands require a different approach.

As a direct consequence of Theorem 1, we obtain the following result, which
formalises Theorem A. Indeed, if (Φ,X) is a (2, 0)-polygraph satisfying the corre-
sponding hypotheses, Theorem2 lifts the result to the power set when applied to
φ := {1x |x ∈ Φ1} ∪ {11a

| a ∈ Φ0} and A = X, viewed as elements of K(Φ,X).
Following the argument given in Sect. 5, the conclusion asserts that for every
zig-zag sequence f : a → b ∈ Φ�

1 , there exists a 2-cell αf : f ⇒ σa �0 σ−
b obtained

by whiskering and composing elements of X. In a 2-groupoid, this is equivalent
to the existence of a 2-cell f �0 σb ⇒ σa.

Theorem 2 (Abstract coherence theorem). Let K be a Boolean globular
2-Kleene algebra satisfying the additional hypotheses in Theorem1 and φ ∈ K1

convergent. Given a normalisation strategy σ and a local confluence filler A for
(φ, φ), we have

|Â∗1〉1(σ �0 σ) ≥ φ�0 = (φ + φ)∗0 .

Proof. We denote 0-multiplication by juxtaposition. As a result of Theorem1
we have |Â∗1〉1(σσ) ≥ φ

∗0
φ∗0 . By the star induction axiom, it suffices to show:

10 + (φ + φ)|Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ).

By (2) and Proposition 2, we have σσ ≥ d0(σ) = 10, so by reflexivity of Â∗1 ,
i.e. 11 ≤ Â∗1 , we have 10 ≤ |Â∗1〉1(σσ). Furthermore, since φ ≤ φ

∗0
φ∗0 we have:

φ|Â∗1〉1(σσ) ≤ φ
∗0

φ∗0 |Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ)|Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ).

The case of φ is identical. We conclude via the star induction axiom. ��

8 Outlook

In this article, we have introduced a formalisation of the notion of strategy
for convergent ARS and thereby obtained an abstract coherence theorem. This
constitutes an initial result formalising cofibrant replacements of algebraic struc-
tures by rewriting, such as polygraphic resolutions from convergent SRS, [15].
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In this perspective, the first step is to formalise the critical branching lemma, a
coherent confluence result for SRS. Kleene algebra axioms only allow iteration
on the left or right of expressions, but not in context. We expect a formalisa-
tion of coherent confluence for SRS using the structure of higher-dimensional
quantales [26], similar to higher-dimensional semirings [3] but in which multi-
plication distributes over arbitrary sums. The second step consists in extending
our formalisation of normalisation strategies to higher dimensions, necessary
for constructing cofibrant replacements, for example polygraphic resolutions via
convergent rewriting systems [15].

Another direction is found in the domain of concurrency theory. Concurrent
Kleene algebras (CKA) [19] are a convenient extension of Kleene algebras. While
similar to 2-MKAs, these are used to give semantics to concurrent languages
and their corresponding proof systems. CKAs enrich classical Kleene algebras
with an extra parallel composition operation alongside the classical sequential
composition. In particular, CKAs have applications for validation of concurrent
programs by formalising Hoare-like proof systems for parallel computations, sim-
ilarly to MKAs which have applications to verification of hybrid systems [30] and
program correctness [11]. We expect that our approach to abstract coherence
proofs in 2-Kleene algebras can also find applications to formalisation of proof
systems for verifying general concurrent systems, for example based on higher-
dimensional trace semantics of Higher-Dimensional Automata [9,25] (a form of
higher-dimensional rewriting system), see e.g. [7,8].
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Abstract. The non-deterministic algorithmic procedure PEARL
(acronym for ‘Propositional variables Elimination Algorithm for Rel-
evance Logic’) has been recently developed for computing first-order
equivalents of formulas of the language of relevance logics LR in terms of
the standard Routley-Meyer relational semantics. It succeeds on a large
class of axioms of relevance logics, including all so called inductive formu-
las. In the present work we re-interpret PEARL from an algebraic perspec-
tive, with its rewrite rules seen as manipulating quasi-inequalities inter-
preted over Urquhart’s relevant algebras, and report on its recent Python
implementation. We also show that all formulae on which PEARL suc-
ceeds are canonical, i.e., preserved under canonical extensions of relevant
algebras. This generalizes the “canonicity via correspondence” result in
[37]. We also indicate that with minor modifications PEARL can also be
applied to bunched implication algebras and relation algebras.

1 Introduction

This work relates two important areas of development in non-classical logics, viz.
relevance logics and algorithmic correspondence theory, by applying the latter
to the possible worlds semantics for relevance logic based on Routley-Meyer
frames [31], by means of an implementation of the recently developed in [7]
algorithm PEARL. That semantics is, in turn, duality-theoretically related to the
algebraic semantics for relevance logic based on Urquhart’s relevant algebras [37].
Routley-Meyer frames also capture the semantics of (positive) relation algebras
[14,24], and of bunched implication algebras [30], hence the algorithm PEARL
implemented here is also applicable to arrow logic [3,15] and bunched implication
logics [30].
1Visiting professorship affiliation of the 2nd author.
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Modal Correspondence Theory. The Sahlqvist-van Benthem theorem [2,32],
proved in the mid 1970s, is a fundamental result in the model theory of modal
logic. It gives a syntactic characterization of a class of modal formulas which
define first-order conditions on Kripke frames and which are canonical, hence,
when added to the basic normal modal logic K, they axiomatize logics which are
strongly complete with respect to elementary frame classes. The Sahlqvist-van
Benthem theorem sets the stage for the emergence and development of the so
called correspondence theory in modal logic, cf. [4]. The literature on the topic
contains many analogues of the Sahlqvist-van Benthem theorem for a wide range
of non-classical logics. Various illuminating alternative proofs have appeared,
including Jonsson’s purely algebraic proof of the canonicity part [25], and the
‘canonicity-via-correspondence’ approach pioneered by Sambin and Vaccaro [33].

The Sahlqvist-van Benthem class of formulas has been significantly extended
to the class of so called inductive formulas [21–23] which cover frame classes not
definable by a Sahlqvist-van Benthem formula while enjoying the same properties
of elementarity and canonicity. At about the same time, a new line of research
known as algorithmic correspondence theory emerged. It involves the use of algo-
rithms like SCAN and DLS to try and compute first-order frame correspondence
for modal formulas by eliminating the second-order quantifiers from their stan-
dard second-order frame correspondents. In particular, the algorithm SQEMA
[9] was developed for algorithmic correspondence in modal logic. It manipulates
formulas in an extended hybrid language to eliminate propositional variables
and thereby produces pure hybrid formulas which translate into first-order logic
via the standard translation, and simultaneously proves their canonicity via an
argument in the style of Sambin and Vaccaro. This approach was extended to
logics algebraically captured by normal (distributive) lattice expansions [10,11]
in a line of research known as unified correspondence [6].

Correspondence Theory for Relevance Logic. Much work has been done over the
years on computing first-order equivalents and proving completeness of a range of
specific axioms for relevance logics with respect to the Routley-Meyer relational
semantics (cf. [31]). Routley-Meyer frames involve not a binary, but a ternary
relation, with several conditions imposed on it, needed to ensure upward closed-
ness of the valuations of all formulas. That makes the possible worlds semantics
for relevance logic based on such frames technically more complex and proving
correspondence results for it “by hand” can be significantly more elaborate than
those for modal logics with their standard Kripke semantics, which calls for a
systematic development of respective correspondence theory for relevance logics.
Until recently, that problem remained little explored, with just a few works, incl.
those of Seki [34] and Badia [1], defining some classes of Sahlqvist-van Benthem
type formulas for relevance logics and proving correspondence results for them.
Likewise, Suzuki [35,36], has established correspondence for the full Lambek
calculus with respect to the so-called bi-approximation semantics, obtained via
canonical extensions in the style of [16]. For closely related distributive substruc-
tural logics, such as bunched implication logics, an elegant categorical approach
to canonicity and correspondence is based on duality theory and coalgebras [12].
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A general algorithmic correspondence theory of relevance logics has recently been
developed in [7], on which the presently reported work is based.

The Algorithm PEARL and Its Implementation. A non-deterministic algorithmic
procedure PEARL (acronym for Propositional variables Elimination Algorithm for
Relevance Logic) for computing first-order equivalents in terms of frame validity
of formulas of the language LR for relevance logics is developed in [7]. PEARL is
an adaptation of the above mentioned procedures SQEMA [9] (for normal modal
logics) and ALBA [10,11] (for distributive and non-distributive modal logics).
Furthermore, a large syntactically defined class of inductive relevance formulas
in LR is defined in [7], based on specific order-theoretic properties of the algebraic
interpretations of the connectives, following the general methodology of [11]. It
is shown in [7] that PEARL succeeds for all such formulas and correctly computes
for them equivalent with respect to frame validity first-order definable conditions
on Routley-Meyer frames. This gives a general basis for comparing inductive and
Sahlqvist formulas across different logics and for different relational semantics
for the same logic. Thus, [11, Example 3.14] has shown that Suzuki’s Sahlqvist
class is properly included in the respective class of inductive formulas. Likewise,
for the case of LR, it is shown in [7] that the class of inductive formulas properly
extends the classes of Sahlqvist formulas of Seki [34] and Badia [1].

In the present work we re-interpret the algorithm PEARL from an algebraic
perspective with its rewrite rules seen as manipulating quasi-inequalities inter-
preted over Urquhart’s relevant algebras [37]. This enables us to complete the
part of the Sahlqvist-van Benthem theorem still outstanding from the previous
work, namely the fact that all inductive LR-formulas are canonical, i.e., are pre-
served under canonical extensions of relevant algebras. Via the discrete duality
between perfect relevant algebras and Routley-Meyer frames, this establishes the
fact that all inductive LR-formulas axiomatise logics which are complete with
respect to first-order definable classes of Routley-Meyer frames. This general-
izes the “canonicity via correspondence” result in [37] for (what we can now
recognise as) a certain special subclass of Sahlqvist-van Benthem formulas in
the “groupoid” sublanguage of LR where fusion is the only connective. We then
present an optimised and deterministic version of PEARL, which we have recently
implemented in Python and applied to verify the first-order equivalents of a num-
ber of important axioms for relevance logics known from the literature, as well as
on several new types of formulas. In this paper we report on the implementation
and on some testing results.

Relevance Logics and Relation Algebras. Even though developed with differ-
ent motivations, these two areas are technically closely related, as noted and
explored in several papers besides [37], incl. [5,15,24,26,28]. We note that, by
extending LR with a Heyting implication (which is a residual of the meet oper-
ation), removing relevant negation, and adding commutativity and associativity
as axioms of fusion, our results can also be applied to bunched implication alge-
bras. Alternatively one can extend LR with classical implication and apply the
same algorithm to relation algebras. In this case the Routley-Meyer frames have
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the order of an antichain and are the same as atom structures of relation alge-
bras. Further details are discussed at the end of Sect. 7.

Structure of the Paper. In Sect. 2 we provide the necessary background on the
syntax, algebraic and relational semantics of relevance logic, define relevant
algebras and then extend their language by adding adjoints and residuals of
the standard operators of relevance logic. Then, in Sect. 3 we establish dual-
ity between perfect relevant algebras and complex algebras of Routley-Meyer
frames. Section 4 presents the rules of the calculus on which PEARL is based,
and Sect. 5 contains a concise description of the main phases of the algorithm
itself. In Sect. 6 we give a brief description of the implementation of PEARL,
and in Sect. 7 we state some results. We then conclude with Sect. 8. After the
references we have included a short appendix containing some additional tech-
nicalities and some examples of the output of PEARL.

2 Preliminaries

In this section we provide background on the syntax and algebraic and relational
semantics of relevance logic. For further details we refer the reader to [17,31] and
(for relevance logics) to [37] and [7].

2.1 Relevance Logic and Its Algebraic Semantics

The language of propositional relevance logic LR over a fixed set of propositional
variables VAR is given by

A = p | ⊥ | � | t | ∼A | (A ∧ A) | (A ∨ A) | (A ◦ A) | (A → A)

for p ∈ VAR. The relevant connectives ◦, ∼ and → are called fusion, (relevant)
negation and (relevant) implication, respectively. The constant t is referred
to as (relevant) truth. We also add the constants � and ⊥ for convenience.
Equations and inequalities of LR-formulas can be algebraically interpreted in
relevant algebras as defined by Urquhart in [37].

Definition 1 ([37]). A structure A = 〈A,∧,∨, ◦,→,∼, t,�,⊥〉 is called a rel-
evant algebra if it satisfies the following conditions:

1. 〈A,∧,∨,�,⊥〉
is a bounded distributive lattice,

2. a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c),
3. (b ∨ c) ◦ a = (b ◦ a) ∨ (c ◦ a),
4. ∼(a ∨ b) = ∼a ∧ ∼b,

5. ∼(a ∧ b) = ∼a ∨ ∼b,
6. ∼� = ⊥ and ∼⊥ = �,
7. a ◦ ⊥ = ⊥ ◦ a = ⊥,
8. t ◦ a = a, and
9. a ◦ b ≤ c iff a ≤ b → c.

An LR-formula φ is valid on a relevant algebra A if the inequality t ≤ φ
(implicitly universally quantified over all propositional variables) is valid on A

and valid on a class of relevant algebras if it is valid on each member of
that class. We also refer the reader to [37] for axiomatizations of the logic of the
class of all relevant algebras.
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2.2 Relational Semantics

Relevance logic can be given relational semantics based on structures called
‘Routley-Meyer frames’, which we will now define. A relevance frame is a
tuple F = 〈W,O,R,∗ 〉, where:

– W is a non-empty set of states (possible worlds);
– O ⊆ W is the subset of normal states;
– R ⊆ W 3 is a relevant accessibility relation;
– ∗ : W → W is a function, called the Routley star.

The binary relation � is defined in every relevance frame by specifying that
u � v iff ∃o(o ∈ O∧Rouv). A Routley-Meyer frame 1 (for short, RM-frame)
is a relevance frame satisfying the following conditions for all u, v, w, x, y, z ∈ W :

1. x � x
2. If x � y and Ryuv then Rxuv.
3. If x � y and Ruyv then Ruxv.
4. If x � y and Ruvx then Ruvy.

5. If x � y then y∗ � x∗.

6. O is upward closed w.r.t. �,
i.e. if o ∈ O and o � o′ then o′ ∈ O.

These properties ensure that � is reflexive and transitive, hence a preorder,
and that the semantics of the logical connectives has the upward monotonicity
property stated below.

A Routley-Meyer model (RM-model) is a tuple M = 〈W,O,R,∗ , V 〉,
where 〈W,O,R,∗ 〉 is a Routley-Meyer frame and V : VAR → P(W ) is a mapping,
called a relevant valuation, assigning to every atomic proposition p ∈ VAR a
set V (p) of states which is upward closed w.r.t. �.

Truth of a formula A in an RM-model M = 〈W,O,R,∗ , V 〉 at a state
u ∈ W , denoted M, u � A, is defined as follows:

– M, u � p iff u ∈ V (p);
– M, u � t iff u ∈ O;
– M, u � ∼A iff M, u∗ �� A;
– M, u � A ∧ B iff M, u � A and M, u � B;
– M, u � A ∨ B iff M, u � A or M, u � B;
– M, u � A → B iff for every v, w, if Ruvw and M, v � A then M, w � B.
– M, u � A◦B iff there exist v, w such that Rvwu, M, v � A and M, w � B.

Thus, the Routley-Meyer semantics follows a standard pattern for relational
semantics of modal operators. In particular, the fusion is a binary ‘diamond’,

1 The definition of Routley-Meyer frames takes the relation R and subset O as primary
and defines the pre-order � in terms of them. This does not restrict the pre-orders
that can occur within Routley-Meyer frames. Indeed, given an upward closed subset
O ⊆ W and a pre-order � on W one can define a respective ternary relation R ⊆ W 3

by specifying that, for all triples (x, y, z), Rxyz iff x � o for some o ∈ O and x � y.
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interpreted with a ternary relation, and negation is both a unary box and dia-
mond, interpreted via a functional binary relation. One can show, by a rou-
tine structural induction on formulas, (cf. e.g. [31]) that this semantics satisfies
upward monotonicity: for every RM-model M and a formula A of LR, the
set [[A]]M = {u | M, u � A} is upward closed.

A formula A is declared true in an RM-model M, denoted by M � A, if
M, o � A for every o ∈ O. It is valid in an RM-frame F , denoted by F � A,
iff it is true in every RM-model over that frame, and A is RM-valid, denoted
by � A, iff it is true in every RM-model.

All semantic notions of truth and validity defined above can be translated to
FOL, resp. universal monadic second order, by means of a standard transla-
tion, analogous to the one applied to modal logic (cf. [4]). See the details in the
full paper [8].

2.3 Perfect Relevant Algebras and the Extended Language L+
R

Given a Routley-Meyer frame F = 〈W,R,∗ , O〉, its complex algebra is the
structure

F+ = 〈P↑(W ),∩,∪,→, ◦,∼ , O,W, ∅〉
where P↑(W ) is the set of all upwards closed subsets (hereafter called up-sets)
of W , ∩ and ∪ are set-theoretic intersection and union, and for all Y,Z ∈ P↑(W )
the following hold:

Y → Z = {x ∈ W | for all y, z ∈ W, if Rxyz and y ∈ Y, then z ∈ Z},
Y ◦ Z = {x ∈ W | there exist y ∈ Y and z ∈ Z such that Ryzx},
∼ Y = {x ∈ W | x∗ �∈ Y }.
It is easy to check that F+ is a relevant algebra.
An element a of a lattice L is completely join-irreducible (resp., com-

pletely join-prime) if whenever a =
∨

S (a ≤ ∨
S) for some S ⊆ L, then a = s

(a ≤ s) for some s ∈ S. The notions of meet-irreducibility and primality are
defined order-dually. Complete join/meet primality implies complete join/meet
irreducibility and for complete distributive lattices the notions coincide.

A relevant algebra A = 〈A,∧,∨, ◦,→,∼, t,�⊥〉 is perfect if 〈A,∧,∨,�⊥〉
is a complete, completely distributive lattice that is join-generated (resp., meet-
generated) by the set of its completely join-irreducible elements J∞(A) (resp.,
the set of its completely meet-irreducible elements M∞(A)), while

∨
S ◦ a =∨

s∈S(s ◦ a), a ◦ ∨
S =

∨
s∈S(a ◦ s),

∨
S → a =

∧
s∈S(s → a), a → ∧

S =∧
s∈S(a → s), ∼∨

S =
∧

s∈S ∼s and ∼∧
S =

∨
s∈S ∼s for all S ⊆ A and a ∈ A.

Now, in fact, every F+ is a perfect relevant algebra. Further, every relevant
algebra A can be compactly and densely embedded in a unique perfect relevant
algebra, namely in its canonical extension (cf. e.g. [16]) which we will denote A

δ.
For any perfect distributive lattice A, the map κ : J∞(A) → M∞(A) defined

by j �→ ∨{u ∈ A | j �≤ u} is an order isomorphism (cf. [19, Sec. 2.3])
when considering J∞(A) and M∞(A) as subposets of A. The inverse of κ is
λ : M∞(A) → J∞(A), given by the assignment m �→ ∧{u ∈ A | u �≤ m}. From
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these definitions, we immediately have that, for every u ∈ A, every j ∈ J∞(A)
and every m ∈ M∞(A),

j �≤ u iff u ≤ κ(j), (1)

u �≤ m iff λ(m) ≤ u. (2)

Since in perfect relevant algebras each of ∼, ∨, ∧, ◦ and → preserves or
reverses arbitrary meets and/or joins in each coordinate, they are residuated in
each coordinate (see e.g. [18]). The algebra therefore supports the interpretation
of an extended language with connectives for the residuals of these operations.
In particular, we extend the language LR to L+

R by adding the left adjoint ∼�

and the right adjoint ∼� of ∼ , the intuitionistic (Heyting) implication
⇒ (as right residual of ∧), the coimplication −� as the left residual of ∨, and
the operation ↪→ as the residual of ◦ in the second coordinate and of → in the
first coordinate. Thus, in any perfect relevant algebra A we have that:

1. ∼a ≤ b iff ∼�b ≤ a
2. a ≤ ∼b iff b ≤ ∼�a
3. a ≤ b ∨ c iff a −� b ≤ c

4. a ∧ b ≤ c iff a ≤ b ⇒ c
5. a ◦ b ≤ c iff a ≤ b → c
6. a ◦ b ≤ c iff b ≤ a ↪→ c

We also include in L+
R two countably infinite sets of special variables, NOM =

{j0, j1, j2, . . .} and CNOM = {m0,m1,m2, . . .}. These are respectively called
nominals and co-nominals and will be interpreted as ranging respectively
over completely join-irreducibles and completely meet-irreducibles. Informally,
we will denote nominals by i, j,k, possibly with indices, while co-nominals will
be denoted by m,n, possibly with indices. To distinguish visually from LR, the
formulas of the extended language L+

R will be denoted by lowercase greek letters,
typically α, β, γ, φ, ψ, ξ, etc. and are defined by the following grammar:

φ = p | i | m | � | ⊥ | t | ∼φ | (φ ∧ φ) | (φ ∨ φ) | (φ ◦ φ) | (φ → φ) |
∼�φ | ∼�φ | (φ −� φ) | (φ ⇒ φ) | (φ ↪→ φ)

where p ∈ VAR, i ∈ NOM and m ∈ CNOM. We denote ATOMS := VAR ∪
NOM∪CNOM. The elements of ATOMS will be called atoms. An L+

R-formula is
called pure if it contains no propositional variables but only, possibly, nominals,
co-nominals and constants. To each connective we assign a polarity type2

indicating whether each coordinate of its interpretation in (perfect) relevant
algebras is order-preserving or order-reversing, as follows:

1. ε∼ = ε∼� = ε∼� = (−)
2. ε∧ = ε∨ = ε◦ = (+,+)

3. ε→ = ε⇒ = ε↪→ = (−,+)
4. ε−� = (+,−)

We write εh(i) for the i-th coordinate of εh. We now define the notions
of positive and negative occurrences of atoms in L+

R-formulas recursively:
an occurrence of an atom a is positive in a; an occurrence of a which is pos-
itive (negative) in φ is positive (negative) in h(ψ1, . . . , ψi−1, φ, ψi+1, . . . ψn)

2 Also called an order type (e.g. [19]) or monotonicity type (e.g. [20]).
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if εh(i) = + and negative (positive) in h(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn) if
εh(i) = −. We then say that a formula φ ∈ L+

R is positive (negative) in
an atom a iff all occurrences of a in φ are positive (negative). An inequality
φ ≤ ψ is positive (negative) in an atom a if φ is negative (positive) in a
while ψ is positive (negative) in a.

3 Duality Between Perfect Relevant Algebras and
Complex Algebras of Routley-Meyer Frames

As already mentioned, the complex algebra F+ of any Routley-Meyer frame F =
〈W,R,∗ , O〉 is a perfect relevant algebra. Moreover, J∞(F+) = {↑x | x ∈ W}
the set of all principal up-sets ↑x = {y ∈ W | y � x} and M∞(F+) = {(↓x)c |
x ∈ W} the set of all set-theoretic complements of principal downwards closed
subsets (hereafter called co-downsets) ↓x = {y ∈ W | x � y}. Conversely,
we will show that every perfect relevant algebra is isomorphic to the complex
algebra of a Routley-Meyer frame.

Lemma 2. In a perfect relevant algebra A, it is the case that ∼� maps J∞(A)
into M∞(A) and ∼� maps M∞(A) into J∞(A).

Proof. See proof in the full paper [8].

The following definition adapts a well-known method (see [16]) for obtaining
dual relational structures from perfect algebras:

Definition 3. The prime structure of a perfect relevant algebra
A = 〈A,∧,∨, ◦,→,∼, t,�⊥〉 is the structure A• = 〈J∞(A), Ot, R◦,∗∼ 〉 where:
1. R◦abc iff c ≤ a ◦ b 2. Ot={j ∈J∞(A)|j ≤t} and 3. a∗∼ = λ(∼�a)

Lemma 4. A• is a Routley-Meyer frame. Moreover the order � on A• coincides
with the dual lattice order ≥ restricted to J∞(A).

Proof. We begin by noting that b � c iff there exists j0 ∈ Ot = {j ∈ J∞(A) | j ≤
t} such that R◦j0bc. By definition, the latter is equivalent to c ≤ j0 ◦ b for some
completely join-irreducible j0 ≤ t. By the monotonicity of ◦, this implies that
c ≤ t ◦ b which is equivalent to c ≤ b by the clause 8 of Definition 1. Conversely,
if c ≤ b, then, by the same clause, we have c ≤ t ◦ b =

∨{j ∈ J∞(A) | j ≤
t} ◦ b =

∨{j ◦ b ∈ J∞(A) | j ≤ t}. Since c ∈ J∞(A), this means there is some
j0 ∈ J∞(A) such that j ≤ t and c ≤ j◦b, which implies b � c. It is clear from the
construction that A• is a relevance frame. In particular, the fact that ∗∼ maps
elements of J∞(A) into J∞(A) follows from the definition of λ and Lemma 2.
We verify the six defining properties of Routley-Meyer frames in [8].

Proposition 5. For any perfect relevant algebra A it is the case that A � (A•)+.

Proof. We show that the map θ : A → (A•)+ given by θ(a) �→ {j ∈ J∞(A) | j ≤
a} is a relevant algebra isomorphism. See details in the full paper [8].
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4 The Calculus of the Algorithm PEARL

In this section we present a calculus of rewrite rules3, in the style of the algo-
rithms SQEMA [9] and ALBA [10,11], which is sound and complete for deriving
first-order frame correspondents and simultaneously proving canonicity for a
large class of formulas of LR, viz. the class of inductive (relevance) formulas
(see [7]). The algorithm PEARL and its implementation, described in the next
section, are based on this calculus. The algorithm accepts (inequalities of) L+

R

formulas as input and, if it succeeds, it produces first-order formulas in the lan-
guage of RM-frames that is valid in an RM-frame if and only if the original
formulas are valid in the complex algebra of this RM-frame.

The rules manipulate quasi-inequalities4 of L+
R formulas, i.e., expressions of

the form φ1 ≤ ψ1, . . . , φn ≤ ψn =⇒ φ ≤ ψ with φ, ψ, φi, ψi ∈ L+
R. In the setting

of relevant algebras, quasi-inequalities are considered universally quantified over
all propositional variables. Any formula φ ∈ L+

R can be treated as the inequality
t ≤ φ, which is a quasi-inequality with no assumptions. The inequalities not
affected by the application of the rule are regarded as a context, which will be
denoted by Γ . Given a set of inequalities Γ , we say that Γ is positive (negative)
in an atom a whenever each member of Γ is positive (negative) in a. We will
write Γ (α/p) for the set of inequalities obtained by uniformly substituting α for
atom p in each member of Γ .

All rules that are indicated below by a double line are invertible, although
the algorithm PEARL only applies the approximation rules in the downward
direction.

Monotone Variable Elimination Rules

Γ (p) =⇒ γ(p) ≤ β(p)
(⊥)

Γ (�/p) =⇒ γ(⊥/p) ≤ β(⊥/p)

Δ(p) =⇒ β(p) ≤ γ(p)
(�)

Δ(⊥/p) =⇒ β(�/p) ≤ γ(�/p)

where β(p) and Γ are positive in p, while γ(p) and Δ(p) are negative in p.

3 These rules can be seen as instantiations of the rules of the general-purpose algorithm
ALBA [11] in the context of perfect relevant algebras. However, the fact that the
latter are distributive lattice expansions allows us to present simpler formulations
of these rules closer to those in [10] and, to some extent, [9]. The approximation
rules presented in [11] allow for the extraction of subformulas deep from within
the consequents of quasi-inequalities, subject to certain conditions, rather than the
connective-by-connective style of our presentation. Although the former style of rule
is also sound in the present setting, we opted for the latter as we believe it is simpler
to present since the formulation requires significantly fewer auxiliary notions.

4 In [7] these are treated set-theoretically and are called there ‘quasi-inclusions’.
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First Approximation Rule

Γ =⇒ φ ≤ ψ

j ≤ φ, ψ ≤ m, Γ =⇒ j ≤ m

where j is a nominal and m is a co-nominal not occurring in the premise.

Approximation Rules

χ → φ ≤ m, Γ =⇒ α ≤ β
(→Appr-L)

j ≤ χ, j → φ ≤ m, Γ =⇒ α ≤ β

χ → φ ≤ m, Γ =⇒ α ≤ β
(→Appr-R)

φ ≤ n, χ → n ≤ m, Γ =⇒ α ≤ β

i ≤ χ ◦ φ, Γ =⇒ α ≤ β
(◦Appr-L)

j ≤ χ, i ≤ j ◦ φ, Γ =⇒ α ≤ β

i ≤ χ ◦ φ, Γ =⇒ α ≤ β
(◦Appr-R)

j ≤ φ, i ≤ χ ◦ j, Γ =⇒ α ≤ β

∼φ ≤ m, Γ =⇒ α ≤ β
(∼Appr-L)

φ ≤ n, ∼n ≤ m, Γ =⇒ α ≤ β

i ≤ ∼φ, Γ =⇒ α ≤ β
(∼Appr-R)

j ≤ φ, i ≤ ∼j, Γ =⇒ α ≤ β

where j a nominal and n is a co-nominal not appearing in the premises.

Residuation Rules

φ ≤ χ ∨ ψ, Γ =⇒ α ≤ β
(∨Res)

φ −� χ ≤ ψ, Γ =⇒ α ≤ β

φ ∧ χ ≤ ψ, Γ =⇒ α ≤ β
(∧Res)

φ ≤ χ ⇒ ψ, Γ =⇒ α ≤ β

φ ≤ χ → ψ, Γ =⇒ α ≤ β
(→Res)

φ ◦ χ ≤ ψ, Γ =⇒ α ≤ β

ψ ≤ φ ↪→ χ, Γ =⇒ α ≤ β
(↪→Res)

φ ◦ ψ ≤ χ, Γ =⇒ α ≤ β

Adjunction Rules

φ ∨ χ ≤ ψ, Γ =⇒ α ≤ β
(∨Adj)

φ ≤ ψ, χ ≤ ψ, Γ =⇒ α ≤ β

ψ ≤ φ ∧ χ, Γ =⇒ α ≤ β
(∧Adj)

ψ ≤ φ, ψ ≤ χ, Γ =⇒ α ≤ β

∼ φ ≤ ψ, Γ =⇒ α ≤ β
(∼Adj-L)

∼� ψ ≤ φ, Γ =⇒ α ≤ β

φ ≤ ∼ ψ, Γ =⇒ α ≤ β
(∼Adj-R)

ψ ≤ ∼� φ, Γ =⇒ α ≤ β

Not to clutter the procedure with extra rules, we allow commuting the argu-
ments of ∧ and ∨ whenever needed before applying the rules (∧Adj) and (∨Adj)
above. These rules are applied exhaustively in the downward direction, and pro-
duce the same results regardless of how an expression is parenthesized.

Ackermann-Rules: The Right Ackermann-rule (RAR) and Left Ackermann-
rule (LAR) are subject to the following conditions:
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– p does not occur in α,
– β is positive in p,
– γ is negative in p,

– Γ is negative in p,

– Δ is positive in p,

α ≤ p, Δ(p) =⇒ γ(p) ≤ β(p)
(RAR)

Δ(α/p) =⇒ γ(α/p) ≤ β(α/p)

p ≤ α, Γ (p) =⇒ β(p) ≤ γ(p)
(LAR)

Γ (α/p) =⇒ β(α/p) ≤ γ(α/p)

Note that the rules (⊥) and (�) are, in fact, special cases of the Ackermann-
rules (RAR) and (LAR), respectively.

Simplification Rules: In the rules below Γ is a possibly empty list of
inequalities.

Γ, i ≤ φ =⇒ i ≤ ψ
(Simpl-Left)

Γ =⇒ φ ≤ ψ

Γ, ψ ≤ m =⇒ φ ≤ m
(Simpl-Right)

Γ =⇒ φ ≤ ψ

In the rule (Simpl-Left) the nominal i must not occur in φ, or ψ, or any
inequality in Γ . Likewise, in the rule (Simpl-Right) the co-nominal m must not
occur in φ, or ψ, or any inequality in Γ . These rules are usually applied in
the post-processing, to eliminate nominals and co-nominals introduced by the
approximation rules.

Example 6. We illustrate an application of PEARL on the following formula
(known as axiom B2 in [31]): (p → q) ∧ (q → r) → (p → r). In the full paper
[8] we show that the elimination phase of PEARL succeeds and produces the
following pure quasi-inequality:

i ◦ (i ◦ j1) ≤ n1, j1 → n1 ≤ m =⇒ i ≤ m.

5 Algorithmic Description of PEARL

5.1 Pre-processing and Main Phase of PEARL

Here we will present a deterministic algorithmic version of the procedure PEARL,
which is used for the implementation.

1. Receive a formula φ in input.
2. If φ is an implication ψ → θ set X := {ψ ≤ θ}, otherwise form the initial

inequality t ≤ φ and set X := {t ≤ φ}.
3. Now preprocess the set X by iterating steps 3a, 3b until a pass is reached in

which none of the steps are applicable.
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(a) For any (θ ≤ χ) ∈ X, find the first positive occurrence of ∨ or negative
occurrence of ∧ in θ which is not in the scope of any positive occurrence
of → or a negative occurrence of ◦. Letting θ(α � β) denote θ with the
occurrence of the found subterm, where � ∈ {∨,∧}, replace θ ≤ χ in X
by θ(α) ≤ χ, θ(β) ≤ χ.

(b) For any (θ ≤ χ) ∈ X, find the first positive occurrence of ∧ or negative
occurrence of ∨ in χ which is not in the scope of any negative occurrence
of → or a positive occurrence of ◦. Again letting χ(α � β) denote χ with
the found subterm, replace θ ≤ χ in X by θ ≤ χ(α), θ ≤ χ(β).
The preceding two “splitting” steps are justified by the distributivity of
the operations ◦,→,∼ and the adjunction rules (∨Adj) and (∧Adj).

(c) Apply the monotone variable elimination rules to all inequalities in X
where they apply, replacing the involved inequalities in X with the results.

4. Proceed separately in each inequality φi ≤ ψi in X. Apply the first-
approximation rule to φi ≤ ψi to produce the quasi-inequality i ≤ φi, ψi ≤
m � i ≤ m.

5. As long as one of χ, φ in the approximation rules is matched by a subformula
that is neither a nominal or conominal, apply these rules exhaustively to this
quasi-inequality, interleaved with the splitting steps 3a–3b, where X is the set
of premises. The resulting quasi-inequality has premises that are irreducible
with respect to the approximation steps and splittings. This step terminates
since approximation rules are only applied downwards and splittings eliminate
a ∧ or ∨-symbol.

6. For each variable p in the quasi-inequality, and for each choice of polarity,
+p or −p, check if the right Ackermann-rule (for +p) or the left Ackermann-
rule (for −p) can be applied to eliminate p from the premises of the quasi-
inequality. This is done by applying the residuation and ∼-adjunction rules
exhaustively to all premises that contain exactly one occurrence of +p (or
−p) to solve the inequality for p (if possible) and checking that p only occurs
(if at all) with the opposite sign in all other premises. If possible, apply the
right or left Ackermann-rule. Otherwise, p cannot be eliminated, in which
case the next variable is tried. Backtracking is used to attempt to eliminate
all variables in all possible orders and with either positive or negative polarity.
If a variable cannot be eliminated in some particular quasi-inequality, then
the algorithm stops and reports this failure.

7. If the elimination phase has succeeded on all quasi-inequalities, the algorithm
proceeds to post-processing, including simplification and translation phases.

5.2 Post-processing and Translation to First-Order Logic

This phase5 applies if/when the algorithm succeeds to eliminate all variables,
thus ending with pure quasi-inequalities, containing only nominals and co-
nominals, but no variables. The purpose of the post-processing is to produce
a first-order condition equivalent to the pure quasi-inequality produced as a

5 This is an optimised version of the post-processing procedure outlined in [7].
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result of the main phase described in Sect. 5.1, and hence to the input formula.
Each pure quasi-inequality produced in the elimination phase is post-processed
separately to produce a corresponding first-order condition, and all these are
then taken conjunctively to produce the corresponding first-order condition of
the input formula. So, we focus on the case of a single pure quasi-inequality.
Computing a first-order equivalent of any pure quasi-inequality can be done
by straightforward application of the standard translation, but the result would
usually be unnecessarily long and complicated. This can be compensated by addi-
tional post-translation equivalent simplifications in first-order logic, also taking
into account the monotonicity conditions in Routley-Meyer frames. Instead, we
have chosen to first apply some pre-translation simplifications of the pure quasi-
inequality, using again some of the PEARL rules, and then to modify the standard
translation by applying it to pure inequalities, rather than to formulas, and by
extending it with a number of additional clauses dependent on the type (main
connective) of the formulas on both sides of these inequalities, thus applying
simplifications on the fly. For lack of space we have omitted the list of these
additional post-processing rules, which can be found in the full paper [8].

The resulting modified translation Tr is not restricted to pure quasi-
inequalities and can be applied to arbitrary pure formulas.

The post-processing of the pure quasi-inequality produced in Example 6 using
the translation Tr is illustrated in the full paper [8]. The resulting first-order for-
mula is ∀xi, xj, xj1 , yn1(Rxixj1yn1 → ∃xj(Rxixj1xj ∧ Rxixjyn1)) which is equiv-
alent to the first-order condition known from [31] for the axiom B2, and to the
one computed by the implementation of PEARL reported here.

6 Implementation of PEARL

Here we give a brief description of an implementation of PEARL in Python, based
on the description given in Sect. 5. The input is a LATEX string using the standard
syntax of relevance logic expressions. Intuitionistic implication ⇒, coimplication
−� , the right residual ↪→ of ◦, and the adjoints ∼� and ∼� can also appear in
an input formula. The expression is parsed with a simple top-down Pratt parser
[29] using standard rules of precedence. For well-formed formulas, an abstract
syntax tree (AST) based on Python dictionaries and lists of arguments is created
for each formula.

Five short recursive Python functions are used to transform the AST repre-
sentation step-by-step according to the specific groups of PEARL transformation
rules. The function preprocess(st) takes a LATEX string st as input and parses
it to an AST which we refer to as A. If the formula A is not well-formed, an error-
string is returned. If it has a top-level → symbol, it is replaced with a ≤ to turn
the formula into an inequality, and otherwise the equivalent inequality t ≤ A is
constructed. Subsequently the splitting rules and monotonicity rules from Sect. 4
are applied and the resulting list of inequalities is returned.

For example, with r"p\to q\land\mathbf t" as input, the formula is
parsed, rewritten as p ≤ q∧t, then the splitting rules produce the list [p ≤
q, p ≤ t] and monotonicity returns [� ≤ ⊥,� ≤ t].
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The function approximate(As) takes this list as input, and applies the first
approximation rule to each formula, followed by all possible left and right approx-
imations interleaved with further applications of the splitting rule. The result is
a list of quasi-equations that always have conclusion i ≤ m and premises that
are irreducible with respect to the approximation and splitting rules.

The function eliminate(As) then attempts to apply the Ackermann-rules
to each quasi-equations by selecting each variable, first with positive polarity
and, if that does not succeed, then with negative polarity. Backtracking is used
to ensure that all variables are tried in all possible orders. If for some quasi-
equations none of the variable orders allow all variables to be eliminated, then the
function reports this result. On the other hand, if for each quasi-equations some
variable order succeeds to eliminate all formula variables then the resulting list
of pure quasi-equations (i.e., containing no formula variables, but only nominals
or co-nominals) is returned.

Since these pure quasi-equations contain redundant premises, the function
simplify(As) is used to eliminate them, and to also apply the left and right
simplification rules. Finally the variant of the standard translation described in
Sect. 5.2 is applied to the pure quasi-equations and produces a first-order formula
on the Routley-Meyer frames.

The Python code can be used in any Jupyter notebook, with the output
displayed in standard mathematical notation. No special installation is needed
to use the program in a personal Jupyter notebook or in a public cloud-based
notebook such as Colab.google.com, and the output can be pasted into standard
LATEX documents. Moreover the program can be easily extended to handle the
syntax of other suitable logics and lattice-ordered algebras. The resulting formula
can also be translated to TPTP, Prover9 or SPASS syntax. The Python code is
available at github.com/jipsen/PEARL in the form of a Jupyter notebook. It can
also be copied and used directly in a browser at https://colab.research.google.
com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing. In the
full paper [8] we provide some examples of output from the PEARL
implementation.

7 Canonicity and Applications to BI-Logic and Relation
Algebras

Here we report on some new theoretical and practical results related to the theory
and implementation of PEARL. We begin with a theoretical result, which, for
lack of space, we only sketch here.

Theorem 7. The validity of all L+
R-formulas on which PEARL succeeds is pre-

served under canonical extensions of relevant algebras.

Proof. Let φ ≤ ψ be an LR-inequality on which PEARL succeeds and let A

be a relevant algebra. Let PEARL(φ ≤ ψ) denote the purified quasi-inequality
produced from input φ ≤ ψ. For any L+

R quasi-inequality Γ =⇒ α ≤ β,
we write A

δ |=A Γ =⇒ α ≤ β to indicate that Γ =⇒ α ≤ β is true in

https://www.github.com/jipsen/PEARL
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing
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A
δ under all assignments that send propositional variables to elements of the

original algebra A (and nominals to J∞(A) and co-nominals to M∞(A)) while,
as usual, A

δ |= Γ =⇒ α ≤ β indicates truth under all assignments. The
following chain of equivalences establishes the canonicity of φ ≤ ψ:

A |= φ ≤ ψ A
δ |= φ ≤ ψ

�
A

δ |=A φ ≤ ψ �
�

A
δ |=A PEARL(φ ≤ ψ) ⇔ A

δ |= PEARL(φ ≤ ψ)

The uppermost bi-implication on the left is immediate by the way we defined
|=A and the fact that A is a subalgebra of A

δ. The lower bi-implication on the
left follows by that fact that, if a quasi-inequality Δ′ =⇒ γ′ ≤ χ′ is obtained
from another, Δ =⇒ γ ≤ χ, through the application of PEARL rules, then
A

δ |=A Δ =⇒ γ ≤ χ iff A
δ |=A Δ′ =⇒ γ′ ≤ χ′. This is straightforward to check

for all rules except the Ackermann-rules. We refer the reader to [10] and/or [11]
for the details of the latter. The horizontal bi-implication follows from the facts
that, by assumption, PEARL(φ ≤ ψ) is pure, and that restricting assignments
of propositional variables to elements of A is vacuous for pure formulas, as they
contain no propositional variables. The bi-implication on the right follows by the
soundness of all PEARL rules on perfect algebras, which is routine to verity.

Via the discrete duality between perfect relevant algebras and Routley-Meyer
frames established in Sect. 3, it follows that all L+

R-formulas on which PEARL
succeeds axiomatise logics which are complete with respect to their respective
first-order definable classes of Routley-Meyer frames.

As mentioned in the introduction, a large syntactically defined class of
inductive relevance formulas in LR is defined in [7], where it is shown that
PEARL succeeds for all such formulas and correctly computes their equivalent
with respect to frame validity first-order definable conditions on Routley-Meyer
frames. Therefore, all inductive L+

R-formulas are canonical. This result general-
izes the “canonicity via correspondence” result in [37], applied there to the frag-
ment of LR involving of all specific relevance logic connectives only the fusion.

We can now state the results above applied to the specific implementation
of PEARL reported here. However, the proof of the correctness of the implemen-
tation is beyond the scope of this paper. Still, we can report that the imple-
mentation has succeeded on all axioms A1-A9, B1-B30, and D1-D8 listed in the
appendix of [7], copied there from [31], and has computed first-order conditions
equivalent to those known from the literature.

Bunched implication logic [30] is closely related to a negation-free relevance
logic. The algebraic semantics of bunched implication logic is given by bunched
implication algebras, or BI-algebras. They are defined by axioms 1–3 and 7–9
of Definition 1 together with a new binary operation symbol ⇒ such that
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10. a ∧ b ≤ c iff a ≤ b ⇒ c (hence ⇒
is a Heyting algebra implication)

11. (a ◦ b) ◦ c = a ◦ (b ◦ c),
12. a ◦ b = b ◦ a.

The steps of the PEARL algorithm are not affected by these addition axioms
(although additional rules for the associativity and commutativity of ◦ could
be added), and the relational semantic structures of BI-logic and BI-algebras
are precisely Routley-Meyer frames. However in BI-logic the notation differs
slightly, since →, ◦,⇒ are replaced by −∗, ∗,→, and this alternative notation is
user-selectable in the implementation.

Lastly, we note that the algorithm PEARL can also be applied to relation
algebras, as they form a subvariety of relevant algebras extended with a Heyting
implication ⇒. An axiomatization of relation algebras in this setting consists of
axioms of relevant algebras (1–9 from Definition 1), 10, 11 above and6

13. (x ⇒ ⊥) ⇒ ⊥ = x
(hence ⇒ is a classical implication

and x ⇒ ⊥ is denoted ¬x),

14. x → y = ∼(∼y ◦ x),
15. x� = ∼(x ⇒ ⊥),
16. (x ◦ y)� = y� ◦ x�.

Axiom 13 ensures that the lattice structure is a Boolean algebra, hence the
partial order in the Routley-Meyer frames of a relation algebra is an antichain.
In the theory of relation algebras these frames are known as ‘atom structures’,
defined in [27, Def. 2.1]. For the application of PEARL to relation algebras, it
suffices to replace the converse operation by the term ∼(x ⇒ ⊥) and to interpret
any � symbol in the resulting first-order formula as an equality symbol. Note
that relevant negation ∼x can, in turn, also be defined via the relation algebra
term (¬x)�. While there is a long history of Sahlqvist formulas and correspon-
dence theory for Boolean algebras with operators [13,25], it is interesting to note
that the PEARL algorithm and its implementation can be adapted to relation
algebras and covers the more general class of inductive formulas.

8 Concluding Remarks

In this paper we have re-interpreted the algorithm PEARL from [7] as an algo-
rithm which manipulates quasi-inequalities interpreted over perfect relevant alge-
bras. Implementing the algorithm in a way that produces reasonably optimal
(in size) versions of first-order correspondents required detailed specifications
and strategic choices in the pre-processing, main, and post-processing phases
(Sects. 5.1 and 5.2) and in the specialized post-processing and translation pro-
cedure, refining the normal standard translation, developed in Sect. 5.2. It is
easy to see that the complexity of the problem solved by PEARL is in NP-time
because, once the correct ordering or elimination of the variables is selected,
PEARL completes its work in polynomial time. However, theoretically, it may
6 While this equational basis for relation algebras appears to be quite long, it can

be shown that axioms 3–7 are redundant. Hence, it is comparable in length to the
original axiomatization of relation algebras.
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take trying an exponential number of such orderings until success. Whether this
is possible is not yet known, so the optimal complexity of the problem is still
under investigation.
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Abstract. We show a necessary and a sufficient condition for a qua-
sivariety to be a variety. Using this, we show that the quasivariety of
representable relation algebras over the signature (·, ∩, 1) is not avariety.

Keywords: Relations · Homomorphisms · Equational theories

1 Introduction

Relations can be equipped with several natural operations: union ∪, intersection
∩, complementation −, composition ·, converse c, the empty relation 0, the full
relation � and the identity relation 1. A set of relations closed under these
operations forms a proper relation algebra. We call representable relation algebras
(RRA) those algebras which are isomorphic to a proper relation algebra.

Representable relation algebras received a lot of attention since the seminal
work of Tarski [11]. However, many of these results are actually negative results.
For instance, RRA is not finitely axiomatizable [10] and its equational theory is
undecidable [11, p88].

This motivated the investigation of the subreducts of RRA, that is, restric-
tions of RRA to smaller signatures, hoping that these negative results would turn
out to be positive. The subreduct that we focus on in this work is RRA(·,∩, 1),
the restriction of RRA to the operations of composition, intersection and the
identity relation, also known as the class of representable semi-lattice ordered
monoids. It was deeply studied in [2] and [8]. For example, its equational theory
is decidable [1] but not finitely axiomatizable [5].

Despite all the negative results about RRA, it enjoys an important positive
result: it is a variety [12]. That is to say, membership in RRA can be character-
ized by (a possibly infinite) set of equations. It was then natural to ask whether
this result holds also for its subreducts.

The positive subreducts1 of RRA are known to be quasi-varieties, i. e., mem-
bership can be characterized by (a possibly infinite) set of Horn clauses [2].
However, some of them are not varieties [1, Thm.6].
1 Those subreducts that do not use negation.

c© Springer Nature Switzerland AG 2021
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Despite an attempt in [8], the status of RRA(·,∩, 1) is not known2. In this
paper, we show that RRA(·,∩, 1) is also not a variety.

We use a technique similar to [1]. Actually, we abstract their argument in a
more general setting, then we apply it to our particular case. More precisely, we
proceed in two steps.

First, we give a necessary and sufficient condition for a quasivariety to be
a variety. In words, this condition says that a quasivariety C is a variety if and
only if, for every Horn clause (H ⇒ t = u)3 which is valid in C, its conclusion
(t = u) can be “deduced” from its hypothesis H.

This gives us a strategy to show that RRA(·,∩, 1) is not a variety. It is
“enough” to find a Horn clause which is valid in RRA(·,∩, 1) but whose conclu-
sion cannot be deduced from its hypothesis. Of course, the difficulty here is to
guess this Horn clause and to show that indeed its conclusion is not provable
from its hypothesis. For this purpose, we rely on graph theoretical tools and intu-
itions coming from a well established graph characterization of the equational
theory of RRA(·,∩, 1) [1].

Outline. In Sect. 2, we define varieties, quasi-varieties and their equational and
Horn theories. Then we introduce the quasivariety RRA(·,∩, 1) and the graph
characterization of its equational and Horn theories. We show in Sect. 3 the
necessary and sufficient condition for a quasivariety to be a variety. Building on
this, we show in Sect. 4 that RRA(·,∩, 1) is not a variety.

2 Preliminaries

2.1 Algebras, Varieties and Quasi-varieties

Algebras. A signature is a pair S = (O, ar) where O is a set of operations, and
ar : O → ω is a function assigning to each operation an integer called its arity.
An algebra over S consists of a set D called its domain, and for each operation
o of S with arity n, a function fo : Dn → D.

Equations and Horn Clauses. We fix in the rest of the paper a set X of
variables. Terms over a signature S = (O, ar) are generated by the following
syntax:

t := x | o(t1, . . . , tn) x ∈ X, o ∈ O and n = ar(o).

We denote the set of terms by TX(S), but if the signature and the set of variables
are clear from the context, we denote it simply T . An equation is a pair of terms
2 The proof that RRA(·, ∩, 1) is not a variety in [8] relies on the claim that the equa-

tional theory of RRA(·, ∩, 1) is finitely axiomatizable [2], which turns out to be
wrong, see [9] and [5].

3 Here, H is a conjunction of equations called the hypothesis, the equation (t = u) is
the conclusion.
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that we usually write (t = u). A Horn clause consists of a finite set of equations
H called its hypothesis and an equation called its conclusion, we usually write it
like this (H ⇒ t = u). An equation can be seen as a Horn clause with an empty
set of hypothesis.

Truth. Let A be an algebra over a signature S, and let D be the domain of A.
An interpretation is a function σ : X → D mapping variables into elements of
D. We can extend σ to all terms σ : T → D, by interpreting the operations of
S as the corresponding functions of A.

Let σ be an interpretation as above. An equation (t = u) is true in A under
σ, noted

A, σ |= (t = u)

if σ(t) = σ(u). A set of equations H are true in A under σ, noted

A, σ |= H

if this is the case for every equation in H. A Horn clause

ϕ := (H ⇒ t = u)

is true in A under σ, noted
A, σ |= ϕ

if either A, σ �|= H or A, σ |= (t = u). We say that ϕ is true in A, noted A |= ϕ,
if ϕ is true in A under all possible interpretations.

(Quasi-)Varieties. We have introduced individual algebras, now we focus on
classes of algebras. Let C be a class of algebras over a signature S. We say that
an equation or a Horn clause ϕ is valid in C, and write C |= ϕ if ϕ is true in
every algebra of C. The equational theory (resp. Horn theory) of C denoted Eq(C)
(resp. Horn(C)) is the set of equations (resp. Horn clauses) which are valid in C.

Let C be a class of algebras over S and let E be a set of equations or Horn
clauses. We say that E axiomatizes C if for every algebra A over S:

A ∈ C iff A |= E

We say that a class of algebras is a variety (resp. quasivariety) if it can be
axiomatized by a set of equations (resp. Horn clauses).

Remark 1. Note that if C is a variety (resp. quasivariety), then C is axiomatized
by its equational (resp. Horn) theory.

2.2 Representable Relation Algebras

In this paper, we focus on the signature whose set of operations is {·,∩, 1}, the
operations · and ∩ being of arity 2 and the operation 1 being of arity 0. We will
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write this signature (·,∩, 1). To lighten notations of terms over this signature,
we often write tu for t ·u, and assign priorities to operations so that ab∩c parses
as (a · b) ∩ c.

A proper relation algebra is an algebra over (·,∩, 1) whose universe U is a
set of relations, that is U ⊆ P(B × B), where B is a base set, the operations
· and ∩ are respectively the composition and intersection of relations, and 1 is
the identity relation over B. A representable relation algebra is an algebra over
(·,∩, 1) which is isomorphic to a proper relation algebra; we denote their set by
RRA(·,∩, 1).

The class of algebras RRA(·,∩, 1) forms a quasivariety [2, p. 2]. The goal of
this paper is to show that we cannot say more: RRA(·,∩, 1) is not a variety.

In RRA(·,∩, 1), it will be convenient to work with inequations instead of
equations. An inequation is a pair of terms written as (t ≥ u), which is a shortcut
for the equation (t ∩ u = u). Similarly, we will work with Horn clauses which
use inequations in their hypothesis and conclusions instead of equations. By
definition, every inequation is an equation, and conversely every equation (t = u)
is equivalent to the two equations (t ≥ u) and (u ≥ t). Similarly, every Horn
clause is equivalent to a set of Horn clauses using inequations. In the sequel,
when dealing with relation algebras, we will mostly work with inequations and
Horn clauses using inequations. We call the inequational (resp. Horn) theory of
relations the set of inequations (resp. Horn clauses using inequations) which are
valid in RRA(·,∩, 1).

2.3 Characterization of the Inequational and Horn Theory
of RRA(·,∩, 1)

Graphs. A 2-pointed labeled graph is a tuple (V,E, ι, o) where V is a set of
vertices, E ⊆ V ×A×V is a set of edges, A is a set of labels and ι and o are two
distinguished vertices called the input and output. We simply call them graphs
in the sequel; we depict them as expected, with unlabeled ingoing and outgoing
arrows to denote the input and the output, respectively. We denote by G the set
of all graphs.

We define the operations · and ∩ on graphs as follows:

G ∩ H =
G

H
G · H = G H

We associate to every term t ∈ T a graph G(t) called the graph of t, by letting:

G (1) = G (x) = x (x ∈ X)

and by interpreting the operations · and ∩ on graphs as above.

Example 1. The graphs of the terms xy ∩ xz and xy ∩ 1 are respectively the
following:
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x yx y

x z

Graph Terms. A graph term is a graph which is the image of some term, and
we denote by Gt the set of graph terms. Not every graph is a graph term. For
instance, graph terms do not contain the graph K4, the complete graph with
four vertices (see Fig. 1(a)), as a minor4 [3]. Graph terms also do not contain
back patterns [5], which we recall below.

Definition 1 (Back pattern). A back pattern in a graph is a pair of distinct
nodes m,n together with three directed paths: π from the input to m, κ from n
to m, and ρ from n to the output, such that π and κ intersect exactly on m and
κ and ρ intersect exactly on n.

Such a back pattern can be depicted as follows: ι
π−→ m

κ←−n
ρ−→ o.

Proposition 1 ([3, Cor. 27], [5, Prop. 12]). Graph terms do not contain back
patterns, nor K4 as a minor.

Example 2. The graph of Fig. 1(b) is not a graph term, no matter how we label
or orient the edges, because it contains K4 as a minor. Indeed, if we remove the
green edge and contract one of the two blue edges, we obtain K4. The graph
of Fig. 1(c) is not a graph term, no matter how we label its edges, because it
contains a back pattern, colored in red.

Fig. 1. (a) The graph K4. (b) A graph containing K4 as a minor. (c) A graph with a
back pattern.

Homomorphisms. Given two graphs G = 〈V,E, ι, o〉 and G′ = 〈V ′, E′, ι′, o′〉,
a homomorphism h : G → G′ is a mapping from V → V ′ that preserves labeled
edges, i.e. if (x, a, y) ∈ E then (h(x), a, h(y)) ∈ E′, and preserves input and
output, i.e. h(ι) = ι′ and h(o) = o′. We say that the homomorphism h identifies
the vertices x and y if h(x) = h(y). We write G � G′ if there exists a graph
homomorphism from G to G′.

4 A graph G is a minor of a graph H if G can be obtained from H by deleting some
edges and vertices and contracting some edges.
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Characterizing the Inequational Theory of Relations. The inequational
theory of RRA(·,∩, 1) can be characterized using graphs and homomorphisms
as follows.

Theorem 1 ([1, Thm. 1], [6, p. 208]). For all terms t, u,

RRA(·,∩, 1) |= (t ≥ u) iff G (t) � G (u)

Example 3. The validity of the inequation xy ∩ xz ≥ x(y ∩ z) is witnessed by
the following homomorphism:

x

z

y

x

x

z

y

Characterizing the Horn Theory of Relations. A graph context is a graph
with a distinguished edge labeled by a special letter •, called its hole. If G is a
graph and C a graph context, then C[G] is the graph obtained by “plugging G
in the hole” of C, that is, C[G] is the graph obtained as the disjoint union of
G and C, where we identify the input (resp. output) of G with the input (resp.
output) of the edge labeled by • in C, and we remove the edge of C labeled •.
Here is an example:

G :
x

y
C :

x •

z

C[G] :
x x

y
z

Definition 2 (The relation �H). Let H be a set of inequations. We define
the relation >H on graphs as follows. We set G >H H if there exists a graph
context C and an inequation (t ≥ u) ∈ H such that:

G = C[G(t)] and H = C[G(u)]

We define �H as the transitive closure of � ∪ >H .

In the definition above, the graphs G, H and C are not necessarily graph terms.

Theorem 2 ([4, Thm. 12]). For all terms t, u and set of inequations H, we
have:

RRA(·,∩, 1) |= (H ⇒ t ≥ u) iff G(t) �H G(u)
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Hence, in order to show that a Horn clause (H ⇒ t ≥ u) is valid, we need to find
a sequence of graphs G0, . . . , Gn such that G0 = G(t), Gn = G(u) and for every
i ∈ [0, n − 1] the graphs Gi and Gi+1 are either related by homomorphism or by
the relation >H . We say that this sequence witnesses the validity of this Horn
sentence.

Example 4. The validity of the following Horn clause

xy ≥ x ⇒ xyy ∩ xz ≥ x(y ∩ z)

is witnessed by the following sequence:

The picture should be read from left to right. First, we identified in the graph
of xyy ∩ xz a context (in red) and the graph of xy (in green). As allowed by the
hypothesis xy ≥ x, we replaced the graph of xy by that of x, this is a >H step.
Finally we apply a homomorphism to get the graph of x(y ∩ z).

3 When Is a Quasivariety a Variety?

In the rest of this section we fix a signature S and a set of variables X. Algebras
will be over S and terms over S and X. We omit the mention of the signature
as it is clear from the context. In the following we give a necessary and sufficient
condition for a quasivariety to be a variety.

A context is a term with a unique occurrence of the special variable • called
its hole. If C is a context and t a term, then C[t] denotes the substitution of the
variable • by t in C.

Definition 3. Let C be a class of algebras and H be a set of equations. We
define the relation =

H
on terms as follows. We set (t =

H
u) if there exists a term

context C and an equation (t′ = u′) ∈ H such that:

t = C[t′] and u = C[u′]

We define the relation =
H,C

as the transitive closure of the relation (Eq(C) ∪ =
H

)

i. e., the union of the equational theory of C and the relation =
H
.

If (t =
H,C

u) we say that the equation (t = u) is a consequence of the hypothesis

H in the algebras C.

In words, we have (t =
H,C

u) if there exists a sequence of terms t0, . . . , tn such that

t0 = t, tn = u and for every i ∈ [0, n − 1] the equation ti = ti+1 is either valid
in C or is obtained as the application of a context to an equation of H. We call
such sequence a witness of (t =

H,C
u).
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Remark 2. An alternative definition for =
H,C

would have been to use a proof sys-

tem which uses the equations of H and Eq(C) as axioms.

A congruence on terms is an equivalence relation on terms that is stable
under contexts.

Lemma 1. The relation =
H,C

is a congruence on terms.

Proof. The relation =
H,C

is clearly an equivalence relation. Let us show that it

is stable under contexts. We proceed by induction on the length of a witness
sequence for (t =

H,C
u). If (t, u) ∈ Eq(C) then we have also (C[t], C[u]) ∈ Eq(C)

because Eq(C) is a congruence. If (t =
H

u) then
(
C[t] =

H
C[u]

)
, because the

composition of two contexts is also a context. The inductive step is immediate.

The following theorem says that a quasivariety C is a variety if and only if
the conclusion of every valid Horn clause is a consequence of its hypothesis in C.

Theorem 3. A quasivariety C is a variety if and only if the following holds

(H ⇒ t = u) ∈ Horn(C) ⇒ t =
H,C

u (†)

Remark 3. Note that the reverse implication of (†) is true, regardless of whether
C is a variety or not.

Proof. (⇒) Suppose that C is a variety and let (H ⇒ t = u) be a Horn clause
valid in C. Let TH,C be the algebra of terms quotiented by the congruence =

H,C
.

The algebra TH,C satisfies all the equations in Eq(C) because =
H,C

contains Eq(C).

Since C is a variety, we have that TH,C ∈ C.
Consider the interpretation σ which assigns to every letter its equivalence

class w.r.t. the relation =
H,C

. We have that

TH,C, σ |= H

because the relation =
H,C

contains H. Since (H ⇒ t = u) ∈ Horn(C), we have

that
TH,C, σ |= (t = u)

which is the same thing as (t =
H,C

u).

(⇐) Suppose that (†) holds and let us show that C is a variety. Let A be an
algebra satisfying all the equations in Eq(C), we show that A is an algebra in C.
As C is a quasivariety, it is enough to show that A satisfies all Horn clauses valid
in C. Let (H ⇒ t = u) be such Horn clause and let σ be an interpretation such
that A, σ |= H. By (†), we have that (t =

H,C
u). We can show by a simple induction

on the length of a sequence justifying (t =
H,C

u) that we have A, σ |= (t = u). This

concludes the proof.
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4 The Quasivariety RRA(·,∩, 1) Is Not a Variety

Let us first specify Theorem 3 for the quasivariety RRA(·,∩, 1). For that, we
define below the relation �H on graph terms. Recall that graph terms are those
graphs coming from terms, and that we denote their set by Gt.

Definition 4 (The relation �H). Let H be a set of inequations. We define
the relation �H on graph terms as follows. For G,H ∈ Gt, we set G �H H if
there exists a context C ∈ Gt and an inequation (t ≥ u) ∈ H such that:

G = C[G(t)] and H = C[G(u)]

We define the relation �H⊆ Gt × Gt as the transitive closure of the relation
� ∪ �H .

In words, G �H H if there exists a sequence of graph terms G0, . . . , Gn such
that G0 = G, Gn = H and for every i ∈ [0, n − 1] the graphs Gi and Gi+1

are either related by homomorphism or by the relation �H . We say that this
sequence is a witness for G �H H. The relation �H should not be confused with
the relation �H . Indeed, for the latter, the graphs of a witness sequence may not
be graph terms.

Using Theorem 1, we can adapt Theorem 3 to get the following version for
relation algebras.

Theorem 4. If RRA(·,∩, 1) is a variety then the following holds

RRA(·,∩, 1) |= (H ⇒ t ≥ u) ⇒ G(t) �H G(u)

Proof. Suppose that RRA(·,∩, 1) is a variety and let (H ⇒ t ≥ u) be a Horn
clause valid in RRA(·,∩, 1). To simplify notations suppose that H = {v ≥ w}.
The general case can be treated similarly. Note that the Horn clause above is a
shortcut for

(v ∩ w = w) ⇒ (t ∩ u = u)

By Theorem 3, there is a sequence of terms t0, . . . , tn such that t0 = (t∩u), tn = u
and for every i ∈ [0, n− 1] the equation (ti = ti+1) is either valid in RRA(·,∩, 1)
or is obtained as an application of the hypothesis (v ∩ w = w) under some
context.

Let us show that G(t) �H G(u). We have that G(t)�G(t∩u), so we only need
to show that G(t ∩ u) �H G(u). For that, we exploit the sequence above. Note
that if (ti = ti+1) is valid in RRA(·,∩, 1), then G(ti) � G(ti+1) by Theorem 1.
If (ti = ti+1) is obtained as an application of the hypothesis (v ∩ w = w) under
some context C, we can distinguish two cases.

– Either ti = C[w] and ti+1 = C[v ∩ w]. In this case we have G(ti) � G(ti+1)
because G(w) � G(v ∩ w).

– Or ti = C[v ∩ w] and ti+1 = C[w]. In this case we show that G(ti)�HG(ti+1).
Indeed, Let C ′ be the graph context G(C[• ∩ w]). We have that

G(ti) = C ′[G(v)]>HC ′[G(w)] = G(C[w ∩ w]) � G(C[w]) = G(ti+1)
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This ends the proof.

This gives us a strategy to show that RRA(·,∩, 1) is not a variety: it is enough
to find a Horn clause (H ⇒ t ≥ u) which is valid for relations, but for which
G(t) ��H G(u). We explicit such counter-example below.

Definition 5 (The counter-example). Let X = {x, y, z, a, b, c} be a set of
variables. We define the terms η and ρ and the set of equations K over X as
follows:

η := xy
(
z ∩ a(bya ∩ 1)bc(dxc ∩ 1)d

) ∩ 1 ρ := xyz ∩ 1 K := {ab ≥ zx, cd ≥ yz}

We show that (K ⇒ η ≥ ρ) is indeed a counter-example. This is Proposition 2
below.

Proposition 2. We have that:

RRA(·,∩, 1) |= (K ⇒ η ≥ ρ) but G (η) ��K G (ρ) .

Corollary 1. The quasivariety RRA(·,∩, 1) is not a variety.

Proof (of the first part of Proposition 2). To prove that (K ⇒ η ≥ ρ) is a valid
Horn clause, we can either proceed by a direct but boring proof, or use Theorem 2.
We choose the second option, and show that G(η)�K G(ρ). In Fig. 2, we explicit
a sequence witnessing that G(η) �K G(ρ). It should be read from top left, then

Fig. 2. A sequence witnessing that G (η) �K G (ρ).
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down, then top right: we start by applying a homomorphism to the graph G(η);
the nodes which are identified by the homomorphism are linked by the dotted
lines. Then we apply the relation >K : the graph of ab is colored in green, we
replace it by zx as allowed by the set K. We apply again >K , this time by
replacing the graph of cd by the graph of yz. We finally apply a homomorphism
to get G(ρ).

Note that the intermediary graphs of the witness sequence of Fig. 2 are not graph
terms. For example, the second graph from the right contains a back pattern
(Definition 1), colored in red.

Let us now explicit our strategy to prove that G(η) ��K G(ρ). First, let
us remark that G(η)� �G(ρ). Indeed, no homomorphism can preserve the edges
labeled a, b, c and d. We will show that under some constraints on G and H, we
have the following result:

If G �K H and G(η) � G then G(η) � H (Lem. 4)

By taking G and H to be respectively G(η) and G(ρ) in this result, and using
the remark above, we can show by contradiction that G(η) ��K G(ρ).

As said before, Lemma 4 is true under some constraints on the graphs G and
H. More precisely, it is true when they do not contain some specific graphs called
persistent patterns as sub-graphs. In the following we define these persistent
patterns and show Lemma 4.

Definition 6 (Persistent patterns). Persistent patterns are the graphs of
Fig. 3.

Fig. 3. Persistent patterns. The vertices of these graphs may not be distinct. All labels
belong to X, the variables used in the counter example (Definition 5) with the following
constraints: α �= β, γ �= a, δ �= b, σ �= c and θ �= d.

Persistent patterns are called so because they satisfy the following property,
whose proof is a simple case distinction.
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Lemma 2. If G �K H and G contains a persistent pattern, then H also con-
tains a persistent pattern.

Fig. 4. Labeling the vertices of G (η).

For convenience, we label the nodes of G(η) as in Fig. 4. We say that a
vertex of G(η) is tagged by an integer i if its label contains i. For instance, the
vertex labeled by 2′ is tagged by the integer 2. To prove Lemma 4, we need the
following result, which says that a homomorphism from G(η) to any graph term
not containing a persistent pattern cannot identify vertices tagged by distinct
integers.

Lemma 3. Let G be a graph term not containing a persistent pattern, and let
h : G(η) → G be a homomorphism from G(η) to G. The homomorphism h cannot
identify two vertices tagged by distinct integers.

Note however that h may identify two vertices tagged by the same integer, for
instance the vertices labeled by 2 and 2′.

Proof (of Lemma 3). We show that if h identifies two nodes tagged by distinct
integers, then G contains necessarily a persistent pattern, a back pattern or K4 as
a minor. Figure 5 shows the persistent patterns that appear if we identify nodes
with distinct tags. The gray cells are symmetric and the white cells correspond to
vertices tagged by the same integer. To complete the proof, we need to prove that
the vertex tagged by 1 cannot be identified by a vertex tagged by 4, these cases
correspond to the cells (
), (†) and (‡). We show that if we do such identification,
we create a back pattern or K4 as a minor.

(
) If we identify the vertices labeled 1 and 4 we create the following back
pattern, where the vertex labeled (1, 4) is the image of 1 and 4 by h. It is a back
pattern because its vertices are pairwise distinct. Indeed, if its vertices were not
pairwise distinct, then we would create one of the patterns treated in Fig. 5.
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(†) If we identify the vertices labeled 1 and 4′ we create the same back pattern.
(‡) If we identify the vertices labeled 1 and 4′′ we distinguish two cases. Either

the vertices 0 and 0′ are not identified by h, and in this case we create this back
pattern:

Otherwise, 0 and 0′ are identified by h. We can suppose that 1 and 4 are not
identified by h (otherwise, this case was treated by (
)). In this case, we obtain
the following graph as a subgraph, which contains the graph K4 as a minor:

Lemma 4. Let G,H be two graphs and suppose that H does not contain a per-
sistent pattern. We have that:

If G �K H and G(η) � G then G(η) � H

Proof. We proceed by induction on length of the sequence witnessing that G �K
H. Note that since H does not contain a persistent pattern, all the graphs of the
witness sequence do not contain a persistent pattern as well thanks to Lemma 2.

The inductive step is easy, the interesting part are the base cases. The first
one is when G � H, and we have clearly that G(η) � G implies that G(η) � H
because we can compose these two homomorphisms. Now suppose that G �K H.
There are two cases to consider: we have either used the inequation ab ≥ zx or
cd ≥ yz to justify G �K H. Suppose that we are in the first case, i. e., there
exists a context C ∈ Gt such that:

G = C[G(ab)] and H = C[G(zx)]

Let h be a homomorphism from G(η) to G. Our goal is to show that the image
of h lies in C. If we do so, we can easily prove that G(η) � H because h can also
be used to map G(η) to H.

Let m be the inner vertex of the graph G(ab), that is the vertex distinct from
the input and output. We show that no vertex of G(η) can be mapped by h to
m. Suppose for contradiction that there exits a vertex of G(η) whose image is
m. This vertex is necessarily the vertex 3 (see Fig. 4), and we have necessarily
that h(2) = h(2′) and h(4) = h(4′). But this creates the following back-pattern
in G, where as usual a node labeled by two integers is the common image of the
corresponding vertices of G(η):
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Fig. 5. Identifying two vertices tagged by distinct integers creates persistent patterns.

This is indeed a back pattern because its vertices are pairwise distinct thanks
to Lemma 3.

We treat the case where the hypothesis cd ≥ yz was used to derive G �K H
in a similar way. In this case, the following back pattern appears:

This concludes the proof of this lemma.
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Now we can complete the proof of Proposition 2.

Proof (of the second part of Proposition 2). Let us show that G(η) ��K G(ρ).
Suppose for contradiction that G(η) �K G(ρ). Note that G(η) does not contain
a persistent pattern and that G(η) is homomorphic to itself, hence by Lemma 4,
we have that G(η)�G(ρ), which is clearly not possible because the edges of G(η)
labeled by a cannot be preserved by such a homomorphism.
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Abstract. Global transformations form a categorical framework adapt-
ing graph transformations to describe fully synchronous rule systems on
a given data structure. In this work we focus on data structures that
can be captured as presheaves and study the computational aspects of
such synchronous rule systems. To obtain an online algorithm, a com-
plete study of the sub-steps within each synchronous step is done at the
semantic level. This leads to the definition of accretive rule systems and
a local criterion to characterize these systems. Finally an online compu-
tation algorithm for theses systems is given.

Keywords: Global transformation · Synchronous rule application ·
Rewriting system · Online algorithm · Category theory

1 Introduction

Classically, a graph rewriting system consists of a set of rewriting rules l ⇒ r
expressing that l should be replaced by r somewhere in an input graph. Usually
rules are applied one after the other in a non-deterministic way [3,4,6]. Allowing
multiple rules to be applied simultaneously has been the subject of multiple
studies, leading to the concepts of parallel rule applications, concurrent rule
applications [7], and amalgamation of rules [2]. For instance, amalgamation of
rules is considered when two rules l ⇒ r and l′ ⇒ r′ are applicable but l
and l′ overlap. Basically, the behavior on the overlap is given by a third rule
specifying how r and r′ should consequently overlap. But some systems do not
only require the amalgamation of a few, finite, number of rule applications, but
the amalgamation of an unbounded number, the whole input being transformed.
A simple example is triangular mesh refinement where the triangles of a mesh
are all subdivided into many smaller triangles simultaneously, with a coherent
behavior on the overlap between triangles [14]. In this extreme case, the notion of
replacement is not appropriate, no part of the initial mesh is really kept identical.

Rethinking rewriting for those particular systems where the transformation is
globally coherent leads to a generic and economical mathematical structure cap-
tured easily with categorical concepts, the so-called global transformations [14].
This point of view has been applied mathematically to examples like mesh refine-
ments on abstract cell complexes [14], but also deterministic Lindenmayer sys-
tems acting on formal words [8], and cellular automata acting on labeled Caley
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graphs [10]. In the present work, we tackle global transformations in an algo-
rithmic perspective and show how they can be computed in an online fashion
when transforming graphs, but also any generalization of graphs suitably cap-
tured by categories of presheaves (labeled graphs, higher-dimensional graphs,
etc.). This online strategy saves memory during the computation, more memory
being also saved through a condition allowing the modifications to happen in
place: accretiveness.

The article is organized as follows. After adapting in Sect. 2 the definition of
global transformations to presheaves, Sect. 3 unfolds all implications of the online
and accretive perspective at the semantic level, and gathers all necessary formal
results. This leads to the presentation of the algorithm in Sect. 4, followed by a
discussion in Sect. 5. In the present version, facts are only stated. An extended
version with all the proofs can be found at [9].

2 Background on Global Transformations

In the section, we adapt the definitions of global transformations given in [8,14]
to fit with the context of presheaves and monomorphisms between them. The
reader is assumed to be familiar with the definitions of categories, functors,
monomorphisms, comma categories, diagrams, cocones, colimits and categories
of presheaves. Refer to [13] for details. These constructions are also pedagogically
introduced in the context of global transformation in [8].

In the following, we consider an arbitrary category C and write Ĉ for the
category SetC

op

of all presheaves on C, ĈM for the subcategory restricting
morphisms to monomorphisms, and U : ĈM → Ĉ for the obvious forgetful
functor. Morphisms of ĈM and monomorphisms of Ĉ are written p ↪→ p′. We
write y : C → Ĉ for the Yoneda embedding, and call representable presheaves
the image yc of any c ∈ C. The category Ĉ is cocomplete and for any diagram
D : I → Ĉ, the colimit C of D is directly written Colim(D); C also abusively
designates the apex and Ci : D(i) → C the cocone components for any i ∈ I.

The examples are spelled out with C set to the category with two objects
v and e, and two morphisms s, t : v → e. A presheaf p ∈ Ĉ is then a directed
multigraph with self-loops: p(v) and p(e) are respectively the sets of vertices and
edges composing the graph, and p(s) (resp. p(t)) is a function mapping each edge
to its source (resp. target). The representable presheaves are the graph yv with
a single vertex and the graph ye with two vertices and a single edge. We will
make use of the following particular graphs: dk the discrete graph with k vertices
and no edge, pk the path of length k, and ck the cycle of length k, k > 0.

Given two categories A and B, a functor F : A → B, and an object b in B, the
comma category F/b sees its objects described as pairs 〈a ∈ A, f : F (a) → b〉
and its morphisms from 〈a, f〉 to 〈a′, f ′〉 as pairs 〈e : a → a′, f ′〉 such that
f = f ′ ◦ F (e). The composition of 〈e′, f ′′〉 ◦ 〈e, f ′〉 is therefore 〈e′ ◦ e, f ′′〉.
Specification of Global Transformations. In this paper, we restrict ourselves to
global transformations acting on ĈM. At a basic level, they are rewriting systems
transforming presheaves into presheaves. As such, their specification is based on
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Fig. 1. Sierpinski rule system: one rule to divide the relevant triangles, the two others
and their inclusions to specify the connections in the output based on the connections
in the input. (Color figure online)

a set of rules. Each rule γ is a pair written l ⇒ r with l, r ∈ ĈM. Given an
input presheaf p, it expresses that any occurrence of the left hand side (l.h.s.)
l in p produces the corresponding right hand side (r.h.s.) r in the associated
output. The main feature of global transformations is to endow this set of rules
with a structure of category where morphisms describe inclusions of rules. A rule
inclusion i : γ1 → γ2 from a sub-rule γ1 = l1 ⇒ r1, to a super-rule γ2 = l2 ⇒ r2
expresses how an occurrence of l1 in l2 is locally transformed into an occurrence
of r1 in r2. So a rule inclusion i is a pair 〈il : l1 → l2, ir : r1 → r2〉. Formally,
such a presentation is captured by a category and two functors.

Definition 1. A rule system T on ĈM is a tuple 〈ΓT ,LT ,RT 〉 where ΓT is a
category whose objects are called rules and morphisms are called rule inclusions,
LT : ΓT → ĈM is a full embedding functor called the l.h.s. functor, and RT :
ΓT → ĈM is a functor called the r.h.s. functor. The subscript T is omitted when
this does not lead to any confusion.

Figure 1 illustrates a global transformation specification for generating a Sier-
pinski gasket. The rule system is composed of 3 rules transforming locally vertices
(γ1), edges (γ2) and acyclic triangles (γ3). These rules are related by 5 main rule
inclusions: i1 : γ1 → γ2 (plain red), i2 : γ1 → γ2 (dashed red), i3 : γ2 → γ3
(dotted blue), i4 : γ2 → γ3 (plain blue), i5 : γ2 → γ3 (dashed blue). For instance,
consider the inclusion i3 which expresses that the left edge of triangle L(γ3) is
transformed into the left double-edge of R(γ3). Formally, this is specified via the
inclusion i3 whose both components L(i3) and R(i3) are depicted in dotted blue
arrows. The reader is invited to pay attention that even if Fig. 1 does not show
them, the category Γ also contains compositions of the 5 main rule inclusions
(e.g. i3 ◦ i1), identities and symmetries, that, as functors, L and R do respect.

Computing with Global Transformations. Given a rule system T , its application
on an arbitrary presheaf p is a three-step process. An illustration is given Fig. 2
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Fig. 2. Step of computation of the Sierpinski gasket using the rules of Fig. 1. (Color
figure online)

based on the rule system of Fig. 1. The input is depicted at the top left and the
output at the top right.

1. Pattern matching which consists in decomposing the input presheaf by mean
of the rule l.h.s. It results a collection of l.h.s. instances, also called matches,
structured by rule inclusions. This step is achieved by considering the comma
category LT /p: objects in that category are indeed all the morphisms from
some l.h.s. to p; morphisms are the instantiations of the rule inclusions
between those matches. See arrow (1) in Fig. 2 for an illustration. Formally,
the figure at bottom left is a representation of LT ◦ Proj[LT /p] where Proj
designates the first projection of the comma category mapping each instance
〈γ ∈ ΓT , f : LT (γ) ↪→ p〉 to the used rule γ. Notice the role of the rule
inclusions (in red and blue) which are reminiscent of the input structure.

2. Local application of rules which consists in locally transforming each found
l.h.s. into its corresponding r.h.s., the structure being conserved thanks to
rule inclusions. This step is achieved by applying the r.h.s. functor RT on
each rule instance: RT ◦ Proj[LT /p], as illustrated in Fig. 2.

3. Output construction which consists in assembling the output from the struc-
tured collection of r.h.s. The inclusions take here their full meaning as they
are used to align the r.h.s. and drive the merge. See arrow (3) in Fig. 2 for
an illustration. The resulting presheaf is formally the apex of a cocone from
the diagram defined in the previous step which we used to obtain by col-
imit [8,14]. Since colimits are only guaranteed in Ĉ, we consider the following



Accretive Computation of Global Transformations 163

Fig. 3. Some rule-systems. Note that all of them remove self-loops. (Color figure online)

functor T : ĈM → Ĉ:

T (−) = Colim(DT (−)) with DT (−) = U ◦ RT ◦ Proj[LT /−] (1)

using the forgetful functor U, T (p) being the result of the application.

Remark 1. Notice that T is a complete functor also acting on morphisms. Con-
sider a monomorphism h : p ↪→ p′. By definition of colimits, T (p) is the univer-
sal cocone with components T (p)〈γ,f〉 : DT (p)(〈γ, f〉) → T (p) for each instance
〈γ, f〉 ∈ LT /p. We have a similar construction for T (p′) which gives rise to a
cocone C as the restriction of T (p′) on the diagram of T (p). Formally, C is
defined with apex C = T (p′) and components C〈γ,f〉 = T (p′)〈γ,h◦f〉. The image
T (h) is the mediating morphism from colimit T (p) to C.

We focus on those rule systems where the results stay inside ĈM, i.e., such
that all previous mediating morphisms are monomorphisms. This leads to the
following definition of global transformation for ĈM.

Definition 2. A global transformation T is a rule system such that T factors
through the forgetful functor U : ĈM → Ĉ. In this case, we denote T : ĈM →
ĈM the functor such that U ◦ T = T .

The Sierpenski rule system of Fig. 1 is a global transformation. Its behavior
is to split all edges and add some edges for acylic triangles. Thus, adding vertices
and edges to an input only adds vertices and edges to the output. The induced
functor maps monomorphisms to monomorphisms, so factors through U.

Figure 3 introduces four additional examples of rule systems that illustrate
the various properties that we consider exhaustively. Let us see which of them
are global transformations as a preparation for later considerations.

Example 1. The removal of isolated vertices (Fig. 3c) is a global transformation
since removal is definitely a functorial behavior from ĈM to ĈM.
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Example 2. Simplification of multi-edges (Fig. 3d) is also a global transforma-
tion. For any two vertices a and b with at least an edge from a to b, it merges
all edges from a to b into a single edge.

Example 3. On the contrary, the dualization of vertices and edges (Fig. 3a) is
not a global transformation. Indeed, consider a monomorphism i : p2 ↪→ c3 from
the path of length 2 p2 to the cycle of length 3 c3. In this case T (p2) = p3,
T (c3) = c3, and there is no monomorphism sending the four vertices of p3 to the
three vertices of c3.

Example 4. Contraction of components (Fig. 3b) is not a global transformation.
Consider the monomorphism i : d2 ↪→ p1 from the graph d2 with only vertices
to the path p1 of length 1. In this case, T (d2) = d2 and T (p1) = d1 and there is
no monomorphism sending the two vertices of d2 to the single vertex of d1.

3 Accretion and Incrementality

We are interested in having an online algorithm computing Eq. (1) where the
output T (p), for any p, is built while the comma category LT /p is discovered by
pattern matching. Informally, starting from a seed corresponding to the r.h.s. of
some initial instance, LT /p is visited from neighbor to neighbor, each instance
providing a new piece of material to accumulate to the current intermediate
result. We first give the formal features to be able to speak about intermediate
results, leading to the notion of accretive rule system. Then we give a criterion,
called incrementality, for a rule system to be an accretive global transformation.

In this algorithmic perspective, we restrict our discussion to finite presheaves
and finite rule systems so that LT /p is finite as well. Moreover we assume that
LT /p is connected; disconnected components can be processed independently.
Finally, we fix a given finite rule system T = 〈Γ,L,R〉 and a finite presheaf p.
All omitted proofs are available in [9].

3.1 Accretive Rule Systems and Global Transformations

Informally an intermediate result consists in the application of T on an incom-
plete knowledge of L/p, i.e., on a partial decomposition of the input. Our study of
partial decompositions starts with some remarks. To begin, the comma category
L/p is a preordered set.

Proposition 1. For any category I, any full embedding F : I → ĈM, and any
presheaf p ∈ ĈM, the comma category F/p is thin, i.e., there is at most one
morphism between any two objects.

Therefore thinking in terms of maximal, non-maximal and minimal instances,
sub- and super-instances actually makes sense for any comma category L/p.

Moreover, L/p being a preorder makes the colimit T (p) of the diagram
DT (p) : L/p → Ĉ special. Informally, only maximal instances matter, sub-
instances being used to specify how to amalgamate the r.h.s. of maximal
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instances. Formally, whenever we have a morphism 〈e, f ′〉 : 〈γ, f ′ ◦ L(e)〉 →
〈γ′, f ′〉 ∈ L/p, the r.h.s. of γ′ contains the r.h.s. of γ through e : γ → γ′. With
f = f ′◦L(e), this means that 〈γ, f〉 does not contribute more data to the output.
The role of the non-maximal 〈γ, f〉 is to specify how the r.h.s. of some γ′′ should
be aligned with the r.h.s. of γ′ in the resulting presheaf when there is a second
morphism 〈γ, f〉 → 〈γ′′, f ′′〉 to another maximal instance 〈γ′′, f ′′〉.

As an example, consider the diagram depicted on bottom right of Fig. 2 and
its colimit on the top right. All the elements of the colimit are given in the r.h.s.
of the maximal instances (the 3 triangles). The minimal instances (the 6 one-
vertex graphs) are used to specify how the 9 vertices of the 3 refined triangles
should be merged to get the colimit.

Computing T Online. Given a presheaf p ∈ Ĉ, we call a partial decomposition of
p with respect to L a subset M of maximal instances of L/p such that the restric-
tion ˜M of L/p to M and morphisms into M remains connected. We write ˜L/p
for the category of partial decompositions of p with set inclusions as morphisms.
˜L/p represents the different ways L/p can be visited from maximal instance to
maximal instance by the use of non-maximal instances to guide the merge. We
extend the action of T on p into a function ˜Tp : ˜L/p → Ĉ as follows:

˜Tp(M) = Colim(DT (p) � ˜M). (2)

The definition ˜Tp is in fact a complete functor also acting on any morphism
M ⊆ M ′ of ˜L/p using the exact same construction as given in Remark 1 for T .

In the case of Fig. 2, the maximal instances being the three triangles, the
partial decompositions consist of subsets having 0, 1, 2 or 3 of these triangles.
As an example, choose arbitrarily two of these triangles, say t1 and t2. The
intermediate result ˜Tp({t1, t2}) is the graph consisting of the two refinements of
t1 and t2 glued by their common vertex.

The online computation of T (p) consists in iterating a simple step that
builds ˜Tp(M ∪ {m}) from ˜Tp(M) as soon as a new maximal instance m has
been discovered. This step is the local amalgamation of DT (p)(m) with ˜Tp(M)
considering all the non-maximal sub-instances, say {n1, . . . , nk}, shared by the
elements of M and m. Indeed each such sub-instance ni gives rise to a span
˜Tp(M) ← DT (p)(ni) → DT (p)(m). Gathering all these spans leads to the suture
diagram SM,m defined as follows:

D(n1) . . . D(nk)

˜Tp(M) D(m)

˜Tp(M)n1

˜Tp(M)nk
D(e1)

D(ek)
(3)

where D stands for DT (p) for simplicity, notation that we will use from now on.
The colimit of a single span being called a pushout, we call the colimit of this
collection of spans a generalized pushout. The fact that this generalized pushout
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Colim(SM,m) and the desired colimit ˜Tp(M∪{m}) as given in Eq. (2) do coincide
is formalized by the following proposition.

Proposition 2. Let M ′ = M ∪ {m} ∈ ˜L/p. As a cocone, ˜Tp(M ′) has the same
apex as Colim(SM,m) and has components

˜Tp(M ′)n =

{

Colim(SM,m)
˜Tp(M) ◦ ˜Tp(M)n if n ∈ ˜M,

Colim(SM,m)D(m) ◦ D(e) for any e : n ↪→ m,

where SM,m is diagram (3).

As an illustration, for computing ˜Tp({t1, t2, t3}) (which is in fact the output
in Fig. 2), it is enough to amalgamate ˜Tp({t1, t2}) (already considered) with the
refinement D(t3) of the last triangle t3, using as suture the two vertices of t3
shared with t1 and t2 playing the role of n1 and nk in diagram (3).

Remark 2. To summarize, computing T (p) online is a matter of collecting the
finite set of all maximal instances {m1,m2, . . . ,mk} of L/p in any order satisfying
that mi+1 is connected to ˜Mi where Mi = {m1, . . . ,mi}. This allows to replace
the single colimit computation of the whole diagram, as in Eq (1), by a sequence
of smaller colimit computations using the induction relation:

˜Tp(Mi) =

{

D(m1) if i = 1
Colim(SMi−1,mi

) otherwise.
(4)

The base case is obtained from Eq. 2 for a singleton set of maximal instance, and
the inductive one is established by Proposition 2, SMi−1,mi

being a generalized
pushout diagram linking ˜Tp(Mi−1) and D(mi). The final value ˜Tp(Mk) of this
sequence is the colimit of ˜Mk. ˜Mk is exactly the diagram D without the arrows
between the non-maximal instances. But the colimit ˜Tp(Mk) of ˜Mk is necessarily
the same as the colimit T (p) of D by the following proposition.

Proposition 3. The subcategory ˜Mk of L/p given by all instances but only mor-
phisms to maximal instances is final in L/p, in the sense of final functor.

Accretive Rule Systems. We are interested in those rule systems where the inter-
mediate results stay inside ĈM, i.e., such that ˜Tp(M ⊆ M ′) are monomorphisms
for any p and any M ⊆ M ′ ∈ ˜L/p. This leads to the following definition of accre-
tive rule systems.

Definition 3. An accretive rule system T is a rule system such that for any
p ∈ Ĉ, ˜Tp factors through the forgetful functor U : ĈM → Ĉ.

Example 5. The rule system of Fig. 3b is accretive. Focusing on connected L/p,
its l.h.s. implies that p is a connected graph. Any M ∈ ˜L/p corresponds to a
connected sub-graph of p and is sent to the single vertex graph if it is not empty,
or to the empty graph otherwise. So for any relation M ⊆ M ′, ˜Tp(M ⊆ M ′) is
the empty morphism or the identity morphism, and both are monomorphisms.
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Example 6. The rule system of Fig. 3d is also accretive. Again, p is a connected
graph and any M ∈ ˜L/p corresponds to a connected sub-graph of p. Here M
is sent to the same graph with parallel edges simplified into single edge. So for
any relation M ⊆ M ′, M ′ is sent either to the same thing as M when M ′ only
adds more parallel edges, or to a strictly greater graph otherwise. In both case
˜Tp(M ⊆ M ′) is a monomorphism.

Example 7. On the contrary, the rule system of Fig. 3a is not accretive. Consider
the cycle c3 of length 3, and the associated L/c3. The latter contains 3 instances
of rule γ1 and 3 maximal instances of the rule γ2. Consider the relation M ⊆ M ′

where M ′ contains all three maximal instances and M only two of them. We
have ˜Tp(M) = p3 and ˜Tp(M ′) = c3, but there is no monomorphisms between
these two graphs.

Example 8. By the exact same reasoning, the rule system of Fig. 3c is also not
accretive, disproving that being a global transformation implies being accretive.

3.2 Incremental Rule Systems and Global Transformations

We are interested in giving sufficient conditions for rule systems to be global
transformations. These conditions also imply accretiveness.

Our strategy consists in preventing any super-rule to merge by itself the r.h.s.
of its sub-rules. In other words, the rule only adds new elements to the r.h.s. of
its sub-rules in an incremental way. A positive expression of this constraint is
as follows: if the r.h.s. of two rules overlap in the r.h.s. of a common super-rule,
this overlap must have been required by some common sub-rules.

Definition 4. Given a rule system T = 〈Γ,L,R〉, we say that a rule γ ∈ Γ
is incremental if for any two sub-rules γ1

i1−→ γ
i2←− γ2 in Γ, any representable

presheaf yc, and any R(γ1)
x1← yc

x2→ R(γ2) such that R(i1)◦x1 = R(i2)◦x2, there
are some γ1

π1← γ′ π2→ γ2 and x : yc → R(γ′) such that the following diagrams
commute.

γ

γ1 γ2

γ′

i1 i2

π1 π2

R(γ)

R(γ1) R(γ2)

R(γ′)

yc

R(i1) R(i2)

R(π1) R(π2)

x1 x x2

A rule system T is said incremental if every γ ∈ Γ is incremental.

The Sierpinski gasket rule system (Fig. 1) is incremental. The only non-trivial
case is when the sub-rules γ1 and γ2 of Definition 4 are set to the edge rule of
Fig. 1 and γ to be the triangle rule, such that the r.h.s. of γ1 and γ2 overlap on
a common vertex in R(γ) (morphisms x1 and x2 of Definition 4). This vertex is
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nothing but the image of the vertex of L(γ) common to the inclusions of L(γ1)
and L(γ2) in L(γ). This invites us to set γ′ to the vertex rule of Fig. 1 and
complete the requirements of Definition 4 to get incrementality.

The main constraint enforced by the incrementality criterion is that any
merge is always required by sub-rules as stated by the following lemma.

Lemma 1. Consider an incremental rule system T = 〈Γ,L,R〉, an integer k >
0, a sequence of k rules 〈γ1, . . . , γk〉 in Γ, a sequence of k − 1 rule inclusions
〈i1, . . . , ik−1〉 in Γ with ij : γj → γj+1 or ij : γj+1 → γj for 1 ≤ j < k, a
representable presheaf yc and a cone 〈xj : yc → R(γj)〉1≤j≤k that commutes
with each R(ij). There are a rule γ′ in Γ, two rule inclusions π1 : γ′ → γ1 and
π2 : γ′ → γk, and a morphism x : yc → R(γ′) such that the following diagram
on the right commutes.

R(γ1) . . .
. . .

R(γk)

yc

R(i1) R(ik−1)

x1 xk

R(γ1) R(γ′) R(γk)

yc

R(π1) R(π2)

x1
x

xk

Consider any monomorphism h : p ↪→ p′ of presheaves such that some merge
is required by the computation of T (p′) between some elements of r.h.s. instances
also involved by T (p). Lemma 1 ensures that it is required by a sub-rule which
must also be instantiated by T (p) so that the merge is also required by the
computation of T (p). In other words, T (h) is a monomorphism as established
by the following theorem.

Theorem 1. Any incremental rule system is a global transformation.

The previous remark also applies for intermediate results leading to the fol-
lowing theorem concerning accretiveness.

Theorem 2. Any incremental rule system is accretive.

However, the converses of these theorems do not hold so incrementality is
sufficient but not necessary as illustrated by the following examples.

Example 9. The rule system of Fig. 3c is a global transformation as explained in
Example 1, but not incremental. Consider e1 : γ1 → γ2 be the plain arrow into
γ2 and e2 : γ1 → γ2 the dashed arrow into γ2. The cospan γ1 ↪→ γ2 ←↩ γ1 is such
that h1 : d1 ↪→ R(γ1) and h2 : d1 ↪→ R(γ1) such that R(e1) ◦ h1 = R(e2) ◦ h2 but
there is no rule γ′ to ensure the incrementality condition.

Example 10. Similarly, the rule system of Fig. 3d is a global transformation
(Example 2) but is not incremental. Consider e1 : γ2 → γ3 be the plain arrow
into γ3 and e2 : γ2 → γ3 the dashed arrow into γ3. The cospan γ2 ↪→ γ3 ←↩ γ2 is
such that h1 : l1 ↪→ R(γ2) and h2 : l1 ↪→ R(γ2) such that R(e1) ◦ h1 = R(e2) ◦ h2

but there is no rule γ′ to ensure the incrementality condition.
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Example 11. The rule system of Fig. 3b is accretive (Example 5) but non-
incremental. Consider e1 : γ1 → γ2 the plain arrow into γ3 and e2 : γ1 → γ2
the dashed arrow into γ3. Observe that for the cospan γ1 ↪→ γ2 ←↩ γ1 we have
h1 : d1 ↪→ R(γ2) and h2 : d1 ↪→ R(γ2) such that R(e1) ◦ h1 = R(e2) ◦ h2 but
there is no rule γ′ to ensure the incremental condition.

Example 12. Similarly, the rule system of Fig. 3d is accretive (Example 6) but
non-incremental.

Summarizing the properties collected with the four examples of Fig. 3 and
with the one of Fig. 1 in a table, we can see that being a global transformation
and being accretive are orthogonal properties, but incrementality forces the two.

Non-incr. Incr.

Non-G.T. G.T. Non-G.T. G.T.

Non-accretive ex. Fig. 3a ex. Fig. 3c None, Theorem1/2 None, Theorem2

Accretive ex. Fig. 3b ex. Fig. 3d None, Theorem1 Sierpenski

4 Computing Accretive Global Transformations

This section is devoted to the description of an effective implementation of the
online procedure considered in Sect. 3.1. In this context, we focus on incremental
global transformations. We first explain how the categorical concepts of Sect. 3
are represented computationally (Sect. 4.1). This is followed by a detailed pre-
sentation of the algorithm (Sect. 4.2).

4.1 Categorical Constructions Computationally

Up to now, we exposed everything formally using categorical concepts: the cat-
egory of presheaves ĈM, finite incremental rule systems T = 〈Γ,L,R〉, and the
comma category L/p for some finite presheaf p. We now describe their computa-
tional counterparts. First, let us introduce some notations used in the algorithm:

– X∗ stands for the set of finite words on the alphabet X; the empty word is
denoted by ε and the concatenation by u · v for any two words u, v ∈ X∗.

–
∐

a∈A B(a) is the set of pairs (a, b) where a ∈ A and b ∈ B(a).
–

∏

a∈A B(a) is the set of functions f : A → ⋃

a∈A B(a) such that for any a ∈ A,
f(a) ∈ B(a). Such functions are also manipulated as sets of pairs. Those pairs
are written a �→ f(a).

The Category of Presheaves with Monomorphisms. The category ĈM is the for-
mal abstraction for a library providing a data structure suitably captured by
presheaves (like sets, graphs, Petri nets, etc.) and how an instance of that data
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structure (presheaves) is part of another one (monomorphisms). Two functions
− ◦ − and − = − need to be provided to compute composition and equal-
ity test of sub-parts. The library also needs to come with a pattern matching
procedure taking as input two finite presheaves p and p′ and returning the set
HomĈM(p, p′) of occurrences of p in p′. Finally, the library is assumed to pro-
vide a particular construction operation called generalizedPushout(p1, p2, S)
computing the generalized pushout, i.e., the colimit of the collection of spans S,
each span being represented as a triplet (p ∈ ĈM, f1 : p ↪→ p1, f2 : p ↪→ p2).
The resulting colimit is returned as a triplet (c ∈ ĈM, g1 : p1 ↪→ c, g2 : p2 ↪→ c)
where c is the apex and g1, g2 the corresponding component morphisms.

Finite Incremental Rule System. A finite rule system is described as a finite
graph whose vertices are rules l ⇒ r as pairs of presheaves and edges are pairs
of monomorphisms 〈il : l1 ↪→ l2, ir : r1 ↪→ r2〉. Functors L and R return the first
and second components of these pairs respectively. At the semantic level, Γ is
the category generated from this graph. Finally, incrementality as presented in
Definition 4 is clearly decidable on finite rule systems, giving rise to an accretive
global transformation by Theorems 1 and 2.

The Category of Instances. By Proposition 1, L/p is a preordered set, but in our
implementation, any time an instance is matched, all of its isomorphic instances
are taken care of at the same time. This corresponds informally to taking the
poset of equivalence classes of the preordered set. Also, by Proposition 3, mor-
phisms between non-maximal instances can be ignored. All in all, L/p is ade-
quately thought of as an abstract undirected bipartite graph that we call the
network.

Finally, the L/p is never entirely represented in memory (neither is the cocone
associated to the resulting colimit). A first instance is constructed, and the others
are built from neighbor to neighbor through the operation

∐

n HomL/p(n,m)
and

∐

m HomL/p(n,m). The former lists the sub-instances of m and the latter
lists the super-instances of n. For the “incoming neighbors” or sub-instances
∐

n HomL/p(n, 〈γ′, f ′〉), they are specified as

{(〈γ, f ′ ◦ L(e)〉, 〈e, f ′〉) | e : γ → γ′}.

This corresponds simply to the composition − ◦ − in ĈM discussed earlier. On
the contrary, “outgoing neighbors” or super-instances

∐

m HomL/p(〈γ′, f ′〉,m)
correspond to extensions and are obtained by pattern matching.

{〈e′, f ′′〉 : 〈γ′, f ′〉 → 〈γ′′, f ′′〉 |
e′ : γ′ → γ′′,f ′′ ∈ HomĈM(L(γ′′), p) s.t. f ′ = f ′′ ◦ L(e′)}.

Notice that these two specifications are obtained by simply unfolding the defi-
nition of the morphisms of the comma category. Also, the set of incoming mor-
phisms e : γ → γ′ and outgoing morphisms e′ : γ′ → γ′′ in Γ are directly
available in the graph representation of the rule system T as said earlier. These
operations are used to implement a breadth-first algorithm, earlier instances
being dropped away as soon as their maximal super-instances have been found.
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Algorithm 1:

Input: T : rule system on ĈM
Input: p : ĈM
Variable: P : ĈM
Variable: N : (L/p)∗

Variable: E ⊆ ∐

n∈N

∐

m HomL/p(n, m)
Variable: C :

∏

n∈N HomĈM(D(n), P )

1 let n = findAnyMinimal(T, g), i.e., any minimal element in L/p
2 let E = ∅, C = {n �→ idD(n)}, N = n, P = D(n)
3 while N �= ε do
4 let n = head(N), i.e., the first instance in the queue without modifying N
5 let M ′ =

∐

m HomL/p(n, m)
6 for (m, e) ∈ M ′ s.t. (n, m, e) �∈ E and m is maximal do
7 let E′ =

∐

n′ �=m HomL/p(n
′, m)

8 let S = {(n′, C(n′), D(e′)) | (n′, e′) ∈ E′, n′ ∈ N}
9 let (P ′, t, c) = generalizedPushout(P, D(m), S)

10 E := E ∪ {(n′, m, e′) | (n′, e′) ∈ E′}
11 C := C ∪ {n′ �→ c ◦ D(e′) | (n′, e′) ∈ E′, n′ �∈ N}
12 N := N · 〈n′ | (n′, e′) ∈ E′, n′ �∈ N〉
13 P := P ′

14 E := {(n′, m, e′) ∈ E | n′ �= n}
15 C := {n′ �→ C(n′) ∈ C | n′ �= n}
16 N := tail(N), i.e., removes the first instance n from the queue

17 return P

4.2 The Global Transformation Algorithm

Algorithm 1 gives a complete description of a procedure to compute T (p) online.
The algorithm manages four variables P , N , E and C. Variable P contains
intermediate results and finally the output presheaf. The part of the network
that is kept in memory is represented by variables N and E: N is a queue
containing, in order of discovery, the non-maximal instances that might still have
a role to play. E associates each instance in N to the set of its maximal super-
instances that have already been processed. For simplicity, E is not represented
as a function from N to sets but as a relation. The r.h.s. D(n) of each instance
n ∈ N is already in the current result P through the morphism kept as C(n).

Figure 4 illustrates the first steps of Algorithm 1 representing maximal
instances as black dots, and non-maximal instances as white squares. The ini-
tialization step is to find a first instance (line 1). For that, we try each mini-
mal pattern, and start with the first founded minimal instance, say n1. At this
point, the first intermediate result P0 is simply the r.h.s. D(n1); we memorize
the (identity) relationship between D(n1) and P0, call it C(n1) : D(n1) → P0,
and enqueue n1 (line 2). Enqueued non-maximals are treated one after the other
(lines 3, 4, 16). For each, we consider all maximal super-instances of n1 (lines
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Fig. 4. Evolution of the data during the four firsts steps of the algorithm. From left to
right: we start with a non-maximal instance, process its associated maximal instances
successively, and finally drop the non-maximal. At each stage, the output is updated
by generalized pushout.

5, 6). In Fig. 4, we assume three such super-instances m1, m2 and m3. They are
processed one after the other (line 6).

The first iteration processes m1 by taking all its sub-instances n1, . . . , n4 (line
7). The suture S is computed (line 8) by considering all already computed non-
maximals (i.e., in N) among these sub-instances. Here, only n1 is already known
and serves to define a one-span suture with morphisms C(n1) : D(n1) → P0

and D(e′) : D(n1) → D(m1), where e′ is the morphism from n1 to m1. The
generalized pushout of P0 and the r.h.s. D(m1) is therefore computed and gives
the new intermediate result P1 (lines 9, 13). Since P1 includes the r.h.s. of all
discovered non-maximals N = {n1, . . . , n4}, we memorize as C(n) : D(n) → P1

for n ∈ N the locations of these r.h.s. in P1 (line 11). The newly discovered
non-maximal instances n2, n3 and n4 are enqueued (line 12).

The second iteration processes m2 similarly and all its sub-instances n1, n4,
n5, and n6 are computed. This time, n1 and n4 are used for computing the new
intermediate result P2 by generalized pushout using the two spans 〈n1, C(n1) :
D(n1) → P1,D(j) : D(n1) → D(m2)〉 and 〈n4, C(n4) : D(n4) → P1,D(k) :
D(n4) → D(m2)〉 as suture. The set N of discovered non-maximals is updated
by adding n5 and n6 as well as the locations C of their r.h.s. in P2.

The processing of m3 is similar and shows no novelty. At this point non-
maximal n1 does not have any further role to play: the r.h.s. of all its associated
maximals are already amalgamated to the current intermediate result. n1 is
dropped together with all data associated to it (lines 14–16), as shown in the
last step of Fig. 4. Non-maximal instances being processed in the order of first
discovery, the next one is n2 in the example.

During these processings, other non-maximal instances see some of their asso-
ciated maximals being processed. We have to keep track of this to avoid double
processing of maximals which would cause infinite loops (condition at line 6).
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This is the role of E to maintain this information. Clearly E contains only the
useful part of the network: edges from maximals to their sub-instances are reg-
istered when discovered (line 10) but cleared up as soon as a non-maximal is
dropped (line 14). Considering that non-maximal instances are treated in order
of appearance, the algorithm will process the maximals at distance 1 from n1

first, then those at distance 2, and so on, until the complete connected compo-
nent of the network is processed. In memory, there are never stored more than
four “radius” of instances d, d + 1, d + 2 and d + 3 from n1.

Theorem 3. Algorithm1 is correct, i.e., the final value of P is T (p).

Proof. We ignore the case when L/p is composed of a single instance, since the
algorithm behaves trivially in that case.

Ignoring lines 8, 9, 11, 13, and 15, variables P and C, and looking only at non-
maximal instances (variable n), the algorithm behaves like a usual breadth-first
search. Indeed, the search begins by enqueueing a first non-maximal instance at
line 2. Each iteration of the while loop (line 3) processes the next non-maximal
instance n in the queue (line 4), lists all its “neighbors via a maximal instance”
(lines 5–7) and enqueues those that have not yet been visited (lines 10, 12)
before popping n out of the queue (line 16). Variables E and N serve as the set
of visited non-maximal instances. The reason line 14 can remove all occurrences
of n in the set E without creating an infinite loop is that E memorizes the
maximal instances m′ from which each enqueued non-maximal instance n′ has
been reached (line 10). The constraint (n,m, e) ∈ E of the for loop (line 6)
prevents this path to be taken in the other direction.

Since all non-maximal instances are assigned to n at line 4, and each maximal
instance is a super-instance of some non-maximal instance, we have that m goes
through all maximal instances as well (line 6). Let us call m1, . . . , mk, the
successive values taken by m and define the sequence of set of maximal instances
Mi = {m1, . . . ,mi} for i ∈ {1, . . . , k}. The breath-first traversal ensures that
each newly considered mi+1 is connected to some maximal instance in Mi by
some non-maximal sub-instances. Let us show now that the successive values
taken by P at line 13, numbered P1, P2, . . . , Pk, are such that Pi = ˜Tp(Mi). Using
Remark 1, it is enough to show that P1 = D(m1) and Pi+1 = Colim(SMi,mi+1).

For P1, consider the first steps of the algorithm before the first execution of
line 13. Call n1 the value of n at line 1 and note that P is assigned to D(n1) at
line 2 and C(n1) to idD(n1) : D(n1) → D(n1). At lines 4, 5 and 6, n is assigned
to n1, m to m1 and e to the corresponding morphism from n1 to m1. Lines 7
and 8 lead S to be {(n1, idD(n1) : D(n1) → D(n1),D(e) : D(n1) → D(m1))}. So
the first execution of line 9 computes this simple pushout and sets (P ′, t, c) to
(D(m1),D(e), idD(m1)), so P1 = D(m1) = ˜Tp(M1) at line 13.

To establish that Pi+1 = Colim(SMi,mi+1) in the (i + 1)-th execution of line
13, we need to show that the parameters (P,D(m), S) provided in (i + 1)-th
execution of line 9 correspond to the diagram SMi,mi+1 given in (3). Firstly,
by induction hypothesis, we have that P = Pi = ˜Tp(Mi) and m = mi+1. The
collection of spans S computed at line 8 is correct because E′ is the set of
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sub-instances of m (line 7), and N contains all sub-instances of the maximal
instances in Mi that could have a morphism to mi+1. Indeed, a non-maximal
instance is discarded from N , E and C (lines 14–16) only after that all of its
maximal super-instances have been processed (for loop at lines 5 to 13). Line 11
and 15 ensure that C always contain the correct morphism D(n) → P for all
non-maximal instances n contained in N .

Finally, line 11 modifies C without updating the cocone compounds already
stored in C, resulting in mixing morphisms with codomain P and P ′. It is cor-
rect considering the following fact. For accretive global transformations, t (line
9) is always a monomorphism and can be designed for t to be a trivial inclusion.
In that case, any morphism to P is also a morphism to P ′, the latter materi-
ally including P . In other words, everything is implemented to ensure that the
modification on intermediate results are realized in place. ��

5 Conclusion

In this paper, we have presented an online algorithm for computing the applica-
tion of global transformations on presheaves. Note that this work was originally
restricted to global transformations of graphs but the extension to any cate-
gory of presheaves appears to be straightforward. It is natural to expect the
extensions to other well-known classes of categories, in particular for the class
of (M-)adhesive categories [5,12].

At the algorithmic level, there remain many interesting considerations that
need to be settled. One of them is that the way this algorithm goes from maxi-
mal instances to maximal instances using common sub-instances reminds of the
strategy of the famous Knuth-Morris-Pratt algorithm [11]: in both cases the
content of one match is used to guide following subsequent pattern matching.
This link is reinforced by the work of [15] that extend the Knuth-Morris-Pratt
algorithm to sheaves. In Algorithm1, we used pattern matching as a black-box
but opening it should allow to mix the outer maximal-to-maximal strategy with
the Knuth-Morris-Pratt considerations inside the pattern matching algorithm
of [15]. Another important aspect is the complexity of this online approach and
its natural extensions. Indeed, we described how a full input is decomposed in
an online fashion, and the parts also treated online. The full picture includes the
input itself being received by part, or even treated in a distributed way. Each of
these versions deserve a careful study of their online complexity, i.e., the com-
plexity of the computation happening between each outputted data. We are also
interested in the detailed study of the problem consisting of deciding, given a
rule system, if it is a global transformation or not. Incremental rule systems form
a particularly easy sub-class for this problem but we are talking here about the
complete class of all rule systems.

The incremental criterion can be studied for itself. An alternative equivalent
expression of Definition 4 is stated as follows: given a super-rule, its r.h.s. contains
the r.h.s. of its sub-rules as if they were considered independently. Intuitively, this
prevents from non-local behavior like collapsing non-empty graphs to a single
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vertex since the empty graph remains empty for example as in Fig. 3b. From that
point of view, incremental global transformations follow the research direction
of causal graph dynamics [1]. In this work any produced element in the output
is attached to an element of the input graph and a particular attention is put
on preventing two rule instances to produce a common element.
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Abstract. We introduce a family of modal expansions of �Lukasiewicz
logic that are designed to accommodate modal translations of general-
ized basic logic (as formulated with exchange, weakening, and falsum).
We further exhibit algebraic semantics for each logic in this family, in
particular showing that all of them are algebraizable in the sense of Blok
and Pigozzi. Using this algebraization result and an analysis of congru-
ences in the pertinent varieties, we establish that each of the introduced
modal �Lukasiewicz logics has a local deduction-detachment theorem. By
applying Jipsen and Montagna’s poset product construction, we give
two translations of generalized basic logic with exchange, weakening,
and falsum in the style of the celebrated Gödel-McKinsey-Tarski trans-
lation. The first of these interprets generalized basic logic in a modal
�Lukasiewicz logic in the spirit of the classical modal logic S4, whereas
the second interprets generalized basic logic in a temporal variant of the
latter.
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1 Introduction

Substructural logics make up a widely studied family of nonclassical logics orig-
inating in proof theory, and have found an array of applications in theoretical
computer science (e.g., in the management of computational resources [22]).
Generalized basic logic (see, e.g., [5,18]) is a prominent substructural logic that
has been highly influential in the development of residuated lattices [14], which
provide the algebraic semantics of substructural logics. Generalized basic logic is
a common fragment of intuitionistic propositional logic and Hájek’s basic fuzzy
logic [16], and its algebraic models (viz. GBL-algebras) provide a natural com-
mon generalization of lattice-ordered groups, Heyting algebras, and continuous
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t-norm based logic algebras (see [13] for a survey). This logic has also been
proposed as a model of flexible resources [5], in keeping with resource-driven
interpretations of substructural logics generally.

When extended by exchange, weakening, and falsum (as we do throughout
the sequel), generalized basic logic may be regarded as an ‘intuitionistic’ variant
of Hájek’s basic fuzzy logic. In this formulation, generalized basic logic is related
to �Lukasiewicz logic [8] in much the same way that intuitionistic logic is related
to classical logic. For instance, generalized basic logic admits a Kripke-style rela-
tional semantics [12] in which worlds are valued in MV-algebra chains, mirroring
the well known Kripke semantics for intuitionistic logic (in which worlds are val-
ued in the 2-element MV-algebra/Boolean algebra). It is evident from [12] that
generalized basic logic may be viewed as a fragment of a modal �Lukasiewicz
logic, but the details of this modal connection are therein left implicit. On the
other hand, [12] generalizes the temporal flow semantics for basic logic [1], which
is deployed in [2] to obtain a modal translation of Gödel-Dummett logic into an
extension of Prior’s tense logic [23].

Inspired by this work, the present study makes the modal connection from
[12] explicit and offers modal and temporal translations of generalized basic logic
into certain expanded �Lukasiewicz logics. The motivations for this study are
threefold. First, due to the astounding diversity of substructural logics, under-
standing relationships among various substructural deductive systems is crucial
to their general theory. The translation results of the present study deepen our
understanding of the connection between generalized basic logic and �Lukasiewicz
logic, two of the most salient substructural logics. Second, the translations artic-
ulated in the sequel directly generalize the well known Gödel-McKinsey-Tarski
translation of intuitionistic logic into the classical modal logic S4, adding to a
long line of studies that generalize themes from intuitionistic logic to the sub-
structural setting. In addition to clarifying the role of modality in generalized
basic logic, this connects to the broader theory of modal companions of super-
intuitionistic logics. Third, because our translations target modal �Lukasiewicz
logics, this work adds to the emerging literature on fuzzy modal logics. Moreover,
we expect that the results of this paper open up the application of tools from
fuzzy modal logic (such as filtration [10]) to the analysis of generalized basic
logic and its extensions.

Our contributions are as follows. First, we introduce in Sect. 2 a family of
modal �Lukasiewicz logics that serve as targets for our translations. This family
includes both monounary modal systems, analogous to classical S4, as well as
multimodal systems of temporal �Lukasiewicz logic. This investigation is rooted
in algebraic logic, and in Sect. 3 we provide pertinent information on algebras
related to this study. In Sect. 3.2, we demonstrate that all of the logics intro-
duced in Sect. 2 are algebraizable in the sense of Blok and Pigozzi (see [3]) and
that the algebras introduced in Sect. 3.1 provide their equivalent algebraic seman-
tics. Equipped with this algebra-logic bridge, Sect. 4 puts our algebraization theo-
rem to work and establishes a local deduction detachment-theorem for our modal
�Lukasiewicz logics. The work of Sect. 4 is based on an analysis of congruences in
the varieties of algebras introduced in Sect. 3.1, and in particular establishes the
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congruence extension property for each of these varieties. Finally, in Sect. 5 we
introduce two translations of generalized basic logic, one into a �Lukasiewicz ver-
sion of S4 and the other into a temporal �Lukasiewicz logic. These translations both
rely on the poset product construction of Jipsen and Montagna (see, e.g., [20]).

2 Generalized Basic Logic and Fuzzy Modal Logics

This section introduces the logical systems of our inquiry. The logics discussed
in this paper are all defined over supersets of the propositional language L con-
sisting of the binary connectives ∧,∨, ·,→ and the constants 0, 1. To the basic
language L we will adjoin a set of box-like unary modal connectives. More specif-
ically, given a set I of unary connective symbols with I ∩ L = ∅, we define a
language L(I) = L ∪ I. We further fix a countably-infinite set Var of proposi-
tional variables, and denote by FmL(I) the set of L(I)-formulas over Var.1 An
L(I)-equation is an ordered pair (ϕ,ψ) ∈ FmL(I), and we usually denote the
equation (ϕ,ψ) by ϕ ≈ ψ. The set of all L(I)-equations is denoted by EqL(I).
All of the logics we consider may be defined by Hilbert-style calculi using var-
ious selections from the axiom schemes and deduction rules depicted in Fig. 1.
Observe that in Fig. 1 each of (K�), (P�), (M�), (1�), (0�), (T�), (4�), (GP),
(HF), and (�-Nec) gives a family of axiom schemes/rules parameterized by the
unary connectives �, G, H. Note that we write ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ)
and ¬ϕ for ϕ → 0 as usual.

From [5], generalized basic logic with exchange, weakening, and falsum is the
logic defined over L by the calculus with (A1)–(A13) and the modus ponens rule
(MP). We denote this logic by GBL. Additionally including the prelinearity
axiom (A14) yields Hájek’s basic fuzzy logic [16], which we denote by BL. It
follows from [9] that including both (A14) and (A15) gives an axiomatization of
the infinite-valued �Lukasiewicz logic �L (see, e.g., [8]).

We will consider a number of different modal expansions of �L in this study.
For an arbitrary set I of unary connective symbols disjoint from L, we denote
by �L(I) the logic with language L(I), axiom schemes (A1)–(A15), (K�), (P�),
(M�), (1�), and (0�) (where � ranges over I in all of the preceding axiom
schemes), and rules (MP) and (�-Nec) (where again � ranges over I). We denote
by S4�L(I) the logic resulting from adding to �L(I) the axiom schemes (T�) and
(4�) for all � ∈ I. If I = {�} is a singleton, we write S4�L for S4�L(I). If
I = {G,H}, then the logic defined by adding to S4�L(I) the axioms (GP) and
(HF) will be denoted by S4t �L.

The logic S4�L is a fuzzy analogue of the classical modal logic S4, whereas
S4t �L is a temporal variant of S4�L inspired by Prior’s tense logic [23]. The
names of the axioms (GP) and (HF) derive from the fact that—as usual in tense

1 Recall that formulas are constructed recursively by stipulating that p is a formula
for each p ∈ Var, and further that if ω is an n-ary connective symbol and ϕ1, . . . , ϕn

are formulas, then so is ω(ϕ1, . . . , ϕn). As usual, we write binary connectives using
infix notation.
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Fig. 1. Axiom schemes and rules for the logics considered.

logic—we define modal diamond connectives P and F as abbreviations for
¬H¬ and ¬G¬, respectively. The typical intended interpretations of the modals
G,P,H, F are:

– Gϕ: “It is always going to be the case that ϕ.”
– Pϕ: “It was true at one point in the past that ϕ.”
– Hϕ: “It always has been the case that ϕ.”
– Fϕ: “It will be true at some point in the future that ϕ.”

In Sect. 5, we will exhibit translations of GBL into each of S4�L and S4t �L. These
translations closely mirror the Gödel-McKinsey-Tarski translation of proposi-
tional intuitionistic logic into S4. Intuitively, S4�L is a modal companion of
GBL (see [7]). On the other hand, our translation into S4t �L generalizes the
translation presented in [2] of Gödel-Dummett logic into Prior’s classical tense
logic.

Given a logic L, we denote by �L the consequence relation corresponding
to L (see [11] for background on consequence relations). As one may anticipate
from the presence of the axioms (K�) and �-necessitation rules, the logics we
have introduced above turn out to be algebraizable in the sense of Blok and
Pigozzi [3] (see Theorem 1).

3 Algebraic Semantics for �L(I) and Its Extensions

We now turn to providing algebraic semantics for the logics introduced in Sect. 2.
In Sect. 3.1 we describe the pertinent algebraic structures, and then in Sect. 3.2
we give the algebraization results for the logics we have introduced. We assume
familiarity with the basics of universal algebra [6], residuated lattices [14], and
abstract algebraic logic [11], but where possible we provide specific references to
some key background results that we invoke without full discussion.
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3.1 Residuated Lattices and Their Expansions

An algebra (A,∧,∨, ·,→, 0, 1) is called a bounded commutative integral residuated
lattice if (A,∧,∨, 0, 1) is a bounded lattice, (A, ·, 1) is a commutative monoid,
and for all x, y, z ∈ A,

x · y ≤ z ⇐⇒ x ≤ y → z.

We usually abbreviate x · y by xy.
By a GBL-algebra we mean a bounded integral commutative residuated lat-

tice that satisfies the divisibility identity x(x → y) ≈ x ∧ y.2 A BL-algebra is
a GBL-algebra that satisfies (x → y) ∨ (y → x) ≈ 1, and an MV-algebra is a
BL-algebra that satisfies ¬¬x ≈ x. The following definition gives the various
classes of MV-algebra expansions that algebraize the logics of Sect. 2.

Definition 1. Let I be a set of unary function symbols. We say that an algebra
A = (A,∧,∨, ·,→, 0, 1, {�}�∈I) is an MV(I)-algebra provided that:

1. (A,∧,∨, ·,→, 0, 1) is an MV-algebra.
2. For every � ∈ I, � is a {∧, ·, 0, 1}-endomorphism of (A,∧,∨, ·,→, 0, 1).

If additionally � is an interior operator for every � ∈ I, then we say that A is
an S4MV(I)-algebra. An S4MV-algebra is an S4MV(I)-algebra where I = {�}
is a singleton. An S4MV(I)-algebra for I = {G,H} is called an S4tMV -algebra
if the map P defined by P (x) = ¬H(¬x) is the lower residual of G, i.e., for
every x, y ∈ A,

x ≤ G(y) ⇐⇒ P (x) ≤ y.

In each S4tMV-algebra, we also abbreviate ¬G(¬x) by F (x).

The following summarizes some technical facts regarding S4tMV-algebras.
Its proof is straightforward and we omit it.

Lemma 1. Let A be an S4tMV-algebra and let x, y ∈ A. Then:

1. P (x ∨ y) = P (x) ∨ P (y).
2. P (0) = 0 and P (1) = 1.
3. x ≤ H(y) if and only if F (x) ≤ y.
4. F (x ∨ y) = F (x) ∨ F (y).
5. F (1) = 1 and F (0) = 0.
6. x → GP (x) = 1 and PG(x) → x = 1.
7. x → HF (x) = 1 and FH(x) → x = 1.
8. P and F are closure operators.

It is well known that bounded commutative integral residuated lattices form
a variety, and hence so do the classes of GBL-algebras, BL-algebras, and MV-
algebras. We denote these varieties by GBL, BL, and MV, respectively. The proof
of the following lemma is straightforward from the definitions.
2 Most studies refer to these algebras as bounded commutative GBL-algebras or
GBLewf -algebras. Because we always assume boundedness and commutativity, we
call them GBL-algebras in order to simplify terminology.
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Lemma 2. Let I be a set of unary function symbols with L ∩ I = ∅. The class
of MV(I)-algebras forms a variety, and the class of S4MV(I)-algebras is a sub-
variety of the latter. Moreover, the class of S4tMV-algebras forms a subvariety
of the variety of S4MV(G,H)-algebras.

We denote the varieties of MV(I)-algebras, S4MV(I)-algebras, S4MV-
algebras, and S4tMV-algebras by MV(I), S4MV(I), S4MV, and S4tMV, respec-
tively.

3.2 Algebraization

We now discuss algebraization of the logics of Sect. 2. Each of the logics GBL,
BL, and �L is algebraizable with the sole defining equation ϕ ≈ 1 and sole
equivalence formula ϕ ↔ ψ (see, e.g., [14]). The equivalent variety semantics for
GBL, BL, and �L are, respectively, the varieties GBL, BL, and MV. Extending
the algebraizability of �L to its modal expansions boils down to showing that
the consequence relation is compatible with the new connectives in the sense
summarized in the following key lemma. We omit its straightforward proof.

Lemma 3. Let I be a set of unary connectives with I ∩ L = ∅, and let L be an
extension of �L(I). Then ϕ ↔ ψ �L �ϕ ↔ �ψ for each � ∈ I.

The following gives our main result on algebraization.

Theorem 1. Let I be a set of unary connectives with L ∩ I = ∅. Then:
1. �L(I) is algebraizable with the sole defining equation ϕ ≈ 1 and sole equivalence

formula ϕ ↔ ψ, and consequently so are S4�L(I), S4�L, and S4t �L.
2. The equivalent variety semantics for �L(I), S4�L(I), S4�L, and S4t �L are,

respectively, MV(I), S4MV(I), S4MV, and S4tMV.

Proof. 1. It follows from [3, Theorem 4.7] that a logic L expanding �L by a set
of connectives Ω is algebraizable if for every n-ary ω ∈ Ω we have

ϕ0 ↔ ψ0, . . . , ϕn−1 ↔ ψn−1 �L ω(ϕ0, . . . , ϕn−1) ↔ ω(ψ0, . . . , ψn−1).

Moreover, in this case L is algebraizable with sole defining equation ϕ ≈ 1 and
sole equivalence formula ϕ ↔ ψ. The result for �L(I) is thus immediate from
Lemma 3. The claim for S4�L(I), S4�L, and S4t �L follows promptly because each
of the latter logics is an axiomatic extension of �L(I) for some I.

2. By [3, Theorem 2.17], the quasivariety K algebraizing �L(I) is axiomatized
by the following quasiequations: ϕ ≈ 1 for all instances ϕ of the axiom schemes
given in the calculus for �L(I); x ↔ x ≈ 1; ϕ,ϕ → ψ implies ψ; ϕ implies
�ϕ; and x ↔ y ≈ 1 implies x ≈ y. It is easy to see from Definition 1 and
the fact that MV algebraizes �L that all of these quasiequations are valid in
MV(I). Thus MV(I) ⊆ K. For the reverse inclusion, it suffices to show that
all the defining equations of MV(I) follow from this list of quasiequations. Let
A ∈ K. That the {∧,∨, ·,→, 0, 1}-reduct of A is an MV-algebra is immediate
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from the fact that MV algebraizes �L. On the other hand, for each � ∈ I the
equations �(x · y) ↔ �x · �y ≈ 1, �(x ∧ y) ↔ �x · �y ≈ 1, �1 ↔ 1 ≈ 1, and
�0 ↔ 0 ≈ 0 appear in the list of quasiequations, and together these imply that
� is a {∧, ·, 0, 1}-homomorphism of A for each � ∈ I. Thus K ⊆ MV(I), giving
equality. The result for the axiomatic extensions S4�L(I), S4�L, and S4t �L follows
by applying the formula-to-equation translation ϕ �→ ϕ ≈ 1 to each formula ϕ
axiomatizing the given logic relative to �L(I). �

Recall that if K is a class of similar algebras and Θ ∪ {ε ≈ δ} is a set of
equations in the type of K, then Θ |=K ε ≈ δ means that for every A ∈ K and
every assignment h of variables into A, if h(α) = h(β) for every α ≈ β ∈ Θ,
then h(ε) = h(δ). Thanks to the finitarity of �L(I), the following is a direct
consequence of Theorem 1 (see [11, Corollary 3.40]).

Corollary 1. Let I be a set of unary connectives with L∩I = ∅. There is a dual
lattice isomorphism between the lattice of finitary extensions of �L(I) and the lat-
tice of subquasivarieties of MV(I), which restricts to a dual lattice isomorphism
between the lattice of axiomatic extensions of �L(I) and the lattice of subvarieties
of MV(I). Moreover, suppose that L is a finitary extension of �L(I), and let K
be the equivalent algebraic semantics of L. Then for any set Γ ∪ {ϕ} ⊆ FmL(I)

and any set Θ ∪ {ε ≈ δ} ⊆ EqL(I):

1. Γ �L ϕ ⇐⇒ {γ ≈ 1 : γ ∈ Γ} |=K ϕ ≈ 1.
2. Θ |=K ε ≈ δ ⇐⇒ {α ↔ β : α ≈ β ∈ Θ} �L ε ↔ δ.

In particular, this holds if L ∈ {�L(I),S4�L(I),S4�L,S4t �L}.

4 Characterizing Filters and a Deduction Theorem

If L is an algebraizable logic, there is a well known connection between the the-
ories of L, the deductive filters of algebraic models of L, and the congruence
relations of the equivalent algebraic semantics of L (see, e.g., [11,15]). Armed
with the algebraizability results of Sect. 2, we now provide an analysis of con-
gruences in the algebraic semantics given in Sect. 3 in terms of certain filters
(see Definition 2 below). We use this description to establish local deduction-
detachment theorems for the modal �Lukasiewicz logics we have introduced.

Definition 2. Let A be an MV(I)-algebra. We say that a non-empty subset f of
A is an I-filter provided that f is an up-set, f is closed under ·, and f is closed
under each � ∈ I.

Let A ∈ MV(I). We define a term operation ∗ by x∗y = (x → y)(y → x). We
also write Fi(A) for the poset of I-filters of A ordered by inclusion and Con(A)
for the congruence lattice of A.

Lemma 4. Let A be an MV(I)-algebra, f ∈ Fi(A), and θ ∈ Con(A). Then the
following hold:
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1. fθ = 1/θ is an I-filter of A.
2. The set θf = {(x, y) ∈ A2 : x ∗ y ∈ f} = {(x, y) ∈ A2 : x ↔ y ∈ f} is a

congruence on A.
3. The maps f �→ θf, θ �→ fθ define mutually-inverse poset isomorphisms between

Con(A) and Fi(A). Consequently, Fi(A) is a lattice and these poset isomor-
phisms are lattice isomorphisms.

Proof. 1. Note that fθ is a deductive filter of the MV-algebra reduct of A (see,
e.g., [14, Section 3.6]), so it suffices to show that fθ is closed under � for every
� ∈ I. Observe that if (1, x) ∈ θ then since θ is a congruence we have (�1,�x) ∈
θ. But since �1 = 1, it follows that �x ∈ fθ as desired.

2. Observe first that x ∗ y ∈ f if and only if x ↔ y ∈ f, so the two sets
displayed are equal. Now since f is in particular a deductive filter of the MV-
algebra reduct A, it is immediate that θf respects all of the operations except for
possibly those belonging to I. To show that θf respects these as well, it suffices
to show the result for every � ∈ I. Suppose that (x, y) ∈ θf, i.e., x∗y ∈ f. Since f
is closed under �, and every � ∈ I preserves ·, we have �(x → y) ·�(y → x) ∈ f.
Residuation and the fact that � preserves · gives �(x → y) ≤ �x → �y and
�(y → x) ≤ �y → �x, so

�(x ∗ y) = �(x → y)�(y → x) ≤ (�x → �y)(�y → �x).

Since f is an up-set, we get �x ∗ �y ∈ f. Hence (�x,�y) ∈ θf as required.
3. Direct computation shows f = fθf

and θfθ = θ for every I-filter f and
congruence θ. Moreover, the given maps are clearly monotone. It follows that
Con(A) and Fi(A) are isomorphic as posets. Because Fi(A) is isomorphic to the
lattice Con(A), we get that Fi(A) is a lattice that is isomorphic to Con(A). �

The following gives a description of congruence generation in MV(I). Recall
that if (P,≤) is a partially ordered set and X ⊆ P , then the smallest up-set
containing X is the set ↑X = {y ∈ P : x ≤ y for some x ∈ X}.

Definition 3. Let A be an MV(I)-algebra and let X ⊆ A.

1. An I-block is a nonempty word in the alphabet I. We denote the set of I-blocks
by BI .

2. FgA(X) = ↑{M1(x1) · . . . · Mn(xn) : x1, . . . , xn ∈ X and M1, . . . ,Mn ∈ BI}.
Lemma 5. The set FgA(X) is the least I-filter of A containing X.

Proof. It is clear that FgA(X) is an up-set. Note that if y, y′ ∈ FgA(X) then
there exist M1, . . . ,Mn,M ′

1, . . . ,M
′
k ∈ BI and x1, . . . , xn, x′

1, . . . , x
′
k ∈ X with

M1(x1) · . . . · Mn(xn) ≤ y and M ′
1(x

′
1) · . . . · M ′

k(x′
k) ≤ y′, whence we obtain

M1(x1) · . . . · Mn(xn) · M ′
1(x

′
1) · . . . · M ′

k(x′
k) ≤ y · y′ since · preserve the order

in each coordinate. It follows that y · y′ ∈ FgA(X). To see that FgA(X) is
closed under every � ∈ I, observe that if M1(x1) · . . . · Mn(xn) ≤ y then by
the isotonicity of � we have �M1(x1) · . . . · �Mn(xn) ≤ �y. As each �Mi is an
I-block, it follows that �(y) ∈ FgA(X).
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It remains to check that FgA(X) is the least among the I-filters containing
X. Suppose that f is an I-filter and that X ⊆ f. If y ∈ FgA(X), then there exist
M1, . . . ,Mn ∈ BI and x1, . . . , xn ∈ X such that M1(x1) · . . . · Mn(xn) ≤ y. Note
that x1, . . . , xn ∈ f, and since f is closed under � for every � ∈ I, we have that
M(x) ∈ f for every M ∈ BI and every x ∈ f. In particular, this implies that
M1(x1), . . . , Mn(xn) ∈ f. Thus y ∈ f since ↑f = f, so FgA(X) ⊆ f as claimed. �

We abbreviate FgA({x1, . . . , xn}) by FgA(x1, . . . , xn). Also, for an algebra A
and x, y ∈ A, we denote by CgA(x, y) the congruence of A generated by (x, y).

Lemma 6. Let A ∈ MV(I), let x, y ∈ A, let Y ⊆ A, and consider the set
X = {(1, y) : y ∈ Y }. Then:
1. fCgA(x,y) = FgA(x ∗ y) = FgA(x ↔ y).
2. fCgA(X) = FgA(Y ).

Proof. 1. Note that CgA(x, y) =
⋂{θ ∈ Con(A) : (x, y) ∈ θ}, and observe that

for each θ ∈ Con(A) we have (x, y) ∈ θ if and only if x ∗ y ∈ fθ. Hence from the
isomorphism given by Lemma 4(3) we obtain:

fCgA(x,y) =
⋂

{f ∈ Fi(A) : x ∗ y ∈ f} = FgA(x ∗ y) = FgA(x ↔ y).

This proves 1.
2. Since CgA(X) =

∨
y∈Y CgA(1, y), Lemma 4(3) and item 1 imply

fCgA(X) =
∨

y∈Y

fCgA(1,y) =
∨

y∈Y

FgA(y) = FgA(
⋃

y∈Y

{y}) = FgA(Y ).

This proves 2. �

Recall that an algebra B has the congruence extension property (or CEP) if
for every subalgebra A of B and for any θ ∈ Con(A), there exists ξ ∈ Con(B)
such that ξ ∩ A2 = θ. A variety V is said to have the congruence extension
property if each B ∈ V does.

Theorem 2. MV(I) has the congruence extension property.

Proof. Let A,B be MV(I)-algebras, and assume that A is a subalgebra of B.
From Lemma 4, it follows that proving the congruence extension property for
MV(I) is equivalent to showing that every I-filter of A can be extended by an I-
filter of B. For this, let f ∈ Fi(A) and set g = FgB(f). In order to prove f = g∩A,
let y ∈ g ∩ A. Then since y ∈ g there exist M1, . . . ,Mn ∈ BI and x1, . . . , xn ∈ f
such that M1(x1) · . . . ·Mn(xn) ≤ y. Since f is an I-filter of A, we have Mj(xj) ∈ f
for every 1 ≤ j ≤ n. As y ∈ A, it follows that y ∈ f and g ∩ A ⊆ f. The reverse
inclusion is obvious, and the result follows. �
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Of course, the CEP persists in subvarieties of a variety with the CEP. Thus:

Corollary 2. Each of S4MV(I), S4MV, and S4tMV has the CEP.

The CEP has far-reaching logical consequences. Recall that a logic L has
the local deduction-detachment theorem (or LDDT ) if there exists a family
{dj(p, q) : j ∈ J} of sets dj(p, q) of formulas in at most two variables such that
for every set Γ ∪ {ϕ,ψ} of formulas in the language of L:

Γ, ϕ �L ψ ⇐⇒ Γ �L dj(ϕ,ψ) for some j ∈ J.

As a consequence of [4, Corollary 5.3], if L is an algebraizable logic with equiv-
alent variety semantics V, then L has the LDDT if and only if V has the CEP.
Therefore from Theorem 1, Theorem 2, and Corollary 2 we obtain:

Corollary 3. Each of �L(I), S4�L(I), S4�L, and S4t �L has the LDDT.

From our analysis of congruences in MV(I), we may give a more explicit
rendering of this result. If V is a variety, we denote by FV(X) the V-free algebra
over X. Further, if ϕ is a formula, denote by ϕ̄ the image of ϕ under the natural
map Fm(X) → FV(X) from the term algebra Fm(X) over X onto FV(X). If
Γ is a set of formulas, also denote by Γ̄ = {ϕ̄ : ϕ ∈ Γ}. The following lemma
restates [21, Lemma 2].

Lemma 7. Let Θ ∪ {ϕ ≈ ψ} be a set of equations in the language of V, and
take X to be the set of variables appearing in Θ ∪ {ϕ ≈ ψ}. Then the following
are equivalent:

1. Θ |=V ϕ ≈ ψ.
2. (ϕ̄, ψ̄) ∈ ∨

ε≈δ∈Θ CgFV(X)(ε̄, δ̄).

Theorem 3. Let I be a set of unary connectives with I ∩ L = ∅, and suppose
that L is an axiomatic extension of �L(I) that is algebraized by the subvariety V
of MV(I). Further, let Γ ∪ Δ ∪ {ψ} ⊆ FmL(I). Then Γ,Δ �L ψ if and only if
for some n ≥ 0 there exist I-blocks M1, . . . ,Mn and ψ1, . . . , ψn ∈ Δ such that
Γ �L

∏n
j=1 Mj(ψj) → ψ.

Proof. We give the proof of the left-to-right direction; the proof of the converse
is similar. From Corollary 1(1) and Lemmas 7 and 4 we obtain:

Γ,Δ �L ψ =⇒ {α ≈ 1 : α ∈ Γ ∪ Δ} |=V ψ ≈ 1
=⇒ (ψ̄, 1) ∈ ∨

α∈Γ∪Δ CgFV(X)(ᾱ, 1)
=⇒ ψ̄ ∈ FgFV(X)(Γ̄ ∪ Δ̄),

where X is the set of variables appearing in Γ ∪Δ∪{ψ}. By Lemma 5 there exist
l ≥ 0, I-blocks M1, . . . ,Ml, and χ̄1, . . . , χ̄l ∈ Γ̄ ∪Δ̄ with M1(χ̄1) · . . . ·Ml(χ̄l) ≤ ψ̄.
Let D = {j ∈ {1, . . . , l} : χ̄j ∈ Δ̄}, and set C = D \ {1, . . . , l}. Then by the
commutativity of · we have

∏

j∈C

Mj(χ̄j) ·
∏

k∈D

Mk(χ̄k) = M1(χ̄1) · . . . · Ml(χ̄l) ≤ ψ̄,
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whence by residuation
∏

j∈C Mj(χ̄j) ≤ ∏
k∈D Mk(χ̄k) → ψ̄. Applying Lemma 5

again gives
∏

k∈D Mk(χ̄k) → ψ̄ ∈ FgFV(X)(Γ̄ ). Hence by Lemmas 4 and 7 and
Corollary 1(1) we obtain Γ �L

∏
k∈D Mk(χk) → ψ. �

Notice that the form of the local deduction-detachment theorem announced
in Corollary 3 may be recovered from Theorem 3 by taking Δ = {ϕ} and taking
dM (p, q) = Mp → q for M ∈ BI .

In the monomodal logic S4�L, I-blocks take an especially simple form. Because
I = {�} in this setting, each I-block M is a finite, nonempty string of occurrences
of �. Since � is idempotent in S4MV, for each {�}-block M we have that
Mx ≈ �x is satisfied in S4MV. Due to this consideration and the fact that �
preserves ·, we may read off the following simplified form the LDDT for S4�L:

Corollary 4. Let Γ ∪ Δ ∪ {ψ} ⊆ FmL(�). Then Γ,Δ �S4�L ψ if and only if for
some n ≥ 0 there exist ψ1, . . . , ψn ∈ Δ such that Γ �S4�L �(

∏n
j=1 ψj) → ψ.

If I = {�1, . . . ,�n} is finite, then particular forms of the LDDT can
be achieved for S4�L(I) and its extensions by defining an operator λ(x) =∏n

i=1 �i(x). Powers of λ are defined recursively by λ0(x) = x and λm+1(x) =
λ(λm(x)) for m > 0. I-filters of S4MV(I)-algebras may be characterized with
powers of λ instead of I-blocks. A full discussion of this alternative approach will
appear in future work.

5 Two Translations

We now arrive at our main translation results. After discussing some necessary
technical background regarding the Jipsen-Montagna poset product construc-
tion, we exhibit two translations. The first of these embeds GBL into S4�L, and
is conceptually in the spirit of the classical Gödel-McKinsey-Tarski translation
of intuitionistic logic into S4. The second translation embeds GBL in S4t �L.

5.1 Poset Products

The translation results of this paper rely heavily on the poset product construc-
tion of Jipsen and Montagna (see [19,20]), which we now sketch. Our discussion
of poset products is drawn mainly from [12], to which we refer the reader for a
more detailed summary.

Let A be a bounded commutative integral residuated lattice. A conucleus on
A is an interior operator γ on the lattice reduct of A such that γ(x)γ(y) ≤ γ(xy)
and γ(x)γ(1) = γ(1)γ(x) = γ(x) for all x, y ∈ A. Given a conucleus γ on A,
the γ-image Aγ = (Aγ ,∧γ ,∨, ·,→γ , 0, γ(1)) is a bounded commutative integral
residuated lattice, where Aγ = γ[A] and x �γ y = γ(x � y) for � ∈ {∧,→}.

Now let (X,≤) be a poset, let {Ax : x ∈ X} be an indexed collection of
bounded commutative integral residuated lattices with a common least element
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0 and a common greatest element 1, and let B =
∏

x∈X Ax. From [20, Lemma
9.4], one may define a conucleus σ on B by

σ(f)(x) =

{
f(x) if f(y) = 1 for all y > x

0 if there exists y > x with f(y) �= 1.

The algebra Bσ is called the poset product of {Ax : x ∈ X}, and is denoted∏
(X,≤) Ax. An element f ∈ Bσ is called an antichain labeling or ac-labeling, and

satisfies the condition that if x, y ∈ X with x < y then f(x) = 0 or f(y) = 1.
The following is a direct consequence of [20, Corollary 5.4(i)] and its proof.

Lemma 8. Let A be a GBL-algebra. Then there exists a poset (X,≤) and an
indexed family {Ax : x ∈ X} of totally ordered MV-algebras such that A embeds
in the poset product Bσ, where B =

∏
x∈X Ax.

Following [17], for a poset (X,≤) and indexed family {Ax : x ∈ X} we introduce
a map δ on B =

∏
x∈X Ax by

δ(f)(x) =

{
f(x) if f(y) = 0 for all y < x

1 if there exists y < x with f(y) �= 0.

The following lemma illustrates that σ and δ provide algebraic interpretations
of modals, which is crucial in obtaining our translation results.

Lemma 9. Let (X,≤) be poset, let {Ax : x ∈ X} be an indexed family of
bounded commutative integral residuated lattices, and set B =

∏
x∈X Ax as

above. Then:

1. σ and ¬δ¬ are {∧, ·, 0, 1}-endomorphisms of B.
2. For all f, g ∈ B, f ≤ σ(g) if and only if δ(f) ≤ g.
3. ¬δ¬ is an interior operator.
4. If additionally Ax is an MV-algebra for all x ∈ X, then (B, σ) is an S4MV-

algebra and (B, σ,¬δ¬) is S4tMV-algebra.

Proof. 1. It is obvious that σ(0) = 0 and σ(1) = 1. Let � ∈ {∧, ·}, x ∈ X,
and f, g ∈ B, and observe that if y > x then (f � g)(y) = 1 if and only if
f(y) = g(y) = 1. It follows that if (f � g)(y) = 1 for all y > x, then σ(f �
g)(x) = (f � g)(x) = f(x) � g(x) = σ(f)(x) � σ(g)(x), and if otherwise then
σ(f � g)(x) = 0 = σ(f)(x) � σ(g)(x). Thus σ(f � g) = σ(f) � σ(g).

To prove that ¬δ¬ is a {∧, ·, 0, 1}-endomorphism, again let � ∈ {∧, ·}, x ∈ X,
and f, g ∈ B. Note that for all y < x we have ¬(f � g)(y) = 0 if and only
if (f � g)(y) = 1, and as before this occurs if and only if f(y) = g(y) = 1.
Thus we have ¬(f � g)(y) = 0 for all y < x if and only if ¬f(y) = 0 for all
y < x and ¬g(y) = 0 for all y < x. Hence if ¬(f � g)(y) = 0 for all y < x,
then we have ¬δ¬(f � g)(x) = ¬¬(f � g)(x) = f(x) � g(x) = ¬¬f(x) � ¬¬g(x) =
¬δ¬f(x)�¬δ¬g(x). On the other hand, if there exists y < x with ¬(f �g)(y) �= 0,
then ¬δ¬(f � g)(x) = ¬1 = 0, and ¬δ¬f(x) � ¬δ¬g(x) = 0 since one of δ¬f(y)
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or δ¬g(y) must be 1. Since ¬δ¬0 = 0 and ¬δ¬1 = 1 by direct calculation, item
1 follows.

2. Suppose f ≤ σ(g) and let x ∈ X. Since σ is an interior operator, f(x) ≤
σ(g)(x) ≤ g(x). If δ(f)(x) = f(x), then δ(f)(x) ≤ g(x) is immediate. On the
other hand, if δ(f)(x) �= f(x) then there exists y < x such that f(y) �= 0. From
f ≤ σ(g) we infer that σ(g)(y) �= 0, so σ(g)(x) = 1 since σ(g) is an ac-labeling.
Thus δ(f)(x) ≤ 1 = σ(g)(x) = g(x). It follows that δ(f) ≤ g. The proof that
δ(f) ≤ g implies f ≤ σ(g) is similar.

3. It is easy to see that δ is a closure operator. From this and the fact that
¬ is an antitone involution, it is a straightforward calculation to show that ¬δ¬
is an interior operator.

4. Under the hypothesis, B is a product of MV-algebras and is hence an MV-
algebra. That (B, σ) is an S4MV-algebra follows promptly from item 1 and the
fact that σ is an interior operator. That (B, σ,¬δ¬) is a S4tMV-algebra follows
from items 1, 2, and 3. �

Lemma 10. Suppose that (A,�) is an S4MV-algebra and (B, G,H) is a
S4tMV-algebra. Then both � and G are conuclei, and each of A� and BG is a
GBL-algebra.

Proof. Each of � and G is a conucleus by definition. For each claim, it suffices to
show that if M is an MV-algebra and γ is a conucleus on M preserving · and ∧,
then Mγ is a GBL-algebra. For this, it is enough to show that Mγ satisfies the
divisibility identity x·(x → y) ≈ x∧y. Let x, y ∈ Mγ . Since M is an MV-algebra,
we have that x ·M (x →M y) = x ∧M y. Using the fact that γ preserves · and ∧,
and that x, y are γ-fixed, we have:

x ·Mγ (x →Mγ y) = x ·M γ(x →M y)

= γ(x) ·M γ(x →M y)

= γ(x ·M (x →M y))

= γ(x ∧M y)

= γ(x) ∧Mγ γ(y)

= x ∧Mγ y.

This proves the claim. �

5.2 The Translations

We define a pair of translations M and T from the language L into the languages
L(�) and L(G,H), respectively. We set M(p) = �p for each p ∈ Var, M(0) = 0,
M(1) = 1, and we extend M recursively by

M(ϕ � ψ) = M(ϕ) � M(ψ), for � ∈ {∧,∨, ·}, and

M(ϕ → ψ) = �(M(ϕ) → M(ψ)).
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Further, if Γ is a set of formulas of L then we define

M(Γ ) = {M(ϕ) : ϕ ∈ Γ}.

The translation T differs from M only by replacing � by G and considering its
codomain to be formulas of L(G,H) rather than those of L(�).

Lemma 11. Let (A,�) be an S4MV-algebra, and let (B, G,H) be a S4tMV-
algebra.

1. Suppose that h : Var → (A,�) is an assignment, and define h̄ : Var → A� by
h̄(p) = �(h(p)). If ϕ ∈ FmL, then h̄(ϕ) = h(M(ϕ)).

2. If ϕ ∈ FmL, then ϕ ≈ 1 is valid A� if and only if M(ϕ) ≈ 1 is valid in A.
3. Suppose that h : Var → (B, G,H) is an assignment, and define h̄ : Var → BG

by h̄(p) = G(h(p)). If ϕ ∈ FmL, then h̄(ϕ) = h(T (ϕ)).
4. If ϕ ∈ FmL, then ϕ ≈ 1 is valid BG if and only if T (ϕ) ≈ 1 is valid in B.

Proof. We will prove items 1 and 2. Item 3 follows by a proof identical to that of
item 1 by replacing � by G, M by T , and (A,�) by (B, G,H). Similarly, item
4 follows from the same proof given for item 2.

1. We argue by induction on the height of ϕ. If ϕ is a constant or ϕ ∈ Var,
then the statement is true by assumption. Now suppose that for all formulas
ϕ′ of height strictly less than the height of ϕ we have that h̄(ϕ′) = h(M(ϕ′)).
If ϕ = ψ � χ for � ∈ {·,∧,∨}, then by definition h(M(ϕ)) = h(M(ψ � χ)) =
h(M(ψ) � M(χ)) = h(M(ψ)) � h(M(χ)). By the inductive hypothesis, the latter
is precisely h̄(ψ) � h̄(χ) = h̄(ψ � χ) = h̄(ϕ) as desired. On the other hand, if
ϕ = ψ → χ then we have that h(M(ϕ)) = h(M(ψ → χ)) = h(�(M(ψ) →
M(χ))) = �(h(M(ψ)) → h(M(χ))). By the inductive hypothesis, this term is
equal to �(h̄(ψ) → h̄(χ)) = h̄(ψ) →A� h̄(χ) = h̄(ψ → χ) = h̄(ϕ). The result
follows by induction.

2. Suppose first that ϕ ≈ 1 is valid in A�, and let h : Var → (A,�) be
an assignment. By item 1, h̄ : Var → A� is an assignment in A� and h̄(ψ) =
h(M(ψ)) for all ψ ∈ FmL. In particular, this shows that h(M(ϕ)) = h̄(ϕ) = 1
since ϕ ≈ 1 is valid in A�, so as h is arbitrary we have M(ϕ) ≈ 1 is valid in A.

For the converse, suppose that M(ϕ) ≈ 1 is valid in A and let h : Var → A�
be an assignment. Because A� ⊆ A, we may define a new assignment k : Var →
(A,�) by k(p) = h(p) for all p ∈ Var. Since M(ϕ) ≈ 1 is valid in A, we have
k(M(ϕ)) = 1. By item 1, we have that k(M(ϕ)) = k̂(ϕ), where k̂ : Var → A� is
defined by k̂(p) = �(k(p)). Notice that since k has its image among the �-fixed
elements of A, we have for all p ∈ Var that k̂(p) = �(k(p)) = k(p) = h(p), and
thus k̂ = h. Thus h(ϕ) = k̂(ϕ) = k(M(ϕ)) = 1, so ϕ ≈ 1 is valid in A�. �

The following gives the main translation results of this paper.

Theorem 4. Let Γ ∪ {ϕ} ⊆ FmL. Then:

1. {ψ ≈ 1 : ψ ∈ Γ} �GBL ϕ ≈ 1 ⇐⇒ {M(ψ) ≈ 1 : ψ ∈ Γ} �S4MV M(ϕ) ≈ 1.
2. Γ �GBL ϕ ⇐⇒ M(Γ ) �S4�L M(ϕ).
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3. {ψ ≈ 1 : ψ ∈ Γ} �GBL ϕ ≈ 1 ⇐⇒ {T (ψ) ≈ 1 : ψ ∈ Γ} �S4tMV T (ϕ) ≈ 1.
4. Γ �GBL ϕ ⇐⇒ T (Γ ) �S4t �L T (ϕ).

Proof. We first prove item 1. Suppose that {ψ ≈ 1 : ψ ∈ Γ} �GBL ϕ ≈ 1, let
(A,�) be an S4MV-algebra, and let h : Var → (A,�) be an assignment. We aim
to show {M(ψ) ≈ 1 : ψ ∈ Γ} �S4MV M(ϕ) ≈ 1, so suppose that for all ψ ∈ Γ we
have h(M(ψ)) = 1. By Lemma 11(2) we have that 1 = h(M(ψ)) = h̄(ψ). Since h̄
is an assignment in A� (which is a GBL-algebra by Lemma 10), by hypothesis
we have h̄(ϕ) = 1. Applying Lemma 11(2) again yields h(M(ϕ)) = 1, showing
that {M(ψ) ≈ 1 : ψ ∈ Γ} �S4MV M(ϕ) ≈ 1.

For the converse, suppose that {M(ψ) ≈ 1 : ψ ∈ Γ} �S4MV M(ϕ) ≈ 1. Let A
be a GBL-algebra, let h : Var → A be an assignment, and suppose that h(ψ) = 1
for all ψ ∈ Γ . It is enough to show that h(ϕ) = 1. By Lemmas 8 and 9, there
exists an S4MV-algebra (B,�) such that A embeds in B�, and without loss of
generality we may assume that this embedding is an inclusion. Using the fact
that A ⊆ B� ⊆ B, we define a new assignment k : Var → B by k(p) = h(p) for
all p ∈ Var. Notice that for all p ∈ Var we have k̄(p) = �k(p) = �h(p) = h(p)
since the image of h consists of �-fixed elements, so by Lemma 11(2) we have
h(χ) = k(M(χ)) for all χ. In particular, k(M(ψ)) = 1 for all ψ ∈ Γ , and by the
hypothesis we have k(M(ϕ)) = 1. But this implies h(ϕ) = 1, proving the result.

Note that item 2 follows from Corollary 1 since we have:

Γ �GBL ϕ ⇐⇒ {ψ ≈ 1 : ψ ∈ Γ} �GBL ϕ ≈ 1
⇐⇒ {M(ψ) ≈ 1 : ψ ∈ Γ} �S4MV M(ϕ) ≈ 1
⇐⇒ M(Γ ) �S4�L M(ϕ).

Items 3 and 4 follow analogously to items 1 and 2, respectively. �
As a final remark, we note that the temporal translation of Theorem4(3, 4)

generalizes the translation offered in [2]. Gödel-Dummett logic is the extension
of propositional intuitionistic logic by the axiom scheme (ϕ → ψ) ∨ (ψ → ϕ),
and is algebraized by the variety of Gödel algebras (i.e., BL-algebras satisfying
x2 ≈ x). In [2], the authors deploy the temporal flow semantics (see [1]) based
on so-called bit sequences to exhibit a translation of Gödel-Dummett logic into
an axiomatic extension of Prior’s classical tense logic. This study was inspired
by [12], which offers a relational semantics based on poset products that, among
other things, generalizes the temporal flow semantics (see [12, Section 4.2]). Our
development of the translations above can hence be thought of as extending
the work of [2] along the generalization offered in [12]. Poset products give a
powerful, unifying framework for inquiries of this kind, and we anticipate that
they will find far-reaching application to translations. A thorough investigation
of modal translations and modal companions for GBL remains to be conducted,
but we expect the work in this paper to be an important preliminary step.
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Abstract. This paper investigates the interplay between isolated sub-
lattices and closure operators. Isolated sublattices are a special kind of
sublattices which can serve to diminish the number of elements of a lat-
tice by means of a quotient. At the same time, there are simple formulae
for the relationship between the number of closure operators in the orig-
inal lattice and the quotient lattice induced by isolated sublattices. This
connection can be used to derive an algorithm for counting closure oper-
ators, provided the lattice contains suitable isolated sublattices.

1 Introduction

Closure or hull operators, i.e., idempotent, isotone and extensive endofunctions
on some carrier set, are a common and widespread concept in mathematics
and computer science. Some of the most prominent examples are the (reflexive)
transitive closure of a relation or a graph, the Kleene closure in language theory
or the topological closure in traditional analysis. More sophisticated applications
concern automated reasoning as in [11], database theory as in [10] or the algebraic
description of connected components as in [12]. However, most of the work uses
closures as a tool for specific purposes rather than investigating their general
properties.

The biggest part of the work concerning closure properties deals with closure
functions operating on the power set of some carrier set, here also under the term
Moore family (see e.g. [7] for a survey and [6] for recent results). Other work
deals mostly with properties of closure functions on lattices albeit the definition
of a closure operator requires only a simple ordered set.

Counting structures of interest has become a rising theme of investigation in
lattice theory and related areas of research. For example, [1] counts various kinds
of doubly idempotent semirings, [16] deals with join-endomorphisms in lattices,
the subject of [3] are topological spaces and [5] generates and counts a certain
kind of bisemilattices. However, there is no work concerning the number of clo-
sure operators in general lattices or orders. The only results we are aware of con-
cern the power set lattice (P(S),⊆). There, the exact number of closure operators
is known only up to |S| = 7 (for curiosity, there are 14.087.648.235.707.352.472
of them, as shown in [8] only in 2010).
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In this paper, we introduce a heuristic method for structuring lattices in a
way that eases under certain circumstances the computation of the number of
closure operators. It is based on so called isolated sublattices which are intuitively
speaking sublattices which have contact with the rest of the lattice only via their
top and bottom element. By means of quotient lattices we can reduce the number
of elements of the lattice under consideration and maybe reach a lattice with a
certain structure for which there are closed formulae for the number of closure
operators.

The remainder of the paper is organized as follows: Sect. 2 gives an overview
over the notation used in this paper and recalls some facts from lattice theory
important for the further course. Section 3 introduces isolated sublattices and
investigates their properties and relationships with closure operators. In Sect. 4
we first introduce closed formulas for the number of closure operators on partic-
ular lattices and then develop an algorithm for computing the number of closure
operators using the previous results. As usual, we give an outlook to future work
in the finishing Sect. 5.

2 Notations and Basic Properties

We assume that the reader is familiar with the basics of order and lattice theory
and refer e.g. to [9,14,17] for more basic and to [4,15] for more advanced top-
ics. However, we recapitulate some less used concepts and their properties and
introduce the notation we will use in the sequel.

To denote orders, we use ≤ and indexed variants where appropriate. The
relation � is defined by x � y ⇔def ¬(x ≤ y). The signs <, ≥ and > denote the
associated strict order, reverse order and strict reverse order, resp. In a lattice,
we use � and � for the binary infimum and supremum, resp., and index them if
necessary. As usual, � and ⊥ and variants thereof denote the greatest and least
element, resp., if they exist. Given an ordered set (S,≤) we may refer slightly
inaccurately also by S to the structure (S,≤). We say that x majorizes y if
x ≥ y holds and use the notation maj(x, S′) =def {y ∈ S′ | y ≥ x}. We call
two elements x and y comparable, in signs x ≶ y, if x ≤ y or y ≤ x holds. x
and y are called incomparable, denoted by x �≶ y, if they are not comparable.
A chain is a set S such that every pair of elements of S is comparable. Given
an ordered set (S,≤) we call a subset S′ ⊆ S convex if for all x, y ∈ S′ and all
z ∈ S the implication x ≤ z ≤ y ⇒ z ∈ S′ holds. We use the familiar notations
[a, b] =def {x | a ≤ x ∧ x ≤ b} and ]a, b] =def [a, b]\{a} for intervals.

The equivalence class of x under an equivalence relation ∼ will be denoted by
[x]∼. For a set of sets C we use the abbreviation

⋃
C instead of

⋃

c∈C

c. Conversely,

C{} denotes the system of singleton sets {{c} | c ∈ C}.
An equivalence relation ∼ on a lattice S is called a congruence if for all

x0, x1, y0, y1 ∈ S the following implications hold:

1. x0 ∼ y0 ∧ x1 ∼ y1 ⇒ x0 � x1 ∼ y0 � y1
2. x0 ∼ y0 ∧ x1 ∼ y1 ⇒ x0 � x1 ∼ y0 � y1
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In this case, the quotient lattice S/ ∼ is a homomorphic image of S. In
particular, if |[x]∼| = |[y]∼| = |[z]∼| = 1, then x � y = z is equivalent to {x} �∼
{y} = {z} (where �∼ denotes the infimum operation on S/∼; the respective
orders, strict orders and their reverses are notated analogously). The analogous
property holds for binary suprema. If [x]∼ and [y]∼ are disjoint the equivalence
x ≤ y ⇔ [x]∼ ≤∼ [y]∼ holds.

As already mentioned in Sect. 1, closures are widely known and used. There
are two ways of characterizing closures. The first one gives a functional charac-
terization:

Definition 2.1. Given an ordered set S an endofunction c on S is called a
closure operator if it fulfills the following properties for all x, y ∈ S:

1. x ≤ c(x) (extensitivity)
2. x ≤ y ⇒ c(x) ≤ c(y) (isotony)
3. c(c(x)) = c(x) (idempotence)

The second one uses subsets of the carrier set of a lattice:

Definition 2.2. Given a lattice (S,≤) a subset S′ ⊆ S is called a closure system
if it fulfills the following properties:

1. x, y ∈ S′ ⇒ x � y ∈ S′

2. for every s ∈ S there is a smallest x ∈ S′ such that s ≤ x holds.

The set of all closure systems of S is denoted by C(S).

In a finite lattice, the second condition of Definition 2.2 is equivalent to
� ∈ S′. On a lattice, closure operators and closure systems are cryptomorphic
structures since there is a one-to-one correspondence between them: the set of
fixpoints of a closure operator is always a closure system. Conversely, each closure
system C determines a unique closure operator c with fix(c) = C (where fix(c)
denotes the set of fixpoints of c). This correspondence makes only sense in the
context of lattices; on general orders, we lack an infimum operation as used in
Definition 2.2.

Remark: Definition 2.2 is taken from [14]. However, as one reviewer pointed
out, this definition is redundant:

Lemma 2.3. In Definition 2.2, the second condition implies the first one.

Proof: Denote by c(x) the function which maps x to the smallest element from
S′ majorizing x (this is well-defined due to the uniqueness of smallest elements)
and consider arbitrary y, z ∈ S′. Clearly, c is extensive, so we have y�z ≤ c(y�z).
Due to y ∈ S′ and y� z ≤ y we have c(y� z) ≤ y and symmetrically c(y� z) ≤ z
from where c(y � z) ≤ y � z follows. Alltogether, we have c(y � z) = y � z and
hence y � z ∈ S′ because of c(y � z) ∈ S′. �

So we will use only the second condition of Definition 2.2 when reasoning
about general, possibly infinite lattices. However, in the context of finite lattices,
we will rather use the characterization given immediately after Definition 2.2.�
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3 Closure Systems and Isolated Sublattices

This section introduces and investigates isolated sublattices. It contains a lot of
results of rather technical nature so we give a short overview as a guideline to
the reader.

Isolated sublattices induce congruence relations so they can be used to con-
struct a quotient lattice. We will define and consider two different kinds of iso-
lated sublattices: those including the top element of a lattice and isolated sub-
lattices with bottleneck. In the algorithm we will introduce in Sect. 4 we use
possibly series of quotient constructions. A crucial point to make the algorithm
work is that all the isolated sublattices inducing the quotients in such a series
are disjoint. This is ensured by Lemmata 3.11 and 3.12; the other results up to
this point serve for the preparation of these lemmata.

The second part of this section, starting at Subsection 3.2, investigates the
interplay between isolated sublattices and closures. Given a lattice S and an
isolated sublattice S′ of S, we establish connections between closures of S con-
taining possibly an element of S′ and closures on the quotient induced by S′

containing S′. On the other hand, we show a relation between closures on S
without an element in S′ and closures on the quotient not containing S′. The
main results of this part are the Theorems 3.20 and 3.21.

3.1 Isolated Sublattices

Definition 3.1. Let (S,≤) be a lattice. A subset S′ ⊆ S is called an isolated
sublattice if it fulfills the following properties:

1. S′ is a sublattice with greatest element �S′ and least element ⊥S′ .
2. ∀x /∈ S′∀y′ ∈ S′ : y′ ≤ x ⇒ �S′ ≤ x
3. ∀x /∈ S′∀y′ ∈ S′ : x ≤ y′ ⇒ x ≤ ⊥S′

Intuitively, this means that S′ can be entered from below only via ⊥S′ and
exited upwards only via �S′ . We call an isolated sublattice S′ a summit isolated
sublattice if �S′ = �S holds. An isolated sublattice S′ is called nontrivial if
S′ �= S, and useful if |S| > 1 holds.

The next definition captures situations where intuitively speaking an order
does not “branch upwards” at an element x:

Definition 3.2. Given an ordered set (S,≤) we call an element b ∈ S a bottle-
neck of an element x ∈ S if the following conditions are fulfilled:

1. b > x,
2. [x, b] is a chain, and
3. y > x ⇒ (y ∈ [x, b] ∨ y > b) holds for all y ∈ S.

Remark: This definition os equivalent to the stipulation that x is meet-
irreducible. However, we keep this definition because later proofs rely heavily
on the properties from Definition 3.2. �
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It is straightforward to see that if b is a bottleneck of x then every element
in ]x, b] is also a bottleneck of x. An isolated sublattice S′ is called an isolated
sublattice with bottleneck b if b is a bottleneck of �S′ . The purpose of a bottleneck
of an isolated sublattice will be explained in the remark after Lemma 3.17.
Figure 1 gives examples for different kinds of isolated sublattices.

Fig. 1. An isolated sublattice (without bottleneck, left), an isolated sublattice with
bottleneck (right) and a summit isolated sublattice (top)

Given a lattice (S,≤) and an isolated sublattice S′ we define a relation ∼S′

by x ∼S′ y ⇔def x = y∨(x ∈ S′ ∧y ∈ S′). Clearly, ∼S′ is an equivalence relation
with S′ as an equivalence class whereas all other equivalence classes consist of
exactly one element in S\S′. Moreover, ∼S′ is even a congruence:

Lemma 3.3. Let S′ be an isolated sublattice of a lattice (S,≤). Then ∼S′ is a
congruence relation on (S,≤).

Proof: Let us pick arbitrary x0, x1, y0, y1 ∈ S and assume that both x0 ∼S′ x1

and y0 ∼S′ y1 hold. We distinguish the following cases:

1. x0 /∈ S′ ∧ y0 /∈ S′: Here we have x0 = x1 and y0 = y1 by definition of ∼S′ and
hence x0 � y0 = x1 � y1.

2. x0 ∈ S′ ∧y0 ∈ S′: Then we have also x1 ∈ S′ and y1 ∈ S′ by definition of ∼S′ .
Because S′ is a sublattice this implies both x0 � y0 ∈ S′ and x1 � y1 ∈ S′.

3. x0 ∈ S′ ∧ y0 /∈ S′: Here x1 ∈ S′ and y0 = y1 hold and we distinguish three
cases:
a) y0 ≤ x0: By definition of an isolated sublattice this implies y0 ≤ ⊥S′ .

Consequently, we have also y0 ≤ x1 due to x0 ∈ S′ and x0 ∼S′ x1. So we
have x0 � y0 = x0 and x1 � y1 = x1 � y0 = x1, hence x0 � y0 ∈ S′ and
x1 � y1 ∈ S′.

b) x0 ≤ y0: By definition of an isolated sublattice this implies �S′ ≤ y0 and
hence also x1 ≤ y0. From this in turn follows x0 � y0 = y0 = x1 � y0 =
x1 � y1.
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c) x0 �≶ y0: We claim that here x0 � y0 = �S′ � y0 holds. Due to x0 ∈ S′

and hence x0 ≤ �S′ , �S′ � y0 is an upper bound of both x0 and y0 so
assume there is a z < �S′ � y0 with x0 ≤ z and y0 ≤ z. Then z can not
be an element of S′: in this case we would have y0 ≤ ⊥S′ due to y0 ≤ z,
y0 /∈ S′ and definition of an isolated sublattice. Now x0 ≤ z and z /∈ S′

imply �S′ ≤ z, hence z is an upper bound of both y0 and �S′ strictly less
than �S′ �y0 which is a clear contradiction. An analogous argumentation
shows x1 � y0 = y0 � �S′ and hence (due to y0 = y1) x0 � y0 = x1 � y1.

In all three cases we have x0�y0 ∼S′ x1�y1. This holds also by commutativity
of the supremum operator for the case x0 /∈ S′ ∧ y0 ∈ S′, and a symmetrical
argumentation shows the analogous claim for the infimum operator. Hence, ∼S′

is indeed a congruence relation. �

Remark: Note that not every equivalence class of a congruence is an isolated
sublattice: consider for example the congruence on ( ZZ ,≤), defined by x y ⇔def

(x ≥ 0 ∧ y ≥ 0) ∨ (x < 0 ∧ y < 0). Both equivalence classes lack either a greatest
or a least element, hence they do not fulfill the first point of Definition 3.1.
However, under certain circumstances, congruences induce isolated sublattices:

Lemma 3.4. Let be a congruence such that is at most one x with |[x]∼| > 1
and assume that �[x]∼ and ⊥[x]∼ exist. Then [x]∼ is an isolated sublattice.

Proof: Lemma 10 in [14] shows that [x]∼ is a sublattice so we pick arbitrary
x′ ∈ [x]∼ and y /∈ [x]∼ with x ≤ y. By homomorphism we have [x]∼ ≤∼ [y]∼
and hence �[x]∼ ≤ y because [x]∼ and [y] are disjoint and due to [y] = {y}. The
case x ≥ y can be treated symmetrically. �

In particular, the existence of �[x]∼ and ⊥[x]∼ is ensured if the lattice under
consideration is finite. �

Note that this means in particular that an isolated sublattice S′ is convex
because it is an equivalence class of a congruence (see e.g. [14]). This means
that S′ equals the interval [⊥S′ ,�S′ ]. However, not every interval is an isolated
sublattice; consider e.g. the interval [∅, {1}] in the lattice (P({1, 2}),⊆) as a
counterexample (here, ∅ ⊆ {2} holds but not {1} ⊆ {2}, contradicting point 2.
of Definition 3.1).

Lemma 3.5. Let S1 and S2 be two isolated sublattices with S1 ∩ S2 �= ∅. Then
{⊥S1 ,⊥S2 ,�S1 ,�S2} is a chain.

Proof: Consider an arbitrary s12 ∈ S1 ∩ S2. If �S1 ∈ S2 holds then �S1 ≤ �S2

is obvious. In the case �S1 /∈ S2 we have �S2 ≤ �S1 due to s12 ∈ S2, s12 ≤ �S1

and the definition of an isolated sublattice. A symmetric argumentation shows
⊥S1 ≶ ⊥S2 . The rest follows from ⊥S1 ,⊥S2 ≤ s12 ≤ �S1 ,�S2 . �

Lemma 3.6. Let S1 and S2 be two isolated sublattices with S1 ∩ S2 �= ∅. Then
S12 =def S1 ∪ S2 is an isolated sublattice, too.
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Proof: By Lemma 3.5 we know that {⊥S1 ,⊥S2 ,�S1 ,�S2} is a chain so let
us assume w.l.o.g. that ⊥S1 ≤ ⊥S2 holds. In the case �S2 ≤ �S1 we have
[⊥S2 ,�S2 ] ⊆ [⊥S1 ,�S1 ] and the claim follows immediately since isolated sub-
lattices are intervals. The case �S1 < ⊥S2 is ruled out by S1 ∩ S2 �= ∅ so the
remaining case is ⊥S1 ≤ ⊥S2 ≤ �S1 ≤ �S2 .

To show that in this case S12 is a lattice we pick two arbitrary x, y ∈ S12. If
x, y ∈ S1 or x, y ∈ S2 holds we are done due to the properties of a sublattice so
the crucial case is w.l.o.g. x ∈ S2\S1 ∧y ∈ S1\S2. By y ∈ S1 we get y ≤ �S1 and
by �S1 ∈ S2 (this follows from ⊥S2 ≤ �S1 ≤ �S2 and convexity of S2) we obtain
y ∈ S2 ∨ y ≤ ⊥S2 . However, the case y ∈ S2 is impossible due to y ∈ S1\S2 so
y ≤ ⊥S2 has to hold which implies y ≤ x. Hence we have x � y = y ∈ S12. For
the supremum the argumentation is dual. Clearly, ⊥S12 = ⊥S1 and �S12 = �S2

hold.
Consider now arbitrary s12 ∈ S12 and x /∈ S12 with s12 ≤ x. If s12 ∈ S2 holds

we obtain x ≥ �S2 = �S12 because S2 is an isolated sublattice so we assume
now that s12 is an element of S1. Then we have x ≥ �S1 due to properties of
S1. But now we conclude x ≥ �S2 from �S1 ∈ S2 and x /∈ S2. Again, the case
x ≤ s12 can be treated symmetrically. �

After this it is easy to see that S1∪S2 is an isolated sublattice with bottleneck
if S1 and S2 are isolated sublattices with bottlenecks, and that S1 ∪ S2 is a
nontrivial summit isolated sublattice if S1 and S2 are nontrivial summit isolated
sublattices. Since summit isolated sublattices share � as a common element we
obtain the following theorem with the help of Lemma 3.6:

Theorem 3.7. Let (S,≤) be a lattice.

1. Two different inclusion-maximal sublattices with bottleneck of (S,≤) are dis-
joint.

2. (S,≤) has at most one nontrivial inclusion-maximal summit isolated sublat-
tice.

The intuitive statement of the next lemma is that isolated sublattices in a
quotient lattice induced by an isolated sublattice correspond to isolated sublat-
tices in the original lattice:

Lemma 3.8. Let S′ be an isolated sublattice of (S,≤) and let SS′ be an isolated
sublattice of S/∼S′ . Then S′′ =def

⋃
SS′ is an isolated sublattice of S.

Proof: First we show that S′′ is indeed a sublattice of S, and therefore we pick
two arbitrary x, y ∈ S′′. If x, y ∈ S′ holds then we have x � y ∈ S′ because S′

is a sublattice of (S,≤) and hence x � y ∈ S′′. In the case x, y /∈ S′ we have
{x} �∼S′ {y} ∈ SS′ (note that in this case both [x]∼S′ and [y]∼S′ are singleton
sets) and hence x�y ∈ S′′. W.l.o.g. the remaining case is x ∈ S′ ∧y /∈ S′. If here
S′ �∼S′ {y} = S′ holds we conclude x ≤ y and hence x � y = x ∈ S′′. Otherwise
we have S′ �∼S′ {y} = {z} for some {z} ∈ SS′ with {z} �= S′ and claim that
x � y = z holds. By homomorphism, z is a lower bound of x and y so assume
that there is a lower bound z′ of x and y with z ≤ z′. Again by homomorphism,
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[z′]∼S′ is a lower bound of {x} and {y}, and due to infimum properties we have
[z′]∼S′ ≤S′ {z}. By assumption we have [z′]∼S′ �= S′ which implies [z′]∼S′ = {z′}
and by infimum properties also {z′} ≤∼S′ {z}. This in turn means z′ ≤ z and
hence z = z′. A symmetric argumentation can be carried out for the supremum.
Obviously, we have ⊥S′′ = ⊥S′ if ⊥SS′ = S′ and ⊥S′′ = x if ⊥SS′ = {x} and a
dual relationship for �S′′ .

Now we choose arbitrary s ∈ S′′ and x /∈ S′′ with s ≤ x. By construction
of S′′ we have [s]∼S′ ∈ SS′ and [x]∼S′ /∈ SS′ , and by homomorphism we get
[s]∼S′ ≤∼S′ [x]∼S′ from where we conclude �SS′ ≤∼S′ [x]∼S′ because SS′ is
an isolated sublattice. Next we observe that [x]∼S′ and �SS′ are disjoint and
consider first the case that �SS′ is a singleton set. Then we have �SS′ = {�S′′}
and hence �S′′ ≤ x. If �SS′ contains more than one element we have �SS′ = S′

and hence �S′′ = �S′ . Also in this case �S′′ ≤ x holds by homomorphism and
disjointness of [x]∼S′ and �SS′ . The case s ≥ x can be treated symmetrically, so
S′′ satisfies indeed Definition 3.1. �

This claim holds even for isolated sublattices with bottleneck:

Lemma 3.9. Let S′ be an isolated sublattice of (S,≤) and let SS′ be an isolated
sublattice with bottleneck of S/∼S′ . Then S′′ =def

⋃
SS′ is an isolated sublattice

with bottleneck of S.

Proof: From Lemma 3.8 we know already that S′′ is an isolated sublattice so
we pick an arbitrary bottleneck B ∈ S/∼S′ of SS′ . We now distinguish several
cases:

1. �SS′ = S′: Here we have �S′′ = �S′ . Moreover, B = {b} holds for some b ∈ S,
so b fulfills requirements of Definition 3.2 due to homomorphism properties
(note that all elements of ]S′, B] are singleton sets).

2. B = S′: Here we have �SS′ = {�S′′} and we claim that ⊥S′ is a bottleneck of
S′′. Because [{�S′′}, S′] is a chain in S/∼S′ , [�S′′ ,⊥S′ ] is a chain in S (note
that S/∼S′ consists only of singleton sets except possibly S′). The remaining
properties of Definition 3.2 are now easy to check.

3. �SS′ �= S′ ∧ B �= S′: If S′ ∈ [�SS′ , B] holds then B is also a bottleneck
of SS′ and we can proceed as in the previous case. Otherwise, all elements
from S/∼S′ under consideration are singleton sets, and Definition 3.2 is easily
verified by means of homomorphism. �

Also for summit isolated sublattices we have an analogous lemma:

Lemma 3.10. Let S′ be an isolated sublattice of (S,≤) and let SS′ be a summit
isolated sublattice of S/∼S′ . Then S′′ =def

⋃
SS′ is a summit isolated sublattice

of S.

Proof: This is obvious due to �∼S′ ∈ SS′ , Lemma 3.8, homomorphism proper-
ties and construction of S′′. �
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In our algorithm we will be confronted with the iterative construction of
quotients, so we investigate some properties thereof. We call a (finite or infinite)
sequence S0, S1, S2, . . . of lattices a quotient sequence if for all i the relationship
Si+1 = Si/∼S′

i
holds for some isolated sublattice S′

i of Si.
The next lemma states intuitively that we can factor out an inclusion-

maximal useful summit isolated sublattice at most once:

Lemma 3.11. Let S0, S1, S2, . . . be a quotient sequence such that S1 = S0/∼S′
0

holds for an inclusion-maximal useful summit isolated sublattice S′
0. Then no Si

with i > 0 contains a useful summit isolated lattice.

Proof: Assume that some Si with i > 0 contains a useful summit isolated
lattice S′

i. Then we could construct an inclusion-maximal summit isolated sub-
lattice S′′

0 � of S0 from S′
i backwards along the lines of Lemmata 3.8 and 3.10,

contradicting the inclusion-maximality of S′
0 �

The statement of the next lemma is that - disregarding the operation ·{} - an
element can be part of an inclusion-maximal isolated sublattice at most once in
a quotient sequence (the notation

⋃n
C is defined inductively by

⋃0
C =def C

and
⋃n+1

C =def

⋃
(
⋃n

C); intuitively speaking,
⋃n

C strips n set braces from
the elements of C):

Lemma 3.12. Let S0, S1, S2, . . . be a quotient sequence such that Si+1 =
Si/∼S′

i
holds for an inclusion-maximal useful isolated sublattice with bottleneck

S′
i for all i ≥ 0. Then S′

i and
⋃j−i

S′
j are disjoint for all i, j with j > i.

Proof: Clearly, S′
i and

⋃
S′
i+1 are disjoint due to the first part of Theorem 3.7

and Lemma 3.9. The rest is simple induction. �

3.2 Isolated Sublattices and Closure Systems

Now we will examine the interplay between isolated sublattices and closure sys-
tems. As a first observation, we note that by Lemma 3.3 S/∼S′ is a homomorphic
image of (S,≤) if S′ is an isolated sublattice of (S,≤). Hence it is easy to see that
the two conditions from Definition 2.2 can be transferred from a closure system
of S to a corresponding system in S/∼S′ . This shows essentially the following
lemma:

Lemma 3.13. Let (S,≤) be a lattice, S′ an isolated sublattice of (S,≤) and
consider a closure system C of (S,≤).

1. If C ∩ S′ = ∅ then C{} is a closure system of S/∼S′ .
2. If C ∩ S′ �= ∅ then (C\S′){} ∪ {S′} is a closure system of S/∼S′ .

The reverse direction, i.e., reasoning about closure systems in S starting
from closure systems in S/∼S′ , is a little bit more elaborate. We start with the
following definition:
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Definition 3.14. Let (S,≤) be a lattice with greatest element �. A subset C ⊆ S
is called a preclosure system of (S,≤) if C ∪ {�} is a closure system of (S,≤).
The set of all preclosure systems of (S,≤) is denoted by PC(S).

Note that every closure system is also a preclosure system and that the empty
set is a closure system, too. Moreover, if C(S) is finite then |PC(S)| = 2 · |C(S)|
holds. Clearly, a preclosure system is closed under �. Moreover, in a nonempty
preclosure system we find a least element majorizing ⊥ (which is also a least
element of the preclosure system):

Lemma 3.15. Let C be a nonempty preclosure system of a lattice (S,≤) with
least element ⊥S and greatest element �S. Then there is a least element c ∈ C
majorizing ⊥S.

Proof: If �S ∈ C holds then C is even a closure system and the claim follows
immediately from Definition 2.2. Otherwise, C ′ =def C∪̇{�S} is a closure system
hence there is a least c′ ∈ C ′ with ⊥S ≤ c′. However, c′ can not equal �S because
C ′ contains at least one other element except �S ; hence we get c′ ∈ C. �

By means of preclosure systems we can characterize the structure of the
intersection of a closure system and an isolated sublattice:

Lemma 3.16. Let C be a closure system on a lattice S with greatest element
�, and let S′ be an isolated sublattice of S with greatest element �S′ and least
element ⊥S′ . Then C ′ =def C ∩ S′ is a preclosure system of S′. Moreover, if S′

is a summit isolated sublattice then C ′ is a closure system of S′.

Proof: First we show that C ′
�S′ =def C ′∪{�S′} is closed under binary infimum.

Therefore we pick two arbitrary x′, y′ ∈ C�S′ . If one of them equals �S′ we have
x′ � y′ ∈ {x′, y′} ⊆ C ′

�S′ and we are done; otherwise we have x′, y′ ∈ C ′. By
definition of a sublattice, we have ⊥S′ ≤ x′, y′ ≤ �S′ and hence ⊥S′ ≤ x′ � y′ ≤
�S′ . By convexity of S′ this implies x′ � y′ ∈ S′.

For the second criterion of Definition 2.2 we consider an arbitrary s′ ∈ S′.
Then there is a smallest x ∈ C with s′ ≤ x. If x is an element of S′ then it is
by definition also an element of C ′

�S′ so assume that x /∈ S′ holds. Then, by
definition of an isolated sublattice, we have �S′ ≤ x so it is easy to see that �S′

is a smallest element of C ′
�S′ majorizing s′. �

Now we can formulate the “verse” lemma of Lemma 3.13 in the case of
isolated sublattices with bottleneck:

Lemma 3.17. Let (S,≤) be a lattice and S′ an isolated sublattice of S such that
�S′ has a least bottleneck b. Assume that CS′ is a preclosure system of S′ and let
C ′ be a closure system of S/∼S′ with S′ ∈ C ′. Then C =def

⋃
(C ′\{S′}) ∪ CS′

is a closure system of (S,≤).

Proof: According to Lemma 2.3 it suffices to show that for every x ∈ S there
is a least c ∈ C with x ≤ c. Hence we distinguish the following cases:
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1. x /∈ S′: Then there is a least c′ ∈ C ′ with {x} ≤∼S′ c′. Again, there are two
cases:
a) c′ �= S′: Then c′ has the form {c′′} for some c′′ ∈ C. Clearly, x ≤ c′′

holds by homomorphism properties and let us assume there is a c′′′ ∈ C
with c′′ � c′′′ and x ≤ c′′′. If c′′′ /∈ CS′ then we have {x} ≤∼S′ {c′′′},
contradicting the fact that c′ is the least element majorizing {x}. In the
case c′′′ ∈ S′ we have {x} ≤S′ contradicting the fact c′ �= S′ because {c′′}
was supposed to be the least element majorizing {x}.

b) c′ = S′: Here we have again two cases:
i. CS′ �= ∅: Because SS′ is nonempty there is by Lemma 3.15 a least

element c′′ ∈ CS′ majorizing ⊥S′ . Clearly, x ≤ c′′ holds ({x} ≤∼S′ S
′

implies x ≤ ⊥S′) so let us assume there is a c′′′ with c′′ � c′′′ and
x ≤ c′′′. c′′′ can not be an element of CS′ (then it would be an element
different from c′′ majorizing ⊥S′) and hence no element from S′ so
[c′′′]∼S′ = {c′′′} has to hold. But then {c′′′} would majorize {x} with
S′ �∼S′ {c′′′}, contradicting the choice of c′.

ii. CS′ = ∅: By homomorphism, {b} is the least bottleneck of S′ in
S/∼S′ . In particular, this means {y} >∼S′ S

′ ⇔ {y} ≥∼S′ {b}. Hence,
maj({x}, C ′) can be partitioned as maj({x}, C ′) = {S′}∪̇maj({b}, C ′).
Because C ′ is a closure system there is a least element {c′′} of
maj({b}, C ′). On the other hand, we have also maj(x,C) = maj(b, C)
by an analogous argument as above (note that C ∩ S′ = ∅ holds).
By homomorphism, c′′ is the least element of maj(b, C) and hence the
least element of C majorizing x.

2. x ∈ S′: Because CS′ is a preclosure on S′ there is a least element c of
maj(x, S′ ∪ �S′). Again, we have two cases:
a) c ∈ CS′ : By definition of on isolated sublattice, all elements in S\S′ are

strictly less than ⊥S′ (and can hence not majorize x) or strictly greater
than �S′ (and can hence not be a minimal element majorizing x). So c is
the least element of maj(x,C).

b) c /∈ CS′ : In this case, we have c = �S′ . An argumentation analogous to
case 1.a)ii. shows that c′ is the least element of C majorizing x where {c′}
is the least element of maj({b}, C ′). �

Remark: The requirement that �S′ has a bottleneck element is necessary for
the correctness of Lemma 3.17. To see this, take a look at Fig. 2. At the left,
a preclosure system, indicated by encircled elements, on an isolated sublattice
without bottleneck of its top element, indicated by an ellipse, is shown. The
middle picture shows a closure system on the associated quotient lattice, indi-
cated by circles. However, the construction from Lemma 3.17 leads to the set of
encircled elements in the right picture which is not closed under binary infimum
and hence is no closure system. This shows one effect of a bottleneck: it prevents
the necessity that the top element of an isolated sublattice is the infimum of two
elements above it. Moreover, the requirement that �S′ has even a least bottle-
neck is necessary: consider the lattice S = ([0, 1],≤) (where ≤ denotes the usual
order on the reals) and the sublattice S′ = ({0},≤). We choose the empty set
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as preclosure CS′ of S′ and [0, 1]{} as closure system C ′. Then the construction
yields for C the set ]0, 1] which is no closure system since it contains no least
element majorizing 0. �

In a summit isolated sublattice S′, the top element �S′ obviously can not
have a bottleneck, so Lemma 3.17 is not applicable in this situation. However,
there is a slight variant of it:

Lemma 3.18. Let (S,≤) be a lattice and S′ a summit isolated sublattice of S.
Assume that CS′ is a closure system of S′ on (S,≤) and let C ′ be a closure
system of S/∼S′ . Then C =def

⋃
C ′\S′ ∪ CS′ is a closure system of (S,≤).

The proof is very similar to the one of Lemma 3.17 so we omit it here. Note
that for every closure system CS′ of S′ we have � ∈ CS′ and hence also S′ ∈ C ′.

Finally, we consider the case of a closure system C ′ on S/∼S′ with S′ /∈ C ′:

Lemma 3.19. Let S be a lattice and S′ an isolated sublattice with bottleneck of
S and assume that C ′ is a closure system on S/∼S′ with S′ /∈ C ′. Then

⋃
C ′ is

a closure system on S.

Fig. 2. A preclosure system on an isolated sublattice (left), a closure system on a
quotient (middle) and no closure system on the original lattice (right)

The proof of this lemma is also very similar to the one of Lemma 3.17 so we
leave it to the reader.

Using Lemmata 3.13, 3.16, 3.17 and 3.19 we obtain the following theorem:

Theorem 3.20. Let S′ be an isolated sublattice with bottleneck of a lattice
(S,≤), and consider a set C ⊆ S.

1. Assume that C ′ =def C ∩ S′ �= ∅ holds. Then C is a closure system of S iff
C ′ is a nonempty preclosure system of S′ and (C\S′){} ∪ {S′} is a closure
system of S/∼S′ .

2. Assume that C ∩ S′ = ∅ holds. Then C is a closure system of S iff C{} is a
closure system of S/∼S′ .
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Analogously, Lemmata 3.13, 3.16 and 3.18 imply the following theorem:

Theorem 3.21. Let S′ be a summit isolated sublattice of a lattice (S,≤), and
consider a set C ⊆ S. Then C is a closure system of S iff C ∩ S′ is a closure
system of S′ and (C\S′){} ∪ {S′} is a closure system of S/∼S′ .

4 Counting Closure Operators

4.1 Closed Formulae for Special Cases

Since we are interested in counting the number of closure operators we assume
from now on that every lattice under consideration is finite.

In the algorithm we will introduce in subsection 4.2 the recursive calls will
have to compute closure system containing already processed elements. So for
a subset T ⊆ S of a lattice S we introduce the notations C(S)T =def {C ∈
C(S) |T ⊆ C} and C(S)−x,T =df {C ∈ C(S)T |x /∈ C} for T ⊆ S and
x ∈ S. Trivially, C(S) = C(S)∅ (the empty set imposes no constraints) and
C(S)T = C(S)T\{�S} = C(S)T∪{�S} (every closure system has to contain �S)
hold. Moreover, C(S)T is the disjoint union of C(S)T∪{x} and C(S)−x,T so we
have the equality |C(S)T | = |C(S)T∪{x}| + |C(S)−x,T |.

Before we introduce a general divide-and-conquer algorithm for counting clo-
sures we examine some special cases which can serve as terminal cases for this
algorithm. The first one concerns chains:

Lemma 4.1. Let (S,≤) be a chain with n elements and consider an arbitrary
T ⊆ S. Then we have |C(S)T | = 2n−1−|T\{�S}|.

Proof: It is straightforward to see that for a finite chain (S,≤) a set C ⊆ S is a
closure system according to Definition 2.2 iff it contains �S . The claim follows
now from the formula for the cardinality of power sets. �

Next, we consider lattices with only one layer of elements between the bottom
and top element:

Definition 4.2. A lattice (S,≤) is called a diamond lattice of width n if its car-
rier set S = {⊥S ,�S , b1, . . . , bn} consists of n+2 pairwise different elements and
bi �≶ bj holds for all i �= j. The elements (bi)1≤i≤n are called the belt elements
of (S,≤).

Lemma 4.3. Let S be a diamond lattice of width n and let B be the set of its
belt elements. Then the following holds:

1. ⊥S ∈ T ⇒ |C(S)T | = 2n−|T\{�S}|+1

2. ⊥S /∈ T ∧ |T ∩ B| > 1 ⇒ |C(S)T | = 2n−|T\{�}|

3. ⊥S /∈ T ∧ T ∩ B = {bi} ⇒ |C(S)T | = 2n−1 + 1
4. ⊥S /∈ T ∧ T ∩ B = ∅ ⇒ |C(S)T | = 2n + n + 1
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Proof: 1. In this case, the elements of C(S)T have the form {⊥S ,�S} ∪ T ∪B.
The elements of T occupy already |T\{�S}|− 1 places in B so the claim follows
again from the cardinality formula for power sets.

2. Since closures systems are closed under infimum the condition |T ∩B| > 1
implies ⊥ ∈ C for every C ∈ C(S)T which reduces this case to the previous one.

3. Consider a closures system C ∈ C(S)T . If ⊥ /∈ C holds then bj /∈ C has to
hold for all bi �= bj ∈ B because C is closed under infimum so the only possibility
in this case is C = {⊥S , bi,�S}. The case ⊥ ∈ C can be treated analogously to
the first case and the result follows from summing up.

4. We have 2n closure systems of the form {⊥S ,�S} ∪B′ with B′ ⊆ B, n of
the form {bi,�S} and the trivial closure system {�S}. �

4.2 Simplifying Counting Closures Using Isolated Sublattices

Let us consider an isolated sublattice with bottleneck S′ of a lattice (S,≤) and
a subset T ⊆ S with T ∩ S′ = ∅. The set C(S)T can be partitioned into two
disjoint sets C(S)S

′
T and C(S)−S′

T , the first one of them consisting of all elements
from C(S)T containing an element from S′ and the second one consisting of
all elements from C(S)T containing no element from S′. By the first part of
Theorem 3.20 we obtain the equation (the term −1 serves for discarding the
empty preclosure of S′)

|C(S)S
′

T | = |C(S/∼S′)T{}∪{{S′}}| · (|PC(S′)| − 1). (1)

Analogously, the second part of Theorem 3.20 gives rise to the equation

|C(S)−S′
T | = |C(S/∼S′)−{S′},T{} |. (2)

Now the relationships |C(S/ ∼S′)T{} | = |C(S/ ∼S′)T{}∪{S′}| + |C(S/ ∼S′

)−{S′},T{} | and |PC(S′)| = 2 · |C(S′)|, together with |C(S)T | = |C(S)S
′

T | +
|C(S)−S′

T | lead to

|C(S)T | = |C(S/∼S′)T{}∪{{S′}}| · 2(|C(S′)| − 1) + |C(S/∼S′)T{} | (3)

If we do analogous considerations for a summit isolated sublattice S′ using
Theorem 3.21 we obtain the much simpler formula

|C(S)T | = |C(S/∼S′)T{} | · |C(S′)| (4)

Clearly, |C(S)| = |C(S)∅| holds, so the relationships given in Eqs. (3) and (4)
can be used for a recursive algorithm if the lattice under consideration contains
a useful nontrivial summit isolated sublattice or a useful isolated sublattice with
bottleneck. However, this is only feasible if the isolated sublattice S′ and the
set T are disjoint. Luckily, we can ensure this due to Lemmata 3.11 and 3.12 by
choosing in the first step - if possible - an inclusion-maximal nontrivial sublattice
followed by the choice of inclusion maximal isolated sublattices with bottleneck.
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The details are given in Algorithm 1. Of course we have to resort to other
methods if the lattice does not contain suitable isolated sublattices or is not of
a special structure for which a closed formula is known.

Algorithm 1. Counting Closure Operators
function #closures(lattice S, set T )

if Lemma 4.1 or Lemma 4.3 are applicable then
return the respective number

end if
if S has a nontrivial useful summit isolated sublattice then

S′ ← the inclusion maximal summit sublattice
return #closures(S/∼S′ ,T {})·#closures(S′, ∅)

end if
if S has a useful isolated sublattice with bottleneck then

S′ ← an inclusion maximal useful isolated sublattice with bottleneck
return #closures(S/ ∼S′ , T {} ∪ {S′{}})·2(#closures(S′, ∅)-

1)+#closures(S/∼S′ ,T {})
end if
compute and return |C(S)T | by some brute force algorithm

end function

Let us now briefly analyze this algorithm. In every recursive call of #CLOSURES
the cardinality of the lattices in the first arguments is strictly smaller than
the cardinality of the passed lattice: first, every isolated lattice with bottleneck
or every nontrivial summit isolated lattice S′ is a strict subset of S. Second,
because we consider only useful isolated sublattices S′, S/∼S′ contains strictly
less element than S. This ensures termination in the sense that either a lattice
is obtained for which a closed formula for the number of closures is known, or
some other brute force algorithm is called.

For a short analysis of a possible speed-up we show first that isolated sub-
lattices can be found in polynomial time Therefore we assume that the lattice
(S,≤) is represented by its Hasse diagram. In a precomputation step, we deter-
mine for each s ∈ S the sets s ≤ and s ≥, i.e., the elements greater (smaller)
than or equal to s. This can be done by BFS or DFS in polynomial time. To
compute the isolated sublattices of S, we loop over all tuples (x, y) ∈ S × S
and determine the interval [x, y] by intersecting x ≤ and y ≥. By Lemma 3.3,
every sublattice is of the form [x, y] so we test for each interval whether it is
an isolated sublattice. To this end, test all elements z ∈ [x, y]\{x, y} if there is
a direct predecessor or successor z′ of z with z′ /∈ [x, y]. If such an z′ exists,
we discard [x, y] as an isolated sublattice, otherwise we have found an isolated
sublattice. Since there are quadratic many elements in S × S, and we test at
most |S| elements as z′ this can be executed in polynomial time.

Let us now assume that a brute force algorithm takes c|S| time for some
c > 1. Furthermore, we consider a family of lattices which have a nontrivial
useful summit isolated sublattice of cardinality |S|

2 . Then Algorithm 1 makes
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two recursive calls with instances of size |S|
2 and |S|

2 +1. In the worst case, these
two instances have to be handled using a brute force algorithm. Then, using p
as a polynomial caused by the computation of the isolated sublattice, the overall
running time is p(|S|) + c

|S|
2 + c

|S|
2 +1 ∈ O(c

|S|
2 +1) which is clearly dominated by

c|S|, resulting from the immediate application of a brute force algorithm.

5 Conclusion and Further Work

We have shown that isolated sublattices can be used to simplify the computation
of the number of closure operators. However, there is a lot of future work left.
First, it seems realistic that more general structures than isolated sublattices
can be used in a similar manner by means of quotient lattices. A possible class
of candidates may be autobisimulations whose equivalence classes were already
used for reducing the number of nodes by means of a quotient in many algo-
rithmic contexts as e.g. model checking as in [2] or model refinement as in [13].
Second, the presented algorithm should be implemented and evaluated; also, a
thorough analysis of its running time should be subject of further investigations.
Third, special lattices other than chains and diamond lattices should be investi-
gated in order to obtain analogous results as in Lemmata 4.1 and 4.3. Moreover,
similar results could be obtained for general orders instead of lattices. Maybe
similar ideas could be used for counting monads on categories since monads on
categories are a generalization of closure operators on lattices.

Acknowledgments. The author is grateful to every anonymous (especially the first)
reviewer and to Bernhard Möller for valuable hints and remarks.
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Abstract. We study second-order formalisations of graph properties
expressed as first-order formulas in relation algebras extended with a
Kleene star. The formulas quantify over relations while still avoiding
quantification over elements of the base set. We formalise the property
of undirected graphs being acyclic this way. This involves a study of var-
ious kinds of orientation of graphs. We also verify basic algorithms to
constructively prove several second-order properties.

1 Introduction

Binary relations and relational operations provide convenient abstractions for
expressing various kinds of logical specification in concise ways as the following
examples demonstrate:

– Relation R is transitive if RR ⊆ R (using relational composition), which is
logically equivalent to ∀x : ∀y : ∀z : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R.

– Point Q is reachable from point P in graph R if P ⊆ R∗Q (using reflexive-
transitive closure ∗), which is equivalent to: there is a number n and a sequence
of vertices x0, . . . , xn with ∀i : 0 ≤ i < n ⇒ (xi, xi+1) ∈ R, where x0 and xn

correspond to P and Q, respectively. See Sect. 2 for the relational specification
of points.

– Directed graph R is acyclic if R+ ⊆ I (using transitive closure + and the com-
plement of the identity relation I), which is equivalent to: there is no number
n and sequence of vertices x0, . . . , xn with ∀i : 0 ≤ i < n ⇒ (xi, xi+1) ∈ R
and (xn, x0) ∈ R.

In these examples, conciseness is gained by eliminating quantifiers from logical
specifications. The resulting expressions facilitate equational reasoning about
entire relations rather than point-wise arguments involving elements of the base
set.

The above logical formulas quantify over elements of the base set of the
relation. Sometimes quantification over relations is used:

– A relation algebra is pair-dense if

∀R : O �= R ⊆ I ⇒ ∃Q : O �= Q ⊆ R ∧ QIQIQ ⊆ I

(using the empty relation O) [19].
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 209–224, 2021.
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– The intermediate point theorem states

P ⊆ RSQ ⇔ ∃X : X is a point ∧ P ⊆ RX ∧ X ⊆ SQ

for any relations R and S and any points P and Q [30].
– Two characterisations of difunctional relations are

R = RRTR ⇔ ∃P : ∃Q : PTP ⊆ I ⊆ PPT ∧ QTQ ⊆ I ⊆ QQT ∧ R = PQT

(using relational converse T). The formula specifies that P and Q are map-
pings, that is, univalent and total relations; see Sect. 2. The above equivalence
is from [28] which also characterises various types of orders by quantifying
over relations.

– A form of the axiom of choice can be expressed as

∀R : I ⊆ RRT ⇒ ∃Q : Q ⊆ R ∧ QTQ ⊆ I ⊆ QQT

This considers the set of R-image sets of each element of the base set, and
selects one element from each according to choice function Q. The formula
specifies that R is total and Q is a mapping.

Of course, already the axioms of relation algebras universally quantify over rela-
tions, but the above properties also use existential quantification. We call prop-
erties that quantify over relations ‘second-order’ to distinguish them from logical
formulas that quantify over elements of the base set. We express these properties
in the language of relation algebras extended with a Kleene star, which abstracts
from elements of the base set. Hence, in this language, we can use first-order for-
mulas with variables ranging over the elements of a relation algebra.

In this paper we study second-order properties that are useful for the appli-
cation area of graphs. One of the motivations for this work is that while R+ ⊆ I
concisely states that directed graph R is acyclic, no similarly compact formal-
isation of acyclicity is known for undirected graphs represented by symmetric
relations. This complicates the formalisation of graph algorithms and their ver-
ification [13,14]. The focus of this paper is to present a number of second-order
properties and study their relationships; future work will use these properties to
simplify relational correctness proofs of graph algorithms.

Relation algebras are frequently associated with the aim of eliminating logi-
cal quantifiers and thereby enabling point-free equational reasoning at a higher
abstraction level. The present work does not contradict this aim by reintroduc-
ing quantifiers. The quantifiers in our formulas are second-order, that is, they
quantify over relations not elements of the base set. For comparison, consider
the map-fusion law for lists in functional programming [4]. Its point-wise form
uses functions f and g and a list xs:

map f (map g xs) = map (f ◦ g) xs

Its point-free form eliminates the list argument xs:

map f ◦ map g = map (f ◦ g)
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It still involves implicit quantification over functions f and g, but the law can
now be understood as talking about functions rather than lists. The variables f
and g are ‘higher-order points’ and not usually eliminated from this law, though
they could be removed in formalisms like combinatory logic [7,31].

The contributions of this paper are:

– We study and compare various notions of orientability of undirected graphs
in Sect. 3. They serve as a basis for formalising more specific properties.

– We introduce several second-order formalisations of the property that an undi-
rected graph is acyclic in Sect. 4. We prove a number of relationships between
these formulas and give counterexamples in cases where formulas are not
equivalent in relation algebras extended with a Kleene star.

– We give several equivalent formalisations of general and specific transitively
orientable graphs in Sect. 5. We also formalise the property that an undirected
graph contains only simple paths.

– We verify the correctness of several basic algorithms in Sect. 6 to construc-
tively prove a number of axioms used throughout this paper.

Moreover, all results in this paper except the counterexamples have been formally
verified in Isabelle/HOL [25]. The corresponding proofs are omitted and can be
found in the Archive of Formal Proofs [15].

2 Relational and Algebraic Basics

This section recalls algebras we will use for reasoning about properties of directed
and undirected graphs in the remainder of the paper. In particular we discuss
Boolean algebras, relation algebras and Kleene relation algebras. We also recall
basic relational definitions and give a number of general results.

A Boolean algebra [9] is a structure (S,�,, ,⊥,�) such that

x � (y � z) = (x � y) � z x  (y  z) = (x  y)  z

x � y = y � x x  y = y  x

x � x = x x  x = x

x � ⊥ = x x  � = x

x � � = � x  ⊥ = ⊥
x � (x  y) = x x  (x � y) = x

x � (y  z) = (x � y)  (x � z) x  (y � z) = (x  y) � (x  z)
x � x = � x  x = ⊥

for each x, y, z ∈ S. The axioms specify that the operations � and  are asso-
ciative, commutative and idempotent, have units ⊥ and �, have zeros � and ⊥,
absorb each other, distribute over each other and are complementary.

The lattice order is obtained by x � y ⇔ x � y = y or the equivalent
x � y ⇔ x  y = x. The join x � y is the �-least upper bound of x and y; their
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meet or �-greatest lower bound is xy. The �-least element is ⊥; the �-greatest
element is �. The element x is the complement of x.

A relation algebra [33] is a structure (S,�,, ·, , T,⊥,�, 1) such that the
reduct (S,�,, ,⊥,�) is a Boolean algebra and

x · (y · z) = (x · y) · z (x · y)T = yT · xT

x · 1 = x (xT)
T

= x

(x � y) · z = (x · z) � (y · z) (x � y)T = xT � yT

xT · x · y � y

for each x, y, z ∈ S. It follows that composition · is a monoid with identity 1 and
distributes over join, transpose T is involutive, antidistributes over composition
and distributes over join and meet, and De Morgan’s Theorem K holds. We
abbreviate x · y by xy.

An element x of a relation algebra is reflexive if 1 � x, irreflexive if x � 1,
symmetric if xT = x, asymmetric if x  xT = ⊥, antisymmetric if x  xT � 1,
transitive if xx � x, a partial order if x is reflexive and antisymmetric and
transitive, a strict order if x is irreflexive and transitive, a total order if x�xT = �
and x is a partial order, a strict total order if x � xT = 1 and x is a strict order,
univalent if xTx � 1, injective if xxT � 1, total if 1 � xxT, surjective if 1 � xTx,
bijective if x is injective and surjective, a vector if x� = x, a point if x is a
bijective vector, and an arc if x� and xT� are points. The symmetric closure of
x is x � xT. See [30] for further details about these properties.

A Kleene relation algebra is a structure (S,�,, ·, , T, ∗,⊥,�, 1) such that
the reduct (S,�,, ·, , T,⊥,�, 1) is a relation algebra and

1 � xx∗ � x∗ xy � y ⇒ x∗y � y

1 � x∗x � x∗ yx � y ⇒ yx∗ � y

for each x, y ∈ S. It follows that x∗y is the �-least fixpoint of λz.xz � y and
yx∗ is the �-least fixpoint of λz.zx � y. The above unfold and induction axioms
for the Kleene star ∗ are from [17]. The transitive closure of x is x+ = xx∗ and
x∗ models the reflexive-transitive closure of relations. Relation algebras with
transitive closure have been studied in [22].

An element x of a Kleene relation algebra is acyclic if x+ is irreflexive, and
a forest if x is injective and acyclic.

The following theorem states a number of general results in (Kleene) relation
algebras. Theorems 1.2 and 1.3 appear in [28,30].

Theorem 1. Let S be a Kleene relation algebra and let x, y ∈ S. Then

1. Every acyclic element is asymmetric.
2. Every asymmetric element is irreflexive.
3. Acyclic, asymmetric and irreflexive are equivalent for transitive elements.
4. x is asymmetric if and only if xx is irreflexive.
5. x is a strict order if and only if x is transitive and acyclic.
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6. x is a strict total order if and only if x is transitive and x � xT = 1.
7. x is acyclic if and only if x is irreflexive and x∗ is antisymmetric.
8. x is acyclic if and only if x+ is asymmetric.
9. (x � y)+ = x+ � y+x+ � y+ if xy = ⊥.

10. �(x  y)  �(x  y) = ⊥ if x is injective.

3 Orientations

In the remainder of this paper we model graphs using Kleene relation algebras.
A (directed) graph is just an element of (the carrier set of) such an algebra.
Graph x is undirected if x is symmetric: xT = x.

An orientation of undirected graph x is a directed graph y obtained by
assigning a direction to each edge of x [8]. Algebraically this is formalised by

y is an orientation of x ⇔def y  yT = ⊥ ∧ y � yT = x

expressing that y is asymmetric and its symmetric closure is x. Asymmetric
requires that y has at most one directed edge between any two vertices; the
second equation ensures y contains at least one directed edge between any two
vertices connected by an edge in x. Graph x is orientable if it has an orientation y:

x is orientable ⇔def ∃y : y  yT = ⊥ ∧ y � yT = x

It follows from this formalisation that every orientable graph is symmetric and
irreflexive. We now consider the converse, namely, that every symmetric irreflex-
ive element is orientable:

∀x : x = xT ∧ x � 1 ⇒ ∃y : y  yT = ⊥ ∧ y � yT = x (0)

The structure of this formula is similar to that of the axiom of choice given in
Sect. 1; essentially a direction is chosen for each edge.

Formula (0) is independent of the axioms of Kleene relation algebras as wit-
nessed by the following counterexample found by Nitpick [6]. The set {⊥, 1, 1,�}
of relations over a two-element base set forms a Kleene relation algebra which is
a subalgebra of the full algebra of relations. In this subalgebra, 1 is symmetric
and irreflexive but not orientable.

We study two variants of orientations: one that admits loops and one that
admits additional edges with an assigned direction.

– y  yT � 1 ∧ y � yT = x replaces asymmetric with antisymmetric in the
definition of an orientation. This allows loops in x, which then must also
occur in the orientation y. We call this a loop-orientation.

– y  yT = ⊥ ∧ y � yT � x requires the symmetric closure to contain x rather
than to equal x. So y can contain extra edges, but at most one direction of
each. We call this a super-orientation.

– y  yT � 1 ∧ y � yT � x combines the two variants to obtain loop-super-
orientations.
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Definitions of loop-orientable, super-orientable and loop-super-orientable are
derived for these variants similarly to orientable. Using these notions, we obtain
several formulas equivalent to formula (0) as the following result shows.

Theorem 2. The following eight properties are equivalent:

1. Every symmetric irreflexive element is orientable, that is, formula (0) holds.
2. Every symmetric element is loop-orientable.
3. Every irreflexive element is super-orientable.
4. Every element is loop-super-orientable.
5. ∀x : x = xT ⇒ ∃y : y  yT = x  1 ∧ y � yT = x.
6. ∀x : x = xT ⇒ ∃y : y  yT � x  1 ∧ y � yT = x.
7. ∀x : ∃y : y  yT = x  1 ∧ y � yT � x.
8. ∀x : ∃y : y  yT � x  1 ∧ y � yT � x.

Theorems 2.2–2.4 show how the notions of loop-/super-orientation allow the
assumptions of irreflexive/symmetric to be removed from formula (0).

The definition of an orientation generalises to the following useful ternary
predicate:

S(x, y, z) ⇔def y  yT = x ∧ y � yT = z

In words, the meet of y and yT is x and their join is z. Both x and z need to be
symmetric for S(x, y, z) to hold, and x � y � z follows, too. Hence, the intuitive
meaning for undirected graphs x and z is:

– If an edge is in x and in z, it is also in y.
– If an edge is not in x and not in z, it is also not in y.
– If an edge is not in x but in z, exactly one direction of it is in y.

The following result gives consequences of this definition.

Theorem 3

1. S(⊥, y, x) if and only if y is an orientation of x.
2. S(1, y, x) implies that y is a loop-orientation of x.
3. S(x  1, y, x) if and only if y is a loop-orientation of x.
4. S(y  1, y, x) if and only if y is a loop-orientation of x.
5. S(x, y, z) if and only if y  yT = x � z ∧ (y  yT) � (y  yT)

T
= z  x.

Theorem 3.5 gives an alternative way to specify the ternary predicate. It
requires x � z, that x is the symmetric part of y, and that the difference z  x
is the symmetric closure of the asymmetric part of y; see [21] for a study of the
symmetric and asymmetric parts of a relation.

A special case of Theorem 3.1 is that S(⊥, y, 1) if and only if y is an ori-
entation of 1. An orientation of the complete graph (without loops) 1 is also
known as a tournament [8]. The existence of a tournament is equivalent to the
conditions in Theorem 2 as the following result shows.
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Theorem 4. The following three properties are equivalent:

1. Formula (0) holds.
2. ∃y : S(⊥, y, 1).
3. ∃y : S(1, y,�).

There are various ways of strengthening orientability. One is to require the
orientation to be injective:

x is injectively orientable ⇔def ∃y : y  yT = ⊥ ∧ y � yT = x ∧ yyT � 1

Injectively orientable graphs correspond to graphs in which every component
has at most one cycle, also known as pseudoforests [11,27]. They will be used in
Sect. 4. A different strengthening requires orientations to be transitive [28]:

x is transitively orientable ⇔def ∃y : y  yT = ⊥ ∧ y � yT = x ∧ yy � y

Transitively orientable graphs, also known as comparability graphs, are the sym-
metric closures of strict orders. They will be used in Sect. 5.

4 Acyclicity of Undirected Graphs

In this section we discuss various ways to specify that an undirected graph x is
acyclic. When justifying specifications informally, we implicitly assume that x is
symmetric and irreflexive; we explicitly state such assumptions in theorems.

We present the specifications in order of increasing strength, give equivalent
characterisations for most of them and study their relationships.

4.1. Our first specification requires that every orientation of x is acyclic (in the
sense of directed graphs):

∀y : y  yT = ⊥ ∧ y � yT = x ⇒ y+ � 1 (1)

Intuitively, if x contained an undirected cycle then this cycle could be oriented
and extended to an orientation of x that would not be acyclic. Conversely, if
some orientation of x contained a cycle then the symmetric closure of this cycle
would be an undirected cycle in x.

The following result shows an equivalent formulation of (1). It replaces y+ � 1
with y∗  yT∗ = 1, which is equivalent for irreflexive y.

Theorem 5. The following two properties are equivalent for any x:

1. x satisfies formula (1).
2. ∀y : y  yT = ⊥ ∧ y � yT = x ⇒ y∗  yT∗ = 1.
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4.2. Our second specification weakens the antecedent of formula (1) to asym-
metric subsets of x:

∀y : y  yT = ⊥ ∧ y � x ⇒ y+ � 1 (2)

Every orientation of x clearly satisfies y � x, so formula (2) implies formula (1).
The converse implication holds for orientable elements according to the following
result. It also gives equivalent formulations of (2).

Theorem 6. The following three properties are equivalent for any symmetric x:

1. x satisfies formula (2).
2. ∀y : y  yT = ⊥ ∧ y � yT � x ⇒ y+ � 1.
3. ∀y : y  yT = ⊥ ∧ y � yT � x ⇒ y∗  yT∗ = 1.

The last two of the above properties are equivalent for any x. Moreover,

4. Formula (2) implies formula (1) for any x.
5. Formulas (2) and (1) are equivalent for any orientable x.

A counterexample shows that formula (1) does not imply formula (2) for
all symmetric irreflexive elements. The complex algebra Cm(G) of any group
G is a relation algebra; see [12,19] for construction details. Moreover, Cm(G)
is a Kleene relation algebra using x∗ =

⋃
i∈N xi. Consider Cm(Z4) where Z4 =

{0, 1, 2, 3} is the cyclic group of order 4. In Cm(Z4) the complex x = 1 = {1, 2, 3}
satisfies formula (1) since x has no orientation as it is above symmetric atom
{2}. But x is also above non-symmetric atom y = {1} with yT = {3} and
y+ = � = Z4, whence x does not satisfy formula (2).

4.3. Our third specification avoids the reference to acyclic subgraphs. It requires
that there is a unique way to sandwich x between a graph and its reflexive-
transitive closure:

∀y : y � x � y∗ ⇒ y = x (3)

Intuitively, if x contained an undirected cycle then one edge of this cycle could be
removed without affecting reachability in the graph, so an element strictly below
x would satisfy the antecedent. Conversely, if there was a y with y � x � y∗

then there would be an edge e in x that is not in y but in y∗, so there would be
a path in y from the start vertex of e to its end vertex which together with e
would form a cycle. The following result shows equivalent formulations of (3).

Theorem 7. The following two properties are equivalent for any x:

1. x satisfies formula (3).
2. ∀y : y � x ∧ y∗ = x∗ ⇒ y = x.

The following two properties are equivalent for any x:

3. ∀y : y � x � y+ ⇒ y = x.
4. ∀y : y � x ∧ y+ = x+ ⇒ y = x.

All four of the above properties are equivalent for any irreflexive x.
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4.4. Our fourth specification expresses the justification underlying formula (3)
more directly:

∀y : y � x ⇒ x  y∗ � y (4)

Intuitively, any edge e contained in both x and y∗ must already be in y, otherwise
the path obtained from y∗ together with e would form a cycle. The following
result shows that formulas (4) and (3) are equivalent and stronger than for-
mula (2). It also gives further equivalent formulations of (4).

Theorem 8. The following three properties are equivalent for any x:

1. x satisfies formula (4).
2. ∀y : y � x ⇒ x  y∗ = y.
3. ∀y : y � x ⇒ y  (x  y)∗ = ⊥.
4. x satisfies formula (3).

Moreover,

5. Formula (4) implies formula (2) for any symmetric x.
6. Formulas (4) and (2) are equivalent for any symmetric irreflexive x if the

following two axioms hold:

∀u : u �= ⊥ ⇒ ∃v : v is an arc ∧ v � u

∀u : ∀v : u is an arc ∧ u � v∗ ⇒ ∃w : w � v ∧ w  wT = ⊥ ∧ u � w∗

The first of these axioms specifies that every non-empty graph contains an edge,
which is similar to the point axiom [19,29]. The second of these axioms states
that if the end vertex of an edge u is reachable from its start vertex using
(directed) edges in v, then the same holds already in an asymmetric subset w of
v. Intuitively, the asymmetric subset w is formed by the edges on the (directed)
path from the start vertex of u to its end vertex.

A counterexample found by Nitpick shows that formula (2) does not imply
formula (4) for all symmetric irreflexive elements. The set of symmetric com-
plexes SCm(G) = {x ∈ Cm(G) | x = xT} of a commutative group G forms a
relation algebra which is a subalgebra of Cm(G) [12,16]. Since SCm(G) is closed
under Kleene star, it also forms a Kleene relation algebra. In SCm(Z4) the com-
plex x = 1 = {1, 2, 3} satisfies formula (2) because the only asymmetric complex
is ⊥ = ∅. But x also contains atom y = {1, 3} with y∗ = � = Z4, whence x does
not satisfy formula (4).

4.5. Our fifth specification generalises the formulation given in Theorem 8.3.
According to the latter formulation there cannot be an edge e in y such that
there is a path from the source of e to its target using edges of x that are not in
y. We now allow the edge e to be in y∗:

∀y : y � x ⇒ y∗  (x  y)∗ = 1 (5)
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Intuitively, if there is a path in y, there cannot be a path from its start vertex to
its end vertex using edges of x that are not in y, except if the start and end ver-
tices coincide. Namely, if the start and end vertices were different, the two disjoint
paths together would form a cycle. The following result shows that formula (5) is
stronger than formula (4). It also gives equivalent formulations of (5).

Theorem 9. The following six properties are equivalent for any x:

1. x satisfies formula (5).
2. ∀y : y � x ⇒ y∗  (x  y)+ � 1.
3. ∀y : y � x ⇒ y+  (x  y)∗ � 1.
4. ∀y : y � x ⇒ y+  (x  y)+ � 1.
5. ∀y : ∀z : y  z = ⊥ ∧ y � z � x ⇒ y∗  z∗ = 1.
6. ∀y : ∀z : y  z = ⊥ ∧ y � z = x ⇒ y∗  z∗ = 1.

Moreover,

7. Formula (5) implies formula (4) for any irreflexive x.

The formulation in Theorem 9.6 is particularly conspicuous. If x is partitioned
into y and z, then there cannot be a path from the same start vertex to the
same end vertex in both partitions, except for the empty path if the start and
end vertices coincide. The formulations in Theorems 9.5 and 9.6 generalise the
formulations in Theorems 6.3 and 5.2, respectively, by replacing yT with a new
variable z.

A counterexample shows that formula (4) does not imply formula (5) for all
symmetric irreflexive elements. ConsiderZ12 = {0, 1, . . . , 10, 11}, the cyclic group
of order 12. In SCm(Z12), complex x = {2, 3, 9, 10} � 1 satisfies formula (4) since
only complexes ⊥, y1 = {2, 10}, y2 = {3, 9} and x are below x and

x  ⊥∗ = x  1 � 1  1 = ⊥
x  y∗

1 = x  {0, 2, 4, 6, 8, 10} = y1

x  y∗
2 = x  {0, 3, 6, 9} = y2

x  x∗ = x

But x does not satisfy formula (5) since

y∗
1  (x  y1)∗ = y∗

1  y∗
2 = {0, 2, 4, 6, 8, 10}  {0, 3, 6, 9} = {0, 6} �= {0} = 1

4.6. Our sixth specification asserts the existence of an orientation that is a
forest. To this end, we strengthen the property of being injectively orientable,
introduced at the end of Sect. 3, by replacing asymmetric with acyclic:

∃y : y � yT = x ∧ y+ � 1 ∧ yyT � 1 (6)

Note that y+ � 1 implies that y is asymmetric. With y � yT = x it follows
that y is an orientation of x. The properties acyclic and injective together are
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frequently used to specify forests with edges directed away from the roots of the
component trees. Overall, the above property requires that there is a (directed)
forest whose symmetric closure is x.

Whereas the previous specifications of acyclic graphs were universally quan-
tified, formulation (6) is existentially quantified. The following result relates
formula 6) to both the strongest and the weakest of the previous specifications,
namely, formulas (5) and (1).

Theorem 10. The following two properties are equivalent for any x:

1. x satisfies formula (6).
2. x is injectively orientable and satisfies formula (1).

Moreover,

3. Formula (6) implies formulas (1)–(5) for any x.

The counterexample showing independence of formula (0) given in Sect. 3 also
shows that formula (5) does not imply formula (6) for all symmetric irreflexive
elements. In that algebra, x = 1 is an atom and satisfies the formulation in
Theorem 9.6 since either y = ⊥ or z = ⊥ for any partition of x. But since x is
not orientable, it does not satisfy formula (6) by Theorem 10.

We furthermore consider the following weakening of formula (6), which
replaces the condition y � yT = x with two of its consequences y � x and
x � (y � yT)∗:

x is spannable ⇔def ∃y : y � x � (y � yT)∗ ∧ y+ � 1 ∧ yyT � 1

This means that y no longer needs to contain a direction of every edge of x, but
some edges can be entirely omitted provided their end vertices are still weakly
connected in y. In other words, y is a spanning forest of x. A similar formalisation
of spanning forests has been used in [14] for verifying the correctness of Kruskal’s
minimum spanning forest algorithm. The significance of being spannable for the
present work is captured in the following result.

Theorem 11. The following two properties are equivalent for any x:

1. x satisfies formula (6).
2. x is symmetric and spannable and satisfies formula (3).

Moreover,

3. 1 is spannable if a point exists.

5 Transitive Orientations and Simple Paths

In Sect. 3 we have studied the existence of tournaments, that is, orientations
of the complete graph without loops 1. In this section we additionally require
orientations to be transitive.
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Every orientation is asymmetric, and transitive asymmetric relations corre-
spond to strict orders. Hence, the transitively orientable graphs are precisely the
graphs of strict orders after ignoring edge directions. Applied to the complete
graph without loops 1 this amounts to the existence of a strict total order.

Theorem 12. The following two properties are equivalent for any x:

1. x is transitively orientable.
2. x is irreflexive and ∃y : y � yT = x ∧ yy � y.

In particular, the following two properties are equivalent:

3. 1 is transitively orientable.
4. ∃y : y � yT = 1 ∧ yy � y.

Moreover, each of the last two properties implies formula (0).

The following result gives additional equivalent properties.

Theorem 13. The following five properties are equivalent:

1. 1 is transitively orientable.
2. ∃y : y  yT � 1 ∧ y � yT = � ∧ yy � y.
3. ∃y : y+ � 1 ∧ y∗ � y∗T = �.
4. ∃y : S(⊥, y+, 1).
5. ∃y : S(1, y∗,�).

Theorem 13.2 is a translation of Theorem 12.4 to partial orders. The prop-
erty in Theorem 13.3 requires that y is acyclic and unilaterally connected, in
other words, between any two vertices there is exactly one (directed) path in y.
Theorems 13.4 and 13.5 express this using the ternary predicate of Sect. 3.

We finally consider a special case of undirected acyclic graphs, namely those
whose maximum degree is at most 2, that is, at most two edges are incident to
each vertex. Every component of such a graph is a simple path [2]. To specify
this we strengthen formula (6) by additionally requiring y to be univalent:

∃y : y � yT = x ∧ y+ � 1 ∧ yyT � 1 ∧ yTy � 1 (7)

Intuitively, if the maximum degree of an acyclic undirected graph is at most 2,
it can be oriented by choosing a directed simple path for each of its components.
Conversely, if there is a vertex with at least 3 incident edges, any orientation
will have at least two incoming or two outgoing edges at that vertex, making the
orientation not injective or not univalent. Graphs with maximum degree 2 are
not transitively orientable in general, but according to the following result their
transitive closure (without loops) is transitively orientable.

Theorem 14

1. Formula (7) implies formula (6) for any x.
2. x+  1 is transitively orientable if x satisfies formula (7).
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6 Axioms and Algorithmic Proofs

In previous sections we have encountered two kinds of property. Properties such
as being injectively/transitively orientable or being acyclic hold for some graphs
but not for others. In contrast, properties such as formula (0), the two axioms
in Theorem 8.6, and 1 being transitively orientable do not have free variables.
Hence, they can serve as axioms that may or may not be assumed to hold
in an algebraic setting. In this section we prove that these axioms hold under
certain conditions. The conditions are somewhat restrictive from an algebraic
perspective but nevertheless satisfied for many practical applications. Our focus
is on the proof method which uses constructive algorithms.

For this section we assume that the given Kleene relation algebra is finite
and the arc axiom holds, that is, every element except ⊥ contains an arc:

∀x : x �= ⊥ ⇒ ∃y : y is an arc ∧ y � x

Finiteness is used to prove that algorithms terminate.
We first show that 1 is transitively orientable. To this end we use Szpilrajn’s

algorithm [32]. It constructs a total order that extends a given partial order.
By applying this algorithm to the discrete partial order 1 we obtain the desired
total order on the base set.

Partial correctness of Szpilrajn’s algorithm has been proved in [3] using the
automated theorem prover Prover9 [20]. We have transcribed the algorithm to
Isabelle/HOL and proved its correctness using a Hoare-logic library [23,24],
which we have extended to total correctness in previous work [14]. From the
total-correctness proof we can extract the following result [28].

Theorem 15. For every partial order p there is a total order t with p � t.

In particular, by setting p = 1 there exists a total order t, which is the
condition in Theorem 13.2. Hence, 1 is transitively orientable by Theorem 13.
Moreover, formula (0) holds by Theorem 12.

We next show that every symmetric element is spannable. To this end we use
Kruskal’s algorithm, which constructs a minimum spanning forest of an undi-
rected graph [18]. We modify the algorithm so as to ignore edge weights, in which
case it constructs a spanning forest. We have reused an existing specification and
correctness proof of this algorithm from previous work [14]. The postcondition of
the algorithm implies that the graph is spannable as per the definition in Sect. 4.
The following result is a consequence of this.

Theorem 16. Every symmetric element is spannable.

We finally establish the second axiom given in Theorem 8.6.

Theorem 17. Let x be an arc and let y be such that x � y∗. Then there is an
asymmetric z with z � y and x � z∗.



222 W. Guttmann

To construct the desired element z, we augment a standard breadth-first
search algorithm [1] with a variable t:

1 input r, s r = directed graph, s = start vertex
2 t ← ⊥ t = constructed asymmetric element
3 q ← s q = vertices reached so far
4 p ← s  rTs p = new vertices reached in the next step
5 while p �= ⊥ do any new vertices?
6 t ← t � (r  qpT) include all edges from current to new vertices
7 q ← q � p add new vertices to current set
8 p ← q  rTp take another step
9 end

10 output q, t

As precondition we require that s is a vector. The loop invariant states that q is
a vector, t is asymmetric, t � r and t � q = tT∗s and p = q  rTq. This allows
us to prove the postcondition that t is asymmetric, t � r and q = tT∗s = rT∗s.
Termination of the algorithm follows using the number of elements below qrT∗s
as bound function. This reflects vertices that are reachable from s in r but have
not been reached so far. From this total-correctness proof we can extract the
following result.

Theorem 18. For every element r and every vector s there is an asymmetric
t with t � r and tT∗s = rT∗s.

We can now show Theorem 17. Given an arc x and an element y with x � y∗,
we apply Theorem 18 using r = y and vector s = x�, obtaining an element t
with the stated properties. The desired z is obtained as z = t  y. It is clearly
below y and asymmetric as it is below the asymmetric t; moreover x � z∗ follows
from the assumptions and tT∗x� = yT∗x�.

7 Conclusion

In this paper we have used second-order properties expressed in relation algebras
extended with a Kleene star to formalise that an undirected graph is acyclic in
various ways. The formalisations are based on the concept of orientability, which
we have therefore studied. We have also verified the correctness of constructive
algorithms to validate several of the axioms.

The quantifiers used in second-order properties cause no issues for formal
reasoning in Isabelle/HOL whose logic directly supports them as first-order for-
mulas in relation algebras. Sledgehammer [5,26] can also be applied to such
formulas and its integrated provers automatically find proofs in some cases. We
should note that the formulas considered in this paper do not have complex
nestings of quantifiers. In cases where steps are too big for automated provers,
the quantifiers are easy to handle manually as most of them are at the outermost
level. The integration with equational reasoning in the proof language Isar [34] is
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seamless; it might be further improved by automatically generating bits of boil-
erplate code to break down quantifiers depending on the structure of a formula.
Isabelle/HOL would also support formalising the properties using second-order
quantification over concrete relations, but we prefer working in relation algebras.

For simplicity we have presented all results in the framework of Kleene rela-
tion algebras. Our Isabelle/HOL theory shows that most results hold in more
general structures, such as single-object bounded distributive allegories [10],
Stone relation algebras and Stone-Kleene relation algebras [13,14]. A possible
exception is the result that formula (3) implies formula (4), which we were able
to prove only in Kleene relation algebras. The more general structures are use-
ful for modelling weighted graphs. We will therefore apply the specifications of
acyclic undirected graphs introduced in Sect. 4 to the verification of graph algo-
rithms involving edge weights. Future work will consider the formalisation of
further properties of graphs using higher-order formulas.

Acknowledgement. I thank Nicolas Robinson-O’Brien and the anonymous referees
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TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48256-3 12

https://www.isa-afp.org/entries/Relational_Forests.html
https://www.isa-afp.org/entries/Relational_Forests.html
https://www.cs.unm.edu/~mccune/prover9/
https://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-83608-4
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12


Relation-Algebraic Verification
of Bor̊uvka’s Minimum Spanning

Tree Algorithm

Walter Guttmann(B) and Nicolas Robinson-O’Brien

Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

walter.guttmann@canterbury.ac.nz, nic.robinson-obrien@pg.canterbury.ac.nz

Abstract. Previous work introduced a relation-algebraic framework for
reasoning about weighted-graph algorithms. We use this framework to
prove partial correctness of a sequential version of Bor̊uvka’s minimum
spanning tree algorithm. This is the first formal proof of correctness for
this algorithm. We also discuss new abstractions that make it easier to
reason about weighted graphs.
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1 Introduction

The Minimum Spanning Tree (MST) problem is to find a subset of the edges
of a graph that form a tree, connecting the graph’s vertices, where the sum of
the weights of the edges is minimal [32]. In 1926, Otakar Bor̊uvka described the
MST problem and gave an algorithm to solve it [6]. He was perhaps the first
person to do so [12]. Bor̊uvka’s original paper is written in Czech; a translation
can be found in [24]. Bor̊uvka’s MST algorithm was independently discovered
by Choquet [8], Florek et al. [10], and Sollin [2]. Many textbooks do not treat
Bor̊uvka’s MST algorithm with the same exposure as the algorithms of Prim [29]
and Kruskal [21]; nevertheless, it is significant for its influence on running-time
complexity improvements for MST algorithms [7,18,34].

Bor̊uvka’s MST algorithm computes a minimum spanning tree of a weighted,
connected, undirected graph whose edge weights are distinct. The algorithm
begins by initialising a forest with n trees, each containing a single vertex, where
n is the number of vertices in the graph. While there is more than one tree in
that forest, the following step is repeated. For each tree in the forest, find the
edge in the graph with the smallest weight among all edges that leave the tree;
all edges found in this way are added to the forest in this step.

A relation-algebraic framework for MST problems was introduced in [13] and
has been used to formally verify Prim’s [14] and Kruskal’s [15] MST algorithms.
In the present paper, we use this framework to formally verify a sequential version
of Bor̊uvka’s MST algorithm. Its contributions are
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– In Sect. 3 we define components of a graph in terms of a vector, representing
a subset of vertices, and an equivalence, representing connectivity. We also
introduce an operation, k, to select an arbitrary component of a graph. We
show that this operation can be expressed in m-Kleene algebras.

– In Sect. 4 we present axioms for forests modulo an equivalence, a new abstrac-
tion that can represent a forest-like structure where clusters of vertices are
conceptually collapsed to points forming a forest with the edges that connect
them. A number of properties of this abstraction are also given. Addition-
ally, we study paths between vertices in a forest modulo an equivalence and
present a theorem for splitting such a path on one of its edges.

– In Sect. 5 we formalise Bor̊uvka’s MST algorithm in m-k-Stone-Kleene rela-
tion algebras. The formalisation uses the k operation.

– In Sect. 6 we discuss key invariants of our correctness proof of Bor̊uvka’s MST
algorithm and highlight how we have used the abstractions introduced in
previous sections. This is the first formal correctness proof of this algorithm.

Additionally, we have used Isabelle/HOL [27] to formally verify all results
in this paper. The corresponding theories are available in the Archive of Formal
Proofs [16] and proofs are omitted from this paper. The PDF version of this
paper includes links to the relevant theorems and definitions, hosted online. Our
proof of Bor̊uvka’s MST algorithm uses a Hoare-logic library and verification
conditions are generated using a tactic of that library [25,26]. Further details of
the correctness proof are described in [30].

There are other recent works verifying MST algorithms in Isabelle/HOL.
For example, a functional version of Prim’s algorithm was verified in [22] and an
imperative version of Kruskal’s algorithm was verified in [17]. These verifications
use different frameworks than our work. For more examples and further related
work see the survey [28] and [30].

2 Basic Definitions

In this section, we define the algebras that will be used in this paper. We are
interested in algebras for reasoning about weighted graphs. Unweighted graphs
have a straightforward representation as Boolean adjacency matrices so it makes
sense that relation algebras, binary relations in particular, have been used to rea-
son about graph algorithms [3,4,11,19,31]. Relation algebras can be generalised
to Stone relation algebras to handle edge weights [13]. This is convenient since it
does not involve additional structures to represent edge weights. Edge weights are
typically numbered and lattices [1] provide a basis for comparing those weights.

Definition 1. A bounded distributive lattice, (S ,� ,� ,⊥ ,�), is a partial
order, S, where for all x, y, z ∈ S both a join, x� y, and a meet, x� y exist and
where x � ⊥ = ⊥ and x � � = �, and finally where

x � (y � z) = (x � y) � (x � z) x � (y � z) = (x � y) � (x � z)

https://foss.heptapod.net/isa-afp/afp-devel/-/tree/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees
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Unfortunately, Boolean algebras cannot be used to represent edge weights
as there is no suitable way to define a complement operation. The pseudo-
complement operation of Stone algebras [5] weakens the complement axioms
just enough to permit the inclusion of elements representing edge weights.

Definition 2. A Stone algebra, (S ,� ,� , ,⊥ ,�), is a bounded distributive
lattice, (S ,� ,� ,⊥ ,�), with a pseudo-complement operation, , where for all
x, y ∈ S

x � x = � x � y = ⊥ ⇔ x ≤ y

The pseudo-complement y is the greatest element whose meet with y is ⊥. If
x = x then x is said to be regular. If a Stone algebra has only regular elements
then it is a Boolean algebra.

Stone relation algebras [13] include much of the structure we require from
relation algebras [23,33] but without the restrictions of the complement opera-
tion of Boolean algebras.

Definition 3. A Stone relation algebra, (S ,� ,� , · , , � ,⊥ ,� , 1), is a Stone
algebra with operations composition, ·, and transpose, �, and a constant, 1, where
for all x, y, z ∈ S

(xy)z = x(yz) 1x = x

(x � y)z = xz � yz ⊥x = ⊥
(x�)� = x xy = x y

(xy)� = y�x� 1 = 1
(x � y)� = x� � y� xy � z ≤ x(y � x�z)

Unless overridden with brackets, the operations have the precedence, from high-
est to lowest: �, , ·, �, �. Composition, x · y, is often abbreviated to xy.

An element x ∈ S is called reflexive if 1 ≤ x, transitive if xx ≤ x, symmetric
if x = x�, an equivalence if x is reflexive, transitive, and symmetric, a vector
if x� = x, univalent if x�x ≤ 1, injective if xx� ≤ 1, surjective if 1 ≤ x�x,
bijective if x is injective and surjective, a point if x is a bijective vector and an
arc if both x� and x�� are bijective.

For graphs, vectors are used to represent sets of vertices, points to represent
a single vertex, and arcs to represent edges.

Stone-Kleene relation algebras combine Stone relation algebras with Kleene
algebras to allow reasoning about reachability [13]. The unfold and induction
axioms of the Kleene star are taken from [20].

Definition 4. A Stone-Kleene relation algebra, (S ,� ,� , · , , � , ∗ ,⊥ ,� , 1), is
a Stone relation algebra, (S ,� ,� , · , , � ,⊥ ,� , 1), with an operation, ∗, where
for all x, y, z ∈ S the unfold and induction axioms hold

1 � xx∗ ≤ x∗ z � xy ≤ x ⇒ zy∗ ≤ x

1 � x∗x ≤ x∗ z � yx ≤ x ⇒ y∗z ≤ x

and additionally, (x)∗ = x∗.
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We abbreviate xx∗ as x+. Furthermore, we call any x ∈ S acyclic if x+ ≤ 1, and
a forest if x is injective and acyclic.

Structure for reasoning about minimisation and aggregation is provided by
m-Kleene algebras [14].

Definition 5. An m-Kleene algebra, (S ,� ,� , · ,+ , , � , ∗ , s ,m ,⊥ ,� , 1), is
a Stone-Kleene relation algebra, (S ,� ,� , · , , � , ∗ ,⊥ ,� , 1), with operations
addition, +, summation, s, and minimum selection, m, where for all x, y, z ∈ S,
the summation properties are satisfied

x 
= ⊥ ∧ s(x) ≤ s(y) ⇒ s(z) + s(x) ≤ s(z) + s(y)
s(x) + s(⊥) = s(x)
s(x) + s(y) = s(x � y) + s(x � y)

s(x�) = s(x)

the linear property is satisfied

s(x) ≤ s(y) ∨ s(y) ≤ s(x)

the minimum-selection properties are satisfied

m(x) ≤ x

x 
= ⊥ ⇒ m(x) is an arc
y is an arc ∧ y � x 
= ⊥ ⇒ s(m(x) � x) ≤ s(y � x)

and S contains only finitely many regular elements.

For reasoning about weighted graphs, we are interested in an instance of these
algebras where the carrier set is comprised of square matrices whose entries are
taken from the set of real numbers extended by ⊥ and �, the least and greatest
elements respectively. This may be denoted as R′A×A where A is the index set
of a square matrix and R′ = R ∪ {⊥,�}.

In this model, an entry � in a matrix denotes an arc with unknown weight, ⊥
the non-existence of an arc, and the real numbers arcs with weights corresponding
to their values. Therefore, the regular elements (matrices over ⊥,�) describe the
structure of graphs without weight information. The constant matrices ⊥, � and
1 are defined as follows: ⊥ij = ⊥ for all i, j ∈ A, �ij = � and

1ij =

{
� if i = j,

⊥ otherwise

The operations � and � are the componentwise minimum and maximum,
respectively. The binary + operation on R′ is the standard addition for real
numbers and the maximum otherwise; for example, ⊥ + � = �. This operation
is lifted to matrices, componentwise. The composition operation is defined as
(M ·N)ij = maxk∈A min{Mik, Nkj}. The pseudo-complement on R′ yields x = ⊥
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for all x 
= ⊥ and ⊥ = �. It is lifted componentwise to matrices. The � operation
is the usual transpose of matrices. The ∗ operation describes reachability in a
graph and is defined recursively using Conway’s construction [9]:(

a b
c d

)∗
=

(
e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=

(
a � bd∗c
d � ca∗b

)

The s-operation computes the sum of all weights in a matrix and is given by
applying + to all entries and storing the result in a fixed position of the returned
matrix. The remaining entries in the resulting matrix are set to ⊥. In this
model, s(⊥) = ⊥ and ⊥ is the unit of +, however, there are models where
neither holds [14]. The m-operation may be used for selecting an arc with min-
imum weight. When the input matrix contains at least one non-⊥ entry, the
m-operation returns a matrix with � stored in the position corresponding to
that of a minimum-weight arc and ⊥ everywhere else. The result of m(⊥) is ⊥.
This model is an m-Kleene algebra [13–15].

3 Component Selection

In graph theory there are notions of strongly-connected or weakly-connected
components in a directed graph. We axiomatise an operation to select an arbi-
trary connected component. A component of a graph may be represented by a
set of vertices as a vector.

Definition 6. Let S be a Stone relation algebra and let x , v ∈ S. Then v repre-
sents vector-classes of x if x and v are regular, x is an equivalence, v is a vector,
xv ≤ v, and v 
= ⊥. If v represents vector-classes of x and additionally, vv� ≤ x
then v represents a unique-vector-class of x.

A vector-class corresponds to one or more equivalence classes of x. The con-
dition xv ≤ v ensures that v contains either all elements or no elements of
each class. A unique-vector-class corresponds to one equivalence class. This can
be used to represent the set of vertices of a particular component of a graph
whose components are specified by an equivalence. The equivalence yielding the
weakly-connected components of a graph, g, is obtained by taking the symmetric
reflexive transitive closure, x = (g � g�)∗. For another example, the strongly-
connected components of g are given by the equivalence g∗ � g�∗.

Definition 7. A k-Stone relation algebra, (S ,� ,� , · , , � , k ,⊥ ,� , 1), is a
Stone relation algebra, (S ,� ,� , · , , � ,⊥ ,� , 1), with a binary operation k,
where for all x, v ∈ S the element k(x, v) is a regular vector and

k(x, v) ≤ v (1)
k(x, v) · k(x, v)� ≤ x (2)

x · k(x, v) ≤ k(x, v) (3)

and, if v represents vector-classes of x then

k(x, v) 
= ⊥ (4)

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L616
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L617
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L638
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If v represents vector-classes of x the element k(x, v) is a vector representing
an arbitrary component that is connected according to x and contained in v.
Axiom (1) expresses that the result of k is contained in the set of vertices we
are selecting from, ignoring the weights. Axiom (2) makes any two vertices from
the result of k connected in x. Axiom (3) expresses that the result of k is closed
under being connected in x. This means that either all vertices of a component of
x are included in the output of k, or none are. Axiom (4) requires that k returns
a non-empty component if v represents vector-classes of x. If this is the case, the
output of k represents a unique-vector-class.

Theorem 1. Let S be an m-Kleene algebra with a function k defined as

k(x, v) =

{
x · m(v)� if v represents vector-classes of x,
⊥ otherwise

Then S is a k-Stone relation algebra.

This particular implementation of k does not select an arbitrary component but
rather a component containing a minimum-weight arc in v.

Definition 8. An m-k-Stone-Kleene relation algebra, (S ,� ,� , · ,+ , , � , ∗ ,
s ,m , k ,⊥ ,� , 1), is an m-Kleene algebra, (S ,� ,� , · ,+ , , � , ∗ , s ,m ,⊥ ,� ,
1), with a component selection operation, k, such that the reduct, (S ,� ,� , · ,
, � , k ,⊥ ,� , 1), is a k-Stone relation algebra.

Previous work shows that matrices over R′ form a model of m-Kleene algebras
[13–15]. Every m-Kleene algebra is an m-k-Stone-Kleene relation algebra by
Theorem 1. The correctness of Bor̊uvka’s MST algorithm will be proved in m-
k-Stone-Kleene relation algebras, hence it holds in the weighted-graph model
described in Sect. 2 and in many other models [14].

4 Forests Modulo an Equivalence

We generalise forests by giving axioms to treat a graph, d, as a forest modulo an
equivalence, x. The arcs in d form a forest-like structure where each equivalence
class of x forms a strongly-connected component. The intent of this abstraction
is to provide an algebraic basis for reasoning about connectivity while forgetting
about some of the structure of a graph.

4.1 Axioms and Properties

First, we define forests modulo an equivalence and give a number of properties
for such structures.

Definition 9. Let S be a Stone-Kleene relation algebra and let x , d ∈ S. Then,
d is a forest modulo x, if x is an equivalence, xd is univalent, and

x � dd� ≤ 1 x � (xd)+ ≤ ⊥

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L653
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L774
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L238
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Fig. 1. An example of a forest modulo an equivalence (left) and a view of the quotient
set of components (right). The equivalence classes are enclosed in circles and labelled
v1 to v5. The arcs in d, labelled d1 to d3, form a forest modulo that equivalence.

These axioms describe a forest-like structure where the arcs in d are directed
towards their respective root component(s). For example, the forest modulo an
equivalence in Fig. 1 has two root components: v4 and v5. The special case of a
forest modulo 1 is the transpose of a forest, that is, univalent and acyclic.

Theorem 2. Let S be a Stone-Kleene relation algebra and let d, x ∈ S and let
d be a forest modulo x. Then d is acyclic and univalent and

2.1 d � d� ≤ x
2.2 dx � xd ≤ x
2.3 x(d � d�)x ≤ x
2.4 (dx)+ ≤ x
2.5 (xd)+ ≤ x

2.6 (xd)∗ � (xd)� = ⊥
2.7 d�xd ≤ 1
2.8 (xd�)+xdxd� ≤ (xd�)+

2.9 (d�x)∗(xd)∗ = (d�x)∗ � (xd)∗

Furthermore, let a ∈ S be an arc and let a ≤ d, then

2.10 (d � a)�(xa�) ≤ ⊥
2.11 (x(d � a))∗xa� =

(
x
(
(d � a) � (d � a)�

))∗
xa�

Theorems 2.1 to 2.5 describe how d separates equivalence classes of x. For
example, Theorem 2.4 states that taking steps (dx)+ that involve one or more
d-arcs leads to a different component. Theorem 2.6 follows from the acyclic-like
structure of the forest modulo x. Theorem 2.7 is derivable from xd being univa-
lent. Theorem 2.9 follows from x being an equivalence and xd being univalent.
This theorem states that taking any number of steps backwards in the forest
modulo x (away from the roots) followed by any number of steps forwards in the
forest modulo x (towards the roots) is the same as going either forwards or back-
wards. Consider the situation if we take a step backwards between components

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L278
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L282
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L286
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L298
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L302
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L365
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L356
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L399
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L457
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L469
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L542
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of a forest modulo x without using an arc a, which is in d. Then, Theorem 2.10
states there is no sequence of steps we can take in the component we find our-
selves in to next take a step along arc a.

4.2 Paths in Forests Modulo an Equivalence

Next, we define a general expression for the existence of a path between two
vertices in a forest modulo an equivalence.

Definition 10. Let S be an m-k-Stone-Kleene relation algebra and let a , b , d ,
x ∈ S. Then, a�d

x b holds if a and b are arcs, x is an equivalence, and

a�� ≤ (xd)∗xb� (5)

Property (5) states that there is a path from the target of a, represented by
the point a��, to the source of b, represented by the point b�, in the forest d
modulo x.

The following result states that for an arc e there is a path in d � e between
a and b if and only if there is either a path in d from a to b, or a path in d from
a to e and one from e to b.

Theorem 3. Let S be an m-k-Stone-Kleene relation algebra where a , b , e , d ,
x ∈ S are regular and let e be an arc and x be an equivalence. Then

a�d�e
x b ⇔ a�d

x b ∨
(
a�d

x e ∧ e�d
x b

)
Theorem 3 allows us to split a path. An example use of this is given in

Sect. 6.1.

5 Relational Formalisation of Bor̊uvka’s MST Algorithm

In this section, we formalise Bor̊uvka’s MST algorithm as a while-program,
shown in Fig. 2. The variables of the program are elements of an m-k-Stone-
Kleene relation algebra.

The input to the program is an undirected graph, g, modelled by a symmetric
matrix. With the exception of g, all variables are regular elements. Graph g
does not need to be connected. The algorithm constructs a directed minimum
spanning forest f (of g) that is initialised as empty (line 2).

The outer while-loop executes until there are no arcs in g that could connect
components of f (line 3). On lines 4 to 6, variables used by the inner while-
loop are initialised. The forest h maintains a stable representation of f in each
iteration of the inner while-loop. The vector j tracks the components still to be
considered by the inner while-loop. The variable d tracks the arcs that have been
added to f in each iteration of the inner while-loop. This variable is not required
by the algorithm but is used in the correctness proof.

The inner while-loop exits when all components have been processed (line 7).
As discussed in Sect. 7.1 of [15], for a directed graph, x, the weakly-connected

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L240
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L955
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3586
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Fig. 2. A relational formalisation of Bor̊uvka’s MST algorithm.

components are given by (x � x�)∗. Furthermore, if x is a forest, this can be
simplified to c(x) = x�∗x∗. This is because, ignoring arc direction, two vertices
are connected in a forest if there is a path from one vertex backwards in x,
towards a root, and then forwards in x to the other vertex. An arbitrary com-
ponent, v = k(c(h), j), is selected from those that have not yet been considered
(line 8). The k operation introduced in Definition 7 is used. The vector j repre-
sents the components not yet processed by the inner while-loop and the forest,
h, represents f as it was when the current iteration of the outer loop started.
The equivalence c(h) describes the weakly-connected components of f , as they
were at the start of the current iteration of the outer while-loop. The component
v is then weakly connected in h and among those still to be processed by the
inner while-loop. Since j is reduced by v at the end of each iteration of the inner
while-loop and it continues until j is empty, every component of f is processed
exactly once in each iteration of the outer while-loop.

A minimum-weighted arc, e, is selected from among the arcs whose source is
in v and whose target is outside v (line 9). If e is not contained in a component
of f (line 10) then f is updated (lines 11 and 12), otherwise, it is not. Before e is
added to f , the algorithm ensures that any transpose of e, which may have been
added in a previous iteration of the inner while-loop, is removed from f (line
11). The update on line 12 adds e to f and at the same time reverses certain
arcs of f to maintain that f is a forest. These two updates give a new value for
f , f ′, that is:

f ′ =
(
f � e� � �e

(
f � e�)�∗) �

(
f � e� � �e

(
f � e�)�∗)�

� e (6)
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The variable d is updated to track the arcs that have been added to f in this
iteration of the inner while-loop (line 13). The processed component is removed
from j so that it is not considered in subsequent iterations of the inner while-loop
(line 15). When the outer while-loop exits the algorithm terminates returning f
(line 18) which contains the structure of a minimum spanning forest of g without
weight information. The weighted version of the output may be obtained by
taking the meet with g. The undirected version of the output can be obtained
by taking the symmetric closure.

Bor̊uvka’s MST algorithm requires the input graph’s arc weights to be dis-
tinct. Because our formalisation does not require this, we have added a check
in the inner loop to ensure that no cycle is created (line 10). This check is
also performed in the relational version of Kruskal’s algorithm before adding
an arc with minimal weight to the forest variable [15]. The relational version of
Kruskal’s algorithm iterates over the arcs of the graph while the inner while-loop
of the algorithm we present iterates over component trees. This means that here
we are often working with the properties of vectors. Both approaches keep track
of the desired output by growing a minimum spanning forest, represented as a
directed graph whose components are rooted directed trees. This structure is
useful for maintaining that the output is injective and acyclic, properties used
to conclude that the result is a forest. We select a minimum-weight arc whose
source is in component v and whose target is outside v with m(vv� � g). This
expression was used in [14] in a relational version of Prim’s MST algorithm to
select an arc with minimum weight that leaves a set of visited vertices.

The complexity of Eq. (6) results from representing f as a directed forest,
which is also the approach taken in [15]. The advantage of this approach is that
it is more simple to give a specification for being acyclic than if f was undirected.

6 Correctness Proof

In this section, we discuss the partial-correctness proof of the formalisation pre-
sented in Sect. 5. We work in, and our proof holds for any instance of, m-k-
Stone-Kleene relation algebras. In particular, it holds for weighted matrices,
S = R′A×A.

We reuse the specification from [15] that was used to verify Kruskal’s MST
algorithm.

Definition 11. Let S be an m-Kleene algebra where f , g ∈ S. Then, f is a
spanning forest of g if f is a regular forest and

f ≤ g

g
∗ ≤ c(f)

The spanning forest, f , is a minimum spanning forest of g if for all u ∈ S where
u is a spanning forest of g, the following holds:

s(f � g) ≤ s(u � g)
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Intuitively, a spanning forest is a maximal acyclic subset of arcs of a graph,
that is, composed of spanning trees, one for each component of the graph. A
minimum spanning forest is one where the sum of arc weights is minimal among
all possible spanning forests of a graph.

Our correctness proof assumes that both while-loops terminate. In future
work, we may eliminate this assumption by taking a similar approach as in [15].
Presently, under the assumption that both while-loops terminate, the following
theorem gives the preconditions and invariants we use to establish the postcon-
dition of the outer while-loop that f is a minimum spanning forest of g.

Theorem 4. Let S be an m-k-Stone-Kleene relation algebra and let g ∈ S
be symmetric. Then, the following invariant holds throughout Bor̊uvka’s MST
algorithm:

4.1 g is symmetric;
4.2 f is a regular forest;
4.3 f ≤ g, meaning that f is contained in g, ignoring arc weights;
4.4 there is a minimum spanning forest, w, of g, such that f ≤ w � w�.

Establishing Theorems 4.1 to 4.3 at the start of the algorithm is easy. The
variable g is symmetric as a result of the precondition; f is a regular forest since
⊥ is regular, injective and acyclic; and f ≤ g since ⊥ is the least element. We
reuse the proof from [15] to establish Theorem 4.4.

In contrast to Prim’s and Kruskal’s algorithms, Bor̊uvka’s MST algorithm
has a second while-loop that we must establish and maintain an invariant for.

Theorem 5. Let S be an m-k-Stone-Kleene relation algebra and let j ∈ S.
Then, the following invariant holds throughout the inner while-loop of Bor̊uvka’s
MST algorithm:

5.1 g 
= ⊥, meaning that the graph has at least one arc;
5.2 d is regular;
5.3 j is a regular vector;
5.4 h is a regular forest;
5.5 c(h)j = j, meaning that j contains each component of h entirely or not at

all;
5.6 d is a forest modulo c(h);
5.7 d� ≤ j, meaning that the sources of the arcs in d are not in the set of

vertices still to be processed;
5.8 f �f� = h�h� �d�d�, meaning that, ignoring direction, f can be obtained

by taking the join of h and d;
5.9 ∀a, b : a�d

c(h) b ∧ a ≤ c(h) � g ∧ b ≤ d ⇒ s(b � g) ≤ s(a � g), meaning that,
for any arcs a and b, if there is a path from a to b in forest d modulo c(h) and
a is in the graph (ignoring weight) and is not contained in the components
of h and b is contained in d then the weight of b is less than or equal to the
weight of a.

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L791
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3615
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L798
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The requirements of the invariant for the inner while-loop are also easy to
establish owing to the values that the variables are initialised to.

Most of the work to maintain the invariants is to maintain the inner while-
loop invariant since, aside from variable initialisation, the logic of the inner
while-loop makes up the entirety of the outer while-loop.

The following result states the correctness of the algorithm.

Theorem 6. Let S be an m-k-Stone-Kleene relation algebra and let g ∈ S be
symmetric. Then, the following postcondition is established for Bor̊uvka’s MST
algorithm: f is a minimum spanning forest of g.

In the remainder of this section we give two examples of how the invariant
is maintained.

6.1 Maintaining Arc Weight Comparison in a Forest Modulo c(h)

To show that invariant 5.9 of Theorem 5 is maintained we must show that

a�d�e
c(h) b ∧ a ≤ c(h) � g ∧ b ≤ d � e ⇒ s(b � g) ≤ s(a � g) (7)

for any arcs a, b. To this end, we assume that invariant 5.9 holds (for the previous
iteration of the inner while-loop) and that the antecedent of (7) is true.

Our proof is by case distinctions but within each case reasoning is algebraic.
There are six cases to consider and we discuss one of these in more detail. We
first make a case distinction where b 
= e and e � d. Next, we use Theorem 3 to
further split into two cases. The first is a�d

c(h) b, that is, there is a path from a to
b in d modulo c(h), in which case we can conclude s(b�g) ≤ s(a�g) immediately
from invariant 5.9 of Theorem 5. The second is a�d

c(h) e and e�d
c(h) b, that is,

there is a path in d modulo c(h) from a to e and one from e to b.
We first treat the path from e to b. We have e ≤ c(h)�g, since e is contained

in the graph and not contained in the components of h. Additionally, b ≤ d,
since e and b are arcs and b 
= e and e � d and b ≤ d�e. Together with e�d

c(h) b,
it follows from invariant 5.9 of Theorem 5 that s(b � g) ≤ s(e � g).

Next, we treat the path from a to e. Either, the target of a is in the same
component as the source of e or not. If it is then we have a�� ≤ c(h)e� and
apply the following theorem.

Theorem 7. Let S be an m-k-Stone-Kleene relation algebra and let a , e , g ,
v , x ∈ S where g is symmetric, v represents a unique-vector-class of x, e =
m(vv� � g), a is an arc, a ≤ x � g, and a�� ≤ xe�. Then, s(e � g) ≤ s(a � g).

This result allows us to show that the selected arc, e, that is outgoing from a
component, v, must have a weight less than or equal to any other arc incoming to
that component in d with respect to the forest modulo x. This is a consequence
of m selecting a minimum-weighted arc.

To apply Theorem 7, we set x = c(h) and e = m(vv��g) where v = k(c(h), j).
Then, we have that g is symmetric and a is an arc from the invariant, and c(h)

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3813
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3417
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3428
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3441
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L3447
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L1967
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is an equivalence. From the axioms of the k operation and since j 
= ⊥, we know
that v represents a unique-vector-class of c(h). From the antecedent we have
a ≤ c(h) � g. Hence, in this case, s(e � g) ≤ s(a � g).

If the target of a is not in the same component of c(h) as the source of e
then we describe an arc, y, that is on the path from a to e in d modulo c(h) and
whose target is in the same component of c(h) as the source of e. The arc y is
defined as

y = d � �e�c(h) � (
c(h)d�

)∗
c(h)a��

The meet with d ensures that y is an arc between components of c(h). The
second part of this expression, �e�c(h), ensures that the target of y is in the
same component of c(h) as the source of e. The last part of this expression,(
c(h)d�

)∗
c(h)a��, ensures that the source of y is reachable from the target of

a by taking any number of steps in the forest d modulo c(h). We can show
that s(y � g) ≤ s(a � g) using invariant 5.9 of Theorem 5 in a similar manner as
described above. Then, since we can apply Theorem 7 to show s(e�g) ≤ s(y�g),
it follows that s(e � g) ≤ s(a � g).

Finally, the result for the path from a to e and the result for the path from
e to b are combined to conclude that s(b � g) ≤ s(e � g) ≤ s(a � g).

6.2 Extending f to a Minimum Spanning Forest

The key property of the invariant of the outer loop that must be maintained is
that the forest, f , can be extended to a minimum spanning forest of the graph, g,
ignoring arc direction, that is, there exists a minimum spanning forest, w, such
that f ≤ w � w�. We were able to reuse work from [15] in the maintenance of
this invariant except the arc selected for replacement is changed.

If the arc added to f is not also in w then the added arc must replace an arc
in w to ensure that w remains acyclic. In [15] the arc selected for replacement
was the arc whose source was in the same component of f as the target of e.
This arc does not suit our purposes because we do not have a convenient way to
compare its weight with the weight of e. However, there is an easy comparison
to be made between e and the arc, i, shown in Fig. 3, whose target is in the same
component of f as the source of e. Namely, the weight of e is at least as small
as the weight of i, since i is among those arcs that the algorithm chose e from
with the minimum selection m(vv� � g).

Let q = w � �ew�∗, that is, the path from the root of w to the target of e and
let r = (w � q) � q�, that is, w with the path q reversed. Then, the desired forest,
w′, that extends f ′ is r, with i removed and e added. That is, w′ = (r � i) � e.
The arc i is defined as

i = r � c(f)e� � �e�c(f)

The meet with r limits i to only those arcs in the rooted directed forest w with
the path q reversed. The second part of this expression, c(f)e�, specifies that
the source of i cannot be in the same component of f as the source of e. Finally,

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2148
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2409
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2450
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2451
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2545
https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L2544
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Fig. 3. Maintaining the invariant that f can be extended to a minimum spanning
forest, w, before (left) and after (right) adding arc, e. The path, q, to the root of the
rooted directed forest is reversed to maintain injectivity. The arc, i, whose target is in
the same component of f as the source of e, is removed to maintain that w′ is acyclic.
The vertices enclosed in a circle denote a component, in f . The root of the rooted
directed forest is highlighted grey.

the last part of the expression, �e�c(f), requires that the target of i is in the
same component of f as the source of e.

We prove that these requirements uniquely identify an arc, i. After the
update, the target of i becomes the root of w′ in the component that e is in.
Furthermore, we show that s(e � g) ≤ s(i � g) using Theorem 7.

7 Conclusion

We have formalised Bor̊uvka’s MST algorithm and proved its correctness. While
we have benefited from the relation-algebraic framework introduced in [13] and
the theorems subsequently developed in that framework, substantial additional
proof work was required to complete our verification. To better structure the rea-
soning, we have axiomatised an operation, k, to select an arbitrary component.
This axiomatisation uses a new definition for a component of a graph in terms
of an equivalence, describing connectivity, and a vector, describing the subset
of vertices we are selecting from. An implementation of k is given in m-Kleene
algebras.

We have introduced a new abstraction, forests modulo an equivalence, that
helps us to reason about forest-like structures of graphs by ignoring some arcs
in a graph and focusing on others. The proof of our formalisation of Bor̊uvka’s
MST algorithm applies this abstraction by considering the arcs connecting the
components that are constructed by the inner while-loop of the algorithm as a
forest modulo the components.

https://foss.heptapod.net/isa-afp/afp-devel/-/blob/fb0bec4328c42f25718bd71adb32038d05d270de/thys/Relational_Minimum_Spanning_Trees/Boruvka.thy#L1582
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Much of our proof of Bor̊uvka’s MST algorithm used only the axioms of
Stone-Kleene relation algebras and our proof holds for instances other than the
weighted-graph model described in this paper. Different instances of m-Kleene
algebras give rise to formalisations of various other algorithms, for example, the
minimum bottleneck spanning tree problem [14]. Our proof holds for any instance
that satisfies the axioms the proof is conducted in. This means Bor̊uvka’s MST
algorithm is correct for various related MST problems.

Acknowledgement. We thank the anonymous referees for helpful comments.
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Abstract. We prove that, similarly to known PSpace-completeness of
recognising FO(<)-definability of the language L(A) of a DFA A, deciding
both FO(<, ≡)- and FO(<,MOD)-definability (corresponding to circuit
complexity in AC0 and ACC0) are PSpace-complete. We obtain these
results by first showing that known algebraic characterisations of FO-
definability of L(A) can be captured by ‘localisable’ properties of the
transition monoid of A. Using our criterion, we then generalise the known
proof of PSpace-hardness of FO(<)-definability, and establish the upper
bounds not only for arbitrary DFAs but also for 2NFAs.

1 Introduction

This paper gives answers to some open questions related to finite automata, logic
and circuit complexity. Research in this area goes back (at least) to the early1960 s
when Büchi [8], Elgot [12] and Trakhtenbrot [28] showed that MSO(<) (monadic
second-order) sentences over finite strict linear orders define exactly the class of
regular languages.

FO(<)-definable regular languages were proven to be the same as star-free
languages [19], and their algebraic characterisation as languages with aperi-
odic syntactic monoids was obtained in [23]. Algebraic characterisations of FO-
definability in other signatures, and circuit and descriptive complexity of regular
languages were investigated in [3,4,26], which established an AC0/ACC0/NC1

trichotomy. In particular, the regular languages decidable in AC0 are definable
by FO(<,≡)-sentences with unary predicates x ≡ 0 (mod n); those in ACC0 are
definable by FO(<,MOD)-sentences with quantifiers ∃nx ψ(x) checking whether
the number of positions satisfying ψ is divisible by n; and all regular languages
are definable in FO(RPR) with relational primitive recursion [11]; see Table 1.

The problem of deciding whether the language of a given DFA A is FO(<)-
definable is known to be PSpace-complete [7,10,25] (which is also a special
case of general results on finite monoids [5,13]). As shown in [4], the algebraic
criteria of Table 1 yield algorithms deciding whether a given regular language is in
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Table 1. Definability, algebraic characterisations and circuit complexity of a regular
language L, where M(L) is the syntactic monoid and ηL the syntactic morphism of L.

Definability of L Algebraic characterisation of L Circuit complexity

FO(<) M(L) is aperiodic in AC0

FO(<,≡) ηL is quasi-aperiodic
FO(<,MOD) All groups in M(L) are solvable in ACC0

FO(RPR) Arbitrary M(L) in NC1

Not in FO(<,MOD) M(L) contains an unsolvable group NC1-hard

AC0 and FO(<,≡)-definable, or in ACC0 and FO(<,MOD)-definable, or NC1-
complete and is not FO(<,MOD)-definable (unless ACC0 = NC1). However,
these ‘brute force’ algorithms are not optimal, requiring the generation of the
whole transition monoid of A, which can be of exponential size [14]. As far as
we know, the precise complexity of these decision problems has remained open.

Our interest in the exact complexity of these problems is motivated by recent
advances in ontology-based data access (OBDA) with linear time temporal logic
LTL [1,2]. The classical (atemporal) OBDA paradigm [20,30] relies on a reduc-
tion of answering a query mediated by an ontology under the open-world seman-
tics to evaluating a database query in a standard language such as SQL or its
extension—that is, essentially, an extension of first-order logic—under the closed-
world semantic. In the context of temporal OBDA, answering LTL ontology-
mediated queries is equivalent to deciding certain regular languages given by
an NFA or 2NFA of (possibly) exponential size, which gives rise to the circuit
complexity and FO-definability problems for those languages. For further details
the reader is referred to [22], which relies on the results we obtain below.
Our contribution in this paper is as follows. Let L be one of the languages
FO(<,≡) or FO(<,MOD). First, using the algebraic characterisation results of
[3,4,26], we obtain criteria for the L-definability of the language L(A) of any
given DFA A in terms of a limited part of the transition monoid of A (Theorem 1).
Then, by using our criteria and generalising the construction of [10], we show
that deciding L-definability of L(A) for any minimal DFA A is PSpace-hard
(Theorem 2). Finally, we apply our criteria to give a PSpace-algorithm deciding
L-definability of L(A) for not only any DFA but any 2NFA A (Theorem 3).

2 Preliminaries

We begin by briefly reminding the reader of the basic algebraic and automata-
theoretic notions required in the remainder of the paper.

2.1 Monoids and Groups

A semigroup is a structure S = (S, ·) where · is an associative binary operation.
Given s, s′ ∈ S and n > 0, we write sn for s· . . . ·s n-times, and often write ss′
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for s · s′. An element s in a semigroup S is idempotent if s2 = s. An element e
in S is an identity if e · x = x · e = x for all x ∈ S. (It is easy to see that such
an e is unique, if exists.) The identity element is clearly idempotent. A monoid
is a semigroup with an identity element. For any element s in a monoid, we set
s0 = e. A monoid S = (S, ·) is a group if, for any x ∈ S, there is x− ∈ S—the
inverse of x—such that x · x− = x− · x = e (every element of a group has a
unique inverse). A group is trivial if it has one element, and nontrivial otherwise.

Given two groups G = (G, ·) and G′ = (G′, ·′), a map h : G → G′ is a group
homomorphism from G to G′ if h(g1 · g2) = h(g1) ·′ h(g2) for all g1, g2 ∈ G. (It is
easy to see that any group homomorphism maps the identity of G to the identity
of G′ and preserves the inverses. The set {h(g) | g ∈ G} is closed under ·′, and
so is a group, the image of G under h.) G is a subgroup of G′ if G ⊆ G′ and the
identity map idG is a group homomorphism. Given X ⊆ G, the subgroup of G
generated by X is the smallest subgroup of G containing X. The order oG(g) of
an element g in G is the smallest positive number n with gn = e, which always
exists. Clearly, oG(g) = oG(g−) and, if gk = e then oG(g) divides k. Also,

if g is a nonidentity element in a group G, then gk �= gk+1 for any k. (1)

A semigroup S′ = (S′, ·′) is a subsemigroup of a semigroup S = (S, ·) if S′ ⊆ S
and ·′ is the restriction of · to S′. Given a monoid M = (M, ·) and a set S ⊆ M ,
we say that S contains the group G = (G, ·′), if G ⊆ S and G is a subsemigroup
of M . Note that we do not require the identity of M to be in G, even if it is in
S. If S = M , we also say that M contains the group G, or G is in M . We call
a monoid M aperiodic if it does not contain any nontrivial groups.

Let S = (S, ·) be a finite semigroup and s ∈ S. By the pigeonhole principle,
there exist i, j ≥ 1 such that i+j ≤ |S|+1 and si = si+j . Take the minimal such
numbers, that is, let is, js ≥ 1 be such that is + js ≤ |S| + 1 and sis = sis+js

but sis , sis+1, . . . , sis+js−1 are all different. Then clearly Gs = (Gs, ·), where
Gs = {sis , sis+1, . . . , sis+js−1}, is a subsemigroup of S. It is easy to see that
there is m ≥ 1 with is ≤ m · js < is + js ≤ |S| + 1, and so sm·js is idempotent.
Thus, for every element s in a semigroup S, we have the following:

there is n ≥ 1 such that sn is idempotent; (2)
Gs is a group in S (isomorphic to the cyclic group Zjs

); (3)

Gs is nontrivial iff sn �= sn+1 for any n. (4)

Let δ : Q → Q be a function on a finite set Q �= ∅. For any p ∈ Q, the subset
{δk(p) | k < ω} with the obvious multiplication is a semigroup, and so we have:

for every p ∈ Q, there is np ≥ 1 such that δnp
(
δnp(p)

)
= δnp(p); (5)

there exist q ∈ Q and n ≥ 1 such that q = δn(q); (6)

for every q ∈ Q, if q = δk(q) for some k ≥ 1,

then there is n, 1 ≤ n ≤ |Q|, with q = δn(q). (7)

For a definition of solvable and unsolvable groups the reader is referred to [21].
Here, we only need the fact that any homomorphic image of a solvable group
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is solvable and the Kaplan–Levy criterion [16] (generalising Thompson’s [27,
Cor.3]) according to which a finite group G is unsolvable iff it contains three
elements a, b, c, such that oG(a) = 2, oG(b) is an odd prime, oG(c) > 1 and
coprime to both 2 and oG(b), and abc is the identity element of G.

A one-to-one and onto function on a finite set S is called a permutation on
S. The order of a permutation δ is its order in the group of all permutations
on S (whose operation is composition, and its identity element is the identity
permutation idS). We use the standard cycle notation for permutations.

Suppose G is a monoid of Q → Q functions, for some finite set Q �= ∅. Let
S = {q ∈ Q | eG(q) = q}, where eG the identity element in G. For every function
δ in G, let δ�S denote the restriction of δ to S. Then we have the following:

G is a group iff δ�S is a permutation on S, for every δ in G; (8)
if G is a group and δ is a nonindentity element in it, then δ�S �= idS and

the order of the permutation δ�S divides oG(δ). (9)

2.2 Automata: DFAs, NFAs, 2NFAs

A two-way nondeterministic finite automaton is a quintuple A = (Q,Σ, δ,Q0, F )
that consists of an alphabet Σ, a finite set Q of states with a subset Q0 �= ∅
of initial states and a subset F of accepting states, and a transition function
δ : Q × Σ → 2Q×{−1,0,1} indicating the next state and whether the head should
move left (−1), right (1), or stay put. If Q0 = {q0} and |δ(q, a)| = 1, for all q ∈ Q
and a ∈ Σ, then A is deterministic, in which case we write A = (Q,Σ, δ, q0, F ). If
δ(q, a) ⊆ Q × {1}, for all q ∈ Q and a ∈ Σ, then A is a one-way automaton, and
we write δ : Q×Σ → 2Q. As usual, DFA and NFA refer to one-way deterministic
and non-deterministic finite automata, respectively, while 2DFA and 2NFA to
the corresponding two-way automata. Given a 2NFA A, we write q →a,d q′ if
(q′, d) ∈ δ(q, a); given an NFA A, we write q →a q′ if q′ ∈ δ(q, a). A run of a
2NFA A is a word in (Q×N)∗. A run (q0, i0), . . . , (qm, im) is a run of A on a word
w = a0 . . . an ∈ Σ∗ if q0 ∈ Q0, i0 = 0 and there exist d0, . . . , dm−1 ∈ {−1, 0, 1}
such that qj →aj ,dj

qj+1 and ij+1 = ij + dj for all j, 0 ≤ j < m. The run is
accepting if qm ∈ F , im = n + 1. A accepts w ∈ Σ∗ if there is an accepting run
of A on w; the language L(A) of A is the set of all words accepted by A.

Given an NFA A, states q, q′ ∈ Q, and w = a0 . . . an ∈ Σ∗, we write q →w q′

if either w = ε and q′ = q or there is a run of A on w that starts with (q0, 0)
and ends with (q′, n + 1). We say that a state q ∈ Q is reachable if q′ →w q, for
some q′ ∈ Q0 and w ∈ Σ∗.

Given a DFA A = (Q,Σ, δ, q0, F ) and a word w ∈ Σ∗, we define a function
δw : Q → Q by taking δw(q) = q′ iff q →w q′. We also define an equivalence
relation ∼ on the set Qr ⊆ Q of reachable states by taking q ∼ q′ iff, for every
w ∈ Σ∗, we have δw(q) ∈ F just in case δw(q′) ∈ F . We denote the ∼-class of q by
q/∼, and let X/∼ = {q/∼ | q ∈ X} for any X ⊆ Qr. Define δ̃w : Qr/∼ → Qr/∼ by
taking δ̃w(q/∼) = δw(q)/∼. Then

(
Qr/∼, Σ, δ̃, q0/∼, (F ∩ Qr)/∼

)
is the minimal

DFA whose language coincides with the language of A. Given a regular language
L, we denote by AL the minimal DFA whose language is L.
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The transition monoid of a DFA A is M(A) = ({δw | w ∈ Σ∗}, ·) with
δv · δw = δvw, for any v, w. The syntactic monoid M(L) of L is the transition
monoid M(AL ) of AL . The syntactic morphism of L is the map ηL from Σ∗

to the domain of M(L) defined by ηL (w) = δ̃w. We call ηL quasi-aperiodic if
ηL(Σt) is aperiodic for every t < ω.

Suppose L ∈ {FO(<),FO(<,≡),FO(<,MOD)}. A language L over an alpha-
bet Σ is L-definable if there is an L-sentence ϕ in the signature Σ, whose
symbols are treated as unary predicates, such that, for any w ∈ Σ∗, we have
w = a0 . . . an ∈ L iff Sw |= ϕ, where Sw is an FO-structure with domain
{0, . . . , n} ordered by <, in which Sw |= a(i) iff a = ai, for 0 ≤ i ≤ n.

Table 1 summarises the known results that connect definability of a regular
language L with properties of the syntactic monoid M(L) and syntactic mor-
phism ηL (see [4] for details) and with its circuit complexity under a reasonable
binary encoding of L’s alphabet (see, e.g., [7, Lemma 2.1]) and the assump-
tion that ACC0 �= NC1. We also remind the reader that a regular language is
FO(<)-definable iff it is star-free [26], and that AC0

� ACC0 ⊆ NC1 [15,26].

3 Criteria of L-definability

In this section, we show that the algebraic characterisations of FO-definability of
L(A) given in Table 1 can be captured by ‘localisable’ properties of the transition
monoid of A, for any given DFA A. Note that Theorem 1 (i) was already observed
in [25] and used in proving that FO(<)-definability of L(A) is PSpace-complete
[7,10,25]; while criteria (ii) and (iii) seem to be new.

Theorem 1. For any DFA A = (Q,Σ, δ, q0, F ), the following criteria hold :

(i) L(A) is not FO(<)-definable iff A contains a nontrivial cycle, that is, there
exist a word u ∈ Σ∗, a state q ∈ Qr, and a number k ≤ |Q| such that
q �∼ δu(q) and q = δuk(q);

(ii) L(A) is not FO(<,≡)-definable iff there are words u, v ∈ Σ∗, a state q ∈ Qr,
and a number k ≤ |Q| such that q �∼ δu(q), q = δuk(q), |v| = |u|, and
δui(q) = δuiv(q), for every i < k;

(iii) L(A) is not FO(<,MOD)-definable iff there exist words u, v ∈ Σ∗, a state
q ∈ Qr and numbers k, l ≤ |Q| such that k is an odd prime, l > 1 and
coprime to both 2 and k, q �∼ δu(q), q �∼ δv(q), q �∼ δuv(q) and, for all
x ∈ {u, v}∗, we have δx(q) ∼ δxu2(q) ∼ δxvk(q) ∼ δx(uv)l(q).

Proof. Throughout, we use the algebraic criteria of Table 1 for L = L(A). Thus,
M(L) is the transition monoid of the minimal DFA AL(A), whose transition
function we denote by δ̃.

(i) (⇒) Suppose G is a nontrivial group in M(AL(A)). Let u ∈ Σ∗ be such
that δ̃u is a nonidentity element in G. We claim that there is p ∈ Qr such that
δ̃un(p/∼) �= δ̃un+1(p/∼) for any n > 0. Indeed, otherwise for every p ∈ Qr there
is np > 0 with δ̃unp (p/∼) = δ̃unp+1(p/∼). Let n = max{np | p ∈ Qr}. Then
δ̃un = δ̃un+1 , contrary to (1).
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By (5), there is m ≥ 1 with δ̃u2m(p/∼) = δ̃um(p/∼). Let s/∼ = δ̃um(p/∼).
Then s/∼ = δ̃um(s/∼), and so the restriction of δum to the subset s/∼ of Qr

is an s/∼ → s/∼ function. By (6), there exist q ∈ s/∼ and n ≥ 1 such that
(δum)n(q) = q. Thus, δumn(q) = q, and so by (7), there is k ≤ |Q| with δuk(q) = q.
As s/∼ �= δ̃u(s/∼), we also have q �∼ δu(q), as required.

(i) (⇐) Suppose the condition holds for A. Then there are u ∈ Σ∗, q ∈ Qr/∼,
and k < ω such that q �= δ̃u(q) and q = δ̃uk(q). Then δ̃un �= δ̃un+1 for any n > 0.
Indeed, otherwise we would have some n > 0 with δ̃un(q) = δ̃un+1(q). Let i, j be
such that n = i · k + j and j < k. Then

q = δ̃uk(q) = δ̃u(i+1)k(q) = δ̃unuk−j (q) = δ̃un+1uk−j (q) = δ̃u(i+1)ku(q) = δ̃u(q).

So, by (3) and (4), Gδ̃u
is a nontrivial group in M(AL(A)).

(ii) (⇒) Let G be a nontrivial group in ηL (Σt), for some t < ω, and let u ∈ Σt

be such that δ̃u is a nonidentity element in G. As shown in the proof of (i) (⇒),
there exist s ∈ Qr and m ≥ 1 such that s/∼ �= δ̃u(s/∼) and s/∼ = δ̃um(s/∼).
Now let v ∈ Σt be such that δ̃v is the identity element in G, and consider δv.
By (2), there is 	 ≥ 1 such that δv� is idempotent. Then δv2�−1v2� = δv2�−1 .
Thus, if we let ū = uv2�−1 and v̄ = v2�, then |ū| = |v̄| and δūi = δūiv̄ for any
i < ω. Also, δ̃ui = δ̃ūi for every i ≥ 1, and so the restriction of δūm to s/∼
is an s/∼ → s/∼ function. By (6), there exist q ∈ s/∼ and n ≥ 1 such that
(δūm)n(q) = q. Thus, δūmn(q) = q, and so by (7), there is some k ≤ |Q| with
δūk(q) = q. As s/∼ �= δ̃u(s/∼) = δ̃ū(s/∼), we also have q �∼ δū(q), as required.

(ii) (⇐) If the condition holds for A, then there exist u, v ∈ Σ∗, q ∈ Qr/∼, and
k < ω such that q �= δ̃u(q), q = δ̃uk(q), |v| = |u|, and δ̃ui(q) = δ̃uiv(q), for every
i < k. As M(AL(A)) is finite, it has finitely many subsets. So there exist i, j ≥ 1
such that ηL (Σi|u|) = ηL (Σ(i+j)|u|). Let z be a multiple of j with i ≤ z < i + j.
Then ηL (Σz|u|) = ηL (Σ(z|u|)2), and so ηL (Σz|u|) is closed under the composition
of functions (that is, the semigroup operation of M(AL(A))). Let w = uvz−1 and
consider the group Gδ̃w

(defined above (2)–(4)). Then Gδ̃w
⊆ ηL (Σz|u|). We

claim that Gδ̃w
is nontrivial. Indeed, we have δ̃w(q) = δ̃uvz−1(q) = δ̃u(q) �= q. On

the other hand, δ̃wk(q) = δ̃uk(q) = q. By the proof of (i) (⇐), Gδ̃w
is nontrivial.

(iii) (⇒) Suppose G is an unsolvable group in M(AL(A)). By the Kaplan–
Levy criterion, G contains three functions a, b, c such that oG(a) = 2, oG(b) is
an odd prime, oG(c) > 1 and coprime to both 2 and oG(b), and c ◦ b ◦ a = eG
for the identity element eG of G. Let u, v ∈ Σ∗ be such that a = δ̃u, b = δ̃v

and c = (δ̃uv)−, and let k = oG(δ̃v) and r = oG(c) = oG(δ̃uv). Then r > 1 and
coprime to both 2 and k. Let S =

{
p ∈ Qr/∼ | eG(p) = p

}
. As δ̃x is G for every

x ∈ {u, v}∗, we have eG ◦ δ̃x = δ̃x. Thus,

δ̃xu2(q) = δ̃u2

(
δ̃x(q)

)
= eG

(
δ̃x(q)

)
= (eG ◦ δ̃x)(q) = δ̃x(q), and

δ̃xvk(q) = δ̃vk

(
δ̃x(q)

)
= eG

(
δ̃x(q)

)
= (eG ◦ δ̃x)(q) = δ̃x(q), for every q ∈ S.

Then, by (8), each of δ̃u�S , δ̃v�S and δ̃uv�S is a permutation on S. By (9), the
order of δ̃u�S is 2, the order of δ̃v�S is k, and the order l of δ̃uv�S is a > 1 divisor
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of r, and so it is coprime to both 2 and k. Also, we have k, l ≤ |S| ≤ |Q|. Further,
for every x, if q is in S then δ̃x(q) ∈ S as well. So we have

δ̃x(uv)l(q) = δ̃(uv)l

(
δ̃x(q)

)
= (δ̃uv�S)l

(
δ̃x(q)

)
= idS

(
δ̃x(q)

)
= δ̃x(q), for all q ∈ S.

It remains to show that there is q ∈ S with q �= δ̃u(q), q �= δ̃u(q), and q �= δ̃uv(q).
Recall that the length of any cycle in a permutation divides its order. First, we
show there is q ∈ S with q �= δ̃u(q) and q �= δ̃u(q). Indeed, as δ̃u�S �= idS , there
is q ∈ S such that δ̃u(q) = q′ �= q. As the order of δ̃u�S is 2, δ̃u(q′) = q. If both
δ̃v(q) = q and δ̃v(q′) = q′ were the case, then δ̃uv(q) = q′ and δ̃uv(q′) = q would
hold, and so (qq′) would be a cycle in δ̃uv�S , contrary to l being coprime to 2. So
take some q ∈ S with δ̃u(q) = q′ �= q and δ̃v(q) �= q. If δ̃v(q′) �= q then δ̃uv(q) �= q,
and so q is a good choice. Suppose δ̃v(q′) = q, and let q′′ = δ̃v(q). Then q′′ �= q′,
as k is odd. Thus, δ̃uv(q′) �= q′, and so q′ is a good choice.

(iii) (⇐) Suppose u, v ∈ Σ∗, q ∈ Qr, and k, l < ω are satisfying the con-
ditions. For every x ∈ {u, v}∗, we define an equivalence relation ≈x on Qr/∼
by taking p ≈x p′ iff δ̃x(p) = δ̃x(p′). Then we clearly have that ≈x⊆≈xy, for
all x, y ∈ {u, v}∗. As Q is finite, there is z ∈ {u, v}∗ such that ≈z=≈zy for all
y ∈ {u, v}∗. Take such a z. By (2), δ̃n

z is idempotent for some n ≥ 1. We let
w = zn. Then δ̃w is idempotent and we also have that

≈w =≈wy for all y ∈ {u, v}∗. (10)

Let G{u,v} =
{
δ̃wxw | x ∈ {u, v}∗}. Then G{u,v} is closed under composition. Let

G{u,v} be the subsemigroup of M(AL(A)) with universe G{u,v}. Then δ̃w = δ̃wεw

is an identity element in G{u,v}. Let S = {p ∈ Qr/∼ | δ̃w(p) = p}. We show that

for every δ̃ in G{u,v}, δ̃�S is a permutation on S, (11)

and so G{u,v} is a group by (8). Indeed, take some x ∈ {u, v}∗. As δ̃w

(
δ̃wxw(p)

)
=

δ̃wxww(p) = δ̃wxw(p) for any p ∈ Qr/∼, δ̃wxw�S is an S → S function. Also, if
p, p′ ∈ S and δ̃wxw(p) = δ̃wxw(p′) then p ≈wxw p′. Thus, by (10), p ≈w p′, that
is, p = δ̃w(p) = δ̃w(p′) = p′, proving (11).

We show that G{u,v} is unsolvable by finding an unsolvable homomorphic
image of it. Let R =

{
p ∈ Qr/∼ | p = δ̃x(q) for some x ∈ {u, v}∗}. We claim

that, for every δ̃ in G{u,v}, δ̃�R is a permutation on R, and so the function h

mapping every δ̃ to δ̃�R is a group homomorphism from G{u,v} to the group of
all permutations on R. Indeed, by (11), it is enough to show that R ⊆ S. Let
w = zm . . . z1, where w = z1 . . . zm for some zi ∈ {u, v}, u = u and v = vk−1.
Since δ̃x(q) = δ̃x(u)2(q) = δ̃x(v)k(q) for all x ∈ {u, v}∗, we obtain that

δ̃yww(q) = δ̃zm−1...z1

(
δ̃yz1...zmzm

(q)
)

= δ̃zm−1...z1

(
δ̃yz1...zm−1(q)

)
= . . .

· · · = δ̃z1

(
δ̃yz1(q)

)
= δ̃xz1z1(q) = δ̃y(q), for all y ∈ {u, v}∗.(12)

Now suppose p ∈ R, that is, p = δ̃x(q) for some x ∈ {u, v}∗. Then, by (12),

δ̃w(p) = δ̃w

(
δ̃x(q)

)
= δ̃xw(q) = δ̃xwww(q) = δ̃xww(q) = δ̃x(q) = p,

and so p ∈ S, as required.
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Now let G be the image of G{u,v} under h. We prove that G is unsolvable
by finding three elements a, b, c in it such that oG(a) = 2, oG(b) = k, oG(c) is
coprime to both 2 and oG(b), and c ◦ b ◦ a = idR (the identity element of G).
So let a = h(δ̃wuw), b = h(δ̃wvw), and c = h(δ̃wuvw)−. Observe that, for every
x ∈ {u, v}∗, h(δ̃wxw) = δ̃x�R, and so c ◦ b ◦ a = idR. Also, for any δ̃x(q) ∈ R,
a2

(
δ̃x(q)

)
= (δ̃u�R)2

(
δ̃x(q)

)
= δ̃xu2(q) = δ̃x(q) by our assumption, so a2 = idR.

On the other hand, q ∈ R as δ̃ε(q) = q, and idR(q) = q �= δ̃u(q) by assumption,
so a �= idR. As oG(a) divides 2, oG(a) = 2 follows. Similarly, we can show that
oG(b) = k (using that δ̃xvk(q) = δ̃x(q) for every x ∈ {u, v}∗, and u �= δ̃v(q)).
Finally (using that δ̃x(uv)l(q) = δ̃x(q) for every x ∈ {u, v}∗, and u �= δ̃uv(q)),
we obtain that h(δ̃wuvw)l = idR and h(δ̃wuvw) �= idR. Therefore, it follows that
oG(c) = oG

(
h(δ̃wuvw)−)

= oG
(
h(δ̃wuvw)

)
> 1 and divides l, and so coprime to

both 2 and k, as required.

4 Deciding FO-definability: PSPACE-hardness

Kozen [18] showed that deciding whether the intersection of the languages recog-
nised by a set of given deterministic DFAs is non-empty is PSpace-complete. By
carefully analysing Kozen’s lower bound proof and using the criterion of Theo-
rem 1 (i), Cho and Huynh [10] established that deciding FO(<)-definability of
L(A) is PSpace-hard, for any given minimal DFA A. We generalise their con-
struction and use the criteria in Theorem 1 (ii)–(iii) to cover FO(<,≡)- and
FO(<,MOD)-definability as well.

Theorem 2. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-defina-
bility of the language L(A) of a given minimal DFA A is PSpace-hard.

Proof. Let M be a deterministic Turing machine that decides a language using
at most N = PM (n) tape cells on any input of size n, for some polynomial PM .
Given such an M and an input x, our aim is to define three minimal DFAs whose
languages are, respectively, FO(<)-, FO(<,≡)-, and FO(<,MOD)-definable iff M
rejects x, and whose sizes are polynomial in N and the size |M | of M .

Suppose M = (Q,Γ, γ, b, q0, qacc) with a set Q of states, tape alphabet Γ
with b for blank, transition function γ, initial state q0 and accepting state qacc.
Without loss of generality we assume that M erases the tape before accepting,
its head is at the left-most cell in an accepting configuration, and if M does
not accept the input, it runs forever. Given an input word x = x1 . . . xn over
Γ , we represent configurations c of the computation of M on x by the N -long
word written on the tape (with sufficiently many blanks at the end) in which the
symbol y in the active cell is replaced by the pair (q, y) for the current state q. The
accepting computation of M on x is encoded by a word � c1 � c2 � . . . � ck−1 � ck
over the alphabet Σ = Γ ∪(Q×Γ )∪{�, }, with c1, c2, . . . , ck being the subsequent
configurations. In particular, c1 is the initial configuration on x (so it is of the
form (q0, x1)x2 . . . xnb . . . b), and ck is the accepting configuration (so it is of the
form (qacc, b)b . . . b). As usual for this representation of computations, we may
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regard γ as a partial function from
(
Γ ∪ (Q × Γ ) ∪ {�})3 to Γ ∪ (Q × Γ ) with

γ(σj
i−1, σ

j
i , σ

j
i+1) = σj+1

i for each j < k, where σj
i is the ith symbol of cj .

Let pM ,x = p be the first prime such that p ≥ N + 2 and p �≡ ±1 (mod 10).
By [6, Corollary 1.6], p is polynomial in N . Our first aim is to construct a p+1-
long sequence Ai of disjoint minimal DFAs over Σ. Each Ai has size polynomial
in N and |M |, and it checks certain properties of an accepting computation on
x such that M accepts x iff the intersection of the L(Ai) is not empty and
consists of the single word encoding the accepting computation on x.

We define each Ai as an NFA, and assume that it can be turned to a DFA
by adding a ‘trash state’ tri looping on itself with every σ ∈ Σ, and adding the
missing transitions leading to tri. The DFA A0 checks that an input starts with
the initial configuration on x and ends with the accepting configuration:

t0start q0 q1 . . . qn . . . qN

pp0p1. . .pNf0

� (q0, x1) x2 xn b b

y �= �, 

�

(qacc, b) �

y �= (qacc, b), �, 

bb

When 1 ≤ i ≤ N , the DFA Ai checks, for all j < k, whether the ith symbol of cj

changes ‘according to γ’ in passing to cj+1. The non-trash part of its transition
function δi is as follows, for 1 < i < N . (For i = 1 and i = N some adjustments
are needed.) For all u, u′, v, w,w′, y, z ∈ Γ ∪ (Q × Γ ),

δi
�(ti) = q0, δi

u(qj) = qj+1, for j = 0, ..., i − 3, δi
u(qi−2) = ru, δi

v(ru) = ruv,

δi
w(ruv) = q0γ(u,v,w), δi

y(qj
z) = qj+1

z , for j = 0, ..., N − 3, j �= N − i − 1,

δi
�(q

N−i−1
z ) = qN−i

z , δi
�(q

N−i−1
z ) = fi, δi

u′(qN−2
z ) = pu′z, δi

z(pu′z) = ru′z,

see below, where z = γ(u, v, w) and z′ = γ(u′, z, w′) :

tistart q0

. . .

qi−2

. . .

ru′

. . .

ru

ru′z

. . .

q0z′ . . .

. . .

ruv

. . .

q0z . . . qN−i−1
z qN−i

z
. . . qN−2

z

. . .

pu′z

fi

�

y

y

u′

z

w′ y

u

v

w y y � y y

u′

z



Finally, if N + 1 ≤ i ≤ p then Ai accepts all words over Σ with a single occur-
rence of , which is the input’s last character:

tistart fi

σ �= 
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Note that Ap−1 = Ap as p ≥ N +2. It is not hard to check that each of the Ai is
a minimal DFA that does not contain nontrivial cycles and the following holds:

Lemma 1. M accepts x iff
⋂p

i=0 L(Ai) �= ∅, in which case this language con-
sists of a single word that encodes the accepting computation of M on x.

Next, we require three sequences of DFAs Bp
<, Bp

≡ and Bp
MOD, where p > 5

is a prime number with p �≡ ±1 (mod 10); see the picture below for p = 7.

s0start

s1
s2

s3

s4

s5
s6

a

a
a

a

a
a

a

B7
<

s0start

s1
s2

s3

s4

s5
s6

a

�

a
� a

�

a

�

a

�a

�
a

�

B7
≡ s0start

s1
s2

s3

s4

s5
s6

s7

a

�

a

�

a

�

a

�

a

�

a

�
a

�

a

�

B7
MOD

In general, the first sequence is Bp
< =

({si | i < p}, {a}, δB
p
< , s0, {s0}

)
, where

δ
Bp

<
a (si) = sj if i, j < p and j ≡ i+ 1 (mod p). Then L(Bp

<) comprises all words
of the form (ap)∗, Bp

< is the minimal DFA for L(Bp
<), and the syntactic monoid

M(Bp
<) is the cyclic group of order p (generated by the permutation δ

Bp
<

a ).
The second sequence is Bp

≡ =
({si | i < p}, {a, �}, δB

p
≡ , s0, {s0}

)
, where

δ
Bp

≡
� (si) = si and δ

Bp
≡

a (si) = sj if i, j < p and j ≡ i + 1 (mod p). One can
check that L(Bp

≡) comprises all words of a’s and �’s where the number of a’s is
divisible by p, Bp

≡ is the minimal DFA for this language, and M(Bp
≡) is also the

cyclic group of order p (generated by the permutation δ
Bp

≡
a ).

The third sequence is Bp
MOD =

({si | i ≤ p}, {a, �}, δB
p
MOD , s0, {s0}

)
, where

– δ
Bp

MOD
a (sp) = sp, and δ

Bp
MOD

a (si) = sj whenever i, j < p and j ≡ i + 1 (mod p);
– δ

Bp
MOD

� (s0) = sp, δ
Bp

MOD

� (sp) = s0, and δ
Bp

MOD

� (si) = sj whenever 1 ≤ i, j < p
and i · j ≡ p − 1 (mod p), that is, j = −1/i in the finite field Fp.

One can check that Bp
MOD is the minimal DFA for its language, and the syntactic

monoid M(Bp
MOD) is the permutation group generated by δ

Bp
MOD

a and δ
Bp

MOD

� .

Lemma 2. For any prime p > 5 with p �≡ ±1 (mod 10), the group M(Bp
MOD)

is unsolvable, but all of its proper subgroups are solvable.

Proof. One can check that the order of the permutation δ
Bp

MOD

� is 2, that of δ
Bp

MOD
a

is p, while the order of the inverse of δ
Bp

MOD

�a is the same as the order of δ
Bp

MOD

�a ,
which is 3. So M(Bp

MOD) is unsolvable, for any prime p, by the Kaplan–Levy
criterion. To prove that all proper subgroups of M(Bp

MOD) are solvable, we show
that M(Bp

MOD) is a subgroup of the projective special linear group PSL2(p). If p
is a prime with p > 5 and p �≡ ±1 (mod 10), then all proper subgroups of PSL2(p)
are solvable; see, e.g., [17, Theorem 2.1]. (So M(Bp

MOD) is in fact isomorphic to
the unsolvable group PSL2(p).) Consider the set P = {0, 1, . . . , p − 1,∞} of all
points of the projective line over the field Fp. By identifying si with i for i < p,
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and sp with ∞, we may regard the elements of M(Bp
MOD) as P → P functions.

The group PSL2(p) consists of all P → P functions of the form i �→ w·i+x
y·i+z ,

where w · z − x · y = 1, with the field arithmetic of Fp extended by i + ∞ = ∞
for any i ∈ P , 0 · ∞ = 1 and i · ∞ = ∞ for i �= 0. One can check that the two
generators of M(Bp

MOD) are in PSL2(p): take w = 1, x = 1, y = 0, z = 1 for

δ
Bp

MOD
a , and w = 0, x = 1, y = p − 1, z = 0 for δ

Bp
MOD

� .

Finally, we define three automata A<, A≡, AMOD over the same tape alphabet
Σ+ = Σ ∪ {a1, a2, �}, where a1, a2 are fresh symbols. We take, respectively, Bp

<,
Bp

≡, Bp
MOD and replace each transition si →a sj in them by a fresh copy of Ai,

for i ≤ p, as shown in the picture below.

si sj si ti fi sj

Ai

a a1 a2

We make A<, A≡, AMOD deterministic by adding a trash state tr looping on itself
with every y ∈ Σ+, and adding the missing transitions leading to tr. It follows
that A<, A≡, and AMOD are minimal DFAs of size polynomial in N , |M |.
Lemma 3. (i) L(A<) is FO(<)-definable iff

⋂p
i=0 L(Ai) = ∅.

(ii) L(A≡) is FO(<,≡)-definable iff
⋂p

i=0 L(Ai) = ∅.
(iii) L(AMOD) is FO(<,MOD)-definable iff

⋂p
i=0 L(Ai) = ∅.

Proof. As A<,A≡,AMOD are minimal, we can replace ∼ by = in the conditions
of Theorem 1. For the (⇒) directions, given some w ∈ ⋂p

i=0 L(Ai), in each
case we show how to satisfy the corresponding condition of Theorem 1: (i) take
u = a1wa2, q = s0, and k = p; (ii) take u = a1wa2, v = �|u|, q = s0, and k = p;
(iii) take u = �, v = a1wa2, q = s0, k = p and l = 3.

(⇐) We show that the corresponding condition of Theorem 1 implies non-
emptiness of

⋂p
i=0 L(Ai). To this end, we define a Σ∗

+ → {a, �}∗ homomorphism
by taking h(�) = �, h(a1) = a, and h(b) = ε for all other b ∈ Σ+.

(i) and (ii): Let ◦ ∈ {<,≡} and suppose q is a state in Ap
◦ and u′ ∈ Σ∗

+ such
that q �= δ

Ap
◦

u′ (q) and q = δ
Ap

◦
(u′)k(q) for some k. Let S = {s0, s1, . . . , sp−1}. We

claim that there exist s ∈ S and u ∈ Σ∗
+ such that

s �= δ
Ap

◦
u (s), (13)

δ
Ap

◦
x (s) ∈ S, for every x ∈ {u}∗. (14)

Indeed, observe that none of the states along the cyclic q →(u′)k q path Π in
Ap

◦ is tr. So there is some state along Π that is in S, as otherwise one of the Ai

would contain a nontrivial cycle. Therefore, u′ must be of the form w�na1w
′ for

some w ∈ Σ∗, n < ω and w′ ∈ Σ∗
+. It is easy to see that s = δ

Ap
◦

(u′)k−1w
(q) and

u = �na1w
′w is as required in (13) and (14).
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As M(Bp
◦) is a finite group, the set

{
δ
Bp

◦
h(x) | x ∈ {u}∗} forms a subgroup G

in it (the subgroup generated by δ
Bp

◦
h(u)). We show that G is nontrivial by finding

a nontrivial homomorphic image of it. To this end, (14) implies that, for every
x ∈ {u}∗, the restriction δ

Ap
◦

x �S′ of δ
Ap

◦
x to the set S′ =

{
δ
Ap

◦
y (s) | y ∈ {u}∗} is an

S′ → S′ function and δ
Ap

◦
x �S′= δ

Bp
◦

h(x)�S′ . As M(Bp
◦) is a group of permutations

on a set containing S′, δ
Bp

◦
h(x)�S′ is a permutation of S′, for every x ∈ {u}∗. Thus,

{
δ
Bp

◦
h(x)�S′ | x ∈ {u}∗} is a homomorphic image of G that is nontrivial by (13).
As G is a nontrivial subgroup of the cyclic group M(Bp

◦) of order p and p is
a prime, G = M(Bp

◦). Then there is x ∈ {u}∗ with δ
Bp

◦
h(x) = δ

Bp
◦

a (a permutation
containing the p-cycle (s0s1 . . . sp−1) ‘around’ all elements of S), and so S′ = S
and x = �na1wa2w

′ for some n < ω, w ∈ Σ∗, and w′ ∈ Σ∗
+. As n = 0 when ◦ =<

and δ
Ap

≡
�n (s) for every s ∈ S, S′ = S implies that w ∈ ⋂p−1

i=0 L(Ai) =
⋂p

i=0 L(Ai).

(iii) Suppose q is a state in Ap
MOD and u′, v′ ∈ Σ∗

+ such that q �= δ
Ap

MOD

u′ (q),

q �= δ
Ap

MOD

v′ (q), q �= δ
Ap

MOD

u′v′ (q), and δ
Ap

MOD
x (q) = δ

Ap
MOD

x(u′)2(q) = δ
Ap

MOD

x(v′)k(q) = δ
Ap

MOD

x(u′v′)l(q)
for some odd prime k and number l that is coprime to both 2 and k. Take
S = {s0, s1, . . . , sp}. We claim that there exist s ∈ S and u, v ∈ Σ∗

+ such that

s �= δ
Ap

MOD
u (s), s �= δ

Ap
MOD

v (s), s �= δ
Ap

MOD
uv (s), (15)

δ
Ap

MOD
x (s) ∈ S, for every x ∈ {u, v}∗, (16)

δ
Ap

MOD
x (s) = δ

Ap
MOD

xu2 (s) = δ
Ap

MOD

xvk (s) = δ
Ap

MOD

x(uv)l(s), for every x ∈ {u, v}∗. (17)

Indeed, by an argument similar to the one in the proof of (i) and (ii) above, we
must have u′ = wu�na1w

′
u and v′ = wv�ma1w

′
v for some wu, wv ∈ Σ∗, n,m < ω

and w′
u, w′

v ∈ Σ∗
+. For every x ∈ {u, v}∗, as both δ

Ap
MOD

xwu (q) and δ
Ap

MOD
xwv (q) are in S,

they must be the same state. Using this it is not hard to see that s = δ
Ap

MOD

u′wu
(q),

u = �na1w
′
uwu and v = �ma1w

′
vwv are as required in (15)–(17).

As M(Bp
MOD) is a finite group, the set

{
δ
Bp

MOD

h(x) | x ∈ {u, v}∗} forms a sub-

group G in it (the subgroup generated by δ
Bp

MOD

h(u) and δ
Bp

MOD

h(v) ). We show that G is
unsolvable by finding an unsolvable homomorphic image of it. To this end, we
let S′ =

{
δ
Ap

MOD
y (s) | y ∈ {u, v}∗}. Then (16) implies that S′ ⊆ S and

δ
Bp

MOD

h(x) (s′) = δ
Ap

MOD
x (s′) ∈ S′, for all s′ ∈ S and x ∈ {u, v}∗, (18)

and so the restriction δ
Ap

MOD
x �S′ of δ

Ap
MOD

x to S′ is an S′ → S′ function and
δ
Ap

MOD
x �S′= δ

Bp
MOD

h(x) �S′ . As M(Bp
MOD) is a group of permutations on a set containing

S′, δ
Bp

MOD

h(x) �S′ is a permutation of S′, for any x ∈ {u, v}∗. So {δ
Bp

MOD

h(x) �S′ | x ∈
{u, v}∗} is a homomorphic image of G that is unsolvable by the Kaplan–Levy
criterion: By (15), (17), and 2 and k being primes, the order of the permutation
δ
Bp

MOD

h(u) �S′ is 2, the order of δ
Bp

MOD

h(v) �S′ is k, and the order of δ
Bp

MOD

h(uv)�S′ (which is the
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same as the order of its inverse) is a > 1 divisor of l, and so coprime to both 2
and k.

As G is an unsolvable subgroup of M(Bp
MOD), it follows from Lemma 2

that G = M(Bp
MOD), and so {u, v}∗ �⊆ �∗. We claim that S′ = S also fol-

lows. Indeed, let x ∈ {u, v}∗ be such that δ
Bp

MOD

h(x) = δ
Bp

MOD
a . As |S′| ≥ 2 by (15),

s ∈ {s0, . . . , sp−1} must hold, and so {s0, . . . , sp−1} ⊆ S′ follows by (18). As

there is y ∈ {u, v}∗ with δ
Bp

MOD

h(y) = δ
Bp

MOD

� , sp ∈ S′ also follows by (18). Finally, as
{u, v}∗ �⊆ �∗, there is x ∈ {u, v}∗ of the form �na1wa2w

′, for some n < ω, w ∈ Σ

and w′ ∈ Σ∗
+. As S′ = S, δ

Bp
MOD

x (si) ∈ S for every i ≤ p, and so w ∈ ⋂p
i=0 L(Ai).

Theorem 2 clearly follows from Lemmas 1 and 3.

5 Deciding L-definability of 2NFAs in PSPACE

Using the criterion Theorem 1 (i), Stern [25] showed that deciding whether
the language of any given DFA is FO(<)-definable can be done in PSpace.
In this section, we also use the criteria of Theorem 1 to provide PSpace-
algorithms deciding whether the language of any given 2NFA is L-definable,
whenever L ∈ {FO(<),FO(<,≡),FO(<,MOD)}. Let A = (Q,Σ, δ,Q0, F ) be a
2NFA. Following [9], we first construct a(n exponential size) DFA A′ such that
L(A) = L(A′). To this end, for any w ∈ Σ+, we introduce four binary relations
blr(w), brl(w), brr(w), and bll(w) on Q describing the left-to-right, right-to-left,
right-to-right, and left-to-left behaviour of A on w. Namely,

– (q, q′) ∈ blr(w) if there is a run of A on w from (q, 0) to (q′, |w|);
– (q, q′) ∈ brr(w) if there is a run of A on w from (q, |w| − 1) to (q′, |w|);
– (q, q′) ∈ brl(w) if, for some a ∈ Σ, there is a run on aw from (q, |aw| − 1) to

(q′, 0) such that no (q′′, 0) occurs in it before (q′, 0);
– (q, q′) ∈ bll(w) if, for some a ∈ Σ, there is a run on aw from (q, 1) to (q′, 0)

such that no (q′′, 0) occurs in it before (q′, 0).

For w = ε (the empty word), we define the bij(w) as the identity relation on Q.
Let b = (blr, brl, brr, bll), where the bij are the behaviours of A on some w ∈ Σ∗,
in which case we can also write b(w), and let b′ = b(w′), for some w′ ∈ Σ∗. We
define the composition b · b′ = b′′ with components b′′

ij as follows. Let X and Y
be the transitive closure of b′

ll ◦ brr and brr ◦ b′
ll, respectively. Then we set:

b′′
lr = blr ◦ b′

lr ∪ blr ◦ X ◦ b′
lr, b′′

rl = b′
rl ◦ brl ∪ b′

rl ◦ Y ◦ brl,

b′′
rr = b′

rr ∪ b′
rl ◦ Y ◦ brr ◦ b′

lr, b′′
ll = bll ∪ blr ◦ X ◦ b′

ll ◦ brl.

One can check that b′′ = b(ww′). Define a DFA A′ = (Q′, Σ, δ′, q′
0, F

′) by taking

Q′ =
{
(Blr, Brr) | Blr ⊆ Q0 × Q, Brr ⊆ Q × Q

}
, q′

0 =
({

(q, q) | q ∈ Q0

}
, ∅)

,

F ′ =
{
(Blr, Brr) | (q0, q) ∈ Blr, for some q0 ∈ Q0 and q ∈ F

}
,

δ′
a

(
(Blr, Brr)

)
= (B′

lr, B
′
rr), with B′

lr = Blr ◦ X(a) ◦ blr(a),
B′

rr = Brr ∪ brl(a) ◦ Y (a) ◦ blr(a),
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where X(a) and Y (a) are the reflexive and transitive closures of bll(a) ◦Brr and
Brr ◦ bll(a), respectively. It is not hard to see that, for any w ∈ Σ∗,

δ′
w

(
(Blr, Brr)

)
= (B′

lr, B
′
rr) iff B′

lr = Blr ◦ X(w) ◦ blr(w) and
B′

rr = Brr ∪ brl(w) ◦ Y (w) ◦ blr(w), (19)

where X(w) and Y (w) are the reflexive and transitive closures of bll(w) ◦ Brr

and Brr ◦bll(w), respectively. Also, one can show in a way similar to [24,29] that

L(A) = L(A′). (20)

Next, we show that, even if the size of A′ is exponential in A, we can still use
Theorem 1 to decide L-definability of L(A) in PSpace:

Theorem 3. For L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-definability
of L(A), for any 2NFA A, is in PSpace.

Proof. Let A′ be the DFA defined above for the given 2NFA A. By Theorem 1 (i)
and (20), L(A) is not FO(<)-definable iff there exist a word u ∈ Σ∗, a reachable
state q ∈ Q′, and a number k ≤ |Q′| such that q �∼ δ′

u(q) and q = δ′
uk(q). We guess

the required k in binary, q and a quadruple b(u) of binary relations on Q. Clearly,
they all can be stored in polynomial space in |A|. To check that our guesses are
correct, we first check that b(u) indeed corresponds to some u ∈ Σ∗. This is
done by guessing a sequence b0, . . . , bn of distinct quadruples of binary relations
on Q such that b0 = b(u0) and bi+1 = bi · b(ui+1), for some u0, . . . , un ∈ Σ.
(Any sequence with a subsequence starting after bi and ending with bi+m, for
some i and m such that bi = bi+m, is equivalent, in the context of this proof,
to the sequence with such a subsequence removed.) Thus, we can assume that
n ≤ 2O(|Q|), and so n can be guessed in binary and stored in PSpace. So, the
stage of our algorithm checking that b(u) corresponds to some u ∈ Σ∗ makes
n iterations and continues to the next stage if bn = b(u) or terminates with an
answer no otherwise. Now, using b(u), we compute b(uk) by means of a sequence
b0, . . . , bk, where b0 = b(u) and bi+1 = bi · b(u). With b(u) (b(uk)), we compute
δ′
u(q) (respectively, δ′

uk(q)) in PSpace using (19). If δ′
uk(q) �= q, the algorithm

terminates with an answer no. Otherwise, in the final stage of the algorithm, we
check that δ′

u(q) �∼ q. This is done by guessing v ∈ Σ∗ such that δ′
v(q) = q1,

δ′
v

(
δ′
u(q)

)
= q2, and q1 ∈ F ′ iff q1 �∈ F ′. We guess such a v (if exists) in the form

of b(v) using an algorithm analogous to that for guessing u above.
By Theorem 1 (ii) and (20), L(A) is not FO(<,≡)-definable iff there there

exist words u, v ∈ Σ∗, a reachable state q ∈ Q′, and a number k ≤ |Q′| such that
q �∼ δ′

u(q), q = δ′
uk(q), |v| = |u|, and δ′

ui(q) = δ′
uiv(q), for all i < k. We outline

how to modify the algorithm for FO(<) above to check FO(<,≡)-definability.
First, we need to guess and check v in the form of b(v) in parallel with guessing
and checking u in the form of b(u), making sure that |v| = |u|. For that, we guess
a sequence of distinct pairs (b0, b′

0), . . . , (bn, b′
n) such that the bi are as above,

b′
0 = b(v0) and b′

i+1 = b′
i · b(vi+1), for some v0, . . . , vn ∈ Σ. (Any such sequence

with a subsequence starting after (bi, b
′
i) and ending with (bi+m, b′

i+m), for some
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i and m such that (bi, b
′
i) = (bi+m, b′

i+m), is equivalent to the sequence with that
subsequence removed.) So n ≤ 2O(|Q|). For each i < k, we can then compute
δ′
ui(q) and δ′

uiv(q), using (19), and check whether whether they are equal.
Finally, by Theorem 1 (iii) and (20), L(A) is not FO(<,MOD)-definable iff

there exist u, v ∈ Σ∗, a reachable state q ∈ Q′ and k, l ≤ |Q′| such that k is an
odd prime, l > 1 and coprime to both 2 and k, q �∼ δ′

u(q), q �∼ δ′
v(q), q �∼ δ′

uv(q),
and δ′

x(q) ∼ δ′
xu2(q) ∼ δ′

xvk(q) ∼ δ′
x(uv)l(q), for all x ∈ {u, v}∗. We start by

guessing u, v ∈ Σ∗ in the form of b(u) and b(u), respectively. Also, we guess
k and l in binary and check that k is an odd prime and l is coprime to both
2 and k. By (19), δ′

x is determined by b(x), for any x ∈ {u, v}∗. Thus, we can
proceed as follows to verify that u, v, k and l are as required. We perform the
following steps, for each quadruple b of binary relations on Q. First, we check
whether b = b(x), for some x ∈ {u, v}∗ (we discuss the algorithm for this below).
If this is not the case, we construct the next quadruple b′ and process it as this
b. If it is the case, we compute all the states δ′

x(q), δ′
xu2(q), δ′

xvk(q), δ′
x(uv)l(q),

δ′
u(q), δ′

v(q), δ′
uv(q), and check their required (non)equivalences w.r.t. ∼, using

the same method as for checking δ′
u(q) �∼ q above. If they do not hold as required,

our algorithm terminates with an answer no. Otherwise, we construct the next
quadruple b′ and process it as this b. When all possible quadruples b of binary
relations of Q have been processed, the algorithm terminates with an answer yes.

Now, to check that a given quadruple b is equal to b(x), for some x ∈ {u, v}∗,
we simply guess a sequence b0, . . . , bn of quadruples of binary relations on Q such
that b0 = b(w0), bn = b and bi+1 = bi · b(wi+1), where wi ∈ {u, v}. It follows
from the argument above that it is enough to consider n ≤ 2O(|Q|).

6 Further Research

The results obtained in this paper have been used for deciding the rewritabil-
ity type of ontology-mediated queries (OMQs) given in linear temporal logic
LTL [22]. As mentioned in the introduction, LTL OMQs can be simulated by
automata. In the worst case, the automata are of exponential size, and decid-
ing FO-rewritability of some OMQs may become ExpSpace-complete. On the
other hand, there are natural and practically important fragments of LTL with
automata of special forms whose FO-rewritability can be decided in PSpace, Πp

2

or coNP. However, it remains to be seen whether the corresponding algorithms,
even in the simplest case of FO(<)-definability, are efficient enough for applica-
tions in temporal OBDA. Note that the problems considered in this paper are
also relevant to the optimisation problem for recursive SQL queries.
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Abstract. We consider the Lambek calculus extended with intersection
(meet) operation. For its variant which does not allow empty antecedents,
Andréka and Mikulás (1994) prove strong completeness w.r.t. relational
models (R-models). Without the antecedent non-emptiness restriction,
however, only weak completeness w.r.t. R-models (so-called square ones)
holds (Mikulás 2015). Our goals are as follows. First, we extend the
calculus with the unit constant, introduce a class of non-standard R-
models for it, and prove completeness. This gives a simpler proof of
Mikulás’ result. Second, we prove that strong completeness does not
hold. Third, we extend our weak completeness proof to the infinitary
setting, to so-called iterative divisions (Kleene star under division).

Keywords: Lambek calculus · Relational semantics · Completeness

1 Introduction

We start with the Lambek calculus [10], formulated in a Gentzen-style sequent
format. Lambek formulae are built from variables (p, q, r, . . .) using three binary
connectives: · (multiplication), \ (left division), and / (right division). The set
of all formulae is denoted by Fm. Formulae are denoted by capital Latin letters.
Capital Greek letters denote sequences of formulae; Λ stands for the empty
sequence. Sequents are expressions of the form Π → B. (Due to the non-
commutative nature of the Lambek calculus, order in Π matters.) Here Π is
called the antecedent and B the succedent of the sequent.

The axioms and inference rules of the original Lambek calculus [10], denoted
by L, are as follows:

A → A
Id

Π → A Γ,A,Δ → C

Γ,Π,Δ → C
Cut

Π → A Γ,B,Δ → C

Γ,Π,A \ B,Δ → C
\ L

A,Π → B

Π → A \ B
\ R

Γ,A,B,Δ → C

Γ,A · B,Δ → C
·L

Π → A Γ,B,Δ → C

Γ,B / A,Π,Δ → C
/ L

Π,A → B

Π → B /A
/ R Π → A Δ → B

Π,Δ → A · B
·R
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A distinctive feature of L is the Π �= Λ condition on rules \ R and / R,
the so-called Lambek’s non-emptiness restriction. This condition ensures that
antecedents of all sequents in L derivations are non-empty (\ R and / R are the
only two rules which could possibly produce an empty antecedent).

Lambek’s restriction is motivated by linguistic applications of the Lambek
calculus [15, § 2.5]. From the logical point of view, however, it is also natural to
consider a variant of L without this restriction [11]: in \ R and /R now Π can be
empty. This variant is called the Lambek calculus allowing empty antecedents and
is usually denoted by L∗. Throughout this paper, however, we use alternative
notation, LΛ, in order to avoid conflict with Kleene star in Sect. 5.

It is important to keep in mind that L is not a conservative fragment of LΛ.
Even if the sequent has a non-empty antecedent, empty antecedents could be
necessary inside its derivation. An example is (p \ p) \ q → q, which is derivable
in LΛ, but not in L. Therefore, there is no easy way of translating results between
L and LΛ, and certain properties of these systems differ, as we shall see below.

In this paper, we focus on relational semantics of the Lambek calculus.

Definition 1. A relational model (R-model) is a triple M = (W,U, v), where
W is a non-empty set, U ⊆ W × W is a transitive relation on W called the
universal one, and v : Fm → P(U) is a valuation function mapping formulae to
subrelations of U . The valuation function should obey the following conditions:

v(A · B) = v(A) ◦ v(B) = {(x, z) | ∃y ∈ W (x, y) ∈ v(A) and (y, z) ∈ v(B)};
v(A \ B) = v(A) \U v(B) = {(y, z) ∈ U | ∀x ∈ W (x, y) ∈ v(A) ⇒ (x, z) ∈ v(B)};
v(B / A) = v(B) /U v(A) = {(x, y) ∈ U | ∀z ∈ W (y, z) ∈ v(A) ⇒ (x, z) ∈ v(B)}.

Definition 2. An R-model M = (W,U, v) is a square one, if U = W × W .

Arbitrary R-models and square R-models form natural classes of models for
L and LΛ respectively. Let us define the truth condition of sequents in R-models.

Definition 3. A sequent of the form A1, . . . , An → B is true in model M =
(W,U, v), if v(A1) ◦ . . . ◦ v(An) ⊆ v(B). For sequents with empty antecedents,
truth is defined only in square R-models: Λ → B is true in M = (W,W × W, v),
if δ = {(x, x) | x ∈ W} ⊆ v(B).

Let us also recall the general notion of strong soundness and completeness of
a logic L (formulated as a sequent calculus) w.r.t. a class of models K.

Definition 4. Let Π → B and H be, respectively, a sequent and a set of sequents
in the language of L. The sequent Π → B semantically follows from H on the
class of models K, if for any model from K in which all sequents from H are true
the sequent Π → B is also true. This is denoted by H �K Π → B.

Definition 5. In the notations of the previous definition, Π → B syntactically
follows from H in the logic L, if Π → B is derivable in the calculus for L extended
with sequents from H as extra axioms. This is denoted by H 
L Π → B.
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Definition 6. The logic L is strongly sound w.r.t. the class of models K, if
H 
L Π → B entails H �K Π → B for any Π → B and H.

Definition 7. The logic L is strongly complete w.r.t. the class of models K, if
H �K Π → B entails H 
L Π → B for any Π → B and H.

Notice that for substructural systems, like the Lambek calculus, strong
soundness and completeness are significantly different from their more usual
weak counterparts (that derivability of a sequent without any extra axioms yields
its truth in all models from the given class, and the other way round). This is
due to the fact that there is no deduction theorem available in these logics,
and therefore formulae from H (even if H is finite) cannot be internalised into
Π → B.

One can easily check that the calculi L and LΛ are strongly sound w.r.t.
the corresponding classes of R-models: namely, all R-models for L and square
R-models for LΛ. Strong completeness is non-trivial, and it was proved, for both
calculi, by Andréka and Mikulás [1]:

Theorem 1 (Andréka, Mikulás 1994). The calculus L is strongly complete
w.r.t. the class of all R-models.

Theorem 2 (Andréka, Mikulás 1994). The calculus LΛ is strongly complete
w.r.t. the class of square R-models.

The arguments used in [1] for proving Theorem 1 and Theorem 2, being
similar, are yet not completely identical. The essential difference of the situations
with and without Lambek’s restriction gets revealed when one adds one more
operation: intersection, or meet.

Remark 1. Adding the dual operation, join (union), immediately yields incom-
pleteness [1,7], even in the weak sense, so we do not consider it. Indeed, in the
presence of both meet and join, we get the distributivity law, which is not deriv-
able in substructural logics like the Lambek calculus [16]. Moreover, unlike meet,
with join alone, using Lambek divisions, one can formulate non-trivial corollaries
of distributivity [7].

Intersection is axiomatized by the following rules:

Γ,A,Δ → C

Γ,A ∧ B,Δ → C
∧L1

Γ,B,Δ → C

Γ,A ∧ B,Δ → C
∧L2

Π → A Π → B
Π → A ∧ B

∧R

In R-models, it is interpreted set-theoretically:

v(A ∧ B) = v(A) ∩ v(B) = {(x, y) | (x, y) ∈ v(A) and (x, y) ∈ v(B)}.

The corresponding calculi will be denoted by L∧ and LΛ∧, depending on whether
Lambek’s restriction is imposed. One can easily check that such interpretation
yields strong soundness for both systems.

As for completeness, in the presence of meet Lambek’s restriction makes a
significant difference. For L∧, the argument of Andréka and Mikulás (Theorem 1)
also works, as shown in the same article [1]:
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Theorem 3 (Andréka, Mikulás 1994). The calculus L∧ is strongly complete
w.r.t. the class of all R-models.

For LΛ∧, in contrast, the reasoning of Andréka and Mikulás (Theorem 2)
could not be easily extended. Later on, however, Mikulás [13,14] managed to
modify the proof of Theorem 2 for LΛ∧—but this modification establishes only
weak completeness (without hypotheses):

Theorem 4 (Mikulás 2015).1 If a sequent in the language of ·, \, /,∧ is true
in all square R-models, then it is derivable in LΛ∧.

The results of the present paper are as follows.

1. We extend LΛ∧ with the explicit unit constant 1, introduce non-standard
relational semantics for it (Sect. 2), and prove weak completeness (Sect. 3).
Notice that the standard interpretation of the unit, v(1) = δ, does not give
completeness. The reducts of our non-standard models to the language with-
out 1, however, are standard R-models. Thus, we obtain a new, simpler proof
of Mikulás’ Theorem 4.

2. Mikulás [14, Remark 5.3] presents a series of potential counterexamples to
strong completeness of LΛ∧ w.r.t. square R-models, but does not prove that
they are indeed counterexamples. We prove (Sect. 4) that already the smallest
non-trivial one of these examples indeed establishes failure of strong complete-
ness.

3. We show that our proof of Theorem 4, unlike Mikulás’ approaches, can be eas-
ily extended to infinite conjunctions. We consider (Sect. 5) a concrete interest-
ing example of such conjunction, namely, so-called iterated divisions (Kleene
star in the denominator of a division), and prove weak completeness w.r.t.
square R-models.

2 Non-standard Models for Unit

Let us further extend LΛ∧ with the multiplicative unit constant 1, that is, an
explicit constant for the neutral element of multiplication. The axiom and rule
for 1, reflecting its neutrality, are as follows (see [12]), and the resulting calculus
is denoted by LΛ∧1.

Γ,Δ → C

Γ,1,Δ → C
1L

Λ → 1 1R

Notice that these rules exactly reflect neutrality of 1. Indeed, A · 1 → A is
derived using 1L (with ·L) and A → A · 1 is derived using 1R via ·R. The rules
for 1 are good sequent calculus rules in the sense of cut elimination, see [12].

1 Here “Mikulás 2015” refers both to [13] and [14], which feature different proofs of
Theorem 4.
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This suggests interpreting 1 in square R-models as the diagonal relation:

v(1) = δ = {(x, x) | x ∈ W}.

We shall call this the standard interpretation of the unit.
Unfortunately, for the standard interpretation of the unit LΛ∧1 does not

enjoy completeness, even in the weak sense. A notable example of a sequent
true in all standard square R-models, but not derivable in LΛ∧1, is 1 ∧ F ∧
G → (1 ∧ F ) · (1 ∧ G), given by Andréka and Mikulás [2]. For F = G, this
is the contraction (“doubling”) principle for formulae of the form 1 ∧ G, that
is, 1 ∧ G → (1 ∧ G) · (1 ∧ G). In the presence of contraction, even restricted
to formulae of this specific form, the situation becomes quite complicated. In
the view of the results of Chvalovský and Horč́ık [5] and Kanovich et al. [7] for
closely related systems including such contraction principles, we conjecture that
the complete system for standard square R-models (that is, the set of sequents
true in all models of this class) is undecidable. (More precisely, it is probably at
least Σ0

1 -hard, but maybe even higher in the complexity hierarchy.)
Another, independent counterexample to weak completeness w.r.t. standard

models is 1 /(F / F ) → (1 /(F / F )) · (1 /(F / F )), given by Buszkowski [3]. This
example uses division instead of intersection, and again it is a form of contraction.
Thus, constructing an axiomatisation for the unit constant which is complete
w.r.t. standard models, even if this is possible, is a non-trivial open question.

We overcome this issue by extending the class of models being considered,
thus restoring completeness for the original system LΛ∧1. The idea is as follows:
while δ is the only neutral element for the set of all binary relations on W , for
a set which includes only some relations (and does not include δ), the neutral
element could be a different relation. This leads to the following definition.

Definition 8. Let A ⊆ P(W ×W ) be a family of binary relations over W , closed
under ◦, \, /, and ∩. Relation 1A ∈ A is called the A-unit, if 1A◦R = R◦1A = R
for any R ∈ A.

A standard algebraic argument shows that the A-unit, if it exists, is unique.
Indeed, for another A-unit 1′

A ∈ A we have 1′
A = 1′

A ◦ 1A = 1A. However, 1A is
not necessarily the diagonal relation δ = {(x, x) | x ∈ W}, as the latter may be
outside A.

Example 1. Let W be a non-empty set and let W ′ = W ×{1, 2}. For each relation
R on W let us define a relation R′ as follows: (x, i)R′(y, j), if xRy and i ≤ j. Let
A be the class of relations of the form R′. Then 1A = δ′ = {((x, i), (x, j)) | i ≤ j}.

Lemma 1. If R ∈ A and 1A is the A-unit, then 1A ⊆ R if and only if δ ⊆ R.
In particular, δ ⊆ 1A.

Proof. Let us first show that for any R ∈ A we have R = R /1A. One inclusion is
easy: R ◦ 1A ⊆ R yields R ⊆ R /1A. For the other inclusion, we first notice that
(R /1A) ◦ 1A ⊆ R (this follows from R /1A ⊆ R /1A). Now, since (R /1A) ∈ A,
we have R /1A = (R /1A) ◦ 1A ⊆ R. Using R = R /1A, we build a chain of
equivalences: 1A ⊆ R ⇐⇒ δ ◦ 1A ⊆ R ⇐⇒ δ ⊆ R /1A ⇐⇒ δ ⊆ R. ��
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Due to this lemma, we may keep the truth definition for sequents with empty
antecedents the same. That is, we do not need to replace δ with 1A.

Definition 9. A non-standard square R-model with the unit is a structure
MA = (W,A,1A, v), where W is a non-empty set; A ⊆ P(W ×W ) is a family of
binary relations on W , closed under ◦, \, /, and ∩; 1A is the A-unit; v : Fm → A
is a valuation function mapping formulae to relations from the family A. The val-
uation function should obey the conditions from Definition 1, with U = W × W ,
and, additionally, v(1) = 1A. The truth of a sequent in a non-standard square
R-model is defined exactly as in Definition 3.

Proposition 1. The calculus LΛ∧1 is strongly sound w.r.t. the class of non-
standard square R-models with the unit.

Proof. As usual, we proceed by induction on the derivation. The interesting cases
are 1L and 1R, as others are copied from the standard strong soundness proof
of LΛ∧ w.r.t. square R-models (without the unit). For 1R, we have to show that
Λ → 1 is true, that is, δ ⊆ v(1) = 1A. This is a particular case of Lemma 1.

For 1L, we consider two cases. If both Γ and Δ are empty, then our induction
hypothesis gives δ ⊆ v(C). By Lemma 1, this is equivalent to 1A ⊆ v(C) (recall
that v(C) ∈ A), which is the truth of 1 → C. If, say, Δ is non-empty, then let
D1 be the first formula of Δ. By definition of the A-unit, we have v(1)◦v(D1) =
1A ◦ v(D1) = v(D1). Thus, interpretations of left-hand sides of the premise and
the conclusion are identical. The case of non-empty Γ is symmetric. ��

As for completeness, we prove only its weak version (Sect. 3). For strong
completeness, there is a counterexample (Sect. 4).

3 Weak Completeness

We prove weak completeness of LΛ∧1 w.r.t. the class of models defined in the
previous section:

Theorem 5. If a sequent (in the language of \, /, ·,∧,1) is true in all non-
standard square R-models with the unit, then it is derivable in LΛ∧1.

Our proof follows the line of the proof of Theorem 1 (suprisingly, not Theo-
rem 2, see Remark 3 below): we build a labelled graph with specific properties
and use it to construct a universal model.

Throughout this section, 
 A → B means “A → B is derivable in LΛ∧1.”

Lemma 2. There exists a labelled directed graph G = (V,E, �), where V �= ∅,
E ⊆ V × V , and � : E → Fm, such that the following holds:

1. E is transitive;
2. E is reflexive and �(x, x) = 1 for any x ∈ V ;
3. E is antisymmetric: if x �= y and (x, y) ∈ E, then (y, x) /∈ E;
4. if (x, y) ∈ E and (y, z) ∈ E, then 
 �(x, z) → �(x, y) · �(y, z);
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5. if 
 �(x, z) → B · C, then there exists such y ∈ V that (x, y) ∈ E, (y, z) ∈ E,

 �(x, y) → B, and 
 �(y, z) → C;

6. for any y ∈ V and any formula A there exists such x ∈ V that for any z ∈ V
if (y, z) ∈ E, then �(x, z) = A · �(y, z);

7. for any y ∈ V and any formula A there exists such z ∈ V that for any x ∈ V
if (x, y) ∈ E, then �(x, z) = �(x, y) · A.

Before proving Lemma 2, let us use it to establish Theorem 5.

Proof (of Theorem 5). Using graph G, we construct a universal non-standard
square R-model MA

0 = (W,A,1A, v) in the following way:

W = V ; v(A) = {(x, y) ∈ E | 
 �(x, y) → A};
A = {v(A) | A ∈ Fm}; 1A = v(1).

Let us show that MA
0 is indeed a well-defined model.

Multiplication. If (x, z) ∈ v(B · C), then 
 �(x, z) → B · C. By property 5
of graph G, there exists such y that (x, y) ∈ v(B) and (y, z) ∈ v(C). Therefore,
(x, z) ∈ v(B) ◦ v(C). This establishes the inclusion v(B · C) ⊆ v(B) ◦ v(C).

For the opposite inclusion, take (x, y) ∈ v(B) and (y, z) ∈ v(C). By tran-
sitivity, (x, z) ∈ E. By property 4 of G, 
 �(x, z) → �(x, y) · �(y, z). We derive
�(x, z) → B · C as follows:

�(x, z) → �(x, y) · �(y, z)

�(x, y) → B �(y, z) → C

�(x, y), �(y, z) → B · C
·R

�(x, y) · �(y, z) → B · C
·L

�(x, z) → B · C
Cut

Therefore, (x, z) ∈ v(B · C).
Division. Let (y, z) ∈ v(A \ B), that is, 
 �(y, z) → A \ B. Take an arbitrary

x ∈ W such that (x, y) ∈ v(A), that is, 
 �(x, y) → A. Now by transitivity
(x, z) ∈ E, and �(x, z) → B is derived using two cuts, with �(x, z) → �(x, y) ·
�(y, z) (property 4 of G) and A · (A \ B) → B. This establishes the inclusion
v(A \ B) ⊆ v(A) \ v(B).

For the opposite inclusion, take (y, z) ∈ v(A) \ v(B) and apply property 6 to y
and A. For the vertex x ∈ W given by this property, we have �(x, y) = A·�(y, y) =
A · 1 and �(x, z) = A · �(y, z). The first condition gives (x, y) ∈ v(A) (because

 A ·1 → A). Hence, (x, z) ∈ v(B), i.e., 
 �(x, z) → B. Since �(x, z) = A · �(y, z),
we may proceed as follows:

A → A �(y, z) → �(y, z)

A, �(y, z) → A · �(y, z)
·R

A · �(y, z) → B

A, �(y, z) → B
Cut

�(y, z) → A \ B
\ R

This establishes (y, z) ∈ v(A \ B). Thus, we get v(A) \ v(B) = v(A \ B).
The equality v(B / A) = v(B) / v(A) is established symmetrically.
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Intersection. We have v(A ∧ B) = {(x, y) ∈ E | 
 �(x, y) → A ∧ B} =
{(x, y) ∈ E | 
 �(x, y) → A and 
 �(x, y) → B} = v(A) ∩ v(B). In the second
equality, the ⊇ inclusion is by ∧R, and the ⊆ one is by cut with A∧B → A and
A ∧ B → B.

Unit. Here we have v(1) = 1A by definition, and 1A is the A-unit. Indeed,
since A is equivalent to 1 · A and any relation in A is of the form v(A), we have
1A ◦ v(A) = v(1) ◦ v(A) = v(1 · A) = v(A). Similarly for v(A) ◦ 1A.

Now let us show that MA
0 is indeed a universal model, that is, a sequent is

true in this model if and only if it is derivable in LΛ∧1. The interesting direction
is of course the “only if” one (the “if” direction is just weak soundness).

Moreover, we may consider only sequents of the form Λ → B, since from
A1, . . . , An → B one can derive Λ → An \(An−1 \ . . . \(A1 \ B) . . .), and vice
versa, and by strong soundness these two sequents are true or false in MA

0

simultaneously.
Let Λ → B be true in MA

0 , that is, δ ⊆ v(B). Take an arbitrary x ∈ V .
We have (x, x) ∈ v(B), that is, 
 �(x, x) → B. On the other hand, �(x, x) = 1
by property 2 of G. Applying cut with Λ → 1 (axiom), we derive the desired
sequent Λ → B.

Existence of a universal model yields weak completeness: if a sequent is true
in all models, then it is true in the universal one, and therefore derivable in the
calculus. ��

Now we finish our argument by proving Lemma 2. The spirit of this proof
is the same as the central lemma of the proof of Theorem 1 by Andréka and
Mikulás. However, for the step-by-step construction we use the countable sched-
ule function, as in [8], which is sufficient for enumerating formulae, rather than
consider abstract algebras of arbitrary cardinality, as in [1]; see Remark 2 below.
The presentation of the proof closely follows the line of [8, Lemma 14]; the figures
are adaptations of those by Andréka and Mikulás [1] to the reflexive situation.

Proof (of Lemma 2). We construct an increasing sequence of labelled graphs
Gn = (Vn, En, �n), where each Gn is an induced subgraph of Gn+1. The countable
set of vertices V =

⋃∞
n=0 Vn is fixed before the procedure starts. Our aim is the

union graph G = (
⋃∞

n=0 Vn,
⋃∞

n=0 En,
⋃∞

n=0 �n).
The desired properties 1–4 are maintained along the sequence, that is, they

will hold for each Gn. In contrast, properties 5–7 are achieved only in the limit;
each transition from Gn to Gn+1 is a step towards satisfying one of these prop-
erties (in a particular case).

The initial graph G0 is just a reflexive point with the required unit label on
the loop: G0 = ({	}, {(	, 	)}, (	, 	) �→ 1). Properties 1–4 are trivially satisfied.

Each step is a transition of one of three types: for t = 0, 1, 2, a transition
of type t is a step from G3i+t to G3i+t+1. In order to ensure that all neces-
sary transitions are eventually performed, let us define two bijective schedule
functions:

σ : N → (V × Fm) × N

ς : N → (V × V × Fm × Fm) × N
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Here σ enumerates pairs of a (possible) vertex and a formula, and the second
component (a natural number) ensures that each such pair is “visited” infinitely
many times. The second function, ς, does the same for quadruples including two
vertices and two formulae. Now let us define our transitions.

Transition of type 0, from G3i to G3i+1. Let σ(i) = ((y,A), k). If y /∈ V3i, we
skip: G3i+1 = G3i. Otherwise we add a new vertex x ∈ V − V3i (such a vertex
always exists, since V is countable and V3i is finite) with a loop edge (x, x),
�(x, x) = 1, and for each z ∈ V3i, such that (y, z) ∈ E3i, an edge (x, z) with
�(x, z) = A · �(y, z). (In particular, we add an edge (x, y) with label A · 1.)

Let us show that properties 1–4 keep valid for G3i+1. Indeed, the new vertex
x is reflexive, and the loop has the correct label 1. Antisymmetricity is also
maintained: the new vertex x has no ingoing edges, except the loop.

Transitivity and property 4 are checked as follows. We have to verify that for
any x′, y′, z′ ∈ V3i+1 if (x′, y′) ∈ E3i+1 and (y′, z′) ∈ E3i+1, then (x′, z′) ∈ E3i+1

and 
 �(x′, z′) → �(x′, y′) · �(y′, z′). The interesting case is when at least one of
these vertices is new (that is, not from V3i). This means x′ = x. If y′ = x, we
trivially get (x′, z′) = (y′, z′) ∈ E3i+1, and 
 �(x′, z′) → �(x′, y′) · �(y′, z′), since
�(x′, y′) = �(x, x) = 1. Now let y′, z′ be old vertices (from V3i). Since (x, y′)
and (x, z′) were added, edges (y, y′) and (z, z′) are in E3i. Let �(y, y′) = B,
�(y′, z′) = C, and �(y, z′) = D (the latter edge exists by transitivity of G3i).
Then the picture is as follows (new edges are dashed):

x

y y′

z′

A
· 1

B

C

A · D

D
A · B

1 1

1 1

(Notice that some of the vertices y, y′, z′ could coincide; in this case, the corre-
sponding edges are loops with label 1.)

We have indeed added the necessary edge (x, z′), and it remains to check
that 
 �(x, z′) → �(x, y′) · �(y′, z′), that is, A · D → (A · B) · C. By associativity,
we may replace (A ·B) ·C with A · (B ·C), and then A ·D → A · (B ·C) is derived
from D → B · C by applying ·R and ·L. The sequent D → B · C is derivable by
property 4 of the old graph G3i.

Transition of type 1, from G3i+1 to G3i+2, is similar. Let σ(i) = ((y,A), k).
If y /∈ V3i, we skip, and otherwise add a new vertex z with its loop and for each
x ∈ V3i, if (x, y) ∈ E3i, add an edge (x, z) with �(x, z) = �(x, y) ·A. As for type 0,
properties 1–4 keep valid.

Transition of type 2, from G3i+2 to G3i+3. Let ς(i) = ((x, z,B,C), k). If x
or z is not in V3i+2 or if �
 �(x, z) → B · C, we skip. We also skip if x = z: in
this case, we do not need to add a new vertex to satisfy property 5, see below.
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Otherwise, we add a new vertex y, with its loop (y, y), �(y, y) = 1, and the
following edges:

– edge (r, y), with �(r, y) = �(r, x) · B, for each r such that (r, x) ∈ E3i+2;
– edge (y, s), with �(y, s) = C · �(z, s), for each s such that (z, s) ∈ E3i+2.

(In particular, we add edges (x, y) and (y, z) with labels 1 · B and C · 1 respec-
tively.) The picture in this situation is as follows:

x

r

z

s

y
1 · B C · 1

�(
r,

x
) �(z

,s)

�(x, z)

�(
r,
x)

·B
C · �(z, s)

1

1

1

1

1

In this picture, it is possible that r = x, or z = s, or even both. In such a case,
the corresponding edge is a loop with label 1. However, x �= z by assumption,
and also r �= s (for any r, s in question). Indeed, if r = s, then by transitivity we
get (z, x) ∈ E3i+2, which violates antisymmetry of the old graph G3i+2. Also,
the new vertex y is a distinct one.

The r �= s condition yields antisymmetry of the new graph G3i+3. Indeed,
a possible violation of antisymmetry should involve the new vertex y, but then
the other vertex should be r and s at the same time.

Reflexivity of the new graph, with 1 labels on the loops, is by construction.
Let us check transitivity and property 4. Take x′, y′, z′ such that edges (x′, y′)

and (y′, z′) belong to E3i+3. The interesting case is when x′ �= y′ and y′ �= z′

(otherwise we just add a unit), and at least one of x′, y′, z′ is the new vertex y.
Moreover, by antisymmetry, which we have already proved, we have x′ �= z′.

Consider three cases.
Case 1: x′ = y. Denote s1 = y′ and s2 = z′. Since (y, s1) ∈ E3i+3 and s1 �= y,

we have (z, s1) ∈ E3i+2 and �(y, s1) = C · �(z, s1). (Possibly, s1 = z.) For s2,
since it is also not y, we have (s1, s2) ∈ E3i+2, and by transitivity of G3i+2 we
get (z, s2) ∈ E3i+2. Therefore, (y, s2) ∈ E3i+3 and �(y, s2) = C · �(z, s2). Now by
property 4 of the old graph we have 
 �(z, s2) → �(z, s1) · �(s1, s2), and via ·R,
·L, and associativity we obtain 
 C · �(z, s2) → (C · �(z, s1)) · �(s1, s2). This is
the necessary sequent �(y, s2) → �(y, s1) · �(y, s2).

Notice that here antisymmetry is crucial: otherwise, we could have z′ = s2 =
y (i.e., s1 plays both as s and r), in which case �(y, s2) would be 1, not C ·�(z, s2).

Case 2: z′ = y. Considered symmetrically.



268 S. L. Kuznetsov

Case 3: y′ = y. Denote r = x′ and s = z′; they are both distinct from y. We
have �(r, y) = �(r, x) ·B and �(y, s) = C ·�(z, s). By shortcutting the path r–x–z–
s using transitivity, we see that (r, s) is an edge of the old graph and 
 �(r, s) →
�(r, x) · �(x, z) · �(z, s). Now we recall that 
 �(x, z) → B · C by assumption and
by cut and monotonicity conclude that 
 �(r, s) → �(r, x) · B · C · �(z, s). This is
exactly (up to associativity) what we need: 
 �(r, s) → �(r, y) · �(y, s).

Our construction shows that properties 1–4 hold for each Gn. Therefore,
they also hold for the limit graph G. Thus, it remains to show that G also enjoys
properties 5–7.

Let us start with property 6. The vertex y ∈ V belongs to Vn for some n.
Using the bijectivity of σ, we conclude that there exists such i that 3i ≥ n and
σ(i) = ((y,A), k) (for some k). Therefore, y ∈ V3i, and at the transition of type 0
from G3i to G3i+1 we added a vertex x, the properties of which are exactly the
ones required. Property 7 is symmetric, using a transition of type 1.

Finally, let us prove property 5. Let us first consider the case where x �= z.
Again, vertices x and z belong to some Vn. There exists such i that ς(i) =
((x, z,B,C), k) and 3i+2 ≥ n. Since we indeed have 
 �(x, z) → B ·C and x �= z,
the corresponding transition of type 2 is not skipped. This transition introduces
y with the desired properties. Indeed, �(x, y) = 1 · A and �(y, z) = B · 1, which
yields 
 �(x, y) → B and 
 �(y, z) → C.

Now let x = z. Then �(x, z) = �(x, x) = 1, and we have 
 1 → B · C. By cut
with Λ → 1 (axiom), we get 
 Λ → B · C. Let us eliminate the cut rule in this
proof.2 The lowermost rule in the cut-free proof is nothing but ·R. Therefore,
we get 
 Λ → B and 
 Λ → C. In its turn, by 1L, this yields 
 1 → B and

 1 → C, or, in other words, 
 �(x, x) → B and 
 �(x, x) → C. Thus, taking
y = x satisfies property 5. Notice that this is the only place in the proof where
we cannot allow extra axioms from H and fail to prove strong completeness.3 ��
Remark 2. Andréka and Mikulás [1] in their proof of Theorem 1 use a more
abstract algebraic framework: labels on graph edges are not formulae but ele-
ments of a residuated semi-lattice (that is, an algebraic model for L, see [6]
for details). In other words, strong completeness appears as a corollary of a
purely algebraic representation theorem. In our case, however, the representa-
tion theorem holds only for the Lindenbaum–Tarski algebra, which consists of
equivalence classes of formulae. Indeed, the representation theorem for arbitrary
algebras would have yielded strong completeness, which does not hold (see Sect. 4
below). Thus, it does not matter whether to use formulae (as we do) or elements
of this algebra as labels.

2 Cut elimination for LΛ∧1 is standard. Below, in the proof of Theorem 6, we sketch
the cut elimination proof for an extension of LΛ∧1.

3 This failure is actually even not due to the absence of cut elimination in the presence
of H. Indeed, one could just add 1 → b · c (b and c are variables) as an axiom, while
1 → b and 1 → c are not derivable. The extra axiom 1 → b · c can be reformulated
as a good sequent calculus rule, see Sect. 4 for more details.
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Remark 3. If one takes the reduct of a non-standard square R-model with the
unit by removing the unit constant, the result is a square R-model in the
usual sense. In particular, this holds for our universal model MA

0 . Thus, we
get Mikulás’ Theorem 4 as a corollary of our Theorem 5. Labels in our proof are
formulae, while Mikulás used filters, which are sets of formulae. The reason was
that without an explicit unit constant there are incompatible formulae which
should be labels of the same loop (e.g., p \ p and q \ q for different variables p
and q). Using the explicit unit resolves this issue and makes things simpler.

4 Counterexample to Strong Completeness

Unlike the case with Lambek’s restriction, for LΛ∧ strong completeness w.r.t.
square R-models does not hold. By conservativity, this also yields failure of
strong completeness of LΛ∧1 w.r.t. the class of non-standard models defined in
Sect. 2. A series of potential counterexamples to strong completeness was given
by Mikulás [14]. Here we prove that the first one of them is indeed such a
counterexample.

Theorem 6. Let a, b, c, d be distinct variables. Then a \ a → b ·c �square R-models

d → d ·b ·((c ·b)∧(a \ a)
) ·c, but not a \ a → b ·c 
LΛ∧ d → d ·b ·((c ·b)∧(a \ a)

) ·c.
Therefore, LΛ∧ is not strongly complete w.r.t. square R-models.

Proof. The first part (semantic entailment) is due to Mikulás [14, Remark 5.3].
We reproduce it here in order to keep this paper self-contained. Let us show that
(y, y) ∈ v(b · ((c · b) ∧ (a \ a)) · c) for any y ∈ W . Then for any (x, y) ∈ v(d) we
shall have (x, y) ∈ v(d · b · ((c · b) ∧ (a \ a)) · c).

We have (y, y) ∈ v(a \ a), since δ ⊆ v(a) \ v(a) for any v(a). Therefore, since
a \ a → b · c is true in M, we get (y, y) ∈ v(b) ◦ v(c). This means that there
exists such z ∈ W that (y, z) ∈ v(b) and (z, y) ∈ v(c). In its turn, this gives
(z, z) ∈ v(c · b); we also have (z, z) ∈ v(a \ a), therefore (z, z) ∈ v((c · b)∧ (a \ a)).

y za \ a

b

c

(c · b) ∧ (a \ a)

This yields (y, y) ∈ v(b) ◦ v((c · b) ∧ (a \ a)) ◦ v(c), q.e.d.
Now let us show that d → d · b · (

(c · b) ∧ (a \ a)
) · c is not derivable from

a \ a → b · c in LΛ∧. We do it in a syntactic way. Suppose the contrary. Then
derivability also holds in the larger calculus LΛ∧1. In this derivation, let us
substitute 1 for a and d. This yields derivability of 1 → 1 · b · ((c · b) ∧ (1 \1)

) · c
from 1 \1 → b · c.

Next, we notice that 1 \1 → b · c is derivable from Λ → b · c using 1L, 1R,
and \ L. On the other hand, given in 1 → 1 · b · ((c · b) ∧ (1 \1)

) · c, we apply cut
with Λ → 1 (axiom) and 1 · b · ((c · b) ∧ (1 \1)

) · c → b · ((c · b) ∧ 1
) · c (derivable
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in LΛ∧1). This argument gives the following: Λ → b · ((c · b) ∧ 1
) · c is derivable

in LΛ∧1, extended with Λ → b · c as an extra axiom.
Let us introduce an auxiliary calculus LΛ∧1bc, which is LΛ∧1 extended with

the following inference rule:

Γ, b, c,Δ → F

Γ,Δ → F
bc

(Notice that here b and c are concrete variables, not meta-symbols.)
Adding this new rule to LΛ∧1 is equivalent to adding Λ → b · c as an axiom.

Indeed, Λ → b·c can be derived using the bc rule and the bc rule can be simulated
using Λ → b · c and cut.

The new calculus LΛ∧1bc, however, enjoys cut elimination. The proof is stan-
dard (going back to Lambek’s original paper [10]) and proceeds by nested induc-
tion: (1) on the complexity of the formula A being cut; (2) on the height of the
derivation tree above the cut.

At each step we consider the lowermost rules in the derivations of the premises
of cut. The only new situation here is when at least one of these rules is bc; other
cases are standard.

For bc on the left, we propagate cut as follows:

Π ′, b, c, Π ′′ → A

Π ′, Π ′′ → A
bc

Γ, A, Δ → B

Γ, Π ′, Π ′′, Δ → B
Cut �

Π ′, b, c, Π ′′ → A Γ, A, Δ → B

Γ, Π ′, b, c, Π ′′, Δ → B
Cut

Γ, Π ′, Π ′′, Δ → B
bc

For bc on the right:

Π → A

Γ ′, b, c, Γ ′′, A, Δ → B

Γ ′, Γ ′′, A, Δ → B
bc

Γ ′, Γ ′′, Π, Δ → B
Cut �

Π → A Γ ′, b, c, Γ ′′, A, Δ → B

Γ ′, b, c, Γ ′′, Π, Δ → B
Cut

Γ ′, Γ ′′, Π, Δ → B
bc

and similarly in the case when b, c appear in Δ.
Now we may suppose that Λ → b · (

(c · b) ∧ 1
) · c has a cut-free proof in

LΛ∧1bc. Let us track this proof from the goal sequent to the application of ∧R
which introduces (c · b) ∧ 1. Below this ∧R there are only two applications of ·R
and several ones of bc. Therefore, the application of ∧R derives Π → (c · b) ∧ 1
from Π → c · b and Π → 1, where Π is a sequence of b’s and c’s.

However, Π → 1, if Π contains no connectives, is derivable only if Π is empty.
Thus, we get derivability of Λ → c · b. Let us again track its derivation up to
the application of ·R, which derives Φ, Ψ → c · b from Φ → c and Ψ → b. Here
the sequence Φ, Ψ was obtained by several applications of the bc rule. Therefore,
either Φ is empty, or the first element of Φ is b. On the other hand, Φ → c, where
Φ is a sequence of b’s and c’s, is derivable only if Φ = c. Contradiction. ��

5 An Infinite Conjunction: Iterative Division

Now let us return to our weak completeness result (Sect. 3). As noted above
(Remark 3), adding an explicit unit constant allowed us to label each edge in
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our graphs by just one formula, not a set of formulae.4 Besides making the
construction simpler, this has one more interesting consequence. Namely, we
can easily extend our proof to the case of infinite conjunctions. In contrast, for
Mikulás’ proofs [13,14] this is not so easy, since the sets which are used as labels
are filters, and filters are closed only under finite meets. Possibly, this issue could
be overcome by modifying the notion of filter and making it closed under (specific
kinds of) infinite meets, but our approach is much clearer and simpler.

In order to make our syntax simpler, we shall not consider arbitrary infinite
conjunctions, since this would require development of an infinitary formula lan-
guage. We concentrate on one important particular case, in which the formula
language is finitary (while proofs could be infinitary). This particular case of
infinitary conjunction is connected to the Kleene star.

In relational models, the Kleene star is the operation of taking the reflexive-
transitive closure of a relation. Thus, it can be represented as an infinite union:
R∗ = δ ∪R∪ (R ◦R)∪ (R ◦R ◦R)∪ . . . Adding a union-like connective, however,
causes incompleteness issues connected with distributivity. A concrete corollary
of the distributivity law, using meet and the Kleene star, which is not derivable
without distributivity, is given in [9, Theorem 4.1].

When put under division, however, the infinite union turns into an infinite
intersection: S / R∗ = S ∩ (S / R) ∩ ((S / R) / R) ∩ . . ., and similarly for R∗ \ S.
Thus, instead of one unrestricted Kleene star, we consider two composite con-
nectives: A∗ \B and B / A∗. Following Sedlár [18], who introduced similar con-
nectives in a non-associative setting and with positive iteration (Kleene plus)
instead of Kleene star (due to Lambek’s restriction), we call these connectives
iterative divisions. Independently from Sedlár, such connectives were introduced
in [8]. The system considered there is associative, but still has Lambek’s restric-
tion, so Kleene plus is used instead of Kleene star. In [8] it was proved that
the Lambek calculus L extended with meet and iterative divisions is strongly
complete w.r.t. the class of all R-models. In this paper, we shall prove a weak
counterpart of that result for the system without Lambek’s restriction.

An infinitary proof system for the Lambek calculus with Kleene star, or infini-
tary action logic, was introduced by Buszkowski and Palka [4,17]. We present a
version of this system for iterative divisions, following [8]:

Π1 → A . . . Πn → A Γ,B,Δ → C

Γ,Π1, . . . , Πn, A∗ \ B,Δ → C
∗\L, n ≥ 0

(
An,Π → B

)∞
n=0

Π → A∗ \ B
∗\R

Π1 → A . . . Πn → A Γ,B,Δ → C

Γ,B / A∗,Π1, . . . , Πn,Δ → C
/∗L, n ≥ 0

(
Π,An → B

)∞
n=0

Π → B / A∗ /∗R

The system obtained by adding these rules to LΛ∧1 will be denoted by LΛ∧1ItD.
A version of this system with Lambek’s restriction is undecidable (namely, Π0

1 -
complete) [8]. For LΛ∧1ItD, we also conjecture Π0

1 -completeness, thus using
infinitary proof machinery (omega-rules or similar) becomes inevitable.
4 In the setting of Mikulaś [13,14], this formula generates a principal filter of all

formulae which are “valid” on the edge.
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In square R-models, the Kleene star is interpreted as the reflexive-transitive
closure operation: v(A∗) = (v(A))∗. Thus, the interpretation of iterative divisions
is as follows: v(A∗ \ B) = (v(A))∗ \ v(B) and v(B / A∗) = v(B) /(v(A))∗.

We extend the notion of non-standard square R-model with the unit (Defini-
tion 9) with this interpretation for iterative divisions. A routine check provides
strong soundness. Notice that the usage of δ in the interpretation of the Kleene
star does not conflict with the non-standard unit 1A, since they are equivalent
in the denominator: R / δ = R = R /1A (see the proof of Lemma 1).

Below we prove weak completeness. The strong one fails by Theorem 4. The
reduct to the language without the unit yields “standard” square R-models with
iterative divisions, thus we get soundness and weak completeness for them also.

Theorem 7. If a sequent in the language with iterative divisions is true in all
non-standard square R-models with the unit, the it is derivable in LΛ∧1ItD.

Proof. This extension of Theorem 5 is proved in the same way as we do in [8]
for the case with Lambek’s restriction. First, in Lemma 2 we replace the set of
formulae used as labels by the one with iterative divisions. Thus, we get a new
labelled graph G using the same step-by-step construction (that is, we do not
need to re-prove Lemma 2). Next, the only thing we need to modify in the proof
of Theorem 5 is to add one more case, iterative division, in the check that MA

0

is a well-defined model. Everything else remains the same.
Thus, we have to prove that v(A∗ \ B) = (v(A))∗ \ v(B) and v(B / A∗) =

v(B) /(v(A))∗. We shall prove only the former, since the latter is symmetric. Let
us first establish the ⊆ inclusion.

Suppose that (y, z) ∈ v(A∗ \ B) and take an arbitrary x ∈ W such that
(x, y) ∈ (v(A))∗. Our aim is to show that (x, z) ∈ v(B). The statement (x, y) ∈
(v(A))∗ means that there exists a number n ≥ 0 and a sequence x0, x1, . . . , xn ∈
W such that x0 = x, xn = y, and (xi−1, xi) ∈ v(A) for each i = 1, . . . , n. In
particular, if n = 0, then we have x = y. For n > 0, we iterate property 4 of G
and get 
 �(x, y) → An and proceed as follows:

�(x, z) → �(x, y) · �(y, z)

�(x, y) → An

�(y, z) → A∗ \ B

n times
︷ ︸︸ ︷

A → A . . . B → B
An, A∗ \ B → B

∗\L

An, �(y, z) → B
Cut

�(x, y), �(y, z) → B
Cut

�(x, y) · �(y, z) → B
·L

�(x, z) → B
Cut

In the case of n = 0 we have �(x, z) = �(y, z), and the sequent �(y, z) → B is
derived using cut with �(y, z) → A∗ \ B and the ∗\L rule with n = 0.

Now let us establish the ⊇ inclusion. Suppose that (y, z) ∈ (v(A))∗ \ v(B).
We need to show that (y, z) ∈ v(A∗ \ B), that is, 
 �(y, z) → A∗ \ B. The
latter is derived using the omega-rule ∗\R from the infinite series of sequents(
An, �(y, z) → B

)∞
n=0

. For n = 0, take δ ∈ (v(A))∗ and conclude that (y, z) ∈
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v(B), thus, 
 �(y, z) → B. For n > 0, we iterate property 6 of G and construct
a sequence x0, x1, . . . , xn such that x0 = y, (xi+1, xi) ∈ E and �(xi+1, t) =
A ·�(xi, t) for any t such that (xi, t) ∈ E. Having �(x0, z) = �(y, z) and �(x0, y) =
�(y, y) = 1, by induction we get �(xn, z) = An · �(y, z) and �(xn, y) = An · 1.

The latter yields (xn, y) ∈ v(An) = v(A) ◦ . . . ◦ v(A) ⊆ (v(A))∗. Thus, since
(y, z) ∈ (v(A))∗ \ v(B), we have (xn, z) ∈ v(B), that is, 
 �(xn, z) → B. Now
the derivation of An, �(y, z) → B is as follows:

An → An �(y, z) → �(y, z)

An, �(y, z) → �(xn, z)
·R

�(xn, z) → B

An, �(y, z) → B
Cut

��
As a concluding remark, we note that this paper addresses semantical questions.
For this reason, algorithmic complexity issues, namely, undecidability of the the-
ory of standard R-models with the unit and Π0

1 -completeness of the calculus with
iterated divisions LΛ∧1ItD, are left open for future research. In the absence of
strong completeness (see Sect. 4), the interesting question of finite axiomatisabil-
ity of semantic entailment on square R-models, raised by Mikulás [14], is still
open.

Acknowledgement. The author is grateful to Daniel Rogozin for fruitful discussions.
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2. Andréka, H., Mikulás, S.: Axiomatizability of positive algebras of binary relations.
Algebra Univers. 66, 7–34 (2011). https://doi.org/10.1007/s00012-011-0142-3

3. Buszkowski, W.: On the complexity of the equational theory of relational action
algebras. In: Schmidt, R.A. (ed.) RelMiCS 2006. LNCS, vol. 4136, pp. 106–119.
Springer, Heidelberg (2006). https://doi.org/10.1007/11828563 7

4. Buszkowski, W., Palka, E.: Infinitary action logic: complexity, models and gram-
mars. Stud. Logica 89(1), 1–18 (2008). https://doi.org/10.1007/s11225-008-9116-
7
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Abstract. We prove, using syntactical proof–theoretic methods, that
free modal Riesz spaces are Archimedean. Modal Riesz spaces are Riesz
spaces (real vector lattices) endowed with a positive linear 1–decreasing
operator, and have found application in the development of probabilistic
temporal logics in the field of formal verification. All our results have
been formalised using the Coq proof assistant.

1 Introduction

Riesz spaces, also known as real vector lattices, are real vector spaces equipped
with a lattice order (≤) such that the vector space operations of addition and
scalar multiplication are compatible with the order in the following sense: (1) if
x ≤ y then x + z ≤ y + z and (2) if x ≤ y then rx ≤ ry, for all r ∈ R≥0.

The simplest example of Riesz space is the linearly ordered vector space of
real numbers (R,≤) itself. More generally, for a given set X, the space of all
functions R

X with operations and order defined pointwise is a Riesz space. If X
carries some additional structure, such as a topology or a σ–algebra, then the
spaces of continuous and measurable functions both constitute Riesz subspaces
of R

X . For this reason, the study of Riesz spaces originated at the intersection of
functional analysis, algebra and measure theory and was pioneered in the 1930’s
by F. Riesz, G. Birkhoff, L. Kantorovich and H. Freudenthal among others.
Today, the study of Riesz spaces constitutes a well–established field of research.
We refer to [LZ71,JR77] as standard references.

An important class of Riesz spaces is given by Archimedean Riesz spaces. A
Riesz space (A,≤) is Archimedean if, for any given pair of elements a, b ∈ A,

(∀n ∈ N. na ≤ b
)

=⇒ a ≤ 0.

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157),
by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the
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All the examples of Riesz spaces given above, given by collections of real valued
functions, are Archimedean. For this reason the Archimedean property is of key
importance in the theory of Riesz spaces.

It is well known that free Riesz spaces (i.e., free objects in the category of
Riesz spaces and their homomorphisms) are Archimedean.

Modal Riesz spaces. In a series of recent works [MS17,MFM17,Mio18,FMM20]
concerning the study and design of temporal logics for formal verification of
probabilistic programs, the notion of modal Riesz space has been introduced as
the algebraic semantics of the Riesz modal logic for Markov processes [FMM20].

A modal Riesz space (see Sect. 2.2) is a structure (A,≤, 1,♦) where (A,≤)
is a Riesz space, 1 ∈ A is a positive element (1 ≥ 0) and ♦ : A → A is a unary
operation which satisfies three axioms (see Fig. 2): linearity (♦(r1x + r2y) =
r1♦(x)+r2♦(y)), positivity (if x ≥ 0 then ♦(x) ≥ 0) and 1–decreasing (♦(1) ≤ 1).

Examples of modal Riesz spaces are given in Sect. 2.2 and more can be found
in [FMM20]. The class of modal Riesz spaces, being defined by a set of equations,
constitutes a variety and thus free objects exist. In [FMM20, §6.3] the authors left
open the following problem regarding modal Riesz spaces: is the free modal Riesz
space on the empty set of generators1 Archimedean? The main contribution of
this paper is to give a general answer, covering any possible sets of generators,
to this question.

Theorem 1. Free modal Riesz spaces are Archimedean.

Our Syntactic Proof. An interesting aspect of our proof is that it is syntactic
and based on the proof–theoretic machinery of the hypersequent calculus HMR
for modal Riesz spaces developed in [LM19,LM20]. One of the novel results,
obtained in [LM20, Thm 4.13] using the HMR machinery, is the decidability of
the equational theory of modal Riesz spaces. This work further illustrates, by
proving Theorem 1, the general usefulness of the proof theory. We first reformu-
late the Archimedean property in terms of derivability in HMR and then prove
it using proof–theoretic techniques based on the results from [LM20] (like, e.g.,
a form of cut–elimination). Our main technical result (Theorem 2) establishes
that derivability in HMR is continuous, in an appropriate sense.

After a preliminary Sect. 2 consisting of technical background on (modal)
Riesz spaces, and Sect. 3 summarising the main notions and results regarding the
hypersequent calculus HMR from [LM20], our proof of Theorem 1 is presented
in Sect. 4. To better present the argument, we first prove, using the sequence
of steps outlined above, the known fact that free (non–modal) Riesz spaces are
Archimedean. To this end, rather than HMR, we use its subsystem HR (also
introduced in [LM20, §3] and presented in Sect. 3.1), which is sound and complete
for the theory of (non–modal) Riesz spaces. Once this is done, we prove Theorem
1 tackling in Sect. 4.2 the additional complexity of modal Riesz spaces using the
system HMR.
1 The focus in [FMM20] is on the free Riesz space on the empty set of generators

because it is the initial object in the category of modal Riesz spaces.
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Coq formalisation. All our definitions and proofs have been formalised using the
Coq proof assistant [Luc21]. See Sect. 2.3 for a detailed discussion.

2 Technical Background

In this section we present the basic definitions and results about Riesz spaces
(Sect. 2.1), modal Riesz spaces (Sect. 2.2) and details about the Coq formalisa-
tion of the results of this work (Sect. 2.3).

2.1 Riesz Spaces

We refer to [LZ71,JR77] as standard references on the theory of Riesz spaces.
The signature of Riesz spaces is given by ΣRS =

{
+, 0, {r( )}r∈R,�,	}

com-
bining the signature of real vector spaces (addition, neutral element and scalar
multiplication by reals) and of lattices (supremum and infimum). Given a set V ,
we denote with TRS(V ) the set of ΣRS–terms built from the set of atoms V . We
use the letters φ and ψ to range over terms.

The class of Riesz spaces is the class of ΣRS–algebras satisfying the axioms
of Fig. 1, each of which can be expressed as universally quantified equations.

Fig. 1. Axioms of Riesz spaces.

Example 1. The Riesz space (R,+, 0,max,min) is a main example. Furthermore,
for any set V , the collection of functions R

V (f : V → R) is a Riesz space
where operations on functions are defined pointwise: e.g., (f + g)(v) = f(v) +
g(v). Subalgebras of R

V are, therefore, also Riesz spaces. For instance, if V is a
topological space, the collection of continuous functions on R is a Riesz space.

Given two terms φ, ψ ∈ TRS(V ), we write φ ≡RS ψ (or just φ ≡ ψ if clear
form the context) if φ and ψ can be proved equal, in the usual apparatus of
equational logic, from the axioms of Riesz spaces in Fig. 1.
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Being definable purely by equations, the class of Riesz spaces is a variety
in the sense of universal algebra. Therefore the category of Riesz spaces and
their homomorphisms (functions preserving all ΣRS operations) has free objects.
Given a set V , we denote with FreeRS(V ) the free Riesz space on the set V . The
following definition and proposition are standard.

Definition 1 (Term algebra). Given a set V , the term algebra TRS(V )/≡
is the Riesz space whose elements are terms generated by V taken modulo the
equivalence relation ≡RS, and operations defined on equivalence classes as: [φ]≡+
[ψ]≡ = [φ + ψ]≡, r[φ]≡ = [rφ]≡, [φ]≡ � [ψ]≡ = [φ � ψ]≡, [φ]≡ 	 [ψ]≡ = [φ 	 ψ]≡.

Proposition 1. For any set V , the free Riesz space FreeRS(V ) and term Riesz
space TRS(V )/≡RS

are isomorphic.

We are now ready to define the Archimedean property of Riesz spaces (see,
e.g., [LZ71, §22, Thm 22.2]).

Definition 2 (Archimedean Property). A Riesz space A is Archimedean if,
for any a, b ∈ A, it holds that:

(∀n ∈ N. na ≤ b
)

=⇒ a ≤ 0.

The following result is well–known and follows from a theorem of Baker
[Bak68, Thm 2.4] (see also [Ble73, Thm 2.3]) identifying the free Riesz space
FreeRS(V ) with a Riesz subspace of R

V → R, and the following simple facts
(see, e.g., [H.74, §1.15]): (i) the Riesz space R

X is Archimedean for any set X
(so in particular for X = R

V ) and (ii) any Riesz subspace of an Archimedean
Riesz space is Archimedean.

Proposition 2. For any set V , the Riesz space FreeRS(V ) is Archimedean.

Syntactical conventions. We now introduce some convenient syntactical con-
ventions. Rather than working with arbitrary scalar multiplications by r ∈ R,
it is often useful to introduce the derived negation operator −φ = (−1)φ and
restrict scalar multiplication only to strictly positive reals r ∈ R>0. Clearly this
is not a restriction as one can, e.g., just rewrite (−5)φ to −(5φ) introducing the
negation operator. Every Riesz term φ can be rewritten into a ≡RS-equivalent
term ψ in negation normal form (NNF), where negation is only applied to vari-
ables, using the following valid equalities: −(φ 	 ψ) = (−φ) � (−ψ),−(φ � ψ) =
(−φ) 	 (−ψ),−(−φ) = φ,−(φ + ψ) = (−φ) + (−ψ),−0 = 0, 0φ = 0. We will use
the capital letters A and B to range over Riesz terms in NNF, rather than φ
and ψ. We write A for the NNF–term equivalent to the term −A. In particular,
x = −x. Note, therefore, that that terms in NNF can be seen as constructed,
without negations, from the variables x and x, with x ∈ V .

2.2 Modal Riesz Spaces

In this section we introduce the notion of modal Riesz space, a concept which has
emerged as relevant in recent works [MS17,MFM17,Mio18,FMM20] concerning
the study and design of temporal logics for formal verification of probabilistic
programs.
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The signature of modal Riesz spaces is given by ΣMRS = ΣRS ∪{1,♦} where
ΣRS is the signature of Riesz spaces, 1 is a constant symbol and ♦ is a unary
function symbol (we will often omit the parenthesis on ♦, since it is a unary
operator). Given a set V , we denote with TMRS(V ) the set of ΣMRS–terms build
from the set of generators V . Note that TRS(V ) � TMRS(V ) since ΣRS � ΣMRS.
We use the letters φ, ψ also to range over TMRS(V ).

Definition 3 (Modal Riesz spaces). The class of modal Riesz spaces is the
equationally defined class of ΣMRS–algebras generated by the universally quanti-
fied equational axioms of Fig. 1 and the additional axioms of Fig. 2.

Fig. 2. Additional axioms of modal Riesz spaces.

Example 2. A typical example of modal Riesz space is M = (Rn,≤, 1M ,♦M ),
the n-dimensional vector space R

n with vectors ordered pointwise where 1M is
the constant 1 vector, and ♦M is a linear map R

n → R
n, hence representable as

a square matrix (also denoted ♦M with some abuse of notation), such that all
entries ri,j are non–strictly positive (due to the positivity axiom) and where all
the rows sum up to a value ≤ 1, i.e., for all 1 ≤ i ≤ n it holds that

∑k
j=1 ri,j ≤ 1

(due to the 1–decreasing axiom):

1M =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ ♦M =

⎛

⎜
⎝

r1,1 r1,2 · · · r1,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n

⎞

⎟
⎠

The modal Riesz space M can be seen as representing a discrete–time Markov
chain, i.e., a probabilistic transition system having {1, . . . , n} states, where the
probability of moving from state i to state j at the next step is ri,j . The con-
straint

∑k
j=1 ri,j ≤ 1 represents the fact that there can be a nonzero probability

of terminating the execution at the state i, thus not moving to any other state.
These types of examples are the reason for the relevance of modal Riesz spaces
to the axiomatisation of logics for expressing properties of probabilistic transi-
tion systems. In fact, the duality theory developed in [FMM20] shows that all
Archimedean modal Riesz spaces with strong unit are topological generalisations
of the example just presented and can be identified with discrete time Markov
processes.
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Remark 1. The choice of using the ♦ symbol for the unary operation of modal
Riesz spaces might suggest the existence of a distinct De Morgan dual operator
�x = −♦(−x). This is not the case since, due to linearity, �x = ♦x, i.e.,
♦ is self dual. While using a different symbol such as (◦) might have been a
better choice, we decided to stick to ♦ for backwards compatibility with previous
works on modal Riesz spaces. Another source of potential ambiguity lies in the
“modal” adjective itself. Of course other axioms for ♦ can be conceived (e.g.,
♦(x�y) = ♦(x)�♦(y) instead of our ♦(x+y) = ♦(x)+♦(y), see, e.g., [DMS18]).
Therefore different notions of modal Riesz spaces can be investigated, just like
many types of classical modal logic exist (K, S4, S5, etc.). Once again, our choice
of terminology is motivated by backwards compatibility with previous works.

We denote with ≡MRS (or just ≡, if clear from the context) the equivalence
relation on TMRS(V ) which equates modal Riesz terms that are provably equal
from the axioms of Definition 3. Being equationally defined, the class of modal
Riesz spaces is a variety in the sense of universal algebra. Therefore the category
of modal Riesz spaces and their homomorphisms (functions preserving all ΣMRS

operations) has free objects. Note that every modal Riesz space is a Riesz space
(since it satisfies all axioms of Fig. 1). Furthermore, any Riesz space R can be
turned into a modal Riesz space by, e.g., defining 1R = 0 and ♦R = id, where
id : R → R is the identity map. Hence the notion of modal Riesz space is a
conservative extension of that of Riesz space.

Given a set V , we denote with FreeMRS(V ) the free modal Riesz space on
the set V and with TMRS(V )/≡MRS

the term algebra.

Proposition 3. For any set V , the free modal Riesz space FreeMRS(V ) and the
term modal Riesz space TMRS(V )/≡MRS

are isomorphic.

The main result of this paper is Theorem 1, stating that FreeMRS(V ) is
Archimedean. Our proof is presented in Sect. 4. This is a novel result and solves
a problem left open [FMM20, §6.3]. We remark that free modal Riesz spaces
can be rather complex objects. For instance, FreeMRS(∅) is not even finitely
generated as a Riesz space [FMM20, §6]. For instance, the term ♦n1 can not
equivalently be expressed by a Riesz combination of terms with ♦–depth (the
maximum number of nested ♦ operators) lower than n.

Syntactical conventions. We extend the notion of negation normal form (NNF)
from Riesz terms to modal Riesz space terms, taking in consideration the exis-
tence of the constant 1 in ΣRMS. A modal Riesz term φ in TMRS(V ) is in negation
normal form (NNF) if the operator (−) is only applied to atoms in V or the
constant 1. Using the equality (−♦(φ) = ♦(−φ)), every term φ in TMRS(V ) is
provably equal to a term in NNF. We will use the capital letters A and B to
range over modal Riesz terms in NNF, rather than φ and ψ. We try to make it
always clear if the term belong to TMRS(V ) or just to TRS(V ).

2.3 On the Coq Formalisation

All the results of this paper have been formalised using the Coq proof assistant and
are publicly available [Luc21]. Throughout the paper, we refer to specific points of
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the formalisation by highlighting with a grey background either some portions of
Coq code (as in the definition of Axiom IPP below) or by specifying the name of
the lemma and its path as: Repository [Luc21]: (Lemma) in Path.

Our formalisation is based on the following mathematical notions and results.

1. The real numbers R, functions on them (+, ×, etc.) and their basic properties.
2. The (strictly) positive real numbers R>0 with basic functions and properties.
3. The notion of polynomial expression, syntax and semantics.
4. Basic notions about limits of sequences of (tuples of) reals and (sequential)

continuity of polynomial expressions.
5. The infinitary pigeonhole principle: for every sequence u ∈ N

N bounded by
some m ∈ N (i.e., un < m for all n), there is a constant subsequence (uφ(n))
of u, i.e., there is i ∈ [0..m[ such that uφ(n) = i for all n.

6. The sequential compactness of R: if u ∈ R
N is a sequence bounded by a lower

bound lb ∈ R and a upper bound ub ∈ R, then there is a subsequence (uφ(n))
of (un) and a real l ∈ R such that lim

n∈N

uφ(n) = l.

Regarding (1), we use the default Coq implementation of real numbers R.
For (2), strictly positive reals are implemented as dependent pairs where the first
element is the real number and the second element is a proof that this real is
strictly positive. Operations and basic properties on R>0 are easily derived from
those of R (standard library). For (3), polynomial expressions over the variables
α1, . . . αn are simply defined by the grammar: R,S := αi | r ∈ R | R + S | RS

( Repository [Luc21]: (Poly : Type) in Utilities/polynomials.v. )
and interpreted as polynomial functions P : R

k → R as expected. Regarding (4),
we use the Coquelicot library [BLM15] which provides definitions and results
regarding uniform spaces (like R), continuity, etc.. In particular we are able to
derive the following statement.

Proposition 4 (Sequential continuity of Polynomial expressions). Let
R be a polynomial expression. For all j ∈ [1..k], let (ti,j)i∈N ∈ R

N and tj ∈ R

such that lim
i→+∞

ti,j = tj. Then lim
i→+∞

R(ti,1, ..., ti,k) = R(t1, ..., tk).

Proof. Repository [Luc21]: (Poly lim) in Utilities/pol continuous.v.

Finally, the infinitary pigeonhole principle (5) and sequential compactness
(6) are stated as follows and assumed as axioms:

22 Axiom IPP : forall (u : nat → nat) m,
23 (forall n, u n < m) →
24 {’ (phi, i) & prod (subseq_support phi) (*∃ phi,i,(subseq phi)∧ *)

25 ((i < m) ∗ (* (i < m) ∧ *)

26 (forall n, u (phi n) = i))}. (*(∀ n, u_{phi n} = i) *)

...
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158 Axiom SequentialCompactness : forall (u : nat → R) lb ub,
159 (forall n, prod (lb <= u n) (u n <= ub)) →
160 {’ (phi , l) & prod (subseq_support phi) (*∃ phi,l,(subseq phi)∧ *)

161 (is_lim_seq (fun n ⇒ u (phi n)) l)}. (* (lim u_{phi n} = l) *)

Repository [Luc21]: Utilities/R complements.v

3 Hypersequent Calculi

In this section we introduce a structural proof system called HMR from [LM20]
(see also [LM19]) for the theory of modal Riesz spaces. We also discuss a sub-
system of HMR, called HR, also introduced in [LM20, §3] for the theory of
Riesz spaces. A proof system is called structural if it manipulates terms (or
formulas) having a certain specific structure. For instance, Gentzen’s sequent
calculus LK [Gen34] manipulates and allows for the derivation of sequents S
of the form A1, . . . An � B1, . . . , Bm which are interpreted as the Boolean term
�S� = (A1 ∧· · ·∧An) ⇒ (B1 ∨· · ·∨Bm). We say that LK is sound and complete
for the theory of Boolean algebras because a sequent S is derivable in LK if and
only if �S� = � is a valid identity in the theory of Boolean algebras.

In a similar way, the proof system HMR is structural as it manipulates
structured terms G, called hypersequents, which are interpreted as modal Riesz
space terms �G�. The system HMR is sound and complete with respect to
the theory of modal Riesz spaces in the sense that G is derivable in HMR if
and only if �G� ≥ 0 (or �G� 	 0 = 0, written equationally) is a valid identity
in the theory of modal Riesz spaces. Similarly, the subsystem HR of HMR,
only manipulating (non–modal) Riesz space terms, is sound and complete with
respect to the theory of (non–modal) Riesz spaces.

The key advantage of working with structural proof systems, compared to
non–structural deductive systems such as equational logic, appears from results
such as the cut–elimination system (called CAN elimination theorem in the
context of H(M)R), which greatly simplify the analysis of proofs.

We now procede with the formal definitions. We first present the subsystem
HR (Sect. 3.1) and then the full system HMR (Sect. 3.2).

All definitions and results regarding HR and HMR have been formalised:
Repository [Luc21]: folders: /hr and /hmr .

3.1 Hypersequent Calculus HR

In what follows, A and B range over Riesz terms in NNF (see end of Sect. 2.1)
built from a set of variables V , ranged over by the letters x, y, z.

Definition 4 (Sequents and Hypersequents). A sequent is a list of pairs
(r,A) where r ∈ R>0 is a strictly positive real number and A is a term in NNF.
The sequent Γ = ((r1, A1), ..., (rn, An)) is written as: � r1.A1, ..., rn.An. The
empty sequent is denoted by (�). A hypersequent is a nonempty list of sequents.
The hypersequent G = [Γ1, Γ2, ..., Γn] is written as: � Γ1 | � Γ2 | ... | � Γn.
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We use the letters Γ,Δ and the letters G,H to range over sequents and
hypersequents, respectively. Note that ( � Γ ) can, ambiguosly, denote both the
sequent � Γ and the hypersequent [� Γ ] consisting of only one sequent. The
context should always determine which of the two interpretations is intended.

The proof system HR allows for the derivation of hypersequents using the
axioms and deductive rules of Fig. 3. We write 	HRG if the hypersequent G is
derivable in the proof system HR. Before discussing the meaning of the rules
and giving some examples, we define the interpretation of hypersequents and
state the soundness and completeness of the proof system.

Definition 5 (Interpretation of Hypersequents). We interpret sequents
and hypersequents by Riesz terms as follows. A sequent Γ = (� r1.A1, . . . , rn.An)
is interpreted by the Riesz term �Γ � = r1A1 + · · · + rnAn. In particular, for the
empty sequent, ��� = 0. A hypersequent G = (� Γ1 | · · · |� Γn) is interpreted by
the Riesz term �G� = �� Γ1� � · · · � �� Γn�.

Example 3. �� 1.(x 	 y) |� 1(x � y), 2.x� = (1(x 	 y)) � (1(x � y) + 2x).

Lemma 1 (Soundness and Completeness [LM20, Thm 3.10 and 3.11]).
Let G be an hypersequent. Then 	HRG if and only if �G� ≥ 0 (or �G� 	 0 = 0,
written equationally) holds universally in all Riesz spaces.

The meaning of most of the axioms and deductive rules of the hypersequent
calculus HR is easy to grasp. For instance, the INIT rule allows to derive the
empty sequent (�) and indeed this is a sound rule since ��� = 0 and ��� ≥ 0. The
contraction rule (C) reflects the idempotency of the lattice operation �, which
is used to interpret the (|) symbols of hypersequents. Similarly, the (+)–rule

Fig. 3. Inference rules of HR ([LM20]).
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reflects the interpretation of commas in sequents as addition. In the T -rule, any
sequent (in the hypersequent) can be multiplied by any positive scalar r ∈ R>0.
This reflects the fact that if rx ≥ 0 then x ≥ 0, for every r ∈ R>0. Several rules
adopt a vector notation (−→r ) to indicate that several terms are active in the rule.
For example, the following is a valid instance of the rule ID:

G | � Γ

G | � 1
2 .x, 1

3 .x, 1
6 .x, 2

3 .x
ID, 1

2 + 1
3 = 1

6 + 2
3

because the proviso is satisfied. The ID rule expresses the fact that, since 1
2x +

1
3x + 1

6 (−x) + 2
3 (−x) = 0, the terms can be cancelled out. Note that the CAN

rule has the same interpretation, but in the reverse direction. Finally, the rules
M and S which, in various forms have appeared in the proof–theory literature
(not necessarily related to Riesz spaces, see, e.g., [MOG09,Avr96,FR94]) do not
have an equally simple interpretation, but are sound [LM20, Thm 3.10].

The key results regarding the hypersequent calculus HR from [LM20], which
are relevant for this work, are stated as the following lemmas.

Lemma 2 (CAN–elimination [LM20, Thm 3.14]). If a hypersequent G is
derivable in HR then G has a HR derivation that does not use the CAN rule.

Lemma 3 ([LM20, Thm 3.12]). The rules {0,+,�,	,×} are invertible: if the
conclusion of an instance of one of these rules is derivable, then all its premises
are also derivable.

An hypersequent G is called atomic if all terms A appearing in G are either
variables or covariables, i.e., A = x or A = x, for x ∈ V .

Lemma 4 (λ-property for HR [LM20, Lemma 3.43]). For all atomic hyper-
sequents G formed using the variables and covariables x1, x1, . . . , xk, xk of the
form � Γ1 | ... | � Γm, where for each i ∈ [1 . . . m],

Γi = −→r i,1.x1, ...,
−→r i,k.xk,−→s i,1.x1, ...,

−→s i,k.xi,k

then G is derivable in HR if and only if there exist numbers t1, ..., tm ∈ [0, 1],
one for each sequent in G, such that:

1. there exists i ∈ [1...m] such that ti = 1, and
2. for every (co)variable (xj , xj), it holds that:

∑m
i=1 ti(

∑ −→r i,j − ∑ −→s i,j) = 0.

It is important to appreciate how Lemma 4 reduces the derivability problem
of atomic hypersequents in HR to the existence of a solution in a linear arith-
metic problem. The derivability problem of arbitrary hypersequents can also be
reduced to linear arithmetic by invoking, in an iterative fashion, Lemma 3 which
allows to simplify the term–complexity of the considered hypersequents.
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3.2 Hypersequent Calculus HMR

In this section we define the hypersequent calculus HMR from [LM20]. This is an
extension of HR obtained by: (1) considering modal Riesz terms A, B (in NNF,
see Sect. 2.2) rather than just (non–modal) Riesz terms, and (2) extending the set
of rules of HR (Fig. 3) with the two additional rules of Fig. 3 dealing with the con-
nectives {1,♦}. The rule (1) is justified by the axiom 0 ≤ 1 of modal Riesz spaces
(Definition 3). The (♦) rule is justified by the the positivity and linearity of the ♦
operator as well as the axiom ♦1 ≤ 1 (see [LM20, §4.3]) (Fig. 4).

Fig. 4. Additional inference rules of HMR ([LM20]).

We write 	HMRG if the hypersequent G (involving modal Riesz terms
A,B, . . . ) is derivable in the system HMR. By interpreting sequents and
hypersequents as in Definition 5, the main results regarding HR extend to
HMR: soundness, completeness, CAN–elimination and invertibility of the rules
{0,+,�,	,×}. Also a more sophisticated variant of the λ–property (Lemma 4)
holds for HMR (see [LM20]), as we now state. A hypersequent G whose terms
A are either atoms (A = x or A = x), or A = 1 or A = 1 or diamond–terms
(i.e., A = ♦B, for some term B) is called a basic hypersequent.

Lemma 5 (λ-property of HMR [LM20, Lemma 4.44]). For all basic hyper-
sequents G formed using the variables and negated variables x1, x1, . . . , xk, xk of
the form

� Γ1,♦Δ1,
−→
r′

1.1,
−→
s′

1.1 | ... | � Γm,♦Δm,
−→
r′

m.1,
−→
s′

m.1

where Γi = −→r i,1.x1, ...,
−→r i,k.xk,−→s i,1.x1, ...,

−→s i,k.xi,k, for all i ∈ [1 . . . m], then
G is derivable in HMR if and only if there exist numbers t1, ..., tm ∈ [0, 1], one
for each sequent in G, such that the following conditions hold:

1. there exists i ∈ [1..m] such that ti = 1,
2. for every (co)variable (xj , xj) it holds that:

∑m
i=1 ti(

∑ −→r i,j − ∑ −→s i,j) = 0
3. 0 ≤ ∑m

i=1 ti(
∑ −→

r′
i − ∑ −→

s′
i),

4. the following hypersequent (consisting of just one sequent) is derivable:
� t1.Δ1, ..., tm.Δm, (t1

−→
r′

1).1, ..., (tm
−→
r′

m).1, (t1
−→
s′

1).1, ..., (tm
−→
s′

m).1.

3.3 Parametrised Hypersequents

The hypersequents of HMR (and its subsystem HR) are built out of expres-
sions of the form (r.A) where r > 0 is a concrete real number (see Definition 4).
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It is often useful, however, to state properties of parametrised families of hyper-
sequents. For example, the hypersequent schema (� α.x |� α.x), involving a
variable α ranging over scalars, is derivable for all α > 0.

Rather than just scalar variables (α, β), it is convenient to allow for even more
general hypersequents schemas where in place of scalars we allow polynomial
expressions over a certain number of variables α, β. We call such hypersequents
parametrised. Given a parametrised hypersequent G(α1, . . . , αn), built using
polynomial expressions R,S (see Sect. 2.3) involving scalar variables α1, . . . , αn

we can obtain a concrete hypersequent (in the sense of Definition 4) G(r1, . . . , rn)
by instantiating the scalar variables with concrete real numbers ri and by evalu-
ating the polynomial expressions as expected. Note, however, that since scalars r
in expressions (r.A) of concrete hypersequents are strictly positive real numbers,
not all instantiations result in valid hypersequents. Therefore, when we write
G(r1, . . . , rn), we implicitly mean that the substitution [ri/αi] results in a valid
concrete hypersequent.

Example 4. � (α1−2α2).(x�y), (α2
1− 1

2 ).x is a parametrised hypersequent involv-
ing two scalar variables α1 and α2. The instance [1/α1,−1/α2] results in the
hypersequent � (3).(x�y), 1

2 .x, and is therefore valid. The instance [1/α1, 1/α2],
instead, would result in � (−1).(x � y), 1

2 .x and is, therefore, not valid because
(−1) is not a valid scalar.

Remark 2. Our main goal with the introduction of parametrised hypersequents
is to express formally and schematically the last condition of the λ-property of
H(M)R (Lemmas 4 and 5). To this end, even though scalars r in expressions
(r.A) of concrete hypersequents are strictly positive (Definition 4), it will be
convenient to consider as valid also instances which results in the scalar 0. In
this case, we use the convention G |� Γ, 0.A = G |� Γ , i.e., we remove every
term that has a weight equal to 0.

4 Main Result – Proof of Theorem 1

In this section we present our main result, a syntactic proof–theoretical proof of
Theorem 1: free modal Riesz spaces are Archimedean.

868 Lemma FreeMRS_archimedean : forall A B,
869 (forall n, (INRpos n) ∗S A ≤ B) → (* forall n, (n+1)*A ≤ B *)

870 A ≤ MRS_zero. (* A ≤ 0 *)

hmr archimedean/archimedean.v

The same type of proof technique can also be used to prove the known fact
that free (non–modal) Riesz spaces are Archimedean (Proposition 2).

As a first step, we express the Archimedean property for (modal) Riesz spaces
as a derivability problem in the hypersequent calculus proof system H(M)R.

Lemma 6. For any set V , the free (modal) Riesz space Free(M)RS(V ) has the
Archimedean property if and only if, for any (modal) Riesz terms A and B it
holds that: (∀n, 	H(M)R � 1.A, 1

n .B) =⇒ 	H(M)R � 1.A.
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Proof. Recall that Free(M)RS(V ) is isomorphic to T(M)RS(V )/≡ and therefore,
by Definition 2, we have that Free(M)RS(V ) is Archimedean if and only if the
implication (∀n, n[A]≡ ≤ [B]≡) ⇒ [A]≡ ≤ [0]≡ holds, for all (modal) Riesz terms
A,B. Equivalently (using the identity nx ≤ y ⇔ −x + 1

ny ≥ 0), Free(M)RS(V )
is Archimedean if and only if (∀n,−[A]≡ + 1

n [B]≡ ≥ [0]≡) ⇒ −[A]≡ ≥ [0]≡holds.
Finally, by the using the completeness and soundness of H(M)R (Theorem 1),
this is equivalent to: (∀n, 	H(M)R � 1.A, 1

n .B) ⇒ 	H(M)R � 1.A. �

In order to establish the implication of Lemma 6 we prove a stronger result
of independent interest about the hypersequent calculus H(M)R. This states
that derivability in H(M)R is continuous in the sense that derivability preserves
limits of scalars in hypersequents.

Theorem 2 (Continuity). Let G(α1, ..., αl) be a parametrized H(M)R hyper-
sequent. Let (si,n) ∈ R

N be a sequence of l–tuples of reals such that:

1. G(s1,n, ..., sl,n) is a valid instance of G(α1, ..., αl), for all n ∈ N, and
2. 	H(M)RG(s1,n, ..., sl,n) holds for all n ∈ N,
3. For each i ∈ {1, . . . , l}, the limit lim

n→+∞ si,n = si exists.

Then the limit instance G(s1, . . . , sl) is also valid and 	H(M)RG(s1, ..., sl) holds.

Proof. Proofs for HR and HMR are presented in Sects. 4.1 and 4.2. �

The Archimedean property of free (modal) Riesz spaces is a direct corol-
lary of Lemma 6 and Theorem 2, considering the parametrised hypersequent
� 1.A, α1.B and the sequence s1,n = 1

n , so that s1 = lim
n→+∞

1
n = 0.

Corollary 1. Free(M)RS(V ) has the Archimedean property.

4.1 Proof of Continuity for HR

As a first step, we prove that Theorem 2 holds for all HR hypersequents
G(α1, ..., αl) that are atomic, i.e., such that all terms appearing in G are either
variables or covariables, i.e., A = x or A = x. Intuitively, this fact follows from
the last point of Lemma 4, which reduces derivability of atomic hypersequents
to the existence of a solution of a system of polynomial inequalities, and poly-
nomials expressions are continuous.

Lemma 7 (Atomic continuity of HR). The statement of Theorem 2 for HR
holds for all atomic hypersequents G(α1, ..., αl).

Proof. Repository [Luc21]: (HR atomic lim) in archimedean.v. Let G =

� Γ1 | . . . | � Γm with Γi =
−→
R i,1.x1, ...,

−→
R i,k.xk,

−→
S i,1.x1, ...,

−→
S i,k.xk, where all

the indexed expressions R,
−→
R , S and

−→
R are polynomials over α1, . . . , αl.

By assumption, each G(s1,n, ..., sl,n) is a valid instance (the evaluation of all
polynomial expressions results in a strictly positive scalar or 0 scalar, see Remark
2). Furthermore, G(s1,n, ..., sl,n) is assumed to be derivable in HR which means,
by Lemma 4, that there exist real numbers t1,n, ..., tm,n ∈ [0, 1], such that:
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1. there exists i ∈ [1..m] such that ti = 1, and
2. for every variable and covariable pair (xj , xj), it holds that

∑m
i=1 ti,n(

∑ −→
R i,j(s1,n, ..., sl,n) − ∑ −→

S i,j(s1,n, ..., sl,n)) = 0.

By the infinitary pigeon principle (see Sect. 2.3), there exists i ∈ [1..m]
such that ti,n = 1 infinitely often and since [0, 1]m is a compact space, by
sequential compactness of [0, 1] (see Sect. 2.3), we can extract a subsequence
(t1,σ(j), ..., tm,σ(j))j converging to (t1, ..., tm) with ti,σ(j) = 1 for all j (and so
ti = 1). Finally, the identity

∑m
i=1 ti(

∑ −→
R i,j(s1, ..., sl) − ∑ −→

S i,j(s1, ..., sl)) = 0
holds, because polynomial expressions are continuous and therefore preserve lim-
its of converging sequences. Hence, we have that

1. there exists i ∈ [1..m] such that ti = 1, and
2. for every variable and covariable pair (xj , xj), it holds that:

∑m
i=1 ti(

∑ −→
R i,j(s1, ..., sl) − ∑ −→

S i,j(s1, ..., sl)) = 0,

and, according to Lemma 4, this implies that G(s1, ..., sl) is derivable. �

In order to conclude the proof of Theorem 2 for HR, we need to extend
the result of Lemma 7 to arbitrary parametrised hypersequents G(α1, . . . , αl).
This is done by showing that the continuity of parametrised hypersequents of a
certain complexity can be reduced to the continuity of hypersequents of lower
complexity, with the case of atomic hypersequent (Lemma 7) serving as base
case. The main tool allowing this reduction is Lemma 3, which states that the
logical rules of HR are invertible.

Definition 6 (Complexity). The complexity of a sequent � Γ , noted | � Γ |,
is the sum of all connectives {0,+, r( ),�,	} appearing in terms of Γ . The
complexity of a (parametrized) hypersequent G, noted |G|, is a pair (a, b) ∈ N

2

defined by: a = max
	Γ∈G

| � Γ |, the maximal complexity of sequents in G, and

b = |{� Γ ∈ G| | � Γ | = a}|, the number of sequents in G with complexity a.

Note that atomic hypersequents have complexity |G| = (0, b). We are now
ready to conclude the proof of Theorem 2.

Proof (general case). Repository [Luc21]: (HR lim) in archimedean.v.

Let G(α1, . . . , αl) and (si,n) ∈ R
N be as in the statement of Theorem 2. The

proof goes by lexicographic induction on the complexity |G|.
If |G| = (0, b), we can conclude with Lemma 7.
Otherwise |G| = (a, b) for some a, b > 1. Hence G has the shape G′ |� Γ,R.A

where the complexity of � Γ,R.A is equal to a and A is a term with some
outermost connective in {0,+, r( ),�,	}. Here we only consider the case of A =
B � C, the other cases being similar.

By assumption we know that, for all n, 	HR(G′ | � Γ,R.(B�C))(s1,n, ..., sl,n),
for all tuples (s1,n, ..., sl,n). The invertibility of the � rule (Lemma 3) implies
that the following hypersequents, for each tuple (s1,n, ..., sl,n), are also derivable:

	HR(G′ | � Γ,R.B | � Γ,R.C)(s1,n, ..., sl,n)
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Note that the above hypersequents have complexity lower than |G|. Hence, by
applying the induction hypothesis we obtain, by continuity, that

	HR(G′ | � Γ,R.B | � Γ,R.C)(s1, ..., sl)

holds. We can then conclude the argument by deriving the desired hypersequent
as follows, by one application of the � rule.

(G′ | � Γ,R.B | � Γ,R.C)(s1, ..., sl)
(G′ | � Γ,R.(B � C))(s1, ..., sl)

� �

4.2 Proof of Continuity for HMR

The proof of Theorem 2 for HMR presented in this section has the same struc-
ture of the proof presented in Sect. 4.1 for HR. Namely, (1) we first prove a
result similar to the atomic continuity Lemma 7 of Sect. 4.1 stating that Theo-
rem 2 holds for certain “simple” hypersequents, and then (2) extend this result
to arbitrary HMR hypersequents.

Regarding (1), the notion of “simple” is that of basic hypersequent associ-
ated with the λ–property of HMR (Lemma 5). Note, however, that unlike the
corresponding λ–property of HR (Lemma 4), the statement of Lemma 5 reduces
the derivability of basic HMR hypersequents not just to the existence of a solu-
tion in a system of polynomial inequalities, but also in terms of derivability of
simpler (in terms of the number of ♦ operators in their terms) hypersequents.
Hence, a slightly more sophisticated proof by induction on an appropriate notion
of complexity of hypersequents is needed. Regarding (2), the key technical tool
used (as in the proof of Sect. 4.1 for HMR) is the invertibility of the logical rules
{0,+, r( ),�,	} of HMR, and is also based on an induction on the complexity
of the hypersequent.

Definition 7 (Modal Depth and Outer Complexity). The modal depth
D(A) of a modal Riesz space term A is the maximum number of nested ♦’s
in A, i.e., is defined inductively as: D(♦B) = 1 + D(B), D(A) = 0 if
A ∈ {x, x, 1, 1, 0},D(rB) = D(B) and D(B � C) = max(D(B),D(C)), for
� ∈ {+,�,	}.

The outer complexity O(A) of a modal Riesz space term A is the total number
of connectives {0,+, r( ),�,	} that do not appear under the scope of some ♦ in
A, i.e., as: O(A) = 0 if A ∈ {♦B, x, x, 1, 1}, O(0) = 1, O(rB) = 1 + O(B) and
O(B � C) = 1 + O(B) + O(C) for � ∈ {+,�,	}.
Definition 8 (Hypersequent Complexity). The modal depth and outer
complexity of a sequent � Γ of the form r1.A1, . . . rn.An are defined as:
D(� Γ ) = maxn

i=1 D(Ai) and O(� Γ ) =
∑n

i=1 O(Ai). The complexity of a
(parametrized) hypersequent G, noted |G|, is a triplet (a, b, c) ∈ N

3 defined
by: a = max

	Γ∈G
D(� Γ ) is the maximum modal depth of any sequent in G,

b = max
	Γ∈G

O(� Γ ) is the maximum outer complexity of any sequent in G, and

c = |{� Γ ∈ G|O(� Γ ) = b}| is the number of sequents in G having outer
complexity b.
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Note that hypersequents G with |G| = (a, 0, c) are basic hypersequents (see
Sect. 3.2). Furthermore note that if |G| = (0, 0, c), then the hypersequent only
contains terms of the form {x, x, 1, 1}, and the statement of Lemma 5 simplifies
(point 4 becomes trivial) and it reduces the HMR derivability of G to the
solution of a system of polynomial equations.

We are now ready to present the proof of Theorem 2 for HMR.

Proof. Repository [Luc21]: (HMR lim) in archimedean.v. Let G(α1, . . . ,

αl) and (si,n) ∈ R
N be as in the statement of Theorem 2. We prove the result

by lexicographic induction on |G|.
If |G| = (0, 0, c), then Lemma 7 of Sect. 4.1 can be easily adapted, using the

λ–property (Lemma 5) of HMR, to prove that 	HMRG(s1, ..., sl).
If |G| = (a, b, c) with b > 0, following the same technique presented in

Sect. 4.1 based on the invertibility of the logical rules {0,+, r( ),�,	}, we can
reduce the complexity of |G| to some (a, b′, c′) with b′ < b, apply the induction
hypothesis and finally deduce that 	HMRG(s1, ..., sl).

Lastly, assume that |G| = (a, 0, c), i.e., that G is a basic hypersequent and
has the form � Γ1,♦Δ1,

−→
R′

1.1,
−→
S′

1.1 | . . . | � Γm,♦Δm,
−→
Rm.1,

−→
S′

m.1 where
Γi =

−→
R i,1.x1, ...,

−→
R i,k.xk,

−→
S i,1.x1, ...,

−→
S i,k.xi,k. By assumption G(s1,n, ..., sl,n)

has a proof for all n. Thus, by the λ–property (Lemma 5), for all n there exist
numbers t1,n, ..., tm,n ∈ [0, 1] such that the following conditions hold:

1. there exists i ∈ [1..m] such that ti,n = 1,
2. for every variable and covariable pair (xj , xj), it holds that:

∑m
i=1 ti,n(

∑ −→
R i,j(s1,n, ..., sl,n) − ∑ −→

S i,j(s1,n, ..., sl,n)) = 0,
3. 0 ≤ ∑m

i=1 ti,n(
∑ −→

R′
i(s1,n, ..., sl,n) − ∑ −→

S′
i(s1,n, ..., sl,n)),

4. the following hypersequent, consisting of only one sequent, is derivable:
(� t1,n.(Δ1,

−→
R′

1.1,
−→
S′

1.1), , ..., tm,n.(Δm,
−→
R′

m.1, tm,n

−→
S′

m).1)(s1,n, ..., sl,n).

From point (4), by considering m additional scalar variables αl+1, . . . , αl+m

and by defining sl+i,n = ti,n, the parametrised hypersequent H defined as
� αl+1.(Δ1,

−→
R′

1.1,
−→
S′

1.1), , ..., αl+m.(Δm,
−→
R′

m.1, tm,n

−→
S′

m.1) has a proof for all
n. Note that |H| < |G|, due to the lower modal–depth complexity.

By assumption lim
n→+∞ si,n = si exits for i ∈ {1, . . . , l} but the extended

sequence (s1, . . . , sl, sl+1, . . . sl+m) might not have limits on the coordinates l +
1, . . . , l + m. However, following the same argument of the proof of Lemma 7,
by the infinitary pigeon principle and the sequential compactness of [0, 1]k, we
can extract a subsequence that converges on all coordinates and agrees with the
existing limits si for i ∈ {1, . . . , l}. Hence, by induction hypothesis, we can apply
the continuity theorem to H and deduce that H(s1, ..., sl+m) has a proof.

Finally, in order to conclude the proof and prove that 	HMRG(s1, ..., sl), we
apply once again the λ–property (Lemma 5) which states that 	HMRG(s1, ..., sl)
is derivable if and only if the four points above hold, instantiated to (s1, ..., sl).
The fourth point has been established. The points (1–3) follow from the conti-
nuity of polynomial expressions as discussed in the proof of Lemma 7. �
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Abstract. Hyperdoctrines are an algebraization of first-order logic
introduced by Lawvere in [11]. In [9], Joyal defines a polyadic space as
the Stone dual of a Boolean hyperdoctrine. He also proposed to recover
a polyadic space from a simpler core, its Stirling kernel. We generalize
this here in order to adapt polyadic spaces to certain classes of first-order
theories. We will see how these ideas can be applied to give a correspon-
dence between some first-order theories with a linear order symbol and
equidivisible profinite semigroup with open multiplication. The inspira-
tion comes from the paper [6] of van Gool and Steinberg, where model
theory is used to study pro-aperiodic monoids.

Keywords: Categorical logic · Profinite monoids · Logic on words

1 Introduction

In [6], van Gool and Steinberg use model theory to study free pro-aperiodic
monoids. The starting point is the Schützenberger-McNaughton-Pappert theo-
rem, which establishes that languages on an alphabet A recognized by aperiodic
monoids are those given byfirst-order sentences inBüchi’s logic on finitewords [13].
In category theory, a standard construction is to encode a monoid M as a functor
n �→ Mn whose domain is the category of finite linear orders and order-preserving
maps. When M = MA is the free pro-aperiodic monoid on an alphabet A, we will
see, using categorical logic, how this functor also represents Büchi’s logic.

In Sect. 2, we present Boolean hyperdoctrines in parallel with their point-
wise duals, polyadic Stone spaces. Boolean hyperdoctrines are an algebraization
of classical first-order logic introduced by Lawvere in [11]. They are a way of
representing a first-order theory by a functor from finite sets to Boolean alge-
bras, sending a finite set X of variables to the Lindenbaum-Tarski algebra of
formulas whose free variables are in X. In [9], Joyal defines a polyadic space as
the pointwise Stone dual of a Boolean hyperdoctrine, so that the Lindenbaum-
Tarski algebras are replaced by type spaces. Intuitively speaking, a polyadic
space is thus a functor sending a finite set X to a space of X-pointed models.
See also [12], which mentions the link with cylindric and polyadic algebras. We
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will start by associating two functors to each first-order theory: the first is the
Boolean hyperdoctrine representing it and the second is the dual polyadic space.
Afterwards, functors arising in this way are characterized by two simple axioms
(Definitions 2.6 and 2.7).

Joyal also proposed to recover with a free construction a polyadic space
from a simpler core, its Stirling kernel. In Sect. 3, we introduce different notions
of kernels of polyadic spaces and the use of left Kan extension to reconstruct
polyadic spaces from their kernels. For instance, suppose that a theory T has
a partial order symbol.1 Since models of T come with a partial order, it makes
sense to speak of X-pointed models when X is a finite poset. Thus, one can
replace finite sets in the domain of the polyadic space representing T by finite
posets. The resulting functor will then be a “kernel” of the polyadic space of T .
We give a number of examples of kernels, but a general framework is still to be
elaborated.

In the last section, Sect. 4, we apply these ideas to monoids and languages.
We will see that the functor n �→ Mn

A referred to above, with MA the free
pro-aperiodic monoid, is a kernel of the polyadic space associated to Büchi’s
logic on words. In our first main result, Theorem 4.3, we generalize this situa-
tion and characterize the profinite semigroups S such that the functor n �→ Sn

represents a first-order theory as those whose multiplication is open and equidi-
visible. Profinite semigroups with these two properties are studied for instance
by Almeida, Costa, Costa and Zeitoun in [1]. In their setting, equidivisibility
alone is less well-behaved. We show here that openness and equidivisibility are
natural from the viewpoint of logic since they each correspond to one of the
axioms of polyadic spaces (Definition 2.7). We also characterize in our second
main result, Theorem 4.8, first-order theories arising from a profinite monoid as
those whose models can be concatenated with some natural constraints. Thus,
these theories are very special.

Finite sets will be written as natural numbers, so that n can also denote the
set {1, . . ., n}. We write β : Set → Stone for the Stone-Čech compactification
functor, which is left adjoint to the forgetful functor Stone → Set. It is the usual
Stone-Čech compactification restricted to discrete spaces. See [8, Chapter III,
Sect. 2.1].

2 Hyperdoctrines and Polyadic Spaces

Boolean algebras are an algebraization of classical propositional logic. To get
quantifiers in the picture, Lawvere remarked in [11] that they are adjoints to
substitution of variables. We also get equality this way, and this gives a signature-
independent algebraic account of classical first-order logic with equality. In this
section, we explain how to arrive at this idea, using in parallel the dual notion
of polyadic spaces introduced by Joyal in [9].

1 More precisely, if there is a binary relational symbol ≤ subject to the axioms of
partial orders.
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2.1 Quantifiers as Adjoints

Let T be a first-order theory. We associate to it a functor DT : FinSet −→ Bool
defined as follows:

1. On objects, DT sends a finite set n to the n-Lindenbaum-Tarski algebra of
the theory, i.e. the Boolean algebra of first-order formulas on n free variables
modulo equivalence according to T . The set n is the “context” of the formulas
in DT (n). We will write these variables as x1, . . ., xn, or y1, . . ., yn if several
contexts are present.

2. On morphisms, if f : n −→ m is a function, then DT (f) : DT (n) −→ DT (m)
sends a formula ϕ(x1, . . ., xn) to the formula ϕ(yf(1), . . ., yf(n)). That is, we
substitute (in a capture-avoiding way) the variable xi in ϕ(x1, . . ., xn) with
the variable yf(i). In the special case where f is injective, this procedure only
adds new variables to the context of the formula.

We will also use the notation ϕ(x) for a formula on variables x = x1, . . ., xn,
and write ϕ(f(x)) for its image under DT (f).

A Boolean hyperdoctrine is a functor of the form DT . A polyadic space is a
functor FinSetop −→ Stone obtained by applying Stone duality pointwise to a
hyperdoctrine. Let PT be the polyadic space dual to DT .

Remark 2.1. In model theory, PT (n) is usually called the space of (complete)
n-types of T and is written Sn(T ) [7, Sect. 5.2]. It can be thought of as the set of
n-pointed models of T modulo elementary equivalence. If f : n −→ m is a function,
then PT (f) sends (the equivalence class of) an m-pointed model (M,x1, . . ., xm)
to (M,xf(1), . . ., xf(n)).

Example 2.2. A simple example that one can keep in mind is PT (n) = Xn for X
a set. If X is infinite, we actually need to take the Stone-Čech compactification
PT (n) = β(Xn) to get a polyadic space (otherwise, we only get a polyadic set,
see Subsect. 3.3). The corresponding theory has one n-ary symbol for each subset
of Xn, and theorems are formulas true for the obvious interpretation of these
symbols on X.

Quantification. Consider the following introduction-elimination rule for exis-
tential quantification: ∃x : ϕ(x, y) �y ψ(y) if and only if ϕ(x, y) �x,y ψ(y). (See
[10, Part 2, Sect. 1].) It is actually an adjunction formula, and more generally, if
f : n � m is an injection, then the left adjoint of DT (f) is given by existential
quantification over the variables in m which are not in the image of f . Sym-
metrically, universal quantification gives the right adjoint of DT (f). Notice that
these adjoints are not morphisms of Boolean algebras in general.

Let us translate this in terms of PT . Let h : A −→ B be a morphism of Boolean
algebras. Then h has a left adjoint h∗ : B −→ A if and only if the dual map
h̃ : B̃ −→ Ã is open. In this case, h∗ corresponds to taking the direct image by
h̃. So the condition we obtain on PT is that PT (f) is open for each injection
f : n � m in FinSet.
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Example 2.3. Getting back to our example PT (n) = Xn, we see that existential
quantification corresponds to projection. For instance, the two projections X2 −→
X correspond to quantification along the two variables.

Equality. On the other hand, if f : n � m is a surjection, then PT (f) : PT (m) −→
PT (n) is an injection whose image is the set of n-pointed models such that
xi = xj if f(i) = f(j) (cf. Remark 2.1). Thus, PT (f) is open and dually, DT (f)
has a left adjoint. The morphism DT (f) : DT (n) � DT (m) realizes the quotient
by the principal filter generated by

∧
1≤i,j≤n
f(i)=f(j)

[xi = xj ].

Example 2.4. Binary equality is given by the quotient 2 � 1. In the case of
PT (n) = Xn, the corresponding map is the diagonal inclusion X � X2.

2.2 The Beck–Chevalley Condition and Quasi-pullbacks

If we look at logic only syntactically, one hidden aspect is that substitution
commutes with all other constructions: Boolean operations, quantification and
equality. In order to express the commutativity of substitution and existential
quantification, let X,Y,Z be finite sets and let f : X −→ Z be a function. Let
ϕ(x, y) be a formula in DT (X�Y ). We have two ways of building ∃y : ϕ(f(x), y),
as illustrated below on the left.

∃y : ϕ(x, y) ∃y : ϕ(f(x), y)

ϕ(x, y) ϕ(f(x), y)

DT (X) DT (Z)

DT (X � Y ) DT (Z � Y )

DT (f)

DT (f�idY )

∃ ∃

In the diagram on the right, the plain arrows are the images by DT of the
canonical maps and the dashed arrows labeled by ∃ are the left adjoints. Thus,
the condition we are interested in is that the square with the dashed arrows com-
mutes. Using Definition 2.5 below, this condition says that DT sends pushouts
of an injection (X � X � Y ) and an arbitrary function (f : X −→ Z) to Beck–
Chevalley squares.

Definition 2.5. We say that the commutative square of posets (1) satisfies the
Beck–Chevalley condition (or is a Beck–Chevalley square) if u and v have left
adjoints u∗ and v∗ such that the square (2) commutes.

A B A B S(D) S(B)

(1) (2) (3)

C D C D S(C) S(A)

f

u v

f

u−1

v−1

f−1

g g

u∗ v∗

g−1

The dual of the Beck–Chevalley condition is given by the back and forth
conditions of the duality for operators [4]. Let S : Boolop → Stone be the
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Stone dualization functor. Then (1) is Beck–Chevalley if and only if its dual
(3) is a quasi-pullback or quasi-cartesian, meaning that for each b ∈ S(B) and
each c ∈ S(C) such that f−1(b) = g−1(c), there is some d ∈ S(D) such that
v−1(d) = b and u−1(d) = c.

More generally, DT sends any pushout square to a Beck–Chevalley square.

2.3 Definitions

We arrive at an algebraic definition of hyperdoctrines and dually of polyadic
spaces.

Definition 2.6. A (Boolean) hyperdoctrine is a functor D : FinSet −→ Bool
such that:

1. For each function f between finite sets, D(f) has a left adjoint.
2. D sends pushout squares to Beck–Chevalley squares.

Definition 2.7. A polyadic (Stone) space is a functor P : FinSetop −→ Stone
such that:

1. For each function f between finite sets, P (f) is open.
2. P sends pushout squares in FinSet to quasi-pullbacks in Stone.

Functors of the form DT are axiomatized by Definition 2.6 (see [16]) and
functors of the form PT are axiomatized by Definition 2.7. The map T �→ DT

forgets which are the base symbols of the signature, so that all we can recover
from DT is the Morleyization of T .

Definition 2.8. A morphism of hyperdoctrines is a natural transformation
whose naturality squares satisfy the Beck–Chevalley condition. Dually, a mor-
phism of polyadic spaces is a natural transformation whose naturality squares
are quasi-cartesian.

Definition 2.9. A model of a hyperdoctrine D is a morphism from D to some
hyperdoctrine of the form n �→ P(Xn) as in Example 2.2. Dually, a model of a
polyadic space P is a morphism of polyadic spaces β(Xn) −→ P (n).

Models of DT correspond to models of T : we interpret each relation definable
over T as a subset of X. Since β(Xn) is the free Stone space on Xn and using
Proposition 2.11 below, models of a polyadic space P correspond to natural
transformations αn : Xn −→ P (n) satisfying some weakening of Definition 2.8.
This weakened condition says that if a n-tuple of the model satisfies some exis-
tential statement or an equality, then this is indeed concretely true in the model.

Definition 2.10. In the commutative square on the left of (4) below, A and C
are sets while B and D are Stone spaces with v continuous and open. We say
that the square on the left of (4) is weakly quasi-cartesian if for each open U ⊆ B
and each c ∈ C such that g(c) ∈ v(U), there exists a witness a ∈ A such that
f(a) ∈ U and u(a) = c.
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A B β(A) B

C D β(C) D

f

u v β(u) v

g

(4)

Proposition 2.11. In the same situation as in Definition 2.10, the square on
the left of (4) is weakly quasi-cartesian if and only if the square on the right of
(4) (in Stone) is quasi-cartesian.

Remark 2.12. Let α : Xn −→ P (n) be a natural transformation. Intuitively, the
naturality squares of α are weakly quasi-cartesian if X has “all the points it
should have to be a model.” If we strengthen this condition and ask that the
naturality squares of α are quasi-cartesian, we recover the notion of ω-saturated
model.

Remark 2.13. Using the Yoneda lemma, a natural transformation Xn −→ P (n)
can be identified with a point of P (X) = limn⊆X finite P (n). The X-based models
of P are then identified with a subspace of P (X). This is used in Rasiowa and
Sikorski’s proof of Gödel’s completeness theorem in [14]: they prove that if X is
countable and each P (n) has a countable basis, then this subspace of models is
comeager. This also yields the omitting types theorem [7, Theorem 6.2.1].

3 Kernels and C-adic Spaces

3.1 Stirling Kernels

The idea of Stirling kernels is due to Joyal (private communication). Let T be a
first-order theory. Let PT [n] ⊆ PT (n) be the clopen subspace of models pointed
by n distinct points. Then we can reconstruct PT (n) from PT [n] with the finite
coproduct

PT (n) =
∐

R∈Cong(n)

PT [n/R], (5)

where Cong(n) is the set of equivalence relations on n. Each term PT [n/R] is
identified with the clopen subset of PT (n) of n-pointed models whose points are
equal if and only if they are R-equivalent.

Since restricting a pointing by n distinct points along an injection gives
again distinct points, n �→ PT [n] is a functor FinSetInjop −→ Stone where
FinSetInj is the category of finite sets and injections. This functor is called the
Stirling kernel of PT (n), because the Stirling numbers of the second kind are
the coefficients of PT [k] in the formula (5) (there is one copy of PT [k] for each
equivalence relation of index k on n).

Another way of expressing the formula (5) is to say that PT (n) is the left
Kan extension of PT [n] along the inclusion FinSetInjop � FinSetop. For an
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introduction to Kan extensions, see [2, Sect. 3.7]. This also reconstructs the func-
toriality of PT (−). More concretely, let f : n → m be any function and let R
be an equivalence relation on m. Let f−1(R) be the equivalence relation on n
induced by R and f and let f̃ : n/f−1(R) −→ m/R be the corestriction of f . Then
PT [m/R] is sent into PT [n/f−1(R)] by PT (f) and this restriction coincides with
PT [f̃ ].

In Theorem 3.4 below, we identify the conditions for a functor
FinSetInjop −→ Stone to be a Stirling kernel. This provides another algebraiza-
tion of first-order logic with equality. In some sense, this tells us that equality
can be “freely adjoined”.

In Definition 2.7, the first condition says that P (f) is open and this is trans-
ferred to the Stirling kernel since P [f ] is a restrictions of P (f) to a clopen subset.
On the other hand, the second condition cannot be transferred so easily since
the category FinSetInj does not admit pushouts. Let us give an example to
illustrate that point.

Example 3.1. Consider the diagram 1 ←− 0 −→ 1 in FinSetInj. The two minimal
cocones over it are 1 −→ 2 ←− 1 (the pushout in FinSet) and 1 −→ 1 ←− 1.
Since there is no injection 2 −→ 1, the pushout in FinSet is not a pushout in
FinSetInj anymore. And indeed, the square (6) below is not a quasi-pullback:
given two 1-pointed models (M,x) and (M ′, x′) with M ≡ M ′, it is possible that
the only way to amalgamate them into a single 2-pointed model (N, a, b) with
(N, a) ≡ (M,x) and (N, b) ≡ (M ′, x′) is to take a = b. This means that instead
of finding a point of PT [2] in the upper left corner of (6), we find a point of PT [1]
in the upper left corner of (7).

PT [2] PT [1] PT [1] PT [1] a b

(6) (7) (8)

PT [1] PT [0] PT [1] PT [0] c d

f

g u

v

In order to take this into account, we need the following definitions.

Definition 3.2. A functor P : Cop −→ Set has the amalgamation property if
for any diagram (f : a → b, g : a → c) in C, for any x ∈ P (b), y ∈ P (c) such
that P (f)(x) = P (g)(y), there exists a cocone as in (8) and a witness z ∈ P (d)
such that P (u)(z) = x and P (v)(z) = y. Notice that d can also depend on x and
y. A natural transformation is said to have the amalgamation property if each
naturality square is quasi-cartesian. We use the same vocabulary for functors
Cop −→ Stone. A natural transformation α : P −→ Q has the weak amalgamation
property if its naturality squares are weakly quasi-cartesian (Definition 2.10).

We are now ready to generalize Definition 2.7 appropriately.

Definition 3.3. Let C be a small category. A C-adic (Stone) space is a functor
P : Cop −→ Stone with the amalgamation property and such that P (f) is open
for each arrow f in C. A morphism of C-adic spaces is a natural transformation
with the amalgamation property.
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We will refer to C as the category of contexts. If C has pushouts, we recover
the notion of Boolean hyperdoctrine since any cocone as in (8) factors through
the pushout, and the amalgamation property says that pushout squares are sent
to quasi-pullbacks. In particular, we get polyadic spaces with C = FinSet.

Theorem 3.4. The functor [FinSetInjop,Stone] −→ [FinSetop,Stone] given
by left Kan extension along FinSetInjop � FinSetop restricts to an equiva-
lence between the category of FinSetInj-adic spaces and the category of polyadic
spaces.

Given a first-order theory T , models of T can be defined in terms of PT [−]
as a set X equipped with a natural transformation {injections n � X} −→ PT [n]
with the weak amalgamation property.

3.2 Other Kernels

If we restrict our attention to smaller classes of first-order theories, it may be
possible to consider more specialized kernels. We will only give here examples of
kernels and no general definition.

Suppose T is a first-order theory with a distinguished linear order symbol. Let
Δ+ be the category of (possibly empty) finite linear orders and order-preserving
maps. Then PT 〈n〉 := {models of T pointed by n increasing points} ⊆ PT (n)
defines a functor Δop

+ −→ Stone. Left Kan extension along the forgetful functor
Δ+ −→ FinSet yields an equivalence from the category of Δ+-adic spaces to the
category of polyadic spaces equipped with a linear order relation (morphisms
need to respect this relation). Combining this with the idea of Stirling kernels,
this category is again equivalent to the category of Δ+,inj-adic spaces, where
Δ+,inj is the category of finite linear orders and injective order-preserving maps.

An order is bounded if there is a greatest and a least element. Let Δbound

be the category of finite bounded linear orders and bound-preserving order-
preserving maps. Let Δbound,inj be the subcategory of Δbound with only the
injective morphisms. Then the Δbound-adic and Δbound,inj-adic spaces both cor-
respond to first-order theories with a bounded linear order. The diagram (9)
below summarizes the situation. Translation across different categories of con-
texts is done through left Kan extension along the arrows.

FinSet FinSetInj first order theories

Δ+ Δ+,inj with a linear order

Δbound Δbound,inj with a bounded linear order

(9)

As in the case of Stirling kernels, models are the intuitive ones: objects X
with a natural transformation from {maps n −→ X} to P (n) with the weak amal-
gamation property, where “objects” and “maps” are interpreted according to the



300 J. Marquès

situation. In general, a model of a C-adic space P is an ind-object X ∈ Ind(C)
equipped with a natural transformation X → P with the weak amalgamation
property. For an introduction to ind-objects, see [8, Chapter VI, Sect. 1].

Example 3.5. Here are some more examples of kernels. Items 5 and 6 will be
used in Sect. 4.

1. The same thing works for ordered sets, graphs, pointed sets, sets with an
equivalence relation, various notions of trees and forests,2 etc.

2. If T is an algebraic theory and AlgT
fp is the category of finitely presented

T -algebras, then AlgT
fp-adic spaces correspond to first-order theories with a

distinguished interpretation of T .
3. A FinSet × FinSet-adic space is a theory in 2-sorted first order logic, or in

other words a first-order theory with a distinguished unary relational symbol
R (one sort is the interpretation of R and the other one is its complement).
Taking the left Kan extension along +: FinSet × FinSet −→ FinSet forgets
the distinguished unary relational symbol.

4. A pointed bounded linear order is a pair of bounded linear orders, so a Δ2
bound-

adic space is a Δbound-adic space with a distinguished constant. The transla-
tion is made via a left Kan extension along the functor � : Δ2

bound −→ Δbound

joining two bounded linear orders by gluing their endpoints.
5. If P,Q : Δop

bound −→ Stone are two Δbound-adic spaces, then (a, b) �→ P (a) ×
Q(b) is the Δ2

bound-adic space whose models are bounded linear orders with
a distinguished point, a P -structure on the lower half and a Q-structure on
the upper half.

6. If P is a Δbound-adic space, then (a, b) �→ P (a � b) is the Δ2
bound-adic space

whose models are pointed models of P . Actually, precomposition by � defines
a functor from Δbound-adic spaces to Δ2

bound-adic spaces and it is the right
adjoint to left Kan extension along �.

7. On the other hand, it is false that if P is a FinSet-adic space, then (a, b) �→
P (a + b) is the FinSet2-adic space whose models are models of P with a
distinguished subset, as it was the case for Δbound.

3.3 Some Properties of C-adic Spaces

Instead of C-adic spaces, we can consider C-adic sets. They are functors Cop →
Set with the amalgamation property. Under some hypothesis on C, they can be
compactified to give C-adic spaces.

Proposition 3.6. Let C be a small category. For any two arrows f : a −→ b,
g : a −→ c with a common domain, let Cf,g be the category of cocones over the
diagram composed of f and g. Suppose that for each Cf,g, there is a weakly initial
finite set of objects Tf,g, i.e. such that each other object admits an arrow from
an element of Tf,g. Then post-composition by β : Set −→ Stone gives a functor
from C-adic sets to C-adic Stone spaces.
2 Trees and forests are considered as special ordered sets for the notion to be first-

order.
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Remark 3.7. The hypothesis of Property 3.6 above is also the condition for the
duals of C-adic spaces to be a multisorted algebraic variety, with one sort for
each object of C. A consequence of this algebraic presentation is that prod-
ucts of hyperdoctrines are computed pointwise and dually coproducts of C-adic
spaces are computed pointwise. Another consequence is that subalgebras are
again hyperdoctrines, but this is true more generally as seen in the proposition
below.

Proposition 3.8. Let C be a small category. Let P,Q : Cop −→ Stone. Suppose
P is a C-adic space. Let α : P −→ Q be a natural transformation that is pointwise
surjective. If α has the amalgamation property, then Q is a C-adic space.

Remark 3.9. A polyadic subspace of a polyadic space P is a morphism of polyadic
spaces Q −→ P which is pointwise injective. If C has an initial object 0, then
polyadic sub-spaces of P are classified by closed subsets of P (0). In particular,
P cannot be written as a non-trivial coproduct if and only if P (0) = 1, i.e. if the
theory is “complete.” If P is a C-adic set instead of a C-adic Stone space, then
we can maximally decompose P as a coproduct indexed by points of P (0).

Gödel’s Completeness. We can generalize the statement of Gödel’s complete-
ness theorem to C-adic spaces. We will say that C satisfies Gödel’s completeness
theorem if for any C-adic space P , for any X ∈ Ind(C) and any natural trans-
formation α : X −→ P , we can extend this “pre-model” to a model, i.e. find an
ind-object Y ∈ Ind(C), a natural transformation α̃ : Y −→ P with the weak amal-
gamation property and a natural transformation f : X −→ Y such that α = α̃◦f .
When C has pushouts, the proof of the classical Gödel theorem with Henkin’s
models can be adapted. But this is not enough to cover all the cases where it
is true, since it can sometimes be deduced from other categories of contexts
through the use of kernels. For instance, none of the categories of Diagram (9)
admit pushouts except for FinSet, but Gödel’s completeness theorem for these
categories can be deduced from FinSet.

When Gödel’s completeness theorem holds, it allows for a description of
morphisms in terms of models. Given a C-adic space P , we say that a family of
clopen subsets of the spaces P (c) is generating if for each c ∈ C, each clopen
subset of P (c) can be expressed from the given family of clopen subsets using
the Boolean operations together with direct and inverse images by maps of the
form P (f). If C = FinSet and if P = PT is the polyadic space associated to
a first-order theory T , then the clopen subsets corresponding to the symbols of
the signature of T are generating.

Proposition 3.10. Let C be a category satisfying Gödel’s completeness theo-
rem. Let P and Q be two C-adic spaces. Then a morphism P −→ Q is given by a
way of transforming, for any X ∈ Ind(C), P -structures on X into Q-structures
on X such that for any clopen subset ϕ ⊆ Q(c), there exists a clopen subset
F (ϕ) ⊆ P (c) defining the same subset of X(c) for each P -model X. Moreover,
it is enough to check this condition on a generating family of clopen subsets.
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Remark 3.11. This way of viewing morphisms of polyadic spaces respects com-
position. In particular, an isomorphism P ∼= Q is given by the data of a bijection
between P -structures on X and Q-structures on X for each ind-object X, such
that each subset of X(c) definable over Q is definable over P (uniformly in X)
and conversely. Beth’s definability theorem, which is a consequence of Gödel’s
completeness theorem in this setting, says that this converse is automatically
satisfied: any morphism P −→ Q of C-adic spaces inducing a bijection between
P -models and Q-models is an isomorphism.

4 Application to Logic on Words

4.1 Correspondence Between Theories and Monoids

As we saw in Subsect. 3.2, a first-order theory with a bounded linear order
symbol is a special functor Δop

bound −→ Stone. Looking at a bounded linear order
as a lattice, the duality between finite lattices and finite posets specializes to a
duality between Δbound and Δ+. Hence, functors Δop

bound −→ Stone correspond to
functors Δ+ → Stone by precomposing with this equivalence. Functors Δ+ →
Stone can also be used to encode profinite monoids S, meaning that S is also
a Stone space with continuous multiplication. The functor associated to S will
be called PS . It sends n to Sn, the injection 0 −→ 1 to the neutral element
e : 1 ∼= S0 −→ S1 and the unique surjection 2 −→ 1 to the multiplication S2 −→ S.

Before we continue, we should introduce some notation. When we want to
emphasize the ambient category, we will write the object of Δ+ with n elements
as n, and the object of Δbound with n elements as n

��

. For convenience, we will also
write n

��

�→ PS(n
��

) for the functor obtained by precomposing n �→ PS(n) with
the equivalence Δop

bound
∼= Δ+. We will write n+m for the linear order obtained

by concatenating n and m. The dual of this operation is n
��

� m
��

= n − 1 + m
�−−−−−−�,

obtained by merging the last point of n
��

with the first point of m
��

.
The condition on PS to encode a monoid is that it is monoidal, meaning that

PS(0) = 1 and that it comes equipped with an isomorphism PS(n+m) ∼= PS(n)×
PS(m) satisfying with some commutativity conditions, or dually an isomorphism
PS(n
��

� m
��

) ∼= PS(n
��

) × PS(m
��

). If we replace the duality Δ+
∼= Δop

bound with the
duality Δ+,surj

∼= Δop
bound,inj, we get the same thing but with semigroups instead

of monoids. Left Kan extension along Δ+,surj � Δ+ freely adjoins a neutral
element. Note that a monoidal functor is obtained by adding some structure to
a functor, so that we will speak of monoidal functor structures.

The two questions raised by this connection are:

1. When does a monoid correspond to a theory with a bounded linear order
symbol? More precisely, under which conditions on S is PS a Δbound-adic
space? (Theorem 4.3.)

2. When does a theory with a bounded linear order symbol correspond to a
monoid? More precisely, given a Δbound-adic space P , how can we understand
a monoidal functor structure on P from the viewpoint of logic? (Theorem 4.8.)
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From Monoids to Theories. Let S be a semigroup. The amalgamation prop-
erty of PS : n �→ Sn applied to the diagram 2 −→ 1 ←− 2 gives the definition
below. The three cases correspond to the three minimal cones over 2 −→ 1 ←− 2
in Δ+,surj.

Definition 4.1. A monoid or semigroup S is equidivisible if for any a, b, x, y ∈
S such that ab = xy, either (a, b) = (x, y) or there is a k ∈ S such that ak = x
and ky = b, or xk = a and kb = y. In the case of monoids, the definition can be
simplified by taking k = e when (a, b) = (x, y).

·
· ·

·
k

ba

x y

·
· ·

·

ba

x

k

y

As we see in the next proposition, equidivisibility is enough to recover the
full amalgamation property.

Proposition 4.2. Let S be a semigroup. Then PS has the amalgamation prop-
erty if and only if S is equidivisible. If S is a monoid, then PS has the amalga-
mation property if and only if S is obtained by freely adjoining an identity to an
equidivisible semigroup.

As a consequence, we obtain the following theorem.

Theorem 4.3. Let S be a profinite semigroup. Then PS is a Δbound,inj-adic
space if and only if S is equidivisible and its multiplication is open.

Let S be a profinite monoid. Then PS is a Δbound-adic space if and only if S
is obtained from a profinite equidivisible semigroup with open multiplication by
freely adjoining an isolated neutral element.

Let S be a profinite monoid as in Theorem 4.3. Here is a description of what
is a PS-model, or S-model for short.

Proposition 4.4. Let X be a bounded linear order. Think of X as a category
with Hom(x, y) = 1 if x ≤ y and 0 otherwise. Think of S as a category with one
object. Then a structure of S-model on X is given by a functor F : X −→ S such
that, writing F (x, y) for the image of the unique arrow x −→ y when it exists, we
have F (x, y) = e ⇐⇒ x = y and for any clopen subset U, V ⊆ S and any x ≤ y
in X,

F (x, y) ∈ UV ⇐⇒ ∃z ∈ [x, y] : F (x, z) ∈ U ∧ F (z, y) ∈ V . (10)

Remark 4.5. If we replace (10) by the following, we get the notion of ω-saturated
model (cf. Remark 2.12).

F (x, y) = uv ⇐⇒ ∃z ∈ [x, y] : F (x, z) = u ∧ F (z, y) = v.

Remark 4.6. There is also a natural axiomatization of this theory. Each clopen
subset U ⊆ S corresponds to a binary relational symbol on X that can be
satisfied by two points x, y only if x ≤ y. We write U(x, y) for this symbol. Here
are the axioms.
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1. All the axioms for bounded linear orders.
2. U(x, y) =⇒ x ≤ y
3. [U ∩V ](x, y) ⇐⇒ U(x, y)∧V (x, y) and similarly for all Boolean operations.
4. {e}(x, y) ⇐⇒ x = y
5. [UV ](x, y) ⇐⇒ ∃z : U(x, z) ∧ V (z, y)

The set of axioms 3 ensures that each couple of points determines a prime filter
on the dual Boolean algebra of S and thus a point of S. Predicates on n ordered
free variables (i.e. under the condition x1 ≤ · · · ≤ xn) are identified to clopen
subsets of Sn+1. An n-type of this theory can be described as an ordering of the
n variables together with an element (a0, . . ., an) ∈ Sn+1, subject to the relation
that if ai = e, then we can exchange the ith variable and the (i + 1)th variable
in the ordering without modifying the n-type.

From Theories to Monoids. Let’s now turn to the second question: Given
a Δbound-adic space P , how can we understand a monoidal functor structure
on P from the viewpoint of logic? We will first study the structure transferred
from S to PS . Let S be a profinite monoid such that PS is a Δbound-adic space.
Proposition 4.7 below shows that the monoid structure of S underlies a monoid
structure on the class of S-models.

Given two bounded linear orders X and Y , let X �Y be their concatenation
obtained by gluing maxX and minY . If F : X −→ S and G : Y −→ S are two
S-models, we define F � G : X � Y −→ S by

(F � G)(x, y) =

⎧
⎪⎨

⎪⎩

F (x, y) if x, y ∈ X,
G(x, y) if x, y ∈ Y ,
F (x,max X)G(min Y, y) if x ∈ X, y ∈ Y .

Proposition 4.7. Let S be a profinite monoid such that PS is a Δbound-adic
space. Let F : X −→ S and G : Y −→ S be two S-models. Then F � G is also an
S-model.

Proof. We need to prove that if (F � G)(x, y) ∈ UV with U, V ⊆ S clopen
subsets, x ∈ X and y ∈ Y , then there is some z in X or some z in Y such
that (F � G)(x, z) ∈ U and (F � G)(z, y) ∈ V . Let a := F (x,max X) and
b := G(min Y, y). We know that ab = uv for some u ∈ U and v ∈ V . Because of
the amalgamation property, this means that, without loss of generality, there is
some k ∈ S such that kb = v and uk = a. We deduce that a ∈ U(V/b). Hence,
there exists some z ∈ X such that F (x, z) ∈ U and F (z,max X) ∈ V/b. We get
(F � G)(x, z) ∈ U and (F � G)(z, y) = F (z,max X)G(min Y, y) ∈ V as desired.
��

This operation of concatenation can be explained abstractly as follows. Let
P,Q be two Δbound-adic spaces. The theory whose models are pairs of models,
one of P and one of Q, is represented by the functor P ×Q : Δbound ×Δbound −→
Stone sending (n,m) to P (n)×Q(m). As said in example 3.5, left Kan extension
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along � : Δbound×Δbound −→ Δbound (the functor of concatenation by gluing the
endpoints) translates a Δbound × Δbound-adic space as a Δbound-adic space by
forgetting the distinguished point. We will write P ∗Q for the left Kan extension
of P × Q along �. It is called the Day convolution of P and Q and we have the
coend formula [P ∗ Q](n) =

∫ (a,b)
P (a) × Q(b) × Hom(n, a � b).

As in Example 3.5 again, if P is a Δbound-adic space, then the Δbound ×
Δbound-adic space (a, b) �→ P (a � b) represents the theory whose models are
pointed models of P . Let P∗ be the left Kan extension of this functor along �.
Then P∗ is the theory P with a distinguished constant freely added and the
counit P∗ −→ P forgets this new constant. A monoidal functor structure on P is
given by an isomorphism P (a)×P (b) ∼= P (a�b), i.e. an isomorphism P ∗P ∼= P∗.
By composing P ∗ P ∼= P∗ −→ P , we get the concatenation of Proposition 4.7.

If X and Y are two bounded linear orders, thought of as ind-objects Δop
bound −→

Set, then their Day convolution X ∗ Y is X � Y . To concatenate two models
X −→ P and Y −→ P , we compose X ∗ Y −→ P ∗ P −→ P .

Recall from Proposition 3.10 and Remark 3.11 (using Beth’s definability the-
orem) that an isomorphism between Δbound-adic spaces P (a) × P (b) ∼= P (a � b)
can be seen at the level of models. The theorem below makes this more explicit
in the present case.

Theorem 4.8. Let T be a first-order theory with a bounded linear order symbol.
Let P : Δop

bound → Stone be the corresponding Δbound-adic space. Suppose that
T has exactly one model of cardinality 1, or in other words that P ( 1

��

) = 1. Then
monoidal functor structures on P are in correspondence with families indexed by
pointed bounded linear orders (X, p) of bijections between T -structures on X and
pairs of T -structures on the two segments {x ∈ X |x ≤ p} and {x ∈ X |x ≥ p},
subject to the following conditions:

1. The induced concatenation of T -models is associative, or equivalently given
a bipointed T -model (X, a, b), the two induced T -structures on [a, b] ⊆ X are
equal.

2. The unique model of cardinality 1 acts as a neutral element for concatenation.
3. Formulas can be relativized to segments: given any formula ϕ(x1, . . ., xn) on

n ordered variables (x1 ≤ · · · ≤ xn), there is some formula ψ(x1, . . ., xn, p) on
n + 1 ordered variables such that an (n + 1)-pointed model (X,x1, . . ., xn, p)
of P with x1 ≤ · · · ≤ xn ≤ p satisfies ψ if and only if ({x ∈ X |x ≤
p}, x1, . . ., xn) satisfies ϕ. Symmetrically for p ≤ x1 ≤ · · · ≤ xn.

Moreover, it is enough to check the last condition on the symbols of the signature
of T other than the order.

Example 4.9. As an example of a profinite monoid built using Theorem 4.8,
we can take T to be simply the theory of bounded linear orders. Since the
only symbol of the signature is the order, there is almost nothing to check.
This monoid is uncountable [15, Corollary 6.17]. If T is instead the theory of
successor ordinals, then the monoid becomes countable and has been described
in [3, Definition 39].
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4.2 Application to Logic on Words

Logic on Words. The goal now is to give a presentation of logic on words from
the viewpoint of polyadic spaces. Let A be a finite alphabet. Since A∗ is equidi-
visible, the functor n �→ [A∗]n ∈ Set has the amalgamation property, meaning
that it is a Δbound-adic set. By Property 3.6, the Stone-Čech compactification
n �→ β([A∗]n) is a Δbound-adic space whose dual is n �→ P([A∗]n). We do not
get a profinite monoid this way, but we will obtain some equidivisible profinite
monoids as quotients of β([A∗]n) in Corollary 4.10.

Let us describe the associated logic. Each finite word over A corresponds to
a model whose points are positions between two letters, before the first or after
the last one, so that a word with k letters gives a model with k + 1 elements. A
predicate with n free variables is, in the most general possible way, a subset of
all the n-pointed finite models. Looking at the corresponding Δbound-adic space,
since n

��

-pointed words can be identified with [A∗]n−1, a predicate in context n
��

is a subset of [A∗]n−1.
As seen in Remark 3.9, each Δbound-adic set can be decomposed uniquely

as a coproduct of irreducible Δbound-adic sets P with P ( 2
��

) = 1. In the present
case, this decomposition gives that n �→ [A∗]n is the coproduct of all its finite
models. This means that a morphism of Δbound-adic spaces from β([A∗]n) to
P (n) is a way of interpreting each finite word with k letters as a model of P
with k + 1 points.

The Logic Associated to a Boolean Algebra of Languages. Let B ⊆
P(A∗) be a Boolean algebra of languages and make the following assumptions.

1. The morphism P(A∗) −→ P(A∗ × A∗) dual to multiplication A∗ × A∗ −→ A∗

sends B ⊆ P(A∗) into B � B ⊆ P(A∗ × A∗).3 This is equivalent to B being
included in regular languages and stable by division on the left and on the
right, see [5].

2. B is stable under concatenation and contains {ε} where ε is the empty word.

Under condition 1, the whole family B�n ⊆ P([A∗]n) defines a subfunctor and
the Stone dual M of B inherits the structure of a profinite monoid, the multipli-
cation being dual to B −→ B �B. Condition 2 ensures that the B�n ⊆ P([A∗]n)
are stable under the action of the left adjoints. Since hyperdoctrines are alge-
braic systems (cf. Remark 3.7), the subalgebra B�n is again a hyperdoctrine.
We can also dualize and use Proposition 3.8 instead: quotients of polyadic spaces
are still polyadic spaces.

Corollary 4.10. Under conditions 1 and 2, the dual M of B is an equidivisible
profinite monoid with open multiplication, whose neutral element is the only
invertible and is topologically isolated. In particular, the free profinite monoid
on A is equidivisible.
3 The set B � B ⊆ P(A∗ × A∗) is the Boolean subalgebra generated by sets of the

form L × A∗ and A∗ × L where L ∈ B. It is also the coproduct of two copies of B
in the category of Boolean algebras.
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By Theorem 4.3, each such Boolean algebra has an associated first-order logic
whose predicates in context n

��

are the Boolean algebra B�(n−1) ⊆ P([A∗]n−1).
The conditions 1 and 2 ensure that these subsets are stable under the construc-
tions of first-order logic. Here is an example to illustrate more concretely the
roles of both conditions.

Example 4.11. Suppose L and L′ are two languages in B. Let [L](−,−) be the
2-ary predicate associated to L (formally, it is A∗ × L × A∗). Let ⊥, � be the
constants for the minimum and the maximum. For instance, [L](⊥,�) is the
formula saying that the whole word is in L. The formula

ϕ := ∀x : [L](x,�) =⇒ ∃y : y ≥ x ∧ [L′](⊥, y)

expresses that for each suffix in L, there is a prefix in L′ ending at least at the
start of the suffix. Let us show that the language associated to ϕ is in B. First, we
need to place the formula [L′](⊥, y) in a context where there is one more variable
x ≤ y. This is done using condition 1: there exists a finite list (Ui, Vi)n

i=1 ⊆ B×B
such that we can rewrite [L′](⊥, y) as

∨n
i=1[Ui](⊥, x) ∧ [Vi](x, y). We then apply

the quantifier ∃y using condition 2 and combine with “[L](x,�) =⇒”, this
gives [L](x,�) ∨ ∨n

i=1[Ui](⊥, x) ∧ [ViA
∗](x,�). In order to apply the universal

quantifier, we negate the formula, put it in normal disjunctive form, apply the
existential quantification and negate again to obtain the final formula

⋂

s:n−→{0,1}

( ⋂

i∈s−1(0)

Ui

)(
L ∩

⋂

i∈s−1(1)

ViA∗
)
.

Example 4.12. Here are some Boolean algebras satisfying conditions 1 and 2.

1. The Boolean algebra of all regular languages. The associated logic is Büchi’s
monadic second-order logic on words.

2. The Boolean algebra of star-free languages. In [6], van Gool and Steinberg
apply model theory to study the free pro-aperiodic monoid A. It is built as
a submonoid of another monoid Λ(A), which is constructed in our setting by
applying Theorem 4.8 to the theory of discrete orders with endpoints whose
pairs of consecutive points are labeled by A. Since each finite word is in
particular a discrete labeled order, we have a morphism of polyadic spaces
β([A∗]n) → Λ(A)n and the free pro-aperiodic monoid is the image of this
morphism. We can interpret [6, Lemma 3.4, p. 13] as saying that this image
is a polyadic subspace.

3. The Boolean algebra of languages of generalized star-height n.
4. Other examples can be found in [1, Sect. 3], where one can find a charac-

terization of the pseudovarieties recognizing Boolean algebras of languages
satisfying condition 2 (condition 1 is automatically satisfied).
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Abstract. Graded modalities have been proposed in recent work on
programming languages as a general framework for refining type systems
with intensional properties. In particular, continuous endomaps of the
discrete time scale, or time warps, can be used to quantify the growth
of information in the course of program execution. Time warps form
a complete residuated lattice, with the residuals playing an important
role in potential programming applications. In this paper, we study the
algebraic structure of time warps, and prove that their equational theory
is decidable, a necessary condition for their use in real-world compilers.
We also describe how our universal-algebraic proof technique lends itself
to a constraint-based implementation, establishing a new link between
universal algebra and verification technology.

Keywords: Residuated lattices · Universal algebra · Decision
procedures · Graded modalities · Type systems · Programming
languages

1 Introduction

Program types are almost as old as programs themselves. Their initial role was to
allow compilers to determine data sizes at compilation time, e.g., distinguishing
machine integers from double precision numbers [1]. Type system research has
developed tremendously since these humble beginnings, benefiting from close
connections to logic [16]. For example, dependent types are expressive enough
to serve as specification languages for program results [24,25].

Another line of research into type systems aims to classify not only what
programs compute, but also how they do so. Such type systems describe the effect
of a program—e.g., which parts of memory it modifies [19]—or the resources it
requires—e.g., how long it takes to run [12]. Recently, graded modalities [7,8]
have emerged as a unified setting for describing effect- and resource-annotated
types. A graded modality � allows programmers to form a new type �fA from
a type A and a grading f . The meaning of �fA depends on the system at
hand, but can generally be understood as a modification of A that includes the
behavior prescribed by f .
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In many cases, gradings come equipped with an ordered algebraic structure
that is relevant for programming applications. Most commonly, they form a
monoid whose binary operation corresponds to a notion of composition such
that �gfA is related to �f�gA. It is also often the case that gradings can be
ordered by some sort of precision ordering along which the graded modality acts
contravariantly. That is, we have a generic program of type �gA → �fA if f ≤ g,
allowing us to freely move from more to less precise types. As a consequence,
the structure of this ordering is reflected by the operations available on types;
for example, when the infimum of f and g exists, it permits the conversion of
two values of types �fA and �gB into a single value of type �f∧g(A × B).

The additional flexibility and descriptive power gained by adopting graded
modalities in a programming language comes at a price, however. The language
implementation must now be able to manipulate gradings in various ways; in
particular, it should be able to decide the ordering between gradings in order to
distinguish between well-typed and ill-typed programs. In this paper, we address
this issue for a specific class of gradings known as time warps: sup-preserving
functions on ω+ = ω ∪ {ω}, or, equivalently, monotonic functions f : ω+ → ω+

satisfying f(0) = 0 and f(ω) =
∨{f(n) | n ∈ ω} [14]. Informally, time warps

describe the growth of data along program execution. In this setting, any type A
describes a family of sets (An)n∈ω, where An is the set of values classified by A at
execution step n. The type �fA classifies the set of values of Af(n) at step n. This
typing discipline generalizes a long line of works on programming languages for
embedded systems [5] and type theories with modal recursion operators [2,22].

Let us denote the set of time warps by W . Then 〈W , ◦, id〉 is a monoid, where
fg := f ◦ g denotes the composition of f, g ∈ W , and id is the identity function.
Moreover, equipping W with the pointwise order, defined by

f ≤ g :⇐⇒ f(p) ≤ g(p) for all p ∈ ω+,

yields a complete distributive lattice 〈W ,∧,∨〉 satisfying, for all f, g1, g2, h ∈ W ,

f(g1 ∨ g2)h = fg1h ∨ fg2h and f(g1 ∧ g2)h = fg1h ∧ fg2h,

with a least element ⊥ that maps all p ∈ ω+ to 0, and a greatest element � that
maps all p ∈ ω+\{0} to ω. Note that the operation ◦ is a double quasi-operator on
this lattice in the sense of [10,11], and that the structure 〈W ,∧,∨, ◦, id〉 belongs
to the family of unital quantales of sup-preserving functions on a complete lattice
studied in [23].

The monoidal structure of time warps plays the expected role in programming
applications. In particular, �gfA and �f�gA are isomorphic, as are �idA and A.
However, time warps also admit further additional algebraic structure of interest
for programming. Since they are sup-preserving, there exist binary operations
\, / on W , called residuals, satisfying for all f, g, h ∈ W ,

f ≤ h/g ⇐⇒ fg ≤ h ⇐⇒ g ≤ f\h.

From a programming perspective, residuals play a role similar to that of weakest
preconditions in deductive verification. The type �h/gA can be seen as the most
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general type B such that �hA can be sent generically to �gB. Similarly, f\h is
the most general (largest) time warp f ′ such that �hA can be sent generically
to �f ′�fA. Such questions arise naturally when programming in a modular
way [14], justifying the consideration of residuated structure in gradings.

The algebraic structure W = 〈W ,∧,∨, ◦, \, /, id,⊥,�〉, referred to here as
the time warp algebra, belongs to the family of (bounded) residuated lattices,
widely studied as algebraic semantics for substructural logics [3,9,20]. The main
goal of this paper is to prove the following theorem, a necessary condition for
the use of time warps in real-world compilers:

Theorem 1. The equational theory of the time warp algebra W is decidable.

A time warp term is a member of the term algebra over a countably infinite set
of variables of the algebraic language with binary operation symbols ∧,∨, ◦, \, /,
and constant symbols id,⊥,�, and a time warp equation consists of an ordered
pair of terms s, t, denoted by s ≈ t. Let s ≤ t denote the equation s ∧ t ≈ s,
noting that W |= s ≈ t if, and only if, W |= s ≤ t and W |= t ≤ s, and,
by residuation, W |= s ≤ t if, and only if, W |= id ≤ t/s. Clearly, to prove
Theorem 1, it will suffice to provide an algorithm that decides W |= id ≤ t for
any time warp term t.

Overview of the Proof of Theorem 1

We prove Theorem 1 by describing an algorithm with the following behavior:

Input. A time warp term t in the variables x1, . . . , xk.
Output. If W |= id ≤ t, the algorithm returns ‘Valid’; if W �|= id ≤ t,
the algorithm returns ‘Invalid at (f̂1, . . . , f̂k, p)’ for some p ∈ ω+ and finite
descriptions f̂1, . . . , f̂k of time warps f1, . . . , fk, such that �t�(p) < p, where
�t� is the time warp obtained from t by mapping each xi to fi.

We now give a high-level overview of the three main steps of the algorithm; the
details and the proof of its correctness will occupy us for the rest of the paper.

I. Pre-processing into a Disjunction of Basic Terms. In Sect. 2, we show
how to effectively obtain for any time warp term t, a time warp term

t′ :=
m∧

i=1

ni∨

j=1

ti,j ,

such that W |= t ≈ t′, where each ti,j is a basic term, constructed using ◦, id,
⊥, and the defined operations s� := id/s, sr := s\id, and so := �\s (Theorem 9).
Since W |= id ≤ t if, and only if, W |= id ≤ ∨ni

j=1 ti,j for each i ∈ {1, . . . , m}, our
task is reduced to giving an algorithm with the required behavior for terms of
the form t1 ∨ · · · ∨ tn, where each ti is a basic term. Once we have an algorithm
that solves this case, we can run it for each of the m conjuncts of t′ in turn,
returning ‘Invalid at (f̂1, . . . , f̂k, p)’ whenever this is the result of one of these
runs, and otherwise ‘Valid’.
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II. Finitary Characterization Through Diagrams. The crucial step in our
algorithm is the finitary characterization of ‘potential counterexamples’ for an
equation of the form id ≤ t1 ∨ · · · ∨ tn, where each ti is a basic term. Our main
tool for providing these finitary characterizations is the notion of a diagram.1

Let us give an example to illustrate the basic idea. To falsify the equation
id ≤ xyx� ∨ y� in W, it suffices to find time warps fx and fy, and an element
p ∈ ω+, such that (fx◦fy◦f �

x)(p) < p and f �
y(p) < p. Although time warps are, as

functions on ω+, infinite objects, only finitely many of the values of fx and fy are
relevant for falsifying the equation. Moreover, an upper bound for the number
of values required for such a counterexample can be computed. The condition
(fx◦fy◦f �

x)(p) < p is ‘unravelled’ by stating that there exist α1, α2, α3 ∈ ω+ such
that α3 < p, where α1 := f �

x(p), α2 := fy(α1), and α3 := fx(α2). More formally,
using a ‘time variable’ κ to refer to the value p, we build a finite sample set Γ1 ⊇
{κ, x�[κ], y[x�[κ]], x[y[x�[κ]]]}, where Γ1 is ‘saturated’ with extra conditions used
to describe, e.g., the behavior of f �

x at relevant values. Similarly, we obtain a finite
saturated sample set Γ2 ⊇ {κ, y�[κ]} for the condition f �

y(p) < p. The problem
of deciding if there exists a counterexample to id ≤ xyx� ∨ y� then becomes the
problem of deciding if there exists a suitable function δ : Γ1∪Γ2 → ω+ satisfying
δ(x[y[x�[κ]]]) < δ(κ) and δ(y�[κ]]]) < δ(κ). In particular, δ should determine
partial sup-preserving functions f̂x and f̂y on ω+ satisfying f̂x(δ(α)) = δ(x[α])
for all x[α] ∈ Γ1 ∪ Γ2, and f̂y(δ(α)) = δ(y[α]) for all y[α] ∈ Γ1 ∪ Γ2.

Clearly, not every function δ from a saturated sample set to ω+ extends
to a valuation in W; e.g., if δ(κ) = 0, then we must also have δ(x[κ]) = 0.
Moreover, although time warp equations in the residual-free language can be
decided by considering an algebra of sup-preserving functions on a finite totally
ordered set, this is not the case for the full language.2 Section 3 develops a general
theory that precisely characterizes the functions—called diagrams—that extend
to valuations and can be used to falsify a given equation. This allows us to prove
that there exists a counterexample to id ≤ t1∨· · ·∨ tn if, and only if, there exists
a diagram δ : Γ → ω+ satisfying δ(κ) > δ(ti[κ]) for each i ∈ {1, . . . , n}, where Γ
is the finite saturated sample set extending {t1[κ], . . . , tn[κ]} (Theorem 31).

III. Encoding as a Satisfiability Query. In the last step of the algorithm,
described in Sect. 4, we use the decidability of the satisfiability problem in the
first-order logic of natural numbers with the natural ordering and successor.
More precisely, we show that the existence of a diagram in Theorem 31 can be
encoded as an existential first-order sentence in that signature. Concretely, our
algorithm constructs a quantifier-free formula which is satisfiable in the structure
(N,≤, S, 0) if, and only if, there exists a diagram as specified by Theorem 31.

1 The name ‘diagram’ recalls a similar concept used to prove the decidability of the
equational theory of lattice-ordered groups in [15].

2 Indeed, the equational theory of the time warp algebra without residuals coincides
with the equational theory of distributive lattice-ordered monoids [6], but an elegant
(finite) axiomatization of the equational theory in the full language is not known.
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Moreover, a satisfying assignment can be converted into a valuation into W that
provides a counterexample to the equation id ≤ t1 ∨ · · · ∨ tn.

2 A Normal Form for Time Warps

The main aim of this section is to provide a normal form for time warp terms. Our
first step is to provide a more precise description of the left and right residuals
of time warps. Note that to prove that two time warps are equal, it suffices to
show that they coincide on every non-zero natural number, since for any time
warp f , it is always the case that f(0) = 0 and f(ω) =

∨{f(n) | n ∈ ω}.
Lemma 2. For any time warps f, g and p ∈ ω+,

(a) (f\g)(p) =

⎧
⎪⎨

⎪⎩

0 if p = 0;
∨{q ∈ ω+ | f(q) ≤ g(p)} if p ∈ ω\{0};
∨{q ∈ ω+ | (∃m ∈ ω)(f(q) ≤ g(m))} if p = ω

(b) (g/f)(p) =
∧

g[{q ∈ ω+ | p ≤ f(q)}].
Proof. (a) Let h denote the function defined by cases on the right of the equation.
Clearly, h is monotonic and satisfies h(0) = 0 and h(ω) =

∨{h(n) | n ∈ ω}, so
h is a time warp. Moreover, since f preserves arbitrary joins, fh ≤ g, and
hence h ≤ f\g. For the converse, just observe that for any n ∈ ω\{0}, since
f((f\g)(n)) ≤ g(n), also (f\g)(n) ≤ h(n). So h = f\g.

(b) Let h be the function defined by h(p) :=
∧

g[{q ∈ ω+ | p ≤ f(q)}].
Clearly, h is monotonic and satisfies h(0) = 0 and h(ω) =

∨{h(n) | n ∈ ω}, so
h is a time warp. Moreover, hf ≤ g, and hence h ≤ g/f . For the converse, let
n ∈ ω\{0}. If q ∈ ω+ satisfies n ≤ f(q), then (g/f)(n) ≤ (g/f)(f(q)) ≤ g(q),
and hence (g/f)(n) ≤ ∧

g[{q ∈ ω+ | n ≤ f(q)}] = h(n). So h = g/f . ��
Next, we show that residuals of time warps distribute over joins and meets.

Lemma 3. For any time warps f, g, h,

(a) f\(g ∧ h) = (f\g) ∧ (f\h) (e) (g ∧ h)/f = (g/f) ∧ (h/f)
(b) (g ∧ h)\f = (g\f) ∨ (h\f) (f) f/(g ∧ h) = (f/g) ∨ (f/h)
(c) f\(g ∨ h) = (f\g) ∨ (f\h) (g) (g ∨ h)/f = (g/f) ∨ (h/f)
(d) (g ∨ h)\f = (g\f) ∧ (h\f) (h) f/(g ∨ h) = (f/g) ∧ (f/h).

Proof. Parts (a), (d), (e), and (h) hold in any residuated lattice (see, e.g., [3]).
For (b), consider any n ∈ ω\{0}. Using Lemma 2(a),

((g ∧ h)\f)(n) =
∨

{q ∈ ω+ | (g ∧ h)(q) ≤ f(n)}
=

∨
{q ∈ ω+ | g(q) ≤ f(n) or h(q) ≤ f(n)}

=
∨

{q ∈ ω+ | g(q) ≤ f(n)} ∨
∨

{q ∈ ω+ | h(q) ≤ f(n)}
= ((g\f) ∨ (h\f))(n).
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For (f), consider any n ∈ ω\{0}. Using Lemma 2(b),

(f/(g ∧ h))(n) =
∧

f [{q ∈ ω+ | n ≤ (g ∧ h)(q)}]
=

∧
f [{q ∈ ω+ | n ≤ g(q) and n ≤ h(q)}]

=
∧

f [{q ∈ ω+ | n ≤ g(q)}] ∨
∧

f [{q ∈ ω+ | n ≤ h(q)}]
= ((g/f) ∨ (h/f))(n).

Parts (c) and (g) are proved similarly. ��
It follows from Lemma 3 that every time warp term is equivalent to a meet of

joins of terms constructed using the operations ◦, \, /, id, ⊥, and �. However, we
can take this simplification process one step further by expressing the residuals
of time warps in terms of their restrictions to certain unary operations.

Definition 4. For any time warp f , let

f � := id/f, f r := f\id, and fo := �\f.

Lemma 5. For any time warps f, g,

(a) f\g = f rg ∨ (�f)r ∨ go

(b) g/f = gf � ∨ (f �)o.

Proof. For (a), note first that clearly f rg ∨ (�f)r ∨ go ≤ f\g. For the converse,
consider any n ∈ ω\{0}. If g(n) = 0, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ 0} =
∨

{q ∈ ω+ | �f(q) ≤ id(n)} = (�f)r(n).

If g(n) ∈ ω\{0}, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ g(n)} =
∨

{q ∈ ω+ | f(q) ≤ id(g(n))} = f r(g(n)).

Finally, if g(n) = ω, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ ω)} = ω =
∨

{q ∈ ω+ | �(q) ≤ ω)} = go(n).

So f\g = f rg ∨ (�f)r ∨ go.
For (b), note first that clearly gf � ∨ (f �)o ≤ g/f . For the converse, consider

any n ∈ ω\{0}. If {q ∈ ω+ | n ≤ f(q)} = ∅, then, by Lemma 2(b),

(g/f)(n) =
∧

g[∅] = ω = ((f �)
o
)(n).

Otherwise, {q ∈ ω+ | n ≤ f(q)} �= ∅ and, by Lemma 2(b),

(g/f)(n) =
∧

g[{q ∈ ω+ | n ≤ f(q)}] = g(
∧

id[{q ∈ ω+ | n ≤ f(q)}]) = (gf �)(n).

So g/f = gf � ∨ (f �)o. ��
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To gain a better understanding of these defined unary operations, we observe
that Lemma 2 yields for any n ∈ ω\{0},

fo(n) = max{m ∈ ω+ | ω ≤ f(n)}
f r(n) = max{m ∈ ω+ | f(m) ≤ n}
f �(n) =

∧
{m ∈ ω+ | n ≤ f(m)}.

The following lemmas collect some simple consequences of these observations.

Lemma 6. For any time warp f and n ∈ ω\{0},
fo(n) = 0 ⇐⇒ f(n) < ω

fo(n) = ω ⇐⇒ f(n) = ω

fo(ω) = 0 ⇐⇒ f(k) < ω for all k ∈ ω

fo(ω) = ω ⇐⇒ f(k) = ω for some k ∈ ω.

Lemma 7. For any time warp f , n ∈ ω\{0}, and m ∈ ω,

f r(n) = m ⇐⇒ f(m) ≤ n < f(m + 1)
f r(n) = ω ⇐⇒ f(ω) ≤ n

f r(ω) = m ⇐⇒ f(m + 1) = ω and f r(k) = m for some k ∈ ω

f r(ω) = ω ⇐⇒ f(ω) < ω or (f(ω) = ω and ∀k ∈ ω : f(k) < ω).

Lemma 8. For any time warp f , n ∈ ω\{0}, and m ∈ ω,

f �(n) = m ⇐⇒ f(m − 1) < n ≤ f(m)

f �(n) = ω ⇐⇒ f(ω) < n

f �(ω) = m ⇐⇒ f(m) = ω and f �(k) = m for some k ∈ ω

f �(ω) = ω ⇐⇒ f(ω) < ω or (f(ω) = ω and ∀k ∈ ω : f(k) < ω).

Note also that � = ⊥�. We call a time warp term basic if it is constructed
using only ◦, id, ⊥, and the defined operations t� := id/t, tr := t\id, and to := �\t.
Our normal form theorem now follows, using Lemma 5 to remove residuals from
a time warp term, then Lemma 3 and other distributivity properties of W to
push out meets and joins, preserving equivalence in W at every step.

Theorem 9. There is an effective procedure that given any time warp term
t, produces positive integers m,n1, . . . , nm and a set of basic time warp terms
{ti,j | 1 ≤ i ≤ m; 1 ≤ j ≤ ni} satisfying W |= t ≈ ∧m

i=1

∨ni

j=1 ti,j.

Corollary 10. The equational theory of W is decidable if, and only if, there
exists an effective procedure that decides for any finite non-empty set of basic
time warp terms {t1, . . . , tn} if W |= id ≤ t1 ∨ · · · ∨ tn.

We conclude this section by introducing a further notion that will be useful
for providing finitary characterizations of time warps.
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Definition 11. For any time warp f , let

last(f) :=
∧

{p ∈ ω+ | f(p) = f(ω)}.

Observe that last(f) < ω if, and only if, f is eventually constant, i.e., increases
a finite number of times, and that last(f) can be defined equivalently in the
language of time warps as (f �f)(ω). For future reference, we record the following
easy consequences of this definition.

Lemma 12. For any time warps f, g,

(a) last(fg) = ω ⇐⇒ (last(f) = ω and last(g) = ω)
(b) last(f) = ω ⇐⇒ last(f r) = ω ⇐⇒ last(f �) = ω.

3 Diagrams

In this section, we define diagrams as finitary characterizations of ‘potential
counterexamples’ for equations of the form id ≤ t1 ∨ · · · ∨ tn, where each ti
is a basic time warp term. This definition is obtained by considering relevant
properties of time warps assigned to variables in a refuting valuation, and it
therefore follows easily that if W �|= id ≤ t1∨· · ·∨ tn, then there exists a suitable
refuting diagram. The more challenging direction is to show that every refuting
diagram extends to a refuting valuation witnessing W �|= id ≤ t1 ∨ · · · ∨ tn.

Note first that, using Theorem 9, we may without loss of generality express
validity in W using a simplified language where the restricted residuals are taken
as fundamental operations. Let TV be a countably infinite set of term variables,
with elements denoted by x, y, z, etc.

Definition 13. A basic term belongs to the grammar

T � t, u ::= x | tu | to | t� | tr | id | ⊥.

We also define valuations and interpretations explicitly for basic terms.

Definition 14. A valuation θ is a map TV → W . The interpretation of a basic
term t under θ, denoted by �t�θ, is the time warp defined inductively by

�x�θ := θ(x), �tu�θ := �t�θ�u�θ, �t��θ := �t��
θ for � ∈ {o, 	, r}.

Corollary 10 tells us that the equational theory of W is decidable if, and only if,
there exists an effective procedure that decides, for any finite set of basic terms T ,
if there exists a valuation θ and p ∈ ω+ such that �t�θ(p) < p for all t ∈ T . To refer
to this element p, we letIV be a countably infinite set of time variables containing
elements denoted by κ, κ′, etc., noting that in fact only one time variable will be
required for the proofs in this paper. We now define a new language of ‘samples’
that will be used to refer to values considered in a diagram.

Definition 15. A sample belongs to the grammar (where t is any basic term)

I � α ::= κ | t[α] | s(α) | p(α) | last(t).
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Although samples are purely syntactic, the notation is indicative of their
intended meaning. Given an initial sample set {t1[κ], . . . , tn[κ]}, obtained from
the equation id ≤ t1 ∨ · · · ∨ tn, the idea is to ‘saturate’ this set by adding further
samples required to describe the existence of a counterexample.

Definition 16. A sample set Δ is called saturated if whenever α ∈ Δ and α �
β, also β ∈ Δ, where � is the relation between samples defined by

t[α] � α to[α] � t[α]
s(α) � α tr[α] � t[tr[α]], t[s(tr[α])]

p(α) � α t�[α] � t[t�[α]], t[p(t�[α])]
tu[α] � t[u[α]] t[α] � t[last(t)].

The saturation of a sample set Δ is

Δ� := {β | ∃α ∈ Δ,α �∗ β},
where �∗ denotes the reflexive transitive closure of �.

A proof of the following result can be found in [13, Appendix A.1].

Lemma 17. The saturation of a finite sample set is finite.

Let us fix, until after Definition 25, a saturated sample set Δ.

Definition 18. A Δ-prediagram is a map δ : Δ → ω+.

We now give a list of conditions for a Δ-prediagram to be a Δ-diagram.

Definition 19. For p ∈ ω+, let

p � 1 :=

{
p − 1 if p ∈ ω \{0}
p if p ∈ {0, ω} , p ⊕ 1 :=

{
p + 1 if p ∈ ω

p if p = ω
.

Definition 20. A Δ-prediagram δ is called structurally-sound if

∀t[α], t[β] ∈ Δ, δ(α) ≤ δ(β) ⇒ δ(t[α]) ≤ δ(t[β]) (1)
∀t[α] ∈ Δ, δ(α) = 0 ⇒ δ(t[α]) = 0 (2)
∀p(α) ∈ Δ, δ(p(α)) = δ(α) � 1 (3)
∀s(α) ∈ Δ, δ(s(α)) = δ(α) ⊕ 1 (4)
∀t[α] ∈ Δ, δ(last(t)) ≤ δ(α) ⇔ δ(t[α]) = δ(t[last(t)]) (5)

∀t[last(t)] ∈ Δ, δ(last(t)) = ω ⇒ δ(t[last(t)]) = ω. (6)

Definition 21. A Δ-prediagram δ is called logically-sound if

∀id[α] ∈ Δ, δ(id[α]) = δ(α) (7)
∀⊥[α] ∈ Δ, δ(last(⊥)) = 0 (8)
∀tu[α] ∈ Δ, δ(tu[α]) = δ(t[u[α]]) (9)

∀tu[last(tu)] ∈ Δ, δ(last(tu)) = ω ⇒ δ(last(t)) = δ(last(u)) = ω. (10)



318 S. van Gool et al.

Definition 22. A Δ-prediagram δ is called o-sound if

∀to[α] ∈ Δ, δ(to[α]) = 0 or δ(to[α]) = ω (11)
∀to[α] ∈ Δ, δ(α) < ω ⇒ (δ(to[α]) = ω ⇔ δ(t[α]) = ω) (12)

∀last(to) ∈ Δ, δ(last(to)) < ω (13)
∀t[α], to[last(to)] ∈ Δ, (δ(to[last(to)]) < ω and δ(α) < ω) ⇒ δ(t[α]) < ω. (14)

Definition 23. A Δ-prediagram δ is called r-sound if

∀t[tr[α]] ∈ Δ, δ(t[tr[α]]) ≤ δ(α) (15)
∀tr[α] ∈ Δ, (0 < δ(α) < ω and δ(tr[α]) < ω) ⇒ δ(α) < δ(t[s(tr[α])])

(16)

∀tr[last(tr)] ∈ Δ, δ(last(tr)) = ω ⇒ δ(last(t)) = ω (17)
∀tr[last(tr)] ∈ Δ, δ(tr[last(tr)]) < ω ⇒ δ(t[s(tr[last(tr)])]) = ω. (18)

Definition 24. A Δ-prediagram δ is called 	-sound if

∀t[t�[α]] ∈ Δ, δ(t�[α]) < ω ⇒ δ(α) ≤ δ(t[t�[α]]) (19)

∀t�[α] ∈ Δ, (0 < δ(α) < ω and δ(t�[α]) < ω) ⇒ δ(t[p(t�[α])]) < δ(α)
(20)

∀t[t�[α]] ∈ Δ, (δ(α) < ω and δ(t�[α]) = ω) ⇒ δ(t[t�[α]]) < δ(α) (21)

∀t�[last(t�)] ∈ Δ, δ(last(t�)) = ω ⇒ δ(last(t)) = ω (22)

∀t�[last(t�)] ∈ Δ, δ(t�[last(t�)]) < ω ⇒ δ(t[t�[last(t�)]]) = ω. (23)

Definition 25. A Δ-prediagram δ is called a Δ-diagram if it is structurally
sound, logically sound, o-sound, 	-sound, and r-sound.

It follows from the next proposition that any counterexample to the validity
of an equation in W restricts to a finite diagram witnessing this failure. More
precisely, if W �|= id ≤ t1 ∨ · · · ∨ tn, where each ti is a basic term, and Δ is the
saturation of the sample set {t1[κ], . . . , tn[κ]}, then there exists a Δ-diagram δ
satisfying δ(κ) > δ(ti[κ]) for each i ∈ {1, . . . , n}.
Proposition 26. Let T be a set of basic terms, κ a time variable, and Δ the
saturation of the sample set {t[κ] | t ∈ T}. Then for any valuation θ and p ∈ ω+,
there exists a Δ-diagram δ such that δ(κ) = p and δ(t[κ]) = �t�θ(p) for all t ∈ T .

Proof. We define the map δ : Δ → ω+ recursively by

δ(κ) := p
∀t[α] ∈ Δ, δ(t[α]) := �t�θ(δ(α))

∀last(t) ∈ Δ, δ(last(t)) := last(�t�θ)
∀p(α) ∈ Δ, δ(p(α)) := δ(α) � 1
∀s(α) ∈ Δ, δ(s(α)) := δ(α) ⊕ 1.
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The map δ is well-defined since α ∈ Δ if, and only if, there exist samples
α1, . . . , αn such that α1 = t[κ] for some t ∈ T , αn = α, and αj � αj+1 for each
j ∈ {1, . . . , n− 1}. So δ is a Δ-prediagram. A proof that δ is a Δ-diagram—i.e.,
that δ satisfies conditions conditions (1) to (23)—may be found in [13, Appendix
A.2]. ��

We now turn our attention to proving that every Δ-diagram δ extends to a
valuation θ satisfying �t�θ(δ(α)) = δ(t[α]) for all t[α] ∈ Δ. First, we use δ to
define a partial sup-preserving function �t�δ for each basic term t.

Definition 27. For any Δ-diagram δ and basic term t, let

�t�δ := {(δ(α), δ(t[α])) | t[α] ∈ Δ}.
A time warp f extends �t�δ if f(i) = j for all (i, j) ∈ �t�δ, and strongly extends

�t�δ if also

either �t�δ = ∅ or (�t�δ �= ∅ and δ(last(t)) = ω =⇒ last(f) = ω).

Lemma 28. There exists an effective procedure that produces for any finite Δ-
diagram δ and term variable x, an algorithmic description of a time warp f that
strongly extends �x�δ.

Proof. If �x�δ = ∅, then any time warp strongly extends it, so assume �x�δ �= ∅.
By (1), �x�δ can be considered as a partial map from ω+ to ω+. Moreover,
since Δ is saturated, and, by (5), δ(x[last(x)]) ≥ j for all (i, j) ∈ �x�δ, we
have (δ(last(x)), δ(x[last(x)])) ∈ �x�δ.

Let X := �x�δ ∪ {(0, 0), (ω, δ(x[last(x)]))}. This is still a partial map by (2)
and (5). For each i ∈ ω, there exists a unique pair (i1, j1), (i2, j2) ∈ X such
that i1 ≤ i < i2 and there is no (i3, j3) ∈ X with i1 < i3 < i2, and we define

f(i) := min(j2, j1 ⊕ (i − i1)),

where n ⊕ m := min{ω, n + m}. Let also f(ω) := δ(x[last(x)])).
Clearly f is monotonic. It extends �x�δ, since i = i1 < ω implies f(i1) =

min(j2, j1) = j1. In particular, f(0) = 0. To confirm that f is a time warp, it
remains to show that f(ω) =

∨{f(i) | i ∈ ω}. If δ(x[last(x)]) = f(ω) < ω, then,
by (6), δ(last(x)) < ω and, by monotonicity, f(i) = f(ω) for each i ≥ δ(last(x))
and f(ω) = f(δ(last(x))) =

∨{f(i) | i ∈ ω}. If f(ω) = ω, then for each j ∈ ω,
there exists an i ∈ ω such that f(i) > j, and hence

∨
i<ω f(i) = ω = f(ω).

Finally, suppose that δ(last(x)) = ω. Then (6) yields (ω, ω) ∈ �x�δ and for
any (i, j) ∈ �x�δ, if i ∈ ω, then also j ∈ ω. Hence, last(f) = ω, by the definition
of f . So f strongly extends �x�δ. ��
Lemma 29. For every basic term t, valuation θ, and Δ-diagram δ, if θ(x)
strongly extends �x�δ for every term variable x, then �t�θ strongly extends �t�δ.

Proof. By induction on t. The case t = x is immediate and the other cases
follow by a series of lemmas proved in [13, Appendix A.2], and the induction
hypothesis. ��

The next proposition is then a direct consequence of Lemmas 28 and 29.
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Proposition 30. There is an effective procedure that produces for any finite Δ-
diagram δ, an algorithmic description of a valuation θ satisfying �t�θ(δ(α)) =
δ(t[α]) for all t[α] ∈ Δ.

We are now ready to establish the main theorem of this section.

Theorem 31. Let t1, . . . , tn be basic terms, κ a time variable, and Δ the satu-
ration of the sample set {t1[κ], . . . , tn[κ]}. Then W �|= id ≤ t1 ∨ · · · ∨ tn if, and
only if, there exists a Δ-diagram δ such that δ(κ) > δ(ti[κ]) for all i ∈ {1, . . . , n}.
Proof. Suppose first that W �|= id ≤ t1 ∨ · · · ∨ tn. Then there exist a valuation
θ and p ∈ ω+ such that p = id(p) > �ti�θ(p) for all i ∈ {1, . . . , n}. Hence, by
Proposition 26, there exists a Δ-diagram δ such that δ(κ) = p > �ti�θ(p) =
δ(ti[κ]) for all i ∈ {1, . . . , n}.

Now suppose that there exists a Δ-diagram δ such that δ(κ) > δ(ti[κ]) for
all i ∈ {1, . . . , n}. Then, by Proposition 30, there exists a valuation θ such that
�ti�θ(δ(κ)) = δ(ti[κ]) for all i ∈ {1, . . . , n}. So id(δ(κ)) = δ(κ) > �ti�θ(δ(κ)) for
all i ∈ {1, . . . , n}. Hence W �|= id ≤ t1 ∨ · · · ∨ tn. ��

4 Decidability via Logic

Let t1, . . . , tn be basic terms, κ a time variable, and Δ the saturation of the
sample set {t1[κ], . . . , tn[κ]}. Our aim in this section is to express the existence
of a Δ-diagram witnessing W �|= id ≤ t1 ∨ . . .∨ tn, as stated in Theorem 31, via
an existential sentence over the natural numbers with the ordering and successor
relations. Since the first-order theory of this structure is decidable, it follows that
the equational theory of W is decidable, concluding the proof of Theorem 1.

Note that in the logic encoding, we will no longer allow ω as a value for
the variables. The theoretical reason why this is possible is that the ordinal
ω+ admits a first-order (even quantifier-free) interpretation in ω. However, we
will avoid relying upon such model-theoretic generalities here and just give the
necessary concrete definitions.

Our construction of a first-order formula φ encoding the existence of a Δ-
diagram uses the samples in Δ as variables and proceeds in two steps:

1. We define a formula ψ with variables in Δ, intended to be interpreted in ω+,
using the order relation symbol �, the successor relation symbol S, and two
further unary relation symbols O and I, where the intended interpretations
of O(x) and I(x) are “x = ω” and “x = 0”, respectively.

2. We obtain φ by eliminating the symbols O and I from ψ and re-interpreting
� and S using an encoding of ω+ in the structure (N,≤, S, 0).

Let τ be the relational first-order signature with two binary relation symbols
� and S, and two unary relation symbols O and I. We consider ω+ as a τ -
structure by defining �ω+

to be the natural ordering of ω+, Sω+
:= {(n, n + 1) |

n ∈ ω} ∪ {(ω, ω)}, Iω+
:= {0}, and Oω+

:= {ω}. Note that a Δ-prediagram is a
valuation of the variables in Δ in this structure.
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We define ψ by translating the defining properties of being a Δ-diagram
into quantifier-free formulas of first-order logic in the signature τ with variables
from Δ. In the following definition, the symbols � and � denote the logical
connectives ‘and’ and ‘or’, respectively, and the notation a ≺ b is shorthand for
a � b�¬(b � a). Note also that ψ is well-defined, since Δ is finite by Lemma 17.

Definition 32. Let ψ be the first-order quantifier-free τ -formula

�(struct ∪ log ∪ bounds ∪ right ∪ left ∪ fail),

where the first five sets, corresponding to Definitions 20–24 in the definition of
a diagram, and fail, expressing the failure of id ≤ t1 ∨ . . . ∨ tn in W at the time
variable κ, are defined as follows:

struct := {α � β ⇒ t[α] � t[β] | t[α], t[β] ∈ Δ} ∪
{I(α) ⇒ I(t[α]) | t[α] ∈ Δ} ∪
{S(p(α), α) � (I(p(α)) � I(α)) | p(α) ∈ Δ} ∪
{S(α, s(α)) | s(α) ∈ Δ} ∪
{last(t) � α ⇔ t[α] = t[last[t]] | t[α] ∈ Δ} ∪
{O(last(t)) ⇒ O(t[last(t)]) | t[last(t)] ∈ Δ}

log := {id[α] = α | id[α] ∈ Δ} ∪
{I(last(⊥)) | ⊥[α] ∈ Δ} ∪
{tu[α] = t[u[α]] | tu[α] ∈ Δ} ∪
{O(last(tu)) ⇒ (O(last(t)) � O(last(u))) | tu[last(tu)] ∈ Δ}

bounds := {I(to[α]) � O(to[α]) | to[α] ∈ Δ} ∪
{¬O(α) ⇒ (O(to[α]) ⇔ O(t[α])) | to[α] ∈ Δ} ∪
{¬O(last(to)) | last(to) ∈ Δ} ∪
{(¬O(to[last(to)]) � ¬O(α)) ⇒ ¬O(t[α]) | t[α], to[last(to)] ∈ Δ}

right := {t[tr[α]] � α | t[tr[α]] ∈ Δ}∪
{(¬I(α) � ¬O(α) � ¬O(tr[α]) ⇒ α ≺ t[s(tr[α])] | t[s(tr[α])] ∈ Δ} ∪
{O(last(tr)) ⇒ O(last(t)) | tr[last(tr)] ∈ Δ} ∪
{¬O(tr[last(tr)]) ⇒ O(t[s(tr[last(tr)])]) | t[s(tr[last(tr)])] ∈ Δ}

left := {¬O(t�[α]) ⇒ α � t[t�[α]] | t[t�[α]] ∈ Δ} ∪
{(¬I(α) � ¬O(α) � ¬O(t�[α])) ⇒ t[p(t�[α])] ≺ α | t[p(t�[α])] ∈ Δ} ∪
{(¬O(α) � O(t�[α])) ⇒ t[t�[α]] ≺ α | t[t�[α]] ∈ Δ} ∪
{O(last(t�)) ⇒ O(last(t)) | t�[last(t�)] ∈ Δ} ∪
{¬O({t�[last(t�)]} ⇒ O(t[t�[last(t�)]]) | t�[last(t�)] ∈ Δ}

fail := {ti[κ] ≺ κ | 1 ≤ i ≤ n}.
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The next lemma then follows directly from the definition of a Δ-diagram.

Lemma 33. Let δ : Δ → ω+ be a Δ-prediagram. Then ω+, δ |= ψ if, and only
if, δ is a Δ-diagram such that δ(ti[κ]) < δ(κ) for each i ∈ {1, . . . , n}.

Theorem 31 and Lemma 33 together show that W �|= id ≤ t1 ∨ . . . ∨ tn
if, and only, if ψ is satisfiable in ω+. We could therefore conclude the proof of
Theorem 1 at this point by appealing to classical decidability results on the
first-order theory of ordinals [17]. Instead, however, we show explicitly how to
interpret the τ -structure ω+ inside the standard model (N,≤, S, 0), which is
more commonly available in satisfiability solvers.

Consider the first-order signature σ with two binary relation symbols ≤ and
S, and one constant symbol 0, and let N denote the σ-structure based on the
natural numbers, where ≤N is the usual order, SN := {(n, n + 1) | n ∈ N},
and 0N := 0. The following definition and lemma contain the crucial observation
needed for encoding τ -formulas over ω+ into σ-formulas over N.3

Definition 34. Define the bijection ι : N → ω+ by ι(0) := ω, and ι(n) := n − 1
for each n ∈ ω \{0}.

For any valuation w : Δ → N, let ŵ : Δ → ω+ denote the function defined
by ŵ(x) := ι(w(x)). Note that the map w  → ŵ is a bijection between NΔ and
(ω+)Δ, since ι is a bijection.

Lemma 35. Let χ be a quantifier-free τ -formula. Define χ′ to be the quantifier-
free σ-formula obtained from χ by making the following symbolic substitutions
for every occurrence of an atomic formula in χ:

(i) O(x) is replaced by x = 0
(ii) I(x) is replaced by S(0, x)
(iii) S(x, y) is replaced by (x = 0 � y = 0) � (¬(x = 0) � S(x, y))
(iv) x � y is replaced by y = 0 � (¬(x = 0) � x ≤ y).

Then, for any valuation w : Δ → N, N, w |= χ′ if, and only if, ω+, ŵ |= χ.

Proof. By induction on the complexity of χ. The induction step is immediate,
and the atomic cases essentially follow from the definitions; we just show the
proof for x � y as an example. For any valuation w, we have ω+, ŵ |= x � y
if, and only if, ŵ(y) = ω or (ŵ(x) �= ω and ŵ(x) ≤ ŵ(y)) in ω+. Using the
definition of ŵ, this is equivalent to w(y) = 0 or (w(x) �= 0 and w(x) ≤ w(y)) in
N, that is, N, w |= y = 0 � (¬(x = 0) � x ≤ y). ��

Finally, we define our quantifier-free σ-formula φ encoding the non-validity
of id ≤ t1 ∨ · · · ∨ tn in W.

Definition 36. Let φ := ψ′, the σ-formula obtained from the τ -formula ψ
(Definition 32) by performing the replacements in Lemma 35.

3 We thank Thomas Colcombet for suggesting this idea.
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We are now ready to put everything together.

Theorem 37. The time warp equation id ≤ t1∨· · ·∨tn is valid in W if, and only
if, the quantifier-free σ-formula φ is unsatisfiable in N. Moreover, any valuation
w : Δ → N such that N, w |= φ effectively yields a valuation θ of the time warp
variables occurring in t1 ∨ · · · ∨ tn such that W, θ |= id � t1 ∨ · · · ∨ tn.

Proof. By Theorem 31, the equation id ≤ t1,∨ · · · ∨ tn is not valid in W if, and
only if, there exists a Δ-diagram δ such that δ(ti[κ]) < δ(κ) for all i ∈ {1, . . . , n}.
By Lemma 33, the latter is equivalent to the existence of a valuation v : Δ → ω+

such that ω+, v |= ψ. By Lemma 35, the latter is in turn equivalent to the
existence of a valuation w : Δ → N such that N, w |= φ.

For the second claim, we retrace our steps. If w : Δ → N is a valuation such
that N, w |= φ, define the function δ : Δ → ω+ by δ(α) := ι(w(α)) for α ∈ Δ. By
Lemma 33, δ is a Δ-diagram such that δ(ti[κ]) < δ(κ) for each i ∈ {1, . . . , n}. By
Proposition 30, δ effectively yields a valuation θ that falsfies id ≤ t1 ∨ · · · ∨ tn. ��

Theorem 1 follows now directly from Theorem 37 and the decidability of the
first-order theory of N (see, e.g., [17]).

Concluding Remark. The proof of Theorem 37, together with the normal
form results of Sect. 2, provides a decision procedure for the equational theory
of the time warp algebra, as explained in Sect. 1. We are currently in the pro-
cess of implementing this decision procedure in a software tool. This tool is
written in the OCaml functional programming language [18] and uses the Z3
theorem prover [21] to decide the satisfiability of the final logic formula. Our
experiments with a preliminary implementation for basic time warp terms have
been encouraging so far, and we hope to integrate a full version in a compiler for
graded modalities. From a complexity perspective, the most challenging issue is
to deal with the potentially very large saturated sample sets and corresponding
logic formulas produced by time warp equations. We therefore intend to consider
encodings of the decision problem for time warps using alternative, possibly more
efficient, data structures supported by the Z3 theorem prover, such as arrays, as
suggested by a referee of this paper (see [4]).
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Abstract. Variants of Kleene algebra have been used to provide foun-
dations of reasoning about programs, for instance by representing Hoare
Logic (HL) in algebra. That work has generally emphasised program cor-
rectness, i.e., proving the absence of bugs. Recently, Incorrectness Logic
(IL) has been advanced as a formalism for the dual problem: proving the
presence of bugs. IL is intended to underpin the use of logic in program
testing and static bug finding. Here, we use a Kleene algebra with dia-
mond operators and countable joins of tests, which embeds IL, and which
also is complete for reasoning about the image of the embedding. Next
to embedding IL, the algebra is able to embed HL, and allows making
connections between IL and HL specifications. In this sense, it unifies
correctness and incorrectness reasoning in one formalism.

1 Introduction

1.1 Context

My basic mistake was to set up proof in opposition to testing, where in fact
both of them are valuable and mutually supportive ways of accumulating
evidence of the correctness and serviceability of programs. T. Hoare [17]

Beginning with fundamental work of Kozen and others, variants of Kleene
algebra have been used as foundations for program logics. Typically, a translation
is given from a logic, such as Hoare Logic (HL, [16]), into the algebra [22].
This approach has been extended to other program logics such as modal [11]
and concurrency logics [18]. Work has generally emphasised correctness, i.e.,
proving the absence of bugs. While that is a worthy ideal, significant programs
are often not wholly free of bugs and may never be as they continue evolving. So
much attention and energy is spent in engineering practice on testing and other
methods of finding specific bugs, rather than proving that none can ever occur.

Despite the practical importance of bug finding, theoretical research on rea-
soning about programs has concentrated to a much greater extent on correctness.
Testing and verification are sometimes even seen in opposition to one another.
The third author described his regret for this in the quotation above, from a
retrospective in 2009, 40 years after the appearance of Hoare’s Logic. In recent
c© The Author(s) 2021
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years he and the second author have turned attention to theories of testing and
static analysis as ways of showing program incorrectness, and the second author
introduced Incorrectness Logic (IL) as a dual formalism to HL, oriented to prov-
ing the presence of bugs rather than their absence [25]. It was shown in [25] that
IL can be used to represent a variety of bug finding approaches, ranging from
traditional testing, to symbolic execution [8], to compositional analyses which
use logic to summarise the effect of a program component [14].

The present paper deals with representing IL in Kleene algebra. We don’t
repeat the motivations for IL or the examples illustrating it, and instead refer the
reader to the developments in [25,26]. Our interest here is to extend Kleene alge-
bra’s successful treatment of program correctness to encompass incorrectness as
well. The first aim is to pinpoint the algebraic properties needed to represent IL;
secondly we want to represent both IL and HL in the same algebra. This second
aim replaces the opposition described in the quotation at the beginning with
theoretical unification. We are building on work on the unifying role of Kleene
algebra in connecting denotational and operational semantics and program log-
ics for correctness (e.g., [18,19]); we are adding incorrectness to the picture here.
Note that both HL and IL deal with partial correctness, not with termination.
Other limitations of our results are mentioned at the end of the paper.

1.2 Technical Approach

IL uses an under-approximate triple [25,27], dual to Hoare’s triple:

(IL) [[ p ]] c [[ q ]] ⇔df q ⊆ sp(c, p) (HL) {p} c {q} ⇔df q ⊇ sp(c, p)

Here, sp(c, p) is the strongest postcondition: in a binary relation model, c is a
relation, p a set of states, and sp(c, p) the image of the restriction of c to p. In
the sequel we abbreviate pre/postcondition by just pre/post. The Hoare triple
{p} c {q} stipulates that the post q be a superset, an over-approximation, of
the states reachable via c from p, while the under-approximate triple [[ p ]] c [[ q ]]
requires that q be a subset, an under-approximation.

The terminology over/under-approximation comes from automatic program
analysis. The method of Floyd [13] associates an assertion describing a superset
of the reachable states with each program point, and this corresponds to Hoare
triples (or more generally to abstract interpretations [10]). Over-approximation
may lead to false positives (bug claims that are not true) in program analysis,
but not false negatives (missed bugs). Dually, an analysis computing an under-
approximation at each program point avoids false positives but may suffer from
false negatives. Under-approximate analysis is performed by testing and symbolic
bug-finding tools. In such an analysis there would be an under-approximate triple
relating the program start state with any given program point.

It is well known that sp(c, p) can be seen as a backwards diamond modality
in the sense of dynamic logic. So, it is natural to employ a Modal Kleene Algebra
[12] to represent the under-approximate triple algebraically. This has the pleasant
consequence that the Hoare triple, which is usually defined in Kleene algebra
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without recourse to sp(c, p), enjoys a description that can be connected at once
to its under-approximate cousin in a way that formalises aspects of testing and
verification as mutually supportive ways of obtaining evidence (see Theorem
4.1 and Theorem 4.5). In addition to connecting over- and under-approximate
triples, we also study a version of IL as in [25] in which assertions are embedded
as statements within programs in such a way that their violation signals an error.

We start from one of Kozen’s variants of Kleene algebra [21], an idempotent
semiring (equivalently, an ordered monoid with all finite joins, cf. Definition 2.1)
with an additional operator ∗ satisfying two unfolding and two induction axioms.
Modal Kleene Algebra enriches that with diamond operators [12]. This indeed
gives us a way to interpret all IL proof rules except an infinitary proof prin-
ciple which is used to obtain a completeness theorem for under-approximate
reasoning:

∀n ∈ N : [[ pn ]] a [[ pn+1 ]]

[[ p0 ]] a∗ [[
∨

n∈N

pn ]] (Iteration)

To model this rule we need countable joins of tests, where a test is a com-
plemented algebra element below the unit of sequential composition. We show
that Kleene Algebra with diamonds and countable joins of tests is sound and
(relatively) complete for under-approximate triples. A version of this infinitary
principle is actually sound in Hoare logic but usually not stated because loop
invariants provide a complete reasoning technique for over-approximation. Loop
invariants are not complete for under-approximation.

Our technical development begins in Sect. 2 with the algebraic framework,
viz. Modal Kleene algebra with countable suprema of tests (CTC algebras).
In Sect. 3 we prove soundness and completeness of a proof system for under-
approximate triples over CTC algebras. Section 4 connects under-approximation
to incorrectness by showing how under-approximate triples can be used to dis-
prove Hoare triples, as well as treating a language with embedded assertions with
error and ok information. In Sect. 5 we use the algebra to present another vari-
ant of incorrectness reasoning based on backwards rather than forwards under-
approximation. Section 6 concludes.

2 Modal Kleene Algebra

Throughout the paper we refer to a particular example, the “relation model”,
which is an algebra where the carrier A = P (S×S) is the set of binary relations
on a set S. a · b denotes the composition in diagrammatic order (sequential
composition) of relations, + denotes their union, 1 is the identity relation, 0
the empty relation, and a∗ is the reflexive-transitive closure of a. If p ⊆ S then
sp(a, p) is the image {s′ | ∃s ∈ p : (s, s′) ∈ a}. The relation model is a Boolean
quantale (details below) where a∗ is a certain least fixed-point. Some Boolean
quantales, like the algebras of relations and of sets of graph paths, satisfy the
algebraic properties we need to interpret IL, thus giving us a wide range of
models, but we seek to identify lesser structure that supports interpretation.
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2.1 Idempotent Semirings, Tests and Diamonds

Definition 2.1
1. An idempotent semiring, briefly I-semiring, is a structure (A,+, ·, 0, 1) such

that (A,+, 0) is a commutative monoid with idempotent addition, (A, ·, 1) is
a monoid, multiplication distributes from both sides over addition and 0 is
an annihilator for multiplication, that is, 0 · a = 0 = a · 0 for all a ∈ A.

2. Every I-semiring can be partially ordered by setting a ≤ b ⇔df a + b = b.
Then + and · are isotone w.r.t. ≤ and 0 is the least element. This makes A
an upper semilattice with join operator + and least element 0. If existing,
the least upper bound (lub) of a subset B ⊆ A is denoted by 	B. With this,
a + b = 	{a, b}. For uniformity we write

⊔

i<k

ai instead of Σ
i<k

ai.

Definition 2.2. A test in an I-semiring is an element p that has a complement
¬p relative to the multiplicative unit 1, namely p+¬p = 1 and p·¬p = 0 = ¬p·p.
The set of all tests in A is denoted by test(A). A is called countably test-complete
(CTC) if every countable subset of test(A) has a lub. (This is equivalent to
stipulating that every countable chain of tests has a lub.)

The complement ¬p is unique when it exists. The composition p · q of tests
represents logical conjunction and is the meet of p and q. Symmetrically, p + q
represents disjunction and is the join. Finally, p ≤ q represents implication.

Using tests we can axiomatise the modal operators diamond and box. For IL
we only need the backward diamond. For a ∈ A and p ∈ test(A) the test 〈〈a||p
characterises the set of states that can be reached from p in a single a-step, i.e.,
the image of p under a. We use the following axiomatization of diamond.

Definition 2.3. A backward diamond semiring is a structure (A,+, ·, 0, 1, 〈〈 ||)
such that (A,+, ·, 0, 1) is an I-semiring and 〈〈 || : A × test(A) → test(A) is an
operator satisfying the axioms

〈〈a||q ≤ p ⇔ q · a ≤ a · p (bdia1) 〈〈a · b||q = 〈〈b||(〈〈a||p) (bdia2)
The backward box is the De Morgan dual of the diamond: [[a||p =df ¬〈〈a||¬q.

(bdia1) implies that diamond is additive in both arguments, while (bdia2)
stipulates that it is multiplicative in its first argument and hence preserves com-
position. In the relation model the diamond 〈〈a||p corresponds to sp(a, p).

Our presentation uses a direct axiomatisation of backward modalities. An
alternative is to axiomatise a codomain operator � : A → test(A) and then
define 〈〈a||p = (p · a)�. Conversely, one can define codomain in terms of dia-
mond as a� =df 〈〈a||1. Adopting a definition based on Kleene Algebra with
(Co)Domain [12] or based on diamonds is just a presentational choice.

Definition 2.4. A modal semiring is a structure (A,+, ·, 0, 1, 〈〈 ||, 〈〈 ||) such that
(A,+, ·, 0, 1, 〈〈 ||) is a backward diamond semiring and the forward diamond oper-
ator || 〉〉 : A × test(A) → test(A) satisfies the (dual) axiom

||a〉〉q ≤ p ⇔ a · q ≤ p · a (fdia1 )
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The test ||a〉〉q algebraically represents the inverse image of q under a. It has been
shown in [12] (Cor. 5.8) that (bdia1), (bdia2) and (fdia1) imply multiplicativity of
forward diamond, i.e., ||a · b〉〉q = ||a〉〉(||b〉〉p) (fdia2). The forward box is ||a]]p =df

¬||a〉〉¬q; it corresponds to the weakest liberal precondition wlp(a, q).

The following property is fundamental for our completeness results; see [23]
for more details. Moreover, forward diamonds have good other use later.

Lemma 2.5. Assume a modal semiring.
1. We have Galois connections 〈〈a||p ≤ q ⇔ p ≤ ||a]]q and ||a〉〉p ≤ q ⇔ p ≤ [[a||q.
2. As lower adjoints of Galois connections the diamonds preserve all existing

lubs in their second argument.

We discuss some related axiomatisations. The purely relational monotype fac-
tor of [3] coincides with the forward box and wlp. The dynamic negation of [20] in
dynamic relation algebras (reducts of relation algebras) coincides with the com-
plement of domain. In Boolean quantales, the domain operator was defined via
a Galois connection in [5]. Since here we strive for a maximally general algebraic
basis, we have decided for an axiomatisation equivalent to that in [11,12].

2.2 Iteration and Kleene Algebra

Next we represent arbitrary finite iteration by an additional operator ∗ : A → A.

Definition 2.6. An I-semiring with star is called a Kleene algebra if ∗ satisfies

1 + a · a∗ ≤ a∗ 1 + a∗ · a ≤ a∗ (Star Unfold)
b + a · c ≤ c ⇒ a∗ · b ≤ c b + c · a ≤ c ⇒ b · a∗ ≤ c (Star induction)

The following property (by an easy induction on n) is essential for a number
of rules of IL.

Lemma 2.7. In an I-semiring with star and one of the star unfold axioms, the
element a∗ is an upper bound of the sets {an |n ∈ N} and {a≤n |n ∈ N}, where
a≤i =df Σ

j<i
aj.

Lemma 2.8 [12]. In a Kleene algebra with backward diamond one has, without
any further assumptions, the rules

p + 〈〈a||〈〈a∗||p ≤ 〈〈a∗||p (Diamond Star Unfold)
p + 〈〈a||q ≤ q ⇒ 〈〈a∗||p ≤ q . (Diamond Star Induction)

Dual rules hold for the forward diamond.

Definition 2.9. A quantale (e.g. [28]) is an I-semiring in which the order ≤
induces a complete lattice and · preserves arbitrary lubs in both arguments. It
is Boolean if its complete lattice is a Boolean algebra.

Lemma 2.10 [12]. Any Boolean quantale is a CTC Kleene Algebra (cf. Defini-
tion 2.2) and admits pre-diamonds satisfying (bdia1) and (fdia1).
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3 Under-Approximation and Over-Approximation

It is standard that one can encode while programs into Kleene algebra. Given
test p and algebra elements a, b, we can represent while p do a as (p · a)∗ · ¬p,
if p then a else b as p · a + ¬p · b, a; b as a · b and the identity skip as 1. 0 is
equivalent to while true do skip. Throughout this section, by a program we mean
a Kleene algebra element generated from 0, 1 and a set of atomic commands and
arbitrary tests using +, · and ∗. (In the next section we will need to distinguish
programs from algebra when working with expressions that map less directly to
algebra.)

3.1 Under-Approximate Triples

Definition 3.1. We assume a CTC Kleene algebra A with backward diamond.
1. An under-approximate (or IL) triple is a formula [[ p ]] a [[ q ]], where p, q ∈

test(A) and a ∈ A is a program.
2. [[ p ]] a [[ q ]] is valid in A, in signs |= [[ p ]] a [[ q ]], iff q ≤ 〈〈a||p.
3. [[ p ]] a [[ q ]] is provable iff it can be derived using the rules in Fig. 1.

Fig. 1. Proof rules for under-approximation

As in [22] we are dealing with a “propositional” program logic: rules involving
variables are left out. Some of these, such as an axiom for assignment statements

[[ p ]] x := e [[∃x′ : p[x′/x] ∧ x′ = e[x′/x]] ]]

could be covered (in a particular model) by the axiom for atoms in Fig. 1, which
requires that the strongest post be present for each atomic command. Others,
such as the frame rule for variable mutation and substitution rules, would require
additional inference rules.
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An example triple is [[x = 0 ]] (x := x+ 1)∗ [[x ≥ 0 ]], saying that execution of
the loop can result in x taking on any non-negative integer. This property can
be proven using (Iteration) with pn = (n ≥ 0 ∧ x = n). The triple [[x = n ]] x :=
x + 1 [[x = n + 1 ]] used in the premise of the rule shows n decreasing in the
backwards direction (hence the name Backwards Variant for this rule in [25]).
The post can be written as an infinite disjunction, or finitely using a quantifier:
[[x = 0 ]] (x := x+1)∗ [[∃n : n ≥ 0 ∧ x = n ]]. This is where the CTC assumption
has its place; without it such countable disjunctions are not well defined. The
assertion x ≥ 0 is the strongest post, and this pre/post pair actually gives us a
valid Hoare triple as well. But we can shrink the post using (Consequence) to go
below the strongest post, to obtain [[x = 0 ]] (x := x + 1)∗ [[x ≥ 1 ]]: the positive
integers are a valid under-aproximation.

We record this example as loop1() in Fig. 4, where presumes is used for
the pre-assertion in an under-approximate triple, and achieves for the post-
assertion. In a program analysis tool we would not expect the human to specify
the presumes and achieves, or the variant p; they would (hopefully) be inferred.

It can be helpful to contrast these rules with those from the over-approximate
logic HL (see Fig. 3). The rule for divergence has “false” as the post for under-
approximation, where “true” is the post in HL, the choice rule has an ∃ in the
premise where HL has ∀, the consequence rule uses ≤ where over-approximation
uses ≥, and the iterate rule uses a possibly infinite disjunction while for over-
approximation we can use loop invariance with no need for infinitary constructs.

It is worth noting that ≤ of the algebra is used in the proof rules only between
tests (assertions), and not general algebra elements (commands). In program
logic this is done because one expects to have a reasonable way to decide ≤
between tests, by means of a theorem prover or an abstract interpreter, but decid-
ing ≤ between commands has been less common (at least, historically). However,
rules involving ≤ between commands can be handy, especially for metatheory.

Fig. 2. Further Proof Rules for Under-Approximation

One such is the rule (Isotony in Command) from Fig. 2. (In contrast, Hoare
triples are anti-isotone in their command.) Isotony together with (Star Unfold) of
Kleene algebra justifies the three (Unfold) rules (all of which are unsound in HL).
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It turns out that these are what is called in logic admissible rules: if the premises
are derivable from the given rules then so is the conclusion (but there might not
be a single direct derivation from the premises to the conclusion). O’Hearn [25]
included the first and second rules as they allow a direct derivation of a rule for
bounded model checking. De Vries and Koutavas [27] avoided unrolling rules,
and a justification for this decision is a completeness theorem (where all true
triples can be derived, if not all true proof rules).

The two further admissible but non-derivable rules (Full Disjunction) and
(False Post) deal with choice. Note that in the premise of (Full Disjunction) we
use semiring lub (sum), whereas in the conclusion we use meta-conjunction.

Theorem 3.2. (Soundness and Completeness). Assume a modal CTC
semiring with star.
1. With star unfold, the rules in Figs. 1 and 2 are sound (preserve validity).
2. If also star induction holds then the rules in Fig. 1 are complete, i.e., every

valid triple is provable.

Note that these results do not require any form of ∗-continuity.

Proof [Iteration Soundness]. Here is the proof for the iteration rule. First we
show by induction on n that pn ≤ 〈〈a∗||p0 for all n ∈ N.
– For n = 0, by 1 ≤ a∗ with isotony of diamond, p0 = 〈〈1||p0 ≤ 〈〈a∗||p0.
– Assume pn ≤ 〈〈a∗||p0. Then by the rule premise with the definition of under-

approximate triples, the induction hypothesis with isotony of diamond, mul-
tiplicativity of diamond and a · a∗ ≤ a∗ with isotony of diamond:

pn+1 ≤ 〈〈a||pn ≤ 〈〈a||〈〈a∗||p0 = 〈〈a · a∗||p0 ≤ 〈〈a∗||p0
Hence 〈〈a∗||p0 is an upper bound of all the pn and by the definition of a lub we
obtain

∨

n∈N

pn ≤ 〈〈a∗||p0, which is the conclusion of the rule.

The proofs for the other rules are not difficult, and do not use CTC at all. �	
The completeness result (proof overleaf) is sometimes termed “relative” com-

pleteness because it uses a proof theory with potential incomputable elements
that we assume oracles for deciding or writing: in our case ≤ queries and infinite
disjunctions. Also, an assumption that posts 〈〈a||p be expressible is sidestepped
by allowing arbitrary tests instead of those built following a specific syntax.

The completeness argument is standard: first we show that triples for
strongest posts are provable. This, in turn, relies on a characterization of the
strongest post for iteration, which is where induction principles from Kleene
algebra are used.

Lemma 3.3. In a modal CTC Kleene algebra all elements a and tests p satisfy
〈〈a∗||p =

∨

n∈N

〈〈an||p.

Proof (≥). This is immediate from an ≤ a∗ for all n ∈ N (Lemma 2.7), isotony
of diamond and the definition of lubs.
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(≤) We use (Diamond Star Induction) for q =df

∨

n∈N

〈〈an||p. The premise of that

rule is by lattice algebra equivalent to p ≤ q ∧ 〈〈a||q ≤ q. The first conjunct
is true, since p = 〈〈1||p = 〈〈a0||p. For the second conjunct we calculate by the
definition of q, diamond preserving existing lubs (Lm. 2.5.1), multiplicativity of
diamond, laws of powers, lattice algebra and definition of q:

〈〈a||q=〈〈a||(
∨

n∈N

〈〈an||p) =
∨

n∈N

〈〈a||〈〈an||p =
∨

n∈N

〈〈an · a||p =
∨

n∈N

〈〈an+1||p ≤
∨

k∈N

〈〈ak||p =q

�	
Lemma 3.4. In a modal CTC Kleene algebra the triple [[ p ]] a [[ 〈〈a||p ]] is provable.

Proof. By induction on the generation of the program a. For atomic a the claim
holds by the proof rule for atoms.
– For choice, additivity of diamond yields [[ p ]] a + b [[ 〈〈a + b||p ]] ⇔ [[ p ]] a +

b [[ 〈〈a||p + 〈〈b||p ]]. Now, by (Disjunction), (Choice) twice and the induction
hypothesis for a, b:

[[ p ]] a + b [[ 〈〈a||p + 〈〈b||p ]] � [[ p ]] a + b [[ 〈〈a||p ]] ∧ [[ p ]] a + b [[ 〈〈b||p ]]
� [[ p ]] a [[ 〈〈a||p ]] ∧ [[ p ]] b [[ 〈〈b||p ]] � TRUE

– For composition, multiplicativity of diamond yields [[ p ]] a · b [[ 〈〈a · b||p ]] ⇔
[[ p ]] a · b [[ 〈〈b||〈〈a||p ]]. Now, by (Sequencing) and induction hypothesis for a, b:

[[ p ]] a · b [[ 〈〈b||〈〈a||p ]] � [[ p ]] a [[ 〈〈a||p ]] ∧ [[ 〈〈a||p ]] b [[ 〈〈b||〈〈a||p ]] � TRUE

– For iteration, by the induction hypothesis for a, all triples [[ pn ]] a [[ pn+1 ]]
are derivable, since pn+1 = 〈〈a||pn. Therefore, (Iteration) yields the triple
[[ p0 ]] a∗ [[

∨

n∈N

pn ]], which is equivalent to [[ p0 ]] a∗ [[ 〈〈a∗||p0 ]] by Lemma 3.3.

�	
Completeness then follows since from [[ p ]] a [[ 〈〈a||p ]] we can shrink the post

using (Consequence) to obtain that [[ p ]] a [[ q ]] is provable for any q ≤ 〈〈a||p.

3.2 Over-Approximate Triples

We have established that the algebra provides a faithful representation of under-
approximate reasoning. In this section we briefly indicate how the prior strength
of Kleene algebra for correctness (over-approximation) is maintained.

Definition 3.5
1. An over-approximate triple is a formula {p} a {q}, where p, q ∈ test(A) and

a ∈ A is a program.
2. {p} a {q} is valid in A, in signs |= {p} a {q}, just if q ≥ 〈〈a||p.
3. {p} a {q} is provable iff it can be derived using the rules in Fig. 3.



334 B. Möller et al.

Theorem 3.6 (Soundness and Completeness) [23]. The proof rules in
Fig. 3 are sound and complete in any modal Kleene algebra.

Fig. 3. Proof Rules for Over-Approximation

Revisiting our earlier example, {x = 0} (x := x + 1)∗ {x ≥ 1} is not valid
but {x = 0} (x := x + 1)∗ {x ≥ −1} is, as can be proven by selecting x ≥
−1 as the loop invariant, together with use of the Consequence rule with the
implication from x = 0 to x ≥ −1. x ≥ −42 is strictly over-approximate, and
[[x = 0 ]] (x := x+1)∗ [[x ≥ −1 ]] can’t be proven because (Consequence) reverses
the implications between tests and the implication from x = 0 to x ≥ −1 is in
the wrong direction for under-approximate reasoning.

In contrast to our result for under-approximation (Theorem 3.2(1)), we do
not need the CTC hypothesis to show soundness here: the iteration rule is based
on loop invariants rather than an infinite disjunction. But, we do need to have
a Kleene algebra requirement for soundness, where the under-approximate case
(Theorem 3.2(1)) does not: star induction implies the over-approximate itera-
tion rule. These differences underline that the under-approximate theory is not
obtained from the over-approximate theory at once by appeal to order duality.

The completeness proof for Theorem 3.6 follows the same pattern as our
earlier completeness result: we establish by generation induction on a that
{p} a {〈〈a||p} is derivable and then apply the rule of consequence. An algebraic
relative completeness result for HL was given already in [23] using forwards dia-
monds, and a proof with backwards diamonds is possible and omitted. (Note
that the under-approximate triple does not admit a backwards predicate trans-
former semantics [25], and that is why we have used backwards diamonds in the
present paper.)

This result extends at once to CTC algebras. We have included it to empha-
sise: in modal CTC Kleene algebras, we have sound and complete representations
of both under-approximate and over-approximate triples, in the same algebra.
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Aside: The Ideal Formulation. We have axiomatised the strongest post via a
backwards diamond. There are other algebraic encodings which avoid modalities,
as in a generalized representation of {b} a {c} as b · a ≤ c, where b and c are not
required to be tests [18]. Here, ≤ judges approximation between entire programs
and not just tests. A similar under-approximate triple is obtained by defining
[[ b ]] a [[ c ]] as b · a ≥ c. Let’s call this the generalized under-approximate triple.

To connect the generalized and classical triples we represent pres and posts
in terms of the programs b and c. If p is a test and our semilattice has a greatest
element T, then T ·p is the test ideal for p. Intuitively, T ·p represents a program
that can do anything but, if it terminates, must leave p being true at the end.
In the relation model, it is the relation that maps any input state to every state
in p. Using test ideals, we can define under- and over-approximate triples as

|= [[ p ]] a [[ q ]] ⇔df T · p · a ≥ T · q |= {p} a {q} ⇔df T · p · a ≤ T · q

The right hand sides of the equivalences are generalized triples, with T · p and
T · q for b and c. Let us call these the ideal interpretations of the two triples,
and the ones in rest of the paper the modal interpretations. The ideal and modal
interpretations agree in the concrete relation model ([25], Fact 11). We chose to
work with modalities as their direct connection to the official definition of the
under-approximate triple seemed natural, but we emphasize that it is possible
to develop a full treatment of IL based on ideals rather than modalities.

Another encoding represents {p} a {q} as p · a · ¬q = 0: assuming p then
executing a cannot contradict q [22]. We are not aware of a similar interpretation,
avoiding ideals and modalities, for the under-approximate triple. End of Aside

4 Incorrectness

An under-approximate triple [[ p ]] a [[ q ]] on its own tells us nothing about whether
a program is incorrect: it just tells us a subset of what can happen. In the
terminology of program testing, such a triple gives us information that is similar
to a “test case”, with the generalization that if p and q are assertions describing
multiple program states then a single triple can cover more than a single input
or output. A test case is not yet a test, as it has no way to judge violation: we
also need a “test oracle”, which tells us if a run is considered erroneous.

4.1 Disproving Hoare Triples

Suppose we are given a Hoare triple {p} c {q}, but we are not told whether it
is valid. We can consider such a triple as “putative”, a test oracle (or a speci-
fication): given an input/output pair of states the oracle says “no” if the input
state satisfies p and the output state doesn’t satisfy q.
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Fig. 4. Iteration Examples

See Fig. 4 for an example. In specloop1() we use the keywords requires and
ensures to indicate the pre and post in a putative Hoare triple. The presumes
and ensures assertions from loop1() are those of an under-approximate triple,
and give us a way to prove falsity of the Hoare triple: the achieves assertion
in loop1() says that x can be any positive integer, and this is incompatible
with the ensures assertion in specloop1(). Note also that if we were to change
specloop1() by replacing 42,000,000 with 86,000,000 then we could re-use
the achieves assertion in loop1() to give us another disproof.

These ideas on testing and oracles/specification are captured in the following
result, which refers to interpretations of triples in modal Kleene algebra.

Theorem 4.1. �|= {p} a {q} ⇔ ∃ p′, q′ : p′ ≤ p ∧ q′ �≤ q ∧ |= [[ p′ ]] a [[ q′ ]].

Proof. (⇒) By the definitions, �|= {p} a {q} ⇔ 〈〈a||p �≤ q and |= [[ p ]] a [[ 〈〈a||p ]].
Hence we may choose p′ = p and q′ = 〈〈a||p.
(⇐) By generalised contraposition, the definitions and isotony of diamond with
transitivity of ≤,

((p′ ≤ p ∧ q′ �≤ q ∧ |= [[ p′ ]] a [[ q′ ]]) ⇒ �|= {p} a {q}) ⇔
((p′ ≤ p ∧ |= [[ p′ ]] a [[ q′ ]] ∧ |= {p} a {q}) ⇒ q′ ≤ q) ⇔
((p′ ≤ p ∧ q′ ≤ 〈〈a||p′ ∧ 〈〈a||b ≤ q) ⇒ q′ ≤ q) ⇔ TRUE �

Informally, if an execution of a lands outside the post, then the post can’t
hold. In concrete program testing in the relation model, p′ and q′ denote sin-
gleton sets. But the theorem also covers cases where we use assertions to cover
many states at once, as in loop1(). Connecting back to the discussion of false
positives and under-approximation in the Introduction: if we were to attempt to
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apply Theorem 4.1, if q′ did not under-approximate the reachable states we might
get incorrect suggested disproofs; false positives. Also, under-approximation fur-
nishes information for verification: when we shouldn’t try to verify. Conversely,
if a Hoare triple holds, we needn’t try to use testing to falsify it.

These remarks connecting verification and testing are obvious intuitively in
concrete models [25]. The point of stating this theorem is as a sanity check that
the algebra faithfully represents their connection.

4.2 Error Statements and Embedded Assertions

Hoare triples provide a popular form of specifications/test oracles, especially in
theoretical work. An even more popular method, in widespread use across indus-
try in program testing, is embedded “assert” statements. When an assert fails
it indicates program error and execution halts. This gives us a facility similar to
the post in a Hoare triple, as in testloop1() in Fig. 4. But, an assert statement
does not need to be in post position, and in this sense is more flexible than
pre/post specs. A concocted example is loop2() from Fig. 4. A more realistic
example is testing code in Fig. 5, taken from the open source code of the toolkit
OpenSSL. The call to test dtls1 heartbleed excessive plaintext length()
in the main() program eventually calls dtls1 write bytes() after executing
other instructions and, as we can see from the comment, the embedded assert
statement catches a bug which was present in earlier versions of the software.
The assert statement functions like the post in a Hoare triple, in that its fail-
ure indicates a program error, but it has further statements following it: it is a
program statement, and it need not be placed at the end of a function.

int main(int argc , char *argv[])
{ ....

/* The following test causes an assertion failure at
* ssl/ d1_pkt.c: dtls1_write_bytes() in versions prior to

1.0.1g: */
(OPENSSL_VERSION_NUMBER >= 0x1000107fL ?
test_dtls1_heartbleed_excessive_plaintext_length()

....
int dtls1_write_bytes(SSL *s, int type , const void *buf , int len)

{
int i;
OPENSSL_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH);
s->rwstate = SSL_NOTHING;
i=do_dtls1_write(s, type , buf, len, 0);
return i;
}}

Fig. 5. Test code from heartbeat test.c in openssl1.0.1h

Turning back to theory, these assert statements are distinct from the “tests”
used in Kleene algebra. The latter corresponds more to the “assume” statement
in programming language theory: assume(p) simply discards the current program
path when p is false but does not halt execution, whereas assert(p) results in
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abnormal program termination. Hence, c is not executed in assert(p); c when p
fails. Abnormal termination is itself different from the 0 of Kleene algebra, which
means program divergence, since it is equivalent to while true do skip (or 1∗;¬1).

We approach the use of embedded assertions to specify incorrectness following
Incorrectness Logic, which itself follows the lead of C and other programming
languages. A special instruction error , distinct from 1 and 0, is used to cause
abnormal termination before a program’s end is reached; assert statements can
be described using a combination of tests/Booleans and error .

We consider the following grammar of commands,

c :: = atom | skip | diverge | error | p | c + c | c; c | c∗

and set assert(p) =def (p; error)+¬p = if p then error else skip. Although error
does not correspond directly to a Kleene algebra element, we can do a semantics
of a language with error by representing a program as a pair (a, e) of Kleene
algebra expressions. The a component describes what happens in executions
where no errors are raised, while the e component describes what happens when
errors do occur. In terms of the relation model, a program denotes a pair of
relations (a, e) ∈ P (S×S)×P (S×S), and this model is equivalent to a treatment
of exceptions in denotational semantics via the isomorphism with P (S×(S+S)).

The mapping of such program expressions to pairs of Kleene algebra elements
is given in Fig. 6. This semantics, when specialised to the relation model, is
that of [25]. Notice how neither sequencing nor iteration map pointwise to their
Kleene cousins · and ∗: Sequencing uses “short circuiting”, where upon an error
in the first operand execution halts and does not continue with the second, while
iteration allows an error to happen on a final execution of a loop body, after some
number of normally terminating executions. Finally, note that [[error ]] is distinct
from [[diverge]] = (0, 0) = [[while true do skip]].

Fig. 6. Semantics for Programs with Embedded Errors; [[c]] ∈ A × A

4.3 Incorrectness Logic

We are now in a position to formulate a general algebraic form of the program
logic from [25]. This is based on distinguishing two post-assertion forms, one
[[ p ]] c [[ ok : q ]] for normal termination and the other [[ p ]] c [[ er : q ]] for erroneous.
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Definition 4.2
1. An under-approximate triple with error information is a formula [[ p ]] c [[ ok : q ]]

or [[ p ]] c [[ er : q ]], where p, q ∈ test(A) and c is a program.
2. (a) [[ p ]] c [[ ok : q ]] is valid, in signs |= [[ p ]] c [[ ok : q ]], iff q ≤ 〈〈fst [[c]]||p.

(b) [[ p ]] c [[ er : q ]] is valid, in signs |= [[ p ]] c [[ er : q ]], iff q ≤ 〈〈snd [[c]]||p.

Fig. 7. Under-approximate Proof Rules for Embedded Errors

For the proof rules, first we translate all of the earlier proof rules for under-
approximate triples [[ p ]] c [[ q ]] into the [[ p ]] c [[ ok : q ]] form.

Definition 4.3. For each rule in Fig. 1 define a corresponding proof rule for
[[ p ]] c [[ ok : q ]] triples by replacing · with ; , 0 with diverge, 1 with skip and add
strongest post axioms for atomic commands. Also, add (Choice) and (Disjunc-
tion) with er and ok conclusions. Call the resulting set of rules Fig. 1 translated.

Theorem 4.4 (Soundness and Completeness). Assume a modal CTC
semiring with star.
1. With star unfold, the rules in Figs. 7 plus Fig. 1 translated are sound.
2. If also star induction holds then every true triple is provable.

There is a departure from [25]: we include the rule (Iterate:er) for er con-
clusions only. The soundness of this rule follows from the semantics of iteration
in the error case. If we included this rule for ok conclusions as well (as in [25]),
then we would appeal to the Kleene law c∗; c ≤ c∗ plus isotony in command for
soundness, and this would require stronger assumptions than Theorem 4.4(1).
From the point of view of provability it is possible to leave out the stronger
rule for ok conclusions, as the backwards variant rule lets us prove all true ok
conclusions. The proof of completeness of each error case is straightforward and
omitted.

An example which utilises (Iterate:er) is loop2() from Fig. 4. The assertion
eventually fails after the loop body is successfully executed 42,000,000 times,
and then upon the next iteration abnormal termination occurs. We leave as an
exercise for the reader to supply the assertions formalizing this argument.
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4.4 Over-Approximating Errors

It is possible to formulate an over-approximate system for reasoning about errors
as well. We define {p} c {ok : q} to be valid iff q ≥ 〈〈fst [[c]]||p, and {p} c {er : q}
to be valid iff q ≥ 〈〈snd [[c]]||p. Such triples can be used to show that a program
doesn’t raise an error (when the er conclusion is empty), or that it doesn’t
terminate normally (when the ok conclusion is empty).

As before there are properties in the algebra connecting testing and verifica-
tion. Specifically, if 0 over-approximates the error states, then no non-0 under-
approximate error conclusion is possible (we needn’t test for it); and, if a non-0
under-approximates error, then some errors must occur (we needn’t verify).

Theorem 4.5. 1. |= {p} c {er : 0} ⇔ ∀ q : (|= [[ p ]] c [[ er : q ]] ⇒ q = 0).
2. ∃ q : |= [[ p ]] c [[ er : q ]] and q �= 0 ⇔ �|= {p} c {er : 0}.

We don’t give a full treatment of proof theory for this extension of HL,
but it is worth contrasting some rules with those for under-approximation.
First, sequencing again takes into account short-circuit evaluation, but now
must consider the short-circuit and normal cases together top achieve over-
approximation.

{p} c1 {er : r1} {p} c1 {ok : q} {q} c2 {er : r2}
{p} c1; c2 {er : r1 ∨ r2}

Second, iteration cannot (however implicitly) make use of c∗; c ≤ c∗ plus isotony
in command, because in over-approximate logic isotony fails (anti-isotony holds).
Instead, even in the error case, can make use of a loop invariant (cf. [9]).

{p} c {ok : p} {p} c {er : p}
{p} c∗ {er : p}

5 Backwards Under-Approximation and Incorrectness

A broadly similar technical development can be done if we replace the strongest
post, or the image of a relation, by the inverse image. We obtain a triple [[p}} a [[q}}
where p under-approximates the states obtained executing a backwards from q.

More precisely, in the relation model define the weakest possible pre of a
relation, wpp(a, q) =df {s | ∃s′.(s, s′) ∈ a ∧ s′ ∈ q}. Then we can define

|= [[p}} a [[q}} ⇔df p ⊆ wpp(q, a)

Another way to describe [[p}} a [[q}} is by saying that every state in p can reach
some state in q via a [27]. Note that wpp is neither Dijkstra’s weakest precondi-
tion, nor the weakest liberal precondition. This triple is different from {p} a {q},
because a still might land outside of q when executing in the forwards direction.

This yields a logic for reasoning about backwards under-approximation. We
don’t develop the logic in full, but mention several salient points.
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1. Algebraically, wpp(q, a) is represented by the forward diamond ||q〉〉a from Def-
inition 2.4, and we define [[p}} a [[q}} ⇔df p ≤ ||a〉〉q.

2. The iteration rule becomes

∀n ∈ N : [[pn+1}} a [[pn}}
[[

∨

n∈N

pn}} a∗ [[p0}}

This is in the form of variant rules for total correctness [1] except that the
triple does not ensure termination on every path or that no path leads outside
the post. It is similar to a rule for diamonds in first-order dynamic logic [15].

3. The assignment axiom is now the backwards-running one

[[q[e/x}} x := e [[q}}
4. Disproving a Hoare triple can still be done but requires a different approach

than Theorem 4.1: landing outside q falsifies a Hoare triple.

�|= {p} a {q} ⇔ ∃ p′, q′ : 0 �= p′ ≤ p ∧ q′ · q = 0 ∧ |= [[p′}} a [[q′}}

Kleene algebra can serve as a foundation for reasoning about backwards
under-approximation; e.g., must transitions [4] and reachability witnesses [2].

6 Conclusion and Outlook

Kleene algebra encapsulates basic principles of simple imperative programs, and
many works have shown how these principles can provide a foundation for pro-
gram verification. In this paper we have studied how Kleene algebra can also
be used as a foundation for reasoning about the presence of bugs, as in (static
or dynamic) program testing. This has the potential to significantly expand the
application area of Kleene algebra. While logics for verification have received
voluminous treatment in theoretical research, the practical impact of program
testing currently dwarfs that of verification: it is much more widely deployed in
engineering practice, helping the creation of almost all software products.

In this paper we looked at two specific theories, Hoare Logic (HL) and Incor-
rectness Logic (IL). The main difference between them is that HL (like veri-
fication of safety properties, generally) is a formalism of over-approximation,
where IL (like testing generally) rests on under-approximation. We used Modal
Kleene algebra to express the under-approximate triple directly. As a happy
consequence, the power of Kleene algebra to describe HL is preserved, and prop-
erties can be stated linking HL and IL specifications. In this sense, the modal
Kleene algebra of the current paper can be said to unify HL and IL.

Our technical results pertain to the specific theories of HL and IL, not to the
entire broader informal concepts of correctness and incorrectness. The results
here concern safety properties and not liveness properties or hyperproperties.
Also, HL and IL are basic theories, and the extension of our results to further
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programming features is not obvious. For example, Concurrent Kleene Algebra
[18] through its exchange law supports a proof rule for over-approximate and
not under-approximate reasoning about concurrent processes, and reversing the
law furnishes a rule for under-approximation, but how to treat correctness and
incorrectness in one algebra for concurrency is not immediately obvious. For
another, sequential separation logic relies on an interpretation of triples which
avoids memory errors, where the incorrectness version does not use such an
interpretation [26]; again, they do not connect at once as HL and IL do here.

A contribution of the paper has been to pinpoint properties relevant to
completeness of under-approximate reasoning (test completeness), when Kleene
properties are and are not needed, and that ∗-continuity is not. These observa-
tions should persist into extensions to other programming features, whether or
not the exact form of unification achieved here can survive extension.

To conclude, under-approximation and incorrectness have been under-studied
in foundational theory, and there is much to be learnt about them and their rela-
tion to correctness theories (see [7] for an example of recent theoretical learnings
in the area between them, albeit without algebra). It is our hope that some of
the problems in this area will be taken up by others.

Acknowledgements. Helpful comments were provided by Jules Desharnais, Roland
Glück, Mark Harman and the anonymous referees.
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Abstract. We present two methods to algorithmically compute both
least and greatest solutions of polynomial equation systems over absorp-
tive semirings (with certain completeness and continuity assumptions),
such as the tropical semiring. Both methods require a polynomial num-
ber of semiring operations, including semiring addition, multiplication
and an infinitary power operation.

Our main result is a closed-form solution for least and greatest fixed
points based on the fixed-point iteration. The proof builds on the notion
of (possibly infinite) derivation trees; a careful analysis of the shape of
these trees allows us to collapse the fixed-point iteration to a linear num-
ber of steps. The second method is an iterative symbolic computation
in the semiring of generalized absorptive polynomials, largely based on
results on Kleene algebras.

Keywords: Fixed-point computation · Absorptive semirings ·
Semiring provenance

1 Introduction

A recent line of research on semiring provenance analysis for databases [5,11,12],
logic [4,9] and games [10] has identified the class of absorptive, commutative
semirings as an appropriate domain for provenance semantics of fixed-point logics
[4] and games with fixed-point semantics, such as Büchi or parity games. The
underlying idea is to replace the Boolean evaluation of formulae by computations
in certain semirings. From this point of view, a formula is essentially a polynomial
expression over some semiring, and fixed-point formulae evaluate to least or
greatest solutions of polynomial equation systems. To guarantee the existence
and meaningfulness (when interpreted as provenance information) of these fixed
points, one assumes that the semiring is equipped with a natural order that is
a complete lattice (for the existence) and that the semiring is absorptive, that
is, 1 + a = 1 for all elements a. Absorption guarantees a duality of the semiring
operations in the sense that addition is increasing, with least element 0, while
multiplication is decreasing, with greatest element 1, and it is this property that
leads to meaningful provenance information of greatest fixed points [4].
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This raises the question how one can (efficiently) compute least and great-
est solutions of polynomial equation systems over such semirings. The textbook
approach is the fixed-point iteration: start by setting all indeterminates to the
smallest (or greatest) semiring value, then repeatedly evaluate the equations to
obtain new values for all indeterminates. In the Boolean setting, this terminates
in at most n steps on n indeterminates (due to monotonicity), but we are also
interested in larger and especially infinite semirings such as the tropical semiring1

T = (R≥0∪{∞},min,+R,∞, 0). Several techniques have been developed to com-
pute least solutions. For ω-continuous semirings (where suprema exist and are
compatible with the semiring operations), Hopkins and Kozen [14] have defined a
faster iteration scheme based on differentials and more recently, Esparza, Kiefer
and Luttenberger [6] have used this idea to generalize Newton’s method to ω-
continuous semirings. This works surprisingly well for a wide variety of semirings
(in fact, their results for idempotent semirings subsume our result for least fixed
points). Gondran and Minoux [8] use quasi-inverses of elements and matrices to
compute least solutions of linear systems and univariate polynomial equations
over dioids. This applies to absorptive semirings, where elements have the trivial
quasi-inverse a∗ = 1 and hence quasi-inverses of matrices always exist.

Our goal is to complement the results in [6,14] by also computing greatest
solutions, as our motivation stems from semiring provenance where both least
and greatest fixed points are considered. To this end, we work with absorptive,
fully continuous semirings (requiring continuity for both suprema and infima).

Example. Consider the following graph whose edges are annotated by cost
values in the tropical semiring. A natural example of a greatest fixed point is
the minimal cost of an infinite path. This corresponds to the greatest solution
of the equation system given on the right, where each node is represented by an
indeterminate and costs appear as coefficients (notice that the right-hand sides
are indeed polynomial expressions in terms of the semiring operations).

a b c

1 0

1 20

Xa = 1 +R Xa

Xb = min(1 +R Xa, 20 +R Xc)
Xc = 0 +R Xc

When we speak of least or greatest solutions, we always refer to the natural
order of the semiring. In the case of the tropical semiring, this is the inverse of
the standard order, so ∞ <T 20 <T 1 <T 0. While the least solution of the above
system is trivially Xa = Xb = Xc = ∞, the fixed-point iteration for the greatest
solution is infinite:(

0
0
0

)
�→

(
1
1
0

)
�→

(
2
2
0

)
�→

(
3
3
0

)
�→ · · · �→

(
20
20
0

)
�→

(
21
20
0

)
�→

(
22
20
0

)
�→

(
23
20
0

)
�→ · · ·

and converges to the greatest solution: Xa = ∞, Xb = 20 and Xc = 0.

Main Result. The essential idea to compute such solutions is that greatest
fixed points are composed of two parts: a cyclic part that is repeated indefinitely
1 We use +R for the addition on R to distinguish it from the semiring operation +.
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(the loop at a or c) and a reachability part to get to the cycle (the edges from b).
As both parts can consist of at most n nodes, all information we need is already
present after n steps of the fixed-point iteration; we can use this information
to abbreviate the iteration. The formal proof of this observation is based on
(infinite) derivation trees, inspired by the derivation trees in the analysis of
Newton’s method [6] and infinite strategy trees in [4]. We show that these trees
provide an alternative description of the fixed-point iteration; a careful analysis
of the shape of the derivation trees then leads to our main result:

Theorem 1. Let F be the operator induced by a polynomial equation system in
n indeterminates over an absorptive, fully-continuous, commutative semiring.
We can compute in a polynomial number of semiring operations:

– the least solution: Fn(0),
– the greatest solution: Fn(Fn(1)∞ ).

Here, a∞ is the infinitary power operation a∞ :=
�

n∈N
an which is well-

defined (and usually easy to compute) in the absorptive semirings we consider.
For instance, in the tropical semiring we have 0∞ = 0 and a∞ = ∞ for a �= 0.

Symbolic Approach. Our second approach is a technique to eliminate inde-
terminates one by one, based on the work of Hopkins and Kozen on Kleene
algebras [14]. We apply their symbolic approach to the semiring S

∞[X] of gen-
eralized absorptive polynomials, which is perhaps the most relevant semiring for
provenance analysis with fixed points, and extend it to include greatest solutions.

Outline. Section 2 introduces the problem setting, in particular the relevant
class of semirings, as well as derivation trees. Section 3 establishes the connection
between derivation trees and the fixed-point iteration, and Sect. 4 builds on
this concept to prove our main result. The symbolic approach for absorptive
polynomials is briefly outlined in Sect. 5. Due to space reasons, several proofs
have been omitted. All details can be found in the full version [16].

2 Preliminaries

2.1 Polynomial Equation Systems

Throughout the paper, we fix a finite set X = {X1, . . . , X�} of � pairwise different
indeterminates. We represent monomials over X as mappings m : X → N. We
use bold symbols to denote tuples: a = (a1, . . . , a�), in particular 0 = (0, . . . , 0)
and 1 = (1, . . . , 1). To simplify the presentation, we avoid numbered indices
and instead index tuples by X. That is, for a tuple a = (a1, . . . , a�) and an
indeterminate X ∈ X, we write aX for the entry ai such that Xi = X.

Definition 2. A polynomial P over a semiring (K,+, ·, 0, 1) and indeterminates
X is a finite formal sum of the form P =

∑k
i=1 ci ·mi, where the mi are pairwise

different monomials over X and ci ∈ K \ {0} are arbitrary coefficients.

https://arxiv.org/abs/2106.00399
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Abusing notation, we write m ∈ P if there is an i with m = mi, and c ·m ∈ P
if additionally c = ci. We may write P (X1, . . . , X�) to make the indeterminates
explicit. Then, P (a1, . . . , a�) ∈ K is the semiring value obtained by instantiating
each indeterminate Xi by ai ∈ K and evaluating the resulting expression in K.

Definition 3. A polynomial equation system E over a semiring K and
indeterminates X = {X1, . . . , X�} is a family of equations E :

(
Xi =

Pi(X1, . . . , X�)
)
1≤i≤�

with polynomials Pi over X and K.
We associate with E the operator FE : K� → K� defined by FE(a1, . . . , a�)X =

PX(a1, . . . , a�), for X ∈ X. The least (greatest) solution to E is thus the least
(greatest) fixed point of FE . We drop the index if E is clear from the context.

Notice that these are quadratic systems, with the number of equations equal
to the number of indeterminates. We recall the example from the introduction in
the tropical semiring (where semiring addition is min and semiring multiplication
is +R). Using X = {Xa,Xb,Xc}, we refer to the polynomial equation system
as (X = PX)X∈X . For example, PXb

is the polynomial min(1 +R Xa, 20 +R Xc)
consisting of the two coefficient-monomial pairs 1 +R Xa and 20 +R Xc.

2.2 Semirings

Definition 4. A (commutative) semiring is an algebraic structure (K,+, ·, 0, 1),
with 0 �= 1, such that (K,+, 0) and (K, ·, 1) are commutative monoids, · dis-
tributes over +, and 0 ·a = a · 0 = 0. It is idempotent if a+a = a and absorptive
if 1 + a = 1, for all a ∈ K.

In an idempotent semiring K, the natural order ≤K is the partial order with
a ≤K b if a + b = b, for a, b ∈ K. We drop the index if K is clear from the
context.

All semirings considered in this paper are commutative and absorptive
(except for N∞ below). Absorption (also called 0-closed or bounded [15]) implies
idempotence and is equivalent to 1 being the ≤K-maximal element and to mul-
tiplication being decreasing, i.e., ab ≤K a for all a, b ∈ K (dually to increasing
addition).

To guarantee the existence of fixed points, we further require that the natural
order is a complete lattice2 so that suprema

⊔
and infima

�
always exist (with

respect to ≤K). In addition, we make a continuity assumption stating that the
semiring operations commute with the lattice operations on chains (a chain is a
totally ordered set). This is crucial for most of our proofs, but does not seem to be
a strong restriction in practice: all natural examples of complete-lattice semirings
we are aware of are in fact also fully continuous (a notable exception are binary
relations with union and composition, but the latter is not commutative).

2 In idempotent semirings, it is equivalent to only assume suprema/infima of chains [4].
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Definition 5. An idempotent semiring K is fully continuous if ≤K is a complete
lattice and for all a ∈ K, all nonempty chains C ⊆ K and ◦ ∈ {+, ·},

⊔
(a ◦ C) = a ◦

⊔
C and

�
(a ◦ C) = a ◦

�
C.

A homomorphism h : K1 → K2 on fully-continuous semirings is fully continuous
if h(

⊔
C) =

⊔
h(C) and h(

�
C) =

�
h(C), for all nonempty chains C ⊆ K1.

Fully-continuous semirings are similar to quantales. More precisely, every
absorptive, fully-continuous semiring K induces a quantale (K,

⊔
, ·) with the top

element 1 as unit (see [16] for details). The main difference is that we additionally
require compatibility of semiring operations with infima (but only of chains).
Another related concept is that of topological dioids in [8] which requires that
both operations are compatible with suprema of countable chains.

Since multiplication is decreasing by absorption, powers of an element a form
a descending chain 1 ≥ a ≥ a2 ≥ . . . whose infimum we denote by a∞.

Definition 6. In an absorptive, fully-continuous semiring K, we define the
infinitary power of a ∈ K as a∞ :=

�
n∈N

an, and a∞ := (a∞
1 , . . . , a∞

� ) for
tuples.

Using continuity of multiplication, one can easily verify the properties
(ab)∞ = a∞b∞, (an)∞ = a∞ and (a + b)∞ = a∞ + b∞ (see [3] for details).
We remark that it is usually quite easy to compute the infinitary power. One
can further define infinite sum and product operations on families (ai)i∈I over K
with arbitrary index set I. Summation is simply defined as supremum; products
can be defined as infimum over finite subproducts (see [3, Appendix]). Here we
only need infinite products over finite domain {ai | i ∈ I} (as the polynomials
we consider have finitely many coefficients), which are commutative, associative
and commute with fully-continuous homomorphisms and the infinitary power.

Fully-continuous homomorphisms further preserve fixed points of monotone
functions, in particular least and greatest solutions of polynomial systems:

Lemma 7. Let h : K1 → K2 be a fully-continuous homomorphism on absorp-
tive, fully-continuous semirings. Let E : (Xi = Pi)1≤i≤n be a polynomial equation
system over K1. Let h(E) : (Xi = h(Pi))1≤i≤n result from E by applying h to all
coefficients. Then, lfp(Fh(E)) = h(lfp(FE)) and gfp(Fh(E)) = h(gfp(FE)).

Examples. Some examples of absorptive, fully-continuous semirings are:

– The Boolean semiring B = ({0, 1},∨,∧, 0, 1) is the habitat of logical truth.
– T = (R∞

≥0,min,+R,∞, 0) is the tropical semiring used for cost computations.
– The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is isomorphic to T and can be

used to model confidence scores.
– The �Lukasiewicz semiring L = ([0, 1],max, �, 0, 1) with a�b = max(0, a+b−1),

used in many-valued logics.
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– The min-max semiring on a totally ordered set (A,≤) with least element a
and greatest element b is the semiring (A,max,min, a, b).

– The semiring of generalized absorptive polynomials S
∞[X], defined below.

We write N
∞ for the semiring of natural numbers extended by a special

element ∞ (with n · ∞ = n + ∞ = ∞, for n �= 0). It is neither absorptive nor
idempotent (but fully continuous w.r.t. the standard order on natural numbers).

Absorptive Polynomials. The most important absorptive, fully-continuous
semiring, both from a provenance perspective and for our proofs, is the semiring
of (generalized3) absorptive polynomials S

∞[X]. We briefly summarize its defini-
tion and key properties from [4]. Given a finite set X of indeterminates, a (gener-
alized) monomial over X is a mapping m : X → N

∞ (here we also allow the expo-
nent ∞), multiplication adds exponents and the neutral element is 1 : X �→ 0.
We say that a monomial m1 absorbs m2, denoted m1 � m2, if m1(X) ≤ m2(X)
for all X ∈ X (notice that absorption is the inverse of the pointwise order on the
exponents). In order to mimic the algebraic property of absorption, polynomials
are antichains of monomials (which are always finite). Addition and multiplica-
tion are defined as usual, but we drop monomials that are absorbed after each
operation. For example, (XY 2 + X2Y ) · X∞ = X∞Y 2 + X∞Y = X∞Y .

Definition 8. The semiring (S∞[X],+, ·, 0, 1) of (generalized) absorptive poly-
nomials consists of all antichains of monomials (w.r.t. absorption). We write 0
for the empty antichain and 1 for the antichain {1}. Given P,Q ∈ S

∞[X], define

P + Q = Maximals(P ∪ Q), P · Q = Maximals{m1 · m2 | m1 ∈ P,m2 ∈ Q},

where Maximals(M) denotes the set of �-maximal monomials in M .

This semiring is fully continuous, with
⊔

S =
∑

S = Maximals(
⋃

S) for
sets S, and absorptive. Moreover, S

∞[X] is the most general such semiring,
as made explicit in the following universal property. Together with Lemma 7,
this is a fruitful tool to simplify reasoning about all absorptive, fully-continuous
semirings.

Theorem 9 (universal property, [4]). Every mapping h : X → K into an
absorptive, fully-continuous semiring K uniquely extends to a fully-continuous
semiring homomorphism h : S∞[X] → K (by means of polynomial evaluation).

For our technical results, we need the following observations based on [3].

Lemma 10 ([3,16]). Let S ⊆ S
∞[X] and P ∈ S

∞[X]. Then,

1. P ·
∑

S =
∑

{P · Q | Q ∈ S}, and

3
S

∞[X ] generalizes the semiring Sorp(X) of absorptive polynomials in [5] by adding
the exponent ∞ (which is needed to have fully-continuous homomorphisms in Theo-
rem 9). We only use S∞[X ] in this paper and hence drop generalized in the following.
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2. (
∑

S)∞ =
∑

{Q∞ | Q ∈ S}, and
3. h(

∑
S) =

∑
h(S), if h : S∞[X] → K is a fully-continuous homomorphism.

Lemma 11 ([3]). Let (Pi)i∈N be a descending ω-chain with Pi ∈ S
∞[X]. Then,

�

i∈N

Pi =
⊔{ �

i∈N

mi

∣∣∣ (mi)i∈N is a descending ω-chain
of monomials with mi ∈ Pi

}
.

To clearly distinguish between indeterminates in polynomial equation sys-
tems and absorptive polynomials, we often use the indeterminate set A =
{A1, . . . , Ak} for the latter, in particular when we use values from S

∞[A] as
coefficients.

2.3 Derivation Trees

Inspired by the analysis of Newton’s method [6], we use derivation trees to
describe the behaviour of polynomial equation systems. For the intuition behind
this notion, think of a polynomial system as a formal grammar: The indetermi-
nates are the nonterminal symbols, coefficients the terminal symbols, and each
monomial in PX gives rise to a production rule for X. We essentially consider
derivation trees of this grammar in the usual sense, except that we ignore the
order of children (we use commutative semirings) and allow infinite derivations.

Definition 12. A derivation tree T = (V,E, var, yd) over a semiring K and
indeterminates X is a (possibly infinite) tree (V,E) with node labelings var : V →
X and yd : V → K, the yield of v. We say that T is from X if for the root ε, we
have var(ε) = X. For convenience, we often write v ∈ T instead of v ∈ V and
refer to v with var(v) = X as an occurrence of X in T .

We associate with each node the monomial mon(v) =
∏

w∈vE var(w) com-
posed of its children’s indeterminates. We say that T is compatible with the
system (X = PX)X∈X if for each node, yd(v) · mon(v) ∈ Pvar(v). The set of
all derivation trees from X that are compatible with the system E is denoted
T (E ,X).

Given an equation system E : (X = PX)X∈X and an indeterminate X, a
derivation tree T ∈ T (E ,X) first chooses from the equation X = PX a mono-
mial mon(ε) together with its coefficient yd(ε). On the next level, it then makes
analogous choices for all indeterminates occurring in mon(ε), where the exponent
specifies how often an indeterminate occurs. The leaves v of such a derivation
tree (if they exist) have mon(v) = 1 and correspond to absolute coefficients in
one of the equations. See Fig. 1 for an example. We define the yield of an entire
tree as the combined yield of all nodes.

Definition 13. The yield of a derivation tree T = (V,E, var, yd) over K is the
(possibly infinite) product yd(T ) =

∏
v∈V yd(v) ∈ K.
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Recall that we assume K to be absorptive and fully continuous, hence infinite
products are well-defined. Moreover, we can rearrange the product

∏
v yd(v) over

all nodes to group together nodes with the same monomial label (and hence the
same yield). We can thus compare the yields of two trees simply by counting
occurrences of monomials.

Definition 14. Let E be an equation system over X, let Y ∈ X and m ∈ PY .
For derivation trees T ∈ T (E ,X), we define

|T |m,Y =
∣∣{v ∈ T | mon(v) = m, var(v) = Y }

∣∣ ∈ N
∞

as the number of occurrences of m ∈ PY in T . Notice that we use pairs (m,Y )
to unambiguously refer to m ∈ PY , as m may also occur in other polynomials
of E .

Lemma 15 (yield comparison). Given a polynomial system E : (X =
PX)X∈X over an absorptive, fully-continuous semiring and trees T, T ′ ∈
T (E ,X),

– if |T |m,Y ≥ |T ′|m,Y for all m ∈ PY , Y ∈ X, then yd(T ) ≤ yd(T ′),
– if |T |m,Y = 0 implies |T ′|m,Y = 0 for all m,Y , then yd(T )∞ ≤ yd(T ′)∞.

3 Derivation Trees and the Fixed-Point Iteration

As a first step towards our main result, this section shows that we can express
least and greatest solutions in terms of the yields of derivation trees. Notice that
a single derivation tree does not correspond to a solution of the equation system,
but only to (the derivation of) a single term in the solution. We thus consider
the sum over all derivation trees.

For least solutions, this was already shown (for a slightly different notion of
derivation trees) in [6]. Here we are mostly concerned with the proof for greatest
solutions, as this is much more involved due to the trees being infinite.

Theorem 16. Let K be an absorptive, fully-continuous semiring. Let E : (X =
PX)X∈X be a polynomial equation system over K. Then for each X ∈ X,

lfp(FE)X =
∑

T∈T (E,X),
T is finite

yd(T ), gfp(FE)X =
∑

T∈T (E,X)

yd(T ).

We recall that summation is equivalent to supremum (in idempotent semir-
ings). Here and in the following, we use summation in reminiscence of the general,
non-idempotent case (cf. [6]) and only switch to supremum as needed. Towards
a proof, we first observe that it suffices to prove Theorem 16 for the most general
semiring K = S

∞[A]. That is, with the coefficients being absorptive polynomials
(not to be confused with the polynomials of E). For any other semiring, we can
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Fig. 1. A derivation tree T and its (2, e)-truncation for a sample equation system, with

node labels var(v)/yd(v). The trees have yield yd(T ) = a∞bcd and yd(T‖e
2) = e21bcd.

first abstract the equations by replacing coefficients with pairwise different inde-
terminates in A, then apply the theorem and undo the abstraction (see [16]).
This works due to the universal property of S∞[A] and Lemmas 7 and 10.

For the remaining section, we thus fix a polynomial system E : (X = PX)X∈X

over K = S
∞[A] and consider the induced operator F . The proof proceeds by

inductively relating the steps of the fixed-point iterations Fn(0) and Fn(1) to
prefixes of derivation trees. These prefixes are defined by simply cutting off the
trees at a certain depth and modifying the yield of nodes at the cut-off depth
(eventually, we will use yield 0 for the least and 1 for the greatest fixed point).

Definition 17. Let T = (V,E, var, yd) ∈ T (E ,X), n ∈ N and b ∈ K�. Let
V≤n ⊆ V be the nodes at depth ≤ n. We define the (n,b)-truncation of T as

T‖bn := (V≤n, E ∩ V 2
≤n, var, yd′), yd′(v) =

{
bvar(v), v at depth n,

yd(v), otherwise.

This defines a derivation tree (compatible with E except for its leaves) and we
define mon(v) and yd(T‖bn) as in Definitions 12 and 13 (cf. Fig. 1).

The following, mostly technical lemma establishes the general connection
between truncations of derivation trees and the fixed-point iteration. It follows
by an inductive argument, relying on the inductive nature of derivation trees
and on the distributivity of semiring operations to express the yield (see [16]).

Lemma 18 (tree iteration). Let K = S
∞[A] and b ∈ K�. Then, Fn(b)X =∑

T∈T (E,X) yd(T‖bn), for all n ∈ N, X ∈ X.

To prove Theorem 16, all that is left to do is to consider the supremum of the
iteration Fn(0) and the corresponding tree truncations, and dually the infimum
of Fn(1). For the infimum, one last obstacle needs to be resolved: We must show
that whenever we pick for each n some n-truncation, their infimum can still be
realized as yield of an actual (infinite) tree, even if we pick a different tree to
truncate for each n. A similar observation has been used for strategy trees of
model-checking games in [4], where it was called puzzle lemma. The proof in our
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setting is similar, but slightly simpler (due to a simpler notion of truncations).
The rough idea is to obtain T ′ by repeating certain parts of the tree Tn‖1n for a
sufficiently large n (see [3,16] for details).

Lemma 19 (puzzle lemma [4]). Let X ∈ X and K = S
∞[A]. Let (Tn)n∈N be

a family of trees Tn ∈ T (E ,X) such that their yields yd(Tn‖1n) form a descending
chain. Then there is a tree T ′ ∈ T (E ,X) with yd(T ′) ≥

�
n yd(Tn‖1n).

With this taken care of, we can prove that the sum of all (finite) derivation
trees gives the least and greatest solutions.

Proof (of Theorem 16). We first observe that F is fully continuous, as it is
defined by polynomial expressions over a fully-continuous semiring. By Kleene’s
fixed-point theorem, we can thus express its least (or greatest) fixed point as
supremum of Fn(0) (or infimum of Fn(1)) over n ∈ N. By idempotence, sums
coincide with suprema, so for the least solution we immediately obtain:

lfp(F )X =
⊔
n∈N

Fn(0)X
(18)
=

⊔
n∈N

( ∑
T∈T (E,X)

yd(T‖0n)
)

=
∑

T∈T (E,X)

( ⊔
n∈N

yd(T‖0n)
)
.

Now observe that yd(T‖0n) = yd(T ) if T has height < n, otherwise yd(T‖0n) = 0.
Hence

⊔
n yd(T‖0n) = yd(T ) if T is finite and 0 otherwise.

It remains to consider the greatest solution. We apply Lemma 11 to express
the infimum in S

∞[A] as a supremum:

gfp(F )X =
�

n∈N

Fn(1)X
(18)
=

�

n∈N

( ∑
T∈T (E,X)

yd(T‖1n)
)

(11)
=

⊔ { �

n∈N

yn

∣∣∣ (yn)n∈N is a descending chain of monomials
with yn = yd(Tn‖1n) for some Tn ∈ T (E ,X)

}

(19)
=

⊔ {
yd(T ′)

∣∣ T ′ ∈ T (E ,X)
}

=
∑

T∈T (E,X)

yd(T ).

In the last line, we apply the puzzle lemma. This gives us for each monomial
chain (yn)n∈N an infinite tree T ′ with yd(T ′) ≥

�
n yn. Conversely, each tree T ′

induces the monomial chain defined by yn = yd(T ′‖1n). It is easy to see that this
chain has infimum yd(T ′), so we have equality. ��

4 Closed Form Solution

This section is devoted to the proof of our main result:

Theorem 1. Let K be an absorptive, fully-continuous semiring. Let E : (X =
PX)X∈X be a polynomial equation system over K and X = {X1, . . . , X�} with
induced operator FE : K� → K�. Then,

lfp(FE) = F �
E(0), gfp(FE) = F �

E(F �
E(1)∞ ).
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Towards the proof, we again fix a polynomial equation system E : (X =
PX)X∈X over an absorptive, fully-continuous semiring K with induced operator
F . Recall that � denotes the number of equations (and indeterminates) of E . Our
strategy is to prove that we can always find derivation trees of a certain shape,
and that the yield of all other derivation trees is absorbed by these trees.

4.1 Deterministic Derivation Trees

Definition 20. A derivation tree T = (V,E, var, yd) is said to be determinis-
tic if mon(v) depends only on var(v). That is, the indeterminate labels of the
(unordered) children of a node v are determined by the node’s indeterminate
label so that the relation {(var(v),mon(v)) | v ∈ V } is a function.

To reason about gfp(F ), we must reason about and construct infinite deriva-
tion trees. This is straight-forward for deterministic trees.

Lemma 21 (deterministic construction). Let X0 ⊆ X. For each X ∈ X0,
let mX be a monomial with mX ∈ PX such that all indeterminates occurring in
mX are contained in X0. Then for each X ∈ X0, there is a deterministic tree
T ∈ T (E ,X) with var(v) ∈ X0 and mon(v) = mvar(v) for all nodes v ∈ T .

Proof (sketch). Starting from the root var(ε) = X, define the (possibly infinite)
tree T inductively by repeatedly adding to each leaf v child nodes according to
mvar(v), always maintaining the desired property for all inner nodes. ��

It is easy to see that deterministic trees are uniquely defined by their prefix
up to depth �−1, as at depth � each path must either end or start to repeat (we
only have � indeterminates). Once we consider the infinitary power yd(T )∞, it
only matters which coefficients c occur in T , but not how often, since (cn)∞ = c∞

for all n > 0. This leads to the following simple but essential observations.

Lemma 22. If T ∈ T (E ,X) is deterministic, every indeterminate that occurs
in T also occurs in the truncation T‖1�−1. It follows that yd(T )∞ = yd(T‖1� )∞.

Corollary 23. For each T ∈ T (E ,X), there is a deterministic tree T ′ ∈
T (E ,X) such that yd(T‖1� )∞ ≤ yd(T ′)∞ ≤ yd(T ′).

Proof (sketch). Choose any way to determinize T‖1� by Lemma 21 using only
monomials appearing in T‖1� . This is always possible, as T‖1� contains at most �
indeterminates and hence every path must contain a repetition or end in a leaf
(cf. [16]). The inequalities hold by Lemma 15 (yield comparison) and absorption.

��

4.2 Constructing Simple Trees

The main insight behind Theorem 1 is that when we sum over the yield of all
derivation trees, it suffices to consider trees of a particular shape corresponding
to our intuition from the introduction: These trees consist of an arbitrary prefix
up to (at most) depth � (the reachability part), followed by deterministic trees
(the cyclic part). See Fig. 2d for an illustration.



Computing Least and Greatest Fixed Points in Absorptive Semirings 355

Fig. 2. Illustration of the construction steps in the proof of Lemma 24.

Lemma 24 (main lemma). For each T ∈ T (E ,X), there is a derivation tree
T ′ ∈ T (E ,X) such that all subtrees rooted at depth � in T ′ are deterministic
and use only monomials m ∈ PY (with Y ∈ X) that occur infinitely often in T .
Moreover, |T ′|m,Y ≤ |T |m,Y for all m ∈ PY , Y ∈ X.

Proof. Let X∞ ⊆ X be the set of indeterminates that occur infinitely often in
T (may be empty). We write VX = {v ∈ T | var(v) = X} for the set of nodes
labeled X. For each X ∈ X∞, the set VX is infinite. As the polynomial PX

is finite, there must thus be infinitely many v ∈ VX with the same monomial
mon(v). For each X ∈ X∞, choose such an infinitely often occurring monomial
mX ∈ PX . Using Lemma 21, we obtain for each X ∈ X∞ a deterministic tree
T∞

X ∈ T (E ,X) such that for all v ∈ T∞
X : var(v) ∈ X∞ and mon(v) occurs

infinitely often in T .
Let W be the set of earliest occurrences of X∞ in T (cf. Fig. 2a). Now let S

be the tree that results from T by replacing the subtree at each v ∈ W with the
tree T∞

var(v) (cf. Fig. 2b). The tree S is almost of the desired shape, but the trees
T∞

X may be rooted at depth > �. To fix this, we consider the prefix up to the
subtrees T∞

X and eliminate all repetitions of indeterminates within the prefix.
As all indeterminates in the prefix occur only finitely often, we can eliminate
repetitions by replacing each first occurrence of an indeterminate Z by a last
occurrence of Z within the prefix (cf. Fig. 2c). We refer to [16] for a more formal
construction and correctness proof.

To see why this results in a tree T ′ with |T ′|m,Y ≤ |T |m,Y for all m,Y , recall
that the trees T∞

X only use monomials that occur infinitely often in T . All further
construction steps only remove parts of the tree, thus the number of occurrences
is not increased and the inequality holds. ��

4.3 Proof of the Main Result

We relate infinite trees of this shape to the expression F �(F �(1)∞ ). The deter-
ministic trees rooted at depth � correspond to the inner term F �(1)∞, relying on
Lemma 22 to ensure that � applications of F suffice. The outer applications of F
then correspond to the prefix on which we impose no further restrictions (except
that it has height at most �). The following rather technical lemma formalizes
this intuition.
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Lemma 25. Let b be the tuple with bX =
∑

T∈T (E,X) yd(T‖1� )∞ for X ∈ X.

For each T ∈ T (E ,X), there is a tree T ′ ∈ T (E ,X) such that yd(T ) ≤ yd(T ′‖b� ).

Proof. Let T ∈ T (E ,X) and obtain T ′ using Lemma 24. Let S1, . . . , Sk be the
deterministic subtrees of T ′ rooted at depth �. By comparing how often each
coefficient occurs in T and T ′‖1� , it follows (see [16] for details) that

yd(T ) ≤ yd(T ′‖1� ) ·
k∏

i=1

yd(Si)∞

Now let v1, . . . , vk ∈ T ′ be the root nodes of the deterministic subtrees S1, . . . , Sk.
By Lemma 22, yd(Si)∞ = yd(Si‖1� )∞ ≤ bvar(vi), and thus

yd(T ) ≤ yd(T ′‖1� ) ·
k∏

i=1

bvar(vi) = yd(T ′‖b� ).

��

We are now ready to prove our main result. The statement on the least
solution follows rather directly from our earlier considerations. For greatest fixed
points, the previous lemma already proves the difficult direction.

Proof (of Theorem 1). It suffices to consider the case K = S
∞[A] (so that

Lemmas 10 and 18 apply), as the general statement follows with Lemma 7. We
first consider the least solution. It is clear by monotonicity of F that F �(0)X ≤
lfp(F )X . By Theorem 16 and Lemma 18, it thus suffices to prove

lfp(F )X =
∑

T∈T (E,X)
T finite

yd(T )
!
≤

∑
T∈T (E,X)

yd(T‖0� ) = F �(0)X .

Let T ∈ T (E ,X) be finite and obtain T ′ by Lemma 24. As T is finite, no
monomials can occur infinitely often. Hence T ′ has no subtrees rooted at depth
� and is thus of height < �. But then, yd(T ) ≤ yd(T ′) = yd(T ′‖0� ) ≤ F �(0)X .

For the greatest solution, we know that gfp(F )X =
∑

T∈T (E,X) yd(T ). On
the other hand, Lemma 18 (tree iteration) entails

(F �(1)X)∞ =
( ∑

T∈T (E,X)

yd(T‖1� )
)∞ (10)

=
∑

T∈T (E,X)

yd(T‖1� )∞.

Let b = F �(1)∞. Applying Lemma 18 again gives

F �(F �(1)∞)X = F �(b)X =
∑

T∈T (E,X)

yd(T‖b� ).
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The direction gfp(F ) ≤ F �(F �(1)∞) follows immediately from Lemma 25.
For the other direction, let T ∈ T (E ,X). Let v1, . . . , vk be the nodes at depth �
in T . By distributivity (Lemma 10), we get

yd(T‖b� ) = yd(T‖1� ) ·
∏

1≤i≤k

bvar(vi)

dist.= yd(T‖1� ) ·
∑ { ∏

1≤i≤k

yd(Si‖1� )∞ ∣∣ Si ∈ T (E , var(vi)) for all i
}

(23)

≤ yd(T‖1� ) ·
∑ { ∏

1≤i≤k

yd(S′
i)

∣∣ S′
i ∈ T (E , var(vi)) for all i

}

dist.=
∑ {

yd(T )
∣∣ T ∈ T (E ,X)

}
= gfp(F )X .

��

Using this result, we can compute least and, most importantly, greatest solu-
tions of polynomial equation systems in a polynomial number of semiring oper-
ations (including the infinitary power). Notice that, although the proof relied on
S

∞[A], the computation happens only in the semiring we consider.

Example 26. Recall the equations Xa = 1 +R Xa, Xb = min(1 +R Xa, 20 +R Xc)
and Xc = 0 +R Xc from the introduction. Notice that the one-element of the
tropical semiring is the real value 0. Using Theorem 1, we collapse the infinite
fixed-point iteration to

(
0
0
0

)
F�−→

(
1
1
0

)
F�−→

(
2
2
0

)
F�−→

(
3
3
0

)
∞
�−→

(
∞
∞
0

)
F�−→

(
∞
20
0

)
F

and obtain the expected solution. In this example, one iteration of F would
actually suffice (instead of � = 3 iterations), since cycles have length one (see
the graph in the introduction). In general, all � steps are required (see [16]). �

5 Symbolic Computation

This section briefly describes our second approach focused specifically on poly-
nomial equation systems over the semiring S

∞[A]. To this end, we adapt results
of Hopkins and Kozen on Kleene4 algebras [14] which include absorptive semir-
ings. They express least solutions using symbolic derivatives of polynomials and
we show how we can adapt this idea to greatest solutions.

It is convenient to slightly reformulate our problem setting: Instead of a
system E : (X = PX)X∈X with polynomials PX over X and coefficients S

∞[A],
we now regard PX as an absorptive polynomial PX ∈ S

∞[A∪X]. This allows a
4 We note that absorptive, fully-continuous semirings also satisfy the additional axioms
of Cohen’s ω-algebras [2] by setting a∗ = 1 and aω = a∞. However, these axioms
seem too weak to axiomatize the operation a∞; we discuss an alternative in [16].
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more uniform treatment of indeterminate elimination and it is easy to see that
it does not affect the solutions. To simplify notation, we write S

∞[A,X] for
S

∞[A ∪ {X}]. Recall that for P (X) ∈ S
∞[A,X], the polynomial P (a) ∈ S

∞[A]
results from P by replacing X with a ∈ S

∞[A].

5.1 Solutions in One Dimension

We first show how least and greatest solutions of a single equation X = P (X)
can be computed using the derivative of P .

Definition 27. Let P (X) ∈ S
∞[A,X]. We denote the partial derivative of P

with respect to X as P ′ (leaving X implicit) and define it inductively by X ′ = 1,
Y ′ = 0 for Y ∈ A, and for P (X), Q(X) ∈ S

∞[A,X],

(PQ)′ = P ′ · Q + P · Q′, (P + Q)′ = P ′ + Q′,
(
P∞)′ = P∞ · P ′.

Hopkins and Kozen prove that these partial derivatives satisfy the classical
chain rule and a version of Taylor’s theorem. Both proofs also apply to our
setting, with straight-forward adaptions to handle the infinitary power. The
least solution is then P ′(P (0))∗ · P (0), which in our setting is equal to P (0) and
can in fact be derived directly from absorption, without derivatives. However,
using derivatives allows us to also express greatest solutions (see [16] for details):

Theorem 28. Let P (X) ∈ S
∞[A,X]. Then X = P (X) has the least solution

P (0) and the greatest solution P (0) + P ′(1)∞ in S
∞[A].

5.2 Solutions of Larger Systems

To solve larger systems, we iteratively solve single equations to remove indeter-
minates one by one. The reason this works is the uniformity of Theorem 28: Both
solutions hold under all possible instantiations as a consequence of the universal
property of S∞[A], see [16] for details. One elimination step works as follows:

Theorem 29. Consider the equation system E : X = P (X,Y ), Y = Q(X,Y )
with P,Q ∈ S

∞[A,X, Y ]. Let further

H(Y ) = gfp(X �→ P (X,Y )) ∈ S
∞[A, Y ],

b = gfp(Y �→ Q(H(Y ), Y )) ∈ S
∞[A].

Then (H(b), b) is the greatest solution of E.

Here, we write gfp(X �→ P (X,Y )) for the greatest solution of the equation
X = P (X,Y ) by Theorem 28 (treating Y as coefficient). The approach for least
solutions is completely symmetric.

We can apply this second technique to semirings other than S
∞[A] by first

performing a symbolic abstraction. That is, we replace all coefficients by pairwise
different indeterminates from A, then compute the solution and apply the reverse
instantiation (which preserves solutions).
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Example 30. Recall our example in the tropical semiring T. By replacing coeffi-
cients with indeterminates x, y, z, we obtain the equation system on the right.

Xa = 1 +R Xa Xa = x · Xa

Xb = min(1 +R Xa, 20 +R Xc) � Xb = x · Xa + y · Xc

Xc = 0 +R Xc Xc = z · Xc

We solve the system over S
∞[Xa,Xb,Xc, x, y, z] by the symbolic approach:

– gfp(Xa �→ x · Xa) = 0 + x∞ = x∞ (by Theorem 28)
– gfp(Xb �→ x · x∞ + y · Xc) = x∞ + y · Xc (we first instantiate Xa by x∞)
– gfp(Xc �→ z · Xc) = z∞

The greatest solution is thus Xa = x∞, Xb = x∞ + yz∞, Xc = z∞. Applying
the reverse substitution, we get the expected solution (∞, 20, 0) in T.

Usually, the closed-form solution in Theorem 1 is preferable, as we can work
directly in the target semiring. The symbolic technique is best suited to compute
solutions in S

∞[A], which is of interest for semiring provenance analysis.

Remark 31. For least solutions, the one-dimensional solution in Theorem 28
in fact implies the solution in Theorem 1, as shown in [7, Prop. 28]. It seems an
interesting question if a similar connection holds for greatest solutions, i.e., can
the solution F �(F �(1)∞) for � equations be derived from the solution P (0) +
P ′(1)∞ of a single equation by algebraic methods, without derivation trees?

6 Conclusion

We have presented two methods to compute least and, most importantly, great-
est solutions of polynomial equation systems over absorptive, fully-continuous
semirings. Both methods require only polynomially many applications of the
semiring operations and the infinitary power, in terms of the number of equa-
tions.

While we assume full continuity mostly to guarantee the existence of both
kinds of solutions, absorption is a strong assumption that leads to a particularly
simple way of computing solutions. Our motivation to consider absorptive semir-
ings comes from semiring provenance of fixed-point logics, where our methods
can directly be applied to compute provenance information, for example of Büchi
games or formulae of least fixed-point logic LFP.

The first method, and our main result, is a closed-form solution that works in
any absorptive, fully-continuous semiring and is as easy as computing the stan-
dard fixed-point iteration with an added application of the infinitary power. To
prove the correctness for greatest solutions, we extended the notion of derivation
trees used in the analysis of Newton’s method [6] to infinite trees. Derivation
trees provide an intuitive tool to understand the fixed-point iteration, but require
somewhat involved arguments and constructions to properly handle infinite trees.
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Our main technical contribution is that it suffices to consider trees of a partic-
ular shape resembling the solution term F �(F �(1)∞), intuitively corresponding
to a reachability prefix with infinitely repeating deterministic subtrees. For the
second method, we applied results on least solutions over Kleene algebras [14]
specifically to the semiring of generalized absorptive polynomials, and extended
these results by similar observations for greatest solutions.

Comparing the two proofs, we see that the symbolic approach has a simpler
algebraic proof (cf. [16]) raising the question whether we can avoid the construc-
tions of infinite trees in our main proof in favor of algebraic arguments. A further
direction for future work is to study systems of nested fixed points over absorp-
tive semirings. Recently, quasipolynomial-time algorithms have been developed
to solve such systems in the Boolean case [1] or over finite lattices [13]. With
the simple computation based on the fixed-point iteration, absorptive semirings
might be a candidate to further increase the applicability of these algorithms.

Acknowledgements. I would like to thank the anonymous reviewers for their helpful
comments and for suggesting related concepts, in particular [2,8] and Remark 31.
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4. Dannert, K., Grädel, E., Naaf, M., Tannen, V.: Semiring provenance for fixed-
point logic. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Confer-
ence on Computer Science Logic (CSL 2021). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 183, pp. 17:1–17:22. Dagstuhl (2021). https://doi.org/
10.4230/LIPIcs.CSL.2021.17

5. Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for datalog provenance. In:
Proceedings of 17th International Conference on Database Theory ICDT, pp. 201–
212. OpenProceedings.org (2014). https://doi.org/10.5441/002/icdt.2014.22

6. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM
57(6), 33 (2010). https://doi.org/10.1145/1857914.1857917

7. Ghilardi, S., Gouveia, M.J., Santocanale, L.: Fixed-point elimination in the intu-
itionistic propositional calculus. ACM Trans. Comput. Log. 21(1), 4:1–4:37 (2019).
https://doi.org/10.1145/3359669

8. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and
Algorithms. Operations Research/Computer Science Interfaces, vol. 41. Springer,
Boston (2008). https://doi.org/10.1007/978-0-387-75450-5

https://doi.org/10.4230/LIPIcs.CSL.2021.9
https://doi.org/10.1007/10722010_4
https://doi.org/10.1007/10722010_4
http://arxiv.org/abs/1910.07910
https://arxiv.org/abs/1910.07910
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://doi.org/10.5441/002/icdt.2014.22
https://doi.org/10.1145/1857914.1857917
https://doi.org/10.1145/3359669
https://doi.org/10.1007/978-0-387-75450-5


Computing Least and Greatest Fixed Points in Absorptive Semirings 361

9. Grädel, E., Tannen, V.: Semiring provenance for first-order model checking.
arXiv:1712.01980 [cs.LO] (2017). https://arxiv.org/abs/1712.01980
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A Variety Theorem for Relational
Universal Algebra

Chad Nester(B)

Tallinn University of Technology, Tallinn, Estonia

Abstract. We consider an analogue of universal algebra in which gen-
erating symbols are interpreted as relations. We prove a variety theorem
for these relational algebraic theories, in which we find that their cate-
gories of models are precisely the definable categories. The syntax of our
relational algebraic theories is string-diagrammatic, and can be seen as
an extension of the usual term syntax for algebraic theories.

1 Introduction

Universal algebra is the study of what is common to algebraic structures, such
as groups and rings, by algebraic means. The central idea of universal algebra is
that of a theory, which is a syntactic description of some class of structures in
terms of generating symbols and equations involving them. A model of a theory
is then a set equipped with a function for each generating symbol in a way
that satisfies the equations. There is a further notion of model morphism, and
together the models and model morphisms of a given theory form a category.
These categories of models are called varieties. Much of classical algebra can be
understood as the study of specific varieties. For example, group theory is the
study of the variety of groups, which arises from the theory of groups in the
manner outlined above.

A given variety will in general arise as the models of more than one theory. A
natural question to ask, then, is when two theories present the same variety. To
obtain a satisfying answer to this question it is helpful to adopt a more abstract
perspective. Theories become categories with finite products, models become
functors, and model morphisms become natural transformations. Our reward
for this shift in perspective is the following answer to our question: two theories
present equivalent varieties in case they have equivalent idempotent splitting
completions. Thus, from a certain point of view universal algebra is the study
of categories with finite products.

This point of view has developed into categorical universal algebra. For any
sort of categorical structure we can treat categories with that structure as theo-
ries, functors that preserve it as models, and natural transformations thereof as
model morphisms. The aim is then to figure out what sort of categories arise as
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models and model morphisms of this kind – that is, to determine the appropriate
notion of variety. For example, if we take categories with finite limits to be our
theories, then varieties correspond to locally finitely presentable categories [2].

The familiar syntax of classical algebra – consisting of terms built out of vari-
ables by application of the generating symbols – is inextricably bound to finite
product structure. In leaving finite products behind for more richly-structured
settings, categorical universal algebra also leaves behind much of the syntactic
elegance of its classical counterpart. While methods of specifying various sorts
of theory (categories with structure) exist, these are often cumbersome, lacking
the intuitive flavour of classical universal algebra.

The present paper concerns an analogue of classical universal algebra in which
the generating symbols are understood as relations instead of functions. The role
of classical terms is instead played by string diagrams, and categories with finite
products become cartesian bicategories of relations in the sense of [10] – an idea
that first appears in [7]. This allows us to present relational algebraic theories in
terms of generators and equations, in the style of classical universal algebra. In
fact, this approach to syntax for relational theories extends the classical syntax
for algebraic theories, which admits a similar diagrammatic presentation.

Our development is best understood in the context of recent work on partial
algebraic theories [11], in which the string-diagrammatic syntax for algebraic
theories is modified to capture partial functions. This modification of the basic
syntax coincides with an increase in the expressive power of the framework, cor-
responding roughly to the equalizer completion of a category with finite prod-
ucts [8]. The move to relational algebraic theories involves a further modification
of the string-diagrammatic syntax, corresponding roughly to the regular com-
pletion of a category with finite limits [9]. Put another way, in [11] the (string-
diagrammatic) syntax for algebraic theories is extended to express a certain kind
of equality, and the resulting terms denote partial functions. In this paper, we
further extend the string-diagrammatic syntax to express existential quantifica-
tion, and the resulting terms denote relations.

Contributions. The central contribution of this paper is a variety theorem char-
acterizing the categories that arise as the models and model morphisms of some
relational algebraic theory (Theorem 48). Specifically, we will see that these
are precisely the definable categories of [19]. As a consequence we obtain that
two relational algebraic theories present the same definable category if and only
if splitting the partial equivalence relations in each yields equivalent categories
(Theorem 49). We illustrate the use of our framework with a number of examples,
including the theory of regular semigroups [16] and the theory of effectoids [24].
Lemma 10 is also novel, and we consider it to be a minor contribution

Related Work. The study of universal algebra began with the work of Birkhoff [6].
A few decades later, Lawvere introduced the categorical perspective in his doc-
toral thesis [22]. A modern account of universal algebra from the categorical
perspective is [3]. A highlight of this account is the variety theorem for algebraic
theories [1], which our variety theorem for relational algebraic theories is explic-
itly modelled on. An important result in categorical algebra is Gabriel-Ulmer
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duality [15], which tells us that if we consider categories with finite limits as our
notion of algebraic theory, then the corresponding notion of variety is that of a
locally finitely presentable category [2]. Our development relies on the related
notion of a definable category [19,20], which recently arose in the development
of an analogue of Gabriel-Ulmer duality for regular categories.

We use cartesian bicategories of relations [10] as our notion of relational alge-
braic theory. Our development relies on several results from the theory of alle-
gories [14], in which cartesian bicategories of relations coincide with the notion
of a unitary pre-tabular allegory. We also make use of the theory of regular and
exact completions [9]. Of course, all of this relies on the theory of regular and
exact categories [5]. The idea of using string diagrams as terms in more gen-
eral notions of algebraic theories is relatively recent, and relies on the work of
Fox [13]. The present paper can be considered a generalisation of recent work
on partial theories [11] to include relations. The idea to treat cartesian bicate-
gories of relations as theories with models in the category of sets and relations
originally appeared in [7], although no variety theorem is provided therein.

Organization and Prerequisites. In Sect. 2 we introduce categories of abstract
relations. In Sect. 3 we give the definition of a relational algebraic theory, and
provide a number of examples. Section 4 contains the proof of the variety theo-
rem. We assume familiarity with category theory, including regular categories [5],
string diagrams for monoidal categories [17] and their connection to algebraic
theories [3], and some 2-category theory [18]. We will behave as though all
monoidal categories are strict monoidal categories, justifying this behaviour in
the usual way by appealing to the coherence theorem for monoidal categories [21].

2 The Algebra of Relations

In the context of algebraic theories, finite product structure serves as an alge-
bra of functions. In this section, we consider an analogous algebra of relations.
There are two perspectives from which to consider this algebra of relations: As
internal relations in a regular category, or through cartesian bicategories of rela-
tions. The two perspectives are very closely related, and we require both: it is
through regular categories that our development connects to the wider litera-
ture on categorical algebra, but our syntax for relational theories will be the
string-diagrammatic syntax for cartesian bicategories of relations.

To begin, we recall the category Rel of sets and relations, which will serve as
the universe of models for relational theories in the same way that the category
Set of sets and functions is the universe of models for classical algebraic theories.

Definition 1. The category Rel has sets as objects, with arrows f : X → Y
given by binary relations f ⊆ X × Y . The composite of arrows f : X → Y ,
g : Y → Z is defined by fg = {(x, z) | ∃y ∈ Y.(x, y) ∈ f ∧ (y, z) ∈ g}, and the
identity relation on X is {(x, x) | x ∈ X}.
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2.1 Categories of Internal Relations

In any regular category we can construct an abstract analogue of Definition 1.
Instead of subsets R ⊆ A × B, we represent relations as subobjects R � A × B.
This approach to categorifying the theory of relations has a relatively long his-
tory [14], and integrates well with standard categorical logic due to the ubiquity
of regular categories there.

Definition 2. Let C be a regular category. The associated category of internal
relations, Rel(C), is defined as follows:

objects are objects of C
arrows r : A → B are jointly monic spans r = 〈f, g〉 : R � A × B modulo
equivalence as subobjects of A×B. That is, r : R � A×B and r′ : R′ � A×B
are equivalent (and thus define the same arrow of Rel(C)) in case there exists
an isomorphism α : R → R′ such that αr′ = r.
composition of two arrows r : A → B and s : B → C given respectively by
〈f, g〉 : R � A × B and 〈h, k〉 : S � B × C is defined by first constructing
the pullback of h along g, pictured below on the left. This defines an arrow
〈h′f, g′k〉 : R ×B S → A × C. The composite rs : A → C is defined to be
the monic part of the image factorization of this arrow, pictured below on the
right.

R ×B S S

R B

�
h′

g′

h

g

R ×B S A × C

RS

〈h′f,g′k〉

rs

identities 1A : A → A are are given by diagonal maps ΔA : A � A × A.

Example 3. Set is a regular category, and the category of internal relations in
Rel(Set) is precisely the usual category of sets and relations Rel.

2.2 Cartesian Bicategories of Relations

It is difficult to work with relations internal to a regular category directly. Rou-
tine calculations often involve complex interaction between pullbacks and image
factorizations, and this quickly becomes intractable. A much more tractable set-
ting for working with relations is provided by cartesian bicategories of relations,
which admit a convenient graphical syntax.

Cartesian bicategories of relations are defined in terms of commutative special
frobenius algebras, which provide the basic syntactic scaffolding of our approach:

Definition 4. Let X be a symmetric strict monoidal category. A commutative
special frobenius algebra in X is a 5-tuple (X, δX , μX , εX , ηX), as in

δX � μX � εX � ηX �

such that
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(i) (X, δX , εX) is a commutative comonoid:

(ii) (X,μX , ηX) is a commutative monoid:

(iii) μX and δX satisfy the special and frobenius equations:

An intermediate notion is that of a hypergraph category, in which objects
are coherently equipped with commutative special frobenius algebra structure:

Definition 5. A symmetric strict monoidal category X is called a hypergraph
category [12] in case:

(i) Each object X of X is equipped with a commutative special frobenius algebra.
(ii) The frobenius algebra structure is coherent, i. e., for all X,Y we have:

Now a cartesian bicategory of relations is a hypergraph category enjoying
certain additional structure:

Definition 6. A cartesian bicategory of relations [10] is a poset-enriched hyper-
graph category X such that:

(i) The comonoid structure is lax natural. That is, for all arrows f of X:

(ii) Each of the frobenius algebras satisfy:

Example 7. The category Rel is a cartesian bicategory of relations with

δX = {(x, (x, x)) | x ∈ X} μX = {((x, x), x) | x ∈ X}

εX = {(x, ∗) | x ∈ X} ηX = {(∗, x) | x ∈ X}
where ∗ is the unique element of the singleton set I = {∗}.
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Example 8. If C is a regular category then Rel(C) is a cartesian bicategory of
relations with X ⊗ Y = X × Y , I = 1, and

δX = 〈1X ,ΔX〉 : X � X × (X × X) μX = 〈ΔX , 1X〉 : X � (X × X) × X

εX = 〈1X , !X〉 : X � X × 1 ηX = 〈!X , 1X〉 : X � 1 × X

Where ΔX is the diagonal morphism and !X is the unique morphism into the
terminal object 1 of C.

Cartesian bicategories of relations admit meets of hom-sets:

Lemma 9 ([7]). Every cartesian bicategory of relations has meets of parallel
arrows, with f ∩ g for f, g : X → Y defined by

Further, the meet determines the poset-enrichment in that f ≤ g ⇔ f∩g = f .

We point out this allows for a much simpler presentation, as in:

Lemma 10. A hypergraph category X is a cartesian bicategory of relations if
and only if for each arrow f :

We will require a 2-category of cartesian bicategories of relations in our devel-
opment. Our notion of 1-cell is a structure-preserving functor as in:

Definition 11. A morphism of cartesian bicategories of relations F : X → Y is
a strict monoidal functor that preserves the frobenius algebra structure:

F (δX) = δFX F (μX) = μFX F (εX) = εFX F (ηX) = ηFX

and the correct sort of 2-cell turns out to be a lax natural transformation:

Definition 12. Let X,Y be cartesian bicategories of relations, and let F,G :
X → Y be morphisms thereof. Then a lax transformation α : F → G consists of
an X0-indexed family of arrows αX : F (X) → G(X) such that for each arrow
f : X → Y of X we have F (f)αY ≤ αXG(f) in Y.

Definition 13. Let RAT be the 2-category with cartesian bicategories of rela-
tions as 0-cells, their morphisms as 1-cells, and lax transformations as 2-cells.

An important class of arrows in a cartesian bicateory of relations are the
maps, which should be thought of as those relations that happen to be functions.
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Definition 14 (Maps). An arrow f : X → Y in a cartesian bicategory of
relations is called:

(i) simple in case the equation below on the left holds.
(ii) total in case the equation below on the right holds.

(iii) A map in case it is both simple and total.

The maps of a cartesian bicategory of relations always form a subcategory
Map(X). For example, Map(Rel) ∼= Set. More generally:

Theorem 15 ([14]). For C a regular category, there is an equivalence of cate-
gories C � Map(Rel(C)).

Remarkably, the components of lax transformations are always maps:

Lemma 16 ([7]). If X,Y are cartesian bicategories of relations, F,G : X →
Y are morphisms thereof and α : F → G is a lax transformation, then each
component αX : FX → GX of α is necessarily a map.

3 Relational Algebraic Theories

In this section we define relational algebraic theories along with the models and
model morphisms, and consider a number of examples.

Definition 17. [7] A relational algebraic theory is a cartesian bicategory of
relations. A model of a relational algebraic theory X is a morphism of cartesian
bicategories of relations F : X → Rel. A model morphism α : F → G is a lax
transformation.

It is convenient to present relational algebraic theories somewhat informally
in terms of string-diagrammatic generators and (in)equations between them,
with the structure of a cartesian bicategory of relations implicitly present. A
more formal account would proceed in terms of monoidal equational theories,
from which the cartesian bicategory of relations giving the associated relational
algebraic theory may be freely constructed [7].

Example 18 (Sets). The relational algebraic theory with no generators and no
equations has sets as models and functions as model morphisms (see Lemma 16),
and so the associated category of models is Set.

Example 19 (Posets). Consider the relational theory with a single generator
(below left) which is required to be reflexive, transitive, and antisymmetric:

The associated category of models is the category of posets and monotone maps.
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Example 20 (Nonempty Sets). Consider the relational theory with no generating
symbols and a single equation:

Models of the associated relational algebraic theory are sets X such that the
generating equation is satisfied in Rel:

ηXεX = {(∗, ∗)} = �I

where ηX and εX are defined as in Definition 1. If we calculate the relational
composite, we find that:

ηXεX = {(∗, ∗) | ∃x ∈ X.(∗, x) ∈ ηX ∧ (x, ∗) ∈ εX} = {(∗, ∗) | ∃x ∈ X}
and so models are nonempty sets. The theory of nonempty sets contains no
generating morphisms, and so model morphisms are simply functions. Contrast
this to the category of pointed sets, in which morphisms must preserve the point.

Example 21 (Regular Semigroups). A semigroup is a set equipped with an asso-
ciative binary operation, denoted by juxtaposition. A semigroup S is regular [16]
in case

∀a ∈ S.∃x ∈ S.axa = a

The relational theory of semigroups has a single generating symbol (below left)
which is required to be simple, total, and associative:

To capture the regular semigroups we include the following equation:

The associated category of models is the category of regular semigroups and
semigroup homomorphisms.

Example 22 (Effectoids). An effectoid [24] is a set A equipped with a unary
relation �ε �→ ⊆ A, a binary relation � ⊆ A × A, and a ternary relation
; �→ ⊆ A × A × A satisfying:

(Identity) For all a, a′ ∈ A,

∃x ∈ A.(�ε �→ x) ∧ (x ; a �→ a′) ⇔ a � a′ ⇔ ∃y ∈ A.(�ε �→ y) ∧ (a ; y �→ a′)

(Associativity) For all a, b, c, d ∈ A,

∃x.(a ; b �→ x) ∧ (x ; c �→ d) ⇔ ∃y.(b ; c �→ y) ∧ (a ; y �→ d)
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(Reflexive Congruence 1) For all a ∈ A, a � a.
(Reflexive Congruence 2) For all a, a′ ∈ A, (�ε �→ a) ∧ (a � a′) ⇒ (�ε �→ a′)
(Reflexive Congruence 3) For all a, b, c ∈ A, ∃x.(a ; b �→ x) ∧ (x � c) ⇒ (a ;
b � c)

To obtain a relational theory of effectoids, we ask for three generating symbols
corresponding respectively to the unary, binary, and ternary relation:

Then the identity and associativity axioms become:

And the reflexive congruence axioms become:

The models of this relational theory are precisely the effectoids.

Example 23 (Generalized Separation Algebras). A generalized separation alge-
bra [4] is a partial monoid satisfying the left and right cancellativity axioms,
which further satisfies the conjugation axiom:

∀x, y.(∃z.x ◦ z = y) ⇔ (∃w.w ◦ x = y)

To capture generalized separation algebras as a relational algebraic theory, we
require two generating symbols in the generating monoidal equational theory,
corresponding to the monoid operation and the unit:

Both are required to be simple, and the unit is required to be total:

The associativity and unitality axioms become:
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Now, define upside-down versions of the generators as in:

Then left cancellativity, right cancellativity, and conjugation are, respec-
tively:

The corresponding category of models is the category of generalized separation
algebras and partial monoid homomorphisms.

Example 24 (Algebraic Theories). Let X be an algebraic theory, and let
(Xeq)reg/lex be the regular completion of X [8,9]. Rel((Xeq)reg/lex) is a relational
algebraic theory. Further, its models and model morphisms (as a relational alge-
braic theory) coincide with the models and model morphisms of X (as an alge-
braic theory). Conversely, if X is a relational algebraic theory, then the maps of
X form a subcategory Map(X). Map(X) has finite products, and so defines an
algebraic theory in the usual sense. Further, the notions of model and model mor-
phism for relational algebraic theories restrict to the usual notions for algebraic
theories on the category of maps.

Example 25 (Essentially Algebraic Theories). An essentially algebraic the-
ory [23] is (among many equivalent presentations) a category X with finite limits.
Models are the finite-limit preserving functors X → Set, and model morphisms
are natural transformations. For X an essentially algebraic theory let Xreg/lex be
the regular completion of X [9]. Then Rel(Xreg/lex) is a relational algebraic the-
ory. Further, its models and model morphisms (as a relational algebraic theory)
coincide with the models and model morphisms of X (as an essentially algebraic
theory). Conversely, if X is a relational algebraic theory then the simple maps of
X are a partial algebraic theory in the sense of [11] – which turn out to be equiva-
lent to essentially algebraic theories. The notions of model and model morphism
for relational theories restrict to the corresponding notions for partial theories.

4 The Variety Theorem

In this section we prove the variety theorem for relational algebraic theories.
We do this in phases: first we introduce some necessary terminology concerning
classes of idempotents, and recall some details of the idempotent splitting com-
pletion. Next, we make the relationship between bicategories of relations and reg-
ular categories precise. We then show how the situation extends to include exact
categories, this being necessary because exactness is the difference between regu-
lar categories and definable categories. Finally, we introduce definable categories,
which end up being the varieties of our relational theories. This is structured
so that the variety theorem follows immediately. We end by showing precisely
when two relational theories present the same definable category.
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4.1 Flavours of Idempotent Splitting

We begin by introducing some important kinds of arrow in a relational theory:

Definition 26. An arrow f : A → A of a relational algebraic theory is called
reflexive in case 1 ≤ f , coreflexive in case f ≤ 1, a partial equivalence relation
in case it is symmetric and transitive as in:

and is called an equivalence relation if it is reflexive, symmetric, and transi-
tive.

Notice in particular that every partial equivalence relation is idempotent, that
every coreflexive arrow is a partial equivalence relation, and that every equiv-
alence relation is a partial equivalence relation. We also recall the idempotent
splitting completion relative to a class of idempotents in a category:

Definition 27. Let X be a category, and let E be a collection of idempotents in
X. Define a category SplitE(X) in which objects are pairs (X, a) where X is a
object of X and a : X → X is in E, and arrows f : (X, a) → (Y, b) are arrows
f : X → Y of X such that afb = f . Composition is composition in X, and
identities are given by a = 1(X,a) : (X, a) → (X, a).

Every member of E splits in SplitE(X). It turns out that splitting partial equiv-
alence relations works well with cartesian bicategories of relations:

Proposition 28 ([14]). If X is a relational algebraic theory and E is a class of
partial equivalence relations in X, then SplitE(X) is a relational algebraic theory.

4.2 Tabulation and Regular Categories

We begin our exposition of the correspondence between regular categories and
relational algebraic theories by recalling the notion of tabulation [10]. Intuitively,
a tabulation of an arrow represents it as a subobject in the category of maps.

Definition 29. A tabulation of an arrow f : X → Y in a relational algebraic
theory X consists of a pair of maps (h, k) such that the equation below on the
left holds in X, and the map below on the right is monic in Map(X):

X is tabular in case every arrow of X admits a tabulation. Further, define RATtab

to be the full 2-subcategory of RAT (Definition 13) on the tabular 0-cells.

The category of maps of a tabular relational algebraic theory is regular, and
conversely the category of internal relations in a regular category is tabular:
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Proposition 30. Let REG be the 2-category of regular categories, regular func-
tors, and natural transformation. Then:

(i) If X is a tabular relational algebraic theory then Map(X) is regular. This
extends to a 2-functor Map : RATtab → REG.

(ii) If C is a regular category, then Rel(C) is tabular. This extends to a 2-functor
Rel : REG → RATtab.

Tabular relational theories and regular categories are thus interchangeable:1

Theorem 31. There is an equivalence of 2-categories Map : RATtab � REG :
Rel.

Finally, any relational theory can be made tabular by splitting the coreflex-
ives:

Proposition 32. Let X be a relational algebraic theory, and let cor be the col-
lection of coreflexives in X. Then X is tabular if and only if every member of cor
splits. In particular, Splitcor(X) is always tabular. This extends to a 2-adjunction
Splitcor : RAT � RATtab : U where U is the evident forgetful functor.

4.3 Effectivity and Exact Categories

We begin by recalling the closely related notions of effectivity and exactness:

Definition 33 ([14]). A relational algebraic theory X is effective in case all
partial equivalence relations in X split. Let RATeff be the full 2-subcategory of
RAT on the effective 0-cells.

Definition 34 ([9]). A regular category C is exact in case Rel(C) is effective.
Let EX be the full 2-subcategory of REG on the exact 0-cells.

It is straightforward to verify that Theorem 31 restricts to the effective case:

Proposition 35. If X is an effective relational algebraic theory, then Map(X)
is exact. Conversely, if C is an exact category, then Rel(C) is effective. This
extends to an equivalence of 2-categories Map : RATeff � EX : Rel.

Splitting equivalence relations makes tabular relational theories effective:

Proposition 36. Let X be a tabular relational algebraic theory, and let eq be
the collection of equivalence relations in X. Then Spliteq(X) is effective. This
extends to a 2-adjunction SpliteqRATtab � RATeff : U where U is the evident
forgetful functor.

We may therefore give the exact completion of a regular category as follows:

1 We note that we restrict our attention to the 0- and 1-cells then this is proven in [10].
Our contribution is to extend this to include 2-cells.
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Proposition 37 ([9,20]). If C is regular, define the exact completion of C by

Cex/reg = Map(Spliteq(Rel(X)))

Then Cex/reg is exact. This extends to a 2-adjunction ex/reg : REG � EX : U
where U is the evident forgetful functor.

We summarize the relationship of regularity and exactness to relational theories:

Corollary 38. The following diagram of left 2-adjoint commutes:

RATtab REG

RATeff EX

Map
∼

Spliteq ex/reg

Map

∼

where the arrows marked with ∼ are part of a 2-equivalence.

Similarly, splitting partial equivalence relations allows us to summarize the
role of the idempotent splitting completion:

Proposition 39. Write per to denote the collection of partial equivalence rela-
tions in a relational algebraic theory. There is a 2-adjunction Splitper : RAT �
RATeff : U where U is the evident forgetful functor. Further, for any relational
algebraic theory X, we have Splitper(X) � Spliteq(Splitcor(X)), and so the following
diagram of left 2-adjoints commutes:

RAT RATtab

RATeff

Splitcor

Splitper

Spliteq

Proof. The proof that Splitper defines a 2-functor which is left adjoint to the for-
getful 2-functor is straightforward, and similar to Proposition 32. A proof that
Splitper(X) � Spliteq(Splitcor(X)) can be found in [14, 2.169], it follows immedi-
ately that our diagram of left 2-adjoints commutes.

4.4 Definable Categories

The final idea involved in our variety theorem is that of a definable category [19].
Definable categories come from categorical universal algebra. If we take regular
categories as our notion of theory, regular functors into Set as our notion of
model, and natural transformations as our model morphisms, then definable
categories are the corresponding varieties. We follow the exposition of [20], and
in particular we formulate definable categories via finite injectivity classes:
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Definition 40 (Finite Injectivity Class). Let h : A → B be an arrow of X.
Then an object C of X is said to be h-injective in case the function of hom-sets
X(h,C) : X(B,C) → X(A,C) defined by X(h,C)(f) = hf is injective. If M is
a finite set of arrows in X, write inj(M) for the full subcategory on the objects
C of X that are h-injective for each h ∈ M . We say that each inj(M) is a finite
injectivity class in X.

Definable categories are defined relative to an ambient locally finitely presentable
category. It is an open problem to give a free-standing characterization [19].

Definition 41. A category is said to be definable if it arises as a finite injec-
tivity class in some locally finitely presentable category. If X and Y are definable
categories, a functor F : X → Y is called an interpretation in case it preserves
products and directed colimits. Let DEF be the 2-category with definable categories
as 0-cells, interpretations as 1-cells, and natural transformations as 2-cells.

From any definable category we can obtain an exact category by considering its
interpretations into Set.

Proposition 42 ([20]). If X is a definable category then the functor category
DEF(X,Set) is an exact category. This extends to a 2-functor DEF( ,Set) :
DEFop → EX.

Similarly, for any regular category the associated category of regular functors
into Set is definable.

Proposition 43 ([20]). If C is a regular category then the functor category
REG(C,Set) is definable. This extends to a 2-functor REG( ,Set) : REG →
DEFop.

If the category in question is exact, then considering interpretations of the result-
ing definable category into Set yields the original exact category. This lifts to
the 2-categorical setting.

Proposition 44 ([20]). There is an adjunction of 2-categories REG(−,Set) :
REG � DEFop : DEF(−,Set) which specializes to an equivalence of 2-categories
REG(−,Set) : EX � DEFop : DEF(−,Set).

This gives another way to describe the exact completion of a regular category:

Proposition 45 ([20]). If C is regular then Cex/reg � DEF(REG(C ,Set) ,Set).

Thus, we may summarize the relationship between definable, regular, and exact
categories as follows:

Corollary 46 ([20, Sect. 9,10]). The following diagram of left 2-adjoints com-
mutes.

REG

EX DEFop

REG(−,Set)
ex/reg

REG(−,Set)

∼

where the arrow marked with ∼ is part of a 2-equivalence.
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The ingredients of our variety theorem for relational algebraic theories are
now assembled. Together, Proposition 39, Corollary 38, and Corollary 46 give:

Corollary 47. There following diagram of left 2-adjoints commutes:

RAT RATtab REG

RATeff EX DEFop

Splitper

Splitcor Map
∼

Spliteq ex/reg
REG(−,Set)

Map

∼
REG(−,Set)

∼

where the arrows marked with ∼ are part of a 2-equivalence.

Now our variety theorem is an immediate consequence of Corollary 47:

Theorem 48. There is an adjunction of 2-categories Mod : RAT � DEFop : Th

It may not be immediately clear what this tells us about the category of
models and model morphisms of a relational algebraic theory, so let us briefly
discuss. Consider an arbitrary relational algebraic theory X. Our universe of
models Rel is tabular, so models of X and models of Splitcor(X) are the same thing
since the image of any coreflexive in X already splits in Rel. Then the category
of models of X and model morphisms thereof is RATtab(Splitcor(X),Rel). When
we transport this across the 2-equivalence Map : RATtab

∼→ REG it becomes
REG(Map(Splitcor(X)),Set), a definable category. Thus, categories of models and
model morphisms of regular algebraic theories are definable categories.

Now, Set is exact, so Rel is effective, which means that much like the models
of X and Splitcor(X), the models of X and Splitper(X) are the same. We have
shown that RATeff � EX � DEFop, and so the question of when two relational
algebraic theories generate the same category of models and model morphisms
can be answered as follows:

Theorem 49. Two relational algebraic theories X and Y present equivalent
definable categories if and only if Splitper(X) and Splitper(Y) are equivalent.

Compare this to the case of algebraic theories, in which two theories present the
same variety in case splitting all idempotents yields equivalent categories [1].
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19. Kuber, A., Rosický, J.: Definable categories. J. Pure Appl. Algebra 222(5), 1006–
1025 (2018)

20. Lack, S., Tendas, G.: Enriched regular theories. J. Pure Appl. Algebra 224(6),
106268 (2020)

21. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York
(1971). https://doi.org/10.1007/978-1-4612-9839-7

22. Lawvere, F.W.: Functorial Semantics of Algebraic Theories: And, Some Algebraic
Problems in the Context of Functorial Semantics of Algebraic Theories (1963)

23. Palmgren, E., Vickers, S.J.: Partial horn logic and cartesian categories. Ann. Pure
Appl. Logic 145(3), 314–353 (2007)

24. Tate, R.: The sequential semantics of producer effect systems. In: Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 15–26 (2013)

https://doi.org/10.1007/978-3-030-02149-8_10
https://doi.org/10.1007/978-3-030-02149-8_10
https://doi.org/10.1007/BFb0058580
http://arxiv.org/abs/1711.08699
https://doi.org/10.1007/BFb0063101
https://doi.org/10.1007/978-1-4612-9839-7


On Tools for Completeness of Kleene
Algebra with Hypotheses

Damien Pous1, Jurriaan Rot2(B), and Jana Wagemaker2

1 CNRS, LIP, ENS de Lyon, Lyon, France
2 Radboud University, Nijmegen, The Netherlands

jrot@cs.ru.nl

Abstract. In the literature on Kleene algebra, a number of variants
have been proposed which impose additional structure specified by a
theory, such as Kleene algebra with tests (KAT) and the recent Kleene
algebra with observations (KAO), or make specific assumptions about
certain constants, as for instance in NetKAT. Many of these variants fit
within the unifying perspective offered by Kleene algebra with hypotheses,
which comes with a canonical language model constructed from a given
set of hypotheses. For the case of KAT, this model corresponds to the
familiar interpretation of expressions as languages of guarded strings.

A relevant question therefore is whether Kleene algebra together with
a given set of hypotheses is complete with respect to its canonical lan-
guage model. In this paper, we revisit, combine and extend existing
results on this question to obtain tools for proving completeness in a
modular way. We showcase these tools by reproving completeness of KAT
and KAO, and prove completeness of a new variant of KAT where the
collection of tests only forms a distributive lattice.

1 Introduction

Kleene algebras (KA) [8,17] are algebraic structures involving an iteration opera-
tion, Kleene star, corresponding to reflexive-transitive closure in relational mod-
els and to language iteration in language models. Its axioms are complete w.r.t.
relational models and language models [3,18,28], and the resulting equational
theory is decidable via automata algorithms (in fact, PSpace-complete [29]).

These structures were later extended in order to deal with common program-
ming constructs. For instance, Kleene algebras with tests (KAT) [22], which
combine Kleene algebra and Boolean algebra, make it possible to represent the
control flow of while programs. Kleene star is used for while loops, and Boolean
tests are used for the conditions of such loops, as well as the conditions in if-
then-else statements. Again, the axioms of KAT are complete w.r.t. appropriate
classes of models, and its equational theory remains in PSpace. Proving so is
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non-trivial: Kozen’s proof reduces completeness of KAT to completeness of KA,
via a direct syntactic transformation on terms.

Another extension is Concurrent Kleene algebra (CKA) [13], where a binary
operator for parallelism is added. The resulting theory is characterised by lan-
guages of pomsets rather than languages of words, and is ExpSpace-complete [6].
Trying to have both tests and concurrency turned out to be non-trivial, and
called for yet another notion: Kleene algebras with observations (KAO) [15],
which are again complete w.r.t. appropriate models, and decidable.

When used in the context of program verification, e.g., in a proof assistant,
such structures make it possible to write algebraic proofs of correctness, and to
mechanise some of the steps: when two expressions e and f representing two
programs happen to be provably equivalent in KA, KAT, or KAO, one does not
need to provide a proof, one can simply call a certified decision procedure [4,30].
However, this is often not enough [1,12,26]: most of the time, the expressions e
and f are provably equal only under certain assumptions on their constituants.
For instance, to prove that (a+b)∗ and a∗b∗ are equal, one may have to use that
in the considered instance, we have ba = ab. In other words, one would like to
prove equations under some assumptions, to have algorithms for the Horn theory
of Kleene algebra and its extensions rather than just their equational theories.

Unfortunately, those Horn theories are typically undecidable [21,24], even
with rather restricted forms of hypotheses (e.g., commutation of two letters, as
in the above example). Nevertheless, important and useful classes of hypotheses
can be ‘eliminated’, by reducing to the plain and decidable case of the equational
theory. This is for instance the case of Hoare hypotheses [23], of the shape e = 0,
which make it possible to encode Hoare triples for partial correctness in KAT.

In some cases, one wants to exploit hypotheses about specific constituants
(e.g., a and b in the above example). In other situations, one wants to exploit
assumptions on the whole structure. For instance, in commutative Kleene alge-
bra [5,8,33], one assumes that the product is commutative everywhere.

Many of these extensions of Kleene algebra (KAT, KAO, commutative KA, spe-
cific hypotheses) fit into the generic framework of Kleene algebra with hypothe-
ses [10], providing in each case a canonical model in terms of closed languages.

We show that we recover standard models in this way, and we provide tools
to establish completeness and decidability of such extensions, in a modular way.
The key notion is that of reduction from one set of hypotheses to another. We
summarise existing reductions and we provide a toolbox for combining those
reductions together. We use this toolbox in order to obtain new and modular
proofs of completeness for KAT and KAO, as well as for the fragment of KAT
where tests are only assumed to form a distributive lattice.

Note however that there are Kleene algebra extensions like action algebras [32]
or action lattices [20], which do not seem to fit into the framework of Kleene algebra
with hypotheses: it is not clear how to interpret the additional operations as letters
with additional structure.
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2 Kleene Algebra, Hypotheses, Closures

A Kleene algebra [8,19] is a tuple (K,+, ·,∗ , 0, 1) such that (K,+, ·, 0, 1) is an
idempotent semiring, and ∗ is a unary operator on K such that for all x, y ∈ K
the following axioms are satisfied:

1 + x · x∗ ≤ x∗ x + y · z ≤ z ⇒ y∗ · x ≤ z x + y · z ≤ y ⇒ x · z∗ ≤ y

There, as later in the paper, we write x ≤ y as a shorthand for x+y = y. Given
the idempotent semiring axioms, ≤ is a partial order in every Kleene algebra,
and all operations are monotone w.r.t. that order.

We let e, f range over regular expressions over an alphabet Σ, defined by:

e, f :: = e + f | e · f | e∗ | 0 | 1 | a ∈ Σ

We write T(Σ) for the set of such expressions, or simply T when the alphabet
is clear from the context. Given alphabets Σ and Γ , a function h : Σ → T(Γ )
extends uniquely into a homomorphism h : T(Σ) → T(Γ ), which we refer to as
the homomorphism generated by h. As usual, every regular expression e gives
rise to a language [[e]] ∈ P(Σ∗). Given two regular expressions, we moreover
write KA � e = f when e = f is derivable from the axioms of Kleene algebra.
(Equivalently, when the equation e = f holds universally, in all Kleene algebras.)

The central theorem of Kleene algebra is the following:

Theorem 2.1 (Soundness and Completeness of KA [3,18,28]). For all
e, f ∈ T, we have KA � e = f if and only if [[e]] = [[f ]].

As a consequence, the equational theory of Kleene algebras is decidable.
Our goal is to extend this result to the case where we have additional hypothe-

ses on some of the letters of the alphabet, or axioms restricting the behaviour of
certain operations. Those are represented by sets of inequations, i.e., pairs (e, f)
of regular expressions written e ≤ f for the sake of clarity. Given a set H of such
inequations, we write KAH � e ≤ f when the inequation e ≤ f is derivable from
the axioms of Kleene algebra and the hypotheses in H (similarly for equations).
By extension, we write KAH � H ′ when KAH � e ≤ f for all e ≤ f in H ′.

Note that we consider letters of the alphabet as constants rather than vari-
ables. In particular, while we have KAba≤ab � (a + b)∗ ≤ a∗b∗, we do not have
KAba≤ab � (a+c)∗ ≤ a∗c∗. Formally, we use a notion of derivation where there is
no substitution rule, and where we have all instances of Kleene algebra axioms
as axioms. When we want to consider hypotheses that are universally valid, it
suffices to use all their instances. For example, to define commutative Kleene
algebra, we simply use the infinite set {ef ≤ fe | e, f ∈ T}.

We associate a canonical language model to KA with a set of hypotheses H,
defined by closure under H. For u, v ∈ Σ∗ and L ⊆ Σ∗, let uLv � {uxv | x ∈ L}.

Definition 2.2 (H-closure). Let H be a set of hypotheses and L ⊆ Σ∗ a
language. The H-closure of L, denoted as clH(L), is the smallest language
containing L s.t. for all e ≤ f ∈ H and u, v ∈ Σ∗, if u[[f ]]v ⊆ clH(L), then
u[[e]]v ⊆ clH(L).
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Fixpoint theory makes it possible to characterise the H-closure of a language
L as the least (pre)fixpoint of the function st′

H,L(X) = stH(X) ∪ L, where

stH(X) =
⋃

{u[[e]]v | e ≤ f ∈ H,u, v ∈ Σ∗, u[[f ]]v ⊆ X} .

This least fixpoint can be characterised more explicitly by transfinite iteration:
we have clH(L) =

⋃
α stα

H(L) where stα+1
H (L) = stH(stα

H(L)) for every ordinal α,
and stλ

H(L) =
⋃

α<λ stα
H(L) for every limit ordinal λ.

This notion of closure gives a closed interpretation of regular expressions,
clH([[−]]), for which KAH is sound:

Theorem 2.3 ([10, Theorem 2]). If KAH � e = f , then clH([[e]]) = clH([[f ]]).

In the sequel, we shall prove the converse implication, completeness, for spe-
cific choices of H: we say that KAH is complete if for all expressions e, f :

clH([[e]]) = clH([[f ]]) implies KAH � e = f .

We could hope that completeness always holds, notably because the notion of
closure is invariant under inter-derivability of the considered hypotheses, as a
consequence of the following lemma:

Lemma 2.4 ([16, Lemma 4.10]). Let H and H ′ be sets of hypotheses such
that KAH � H ′. Then clH′ ⊆ clH .

Unfortunately, there are concrete instances for which KAH is known not to
be complete. For instance, there is a finitely presented monoid (thus a finite
set H0 of equations) such that {(e, f) | clH0([[e]]) = clH0([[f ]])} is not r.e. [25,
Theorem 1]. Since derivability in KAH is r.e. as soon as H is, KAH0 cannot be
complete.

Before turning to techniques for proving completeness, let us describe the
closed interpretation of regular expressions for two specific choices of hypotheses.

Let us consider first commutative Kleene algebra, obtained as explained in the
Introduction using the set {ef ≤ fe | e, f ∈ T(Σ)}. Under Kleene algebra axioms,
this set is equiderivable with its restriction to letters, C = {ab ≤ ba | a, b ∈ Σ}
(a consequence of [1, Lemma 4.4]).

The associated closure can be characterised as follows:

clC(L) = {w ∈ Σ∗ | ∃v ∈ L. |w|x = |v|x for all x ∈ Σ}

where |w|x denotes the number of occurences of x in w. Thus, w ∈ clC(L) if it
is a permutation of some word in L.

This semantics matches precisely the one used in [8] for commutative Kleene
algebra: there, a function [[−]]c : T(Σ) → P(NΣ) interprets regular expressions
as subsets of NΣ , whose elements are thought of as “commutative words”: these
assign to each letter the number of occurrences, but there is no order of letters.
Let q : P(Σ∗) → P(NΣ), q(L) = {λx.|w|x | w ∈ L}; this map computes the
Parikh image of a given language L, that is, the set of multisets representing
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occurences of letters in words in L. Then this semantics is characterised by
[[−]]c = q ◦ [[−]].

One may observe that [[−]]c = q(clC([[−]])), since clC only adds words to
a language which have the same number of occurences of each letter as some
word which is already there. Conversely, we have clC([[−]]) = q′([[−]]c), where
q′ : P(NΣ) → P(Σ∗), q′(L) = {w | p ∈ L, ∀x ∈ Σ, |w|x = p(x)}. As a conse-
quence, we have [[e]]c = [[f ]]c if and only if clC([[e]]) = clC([[f ]]).

From there, we can easily deduce from the completeness result in [8,
Chapter 11, Theorem 4], attributed to Pilling (see also [5]), that KAC is com-
plete.

Let us now consider a single hypothesis: D = {ab ≤ 0} for some letters a and
b. The D-closure of a language L consists of those words that either belong to
L, or contain ab as a subword. As a consequence, we have clD([[e]]) = clD([[f ]]) if
and only if [[e]] and [[f ]] agree on all words not containing the pattern ab.

In this example, we can easily obtain decidability and completeness of KAD.
Indeed, consider the function r : T(Σ) → T(Σ), r(e) = e+Σ∗abΣ∗. For all e, we
have KAD � e = r(e), and clD([[e]]) = [[r(e)]]. As a consequence, we have

clD([[e]]) = clD([[f ]])
⇔ [[r(e)]] = [[r(f)]]
⇔ KA � r(e) = r(f) (Theorem 2.1)
⇒ KAD � e = f

The first step above establishes decidability of the closed semantics; the following
ones reduce the problem of completeness for KAD to that for KA alone, which is
known to hold. By soundness (Theorem 2.3), the last line implies the first one,
so that these conditions are all equivalent.

This second example exploits and illustrate a simple instance of the frame-
work we design in the sequel to prove completeness of various sets of hypotheses.

3 Reductions

As illustrated above, the overall strategy is to reduce completeness of KAH , for
a given set of hypotheses H, to completeness of Kleene algebra. The core idea
is to provide a map r from expressions to expressions, which incorporates the
hypotheses H in the sense that [[r(e)]] = clH([[e]]), and such that r(e) is provably
equivalent to e under the hypotheses H. This idea leads to the unifying notion
of reduction, developed in [10,16,25].

Definition 3.1 (Reduction). Assume Γ ⊆ Σ and let H, H ′ be sets of hypothe-
ses over Σ and Γ respectively. We say that H reduces to H ′ if KAH � H ′ and
there exists a map r : T(Σ) → T(Γ ) such that for all e ∈ T(Σ),

1. KAH � e = r(e), and
2. clH([[e]]) ∩ Γ ∗ = clH′([[r(e)]]).
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We often refer to such a witnessing map r itself as a reduction. Generalising
the above example, we obtain the key property of reductions:

Theorem 3.2. Suppose H reduces to H ′. If KAH′ is complete, then so is KAH .

Proof. Let r be the map for the reduction from H to H ′. For all e, f ∈ T(Σ),

clH([[e]]) = clH([[f ]])
⇒ clH′([[r(e)]]) = clH′([[r(f)]]) (r a reduction (item 2))
⇒ KAH′ � r(e) = r(f) (completeness of H ′)
⇒ KAH � r(e) = r(f) (KAH � H ′)
⇒ KAH � e = f (r a reduction (item 1))�

An important case is when H ′ = ∅: given a reduction from H to ∅, Theorem
3.2 gives completeness of KAH , by completeness of KA. Such reductions are
what we ultimately aim for. However, in the examples later in this paper, these
reductions are composed of smaller ones, which do make use of intermediate
hypotheses. Section 3.2 contains general techniques for combining reductions.

While we focus on completeness in this paper, note that reductions can also
be used to prove decidability. More precisely, if KA′

H is complete and decidable,
and H reduces to H ′ via a computable reduction r, then KAH is decidable.

The following result from [16] (cf. Remark 3.5) gives a sufficient condition for
the existence of a reduction. This is useful for reductions where the underlying
map r is a homomorphism.

Lemma 3.3. Assume Γ ⊆ Σ and let H, H ′ be sets of hypotheses over Σ and
Γ respectively, such that KAH � H ′. If there exists a homomorphism r : T(Σ) →
T(Γ ) such that:

1. For all a ∈ Γ , we have KA � a ≤ r(a).
2. For all a ∈ Σ, we have KAH � a = r(a).
3. For all e ≤ f ∈ H, we have KAH′ � r(e) ≤ r(f).

then H reduces to H ′.

Example 3.4. We consider KA together with a global “top element” � and the
axiom e ≤ �. To make this precise in Kleene algebra with hypotheses, we assume
an alphabet Σ with � ∈ Σ, and take the set of hypotheses H� = {e ≤ � | e ∈
T(Σ)}. Then clH�(L) contains those words obtained from a word w ∈ L by
replacing every occurence of � in w by arbitrary words in Σ∗.

We claim that H reduces to ∅. To this end, define the homomorphism
r : T(Σ) → T(Σ) by r(�) = Σ∗ (where we view Σ as an expression consist-
ing of the sum of its elements) and r(a) = a for a ∈ Σ with a �= �. Each of
the conditions of Lemma 3.3 is now easy to check. Thus r is a reduction, so by
Theorem 3.2, KAH� is complete.

Note that this implies completeness w.r.t. validity of equations in all (regular)
language models, where � is interpreted as the largest language: indeed, the
closed semantics clH�([[−]]) is generated by such a model.
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At the end of Sect. 2, we discussed commutative KA as an instance of Kleene
algebra with hypotheses H. While KAH is complete in that case, there is no
reduction from H to ∅, as clH does not preserve regularity. Indeed, clH([[(ab)∗]]) =
{w | |w|a = |w|b} which is not regular. The completeness proof in [5,8] is self-
contained, and does not rely on completeness of KA.

Remark 3.5. The idea to use two sets of hypotheses in Definition 3.1 is from [16],
where reductions are defined slightly differently: the alphabet is fixed (that is,
Σ = Γ ), and the last condition is instead defined as clH([[e]]) = clH([[f ]]) ⇒
clH′([[r(e)]]) = clH′([[r(f)]]). An extra notion of strong reduction is then intro-
duced, which coincides with our definition if Σ = Γ . By allowing a change
of alphabet, we do not need to distinguish reductions and strong reductions.
Lemma 3.3 is in [16, Lemma 4.23], adapted here to the case with two alphabets
(this is taken care of in loc. cit. by assuming clH′ preserves languages over Γ ).

3.1 Basic Reductions

The following result collects several sets of hypotheses for which we have reduc-
tions to ∅. These mostly come from the literature. They form basic building
blocks used in the more complex reductions that we present in the examples
below.

Lemma 3.6. Each of the following sets of hypotheses reduce to the empty set
(of hypotheses over Σ).

(i) {ui ≤ wi | i ∈ I} with ui, wi ∈ Σ∗ and |ui| ≤ 1 for all i ∈ I
(ii) {1 ≤

∑
a∈Si

a | i ∈ I} with each Si ⊆ Σ finite
(iii) {e ≤ 0} for e ∈ T(Σ)
(iv) {ea ≤ a} and {ae ≤ a} for a ∈ Σ, e ∈ T(Σ\{a})

Proof. (i) is [25, Theorem 2]. (The result mentions equations, but in the proof
only the relevant inequations are used.) (ii) is [10, Proposition 6]. (iii) is basically
due to [7], but since it is phrased differently there we include a proof in [31].
Hypotheses of a similar form as (iv) are studied in the setting of Kleene algebra
with tests in [12], we include a proof in [31]. �

Note that Item iii above covers finite sets of hypotheses of the form {ei ≤
0}i∈I , as these can be encoded as the single hypothesis

∑
i∈I ei ≤ 0.

3.2 Compositional Reductions

The previous subsection gives reductions to the empty set for single equations.
However, in the examples we often start with a collection of hypotheses of differ-
ent shapes, which we wish to reduce to the empty set. Therefore, we now discuss
a few techniques for combining reductions.

Throughout this section, for sets of hypotheses H1, . . . , Hn we often denote
the associated closure by cli instead of clHi

, cli,j instead of clHi∪Hj
and cli...j
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instead of cl⋃
i≤k≤j Hk

. Similarly, we write sti instead of stHi
etc. First, there are

the basic observations that reductions compose (Lemma 3.7) and that equideriv-
able sets of hypotheses always reduce to each other, via the identity (Lemma
3.8).

Lemma 3.7. Let H1,H2 and H3 be sets of hypotheses. If H1 reduces to H2 and
H2 reduces to H3 then H1 reduces to H3.

Lemma 3.8. Let H1,H2 be sets of hypotheses over a common alphabet. If
KAH1 � H2 and KAH2 � H1 then H1 and H2 reduce to each other.

The following useful lemma allows to combine reductions by union. Its
assumptions allow to compose the reductions sequentially. A similar lemma is
formulated in the setting of bi-Kleene algebra in [14, Lemma 4.46].

Lemma 3.9. Let H1, . . . , Hn,H be sets of hypotheses over Σ, with n ≥ 1. If Hi

reduces to H for all i, and cl1...n = cln ◦ · · · ◦ cl1, then
⋃

i≤n Hi reduces to H.

The next lemma is useful to show the second requirement in Lemma 3.9.

Lemma 3.10. Let H1, . . . , Hn be sets of hypotheses, such that cli ◦clj ⊆ clj ◦cli
for all i, j with i < j. Then cl1...n = cln ◦ · · · ◦ cl1.

The condition cli ◦ clj ⊆ clj ◦ cli is equivalent to cli,j = clj ◦ cli. With that
formulation, Lemma 3.10 is stated in bi-Kleene algebra as [14, Lemma 4.50].

We now proceed with several lemmas that help proving cl1 ◦ cl2 ⊆ cl2 ◦
cl1. In particular, these allow to use the “one-step closure” stH from the fixed
point characterisation of clH (below Definition 2.2), for cl1 in Lemma 3.11 and
additionally for cl2 in Lemma 3.12, assuming further conditions.

Lemma 3.11. For all H1,H2, if st1 ◦ cl2 ⊆ cl2 ◦ cl1, then cl1 ◦ cl2 ⊆ cl2 ◦ cl1.

Lemma 3.12. Let H1,H2 be sets of hypotheses such that the right-hand sides
of inequations in H1 are all words. If st1 ◦ st2 ⊆ cl2 ◦ st=1 then cl1 ◦ cl2 ⊆ cl2 ◦ cl1.

We return to hypotheses of the form H1 = {e ≤ 0}. For any term e and with
H2 an arbitrary set of hypotheses, we have cl1 ◦ cl2 ⊆ cl2 ◦ cl1. As a consequence,
Lemma 3.6(iii) extends to the following result, which shows we can always get
rid of finite sets of hypotheses of the form e ≤ 0. A similar result, in terms of
Horn formulas and in the context of KAT, is shown in [11].

Lemma 3.13. For a set of hypotheses H and term e, H ∪ {e ≤ 0} reduces to
H.

4 Kleene Algebra with Tests

In this section we apply the machinery from the previous sections to obtain a
modular completeness proof for Kleene algebra with tests [27].
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A Kleene algebra with tests (KAT) is a Kleene algebra X containing a
Boolean algebra L such that the meet of L coincides with the product of X,
the join of X coincides with the sum of X, the top element of L is the multi-
plicative identity of X, and the bottom elements of X and L coincide.

Syntactically, we fix two finite sets Σ and Ω of primitive actions and primitive
tests. We denote the set of Boolean expressions over alphabet Ω by TBA:

φ, ψ:: = φ ∨ ψ | φ ∧ ψ | ¬φ | ⊥ | � | o ∈ Ω

We write BA � φ = φ′ when this equation is derivable from Boolean algebra
axioms [2,9], and similarly for inequations.

We let α, β range over atoms: elements of the set At � 2Ω . Those may be seen
as valuations for Boolean expressions, or as complete conjunctions of literals: α
is implicitly seen as the Boolean formula

∧
α(o)=1 o ∧

∧
α(o)=0 ¬o. They form the

atoms of the Boolean algebra generated by Ω. We write α |= φ when φ holds
under the valuation α. A key property of Boolean algebras is that for all atoms
α and formulas φ, we have

α |= φ ⇔ BA � α ≤ φ and BA � φ =
∨

α|=φ

α

The KAT terms over alphabets Σ and Ω are the regular expressions over the
alphabet Σ + TBA: TKAT � T(Σ + TBA). We write KAT � e = f when this equation
is derivable from the axioms of KAT, and similarly for inequations.

The standard interpretation of KAT associates to each term a language of
guarded strings. A guarded string is a sequence of the form α0a0α1a1 . . . an−1αn

with ai ∈ Σ for all i < n, and αi ∈ At for all i ≤ n. We write GS for the
set At × (Σ × At)∗ of such guarded strings. Now, the interpretation G : T(Σ +
TBA) → 2GS is defined as the homomorphic extension of the assignment G(a) =
{αaβ | α, β ∈ At} for a ∈ Σ and G(φ) = {α | α |= φ} for φ ∈ TBA, where
for sequential composition of guarded strings the coalesced product is used. The
coalesced product of guarded strings uα and βv is defined as uαv if α = β and
undefined otherwise.

Theorem 4.1 ([27, Theorem 8]). For all e, f ∈ TKAT, we have KAT � e = f iff
G(e) = G(f).

We now reprove this result using Kleene algebra with hypotheses. We start
by defining the additional axioms of KAT as hypotheses.

Definition 4.2. We write bool for the set of all instances of Boolean algebra
axioms over TBA and glue for the following set of hypotheses relating the Boolean
algebra connectives to the Kleene algebra ones

glue = {φ ∧ ψ = φ · ψ, φ ∨ ψ = φ + ψ | φ, ψ ∈ TBA} ∪ {⊥ = 0, � = 1}

We then define kat = bool ∪ glue.
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(Note that all these equations are actually understood as double inequations.)
We prove completeness of KAkat in Sect. 4.2 below, by constructing a suitable

reduction. Recall that this means completeness w.r.t. the interpretation clkat([[−]])
in terms of closed languages. Before proving completeness of KAkat, we compare
it to the classical completeness (Theorem 4.1). First note that KAkat contains
the same axioms as Kleene algebra with tests, so that provability in KAkat and
KAT coincide: KAkat � e = f iff KAT � e = f . Comparing the interpretation
clkat([[−]]) to the guarded string interpretation G is slightly more subtle, and is
the focus of the next subsection.

4.1 Relation to Guarded String Interpretation

To relate the guarded string model and the model obtained with closure under
kat, we first develop the following lemmas.

The key step consists in characterising the strings that are present in the
closure of a language of guarded strings (Lemma 4.3) below. First observe that
a guarded string may always be seen as a word over the alphabet Σ + TBA.
Conversely, a word over the alphabet Σ + TBA can always be decomposed as
a sequence φ0a0 · · · φn−1an−1φn where ai ∈ Σ for all i < n and each φi is
a possibly empty sequence of Boolean expressions. We let φ range over such
sequences, and we write φ for the conjunction of the elements of φ.

Lemma 4.3. Let L be a language of guarded strings. We have

φ0a0 · · · φn−1an−1φn ∈ clkat(L)

⇔ ∀ (αi)i≤n, (∀i ≤ n, αi |= φi) ⇒ α0a0 · · · αn−1an−1αn ∈ L

Then we show that the kat-closures of [[e]] and G(e) coincide:

Lemma 4.4. For all KAT expressions e, clkat([[e]]) = clkat(G(e)).

Let GS be the set of all guarded strings. We also have:

Lemma 4.5. For all KAT expressions e, G(e) = clkat([[e]]) ∩ GS.

As an immediate consequence of these two lemmas, we can finally relate the
guarded strings languages semantics to the kat-closed languages one:

Corollary 4.6. Let e, f ∈ Tkat. We have G(e) = G(f) ⇔ clkat([[e]]) = clkat([[f ]]).

4.2 Completeness

To prove completeness of the closed language model wrt kat, we proceed as
follows. First, we reduce the hypotheses in kat to a simpler set of axioms: by
putting the Boolean expressions into normal forms via the atoms, we can get rid
of the hypotheses in bool [31]. We do not remove the hypotheses in glue directly:
we transform them into the following hypotheses about atoms:

atom = {α · β ≤ 0 | α, β ∈ At, α �= β} ∪ {α ≤ 1 | α ∈ At} ∪ {1 ≤
∑

α∈At

α}
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We thus first show that kat reduces to atom. Second, we use results from Sects. 3.1
and 3.2 to reduce from atom to ∅, to obtain completeness of KAkat.

Let r : T(Σ + TBA) → T(Σ + At) be the homomorphism defined by

r(x) =

{
a x = a ∈ Σ∑

α|=φ α x = φ ∈ TBA

We show below that r yields a reduction from kat to atom, using Lemma 3.3.
In the sequel, we use atom1, atom2 and atom3, or simply 1, 2, 3, to denote the
three families of inequations in atom.

Lemma 4.7. The homomorphism r yields a reduction from kat to atom.

Proof. We use Lemma 3.3. We first need to show KAkat � atom: for α, β ∈ At
with α �= β, we have the following derivations in KAkat

α · β = α ∧ β = ⊥ = 0 α ≤ � = 1 1 = � =
∨

α|=�
α =

∑

α∈At

α

Now for a ∈ Σ + At, we have a = r(a) (syntactically): if a = a ∈ Σ, then
r(a) = a; if a = α ∈ At, then r(α) =

∑
α|=α α = α. The first condition about r is

thus satisfied, and it suffices to verify the second condition about r for φ ∈ TBA.
In this case, we have we have KAkat � r(φ) =

∑
α|=φ α =

∨
α|=φ α = φ. The third

and last condition is proven in [31]. �
Now we must reduce atom to the empty set. We can immediately get rid of

atom1: by Lemma 3.13, atom reduces to atom2,3. For atom2 and atom3, we have
individiual reductions to the empty set via Lemma 3.6(i) and (ii), respectively.
We combine those reductions via Lemma 3.9, by showing that their correspond-
ing closures can be organised as follows:

Lemma 4.8. We have clatom2,3 = clatom3 ◦ clatom2

Proof. We simply write 2 and 3 for atom2 and atom3. Since the right-hand
sides of atom2 are words, by Lemma 3.12 and Lemma 3.10, it suffices to prove
st2 ◦ st3 ⊆ cl3 ◦ st2. We actually prove st2 ◦ st3 ⊆ st3 ◦ st2.

Assume w ∈ st2(st3(L)) for some language L. Hence, w = uαv for some atom
α and words u, v such that and uv ∈ st3(L). In turn, we uv must be equal to
u′v′ for some words u′, v′ such that for all atoms β, u′βv′ ∈ L. By symmetry,
we may assume |u| ≤ |u′|, i.e., u′ = uw, v = wv′ for some word w. In this
case, we have uwβv′ ∈ L for all β, whence uαwβv′ ∈ st2(L) for all β, whence
uαv = uαwv′ ∈ st3(st2(L)), as required. �

Putting everything together, we finally obtain completeness of KAkat.

Theorem 4.9. For all e, f ∈ TKAT, clkat([[e]]) = clkat([[f ]]) implies KAkat � e = f .

Proof. kat reduces to atom (lemma 4.7), which reduces to atom2,3 by Lemma 3.13.
The latter set reduces to the empty set by Lemma 4.8, Lemma 3.6 and Lemma
3.9. Thus kat reduces to the empty set, and we conclude via completeness of
Kleene algebra (Theorem 2.1) and Theorem 3.2. �
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5 Kleene Algebra with Observations

A Kleene algebra with Observations (KAO) is a Kleene algebra which also con-
tains a Boolean algebra, but the connection between the Boolean algebra and the
Kleene algebra is different than for KAT: instead of having the axiom φ∧ψ = φ·ψ
for all φ, ψ ∈ TBA, we only have φ ∧ ψ ≤ φ · ψ [15]. This system was introduced
to allow for concurrency and tests in a Kleene algebra framework, because asso-
ciating φ · ψ and φ ∧ ψ in a concurrent setting is no longer appropriate: φ ∧ ψ is
one event, where we instantenously test whether both φ and ψ are true, while
φ ·ψ performs first the test φ, and then ψ, and possibly other things can happen
between those tests in another parallel thread. Hence, the behaviour of φ ∧ ψ
should be included in φ ·ψ, but they are no longer equivalent. (Note that even if
we add the axiom 1 = �, in which case we have that φ · ψ is below both ψ and
φ, this is not enough to collapse φ · ψ and φ ∧ ψ, because φ · ψ need not be an
element of the Boolean algebra.)

Algebraically this constitutes a small change, and an ad-hoc completeness
proof is in [15]. Here we show how to obtain completeness within our framework.
We also show how to add the additional and natural axiom 1 = �, which is not
present in [15], and thereby emphasise the modular aspect of the approach.

Similar to KAT, we add the additional axioms of KAO to KA as hypotheses.
The additional axioms of KAO are the axioms of Boolean algebra and the axioms
specifying the interaction between the two algebras. The KAO-terms are the
same as the KAT-terms: regular expression over the alphabet Σ + TBA.

Definition 5.1. We define the set of hypotheses kao = bool ∪ glue′, where

glue′ = {φ ∧ ψ ≤ φ · ψ, φ ∨ ψ = φ + ψ | φ, ψ ∈ TBA} ∪ {⊥ = 0}

We prove completeness with respect to the closed interpretation under
hypotheses: clkao([[−]]). As shown below, this also implies completeness for the
language model presented in [15]. We take similar steps as for KAT:

1. Reduce kao to the simpler set of axioms contr = {α ≤ α · α | α ∈ At}, where
At = 2Ω is the set of atoms, as in Sect. 4.

2. Use results from Sect. 3.1 to reduce contr to the empty set.

For the first step, we use the same homomorphism r as for KAT.

Lemma 5.2. The homomorphism r yields a reduction from kao to contr.

Proof. Like for Lemma 4.7, we use Lemma 3.3. We show KAkao � contr: for
α ∈ At, we have KAkao � α = α ∧ α ≤ α · α. The first and second condition
about r are obtained like in the KAT case: the glueing equations for ∧ were not
necessary there. The third and last condition is proven in [31]. �

Theorem 5.3. For all e, f ∈ TKAT, clkao([[e]]) = clkao([[f ]]) implies KAkao � e = f .

Proof. kao reduces to contr (Lemma 5.2), which reduces to ∅ by Lemma 3.6(i),
as both α and α · α are words and α is a word of length 1. �
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The semantics in [15] actually corresponds to clcontr([[r(−)]]) rather than
clkao([[−]]). But these are equivalent: kao reducing to contr via r (the proof of
Theorem 3.2 actually establishes that when H reduces to H ′ via r and KAH′

is complete, we have clH([[e]]) = clH([[f ]]) iff clH′([[r(e)]]) = clH′([[r(f)]]) for all
e, f).

Because we set up KAO in a modular way, we can now easily extend it with
the extra axiom � = 1. Combining the proofs that r is a reduction from kat to
atom and from kao to contr, we can easily see that r is also a reduction from
kao∪ {� = 1} to contr ∪ atom2 ∪ atom3. To obtain completeness, it thus suffices
to explain how to combine the closures w.r.t. contr, atom2, and atom3.

Lemma 5.4. We have cl2 ◦ clcontr ⊆ clcontr ◦ cl2 and clcontr ◦ cl3 ⊆ cl3 ◦ clcontr

Theorem 5.5. KAkao∪{�=1} is complete.

Proof. Because we know cl2,3 = cl3◦cl2 (Lemma 4.8) and hence cl2◦cl3 ⊆ cl3◦cl2,
we can use Lemma 3.10 with Lemma 5.4 to deduce clcontr,2,3 = cl3 ◦ clcontr ◦ cl2,
and obtain completeness via Lemma 3.9 and the fact that contr, 2 and 3 all
reduce to the empty set. �

6 Kleene Algebra with Positive Tests

In KAT, tests are assumed to form a Boolean algebra. Here we study the struc-
ture obtained by assuming that they only form a distributive lattice. A Kleene
algebra with positive tests (KAPT) is a Kleene algebra X containing a lattice L
such that the meet of L coincides with the product of X, the join of X coincides
with the sum of X, and all elements of L are below the multiplicative identity
of X. (We discuss the variant where we have a bounded lattice at the end, see
Remark 6.6). Since the product distributes over sums in X, L must be a dis-
tributive lattice. Also note that there might be elements of X below 1 that do
not belong to L.

As before, we fix two finite sets Σ and Ω of primitive actions and primitive
tests. Then we consider regular expressions over the alphabet Σ +TDL, where TDL

is the set of lattice expressions over Ω: expressions built from elements of Ω and
two binary connectives ∨ and ∧.

We write dl for the set of all instances of distributive lattice axioms over
TDL [9], and we set kapt � dl ∪ glue′′ where

glue′′ � {φ ∧ ψ = φ · ψ, φ ∨ ψ = φ + ψ | φ, ψ ∈ TDL} ∪ {φ ≤ 1 | φ ∈ TDL}

Like for Boolean algebras, the free distributive lattice over Ω is finite and can
be described easily. An atom α is a non-empty subset of Ω, and we write At for
the set of such atoms as before. However, while an atom {a, b} of Boolean algebra
was implicitly interpreted as the term a ∧ b ∧ ¬c (when Ω = {a, b, c}), the same
atom in the context of distributive lattices is implicitly interpreted as the term
a ∧ b—there are no negative literals in distributive lattices. Again similarly to
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the case of Boolean algebras, the key property for atoms in distributive lattices
is the following: for all atoms α and formulas φ, we have

α |= φ ⇔ DL � α ≤ φ and DL � φ =
∨

α|=φ

α

Like for KAT, such a property makes it possible to reduce kapt to the following
set of equations on the alphabet Σ + At.

atom′ � {α · β = α ∪ β | α, β ∈ At} ∪ {α ≤ 1 | α ∈ At}

(Note that in the right-hand side of the first equation, α ∪ β is a single atom,
whose implicit interpretation is α ∧ β.)

Lemma 6.1. There is a reduction from kapt to atom′, witnessed by the homo-
morphism r : T(Σ + TDL) → T(Σ + At) defined by

r(x) =

{
a x = a ∈ Σ∑

α|=φ α x = φ ∈ TDL

As a consequence, in order to get decidability and completeness for KAPT
(i.e., kapt), it suffices to reduce atom′ to the empty set. Let us number the three
kinds of inequations that appear in this set:

1={α∪β ≤ α·β | α, β ∈ At} 2={α·β ≤ α∪β | α, β ∈ At} 3={α ≤ 1 | α ∈ At}

Lemma 3.6(i) gives reductions to the empty set for 1 and 3, but so far we have
no reduction for 2. We actually do not know if there is a reduction from 2 to the
empty set. Instead, we establish a reduction from 2 together with 3 to 3 alone.

Lemma 6.2. There is a reduction from 2,3 to 3, witnessed by the homomor-
phism r : T(Σ + At) → T(Σ + At) defined by

r(x) =

{
a x = a ∈ Σ∑

{α1 · . . . · αn | α =
⋃

i≤n αi, i �= j ⇒ αi �= αj} x = α ∈ At

(Note that the above reduction requires 3 in its target, and cannot be extended
directly into a reduction from 1,2,3 to 3: r(α ∪β) ≤ r(α ·β) cannot be proved in
KA3—take α = {a}, β = {b}, then ba is a term in r(α∪β) which is not provably
below ab = r(α · β).)

Composed with the existing reduction from 3 to the empty set (Lemma
3.6(i)), we thus have a reduction from 2,3 to the empty set. It remains to combine
this reduction to the one from 1 to the empty set (Lemma 3.6(i) again). To this
end, we would like to use Lemma 3.9, which simply requires us to prove that the
closure clatom′ = cl1,2,3 is equal either to cl1 ◦ cl2,3 or to cl2,3 ◦ cl1. Unfortunately,
this is not the case. To see this, suppose we have two atomic tests a and b.
For the first option, consider the singleton language {ab} (a word consisting
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of two atoms); we have ba ∈ cl1,2,3({ab}) (because (a ∧ b) ∈ cl1({ab}), and
then using cl2) but ba �∈ cl1(cl2,3({ab})). For the second option, consider the
singleton language {a}; we have (a∧ b) ∈ cl1,2,3({a}), because ab ∈ cl3({a}), but
(a ∧ b) �∈ cl2,3(cl1({a})) because cl1({a}) is just {a}, and cl2,3 does not make it
possible to forge conjunctions.

In order to circumvent this difficulty, we use a fourth family of equations:

4 = {α ∪ β ≤ α | α, β ∈ At}

These axioms are immediate consequences of 1 and 3. Therefore, 1, 2, 3 reduces to
1, 2, 3, 4. Moreover they consist of ‘letter-letter’ inequations, which are covered by
Lemma 3.6(i): 4 reduces to the empty set. We shall further prove that cl1,2,3,4 =
cl4 ◦ cl3 ◦ cl2 ◦ cl1 and cl2,3 = cl3 ◦ cl2, so that Lemma 3.9 applies to obtain a
reduction from 1,2,3,4 to the empty set.

Lemma 6.3. We have the following inclusions of functions:
(i) st1 ◦ st2 ⊆ st2 ◦ st1 + id
(ii) st1 ◦ st3 ⊆ st3 ◦ st1 + st4
(iii) st1 ◦ st4 ⊆ st4 ◦ st1

(iv) st2 ◦ st3 ⊆ st3 ◦ st2 + st3 ◦ st3
(v) st2 ◦ st4 ⊆ st4 ◦ st2 + st4 ◦ st4 ◦ st2
(vi) st3 ◦ st4 ⊆ st4 ◦ st3

Lemma 6.4. We have cl1,2,3,4 = cl4 ◦ cl3 ◦ cl2 ◦ cl1 = cl4 ◦ cl2,3 ◦ cl1.

Proof. We use Lemma 3.10 and Lemma 3.12 repeatedly, on (combinations of)
the inclusions provided by Lemma 6.3. See the proof in [31]. �

Theorem 6.5. KAkapt reduces to the empty set, and is complete and decidable.

Proof. kapt reduces to atom′ by Lemma 6.1, which in turn reduces to 1, 2, 3, 4
by Lemma 3.8. The latter is composed of three sets of hypotheses, 1, 4, and 2, 3.
All three of them reduce to the empty set: the first two by Lemma 3.6(i), and
the third one by Lemma 6.2. These three reductions can be composed together
by Lemma 3.9 and Lemma 6.4. �

Remark 6.6. The case of Kleene algebras containing a bounded distributive lat-
tice, with extremal elements ⊥ and � coinciding with 0 and 1, may be obtained
as follows. Allow the empty atom ∅ in At (interpreted as �), and add the inequa-
tion 5 = {1 ≤ ∅} to atom′. Lemma 6.1 extends easily, and we have a reduction
from 5 to the empty set (Lemma 3.6(i)). Therefore it suffices to find how to
combine cl5 with the other closures. We have cl1,2,3,4,5 = cl5 ◦ cl4 ◦ cl3 ◦ cl2 ◦ cl1
(see [31]), so that we can conclude that the equational theory of Kleene algebras
with a bounded distributive lattice is complete and decidable.

7 Related Work

There is a range of papers on completeness and decidability of Kleene algebra
together with specific forms of hypotheses, starting with [7]. The general case of
Kleene algebra with hypotheses, and reductions to prove completeness, has been
studied recently in [10,16,25]. The current paper combines and extends these
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results, and thereby aims to provide a comprehensive overview and a showcase
of how to apply these techniques to concrete case studies (KAT, KAO and the
new theory KAPT). Below, we discuss each of these recent works in more detail.

Kozen and Mamouras [25] define the canonical language model for KA with
a set of hypotheses in terms of rewriting systems, as well as reductions and
their role in completeness, and provide reductions for equations of the form
1 = w and a = w (cf. Lemma 3.6). Their general results cover completeness
results which instantiate to KAT and NetKAT. In fact, the assumptions made in
their technical development are tailored towards these cases; for instance, their
assumption αβ ≤ ⊥ (in Assumption 2) rules out KAPT. The current paper
focuses more on generality and how to construct reductions in a modular way.

Doumane et al. [10] also define reductions, with an emphasis on (un)deci-
dability. In particular, they cover hypotheses of the form 1 ≤

∑
a∈S a (cf.

Lemma 3.6). A first step towards modularity may also be found in [10, Proposi-
tion 3].

Kappé et al. [16] study hypotheses on top of bi-Kleene algebra, where the
canonical interpretation is based on pomset languages, and ultimately prove
completeness of concurrent Kleene algebra with observations; many of the results
there apply to the word case as well. We follow this paper for the basic definitions
and results for the general theory of Kleene algebra with hypotheses, with a small
change in the actual definition of a reduction (Remark 3.5). Compositionality
in the sense of Sect. 3.2 is treated in Kappé’s PhD thesis [14]. We extend these
results with Lemmas 3.11, 3.12, which simplify the work needed to combine
hypotheses. Further, we highlight the word case in this paper (as opposed to the
pomset languages in concurrent Kleene algebra), by showcasing several examples.
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Abstract. We consider skew metrics (equivalently, transitive relations
that are tournaments, linear orderings) valued in Sugihara semigroups
on autodual chains. We prove that, for odd chains and chains without a
unit, skew metrics classify certain tree-like structures that we call per-
fect augmented plane towers. When the chain is finite and has cardinality
2K + 1, skew metrics on a set X give rise to perfect rooted plane trees
of height K whose frontier is a linear preorder of X.

Any linear ordering on X gives rise to an ordering on the set of its
skew metrics valued in an arbitrary involutive residuated lattice Q. If
Q satisfies the mix rule, then this poset is most often a lattice. We
study this lattice for X = {1, . . . , n} and Q the Sugihara monoid on
the chain of cardinality 2K + 1. We give a combinatorial model of this
lattice by describing its covers as moves on a space of words coding per-
fect augmented plane trees. Using the combinatorial model, we develop
enumerative considerations on this lattice.

1 Introduction

Linear orders and trees are fundamental structures in Computer Science and
Mathematics. We might consider linear orders using some object of truth values
different from the classical two-element Boolean algebra. The theory of linear
orders in an intuitionistic setting intrinsically suffers from the lack of a well-
behaved negation; a striking consequence of this is the existence of different
types of intuitionistic ordinals [11,24]. However, when the object of truth values
is an involutive residuated lattice or a Girard quantale, negation is again fully
operative, generalized linear orders are easily axiomatized, and a rich theory can
be developed, capable to generalize non trivial results on classical linear orders.

For such object of truth values, linear orders can be equivalently defined
either as some kind of metric valued in the quantale where the symmetry prop-
erty of the distance is replaced by skewness—that is, we require δ(y, x) = δ(x, y)∗

where (− )∗ is the negation—or as transitive relations on the quantale obeying
this law, analogous to the requirement that a binary relation is a tournament.

As part of a general investigation of these objects, see [9,20], we investigate
in this paper skew metrics valued in Sugihara monoids and, more generally, in
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Sugihara semigroups. Research on Sugihara monoids can be traced back to [5]
and constitutes nowadays a quite active domain, see e.g. [6,7]. More importantly,
Sugihara semigroups arise as the unique idempotent involutive residuated lattice
structure that can be given to an autodual chain. Linear orders on the Sugihara
chain with three elements—that is, linear preorders or pseudo-permutations—
have already been investigated [2,14], partly motivated from complexity issues
related to the representation of temporal reasoning [25]. The importance of linear
preorders in relation with the combinatorics and geometry of Coxeter groups and
hyperplane arrangements was remarked already in [2] and has been once more
emphasized in [4]. For us, it is the canonicity of Sugihara semigroups and the
use of these structures in combinatorics that motivates further investigations of
linear orders on arbitrary Sugihara semigroups.

We focus in this paper on autodual chains C for which either the positive
cone C+ has no least element, or satisfying C+ ∩C− �= ∅, C− being the negative
cone. We claim that the cases left can be easily studied from the present research.
We show that skew metrics on a set X valued in the Sugihara semigroup on C
are in bijection with some tree-like objects that we call augmented perfect towers
and can be neatly described as functors from the poset C+ to the category of
linearly ordered sets with few additional properties and structure. In particular
all the maps involved in such a functor T are surjective and, moreover, a cone
from X to T (in the category of sets) is given, reflecting the fact that leaves are
labeled by subsets of X.

Once this correspondence is established, we further study the case where
X = { 1, . . . , n } and C = {−K, . . . ,−1, 0, 1, . . . ,K }, in which case augmented
towers are indeed rooted plane trees, that are perfect (meaning that each branch
has equal length) of height K + 1 and leaves are labelled by subsets of X,
so the frontier forms an ordered partition of X. When X is linearly ordered,
skew metrics defined on X can be ordered and most often this ordering yields a
lattice. For such choice of X and C, we describe the poset of skew metrics and,
by representing trees as words, we determine covers of this poset as moves or
rewrites on these words.

Relying on the combinatorial description of skew metrics as words, we give
enumerative results on these combinatorial objects and these posets such as
determining the size and the length.

Let us mention that the combinatorial model obtained is unavoidably close
to the one of [2,14]. In these works the combinatorial model is given and the
algebra of Sugihara monoids is mostly used for proving the lattice property of
pseudo-permutations. Here the flow has opposite direction: the algebraic frame-
work is given, and the problem, solved, is to instantiate the algebra into the
combinatorics.

In this work converge our previous research on the lattice structures that
arise from linear orders [9,20–22] and research on the algebraic structures of
logic that are in use in combinatorics, see e.g. [18,19]. W.r.t. the first line of
research, a main advance here is the recognition of the primary role of the notion
of skew metric or linear order on an involutive residuated lattice, compared to
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closed/open constructions, and its framing in a relational setting. W.r.t. the
second line of research, we identify via [8] a connection of Sugihara monoids to
the combinatorics of hyperplane arrangements, thus witnessing once more the
value of algebraic structures of logic in the realm of combinatorics.

The paper is structured as follows. In Sect. 2 we recall the definition of invo-
lutive residuated lattices, of Sugihara semigroups, state their canonicity and few
properties needed in the rest of the paper. In Sect. 3 we develop and exemplify
the elementary theory of skew metrics. In Sect. 4 we characterize skew metrics
as perfect augmented towers. In Sect. 5 we recall results on the ordering on the
set of skew metrics valued in an arbitrary involutive residuated lattice. In Sect. 6
we give a combinatorial model of this poset in the case X = { 1, . . . , n } and Q
is the Sugihara monoid on a chain of size 2K + 1. We conclude in Sect. 7 with
enumerative results concerning these posets.

2 Sugihara Semigroups on Autodual Chains

In this section we recall elementary facts on Sugihara semigroups, which are invo-
lutive residuated lattices on autodual chains. We take the view that residuated
lattices might not have units, as indeed it will be the case for many autodual
chains that we consider.

Definition 1. An involutive residuated lattice is a structure 〈L,∧,∨,⊗, (− )∗〉
such that 〈L,∧,∨〉 is a lattice, ⊗ is a semigroup operation on L compatible with
the order, (− )∗ is an antitone involution such that

x ⊗ y ≤ z iff y ⊗ z∗ ≤ x∗ iff z∗ ⊗ x ≤ y∗ . (1)

We call the relations in (1) the shift relations. Let us define

x ⊕ y := (y∗ ⊗ x∗)∗
, x\y := x∗ ⊕ y , x/y := x ⊕ y∗ .

It is easy to see that the shift relations are equivalent to asking that the semi-
group operation is residuated in both variables:

x ⊗ y ≤ z iff y ≤ x\z iff x ≤ z/y , for each x, y, z ∈ L.

By an autodual chain we mean a totally ordered set C coming with an anti-
tone involution (− )∗ : C −→ C. For C such an autodual chain we define the
absolute value as expected: |x| := max(x, x∗), for each x ∈ C. Notice then that
we also have |x|∗ = min(x, x∗). If we let

C+ := {x ∈ C | x∗ ≤ x } , C− := {x ∈ C | x ≤ x∗ } ,

then C = C+∪C−, and C+∩C− is either empty, or it is the singleton containing
the unique fixed point of (− )∗. On C we can define the following two operations:

x ⊗ y :=

⎧
⎪⎨

⎪⎩

x , |y| < |x| ,
y , |x| < |y| ,
min(x, y) , |x| = |y| ,

x ⊕ y :=

⎧
⎪⎨

⎪⎩

x , |y| < |x| ,
y , |x| < |y| ,
max(x, y) , |x| = |y| .

(2)
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These operations are associative, commutative, idempotent, and dual. Moreover,
they satisfy the mix rule, meaning that x ⊗ y ≤ x ⊕ y, for each x, y ∈ C.

Example 2. On the chain {−1, 0, 1 } these two idempotent semigroup structures
are as follows:

⊗ −1 0 1
−1 −1 −1 −1

0 −1 0 1
1 −1 1 1

⊕ −1 0 1
−1 −1 −1 1

0 −1 0 1
1 1 1 1

Proposition 3. For any autodual chain C, the structure 〈C,min,max,⊗, (− )∗〉
is an involutive residuated lattice.

The next statement, possibly part of the folklore, witnesses the canonicity of
this semigroup structure.

Proposition 4. If C is an autodual chain, then there is exactly one idempotent
semigroup operation ⊗ on C making 〈C,min,max,⊗, (− )∗〉 into an involutive
residuated lattice.

This canonical semigroup structure is known as the Sugihara monoid on the
autodual chain C, see e.g. [7]. Indeed, units are usually considered in involutive
residuated lattices, so we characterise next when such a semigroup structure has
a unit.

Lemma 5. The semigroup structure ⊗ has a unit ι if and only if the set C+

has a greatest lower bound
∧

C+. In either case, we have ι =
∧

C+.

As a consequence of the lemma, each auto-dual chain C has at most one
unital idempotent involutive residuated lattice structure on it, and exactly one
if C is a complete chain.

In the following, we let 3 be the chain {−1, 0, 1 }, which we consider with its
Sugihara semigroup structure. For C an autodual chain and k ∈ C+, we define
χk : C −→ 3 as follows:

χk(x) :=

⎧
⎪⎨

⎪⎩

1 , k < x ,

0 , k∗ ≤ x ≤ k ,

−1 , x < k∗ .

(3)

The map χk is monotone, thus a lattice homomorphism. Let us remark that χk

is not a semigroup homomorphism since, for example, if x, y, k are such that
x∗ < y < k∗ ≤ k < y∗ < x, then χk(x ⊗ y) = χk(x) = 1, while χk(x) ⊗
χk(y) = 1⊗−1 = −1. Yet, χk satisfies the two properties stated in the following
proposition, relevant for the considerations to come.

Proposition 6. For each x, y ∈ C, we have

χk(x∗) = χk(x)∗
, χk(x) ⊗ χk(y) ≤ χk(x ⊗ y) .
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3 Skew Metrics Valued in an Involutive Residuated
Lattice

In this section, we let Q = 〈Q,∧,∨,⊗, (− )∗〉 be a fixed involutive residuated
lattice. For a set X, we let ΔX := { (x, x) | x ∈ X }.

Definition 7. A Q-relation on X is a map f : X2 \ ΔX −→ Q. A Q-relation f
is

– transitive if f(x, y) ⊗ f(y, z) ≤ f(x, z),
– cotransitive if f(x, z) ≤ f(x, y) ⊕ f(y, z),
– skew if f(x, y) = f(y, x)∗,

for each pairwise distinct x, y, z ∈ X.

The reader might be surprised about our choice of the domain of a Q-relation.
Indeed, we could have defined a Q-relation as a map f : X2 −→ Q and, for
example, said it is reflexive if 1 ≤ f(x, x), so a reflexive and transitive Q-relation
is nothing else than a category enriched over Q, see [13]. However, we shall
insist on the last property, skewness.1 If f is skew and also defined on ΔX , then
f(x, x) = f(x, x)∗, for each x ∈ X, that is, the duality coming from Q has at
least one fixed point. Moreover, if we ask the relation 1 ≤ f(x, x) to hold, then
1 ≤ f(x, x) = f(x, x)∗ ≤ 1∗. This leaves out many involutive residuated lattices
that either do not have units or, for example, for which 1∗ < 1. Our choice is
therefore dictated by the aim to consider the largest number of examples. On
the other hand, if Q has a unit 1 such that 1∗ = 1, we can freely assume that f
is defined on the entire X2 with f(x, x) = 1, for each x ∈ X.

Lemma 8. If a Q-relation is skew, then it is transitive if and only if it is cotran-
sitive.

Definition 9. A skew Q-metric (or skew metric, if Q is understood) on X is a
cotransitive skew Q-relation.

By the previous lemma, a skew metric is transitive. We prefer the name skew
metric (to cotransitive skew Q-relation), since the conditions

f(x, z) ≤ f(x, y) ⊕ f(y, z) , f(y, x) = f(x, y)∗
,

satisfied by a skew metric suggest that f is a distance where symmetry of a dis-
tance is being replaced by skewness, see e.g. [12,15]. The next examples explain
why skew metrics are generalized linear orders.

Example 10. Let 2 be the two element Boolean algebra. Skew 2-metrics on X
bijectively correspond to (strict) linear orders on X. Indeed, consider a function
f : X2\ΔX −→ 2 and define Rf := { (x, y) | f(x, y) = 1 }. Then f(x, y)∧f(y, z) ≤
f(x, z) holds iff Rf is transitive, f(x, y) ≤ ¬f(y, x) holds iff Rf is antisymmetric
(where ¬ stands for Boolean complement), and f(x, y) ≥ ¬f(y, x) holds iff Rf

is total (or linear). Indeed, skew 2-relations correspond to tournaments.
1 In [12] a property analogous to skewness is considered. In this work the star operation
appearing in the relation f(y, x) = f(x, y)∗ is monotone.
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Example 11. This example is the most relevant for the following. A linear
preorder on a set X is a transitive relation R which is total: for each x, y,
xRy or yRx. Let 3 be the Sugihara monoid on the chain {−1, 0, 1 }. Skew
3-metrics on X bijectively correspond to linear preorders on X via the map-
ping sending f : X2 \ Δ(X) −→ 3 to Rf := { (x, y) | f(x, y) ≥ 0 }. Again,
f(x, y) ⊗ f(y, x) ≤ f(x, z) yields transitivity of Rf , while f(x, y) = f(y, x)∗,
that is, f(x, y) + f(y, x) = 0, yields totality of Rf . Let us remark that, in turn,
linear preorders bijectively correspond to ordered partitions of the set X. We can
directly define an ordered partition of X from a skew metric f : X2 \ΔX −→ 3 as
follows. Say that x ∼0 y if x = y or f(x, y) = 0. Then ∼0 is an equivalence rela-
tion, so the blocks of the partition are the equivalence classes of ∼0. If x ∼0 x′

and y ∼0 y′, then f(x′, y′) = f(x, y), as witnessed by the following computation:
f(x, y) = f(x′, x) ⊗ f(x, y) ⊗ f(y, y′) ≤ f(x′, y′) ≤ f(x′, x) ⊕ f(x, y) ⊕ f(y, y′) =
f(x, y). That is, we can define f on the set of equivalence classes X/∼0 and then
the map from the quotient f : (X/ ∼0)2 \ Δ(X/∼0) −→ 2 yields a total ordering
on the blocks.

Example 12. It was shown in [20] that if X is finite, then skew metrics valued in
the involutive residuated lattice of sup-preserving maps from the unit interval
[0, 1] bijectively correspond to images of continuous (in the topological sense)
maps [0, 1] −→ [0, 1]X that are isotone, and preserve the endpoints. Alternatively,
they correspond to maximal chains in the cube [0, 1]X .

The statements below, whose proofs are straightforward, illustrate the ele-
mentary algebra that can be developed around skew metrics.

Lemma 13. Let f : X2 \ ΔX −→ Q be a skew metric. If g : Y −→ X is injective,
then f ◦ g : Y 2 \ ΔY −→ Q is also a skew metric. If Q is commutative, then
f∗ : X2 \ ΔX −→ Q, defined by f∗(x, y) := f(y, x), is a skew metric.

Definition 14. A monoidal map from an involutive residuated lattice Q to an
involutive residuated lattice Q′ is a function h : Q −→ Q′ such that h(x∗) = h(x)∗

and h(x) ⊗ h(y) ≤ h(x ⊗ y).

Lemma 15. If f : X2\ΔX −→ Q is a skew metric and h : Q −→ Q′ is a monoidal
function, then h ◦ f : X2 \ ΔX −→ Q′ is a skew metric.

Remark 16. Let C be an autodual chain and k ∈ C+. As we have seen in Propo-
sition 6, the map χk : C −→ 3 defined in Eq. (3) is monoidal. According to
Lemma 15, χk ◦ f : X2 \ ΔX −→ 3 is a skew metric, for each skew metric
f : X2 \ ΔX −→ C.

4 Augmented Plane Towers

We characterise in this section the combinatorial objects arising from skew met-
rics valued in Sugihara semigroups that are either unitless or odd. Let us make
these notions precise.
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Definition 17. An autodual chain C is even if C+ ∩C− = ∅ and, otherwise, it
is odd. We say that C is interesting if either C is even and

∧
C+ does not exist

(so the idempotent semigroup structure on C is unitless) or C is odd.

The reader can easily verify that a finite autodual chain is odd if and only
if it has odd cardinality and, otherwise, it is even. In the following we fix an
interesting autodual chain C. Observe that if C is finite, then it is odd. Let us
use LinOrd to denote the category of linearly ordered sets and order preserving
maps, and U : LinOrd −→ Set to denote the forgetful functor from this category
to the category of sets and functions. For the next definition, recall that a poset
can be regarded as a category whose objects are the elements of the poset and
for which there is exactly one arrow between two elements x, y when x ≤ y.

Definition 18. A plane tower is a functor T : C+ −→ LinOrd. For X any set,
an augmented plane tower on X is a pair (τ, T ) with T a plane tower and
τ : X −→ U ◦ T a cone.

We spell out what the definition means. A plane tower T is a pair of collections
{Tk | k ∈ C+ } and {Tj,k | j, k ∈ C+, j ≤ k }. For each k ∈ C+, Tk is a linearly
ordered set; for j, k ∈ C+ and j ≤ k, Tj,k : Tj −→ Tk is an order preserving
map. These data satisfy the following constraints: Tk,k is the identity and, for
j ≤ k ≤ u, Tj,u = Tk,u ◦Tj,k. A cone τ : X −→ U ◦T is a collection { τk | k ∈ C+ }
of functions such that τk : X −→ Tk and, for j ≤ k, τk = Tj,k ◦ τj . Let us insist
on the fact that X is just a set, it is not linearly ordered, while all the sets Tk

are linearly ordered.

Remark 19. For T a plane tower, let El(T ) be the poset whose elements are
pairs (k, x) with x ∈ Tk and for which (k1, x1) ≤ (k2, x2) if k2 ≥ k1 and x2 =
Tk1,k2(x1). It easily verified that the C+ is dually well-founded (e.g. Noetherian)
if and only if El(T ) is a tree in the sense of set theory—that is, each downset
↓ (k, x) = { (k′, x′) | k ≤ k′, x′ = Tk,k′(x) } is well-ordered. Thus, if C+ is dually
well-founded and in particular if C+ is finite, then we call T a plane tree instead
of a plane tower.

Definition 20. An augmented plane tower (τ, T ) is perfect if each map τi is
surjective. An augmented plane tower is complete if, for each x, y ∈ X, the set
Eg(x, y) := { k ∈ C+ | τk(x) = τk(y) } has a least element.2

It is an elementary exercise to verify that if an augmented plane tower (τ, T ) is
perfect, then also the maps Tj,k : Tj −→ Tk, j ≤ k, are surjective. The following
lemma exemplifies some consequences of these conditions.

Lemma 21. If (τ, T ) is a perfect complete augmented tower from X, then,
whenever k =

∧
J , the canonical map Tk −→ limj∈J Tj is injective.

2 For finite binary trees, the adjectives perfect, full, and complete have precise yet
distinct meanings. We adopt the wording perfect for a (non necessarily binary) tree
(or a tower) all of whose branches have equal length. The wording complete refers
here to a completeness property of the poset C+.
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Next, for a skew metric f : X2 \ ΔX −→ C, we give the following definitions:

x ∼f
k y if x = y or |f(x, y)| ≤ k , [x]fk := { y ∈ X | y ∼f

k x } .

T f
k := { [x]fk | x ∈ X } , [x]fk <f

k [y]fk if k < f(x, y) .

Notice that, for j ≤ k, we have [x]fj ⊆ [x]fk and so, for such j, k, we can define

T f
j,k([x]fj ) := [x]fk , τf

k (x) := [x]fk .

Proposition 22. tf := (τf , T f ) is a perfect and complete augmented plane
tower from X.

Proof. Quite obviously T f is a functor and τf is a cone from X to T f
k .

Every set T f
k is linearly ordered by <f

k , since this ordering is induced by the
skew metric χk ◦ f : X −→ 3, see Example 11 and Remark 16. Moreover, for
j, k ∈ C+ and j ≤ k, j < f(x, y) and |f(x, y)| �≤ k imply k < f(x, y). That
is, for such j, k, [x]fj <f

j [y]fj implies [x]fk ≤f
k [y]fk , so we can take as codomain

of the functor T f the category of linearly ordered sets and isotone functions.
The maps τf

k are surjective, so tf is perfect. For completeness, observe that
∧{ k ∈ C+ | [x]fk = [y]fk } = |f(x, y)|, since by definition [x]fk = [y]fk if and only
if |f(x, y)| ≤ k. ��

For t = (τ, T ) a complete augmented tower, we set

δt(x, y) :=
∧

{ k ∈ C+ | τk(x) = τk(y) } .

Notice that δt is an ultrametric on X valued in C+, meaning that, for each
x, y, z ∈ X, δt(x, y) = δt(y, x) and δt(x, z) ≤ max(δt(x, y), δt(y, z)). If C+ has a
least element 0, then the condition δt(x, y) = 0 implies x = y holds if and only
if the map τ0 : X −→ T0 is injective.

Let now t = (τ, T ) be a perfect and complete augmented plane tower. Observe
that if k < δt(x, y), then we have either τk(x) < τk(y), or τk(y) < τk(x), but
not both. Moreover, if k, k′ < δt(x, y) and τk(x) < τk(y), then τk′(x) < τk′(y)
as well. Indeed, if τk(x) < τk(y) and τk′(y) < τk′(x), then, for K = max(k, k′),
τK(x) ≤ τK(y) and τK(y) ≤ τK(x), thus τK(x) = τK(y) with K < δt(x, y), a
contradiction. Therefore, we define

ςt(x, y) :=

{
−1 , if, for some k < δt(x, y), τk(y) < τk(x) ,

1 , otherwise .

We define then ft : X2 \ ΔX −→ C by

ft(x, y) := ςt(x, y) · δt(x, y) ,

where the action of {−1, 1 } on C is as expected: 1 · k = k, and −1 · k = k∗.
Accordingly, we use the notation −k as equivalent to k∗.
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Proposition 23. ft so defined is a skew-metric on C.

Proof. Firsty we argue that, for x, y, z ∈ X arbitrary pairwise distinct, ft(x, y)⊗
ft(y, z) ≤ ft(x, z). Recalling that ft(x, y) ⊗ ft(y, z) ∈ { ft(x, y), ft(y, z) }, we
suppose that ft(x, y)⊗ft(y, z) = ft(x, y) (if ft(x, y)⊗ft(y, z) = ft(y, z), then the
argument is similar). Under this assumption, we have either (i) δt(x, y) > δt(y, z),
or (ii) δt(x, y) = δt(y, z) and ςt(x, y) = −1. Suppose (i). Since δt(x, y) > δt(y, z),
then δt(x, z) = δt(x, y): indeed, δt(x, z) ≤ max(δt(x, y), δt(y, z)) = δt(x, y), and
δt(x, y) ≤ max(δt(x, z), δt(y, z)) implies δt(x, y) ≤ δt(x, z). Therefore, in order
to show that ft(x, y) ≤ ft(x, z), we need to argue that ςt(x, y) = 1 implies
ςt(x, z) = 1. Assume therefore that ςt(x, y) = 1 and let k = δt(y, z); we have
then τk(x) < τk(y) = τk(z), so ςt(x, z) = 1. We suppose now (ii), that is,
δt(x, y) = δt(y, z) and ςt(x, y) = −1. If ςt(x, z) = 1, then we obviously have
ft(x, y) ≤ ft(x, z). Thus, we can assume that ςt(x, z) = −1. Considering that
δt(x, z) ≤ max(δt(x, y), δt(y, z)) = δt(x, y), then we immediately have ft(x, y) =
−1 · δt(x, y) ≤ −1 · δt(x, z) = ft(x, z).

Next, we argue that ft(y, x) = ft(x, y)∗. Clearly, we have δt(x, y) = δt(y, x).
If ςt(x, y) = −1, then, for some k < δt(x, y), τk(y) < τk(x), thus ςt(y, x) = 1
and ft(y, x) = −ft(x, y). Suppose, therefore, that ςt(x, y) = 1, so τk(x) < τk(y)
for all k < δt(x, y). If δt(x, y) is not the least element of C+, then we deduce
ςt(y, x) = −1, so ft(y, x) = −ft(x, y). Otherwise, δt(x, y) is the least element
of C+ and therefore ςt(x, y) = ςt(y, x) = 1, but also C+ ∩ C− = { δt(x, y) },
since we assume that C is interesting, thus odd if C+ has a least element. Then
ft(x, y) = δt(x, y) = −δt(x, y) − δt(y, x) = −ft(y, x). ��
Proposition 24. For f : X2 \ ΔX −→ C a skew metric, we have ftf = f .

Proof. As we already observed, δtf (x, y) = |f(x, y)|. Moreover, ςtf (x, y) = −1
iff for some k < |f(x, y)| we have [y]fk <f

k [x]fk , where the last inequality is
equivalent, by definition, to k < f(y, x). Now saying that, for some k ∈ C+,
k < f(y, x), that is, f(x, y) < −k, is equivalent to saying that f(x, y) is
strictly negative, i.e. f(x, y) ∈ C− \ C+. Then, if f(x, y) is strictly negative,
then f(x, y) = −|f(x, y)| = ςtf (x, y) · δtf (x, y) = ftf (x, y). If f(x, y) is positive,
then ςtf (x, y) = 1, δtf (x, y) = f(x, y), and again f(x, y) = ςtf (x, y) · δtf (x, y) =
ftf (x, y). ��

Let T, T ′ be two plane towers. Recall that a natural transformation α : T −→
T ′ is a collection {αk : Tk −→ T ′

k | k ∈ C+ } such that αk is order preserving
and such that, for j ≤ k, T ′

j,k ◦ αj = αk ◦ Tj,k. Such a natural transformation is
a natural isomorphism if each αk has an order preserving inverse. We say that
(τ, T ), (τ ′, T ′) are isomorphic if there is such a natural isomorphism α : T −→ T ′

such that τ ′ = α ◦ τ , that is, τ ′
k = αk ◦ τk for each k ∈ C+.

Proposition 25. If t = (τ, T ) is a perfect and complete augmented plane tower,
then tft is naturally isomorphic to t.
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Proof. Observe that x ∼ft
k y iff |ft(x, y)| = δtft(x, y) ≤ k iff τk(x) = τk(y). That

is, the equivalence relation ∼ft
k is the kernel of τk. Since moreover τk is surjective,

the function αk sending [x]ftk to τk(x) is bijection from T ft
k to Tk.

Something more can be said: [x]ftk <ft
k [y]ftk iff k < ft(x, y), iff τk(x) < τk(y).

Therefore αk is a bijective embedding of posets, whence an invertible map in the
category of linear orders and isotone maps.
It is also obvious that τ = α ◦ τft , since
this relation amounts to αk(τ

ft
k (x)) =

αk([x]ftk ) = τk(x). From this relation and
surjectivity of τft

k it also follows that α :
T ft −→ T is natural, which can be verified
by inferring commutativity of the inner
square from commutativity of the outer
triangle in the diagram on the right. ��

5 The Posets of Skew Metrics

In this section we consider again an arbitrary involutive residuated lattice Q
and recall more advanced algebraic properties of skew metrics valued in Q. More
precisely, we pinpoint that skew metrics can be ordered and that most often this
ordering is a lattice.

Observe that it is not interesting to order skew metrics pointwise. For exam-
ple, if f, g : X2 \ ΔX −→ Q and f(x, y) < g(x, y), then g(y, x) = g(x, y)∗

<
f(x, y)∗ = f(y, x). That is, a pointwise ordering is necessarily discrete (all the
elements are incomparable). We can get a more interesting ordering if we assume
that X is totally ordered. In this case, we let IX := { (x, y) ∈ X2 \ ΔX | x < y }
and also introduce the following concept:

Definition 26. A map f : IX −→ Q is clopen if, whenever x < y < z ∈ X,

f(x, y) ⊗ f(y, z) ≤ f(x, z) ≤ f(x, y) ⊕ f(y, z) . (4)

We let ClopX(Q) be the set of clopen maps f : IX −→ Q.

Roughly speaking (and up to a choice of a total ordering on X) clopen maps
and skew metrics are the same kind of objects, as stated below:

Proposition 27. Every clopen map f : IX −→ Q extends uniquely to a skew
metric f : X2 \ ΔX −→ Q. Therefore, every total order on X determines a
bijection from the set ClopX(Q) to the set of skew metrics on X valued in Q.

The set ClopX(Q) can be ordered pointwise in a non trivial way. It was argued
in [20, see Theorem 21] that if X = { 1, . . . , n } and Q is any involutive residuated
lattice satisfying the mix rule, then ClopX(Q) is a lattice. By inspecting the proof
of this result, it is not difficult to generalize it as follows:
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Theorem 28. Let X be a totally ordered set. If Q is an involutive residuated
lattice satisfying the mix rule, and every interval of X is finite or Q is complete
as a lattice, then ClopX(Q) is a lattice.

As we have insisted on skew metrics, we can rephrase the previous statement in
terms of skew metrics.

Theorem 29. Let X be a totally ordered set, let Q be an involutive residuated
lattice satisfying the mix rule. Let SMetX(Q) be the set of skew metrics on X
valued in Q. Order SMetX(Q) as follows:

f ≤ g iff g(x, y) ≤ f(x, y) , for each x, y such that x < y . (5)

If every interval of X is finite or Q is complete as a lattice, then SMetX(Q) is
a lattice.

Let us remark that, for coherence with existing literature, we are considering
in (5) the opposite ordering of the pointwise ordering on the restriction to IX .

Example 30. Suppose X = { 1, . . . , n }. If Q = 2, then SMetX(Q) is the lattice
all permutations of X, known as the Permutohedron or the weak Bruhat order
on the symmetric group, see e.g. [3,10,22]. If Q = 3 is the Sugihara semigroup on
the three element chain, then SMetX(Q) is isomorphic to the lattice of pseudo-
permutations of X, see [2,14,21]. For Q the lattice of sup-preserving maps from
the chain [0, 1] to itself, the poset ClopX(Q)—and therefore SMetX(Q)—was
studied in [9,20]. We study in the next section the lattice SMetX(Q) for Q a
Sugihara monoid on an odd finite chain.

Remark 31. For X a finite total order, the construction sending Q to SMetX(Q)
can be made into a limit preserving functor from the category of involutive
residuated lattices satisfying the mix rule into the category of lattices, see [20].
As a consequence, given that a Sugihara monoid on the finite even chain 2k
can be embedded in the Sugihara monoid on the odd chain 2k + 1, the lat-
tice SMetX(2k) can be described as a sublattice of SMetX(2k + 1). For this
reason we have given priority to the investigation of the lattices of the form
SMetX(2k + 1).

6 The Poset of Augmented Plane Trees

In this section we study the ordered set SMetX(Q), with X = { 1, . . . , n } and Q
the Sugihara monoid on the finite chain of size 2K + 1, denoted henceforth by
SMetn,K . The aim is to give a combinatorial model of this poset, by describing
its covers as moves (i.e. elementary transformations or rewrite rules) on a set
of combinatorial objects, in the spirit of [16]. Since skew metrics correspond—
under the bijection described in Sect. 4—to K + 1-level plane trees whose leaves
are labelled by subsets of X, these subsets forming a partition of X,3 we should
describe the ordering directly on this kind of objects. However, mostly for com-
pactness, we prefer to code trees as words and handle the latter.
3 These objects are called K +1-level labeled linear rooted trees with n leaves on The
On-Line Encyclopedia of Integer Sequences [1], cf. Fig. 2.
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Coding trees as words. We fix n and K and consider disjoint alphabets Σ0 :=
{ 1, . . . , n } and Σ1 := { |1, . . . , |K }. We think of Σ1 as an alphabet of walls of
distinct heights. If w ∈ (Σ0 ∪Σ1)∗, then the walls from Σ1 “split w into blocks”.
More precisely if w′ is obtained from w by erasing letters from Σ1, then w′ can
subdivided into blocks of contiguous letters from Σ0. We define the set Tw(n,K)
(of tree-words) as the set of words w over the alphabet Σ0 ∪ Σ1 satisfying the
following conditions:

(i) The blocks of w are non-empty. That is, there are no contiguous walls, and
walls do appear neither in first nor in last position.

(ii) The word obtained from w by erasing the walls is a permutation.
(iii) If two letters x, y ∈ Σ0 are in the same block of w and x < y, then x appears

on the left of y in w.

Example 32. The word 2|213|14 belongs to Tw(4, 2). The words 2|2134|1 and
2|2|313|14 violate the first constraint. The word 2|223|14 violates the second
constraint. The word 2|231|14 violates the third constraint.

We take for granted that a word in Tw(n,K) codes a perfect plane tree of height
K augmented from { 1, . . . , n }, see Fig. 1 for examples. Yet, a few remarks are
due. By identifying a word w ∈ Tw(n,K) with the augmented tree it codes, we
have

δw(x, y) = max{ k | the symbol |k separates x from y in w } ,

and, for x, y such that 1 ≤ x < y ≤ n,

ςw(x, y) = −1 iff y appears before x in the permutation underlying w ,

where the latter relation is a consequence of the fact that letters belonging to
the same block appear in increasing order.

Positive and Negative Walls, Enabled Walls. For w ∈ Tw(n,K) and k ∈
{ 1, . . . , K }, let w ↑k be the word in Tw(n,K) obtained by first erasing all the
walls |j ∈ Σ1 with j < k, and then by reorganising contiguous blocks so to satisfy
the third constraint. For example, (1|13|22)↑2= 13|22. For w ∈ Tw(n,K) and an
occurrence of a letter |k ∈ Σ1 in w, the left (resp., right) scope of this occurrence
is the block on its left (resp., right) in w ↑k; we say that such an occurrence
is positive (resp., negative) if all the letters in its left scope are smaller (resp.,
greater) than those in its right scope. If such an occurrence is either positive
or negative, then we say that it is enabled. For example, by 1 |23|12 is positive,
2|13 |22 is negative, 2|33 |22 is neither negative nor positive, so it is not enabled.

Moves. An erosion move replaces a positive occurrence of a wall |k by |k−1,
if k > 1, or deletes it, if k = 1. For k = 1, we call such an instance of an
erosion move a join move, for obvious reasons. Dually, a build move occurs when
a negative occurrence of a wall |k (with 0 < k < K) is replaced by |k+1. We
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can also consider the case when k = 0, which amounts to (i) inserting a wall |1,
thus splitting a block into two new blocks and then (ii) swapping the relative
positions of these two new blocks. We call this a split move. Moves are illustrated
in Fig. 1.

Fig. 1. Erosion, join, split, build moves, exemplified in the order

As from Eq. (5), we order Tw(n,K) by saying that w ≤ u if, whenever x < y,
fu(x, y) ≤ fw(x, y), where fw, fu are the skew metrics corresponding to w and
u, respectively.

Theorem 33. A word u is an upper cover of w in the poset Tw(n,K) if and
only if u is obtained from w by one of these moves.

The theorem is an immediate consequence of the following two propositions,
together with the straightforward observation that distinct moves from the same
word yield incomparable words.

Proposition 34. For each w, u ∈ Tw(n,K), if u can be obtained from w by
any of these moves, then w < u.

Proof. Let w, u ∈ Tw(n,K) be as stated, we need to show that, for each (x, y) ∈
IX , fu(x, y) ≤ fw(x, y), and fu(x, y) < fw(x, y) for some (x, y) ∈ IX . Notice
that if x, y are on the opposite scopes of the wall |k whose value k is being
decreased or increased, then δu(x, y) �= δw(x, y). Therefore, we shall show that,
for all (x, y) ∈ IX , fu(x, y) ≤ fw(x, y).

If the relative positions of x, y are not changed, that is, if ςu(x, y) = ςw(x, y),
and if δu(x, y) = δw(x, y), then fu(x, y) = fw(x, y). If ςu(x, y) �= ςw(x, y), then
this happens with a split move and in this case we also have δw(x, y) �= δu(x, y).
We suppose therefore that δw(x, y) �= δu(x, y).

If δu(x, y) < δw(x, y), then u is obtained from w by erosion of a positive
occurrence of a wall |k with k := δw(x, y). Then, x, y appear in the scopes
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of this wall, and since this occurrence is positive, x appear on the left and y
appears on the right of the wall. Thus, we have ςw(x, y) = ςu(x, y) = 1 and
fu(x, y) < fw(x, y).

If δu(x, y) > δw(x, y), then u is obtained from w by a build move of a negative
occurrence of a wall |k with k := δw(x, y). Let us suppose first that k > 0.
Thus, x, y appear in the scopes of this occurrence and, since this occurrence is
negative, x appears in the right scope and y in the left scope. Thus we have
ςw(x, y) = ςw(x, y) = −1, δu(x, y) = k + 1, and therefore fu(x, y) < fw(x, y).
Let us suppose finally that k = 0, that is, u is the result of a split move, so
δw(x, y) = 0 and δu(x, y) = 1. Therefore, fw(x, y) = 0, x, y belong to the same
block of w, while x, y are separated by a wall |1 in u, x being on its right scope
and y being on its left scope. We have therefore ςu(x, y) = −1, δu(x, y) = 1, and
therefore fu(x, y) = −1 < 0 = fw(x, y). ��
Proposition 35. If w < u, then there exists w′, obtained from w by one of
these moves, such that w′ ≤ u.

Proof. For this proof, recall that x ≤w
0 y if and only if 0 ≤ fw(x, y). Even if

this is just a preorder, but we can still define standard notions, such as the
closed interval [x, y]w0 := { z | x ≤w

0 z ≤ y }, using which, the block of x is
[x]w0 := [x, x]w0 .

Since w < u, the set A := { (x, y) ∈ IX | fu(x, y) < fw(x, y) } is non-
empty. Consider a pair (x, y) ∈ A minimizing the function δw on A. Moreover,
among all such pairs, choose (x, y) such that the cardinality of [x, y]w0 ∪ [y, x]w0
is minimum. We suppose firstly that δw(x, y) = 0, that is, x, y belong to the
same block [x]w0 . We split this block in two so to obtain w′ with fu ≤ fw′ . To
achieve this, consider that the restriction of the equivalence relation ∼u

0 to [x]w0
splits it into blocks, say b1, . . . , bm. If x′, y′ ∈ [x]w0 , x′ < y′, and x′ ∈ bi, y

′ ∈ bj
with i �= j, then ςu(x′, y′) = −1. This is a consequence of δu(x′, y′) > 0 (since
[x′]u0 �= [y′]u0 ) and fu(x′, y′) ≤ fw(x′, y′) = fw(x, y) = 0. Therefore, we can
order the blocks so that bi < bj if, for some y′ ∈ bi, x′ ∈ bj , x′ < y′. Without
loss of generality, we can assume that b1 < b2 < . . . < bm. Therefore, if we
let s := card(bm), then we can split [x]w0 at position s to obtain w′. We have
fw′(x′, y′) = −1 for each (x′, y′) ∈ IX with x′ ∈ bm and y′ ∈ [x]0 \ bm and,
otherwise, fw′(x′, y′) = fw(x′, y′). This shows that fu ≤ fw′ .

Suppose now that δw(x, y) > 0 and let k := δw(x, y). By minimality of the
cardinal of [x, y]w0 ∪ [y, x]w0 , it follows that there is at most one wall |k separating
x from y in w ↑k. We claim that this occurrence is enabled. Indeed, take x′, y′

on the opposite scopes of the wall and observe that max(δw(x, x′), δw(y, y′)) <
δw(x, y) = δw(x′, y′). From this, it follows that

fw(x′, y′) = fw(x, x′) ⊗ fw(x′, y′) ⊗ fw(y′, y) ≤ fw(x, y) ,

and, dually, fw(x, y) ≤ fw(x′, y′). Thus fw(x, y) = fw(x′, y′) and, consequently,
ςw(x′, y′) = ςw(x, y). Therefore, if ςw(x, y) = 1, that is, if x ≤w

0 y, the occurrence
of |k is positive, and if ςw(x, y) = −1 (i.e. y ≤w

0 x), the occurrence of |k is
negative. Suppose that the occurrence of |k is positive. We have fw′(x′, y′) =
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k − 1, for each (x′, y′) ∈ IX with x′ in the left scope of this wall and y′ in its
right scope and, otherwise, fw′(x′, y′) = fw(x′, y′). This shows that fu ≤ fw′ . A
similar argument shows that fu ≤ fw′ if the occurrence of |k is negative. ��

7 Enumerative Considerations

Several enumerative questions concerning the lattices SMetn,K may be answered
via the combinatorial model. We can determine the length of the posets SMetn,K ,
that is, the length of a longest chain. It is easily seen that a chain cannot have
length greater than 2K n(n−1)

2 and we claim that this is the length of some
chain. We construct such a chain in SMetn+1,K by concatenating a longest chain
SMetn,K with n sequences of 2K moves switching contiguous letters, as suggested
below:

1|K2 . . . |Kn|Kn + 1 �∗ n|K . . . 2|K1|Kn + 1

�2Kn|K . . . 2|Kn + 1|K1 �(n−1)2K n + 1|Kn|Kn − 1 . . . |Kn + 1 .

Letting 
n,K be the length of such a sequence, we have the recurrence 
1,K = 0
and 
n+1,K = 
n+1,K + 2nK, yielding 
n,K = Kn(n − 1). Notice that a minimal
sequence of moves from the bottom to the top elements of this poset has length
2K(n − 1), so in particular these posets are not ranked.

The cardinalities f(n,K) := card(SMetn,K) can be computed by

f(n,K)
(a)
=

n∑

i=1

i!
{

n

i

}

Ki−1 (b)
=

n−1∑

i=0

〈
n
i

〉

Ki(K + 1)n−1−i ,

where in these equalities
{
n
i

}
is the Stirling number of the second kind, count-

ing the number of partitions of an n-element set into i blocks, while 〈n
i 〉 is the

Eulerian number, counting the number of permutations of n-elements with i
descent positions.4 Both formulas for f(n,K) immediately follows from the cor-
respondence with words in Tw(n,K) given in the previous section. Equality (a)
can be understood as follows. The number j!

{
n
j

}
counts the number of ordered

partitions of an n-element set into j blocks and Kj−1 counts the ways we can
assign heights to the separating walls. Equality (b) stems from a well-known rela-
tion between ordered partitions and permutations. It can be read out as follows:
given a permutation with i descent positions, we construct a word in Tw(n,K)
by (i) inserting a wall at each descent position and choosing an height for it in K
different ways, (ii) for the other n−1− i positions, either we do not insert a wall
or we insert a wall and assign it an height, resulting in K + 1 choices. Inspect-
ing the values of the function f(n,K) on The On-Line Encyclopedia of Integer
4 A descent position in a permutation σ1σ1 . . . σn is an index i ∈ { 1, . . . , n − 1 } such

that σi > σi+1. The numbers 〈ni 〉 can be easily computed via the alternating formula

〈ni 〉 = ∑i
j=0(−1)j

(
n+1
j

)
(k + 1 − j)n, see e.g. [17].
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n/K 1 2 3 4 5 6 7 OEIS
2 3 5 7 9 11 13 15
3 13 37 73 121 181 253 337 A003154
4 75 365 1015 2169 3971 6565 10095 A193252
5 541 4501 17641 48601 108901 212941 378001
6 4683 66605 367927 1306809 3583811 8288293 16984815
7 47293 1149877 8952553 40994521 137595781 376372333 890380177

OEIS A000670 A050351 A050352 A050353

Fig. 2. Cardinalities of SMetn,K

Sequences [1], see Fig. 2, we came across the reference [8]. This work, which
also pinpoints the recursion f(1,K) = 1, f(n + 1,K) = 1 + K

∑n
i=1 f(i,K),

allows to establish a connection between skew metrics on Sugihara monoids and
the geometry of hyperplane arrangements, see e.g. [23], a connection already
known for the Sugihara monoid 3, see e.g. [2,4]. It is proved in [8] that f(n,K)
is the number of maximal elements of the intersection poset of the affine braid
arrangement {Hi,j,k | 1 ≤ i < j ≤ n,−K ≤ k ≤ K }, with Hi,j,k being the
affine hyperplane of equation xj = xi + k. Sugihara monoids (and, more gener-
ally, involutive residuated lattices, as argued in [20]) therefore appear to have a
pervasive role in this realm of geometry and in the related combinatorics. It is
still a long way towards making this role fully explicit, but surely it is a research
path that we want to pursue.
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(eds.) WORDS 2019. LNCS, vol. 11682, pp. 312–325. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28796-2 25

19. Santocanale, L.: The involutive quantaloid of completely distributive lattices. In:
Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp.
286–301. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2 18

20. Santocanale, L., Gouveia, M.J.: The continuous weak order. J. Pure Appl. Algebra
225, 106472 (2021)

21. Santocanale, L., Wehrung, F., Grätzer, G., Wehrung, F.: Generalizations of the
permutohedron. In: Lattice Theory: Special Topics and Applications, pp. 287–397.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44236-5 8

22. Santocanale, L., Wehrung, F.: The equational theory of the weak Bruhat order on
finite symmetric groups. J. Eur. Math. Soc. 20(8), 1959–2003 (2018)

23. Stanley, R.P.: An introduction to hyperplane arrangements. In: Lecture notes,
IAS/Park City Mathematics Institute (2004)

24. Taylor, P.: Intuitionistic sets and ordinals. J. Symb. Log. 61(3), 705–744 (1996)
25. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for tem-

poral reasoning: a revised report. In: Weld, D.S., de Kleer, J. (eds.) Readings in
Qualitative Reasoning About Physical Systems, pp. 373–381. Morgan Kaufmann
(1990)

https://doi.org/10.1007/978-1-4939-3091-3
https://doi.org/10.1007/978-3-030-28796-2_25
https://doi.org/10.1007/978-3-030-43520-2_18
https://doi.org/10.1007/978-3-319-44236-5_8


Computing Distributed Knowledge as the
Greatest Lower Bound of Knowledge

Carlos Pinzón4, Santiago Quintero3, Sergio Ramı́rez4, and Frank Valencia1,2(B)
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Abstract. Let L be a distributive lattice and E(L) be the set of join
endomorphisms of L. We consider the problem of finding f�E(L)g given L
and f, g ∈ E(L) as inputs. (1) We show that it can be solved in time O(n)
where n = |L|. The previous upper bound was O(n2). (2) We characterize
the standard notion of distributed knowledge of a group as the greatest
lower bound of the join-endomorphisms representing the knowledge of
each member of the group. (3) We show that deciding whether an agent
has the distributed knowledge of two other agents can be computed in
time O(n2) where n is the size of the underlying set of states. (4) For
the special case of S5 knowledge, we show that it can be decided in time
O(nαn) where αn is the inverse of the Ackermann function.

Keywords: Distributive knowledge · Join-endomorphims · Lattice
algorithms

1 Introduction

Structures involving a lattice L and its set of join-endomorphisms E(L) are ubiq-
uitous in computer science. For example, in Mathematical Morphology (MM) [3],
a well-established theory for the analysis and processing of geometrical struc-
tures founded upon lattice theory, join-endomorphisms correspond to one of its
fundamental operations: dilations. In this and many other areas, lattices are
used as rich abstract structures that capture the fundamental principles of their
domain of application.

We believe that devising efficient algorithms in the abstract realm of lattice
theory could be of great utility: We may benefit from many representation results
and identify general properties that can be exploited in the particular domain
of application of the corresponding lattices. In fact, we will use distributivity
and join-irreducibility to reduce significantly the time and space needed to solve
particular lattice problems. In this paper we focus on algorithms for the meet of
join-endomorphisms.
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We shall begin with a maximization problem: Given a lattice L of size n and
f, g ∈ E(L), find the greatest lower bound h = f �E(L) g. Notice that the input
is L not E(L). Simply taking h(a) = f(a) �L g(a) for all a ∈ L does not work
because the resulting h may not even be a join-endomorphism. Previous lower
bounds for solving this problem are O(n3) for arbitrary lattices and O(n2) for
distributive lattices [22]. We will show that this problem can actually be solved
in O(n) for distributive lattices.

Distributed knowledge [15] corresponds to knowledge that is distributed
among the members of a group, without any of its members necessarily hav-
ing it. This notion can be used to analyse the implications of the knowledge of
a community if its members were to combine their knowledge, hence its impor-
tance. We will show that distributed knowledge can be seen as the meet of the
join-endomorphisms representing the knowledge of each member of a group.

The standard structures in economics for multi-agent knowledge [23] involve
a set of states (or worlds) Ω and a knowledge operator Ki : P(Ω) → P(Ω)
describing the events, represented as subsets of Ω, that an agent i knows. The
event of i knowing the event E is Ki(E) = {ω ∈ Ω | Ri(ω) ⊆ E} where
Ri ⊆ Ω2 is the accessibility relation of i and Ri(ω) = {ω′ | (ω, ω′) ∈ Ri}. The
event of having distributed knowledge of E by i and j is D{i,j}(E) = {ω ∈
Ω | Ri(ω) ∩ Rj(ω) ⊆ E} [7].

Knowledge operators are join-endomorphisms of L = (P(Ω),⊇). Intuitively,
the lower an agent i (its knowledge function) is placed in E(L), the “wiser” (or
more knowledgeable) the agent is. We will show that D{i,j} = Ki �E(L) Kj , i.e.,
D{i,j} can be viewed as the least knowledgeable agent that is wiser than both i
and j.

We also consider the following decision problem: Given the knowledge of
agents i, j,m, decide whether m has the distributed knowledge of i and j, i.e.,
Km = D{i,j}. The knowledge of an agent k can be represented by Kk : P(Ω) →
P(Ω). If available it can also be represented, exponentially more succinctly, by
Rk ⊆ Ω2. In the first case the problem reduces to checking whether Km =
Ki �E(L) Kj . In the second the problem reduces to Rm = Ri ∩ Rj and this can
be done in O(n2) where n = |Ω|.

Nevertheless, we show that even without the accessibility relations, if inputs
are the knowledge operators, represented as arrays, the problem can be still
be solved in O(n2). We obtain this result using tools from lattice theory to
exponentially reduce the number of tests on the knowledge operators (arrays)
needed to decide the problem.

Furthermore, if the inputs are the accessibility relations and they are equiv-
alences (hence they can be represented as partitions), we show that the problem
can be solved basically in linear time: More precisely, in O(nαn) where αn is an
extremely slow growing function; the inverse of the Ackermann function. It is
worth noticing that if accessibility relations can be represented as partitions, the
structures are known as Aumann structures [2] and they characterize a standard
notion of knowledge called S5 [7].
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To prove the O(nαn) bound we show a new result of independent interest
using a Disjoint-Set data structure [8]: The intersection of two partitions of a set
of size n can be computed in O(nαn). This result may have applications beyond
knowledge, particularly in domains where Disjoint-Set is typically used; e.g.,
given two undirected graphs G1 and G2 with the same nodes, find an undirected
graph G3 such that two nodes are connected in it iff they are connected in both
G1 and G2.

Contributions and Organization. The main contributions are the following:

1. We prove that for distributive lattices of size n, the meet of join-
endomorphisms can be computed in time O(n). Previous upper bound was
O(n2).

2. We show that distributed knowledge of a given group can be viewed as the
meet of the join-endomorphisms representing the knowledge of each member
of the group.

3. We show that the problem of whether an agent has the distributed knowledge
of two other can be decided in time O(n2) where n = |Ω|.

4. If the agents’ knowledge can be represented as partitions, the problem in (3)
can be decided in O(nαn). To obtain this we provide a procedure, interesting
in its own right, that computes the intersection of two partitions of a set of
size n in O(nαn).

The above results are given in Sects. 3 and 6. For conducting our study, in
the intermediate sections (Sects. 4 and 5) we will adapt some representation
and duality results (e.g., Jónsson-Tarski duality [17]) to our structures. Some
of these results are part of the folklore in lattice theory but for completeness
we provide simple proofs of them. We also provide experimental results for the
above-mentioned effective procedures.

2 Notation, Definitions and Elementary Facts

We list facts and notation used throughout the paper. We index joins, meets,
and orders with their corresponding poset but often omit the index when it is
clear from the context.

Partially Ordered Sets and Lattices. A poset L is a lattice iff each finite
nonempty subset of L has a supremum and infimum in L. It is a complete lattice
iff each subset of L has a supremum and infimum in L. A poset L is distributive
iff for every a, b, c ∈ L, a � (b � c) = (a � b) � (a � c). We write a‖b to denote
that a and b are incomparable in the underlying poset. A lattice of sets is a set
of sets ordered by inclusion and closed under finite unions and intersections. A
powerset lattice is a lattice of sets that includes all the subsets of its top element.

Definition 1 (Downsets, Covers, Join-irreducibility [5]). Let L be a lat-
tice and a, b ∈ L. We say b is covered by a, written b ≺ a, if b � a and there is no
c ∈ L s.t., b � c � a. The down-set (up-set) of a is ↓a

def= {b ∈ L | b � a}(↑a
def=
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{b ∈ L | b � a}), and the set of elements covered by a is ↓1a def= {b | b ≺ a}. An
element c ∈ L is said to be join-irreducible if c = a � b implies c = a or c = b.
If L is finite, c is join-irreducible if |↓1c| = 1. The set of all join-irreducible
elements of L is J (L) and ↓J c

def= ↓c ∩ J (L).

Posets of Maps. A map f : X → Y where X and Y are posets is monotonic
(or order-preserving) if a �X b implies f(a) �Y f(b) for every a, b ∈ X. We say
that f preserves the join of S ⊆ X iff f(

⊔
S) =

⊔{f(c) | c ∈ S}. A self-map on
X is a function f : X → X. If X and Y are posets, we use 〈X → Y 〉 to denote
the poset of monotonic functions from X to Y . The functions in M = 〈X → Y 〉
are ordered pointwise: i.e., f �M g iff f(a) �Y g(a) for every a ∈ X.

Definition 2 (Join-endomorphisms and E(L)). Let L be a lattice. We say
that a self-map is a (bottom preserving) join-endomorphism iff it preserves the
join of every finite subset of L. Define E(L) as the set of all join-endomorphisms
of L. Furthermore, given f, g ∈ E(L), define f �E g iff f(a) � g(a) for every
a ∈ L.

Proposition 3 ([5,12]). Let L be a lattice.

P.1 f ∈ E(L) iff f(⊥) = ⊥ and f(a � b) = f(a) � f(b) for all a, b ∈ L.
P.2 If f ∈ E(L) then f is monotonic.
P.3 If L is a complete lattice, then E(L) is a complete lattice.
P.4 E(L) is a complete distributive lattice iff L is a complete distributive lattice.

P.5 If L is finite and distributive, E(L) ∼= 〈J (L) → L〉.
P.6 If L is a finite lattice, e =

⊔
L
{c ∈ J (L) | c � e} for every e ∈ L.

P.7 If L is finite and distributive, f ∈ E(L) iff (∀e ∈ L) f(e) =
⊔{f(e′) | e′ ∈↓J

e}.
We shall use these posets in our examples: n̄ is {1, . . . , n} with the order

x � y iff x = y and Mn
def= (n̄⊥)� is the lattice that results from adding a top

and bottom to n̄.

3 Computing the Meet of Join-Endomorphisms

Join-endomorphisms and their meet arise as fundamental computational opera-
tions in computer science. We therefore believe that the problem of computing
these operations in the abstract realm of lattice theory is a relevant issue: We
may identify general properties that can be exploited in all instances of these
lattices.

In this section, we address the problem of computing the meet of join endo-
morphisms. Let us consider the following maximization problem.

Problem 4. Given a lattice L of size n and two join-endomorphisms f, g : L →
L, find the greatest join-endomorphism h : L → L below both f and g: i.e.,
h = f �E(L) g.
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Notice that the lattice E(L), which could be exponentially bigger than L [22],
is not an input to the problem above. It may not be immediate how to find h;
e.g., see the endomorphism h in Fig. 1a for a small lattice of four elements. A
naive approach to find f �E(L) g could be to attempt to compute it pointwise
by taking h(a) = f(a) �L g(a) for every a ∈ L. Nevertheless, the somewhat
appealing equation

(f �E(L) g) (a) = f(a) �L g(a) (1)

does not hold in general, as illustrated in the lattices M2 and M3 in Fig. 1b and
1c.

A general approach in [22] for arbitrary lattices shows how to find h in
Problem 4 by successive approximations σ0 � σ1 � · · · � σi, starting with some
self-map σ0 known to be smaller than both f and g, and greater than h; while
keeping the invariant σi � h. The starting point is the naive approach above:
σ0(a) = f(a) � g(a) for all a ∈ L. The approach computes decreasing upper
bounds of h by correcting in σi the image under σi−1 of some values b, c, b � c
violating the property σi−1(b) � σi−1(c) = σi−1(b � c). The correction satisfies
σi−1 � σi and maintains the invariant σi � h. This approach eventually finds h
in O(n3) basic lattice operations (binary meets and joins).

Recall that in finite distributive lattices, and more generally in co-Heyting
algebras [21], the subtraction operator � is uniquely determined by the Galois
connection b � c�a iff a�b � c. Based on the following proposition it was shown
in [22] that if the only basic operations are joins or meets, h can be computed in
O(n3) of them, but if we also allow subtraction as a basic operation, the bound
can be improved to O(n2).

Proposition 5 ([22]). Let L be a finite distributive lattice. Let h =
f �E(L) g. Then (1) h(c) =

�
L

{f(a) � g(b) | a � b � c}, and (2) h(c) =�
L

{f(a) � g(c � a) | a ∈ ↓c} .

Nevertheless, it turns out that we can partly use Eq. 1 to obtain a better
upper bound. The following lemma states that Eq. 1 holds if L is distributive
and a ∈ J (L).

Lemma 6. Let L be a finite distributive lattice and f, g ∈ E(L). Then the fol-
lowing equation holds: (f �E(L) g) (a) = f(a) �L g(a) for every a ∈ J (L).

Proof. From Proposition 5, (f �E(L) g)(a) =
� {f(a′) � g(a � a′) | a′ ∈ ↓a} .

Note that since a ∈ J (L) if a′ ∈ ↓a then a� a′ = a when a �= a′, and a� a′ = ⊥
when a = a′. Then, {f(a′) � g(a � a′) | a′ ∈ ↓a} = {f(a′) � g(a � a′) | a′ �
a} ∪ {f(a) � g(⊥)} = {f(a′) � g(a) | a′ � a} ∪ {f(a)} = {f(a′) � g(a) | ⊥ �
a′ � a}∪{f(a), g(a)}. By absorption, we know that (f(a′)� g(a))� g(a) = g(a).
Finally, using properties of �, (f �E(L) g)(a) =

�
({f(a′) � g(a) | ⊥ � a′ �

a} ∪ {f(a), g(a)}) =
�{f(a′) � g(a) | ⊥ � a′ � a} � f(a) � g(a) = f(a) � g(a).��

It is worth noting the Lem.6 may not hold for non-distributive lattices. This
is illustrated in Fig. 1c with the archetypal non-distributive lattice M3. Suppose
that f and g are given as in Fig. 1c. Let h = f �E(L) g with h(a) = f(a) � g(a)
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Fig. 1. (a) h = f �E(L) g. (b) h(a)
def
= f(a) � g(a) for a ∈ M2 is not in E(M2):

h(1� 2) �= h(1)� h(2). (c) Any h : M3 → M3 s.t. h(a) = f(a)� g(a) for a ∈ J (M3) is
not in E(M3): h(�) = h(1� 2) = h(1)�h(2) = 1 �= ⊥ = h(2)�h(3) = h(2� 3) = h(�).

for all a ∈ {1, 2, 3} = J (M3). Since h is a join-endomorphism, we would have
h(�) = h(1 � 2) = h(1) � h(2) = 1 �= ⊥ = h(2) � h(3) = h(2 � 3) = h(�), a
contradiction.

Lemma 6 and P.7 lead us to the following characterization of meets over E(L).

Theorem 7. Let L be a finite distributive lattice and f, g ∈ E(L). Then h =
f �E(L) g iff h satisfies

h(a) =

{
f(a) �L g(a) if a ∈ J (L) or a = ⊥
h(b) �L h(c) if b, c ∈ ↓1a with b �= c

(2)

Proof. The only-if direction follows from Lem.6 and Proposition P.7. For the
if-direction, suppose that h satisfies Eq. 2. If h ∈ E(L) the result follows from
Lemma 6 and P.7. To prove h ∈ E(L) from P.7 it suffices to show

h(e) =
⊔

{h(e′) | e′ ∈↓J e} (3)

for every e ∈ L. From Eq. 2 and since f and g are monotonic, h is monotonic.
If e ∈ J (L) then h(e′) � h(e) for every e′ ∈↓J e. Therefore,

⊔{h(e′) | e′ ∈↓J

e} = h(e). If e �∈ J (L), we proceed by induction. Assume Eq. 3 holds for all
a ∈ ↓1e. By definition, h(e) = h(b) � h(c) for any b, c ∈ ↓1e with b �= c. Then,
we have h(b) =

⊔{h(e′) | e′ ∈↓J b} and h(c) =
⊔{h(e′) | e′ ∈↓J c}. Notice

that e′ ∈↓J b or e′ ∈↓J c iff e′ ∈↓J (b � c), since L is distributive. Thus,
h(e) = h(b) � h(c) =

⊔{h(e′) | e′ ∈↓J (b � c)} =
⊔{h(e′) | e′ ∈↓J e} as

wanted. ��
We conclude this section by stating the time complexity O(n) to compute

h in the above theorem. As in [22], the time complexity is determined by the
number of basic binary lattice operations (i.e., meets and joins) performed during
execution.
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Fig. 2. Comparison between an implementation of Proposition 5 (DMeet) and Theo-
rem7 (DMeet+).

Corollary 8. Given a distributive lattice L of size n, and functions f, g ∈ E(L),
the function h = f �E(L) g can be computed in O(n) binary lattice operations.

Proof. If a ∈ J (L) then from Theorem 7, h(a) can be computed as f(a) � g(a).
If a = ⊥ then h(a) is ⊥. If a /∈ J (L) and a �= ⊥, we pick any b, c ∈ ↓1a such
that b �= c and compute h(a) recursively as h(b) � h(c) by Theorem 7. We can
use a lookup table to keep track of the values of a ∈ L for which h(a) has been
computed, starting with all a ∈ J (L). Since h(a) is only computed once for each
a ∈ L, either as a meet for elements in J (L) or as a join otherwise, we only
perform n binary lattice operations.

Experimental Results. Now we present some experimental results comparing
the average runtime between the previous algorithm in [22] based on Proposi-
tion 5, referred to as DMeet, and the proposed algorithm in Theorem7, called
DMeet+.

Figure 2 shows the average runtime of each algorithm, from 100 runs with a
random pair of join-endomorphisms. For Fig. 2a, we compared each algorithm
against powerset lattices of sizes between 22 and 210. For Fig. 2b, 10 random
distributive lattices of size 10 were selected. In both cases, all binary lattice
operation are guaranteed a complexity in O(1) to showcase the quadratic nature
of DMeet compared to the linear growth of DMeet+. The time reduction
from DMeet to DMeet+ is also reflected in a reduction on the number of
� and � operations performed as illustrated in Table 1. For DMeet+, given a
distributive lattice L of size n, #� = |J (L)| and #� = |L| − |J (L)| − 1 (⊥ is
directly mapped to ⊥).
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Table 1. Average runtime in seconds over powerset lattices. Number of � and �
operations performed for each algorithm.

DMeet DMeet+ DMeet DMeet+ DMeet DMeet+

Size Time [s] Time [s] #� #� #� #�
16 0.000246 0.000024 81 11 81 4

32 0.000971 0.000059 243 26 243 5

64 0.002659 0.000094 729 57 729 6

128 0.008735 0.000163 2187 120 2187 7

256 0.038086 0.000302 6561 247 6561 8

512 0.244304 0.000645 19683 502 19683 9

1024 1.518173 0.001468 59049 1013 59049 10

4 A Representation of Join-Irreducible Elements of E(L)

In this section we state a characterization of the join-irreducible elements of the
lattice of join-endomorphisms E(L). We use it to prove a representation result
for join-endomorphisms. Some of these results may be part of the folklore in
lattice theory, our purpose here is to identify and use them as technical tools in
the following section.

The following family of functions can be used to represent J (E(L)).

Definition 9. Let L be a lattice and a, b ∈ J (L). Let fa,b : L → L be given by
fa,b (x) def= b if x ∈ ↑a, otherwise fa,b (x) def= ⊥.

It is easy to verify that fa,b (⊥) = ⊥. On the other hand, for every c, d ∈ L,
fa,b (c � d) = fa,b (c) � fa,b (d) follows from the fact that a ∈ J (L) and by
cases on c � d ∈ ↑a and c � d �∈ ↑a. Thus, from P.1 we know that fa,b is a join-
endomorphism, and from P.2 it is monotone. Therefore, fa,b�J (L) ∈ 〈J (L) → L〉.
In addition, we point out the following rather technical lemma that gives us way
to construct from a function g ∈ 〈J (L) → L〉, a function h ∈ 〈J (L) → L〉
covered by g. The proof is given in the technical report available at https://hal.
archives-ouvertes.fr/hal-03323638.

Lemma 10. Let L be a finite lattice. Let g ∈ 〈J (L) → L〉, x0 ∈ J (L) and y0 ∈
L be such that y0 ∈ ↓1g(x0) and g(x) � y0 for all x � x0. Define h : J (L) → L

as h(x) def= y0 if x = x0 else h(x) def= g(x). Then h is monotonic and g covers h.

We proceed to characterize the join-irreducible elements of the lattice E(L).
The next lemma, together with P.6, tell us that every join-endomorphism in
E(L) can be expressed solely as a join of functions of the form fa,b defined in
Definition 9.

Lemma 11. Let L be a finite distributive lattice. For any join-endomorphism
f ∈ E(L), f is join-irreducible iff f = fa,b for some a, b ∈ J (L).

https://hal.archives-ouvertes.fr/hal-03323638
https://hal.archives-ouvertes.fr/hal-03323638
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Proof. For notational convenience let M = 〈J (L) → L〉. From P.5 it suffices to
prove: g ∈ M is join-irreducible in M iff g = ga,b for some a, b ∈ J (L) where
ga,b = fa,b�J (L). We use the following immediate consequence of Lemma 10.

Property (�): Let g ∈ M, x1, x2 ∈ J (L) and y1, y2 ∈ L, be such that for
each i ∈ {1, 2}, yi ∈ ↓1g(xi) and g(x) � yi for all x � xi. If x1 �= x2 or y1 �= y2,
then there are two distinct functions g1, g2 ∈ M that are covered by g in M.

1. For the only-if direction, let X = {x ∈ J (L) | g(x) �= ⊥} and Y = {g(x) |
x ∈ X}. If X = ∅, then g(x) = ⊥ for all x ∈ J (L), in which case g is not
join-irreducible in M. Thus, necessarily, X �= ∅ and Y �= ∅. Let us now prove
that: (a) X has a minimum element a ∈ J (L) with g(a) ∈ J (L), and (b)
Y = {g(a)}.
(a) Let x1, x2 ∈ X be minimal elements in X. For each i ∈ {1, 2}, let yi ∈

↓1g(xi). Since xi is minimal, it follows that g(x) = ⊥ for all x � xi.
From (�) and the fact that g is join-irreducible, we have x1 = x2 and
y1 = y2. Thus, X has a minimum element. We refer to such element as
a. Furthermore, |↓1g(a)| = 1, i.e. g(a) ∈ J (L).

(b) Let Y ∗ = Y \ {g(a)}. For the sake of contradiction, suppose Y ∗ �= ∅. Let
y ∈ Y ∗ be a minimal element and x∗ ∈ X be a minimal of X∗ = {x ∈
X | g(x) = y}. Since a � x∗ and y �= g(a), we have g(a) � g(x∗) = y.
Then there is at least one z ∈ ↓1y such that g(a) � z � y. Since g is
monotonic, Im(g) = {⊥} ∪ Y and y is minimal in Y ∗, for all x � x∗,
we have g(x) ∈ {⊥, g(a)}. Therefore, g(x) � z for all x � x∗. From (�),
with x1 = a, x2 = x∗, y1 ∈ ↓1g(a) and y2 = z, it follows that g is not
join-irreducible in M, a contradiction.

Monotonicity of g and (a)-(b), imply Im(g) = {⊥, b} with b = g(a). Thus
g = ga,b.

2. We prove that g = ga,b has a unique cover in M. Let c be the only cover
of b. Define g∗:J (L) → L as g∗(x) = c if x = a else g∗(x) = g(x). From
Lemma 10, it follows that g∗ ∈ M and ga,b covers g∗ in M. It suffices that
for any h ∈ M with h �M ga,b, h �M g∗ holds. Take any such h ∈ M. Since
h(a) �= b, h(a) � b. Thus h(a) � c, so h(a) � g∗(a). Indeed, for any x �= a,
h(x) � g(x) = g∗(x). Then h �M g∗. ��
We conclude with a corollary of Lemma 11 that provides a representation

theorem for join-endomorphism on distributive lattices. We will use this result
in the next section.

Corollary 12. Let L be a finite distributive lattice and let f ∈ E(L). Then
f = FR where R = {(a, b) ∈ J (L)2 | a � f(b)} and FR : L → L is the function
given by FR(c) def=

⊔{a ∈ J (L) | (a, b) ∈ R and c � b for some b ∈ J (L)}.
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Proof. From P.6 f =
⊔

E(L) {g ∈ J (E(L)) | g �E f}. Thus,

f(c) =
(⊔

E(L)
{g ∈ J (E(L)) | g 	E f}

)
(c) =

⊔
{g(c) | g ∈ J (E(L)) and g 	E f}

=
⊔ {

fb,a (c) | (b, a) ∈ J (L)2 and fb,a 	E f
}

(Lemma 11)

=
⊔ {

fb,a (c) | (b, a) ∈ J (L)2 and a 	 f(b)
}

=
⊔ {

a ∈ J (L) | (b, a) ∈ J (L)2, a 	 f(b) and c 
 b for some b ∈ J (L)
}

=
⊔

{a ∈ J (L) | (b, a) ∈ R and c 
 b for some b ∈ J (L)} = FR(c)

5 Distributive Lattices and Knowledge Structures

In this section, we introduce some knowledge structures from economics [2,23]
and relate them to distributive lattices by adapting fundamental duality results
between modal algebras and frames [17]. We will use these structures and their
relation to distributive lattices in the algorithmic results in the next section. We
use the term knowledge to encompass various epistemic concepts including S5
knowledge and belief [7].

Definition 13 ([23]). A (finite) Knowledge Structure (KS) for a set of agents
A is a tuple (Ω, {Ki}i∈A) where Ω is a finite set and each Ki : P(Ω) → P(Ω)
is given by Ki(E) = {ω ∈ Ω | Ri(ω) ⊆ E} where Ri ⊆ Ω2 and Ri(ω) =
{ω′ | (ω, ω′) ∈ Ri}.

The elements ω ∈ Ω and the subsets E ⊆ Ω are called states and events, resp.
We refer to Ki and Ri as the knowledge operator and the accessibility relation
of agent i.

The notion of event may be familiar to some readers from probability theory;
for example the event “public transportation is suspended” corresponds the set
of states at which public transportation is suspended. An event E holds at ω
if ω ∈ E. Thus Ω, the event that holds at every ω, corresponds to true in
logic, union of events corresponds to disjunction, intersection to conjunction,
and complementation in Ω to negation. We use E for Ω \ E. We write E ⇒ F
for the event E ∪ F which corresponds to classic logic implication. We say that
E entails F if E ⊆ F . The event of i knowing E is Ki(E).

The following properties hold for all events E and F of any KS (Ω, {Ki}i∈A).
It is easy to see that (K1) Ki(Ω) = Ω , i.e., agents know the event that
holds at every state, i.e., Ω. A distinctive property of knowledge is (K2)
Ki(E) ∩ Ki(F ) = Ki(E ∩ F ); i.e., if an agent knows two events, she knows
their conjunction. In fact, K2 implies (K3) (Ki(E) ∩ Ki(E ⇒ F )) ⊆ Ki(F ). This
property expresses modus ponens for knowledge. Other property implied by K2
is that knowledge is monotonic: (K4) if E ⊆ F then Ki(E) ⊆ Ki(F ), i.e., agents
know the consequences of their knowledge.

An agent i is wiser (or more knowledgeable) than j iff Kj(E) ⊆ Ki(E) for
every event E; i.e., if j knows E so does i.
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Aumann Structures. Aumann structures are the standard event-based for-
malism in economics and decision theory [7] for reasoning about knowledge. A
(finite) Aumann structure (AS) is a KS where all the accessibility relations are
equivalences.1 The intended notion of knowledge of AS is S5; i.e., the knowl-
edge captured by Prop.K1-K2 and the following three fundamental properties
which hold for any AS: (K5) Ki(E) ⊆ E, (K6) Ki(E) ⊆ Ki(Ki(E)), and (K7)
Ki(E) ⊆ Ki(Ki(E)). The first says that if an agents knows E then E cannot
be false, the second and third state that agents know what they know and what
they do not know.

Extended KS. We now introduce a simple extension of KS that will allow us
to give a uniform presentation of our results.

Definition 14 (EKS). A tuple (Ω,S, {Ki}i∈A) is said to be an extended
knowledge structure (EKS) if (1) (Ω, {Ki}i∈A) is a KS, and (2) S is a subset of
P(Ω) that contains Ω and it is closed under union, intersection and application
of Ki for every i ∈ A.

Notation. Given an underlying EKS (Ω,S, {Ki}i∈A) and f : P(Ω) → P(Ω) we
shall use f̃ for the function f�S : S → P(Ω), i.e., f̃(E) = f(E) for every E ∈ S.
Because of the closure properties of S, for every i ∈ A we have K̃i : S → S.

Notice that the AS and, in general KS, are EKS where S = P(Ω). Also
Kripke frames [7] can be viewed as EKS with S = P(Ω). Other structures not
discussed in this paper such as set algebras with operators (SOS) [24] and general
frames [4] can be represented as EKSs where S is required to be closed under
complement.

5.1 Extended KS and Distributive Lattices

The knowledge operators of an EKS are join-endomorphisms on a distributive
lattice. This is an easy consequence of K1 and K2, and the closure properties of
EKS. The next proposition tells us that the wiser the agent, the lower that (its
knowledge operator) is placed in the corresponding lattice.

Proposition 15. Let (Ω,S, {Ki}i∈A) be an EKS. Then L = (S,⊇) is a dis-
tributive lattice and for each i ∈ A, K̃i ∈ E(L).

Conversely, the join-endomorphisms of distributive lattices correspond to
knowledge operators of EKS. Recall that every distributive lattice is isomor-
phic to (the dual of) a lattice of sets. The next proposition is an adaptation
to finite distributive lattices of Jónsson-Tarski duality for general-frames and
boolean algebras with operators [17].

1 The presentation of AS [2] uses a partition Pi = {Ri(ω) | ω ∈ Ω} of Ω and Ki(E) is
equivalently defined as {ω ∈ Ω | Pi(ω) ⊆ E} where Pi(ω) is the cell of Pi containing
ω.
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Proposition 16. Let L be dual to a finite lattice of sets with a family {fi ∈
E(L)}i∈I . Then (Ω,S, {Ki}i∈I) is an EKS where S = L,Ω = ⊥L, and for every
i ∈ I, Ri = {(ω, ω′) ∈ Ω2 | for all E ∈ S, ω ∈ fi(E) implies ω′ ∈ E}. Also, for
i ∈ I, K̃i = fi.

Proof. Notice that L = S is closed under union and intersection since L is
the dual of a lattice of sets. Showing K̃i = fi also proves that S is closed
under Ki. Recall that K̃i(E) = Ki(E) for each E ∈ S. Thus, it remains to
prove Ki(E) = fi(E) for all E ∈ S. From K1 and the fact that fi is a join-
endomorphism, Ki(E) = fi(E) = Ω for E = Ω. Hence, choose an arbitrary
E �= Ω . First suppose that τ ∈ fi(E). From the definition of Ri if (τ, τ ′) ∈ Ri,
τ ′ ∈ E. Hence Ri(τ) ⊆ E, so τ ∈ Ki(E).

Now suppose that τ ∈ Ki(E) but τ �∈ fi(E). From τ ∈ Ki(E) we obtain:

for all τ ′ ∈ Ω if (τ, τ ′) ∈ Ri then τ ′ ∈ E. (4)

From the assumption τ �∈ fi(E) and the monotonicity of join-endomorphisms
(P.2):

for every F ∈ S if F ⊆ E then τ �∈ fi(F ). (5)

Let X = {E′ ∈ S | τ ∈ fi(E′)}. If X = ∅ then from the definition of Ri we
conclude Ri(τ) = Ω which contradicts (4) since E �= Ω. If X �= ∅ take S =

⋂
X.

Since fi is a join-endomorphism, it distributes over intersection (i.e., the join
in L), we conclude τ ∈ f(S). Thus, if S ⊆ E we obtain a contradiction with
(5). If S �⊆ E then there exists τ ′ ∈ S such that τ ′ �∈ E. From the definition of
S, τ ′ ∈ E′ for each E′ such that τ ∈ fi(E′). But this implies (τ, τ ′) ∈ Ri and
τ ′ �∈ E, a contradiction with (4). ��

Nevertheless, we can use our general characterization of join endomorphisms
in the previous section (Corollary 12) to obtain a simpler relational construc-
tion for join endomorphisms of powerset lattices (boolean algebras). Unlike the
construction in Proposition 16, this characterization of Ri does not appeal to
universal quantification.

Proposition 17. Let L be dual to a finite powerset lattice with a family {fi ∈
E(L)}i∈I . Let (Ω, {Ki}i∈I) be the KS where Ω = ⊥L and Ri = {(ω, ω′) | ω ∈
fi( {ω′} ) }. Then, for every i ∈ A, Ki = fi.

Proof. Since L is dual to a powerset lattice, � = ∩, �=⊇, and J (L) = {{τ} | τ ∈
Ω}. Let Q = {({σ}, {τ}) | (σ, τ) ∈ Ri}. Notice that for every ({σ}, {τ}) ∈ Q,
we have σ ∈ fi( {τ} ). Equivalently, {σ} ⊆ fi( {τ} ) and fi( {τ} ) ⊆ {σ}.
Therefore, from Corollary 12, it follows that for every E ∈ L, fi(E) =

⋂{{σ} ∈
J (L) | ({σ}, {τ}) ∈ Qi and E ⊆ {τ} for some {τ} ∈ J (L)}. We complete the
proof as follows:
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fi(E) =
⋂

{{σ} ∈ J (L) | ∃{τ} ∈ J (L) : (({σ}, {τ}) ∈ Q and E ⊆ {τ})}
=

⋂
{{σ} ∈ J (L) | ¬∀{τ} ∈ J (L) : (({σ}, {τ}) ∈ Q =⇒ E �⊆ {τ})}

=
⋂

{Ω \ {σ} ∈ J (L) | ¬∀τ ∈ Ω : ((σ, τ) ∈ Ri =⇒ τ ∈ E)}
=

⋂
{Ω \ {σ} ∈ J (L) | ¬(Ri(σ) ⊆ E)}

= Ω \ {σ ∈ Ω | ¬(Ri(σ) ⊆ E)} = {σ ∈ Ω | Ri(σ) ⊆ E} = Ki(E)

We conclude this section by pointing out that accessibility relations can be
obtained from knowledge operators. We can use Proposition 17 to compute Ri

from Ki. For AS we can obtain the equivalence class Ri(ω) directly from Ki.

Corollary 18. Let K = (Ω, {Ki}i∈A) be a KS. Then (1) Ri = {(ω, ω′) | ω ∈
Ki( {ω′} ) }. (2) If K is an AS then Ri(ω) = Ki( {ω} ) for every ω ∈ Ω.

6 Distributed Knowledge

The notion of distributed knowledge represents the information that two or more
agents may have as a group but not necessarily individually. Intuitively, it is what
someone who knows what each agent, in a given group, knows. As described in [7],
while common knowledge can be viewed as what “any fool” knows, distributed
knowledge can be viewed as what a “wise man” would know.

Let (Ω, {Ki}i∈A) be a KS and i, j ∈ A. The distributed knowledge of i and j
is represented by D{i,j} : P(Ω) → P(Ω) defined as D{i,j}(E) = {ω ∈ Ω | Ri(ω)∩
Rj(ω) ⊆ E} where Ri and Rj are the accessibility relations for i and j.

The following property captures the notion of distributed knowledge by relat-
ing group to individual knowledge: (K8) (Ki(E) ∩ Kj(E ⇒ F )) ⊆ D{i,j}(F ). It
says that if one agents knows E and the other knows that E implies F , together
they have the distributed knowledge of F even if neither agent knew F .

Example 19. Let E be the event “Bob’s boss is working from home” and F be
the event “public transportation is suspended”. Suppose that agent Alice knows
that Bob’s boss is working from home (i.e., KA(E)), and that agent Bob knows
that his boss works from home only when public transportation is suspended
(i.e., KB(E ⇒ F )). Thus, if they told each other what they knew, they would
have distributed knowledge of F (i.e., D{A,B}(F )). Indeed, KA(E)∩KB(E ⇒ F )
entails D{A,B}(F ) from K8.

A self-explanatory property relating individual and distributed knowledge is
(K9) Ki(E) ⊆ D{i,j}(E). Furthermore, the above basic properties of knowledge
Prop.K1-K2 also hold if we replace the Ki with D{i,j}: Intuitively, distributed
knowledge is knowledge. Indeed, imagine an agent m that combines i and j’s
knowledge by having an accessibility relation Rm = Ri ∩ Rj . In this case we
would have Km = D{i,j}. Therefore, any KS may include distributed knowledge
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as one of its knowledge operators. For simplicity, we are considering distributed
knowledge of two agents but this can be easily extended to arbitrary groups of
agents. E.g. if Km = D{i,j} then D{k,m} represents the distributed knowledge of
three agents i, j and k.

6.1 The Meet of Knowledge.

In Sect. 5.1 we identified knowledge operators and join endomorphisms. We now
show that the notion of distributed knowledge corresponds exactly to the meet
of the knowledge operators in the lattice of all join-endomorphisms in (S,⊇).

Theorem 20. Let (Ω,S, {Ki}i∈A) be an EKS and let L be the lattice (S,⊇).
Let us suppose that Km = D{i,j} for some i, j,m ∈ A. Then K̃m = K̃i �E(L) K̃j .

Proof. Let us assume Km = D{i,j}. Then from the closure properties of S, we
have D̃{i,j} = K̃m : S → S. Let f = K̃i �E(L) K̃j . (Recall that the order relation
�L over L is reversed inclusion ⊇, joins are intersections and meets are unions.)

From PropositionK9, for every E ∈ S, D{i,j}(E) �L Ki(E),Kj(E). Thus
D̃{i,j} is a lower bound of both K̃i and K̃j in E(L), so D̃{i,j} �E(L) f.

To prove f �E(L) D̃{i,j}, take τ ∈ D̃{i,j}(E) = D{i,j}(E) for an arbitrary
E ∈ S. By definition of D{i,j}, we have

Ri(τ) ∩ Rj(τ) ⊆ E. (6)

From Proposition 5

f(E) =
⋃

{Ki(F ) ∩ Kj(H) | F,H ∈ S and F ∩ H ⊆ E} (7)

Take F = Ri(τ) and H = Rj(τ), from (6), F∩H ⊆ E. By definition of knowledge
operator, τ ∈ Ki(F ) and τ ∈ Kj(H). From (7), τ ∈ f(E). Thus f �E(L) D̃{i,j}.

��
The theorem above allows us to characterize an agent m having the distributed
knowledge of i and j as the least knowledgeable agent wiser than both i and j. In
the next section we consider the decision problem of whether a given m indeed
has the distributed knowledge of i and j.

6.2 The Distributed Knowledge Problem

In what follows, let (Ω, {Ki}i∈A) be a KS and let n = |Ω|. Let us now consider
the following decision: Given the knowledge of agents i, j,m, decide whether m
has the distributed knowledge of i and j, i.e., Km = D{i,j}.

The input for this problem is the knowledge of the agents and it can be
represented using either knowledge operators Ki,Kj ,Km or accessibility rela-
tions Ri,Rj ,Rm. For each representation, the algorithm that solves the prob-
lem Km = D{i,j} can be implemented differently. For the first representation, it
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follows from Theorem 20 that Km = D{i,j} holds if and only if Km = Ki�E(L)Kj

where L = (P(Ω),⊇). For the second one, we can verify Rm = Ri ∩ Rj instead.
Indeed, as stated in Corollary 18, one representation can be obtained from the
other, hence an alternative solution for the decision problem is to translate the
input from the given representation into the other one before solving.

Accessibility relations represent knowledge much more compactly than
knowledge operators because the former are relations on Ω2 while the latter
are relations on P(Ω)2. For this reason, it would seem in principle that the algo-
rithm for handling the knowledge operator would be slower by several orders of
magnitude. Nevertheless, we can use our lattice theoretical results from previous
sections to show that this is not necessarily the case, thus it is worth considering
both types of representations.

From Knowledge Operators. We wish to determine Km = D{i,j} by establishing
whether Km = Ki �E(L) Kj where L = (P(Ω),⊇). Let us assume the following
bitwise representation of knowledge operators. The states in Ω are numbered as
ω1, . . . , ωn. Each event E is represented as a number #E ∈ [0..2n − 1] whose
binary representation has its k-th bit set to 1 iff ωk ∈ E. Each input knowledge
operator Ki is represented as an array Ki of size 2n that stores #Ki(E) at
position #E, i.e., Ki[ #E ] = #Ki(E).

From Lemma 6, Km = Ki �E(L) Kj iff Km(E) = Ki(E) ∪ Kj(E) for every
join-irreducible element E in L. Notice that E ∈ J (L) iff E has the form {ωk}
for some ωk ∈ Ω. Moreover, #{ωk} = (2n − 1) − 2k. These facts lead us to the
following result.

Theorem 21. Given the arrays Ki, Kj , Km where i, j,m ∈ I, there is an effective
procedure that can decide Km = D{i,j} in time O(n2) where n = |Ω|.
Proof. Let L = (P(Ω),⊇). We have Km = D{i,j} iff Km = Ki �E(L) Kj (The-
orem 20) iff Km(E) = Ki(E) ∪ Kj(E) for every E ∈ J (L) (Lemma 6). Fur-
thermore, E ∈ J (L) iff E = {ω} for some ω ∈ Ω. Then we can conclude that
E ∈ J (L) iff #E = (2n −1)−2k for some k ∈ [0..n−1]. Therefore, Km = D{i,j}
iff for every k ∈ [0..n − 1]

Km[ pk ] = Ki[ pk ] | Kj [ pk ] (8)

where pk = (2n−1)−2k and | is the OR operation over the bitwise representation
of Ki[ pk ] and Ki[ pk ]. For each k ∈ [0..n − 1], the equality test and the OR
operation in Eq. 8 can be computed in O(n). Hence the total cost is O(n2). ��

From Accessibility Relations. A very natural encoding for accessibility relations
is to use a binary n × n matrix. If the input is encoded using three matrices
Mi, Mj and Mm, we can test whether Rm = Ri ∩ Rj (a proxy for Km = D{i,j}) in
O(n2) by checking pointwise if Mm[a, b] = Mi[a, b] · Mj [a, b].

It suggests that for AS we can use a different encoding and check Rm =
Ri ∩ Rj practically in linear time: More precisely in O(αnn) where αn is the
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inverse of the Ackermann function2. The key point is that the relations of AS are
equivalences so they can be represented as partitions. The proof of the following
result, which is interesting in its own right, shows an O(nαn) procedure for
deciding Rm = Ri ∩ Rj .

Theorem 22. Let R1,R2,R3 ⊆ Ω2 be equivalences over a set Ω of n = |Ω|
elements. There is an O(αnn) algorithm for the following problem:

Input: Each Ri in partition form, i.e. an array of disjoint arrays of elements
of Ω, whose concatenation produces Ω. This is readable in O(n).
Output: Boolean answer to whether R3 = R1 ∩ R2.

Proof. We use the Disjoint-Sets data structure [8] whose details are included
in the technical report https://hal.archives-ouvertes.fr/hal-03323638. We can
view a disjoint-set as a function r : I → I that satisfies r ◦ r = r and can be
evaluated at a particular index in O(αn). The element r(i) corresponds to the
class representative of i for each i ∈ I, so that i ∼r j if and only if r(i) = r(j).

If we let ri denote a disjoint-set for Ri for each i ∈ {1, 2, 3}, and we let q
denote the disjoint-set for R1∩R2, then the problem can be divided into comput-
ing the disjoint-set q in O(nαn) and verifying whether ∼q=∼r3 also in O(nαn).
To organize these claims, let us consider the following algorithm descriptions.

Intersection. Takes two disjoint-sets r1 and r2, and produces a disjoint-set
q such that i ∼q j iff i ∼r1 j and i ∼r2 j.
Canonical. Takes a disjoint-set r and produces another r̂ with ∼r=∼r̂, but
such that r̂(i) ≤ i for all i ∈ I.
Equality. Takes two disjoint-sets r1, r2 and determines if i ∼r1 j iff i ∼r2 j
for all i, j ∈ I. This problem is reduced simply to checking if r̂1 = r̂2.

We proceed to show that Algorithms 1 and 2 compute q and r̂ (in array
form) in O(nαn). The complexity follows from the fact that they must read the
input function(s) pointwise and all other operations are linear. It remains to
show correctness only.

The array g in Algorithm 1 is any version of the inverse image of f, i.e.
f[g[y]] = y for every y ∈ Im(f). This guarantees f ◦ g ◦ f = f and hence q ◦ q =
g◦f◦g◦f = g◦f = q. Moreover, for any i, j ∈ I, q[i] = q[j] iff g[f[i]] = g[f[j]] by
definition; iff f[i] = f[j] because f is injective; iff r1(i) = r1(j) and r2(i) = r2(j);
iff i ∼r1 j and i ∼r2 j.

Regarding Algorithm2, for all i ∈ I, i ∼ t[r(i)], thus r(i) = r(t[r(i)]). This
is, r = r ◦ t ◦ r. Thus, r̂ ◦ r̂ = t ◦ r ◦ t ◦ r = t ◦ r = r̂. Moreover, for any i, j ∈ I,
i ∼ j iff r(i) = r(j); iff t[r(i)] = t[r(j)] since t is injective on J ; iff r̂[i] = r̂[j] by
definition.

2 αn
def
= min{k : A(k, k) ≥ n}, where A is the Ackermann function. The growth of αn

is negligible in practice, e.g., αn = 4 for n = 22
265536 − 3.

https://hal.archives-ouvertes.fr/hal-03323638
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Algorithm 1. Intersection of dis-
joint sets in O(nαn)
1: procedure Intersection(r1, r2)
2: Let f : I → I × I be an array
3: For each i ∈ I do
4: f[i] ← (r1(i), r2(i))
5: Let g : Im(f) → I be a hash map
6: For each i ∈ I do g[f[i]] ← i
7: Let q : I → I be an array
8: For each i ∈ I do q[i] ← g[f[i]]
9: return q

Algorithm 2. Equality of disjoint
sets in O(nαn)
1: procedure Canonical(r)

2: (Comment) J
def
= {r(i) : i ∈ I}.

3: Let t : J → I be a hash map.
4: For each i ∈ I do t[r(i)] ← r(i).
5: For each i ∈ I do
6: t[r(i)] ← min(t[r(i)], i)
7: Let r̂ : I → I be an array
8: For each i ∈ I do r̂[i] ← tr(i)
9: return r̂

Fig. 3. Runtime comparison of several algorithms that solve the distributed knowledge
problem.

Experimental Results. Figure 3 shows the average runtime (100 random exe-
cutions) of the four algorithms listed below for the distributed knowledge prob-
lem. Fixing the number of elements n = |Ω| elements, the input for each execu-
tion consisted of three randomly generated partitions Pi, Pj and Pm. The first
two are generated independently and uniformly over the set of all possible par-
titions of n elements. The third, Pm, corresponds with 50% probability to the
intersection of the relations of the first two, and to a different but very similar
partition otherwise, so as to increase the problem difficulty.

1. The “Cached operator” algorithm is the one described in Theorem 21. It
assumes that the input knowledge operators can be evaluated in O(1) at
any join-irreducible input E ⊆ Ω. Its complexity is O(n2), because bit-mask
operations are linear w.r.t. the number of bits. However, this is compensated
heavily in practice by the speed of bit-masking operations, at least for the
sizes depicted.

2. The “Disjoint set” algorithm is the one described in Theorem 22 (O(nαn)).
It takes the accessibility relations in partition form as input.

3. The “Relation” algorithm (O(n2)) takes as input the accessibility relations
in the form of n × n binary matrices, and simply verifies if the pointwise-and
matches.
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4. The “Non-cached operator” (O(n2)) algorithm is that of the “Cached opera-
tor” when the cost of evaluating Ki( · ) is taken into account. It shows that
although the “Cached operator” algorithm is very fast, its speed depends
heavily on the assumption that the knowledge operators are pre-computed.

7 Concluding Remarks and Related Work

We have used some standard tools from lattice theory to characterize the notion
of distributed knowledge and provide efficient procedures to compute the meet
of join-endomorphisms. Furthermore, we provide an algorithm to compute the
intersection of partitions of a set of size n in O(nαn). As illustrated in the intro-
duction, this algorithm may have applications for graph connected components
and other domains where the notion of partition and intersection arise naturally.

In [22] we proposed algorithms to compute f �E(L) g with time complexities
O(n3) for arbitrary lattices and O(n2) for distributive lattices. Here we have
improved the bound to O(n) for distributive lattices. The authors in [13] gave
a method of logarithmic time complexity (in the size of the lattice) for meet
operations. Since E(L) is isomorphic to O(J (L) × J (L)op) for a distributive
lattice L, finding f �E(L) g with their algorithm would be in O(log2(2n

2
)) =

O(n2) in contrast to our linear bound. Furthermore, we would need a lattice
isomorphic to E(L) to find f �E(L) g using their algorithm. This lattice can be
exponentially bigger than L [22] which is the input to our algorithm. We also
provided experimental results illustrating the performance of our procedures.
We followed the work in [16] for generating random distributive lattices.

The finite representation results we used in Sects. 4 and 5 to obtain our main
results are adaptations from standard results from duality theory. Jónsson and
Tarski [17,19] originally presented an extension of boolean algebras with oper-
ators (BAO), called canonical extensions, provided with some representation
theorems. Roughly speaking, the representation theorems state that (1) every
relation algebra is isomorphic to a complete and atomic relation algebra and (2)
every boolean algebra with operators is isomorphic to a complex algebra that
is complete and atomic. The idea behind this result, as was presented later by
Kripke in [20], basically says that the operators can be recovered from certain
binary relations and vice versa. Another approach to this duality was given by
Goldblatt [11] where it is stated that the variety of normal modal algebras coin-
cides with the class of subalgebras defined on the class of all frames. Canonical
extensions have been useful for the development of duality and algebra. Jónsson
proved an important result for modal logic in [18] and the authors of [6,9,10]
have generalized canonical extensions for BAOs to distributive and arbitrary
bounded lattices and posets.

Distributed knowledge was introduced in [15] and various axiomatization and
expressiveness for it have been provided, e.g., in [1,14]. In terms of computational
complexity, the satisfiability problem for epistemic logic with distributed knowl-
edge (S5D) has been shown to be PSPACE-complete [7]. Nevertheless, we are
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not aware of any lattice theoretical characterization of distributed knowledge
nor algorithms to decide if an agent has the distributed knowledge of others.

Acknowledgments. We are indebted to the anonymous referees and editors of RAM-
iCS 2021 for helping us to improve the overall quality of the paper. We thank Luigi
Santocanale for his constructive comments.
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Abstract. Dedekind categories and similar structures provide a suitable frame-
work to reason about binary relations in an abstract setting. Arrow categories
extend this theory by certain operations and axioms so that additional aspects
of L-fuzzy relations become expressible. In particular, arrow categories allow to
identify crisp relations among all relations. On the other hand, the new operations
and axioms in arrow categories force the category to be uniform, i.e., to be within
a particular subclass of Dedekind categories. As an extension, arrow categories
inherit constructions from Dedekind categories such as the definition of relational
sums and splittings. However, these constructions are usually modified in arrow
categories by requiring that certain relations are additionally crisp. This additional
crispness requirement and the fact that the category is uniform raises a general
question about these constructions in arrow categories. When can we guarantee
the existence of the construction with and without the additional requirement of
crispness in the given arrow category or an extension thereof? This paper provides
a complete answer to this complex question for the two constructions mentioned.

1 Introduction

Allegories and Dedekind categories, in particular, provide a suitable framework to rea-
son about binary relations [1,3–5]. Typically one is interested in an allegory that pro-
vides some additional constructions. For example, the relational sum is an abstract ver-
sion of the disjoint union of two sets and is based on the two injections ι and κ mapping
elements from the two separate objects into the sum. This construction can be used
to model computations on two separated parts of the input by one relation. Another
construction of interest is a splitting. This construction can be used to model a subset
of a given domain as well as the set of equivalence classes induced by an equivalence
relation.

Beside set-theoretic binary relations also so-called L-fuzzy relations establish a
Dedekind category, i.e., Dedekind categories cover also relations that use elements from
a complete Heyting algebra L as truth or membership values instead of the Boolean val-
ues true and false. However, the theory of Dedekind categories does not allow to char-
acterize crisp relations among L-fuzzy relations, i.e., those relations that only rely on
the smallest element 0 (false) and the greatest element 1 (true) of L [8]. Because of this

M. Winter—The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada (283267).

c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 433–447, 2021.
https://doi.org/10.1007/978-3-030-88701-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88701-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-88701-8_26


434 M. Winter

reason arrow categories were introduced. These categories add two arrow operations
to theory returning the support and kernel of a L-fuzzy relation. Similar to Dedekind
categories one is typically interested in an arrow category that provides some additional
constructions such as the relational sum and splittings mentioned above. However, the
original definition of a relational sum does not require that the corresponding injections
ι and κ are crisp. Even though relational sums are unique up to isomorphism we may
have two relational sums in one arrow category, one with crisp injections and one with
non-crisp injections. This is possible because the notion of crispness is not invariant
under isomorphisms [8]. Now the following question arises. If an arrow category has a
relational sum for two objects, does it also have a relational sum of these objects with
crisp injections? And if not, is there an extension of the category that will have such
a crisp version? The same question can also be asked for a splitting of a crisp partial
equivalence relation.

The construction of a splitting raises an additional question. Arrow categories model
the so-called fixed basis approach to fuzziness, i.e., all relations in a given arrow cate-
gory use the same lattice of truth values. Algebraically this implies that arrow categories
are uniform, i.e., the arrow category seen as a Dedekind category satisfies an additional
axiom preventing that some partial equivalence relations split. It would be interesting
to characterize those partial equivalence relations that may split in arrow categories. In
this paper we will provide a complete answer to the questions mentioned above.

The paper is organized as follows. In Sect. 2 we will recall the basic concepts from
categories, Dedekind categories, and arrow categories. Section 3 will cover the rela-
tional sum. We will show that an arrow category may have a relational sum without
providing a crisp version thereof. In addition, we will show that any arrow category
can be embedded into a category of matrices that provides a relational sum with crisp
injections. In Sect. 4 we will first investigate the class of partial equivalence relation
that may split in an arrow category. In order to do so we will introduce the notion of a
pseudo-crisp relation. After that we proceed similar to Sect. 3 and show that an arrow
category may have a splitting of a crisp partial equivalence relation without providing
a crisp version thereof. Finally, we will show that any arrow category can be embed-
ded into a larger category that provides a crisp splitting of a crisp partial equivalence
relation. Section 5 will outline some future work.

2 Mathematical Preliminaries

In this section we want to provide the mathematical notions used in this paper. Therefore
we recall some basic notions from category theory and introduce Dedekind and arrow
categories [1,8,9].

We will write R : A → B to indicate that a morphism R of a category C has source
A and target B. Composition and the identity morphism are denoted by ; and IA, respec-
tively. We will use composition from left to right, i.e., Q;R means first Q and then
R.

Definition 1. A Dedekind category R is a category satisfying the following:
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1. For all objects A and B the collection R[A, B] is a complete Heyting algebra. Meet,
join, the implication operation, the induced ordering, the least and the greatest ele-
ment are denoted by [,\,→,�,�AB,�AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q : A → B
to Q� : B → A such that for all relations Q : A → B and R : B → C the following
holds: (Q;R)� “ R�;Q� and (Q�)� “ Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R)[ S � Q; (R[ (Q�; S )) holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B
(called the left residual of S and R) such that for all X : A→ B the following holds:
X;R � S ⇔ X � S/R.

Given a complete Heyting algebra L, an L-fuzzy relation R between two sets A
and B is a function A × B → L assigning to each pair of A and B elements a degree
of membership in R. A meet and a join operation on L-fuzzy relations can be defined
component-wise using the corresponding operations on L. Together with the usual con-
verse operation and composition defined by

(Q;R)(a, c) “
ğ

b∈B
Q(a, b)[ R(b, c),

we obtain the Dedekind category Rel(L) of sets and L-fuzzy relations.
If the sets A and B are finite we will present relations Q between A and B often

as matrices labeled by the elements from A (rows) and B (columns). The entries of the
matrix are taken from L so that an entry u in the row labeled a and column labeled b sim-
ply indicates Q(a, b) “ u. Please note that the lattice operation on relations correspond
to component-wise operations on the matrices and that composition is matrix multipli-
cation based on meet and join (instead of multiplication and addition). For example, if
we use the linear lattice L3 “ {0, a, 1} with three elements and A “ {0, 1, 2, 3, 4}, then
we may define Q : A→ A as the relation Q(x, y) “ 1 if y “ (x`1) mod 5, Q(x, y) “ a
if y “ (x ` 2) mod 5 and Q(x, y) “ 0 otherwise. The matrix of Q and Q;Q are given
resp. computed as:

Q “

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

0 0 1 a 0 0
1 0 0 1 a 0
2 0 0 0 1 a
3 a 0 0 0 1
4 1 a 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q;Q “

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

0 0 1 a 0 0
1 0 0 1 a 0
2 0 0 0 1 a
3 a 0 0 0 1
4 1 a 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

0 0 1 a 0 0
1 0 0 1 a 0
2 0 0 0 1 a
3 a 0 0 0 1
4 1 a 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

0 0 0 1 a a
1 a 0 0 1 a
2 a a 0 0 1
3 1 a a 0 0
4 0 1 a a 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We obtain a special case of Rel(L) if we choose the Heyting algebra L to be the 2-
element Boolean algebra B of the truth value. The Dedekind categoryRel(B) is actually
isomorphic to the category Rel of sets and binary relations. We will identify the two
categories and see Rel as a special case of a Dedekind category of L-fuzzy relations.

Throughout the paper we will use the axioms and some basics facts such as mono-
tonicity of the operations without mentioning. In addition, we will need the notion of
the domain of a relation occasionally. The domain of a relation Q : A → B is the par-
tial identity given by the elements where Q is defined. Relation-algebraically we define



436 M. Winter

dom(Q) “ IA [Q;Q� and cod(Q) “ dom(Q�) “ IB [Q�;Q. A proof of the following
lemma can be found in [1,3–5].

Lemma 1. Suppose R is a Dedekind category, Q : A → B and R : B → C. Then we
have:

1. dom(Q) “ IA [ Q;�BA.
2. dom(Q);Q “ Q.
3. dom(Q;R) � dom(Q).
4. If i � IA, then dom(i) “ i.

It is possible to characterize the lattice of membership degrees used by relations
between two objects of an arbitrary Dedekind category. In this paper we use the notion
scalar relation that was introduced by Furusawa and Kawahara [2].

Definition 2. Suppose R is a Dedekind category. A relation α : A → A is called a
scalar on A iff α � IA and �AA;α “ α;�AA.

In the case of L-fuzzy relations a scalar relation α is a partial identity for which we
have α(a, a) “ u for some fixed u from L. Therefore, any scalar corresponds to exactly
one element from L. Obviously in Rel we have exactly two scalars �AA and IA verifying
that Rel is based on the Boolean algebra of the truth values.

L-fuzzy relations that only use the smallest and greatest element 0 and 1 as truth
values are called crisp. These relations correspond to the relations from Rel in an
obvious manner. However, crisp relations cannot be characterized within an arbitrary
Dedekind category [8]. Therefore the following definition introduces arrow categories.
Arrow categories add two operations to Dedekind categories. The relation R↑ is the
smallest crisp relation that contains R (also called support), and R↓ is the greatest crisp
relation included in R (also called kernel) [7–9].

Definition 3. An arrow category A is a Dedekind category with �AB � �AB for all A,
B and two operations ↑ and ↓ satisfying:
1. R↑, R↓ : A→ B for all R : A→ B.
2. (↑,↓ ) forms a Galois correspondence, i.e., Q↑ � R iff Q � R↓ for all Q,R : A→ B.
3. (R�; S ↓)↑ “ R↑�; S ↓ for all R : B→ A and S : B→ C.
4. (Q[ R↓)↑ “ Q↑ [ R↓ for all Q,R : A→ B.
5. If αA � �AA is a non-zero scalar then α↑A “ IA.

A relation in an arrow category that satisfies R↑ “ R, or equivalently R↓ “ R, is
called crisp. Notice that this abstract notion of crispness is equivalent to the notion of
crispness defined above for concrete L-fuzzy relations.

Given an arrow categoryA it can be shown that the set of scalar relations Scalar(A)
for each object A forms a complete Heyting algebra [8]. Furthermore, these Heyting
algebras are all isomorphic. Together with the observation that scalars correspond to
exactly one element of the underlying lattice in the case of L-fuzzy relations we will
say thatA is an arrow category over L if L is isomorphic to Scalar(A) for an (all) object
A inA.
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It is important to mention that the identity, the smallest, and the greatest relation are
crisp, and that crisp relations are closed under all operations of a Dedekind category,
i.e., the crisp relations form a sub-Dedekind category.

The following lemma will be needed several times in Theorem 5 showing that any
arrow category can be embedded into an arrow category in which all crisp partial equiv-
alence relation split.

Lemma 2. SupposeA is an arrow category, Q : A→ B is crisp, and R : B→ C. Then
we have:

1. Q;R↓ � (Q;R)↓.
2. If Q is, in addition, univalent, i.e., Q�;Q � IB, then the inclusion in 1. is an equation.

Proof. 1. First of all, we have

(Q;R↓)↑ “ Q↑;R↓

“ Q;R↓ Q crisp

� Q;R.

This immediately implies the assertion.
2. We only have to show the inclusion 	. We compute

Q�; (Q;R)↓ � (Q�;Q;R)↓ by 1. sinceQ� is crisp

� R↓. Q univalent

This implies

(Q;R)↓ “ dom((Q;R)↓); (Q;R)↓ Lemma 1(2)

� dom(Q;R); (Q;R)↓

� dom(Q); (Q;R)↓ Lemma 1(3)

� Q;Q�; (Q;R)↓

� Q;R↓, see above

i.e., the inclusion 	. [\

3 Relational Sums

We start our investigation with the so-called relational sum. This construction is an
abstract version of the disjoint union of two sets.

Definition 4. Suppose R is a Dedekind category. The relational sum of two objects A
and B is an object A` B together with two relations ι : A→ A` B and κ : B→ A` B
so that the following equations hold

ι; ι� “ IA, κ; κ
� “ IB, ι; κ

� “ �AB, ι
�; ι\ κ�; κ “ IA`B.
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For the purpose of this paper we will call a relational sum in an arrow category A
crisp if the two injections are crisp relations, i.e., if we have ι↓ “ ι and κ↓ “ κ.

A relational sum is unique up to isomorphism. In fact, a relational sum is a biproduct
in R and a coproduct in the subcategory of maps. In the concrete Dedekind categories
Rel(L) a crisp relational sum is given by the disjoint union of two sets together with the
corresponding crisp injections

ι(a, c) “
{
1 if c “ a
0 otherwise , κ(b, c) “

{
1 if c “ b
0 otherwise

with a ∈ A, b ∈ B, and c ∈ A` B. This indicates that the uniformity of arrow categories
does not restrict the existence of (crisp) relational sums. On the other hand, Rel(L) may
also have a relational sum of A and Bwhere the injections are not crisp. This is possible
because the notion of crispness is not preserved by (internal) isomorphisms [8]. When
we now consider a suitable substructure of Rel(L) the situation can get even worse in
the sense that the resulting category has relational sums of A and B but none of them
has crisp injections as the following example shows.

Example 1. We will use the Boolean algebra B4 “ {0, a, b, 1} with four elements as the
lattice L and construct A1 as a substructure of Rel(B4). Please note that in Rel(B4) the
set of relations between two objects is a Boolean algebra, i.e., has complements. The
objects of A1 are the two sets A “ {∗} and B “ {∗1, ∗2}. Please note that B can be seen
as the disjoint union of Awith itself, i.e., B together with the suitable crisp injections is a
crisp relational sum of A and A in Rel(B4). Furthermore, any relational sum of A with A
must use B as the object due to fact that the relational sum is unique up to isomorphism.
Now, consider the relations ι, κ : A→ B defined by

ι “ [
∗1 ∗2

∗ a b
]
, κ “ [

∗1 ∗2
∗ b a

]
.

It is easy to verify that these relations form a relational sum. For example, using the fact
that a is the complement of b in B4 we obtain

ι; ι� “ [
∗1 ∗2

∗ a b
]
;
[
∗

∗1 a
∗2 b

]

“ [
∗

∗ 1
]

“ IA,

ι�; ι\ κ�; κ “
[
∗

∗1 a
∗2 b

]

;
[
∗1 ∗2

∗ a b
]\

[
∗

∗1 b
∗2 a

]

;
[
∗1 ∗2

∗ b a
]

“
[
∗1 ∗2

∗1 a 0
∗2 0 a

]

\
[
∗1 ∗2

∗1 b 0
∗2 0 b

]



Relational Sums and Splittings in Categories of L-fuzzy Relations 439

“
[
∗1 ∗2

∗1 1 0
∗2 0 1

]

“ IB.

In addition, both relations are not crisp since ι↓ “ κ↓ “ �AB. Now, we define A1 to be
the smallest structure containing ι and κ that is closed under meet, join, complement,
converse, composition, the arrow operations, and contains all constants related to the
two objects A and B. This is well-defined since all ingredients we are working with are
finite, i.e., we are working with a finite set of relations between finite sets with a finite
lattice of truth values. Furthermore, the resulting structure will have relative pseudo-
complements and residuals due to the finiteness of the structure. With other words,A1

is an arrow category. It turns out thatA1 has a total of 26 relations split up as

|A1[A, A]| “ 2, |A1[A, B]| “ |A1[B, A]| “ 4, |A1[B, B]| “ 16.

In particular, we have A1[A, B] “ {�AB,�AB, ι, κ}. This shows that B together with ι
and κ is the only relational sum inA1 of A with itself, i.e.,A1 has a relational sum, but
no crisp relational sum, of A with itself. [\

The example above shows that we cannot always assume that there is a crisp version
of a relational sum in a given arrow category. On the other hand,A1 is embedded in the
larger arrow category Rel(B4) which does have a crisp version. We now want to show
that this is always the case so that requiring the injections to be crisp is not an actual
restriction. We start with the following theorem embedding a Dedekind category R into
a category of matrices over R. A proof of this theorem in various versions can be found
in [1,5,6].

Theorem 1. Suppose R is a Dedekind category. Then the category of matrices R` over
R defined by

1. The objects of R` are pairs ( f , I) where I is a non-empty set and f is a function from
I to the objects of R .

2. Given two objects ( f , I) and (g, J) a morphism in R` from ( f , I) to (g, J) is a function
Q from I × J to the relations in R so that Q(i, j) : f (i)→ g( j).

is a Dedekind category. Furthermore, the functor E : R → R` defined by E(A) “
(A, {∗}) for objects and E(Q)(∗, ∗) “ Q is a full embedding of Dedekind categories.

We now extend the previous result to arrow categories.

Theorem 2. Suppose A is an arrow category. Then A` together with the operations
Q↓(i, j) “ Q(i, j)↓ and Q↑(i, j) “ Q(i, j)↑ for Q : ( f , I) → (g, J) is an arrow category.
Furthermore, E is a full embedding of arrow categories.

Proof. First of all, we have �( f ,I)(g,J) � �( f ,I)(g,J) since I and J are not empty and we
have �( f ,I)(g,J)(i, j) “ � f (i)g( j) � � f (i)g( j) “ �( f ,I)(g,J)(i, j) for all i ∈ I and j ∈ J. We now
show the properties listed in Definition 3.
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1. This is satisfied by definition.
2. We have

Q↑(i, j) � R(i, j)⇔ (Q(i, j))↑ � R(i, j)

⇔ Q(i, j) � (R(i, j))↓

⇔ Q(i, j) � R↓(i, j)

for all suitable i and j so that Q↑ � R⇔ Q � R↓ follows.
3-4. These properties are shown similarly to 2.
5. Suppose α : ( f , I)→ ( f , I) is a non-zero scalar. From α � I( f ,I) we obtain α(i, j) “
� f (i) f ( j) for i � j and α(i, i) � I f (i). Furthermore, for i, j ∈ I we have
α(i, i);� f (i) f ( j) “ α(i, i);�( f ,I)( f ,I)(i, j)

“
ğ

k∈I
α(i, k);�( f ,I)( f ,I)(k, j) α(i, k) “ � f (i) f (k) for i � k

“ (α;�( f ,I)( f ,I))(i, j)

“ (�( f ,I)( f ,I);α)(i, j) α is a scalar

“
ğ

k∈I
�( f ,I)( f ,I)(i, k);α(k, j)

“ �( f ,I)( f ,I)(i, j);α( j, j) α(k, j) “ � f (k) f ( j) for j � k

“ � f (i) f ( j);α( j, j).

For i “ j this implies that α(i, i) is a scalar. In addition, we have

α(i, i) “ dom(α)(i, i) Lemma 1(4)

“ (I( f ,I) [ α;�( f ,I)( f ,I))(i, i) Lemma 1(1)

“ I( f ,I)(i, i)[ (α;�( f ,I)( f ,I))(i, i)

“ I f (i) [
ğ

j∈I
α(i, j);� f ( j) f (i)

“ I f (i) [ α(i, i);� f (i) f (i) α(i, j) “ � f (i) f ( j) for i � j

“ I f (i) [ α(i, i);� f (i) f ( j);� f ( j) f (i) A uniform

“ I f (i) [ � f (i) f ( j);α( j, j);� f ( j) f (i). see above

If α( j, j) “ � f ( j) f ( j) for some j ∈ J, then the computation above implies α(i, i) “
� f (i) f (i) for every i ∈ I. The latter is impossible since α is non-zero, i.e., there is an
i ∈ I with α(i, i) � � f (i) f (i). Therefore, α(i, i) is a non-zero scalar for every i ∈ I,
i.e., α(i, i)↑ “ I f (i). This implies

α↑(i, j) “ α(i, j)↑

“
{
�↑f (i) f ( j)) if i � j
α(i, i)↑ otherwise

“
{
� f (i) f ( j)) if i � j
I f (i) otherwise

“ I( f ,I)(i, j),
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i.e., α↑ “ I( f ,I).

Last but not least, we have to show that E preserves the arrow operations. We have

E(Q↓)(∗, ∗) “ Q↓ “ E(Q)(∗, ∗)↓ “ E(Q)↓(∗, ∗),
and similar calculation for the support. [\

It remains to show thatA` has crisp relational sums.

Theorem 3. Suppose A is an arrow category. Then A` has crisp relational sums for
all pairs of objects.

Proof. Suppose ( f , I) and (g, J) are objects inA`. Then the pair (h, I ` J) where I ` J
is the disjoint union of the sets I and J and h : I ` J → ObjA is defined by

h(x) “
{
f (x) if x ∈ I
g(x) if x ∈ J

is also an object ofA`. Now, we define ι : ( f , I)→ (h, I` J) and κ : (g, J)→ (h, I` J)
by

ι(i, x) “
{
I f (i) if x “ i
� f (i)h(x) otherwise

, κ( j, x) “
{
Ig( j) if x “ j
�g( j)h(x) otherwise

.

The injections are crisp by definition. A proof of the remaining properties of a relational
sum can be found in [1,5,6]. [\

Please note that if A had a non-crisp relational sum (A `nc B, ιnc, κnc) of A and
B, then A `nc B (after embedding into A`) is isomorphic to the crisp relational sum
(A`c B, ιc, κc) from the theorem above. This isomorphism i : A`c B→ A`nc B cannot
be crisp, because if i would be crisp, then we would obtain from ιc; i “ ιnc that ιnc is
crisp since crisp relations are closed under composition. In Example 1 we embed A1

into Rel(B4) and obtain the isomorphism i : B→ B as

i “
[
∗1 ∗2

∗1 a b
∗2 b a

]

.

4 Splittings

There is already a well developed theory on splitting of idempotents in categories. In
allegories it is important to restrict ourself to symmetric idempotent relations, or partial
equivalence relations, because the symmetry guarantees the existence of the converse
operation in RE (see Theorem 4).

A splitting is a combination of a subset and forming equivalence classes. It is based
on a given partial equivalence relation, i.e., a relation that is idempotent and symmetric.

Definition 5. Suppose R is a Dedekind category, and Q : A → A is a partial equiva-
lence relation, i.e., we have Q;Q “ Q and Q� “ Q. The splitting of Q is an object B
together with a relation R : B→ A so that

R;R� “ IB, R�;R “ Q.
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In Rel every partial equivalence relation splits. The object B is the set of all equiva-
lence classes of elements for which Q is defined. In more details, if x ∈ A we define the
equivalence class of x by [x] “ {y ∈ A | Q(x, y)}. Then B “ {[x] | x ∈ A and [x] � ∅}
and R : B→ A is defined by R([x], y) iff y ∈ [x] iff Q(x, y).

Since Rel without the empty set as an object is isomorphic to the subcategory of
crisp relations in Rel(L) for any L, the same construction can be used in order to show
that every non-empty crisp partial equivalence relation in Rel(L) has a splitting. Unfor-
tunately, we will also have partial equivalence relations that do not split if the lattice L
is bigger than B. This is a consequence of the following lemma.

Lemma 3. Suppose A is an arrow category, and α : A → A is an ideal relation, i.e.,
�AA;α;�AA “ α. If a relation R : B→ A splits α, then α “ �AA.

Proof. Assume R : B → A splits α, i.e., we have R;R� “ IB and R�;R “ α. Then we
compute

α “ �AA;α;�AA

“ �AB;�BA;α;�AB;�BA A uniform

“ �AB;�BA;R
�;R;�AB;�BA R splits α

“ �AB;�BB;�BB;�BA R total

“ �AB;�BA

“ �AA, A uniform

verifying that α “ �AA. [\
First of all, the previous lemma shows that �AA does not split in any arrow category.

Ultimately, this is a consequence of the axiom �AB � �AB for all objects A and B of
arrow categories that prevents the empty set to be an object of a concrete arrow category.
However,�AA is not the only relation that does not split in arrow categories. If the lattice
L has an element a with a � 0 and a � 1, then the ideal relation α(x, y) “ a does not
split in Rel(L) either due to the lemma above.

We would now like to characterize the class of partial equivalence relations that may
have a splitting in an arrow category.

Definition 6. LetA be an arrow category. A relation Q : A→ B is called pseudo crisp
(p-crisp) iff there are relations R : A′ → A and S ′ : B′ → B with R�;R “ Q;Q� and
S �; S “ Q�;Q so that R;Q; S � is crisp.

With other words, a relation is p-crisp if it can be transformed into a crisp relation
with equivalent domain and codomain.

Lemma 4. LetA be an arrow category. Then we have:

1. Every crisp relation is p-crisp.
2. If Q : A→ A is a partial equivalence relation, then Q is p-crisp iff there is a relation

R : A′ → A with R�;R “ Q so that R;Q;R� is crisp.
3. If Q : A→ A is a partial equivalence relation that has a splitting, then Q is p-crisp.
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Proof. 1. Suppose Q : A → B is crisp. If we choose R “ Q� and S “ Q, then we
obtain R�;R “ Q��;Q� “ Q;Q� and S �; S “ Q�;Q. Furthermore, R;Q; S “
Q�;Q;Q� is crisp because Q is and crisp relations are closed under composition
and converse.

2. We first show the implication⇒. Since Q is p-crisp we have two relations R : A′ →
A and S ′ : B′ → B with R�;R “ Q;Q� and S �; S “ Q�;Q so that R;Q; S � is crisp.
First of all we get, R�;R “ Q;Q� “ Q;Q “ Q because Q is a partial equivalence
relation. Furthermore, we have

R;Q;R� “ R;Q;Q�;Q;Q�;R� Q is a partial equivalence relation

“ R;Q; S �; S ;Q�;R� Q is p-crisp

“ (R;Q; S �); (R;Q; S �)�

so that R;Q;R� is crisp because R;Q; S � is and crisp relations are closed under
composition and converse. The opposite implication is immediate by choosing S “
R.

3. Suppose Q has a splitting, i.e., there is a relation R : B → A so that R;R� “ IB

and R�;R “ Q. Then we have R�;R “ Q “ Q;Q� and R�;R “ Q “ Q�;Q.
Furthermore, we compute R;Q;R� “ R;R�;R;R� “ IB, i.e., R;Q;R� is crisp. [\
The previous lemma has shown that a partial equivalence relation has to be p-crisp

in order to have a splitting. The next lemma shows that these relations will automatically
split if all crisp partial equivalence relations do. With other words, if all crisp equiva-
lence relations split in an arrow category, then all p-crisp partial equivalence relation
will split, and no other partial equivalence relation will.

Lemma 5. LetA be an arrow category. Then the following are equivalent:

1. Every crisp partial equivalence splits inA.
2. Every p-crisp partial equivalence splits inA.
Proof. 1. ⇒2.: Assume that every crisp partial equivalence splits in A and that Q :

A → A is a p-crisp partial equivalence relation. Then Lemma 4(2) shows that there
is a relation R : A′ → A R�;R “ Q so that R;Q;R� is crisp. Now we want to show
that R;Q;R� is a partial equivalence relation. This relation is symmetric because Q
is. The second property is shown by

(R;Q;R�); (R;Q;R�) “ R;Q;Q;Q;R�

“ R;Q;R�. Q is a partial equivalence relation

Now suppose that S : B→ A′ splits R;Q;R�, i.e., we have S ; S � “ IB and S �; S “
R;Q;R�. We have

S ;R;R� “ S ; S �; S ;R;R�

“ S ;R;Q;R�;R;R�

“ S ;R;Q;Q;R�

“ S ;R;Q;R� Q is a partial equivalence relation

“ S ; S �; S

“ S .
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This implies

S ;R; (S ;R)� “ S ;R;R�; S �

“ S ; S � see above

“ IB,

(S ;R)�; S ;R “ R�; S �; S ;R

“ R�;R;Q;R�;R

“ Q;Q;Q

“ Q, Q is a partial equivalence relation

showing that S ;R is a splitting of Q.
2. ⇒ 1.: This is trivial since every crisp relation is p-crisp. [\

In the second part of this section we want to concentrate on the splitting of a crisp
partial equivalence relation Q : A → A. As outlined above, in Rel(L) a splitting of Q
is given by the set of equivalence classes of elements for which Q is defined and the
relation R : B → A can be chosen as R([x], y) iff y ∈ [x] iff Q(x, y), i.e., the relation R
is crisp. As for relational sums this needs not to be the case as the following example
shows.

Example 2. As in the previous example, we will use the Boolean algebra B4 with four
elements as the lattice L. The objects of A2 are the two sets A “ {1, 2, 3, 4} and B “
{x, y}. Now consider the crisp partial equivalence relation Q : A → A and the relations
R1,R2 : B→ A defined in matrix form by

Q “
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 1 1 0 0
2 1 1 0 0
3 0 0 1 0
4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R1 “

[
1 2 3 4

x a a b 0
y b b a 0

]

, R2 “
[
1 2 3 4

x b b a 0
y a a b 0

]

.

Obviously R1 and R2 are not crisp but it is easy to verify that both relations are a splitting
of Q. For example, we computing

R1;R
�
1 “

[
1 2 3 4

x a a b 0
y b b a 0

]

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y

1 a b
2 a b
3 b a
4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“
[
x y

x 1 0
y 0 1

]

“ IB,

R�1 ;R1 “
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y

1 a b
2 a b
3 b a
4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;
[
1 2 3 4

x a a b 0
y b b a 0

]
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“
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 1 1 0 0
2 1 1 0 0
3 0 0 1 0
4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“ Q.

Now, we define A2 to be the smallest structure containing Q,R1 and R2 that is closed
under meet, join, complement, converse, composition, the arrow operations, and con-
tains all constants related to the two objects A and B. As in the previous example this
defines an arrow category A2. It turns out that A2 has a total of 1168 relations split up
as

|A2[A, A]| “ 1024, |A2[A, B]| “ |A2[B, A]| “ 64, |A2[B, B]| “ 16.

Among the 64 relations with source B and target A the relation R1 and R2 from above
are the only relation that split Q. Finally, we would like to mention that the example
above is definitely not the smallest example of an arrow category with only non-crisp
splittings of a crisp partial equivalence relation. We have chosen this example because
Q is a relation with more than one equivalence class, at least one of those is not a
singleton, and there is an element for which Q is not defined. [\

In the following we will call a splitting R of a crisp partial equivalence relation Q
a crisp splitting iff R is crisp. The example above shows that we cannot always assume
that there is a crisp splitting for every a crisp partial equivalence relation. But, as in the
case of relational sums, A2 is embedded in the larger arrow category Rel(B4) which
does have a crisp splitting. We now want to show that this is always the case so that
requiring the splitting of a crisp partial equivalence relation to be crisp is not an actual
restriction. We start with the following theorem embedding a Dedekind category R into
a Dedekind category providing all splittings. A proof of this theorem in various versions
can be found in [1,5,6].

Theorem 4. Suppose R is a Dedekind category and E a class of partial equivalence
relations from R. Then the category RE is defined by

1. The objects of RE are the elements of E,
2. Given two objects Q1 : A→ A and Q2 : B→ B a morphism in RE from Q1 to Q2 is

a relation R : A→ B so that Q1;R;Q2 “ R,

is a Dedekind category. Furthermore, if E contains all identities of R, then the functor
E : R → RE defined by E(A) “ IA for objects and E(R) “ R is a full embedding of
Dedekind categories.

We now extend the previous result to arrow categories. However, we need to require
that the partial equivalence relations in E are crisp.
Theorem 5. Suppose A is an arrow category and E a class of crisp partial equiva-
lence relations from A. Then AE together with the arrow operations inherited from A
is an arrow category. Furthermore, if E contains all identities of A, then E is a full
embedding of arrow categories.
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Proof. In order to establish that AE is an arrow category, we only need to verify that
R↓ and R↑ for a morphism R with source Q1 : A → A and target Q2 : B → B are again
morphisms ofAE, i.e., they satisfy Q1;R↓;Q2 “ R↓ resp. Q1;R↑;Q2 “ R↑. The second
property follows immediately from

R↑ “ (Q1;R;Q2)
↑ R inAE

“ (Q↓1;R;Q2)
↑

Q1 crisp

“ Q↓1; (R;Q2)
↑

“ Q1; (R;Q
↓
2)
↑

Q1 and Q2 crisp

“ Q1;R
↑;Q↓2

“ Q1;R
↑;Q2. Q2 crisp

For the second equation, we first have

Q1;R
↓;Q2 � (Q1;R)

↓;Q2 Lemma 2(1)

� (Q1;R;Q2)
↓ dual of Lemma 2(1)

“ R↓. R inAE
The opposite inclusion follows from

R↓ “ (Q1;R;Q2)
↓ R inAE

“ (dom(Q1);Q1;R;Q2; cod(Q2))
↓ Lemma 1(2)

“ (dom(Q1);R; cod(Q2))
↓ R inAE

“ ((IA [ Q1);R; (IB [ Q2))
↓ Q1 and Q2 are p. equiv. rel.

“ (IA [ Q1);R
↓; (IB [ Q2) Lemma 2(2)

� Q1;R
↓;Q2.

This completes the proof. [\
It remains to show thatAE has crisp splittings for all elements in E.

Theorem 6. SupposeA is an arrow category and E a class of crisp partial equivalence
relations from A. If Q is a crisp partial equivalence relation in AE so that Q is in E,
then Q has a crisp splitting inAE.
Proof. Suppose Q : A → A is a crisp partial equivalence relation on the object Q1 :
A → A in AE, i.e., we have Q “ Q1;Q;Q1. In addition assume that Q is in E. Then Q
is an object ofAE and we can define a relation R by R “ Q. Since we have Q;R;Q1 “
Q;Q;Q1 “ Q;Q1 “ Q1;Q;Q1;Q1 “ Q1;Q;Q1 “ Q the relation R is a morphism
from Q to Q1 in AE. Furthermore, we have R;R� “ Q;Q� “ Q “ IQ and R�;R “
Q�;Q “ Q, i.e., R splits Q. Last but not least, R is crisp since Q is. [\

As in the case of relational sums we have the following. IfA had a non-crisp split-
ting R : B → A of Q, then B (after embedding into AE) is isomorphic to the crisp
splitting from the theorem above. This isomorphism is not crisp, of course.
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5 Summary and Future Work

In this paper we have investigated when crisp versions of relational sums and splittings
exist. In particular, we have shown that the additional requirement of crispness is not
restriction since a crisp version of each construction can always be generated in an
extension of the arrow category. Furthermore, we have characterized the class of partial
equivalence relations that may split in an arrow category.

In future work we will investigate the same question for the relational product. This
problem is harder since there cannot be general construction that embeds an arrow cate-
gory into an arrow category with crisp products. This is due to the fact that the existence
of products is closely related to the representation problem for these categories.

It would be interesting to find an algebraic characterization, i.e., an equation or
inclusion, of pseudo-crispness. The current definition is based on the existence of two
specific relations. This is not very handy in showing properties about p-crisp relations
or in verifying that a given relation is p-crisp.

Last but not least, we would like to mention that a questions similar to the ones in
this paper do not make much sense for the construction of a relational power. This is
due to the fact the L-fuzzy power set, i.e., the set of all L-fuzzy subsets, is different from
the regular power set. For details we refer to [10].
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Abstract. Arrow categories establish a suitable framework to reason
about L-fuzzy relation abstractly. For each arrow category we can iden-
tify the Heyting algebra L that is used as the lattice of membership
or truth values by the relations of the category. Therefore, arrow cate-
gories model the fixed-base approach to L-fuzziness, i.e., all relations of
the given arrow category use the same membership values. In this paper
we are interested in the process of changing the base, i.e., an operation
that allows to switch from an L1-fuzzy relation to an L2-fuzzy relation
by replacing all membership values from L1 by values from L2. We will
define and investigate this change of base between two abstract arrow
categories for which component-wise reasoning cannot be performed.

1 Introduction

One approach to model uncertainty is given by so-called L-fuzzy relations. An
L-fuzzy relation is a relation that uses the values from the Heyting algebra L as
truth values instead of the Boolean values true and false. The smallest element
of L is identified with false, the greatest element with true, and any value in
between indicates that two elements are in relationship only up to this given
degree. A relation that only uses the greatest and smallest element of L as truth
values can be identified with a Boolean valued relation, and is, therfore, called
crisp. In applications of L-fuzzy relations one might be interested in changing the
Heyting algebra L. For example, type-2 fuzzy controller utilize L-fuzzy relations
and (L Ñ L)-fuzzy relations where L Ñ L is an appropriate set of functions from
L to itself. Common to all design principles of those controllers seems to be that
the core of the controller is based on (L Ñ L)-fuzzy relations. In order to obtain
a crisp output of the controller, the result is first transformed into an L-fuzzy
relation by using a so-called type reducer before the result finally converted into
a crisp value using a so-called defuzzification [5]. In particular, the type reducer
converts an (L Ñ L)-fuzzy relation into an L-fuzzy relation, i.e., this process
includes switching from the base L Ñ L to the base L. In this paper we are
interested how a change of base can be defined in the abstract setting of arrow
categories and what properties this change might satisfy.
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Arrow categories establish a suitable framework to reason about L-fuzzy rela-
tion abstractly. It is possible to determine the Heyting algebra L that is used as
the lattice of membership values for a given arrow category. Therefore, all relation
of a given arrow category use the same Heyting algebra L, i.e., arrow categories
model the so-called fixed-base approach. Switching the base now needs to be a
map between two arrow categories. On the other hand, not every map between
two arrow categories should be considered a change of base. Beside the lattice of
truth values the two arrow categories might also be different in the purely rela-
tional aspect. For example, assume that the first arrow category is the category of
infinite sets as objects and L1-fuzzy relations as morphisms, and the second arrow
category is the category of finite sets as objects and L2-fuzzy relations as mor-
phisms. A map between these category does not only include exchanging L1 by
L2, it also includes mapping a relation between infinite sets to a relation between
finite sets. Such a difference in the relational aspect can be prevented by requiring
that the two arrow categories have basically the same crisp relations. Please note
that this is not the case in the example above. Here we have the category of binary
relations between infinite sets resp. finite sets as the categories of crisp relations.
Therefore, we will require that a change of base is between arrow categories so that
the subcategories of crisp relation are isomorphic, i.e., basically the same.

2 Mathematical Preliminaries

In this section we want to introduce Dedekind and arrow categories as an abstract
framework for L-fuzzy relations [2,10,11]. We use the notation R : A Ñ B to
indicate that a morphism R of a category C has source A and target B. In
addition, we write Q;R for the composition of Q : A Ñ B and R : B Ñ C.
Please note that composition has to be read from left to right, i.e., first Q and
then R. The identity on A is denoted by IA.

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a complete Heyting algebra.
Meet, join, the implication operation, the induced ordering, the least and the
greatest element are denoted by [,\,Ñ, Ď,�AB ,�AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q :
A Ñ B to Q� : B Ñ A such that for all relations Q : A Ñ B and R : B Ñ C

the following holds: (Q;R)� “ R�;Q� and (Q�)� “ Q.
3. For all relations Q : A Ñ B,R : B Ñ C and S : A Ñ C the modular law

(Q;R) [ S Ď Q; (R [ (Q�;S)) holds.
4. For all relations R : B Ñ C and S : A Ñ C there is a relation S{R : A Ñ B

(called the left residual of S and R) such that for all X : A Ñ B the following
holds: X;R Ď S ô X Ď S{R.

If L is a complete Heyting algebra, an L-fuzzy relation R between two sets
A and B is a function AˆB Ñ L assigning to each pair of A and B elements a
degree of membership in R. The category Rel(L) of sets and L-fuzzy relations
forms a Dedekind category.
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If we define the left residual Q\R : B Ñ C of two relations Q : A Ñ B

and R : A Ñ C by Q\R :“ (R�{Q�)� we immediately obtain X Ď Q\R iff
Q;X Ď R. Using both residual we define the symmetric quotient as syQ(Q,R) “
(Q\R) [ (Q�{R�). This construction is characterized by X Ď syQ(Q,R) iff
Q;X Ď R and R;X� Ď Q.

Throughout the paper we will use the axioms and some basics facts such as
monotonicity of the operations without mentioning.

The following lemma collects some properties of the residuals and the sym-
metric quotient that we will need in this paper. A proof can be found in
[3,6,7,10].

Lemma 1. Let be Q : A Ñ B and S : A Ñ C. Then we have:

1. IA\S “ S and �CB{Q “ �CA.
2. syQ(Q,S)� “ syQ(S,Q).
3. Q; syQ(Q,S) Ď S and syQ(Q,S);S� Ď Q�.

An important class of relations are given by maps (or functions). We call a
relation Q : A Ñ B univalent (or partial function) iff Q�;Q Ď IB and total iff
IA Ď Q;Q�. Q is called a map iff Q is total and univalent.

In order to identify the lattice of membership degrees used by the relations
of an arbitrary Dedekind category we use the notion scalar relations that was
introduced by Furusawa and Kawahara [4]. A relation α : A Ñ A is called a
scalar on A iff α Ď IA and �AA;α “ α;�AA. In the case of L-fuzzy relations a
scalar relation α is a partial identity for which we have α(a, a) “ x for all a and
some fixed x from L. Therefore, any scalar corresponds to exactly one element
from L.

The next definition introduces arrow categories, which add two operations to
Dedekind categories. The relation RÒ is the smallest crisp relation that contains
R (also called support), and RÓ is the greatest crisp relation included in R (also
called kernel) [9–11].

Definition 2. An arrow category A is a Dedekind category with �AB �“ �AB

for all A, B and two operations Ò and Ó satisfying:

1. RÒ, RÓ : A Ñ B for all R : A Ñ B.
2. (Ò,Ó ) forms a Galois correspondence, i.e., QÒ Ď R iff Q Ď RÓ for all Q,R :

A Ñ B.
3. (R�;SÓ)Ò “ RÒ�;SÓ for all R : B Ñ A and S : B Ñ C.
4. (Q [ RÓ)Ò “ QÒ [ RÓ for all Q,R : A Ñ B.
5. If αA �“ �AA is a non-zero scalar then αÒ

A “ IA.

First we have the following basic properties in arrow categories. A proof can
be found in [8,10,13].

Lemma 2. Suppose A is an arrow category, Q : A Ñ B is crisp, and R,R′ :
B Ñ C. Then we have:
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1. R�Ó “ RÓ�.
2. RÒÓ “ RÒ and RÓÒ “ RÓ.
3. (R [ R′)Ó “ RÓ [ R′Ó.
4. Q;RÓ Ď (Q;R)Ó.
5. If Q is, in addition, univalent, then the inclusion in 4. is an equation.

A relation in an arrow category that satisfies RÒ “ R, or equivalently RÓ “ R,
is called crisp. It is important to mention that all constants are crisp and that
crisp relations are closed under all operations of a Dedekind category, i.e., the
crisp relations form a sub-Dedekind category.

Arrow categories are uniform, i.e., they satisfy �AB ;�BC “ �AC for all
objects A,B and C. This actually implies that the sets of scalar relations
Scalar(A) for all objects A are isomorphic. Therefore we will say that the A
is an arrow category over L if L is isomorphic to Scalar(A) for any/all objects
A in A.

An abstract version of a singleton set is given by a unit. A unit 1 is an object
so that �11 “ I1 and �A1 is total for every object A.

The relational product is an abstract version of the Cartesian product of two
sets. This construction corresponds to a categorical product in the subcategory
of maps.

The relational product of two objects A and B is an object A ˆ B together
with two crisp relations π : AˆB Ñ A and ρ : AˆB Ñ B so that the following
equations hold

π�;π Ď IA, ρ�; ρ Ď IB , π�; ρ “ �AB , π;π� [ ρ; ρ� “ IAˆB .

In addition, we define

Q � R “ Q;π� [R; ρ�, S � T “ π;S [ ρ;T, U b V “ π;U ;π� [ ρ;V ; ρ�.

For concrete relations we have (Q � R)(c, (a, b)) iff Q(c, a) and R(c, b), i.e.,
Q�R relates c to a pair (a, b) iff Q relates c to a and R relates c to b. Similar, we
have (S �T )((a, b), d) iff S(a, d) and T (b, d) and (U bV )((a, b), (c, d)) iff U(a, c)
and V (b, d).

A proof of the following lemma can be found in [7,10].

Lemma 3. Let Q : C Ñ A,R,R′ : C Ñ B,S : A Ñ D,T : B Ñ D be relations.
Then we have:

1. (Q � R);π “ Q [ R;�BA and (Q � R); ρ “ Q;�AB [ R.
2. If R is total, then (Q � R);π “ Q, and if Q is total, then (Q � R); ρ “ R.
3. If Q and R are univalent (total resp. maps), then so is Q � R.
4. If Q � R is univalent, then (Q � R); (S � T ) “ Q;S [ R;T .

Notice that (4) of the previous lemma has several immediate consequences
such as (Q�R); (SbT ) “ Q;SbR;T if Q�R is univalent. In the remaining of
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the paper we will always refer to (4) even if one of these immediate consequences
is needed.

The last construction we want to introduce is the relational power. This
construction is an abstract version of the set of all L-fuzzy subsets of a set.

Suppose A be an arrow category over L. An object LA together with a
relation ε : A Ñ LA is called a relational power iff

syQ(ε, ε)Ó “ ILA and syQ(R, ε)Ó is total for every R : A Ñ B.

Our definition of a relational power differs from the definition in [2,7]. For a
comparison of the definitions and the reason for using the one presented here in
the case of arrow category we refer to [12].

Intuitively, the construction syQ(R�, ε)Ó for a relation R : A Ñ B returns a
crisp map relating an element a from A to the L-fuzzy subset M of B so that the
degree of any b in M is equal to R(a, b), i.e., the L-fuzzy image operation. We
will use the abbreviation Λ(R) “ syQ(R�, ε)Ó and obtain the following lemma.
A proof can be found in [12].

Lemma 4. Let LB and LC be a relational power and R : A Ñ B and S : LB Ñ
C be a relations. Then we have:

1. Λ(R) is a map.
2. Λ(R); ε� “ R.
3. Λ(R);Λ(S) “ Λ(Λ(R);S).

The following two relations

M2 “ Λ(ε�
� ε�) : LAˆLA Ñ LA, and J2 “ Λ(ε�;π\ ε�; ρ) : LAˆLA Ñ LA

define the operations of binary intersection (or meet) and union (or join) for rela-
tional powers. In addition, the relation J “ Λ(ε�; ε�) : L(LA) Ñ LA computes
the union of a set of sets.

3 The Object of Truth Values

As mentioned before the set of scalar relations on an object can be seen as the
Heyting algebra of membership values used by the relations of the given arrow
category. In this section we want to investigate an internal version of this lattice.
In order to do so we consider the object L1 where 1 is the unit of arrow category
over L. We will drop the exponent and simply write L instead of L1.

It is easy to verify that the operations α �→ Λ(α) and p �→ p; ε� from an
isomorphism between the scalars on 1 and points of L. The order (ε\ε)Ó is an
internal version of the order on the scalars. We now define the following relations:

zero “ Λ(�11), one “ Λ(I1), down “ Λ(ε�Ó
), up “ Λ(ε�Ò

).
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The crisp points zero and one correspond to the smallest and greatest element
of L, and down and up are internal versions of the arrow operations. First of all,
we have

one “ Λ(I1)

“ ((I1\ε) [ (I1{ε�))
Ó

“ ((I1\ε) [ (�11{ε�))
Ó

“ (ε [ �)Ó Lemma 1(1)

“ εÓ.

Furthermore, we will use the following lemma about down and up.

Lemma 5. For the crisp maps down,up : L Ñ L we have

1. down and up are idempotent, i.e., down; down “ down and up; up “ up,
2. down�; down “ IL [ down and up�; up “ IL [ up,
3. down�; down “ up�; up.

Proof. 1. We immediately compute

down; down “ Λ(down; ε�Ó
) Lemma 4(3)

“ Λ((down; ε�)
Ó
) Lemma 2(5)

“ Λ(ε�Ó
) Lemma 4(2)

“ down.

The same property for up is shown analogously.
2. This property is true for any idempotent and univalent relation and was

shown in [1].
3. From the two computations

εÓ; up�; up “ εÓ; syQ(ε, εÒ)Ó; up Lemma 1(2)

Ď (εÓ; syQ(ε, εÒ))Ó; up Lemma 2(4)

Ď (ε; syQ(ε, εÒ))Ó; up

Ď εÒÓ; up Lemma 1(3)

“ εÒ; up Lemma 2(2)

Ď εÒ; syQ(εÒ, ε)
Ď ε, Lemma 1(3)

up�; up; ε� “ up�; ε�Ò
Lemma 4(2)

“ syQ(ε, εÒ)Ó; ε�Ò
Lemma 1(2)

Ď (syQ(ε, εÒ); ε�Ò
)
Ó

Lemma 2(4)

Ď ε�Ó
Lemma 1(3)



454 M. Winter

we obtain up�; up Ď syQ(εÓ, ε) and, hence, up�; up “ (up�; up)Ó Ď
syQ(εÓ, ε)Ó “ down. This implies up�; up Ď IL [ down since up is univalent.
From (2) we conclude up�; up Ď down�; down. For the converse inclusion
consider

εÒ; down�; down “ (ε; down�)
Ò
; down down� crisp

“ εÓÒ; down Lemma 4(2)

“ εÓ; down Lemma 2(2)

Ď εÓ; syQ(εÓ, ε)
Ď ε, Lemma 1(3)

down�; down; ε� “ down�; ε�Ó
Lemma 4(2)

Ď syQ(ε, εÓ); ε�Ó
Lemma 1(2)

Ď ε� Lemma 1(3)

Ď ε�Ò

which implies down�; down Ď syQ(εÒ, ε). Similar to the steps above this
finally leads to down�; down Ď IL [ up and the second inclusion by (2). [\
We are interested in those truth values that are used by crisp relations, i.e., in

a vector representing the smallest and greatest element of L. This vector can be
defined in two different ways. First of all, we could simply take zero\one. On the
other hand, these elements are exactly the fixed points of down (or equivalently of
up) which motivates the expression �1L; (IL[down) (or equivalently �1L; (IL[
up)).

Lemma 6. zero \ one Ď �1L; (IL [ down).

Proof. We start by computing

zero; down “ Λ(zero; ε�Ó
) Lemma 4(3)

“ Λ((zero; ε�)
Ó
) Lemma 2(5)

“ Λ(�11) Lemma 4(2)
“ zero

so that

zero�; zero “ IL [ zero�; zero zero univalent

Ď IL [ zero�; zero; down; down� down total

Ď IL [ zero�; zero; down� see above

Ď IL [ down� zero univalent
“ IL [ down IL [ down Ď IL
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follows. Similar we obtain one�; one Ď IL [ down. We conclude

zero \ one “ �11; zero \ �11; one

“ �1L; zero�; zero \ �1L; one�; one zero, one total

“ �1L; (zero�; zero \ one�; one)
“ �1L; (IL [ down), see above

i.e., the assertion. [\
Unfortunately, so far we were not able to show the opposite inclusion of the

property in the previous lemma. Most likely a proof needs to use the last axiom
of an arrow category. However, it seems that this is not enough. We suspect that
the proof needs the requirement that crisp relations forms a Boolean algebra
because of the \ on the bigger side of the inclusion. Furthermore, additional
relational products might be needed in order to avoid non-standard models.
In the remainder of the paper we will use the relation IL [ down rather than
zero \ one.

4 Covectorization

A relation v : 1 Ñ A can be seen as a subset of A. Such a relation is called
a vector. A covector is the converse of a vector, i.e., a relation c : A Ñ 1.
Our goal in this section is to covectorize arbitrary relations, i.e., establishing an
isomorphism between relations R : A Ñ B and covectors v : A ˆ B Ñ 1. In
addition, we will define operations on vectors that perform the usual relational
operations applicable to the corresponding relations.

Given a relation R : A Ñ B and a covector v : A ˆ B Ñ 1 we define
cov(R) : A ˆ B Ñ 1 and rel(v) : A Ñ B by

cov(R) :“ (R � IB);�B1,

rel(v) :“ π�; (v;�1B [ ρ).

The first lemma establishes the isomorphism mentioned above.

Lemma 7. The operations cov : R[A,B] Ñ R[AˆB, 1] and rel : R[AˆB, 1] Ñ
R[A,B] are monotonic and inverse to each other, i.e., we have rel(cov(R)) “ R
and cov(rel(v)) “ v for all R : A Ñ B and v : A ˆ B Ñ 1.

We now define two relations swapAB : A ˆ B Ñ B ˆ A, and compABC :
(AˆB)ˆ (BˆC) Ñ AˆC that we will use for internalization of the operations
on relations. These relations are defined by

swapAB :“ ρ � π,

compABC :“ (I(AˆB)ˆ(BˆC) [ π; ρ;π�; ρ�); (π b ρ).
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The next lemma shows how the usual operations on relations can be per-
formed directly on the corresponding covectors. A proof of this lemma can be
found in [14].

Lemma 8. Let be Q,R : A Ñ B, and S : B Ñ C. Then we have:

1. cov(QÓ) “ cov(Q)Ó,
2. cov(QÒ) “ cov(Q)Ò,
3. cov(Q \ R) “ cov(Q) \ cov(R),
4. cov(Q [ R) “ cov(Q) [ cov(R),
5. cov(Q�) “ swap; cov(Q),
6. cov(R;S) “ comp�; (cov(R) � cov(S)).

In addition, we obtain the following.

Corollary 1. Let be u, v : A ˆ B Ñ 1, and w : B ˆ C Ñ 1. Then we have:

1. rel(u \ v) “ rel(u) \ rel(v),
2. rel(u [ v) “ rel(u) [ rel(v),
3. rel(swap;u) “ rel(u)�,
4. rel(comp�; (u � w)) “ rel(u); rel(w).

The previous corollary is an immediate consequence of Lemma 7 and 8. If we
now combine covectorization with the relational power, then we get the following
properties. Please note that if Q : A Ñ B, then Λ(cov(Q)) : A Ñ B Ñ L so that
we can now modify the degree of membership by simply composing this relation
with a map starting in L.

Lemma 9. Let be Q,R : A Ñ B, and S : B Ñ C. Then we have:

1. Λ(cov(QÓ)) “ Λ(cov(Q)); down,
2. Λ(cov(QÒ)) “ Λ(cov(Q)); up,
3. Λ(cov(Q \ R)) “ (Λ(cov(Q)) � Λ(cov(Q)));J2,
4. Λ(cov(Q [ R)) “ (Λ(cov(Q)) � Λ(cov(Q)));M2,
5. Λ(cov(Q�)) “ swap;Λ(cov(Q)),
6. Λ(cov(R;S)) “ Λ(comp�; (Λ(cov(R)) b Λ(cov(S)));M2);J.

Proof. 1. We immediately compute

Λ(cov(QÓ)) “ Λ(cov(Q)Ó) Lemma 8(1)

“ Λ((Λ(cov(Q)); ε�)
Ó
) Lemma 4(2)

“ Λ(Λ(cov(Q)); ε�Ó
) Lemma 2(5)

“ Λ(cov(Q));Λ(ε�Ó
) Lemma 4(3)

“ Λ(cov(Q)); down.
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2. Similar to (1) we obtain

Λ(cov(QÒ)) “ Λ(cov(Q)Ò) Lemma 8(2)

“ Λ((Λ(cov(Q)); ε�)
Ò
) Lemma 4(2)

“ Λ(Λ(cov(Q)); ε�Ò
) Λ(cov(Q)) crisp

“ Λ(cov(Q));Λ(ε�Ò
) Lemma 4(3)

“ Λ(cov(Q)); up.

3. Again we immediately have

Λ(cov(Q \ R))
“ Λ(cov(Q) \ cov(R)) Lemma 8(3)

“ Λ(Λ(cov(Q)); ε� \ Λ(cov(R)); ε�) Lemma 4(2)

“ Λ((Λ(cov(Q)) \ Λ(cov(R))); ε�)
“ Λ(((Λ(cov(Q)) � Λ(cov(Q)));π

\ (Λ(cov(Q)) � Λ(cov(Q))); ρ); ε�) Lemma 3(2)

“ Λ((Λ(cov(Q)) � Λ(cov(Q))); (π \ ρ); ε�)

“ (Λ(cov(Q)) � Λ(cov(Q)));Λ((π \ ρ); ε�) Lemma 4(3)
“ (Λ(cov(Q)) � Λ(cov(Q)));J2.

4. Similar to (3) we have

Λ(cov(Q [ R))
“ Λ(cov(Q) [ cov(R)) Lemma 8(4)

“ Λ(Λ(cov(Q)); ε� [ Λ(cov(R)); ε�) Lemma 4(2)

“ Λ((Λ(cov(Q)) � Λ(cov(Q))); (ε�
� ε�)) Lemma 3(4)

“ (Λ(cov(Q)) � Λ(cov(Q)));Λ(ε�
� ε�) Lemma 4(3)

“ (Λ(cov(Q)) � Λ(cov(Q)));M2.

5. We immediately compute

Λ(cov(Q�)) “ Λ(swap; cov(Q)) Lemma 8(5)
“ swap;Λ(cov(Q)). Lemma 4(3)

6. From the calculation

Λ(cov(R;S))

“ Λ(comp�; (cov(R) � cov(S))) Lemma 8(6)

“ Λ(comp�;Λ(cov(R) � cov(S)); ε�) Lemma 4(2)

“ Λ(Λ(comp�;Λ(cov(R) � cov(S))); ε�; ε�) Lemma 4(2)
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“ Λ(comp�;Λ(cov(R) � cov(S)));Λ(ε�; ε�) Lemma 4(3)

“ Λ(comp�;Λ(cov(R) � cov(S)));J
“ Λ(comp�;Λ(Λ(cov(R)); ε�

� Λ(cov(S)); ε�));J Lemma 4(2)

“ Λ(comp�;Λ((Λ(cov(R)) b Λ(cov(S))); (ε�
� ε�)));J Lemma 3(4)

“ Λ(comp�; (Λ(cov(R)) b Λ(cov(S)));Λ(ε�
� ε�));J Lemma 4(3)

“ Λ(comp�; (Λ(cov(R)) b Λ(cov(S)));M2);J
we obtain the assertion. [\

5 Change of Base

In this section we want to develop a mechanism for changing the base of L-
fuzzy relations in the abstract setting of arrow categories. Therefore, we start
with two arrow categories A1 and A2 each with a unit, relational products, and
relational powers over the Heyting algebras L1 and L2, respectively. A change of
base now is an appropriate operation that maps relations from A1 to A2 based
on some map between L1 and L2. However, since a change of base is supposed
to exchange membership values only and keep the structural characteristics (the
matrix structure) of a relation the same, we normally would require that AÓ

1 and
AÓ

2 are equal, i.e., are the same Dedekind category. However, we will generalize
this slightly by requiring that those two Dedekind categories are isomorphic
with the same objects, i.e., we will require that there are functors H : A1 Ñ A2

and H−1 : A2 Ñ A1 that are the identity on objects, preserve all operations
and constants of AÓ

1 resp. AÓ
2, and are inverse to each other. Please note that

this includes the requirement that the unit and all products are the same in
both categories, and that H and H−1 map projections to projections. On the
other hand, these functors will not preserve relational powers since, even though
the corresponding objects are available in both categories, the relational power
is a not construction in AÓ

1 resp. AÓ
2 due to the fact that ε is not crisp. For

example, for a given object A, A1 has the relational power LA
1 with the relation

ε1 : A Ñ LA
1 . The object LA

1 is also an object of A2 since all four categories
A1, A2, AÓ

1, and AÓ
2 have the same objects. But this object is not a relational

power in A2 (unless the two categories are already the same). The relational
power of A in A2 is the object LA

2 together with ε2 : A Ñ LA
2 . Furthermore,

H is not defined for ε1 since the relation is not crisp (unless L1 is trivial). The
main reason for the generalization outlined above is that we would like to make
explicit in the relational expression of this section where we switch from A1 to
A2 and, hence, which operation belongs to which category.

We now start with a crisp map f : L1 Ñ L2 in A1. Please note that H(f) is
morphism in A2 so that we could, alternatively, start with a crisp map between
L1 and L2 in A2. The we define

F (Q) :“ rel(H(Λ1(cov(Q)); f); ε�
2 )
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for every Q : A Ñ B in A1. Please note that F (Q) : A Ñ B in A2, and that
we use the indices 1 and 2 indicating in which category the relation is defined
if desired. The definition of F is visualized in the Fig. 1 where solid arrows are
crisp relations and R “ H(Λ1(cov(Q)); f); ε2�.

Fig. 1. Visualization of the definition of F .

Without any further assumption on f we immediately obtain that F preserves
the converse operation.

Theorem 1. F preserves converse, i.e., F (Q�) “ F (Q)� for all relations Q :
A Ñ B.

Proof. We have

F (Q�) “ rel(H(Λ1(cov(Q�)); f); ε�
2 )

“ rel(H(swap1;Λ1(cov(Q)); f); ε�
2 ) Lemma 9(5)

“ rel(swap2;H(Λ1(cov(Q)); f); ε�
2 ) Properties of H

“ rel(H(Λ1(cov(Q)); f); ε�
2 )

�
Corollary 1(3)

“ F (Q)�
,

i.e., the assertion. [\
In the remainder of this section we would like to investigate under which

assumption on f we obtain nice properties of the change of base F . As a first
assumption on f we would like to consider that f maps the smallest and greatest
element of L1 to the ones of L2. We choose the following two conditions postu-
lating that f maps the fixed points of down1 to the fixed points of down2 and the
greatest element of L1 uniquely to the greatest element of L2. Please note that
we have to formulate this as a condition involving H and the two categories, of
course.
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P1: H((IL1 [ down1); f) “ H(f); (IL2 [ down2),
P2a: H(one1; f) “ one2,
P2b: one2;H(f�) “ H(one1).

Condition P2a requires that one1 is mapped to one2. This condition already
implies the inclusion � of P2b. The opposite inclusion adds the requirement
that there is no other element mapped to one2. As a first lemma we obtain the
following.

Lemma 10. Suppose c : A Ñ 1 in A1 is crisp. Then we have H(Λ1(c); f) “
Λ2(H(c)).

Proof. First of all, we have

H(c)�;H(Λ1(c); f) “ H(c�;Λ1(c); f) Properties of H

Ď H((c�; syQ(c�, ε1))
Ó
; f) Lemma 2(4)

Ď H(εÓ1; f) Lemma 1(3)
“ H(one1; f) see Sect. 3
“ one2 P2a

“ εÓ2, see Sect. 3

H(Λ1(c); f); ε�
2 “ H(Λ1(c); (IL1 [ down1); f); ε�

2

“ H(Λ1(c));H((IL1 [ down1); f); ε�
2 Properties of H

“ H(Λ1(c));H(f); (IL2 [ down2); ε
�
2 P1

“ H(Λ1(c));H(f); ε�Ó
2

“ H(Λ1(c));H(f); one�
2 see Sect. 3

“ H(Λ1(c));H(one�
1 ) P2b

“ H(Λ1(c); one�
1 ) Properties of H

“ H(Λ1(c); ε�Ó
1) see Sect. 3

“ H((Λ1(c); ε
�
1 )

Ó
) Lemma 2(5)

“ H(cÓ) Lemma 4(2)
“ H(c) c crisp

so that H(Λ1(c); f) Ď syQ(H(c)�
, ε2) follows. This immediately implies

H(Λ1(c); f) “ H(Λ1(c); f)Ó Ď syQ(H(c)�
, ε2)

Ó “ Λ2(H(c)). This inclusion is
an equality because both sides are maps. [\

Now we are ready to verify our first property of the change of base.

Theorem 2. If f satisfies P1, P2a and P2b, then F extends H, i.e., F (Q) “
H(Q) for all crisp relations Q : A Ñ B.
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Proof. First of all, notice that Q is crisp iff cov(Q) is crisp. Then we compute

F (Q) “ rel(H(Λ1(cov(Q)); f); ε�
2 )

“ rel(Λ2(H(cov(Q))); ε�
2 ) Lemma 10

“ rel(Λ2(cov(H(Q))); ε�
2 ) Properties of H

“ rel(cov(H(Q))) Lemma 4(2)
“ H(Q), Lemma 7

showing that F extends H. [\
Next we would like to show that F preserves joins if f does this internally with

respect to L1, L2 and the corresponding join relations. Therefore, we consider
the condition

P3: H(J1
2 ; f) “ H(f b f);J2

2 .

If H is the identity, then P3 is just the regular equation requiring preservation of
binary joins. Please note again that we use 1 and 2 to indicate in which category
the binary join relations are defined.

Theorem 3. If f satisfies P3, then F preserves binary joins, i.e., F (Q\R) “
F (Q) \ F (R) for all relations Q,R : A Ñ B.

Proof. We obtain

F (Q \ R)

“ rel(H(Λ1(cov(Q \ R)); f); ε�
2 )

“ rel(H((Λ1(cov(Q)) � Λ1(cov(R)));J1
2 ; f); ε�

2 ) Lemma 9(3)

“ rel(H((Λ1(cov(Q)) � Λ1(cov(R))); (f b f));J2
2 ; ε�

2 ) P3

“ rel(H((Λ1(cov(Q)); f � Λ1(cov(R)); f));J2
2 ; ε�

2 ) Lemma 3(4)

“ rel(H((Λ1(cov(Q)); f � Λ2(cov(R)); f)); (π \ ρ); ε�
2 ) Lemma 4(2)

“ rel(H((Λ1(cov(Q)); f) � H(Λ1(cov(R)); f)); (π \ ρ); ε�
2 ) Properties of H

“ rel(H(Λ1(cov(Q)); f); ε�
2 \ H(Λ1(cov(R)); f); ε�

2 ) Lemma 3(2)

“ rel(H(Λ1(cov(Q)); f); ε�
2 ) \ rel(H(Λ1(cov(R)); f); ε�

2 ) Corollary 1(1)
“ F (Q) \ F (R).

This completes the proof. [\
We obtain a similar result if we exchange joins with meets. Due to lack of

space we only formulate the results.

P4: H(M1
2; f) “ H(f b f);M2

2.

Similar to P3 the condition P4 requires that f preserves binary meets.
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Theorem 4. If f satisfies P4, then F preserves binary meets, i.e., F (Q[R) “
F (Q) [ F (R) for all relations Q,R : A Ñ B.

Last but not least, we are interested in F preserving composition. Therefore,
we consider

P5: H(Λ1(ε
�
1

Ó
; ε�

1 ); f) “ Λ2(H(ε�
1

Ó
; f));J2.

This property needs some explanation. Intuitively, P5 requires that joins of sets
of L1 elements are preserved. This needs to be formulated in a context where all
sets are always L1 (resp. L2) fuzzy subsets. The relations on both sides of the
equation are crisp and relate an L1-fuzzy subset M of L1 with an element of L2.
On the right hand side, the relation Λ1(ε

�
1

Ó
; ε�

1 ) is similar to J1 except that for
M it computes the join in L1 of all elements from M Ó (instead of M), i.e., of all
elements from L1 included in M with degree 1. That result is mapped by f . On
the left hand side, we map the elements from M Ó by f , and then compute their
join in L2.

Theorem 5. If f satisfies P4 and P5, then F preserves composition, i.e.,
F (R;S) “ F (R);F (S) for all relations R : A Ñ B and S : B Ñ C.

Proof. First of all, we obtain for a crisp relation Q : D Ñ L1

Λ1(Q);J1 “ Λ1(Λ1(Q); ε�
1 ; ε�

1 ) Lemma 4(3)

“ Λ1(Q; ε�
1 ) Lemma 4(2)

“ Λ1(QÓ; ε�
1 ) crisp

“ Λ1((Λ1(Q); ε�
1 )

Ó
; ε�

1 ) Lemma 4(2)

“ Λ1(Λ1(Q); ε�
1

Ó
; ε�

1 ) Lemma 2(5)

“ Λ1(Q);Λ1(ε
�
1

Ó
; ε�

1 ). Lemma 4(3)

We use the abbreviations P “ comp�; (Λ1(cov(R)) b Λ1(cov(S))) and Q “
P ;M1

2. Notice that P and Q are both crisp. First of all, we have

H(P ; (f b f)); (ε�
2 � ε�

2 )

“ H(comp�; (Λ1(cov(R)) b Λ1(cov(S))); (f b f)); (ε�
2 � ε�

2 )

“ H(comp�; (Λ1(cov(R)); f b Λ1(cov(S)); f)); (ε�
2 � ε�

2 ) Lemma 3(4)

“ comp�; (H(Λ1(cov(R)); f) b H(Λ1(cov(S)); f)); (ε�
2 � ε�

2 ) Properties of H

“ comp�; (H(Λ1(cov(R)); f); ε�
2 � H(Λ1(cov(S)); f); ε�

2 ). Lemma 3(4)

Combining the results so far we obtain

F (R;S) “ rel(H(Λ1(cov(R;S)); f); ε�
2 )

“ rel(H(Λ1(Q);J1; f); ε�
2 ) Lemma 9(6)
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“ rel(H(Λ1(Q);Λ1(ε
�
1

Ó
; ε�

1 ); f); ε�
2 ) see above

“ rel(H(Λ1(Q));H(Λ1(ε
�
1

Ó
; f)); ε�

2 ) Properties of H

“ rel(H(Λ1(Q));Λ2(H(ε�
1

Ó
; f));J2; ε�

2 ) P5

“ rel(H(Λ1(Q));Λ2(H(ε�
1

Ó
; f)); ε�

2 ; ε�
2 ) Lemma 4(2)

“ rel(H(Λ1(Q));H(ε�
1

Ó
; f); ε�

2 ) Lemma 4(2)

“ rel(H(Λ1(Q); ε�
1

Ó
; f); ε�

2 ) Properties of H

“ rel(H((Λ1(Q); ε�
1 )

Ó
; f); ε�

2 ) Lemma 2(5)

“ rel(H(QÓ; f); ε�
2 ) Lemma 4(2)

“ rel(H(Q; f); ε�
2 ) Q crisp

“ rel(H(P ;M1
2; f); ε�

2 )

“ rel(H(P );H(M1
2; f); ε�

2 ) Properties of H

“ rel(H(P );H(f b f);M2
2; ε

�
2 ) P4

“ rel(H(P ; (f b f));M2
2; ε

�
2 ) Properties of H

“ rel(H(P ; (f b f)); (ε�
2 � ε�

2 )) Lemma 4(2)

“ rel(comp�; (H(Λ1(cov(R)); f); ε�
2

� H(Λ1(cov(S)); f); ε�
2 )) see above

“ rel(H(Λ1(cov(R)); f); ε�
2 ); rel(H(Λ1(cov(S)); f); ε�

2 ) Corollary 1(4)
“ F (R);F (S),

i.e., the assertion. [\
Summarizing the results of this section we obtain the following corollary.

Corollary 2. If f satisfies P1-P5, then F extends H and preserves converse,
binary joins and meets, and composition.

Please notice that in the situation of the previous corollary F also preserves
all constants because F extends H and all constants are crisp.
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Abstract. Semantics for nondeterministic probabilistic sequential pro-
grams has been well studied in the past decades. In a variety of semantic
models, how nondeterministic choice interacts with probabilistic choice
is the most significant difference. In He, Morgan, and McIver’s relational
model, probabilistic choice refines nondeterministic choice. This model
is general because of its predicative-style semantics in Hoare and He’s
Unifying Theories of Programming, and suitable for automated reason-
ing because of its algebraic feature. Previously, we gave probabilistic
semantics to the RoboChart notation based on this model, and also for-
malised the proof that the semantic embedding is a homomorphism, and
revealed interesting details. In this paper, we present our mechanisation
of the proof in Isabelle/UTP enabling automated reasoning for proba-
bilistic sequential programs including a subset of the RoboChart lan-
guage. With mechanisation, we even reveal more interesting questions,
hidden in the original model. We demonstrate several examples, includ-
ing an example to illustrate the interaction between nondeterministic
choice and probabilistic choice, and a RoboChart model for randomisa-
tion based on binary probabilistic choice.

1 Introduction

In our previous work [1], we give a probabilistic semantics to RoboChart [2],
a domain-specific language for robotics and distinctive in its support for auto-
mated verification, based on He, Morgan and McIver’s relational model [3]. The
semantics of the model is the theory of designs in Hoare and He’s Unifying The-
ories of Programming (UTP) [4]. The model embeds standard designs in proba-
bilistic designs through the weakest completion solution [3] which is defined on
the weakest prespecification [5] and a forgetful function [1,3]. In this paper, we
present our mechanisation of the probabilistic semantics in Isabelle/UTP [6], an
implementation of UTP in the Isabelle/HOL theorem prover [7].

The main contributions of this work include (1) the formalisation of the proof
of the homomorphism for the embedding of sequential composition, which is not
addressed in our previous work [1]; and (2) the theory of probabilistic designs in
Isabelle/UTP for automated reasoning of probabilistic nondeterministic sequen-
tial programs. All definitions and theorems in this paper are mechanised and
accompanying icons ( ) link to corresponding repository artifacts.
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 465–482, 2021.
https://doi.org/10.1007/978-3-030-88701-8_28
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The remainder of this paper is organised as follows. In Sect. 2, we present an
implementation of a randomisation algorithm in RoboChart, based on a binary
probabilistic choice. Section 3 briefly describes the syntax of pGCL [8] (that
is used in our mechanisation) with a program for the algorithm (with recur-
sion), and the relational semantics in UTP. In Sect. 4, we describe how to repre-
sent probability distributions, and define weakest prespecification and a forgetful
function in Isabelle/UTP. We show the embedding is a homomorphism on the
structure of standard programs (Sect. 5), probabilistic choice (Sect. 6), nondeter-
ministic choice (Sect. 7), and sequential composition (Sect. 8). We demonstrate
the automated reasoning with three examples in Sect. 9, review related work in
Sect. 10, and conclude in Sect. 11.

2 RoboChart

We consider a randomisation algorithm that aims to choose an integer number
from a set of integers with equal probability. Let the set be [0..N ), that is, integers
from 0 to (N − 1). We implement the algorithm in an operation ChooseUniform
in RoboChart, as shown in Fig. 1. The core of RoboChart is a subset of UML
state machines that allows modelling of robotic controllers. We use this model
as an example for automated reasoning about probabilistic programs.

Fig. 1. A RoboChart model: uniform distribution algorithm.

The operation has one parameter N , denoting the size of the set, and has
access (write and read) to two variables: c of type boolean and i of type nat,
through the requested interface ChooseUniformInf. The operation is defined by
a finite state machine having several nodes: one initial junction ( ), a state
TestLoop, a probabilistic junction ( ), and a final state ( ). Transitions connect
nodes and are optionally labelled with a guard (a boolean expression e inside
brackets, [e]), a probability value (an expression e inside braces after p, p{e}),
and an action (a statement act after /, /act). This state machine, in general,
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implements the algorithm in three stages: (1) initialisation by the action of the
transition from to TestLoop; (2) iteration from TestLoop to , then back
to TestLoop; and (3) termination by the transition from TestLoop to . The
iteration is guarded by the condition if i has not reached (N – 1) and c is true.
The termination is guarded by the negation of the condition. In each iteration,
at , the state machine has probability (1/(N – i)) to update c to false (by the
right transition) and so terminate next, and probability (1 – 1/(N-i)) to increase
i (by the left transition) and so another iteration or terminate next depending on
the condition (i < (N – 1)). An accompanying tool for RoboChart ensures that
the probabilities on outgoing transitions of a probabilistic junction add up to 1
through validation of well-formedness conditions of RoboChart models. If they
do not add up to 1, then an error is displayed.

3 Probabilistic Programs

Syntax. The abstract syntax of a nondeterministic probabilistic sequential pro-
gramming language is given below.

P ::= ⊥ | II | x := e | P � b � Q | P � Q | P ⊕r Q | P ; Q | μX • P(X )

This probabilistic language introduces in the standard language a probabilistic
choice operator P ⊕r Q which chooses between P and Q with probability r and
(1− r) respectively. The syntax in the standard language includes abort ⊥, skip
II, conditional � �, and other common constructors.

The uniform distribution algorithm in Fig. 1 is implemented as such a prob-
abilistic program shown in Definition 3.1.

Definition 3.1 (The uniform distribution program).

ChooseUniform(N )

� i := 0 ; c := true ; μX •
((

(c := false) ⊕1/(N−i) (i := i + 1)
)
; X

� (i < (N − 1) ∧ c) � II

)

Semantics. The semantics of probabilistic programs is given in terms of proba-
bilistic designs [1,3], being lifted from standard designs in UTP [4,9] via weakest
completion semantics [3]. UTP employs Hehner’s predicative style [10] to treat
programs as predicates. It uses the alphabetised relational calculus to encode
programs as relations between initial variable observations (x ) and subsequent
observations (x ′). Relations are alphabetised predicates of which each is accom-
panied by its alphabet (a set of typed variable declarations). The alphabet of
a predicate P is divided into the input alphabet (inαP = {x , y , ...}) and the
output alphabet (outαP = {x ′, y ′, ...}).

UTP designs [4] are a subset of alphabetised predicates and denoted as P �
R: precondition-postcondition pairs. Designs have an additional variable ok in
their alphabets to record the termination of programs. We use S to denote
the state space of a program, containing only user variables and excluding ok .
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An alphabet induces a state space. Probabilistic designs are defined as p(s) �
R(s, prob′), where s ∈ S and prob′ ∈ PROB (probabilistic state space). Here,
we use p instead of P , to denote that the precondition of a probabilistic design
is a condition (outα p = ∅). PROB represents a set of (discrete) probability
distributions over S : PROB � S → [0, 1]. We are using discrete distributions
because the only way to introduce them in the probabilistic programs is through
the binary probabilistic choice operator. For each distribution prob in PROB ,
its probabilities sum to 1:

∑
s∈S prob(s) = 1.

Both standard and probabilistic designs, which are used to give seman-
tics to probabilistic programs, have their preconditions being conditions. In
Isabelle/UTP, such designs are named normal designs [11] and denoted by
p �n R.

Alphabetised predicates are presented in Isabelle/UTP through alphabetised
expressions [V ,S ]uexpr, which are parametric over the value type V and the
observation space S , and defined as total functions S → V . Alphabetised predi-
cates are boolean expressions: [S ]upred � [bool,S ]uexpr. Relations are predicates
over a product space: [S1,S2]urel � [S1 × S2]upred, where S1 and S2 are the
initial and final observation space. Designs are relations with an additional ok
variable: [S1,S2]rel des � [[S1]des, [S2]des]urel, where des introduces the ok vari-
able into alphabets. If S1 is the same as S2, we use [S ]hrel des for [S ,S ]rel des.

4 Probabilistic Designs in Isabelle/UTP

We use the weakest completion solution [3] to embed standard designs D into
probabilistic designs through an operator K, where K(D) � D/ρ, the weakest
prespecification of ρ through D . The non-homogeneous design ρ (with alpha-
bet {ok , prob, ok ′, s ′}) is a forgetful function to retract states from probabilistic
states and defined as ρ � (true � prob(s ′) > 0): the probability of arriving at
state s ′ is prob(s ′); this is replaced by the possibility (prob(s ′) > 0) of arriving at
that state. So this function forgets the probability prob in its initial observation
space and retracts state s ′ in its final observation space. The embedding (K(D))
is the weakest probabilistic design to make K(D); ρ a refinement of D .

We present the representation of probabilistic state spaces in Isabelle/UTP
in Sect. 4.1. Then we describe our implementation of weakest prespecification
and ρ in Isabelle/UTP in Sect. 4.2.

4.1 Representation of Probabilistic State Spaces

Isabelle/UTP provides a semantic framework for verification based on UTP,
which is implemented in Isabelle/HOL, a generic proof system.

We use probability mass functions (PMFs) [12] in Isabelle/HOL to represent
discrete probabilistic distributions. The type of PMFs ([α]pmf , parametric over
α) is a set of probability measure spaces. A measure space is a tuple (Ω,A, μ),
where Ω is a set, A is a σ-algebra on Ω, and μ is a measure function from A to
positive real numbers. A probability measure space is a measure space with its
measure being 1 (μ(Ω) = 1 < ∞), and so finite.
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We declare an observational variable prob : [α]pmf to represent distribu-
tions in probabilistic designs and use an alphabet command [6] to construct
a probabilistic state space, namely [α]prss , a record type parametric over α:
alphabet [α]prss = prob :: [α]pmf ( ). In the definition, prob is a program
variable whose type is [α]pmf . Our probabilistic designs, therefore, are (non-
homogeneous) designs: [S1,S2]rel pdes � [S1, [S2]prss]rel des, with initial obser-
vation space (state space S1) to final observation space (probabilistic state space
[S2]prss over state space S2). They are non-homogeneous because the initial
observation and final observation are over different spaces: state space versus
probabilistic state space. For probabilistic programs defined in this paper, S1
and S2 are the same, and so probabilistic designs are actually homogeneous:
[S ]hrel pdes � [S ,S ]rel pdes ( ). Here, “homogeneous” means the final proba-
bilistic observation space is over the same state space as the initial observation
space. We define [S ]hrel hpdes � [[S ]prss, [S ]prss]rel des for homogeneous designs
whose initial and final observation spaces are over probabilistic distributions.

4.2 Weakest Prespecification and Forgetful Function

Weakest prespecification is the generalisation of weakest precondition from a
condition to a relation.

Definition 4.1. The weakest prespecification of K through Y is defined as:
Y /K � ¬ ((¬ Y ); K−) ( ) where − is a relational converse operator.

We note different notations are used for weakest prespecification in literature:
K\Y in [5,13] and Y /K in [3,4]. Our mechanisation of weakest prespecification
is based on [5] and so uses \, but the mechanisation of probabilistic designs is
based on [3]. We, therefore, use an abbreviation ( ) to relate / to \. The weakest
prespecification satisfies two theorems below.

Theorem 4.2. Y � (P ; K ) ⇔ (Y /K ) � P

This theorem shows that a program P is a refinement of the weakest prespecifica-
tion of K through Y , if and only if a specification Y is implemented by sequential
composition of P and K . The refinement relation S � P in UTP is defined as
P implies S universally (for all alphabets of S and P): S � P � [P ⇒ S ]. For
probabilistic designs, we rename predicates into D � (P ; ρ) ⇔ (D/ ρ) � P ,
which is interpreted as: a probabilistic design P implements the embedding of a
standard design D into probabilistic designs through ρ if and only if the retrac-
tion of P through ρ to a standard design implements D . Another theorem is
related to normal designs which our semantics relies on.

Theorem 4.3. (p �n Q) / (true �n R) = (p �n Q/R)

The weakest prespecification operator of two normal designs, when the precon-
dition of its first design is true, can be moved into their postconditions.

The forgetful function ρ (fp in our mechanisation) is a non-homogeneous
design, which is reflected in our definition below.

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L15
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L34
https://github.com/isabelle-utp/utp-main/blob/master/calculi/utp_wprespec.thy#L7
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L51
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L51
https://github.com/isabelle-utp/utp-main/blob/master/calculi/utp_wprespec.thy#L13
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L65
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Definition 4.4. The forgetful function fp : [[S ]prss,S ]rel des is a normal
design: fp � (true �n prob(v′) > 0) where v denotes all variables in the input
alphabet of a program except the ok variable, and v′ are similar but in the output
alphabet. We also say v or v′ represent a state in state space.

From this definition, we know fp is a relation between the initial probabilistic
observation space and the final standard observation space.

5 Embedding Standard Programs

A design D is embedded into probabilistic designs through K defined below.

Definition 5.1 (Embedding). K(D) � D/ fp

Here, embedding is the weakest prespecification of fp through D . So K(D) is the
weakest probabilistic design related to D , and can be undone by retraction:

Theorem 5.2. Let D be a normal design. K(D); fp = D

In other words, embedding a standard design into a probabilistic design, and
then retracting returns the original design. Embedding is also monotonic:

Theorem 5.3. P � Q ⇒ K(P) � K(Q)

We show that embedded standard designs are probabilistic designs:

Theorem 5.4. We fix the predicate R : [S1,S2]urel, then

K (p �n R) = (p �n (Σa i ∈ S2 | (Rwp (v = i)) • pmf (prob′, i)) = 1)

Hence, embedding a standard normal design (LHS) is simplified to a normal
design (RHS) with this theorem. Here, the form (Σax ∈ X • exp(x )) is a sum-
mation of the expression exp for all elements in set X . The symbol Σa denotes
the summation over a possible infinite set. In the predicate (Rwp (v = i)), wp is
the weakest precondition operator [14]. The predicate characterises the weakest
precondition for R to be guaranteed to achieve (v = i). We recall that v denotes
all variables in state space, and so in other words, this predicate is simply a con-
dition characterising when a given state i is a possible final state for R, which
is equal to ∃ s ∈ S1 • R(s, i).

In the expression part of the summation, pmf (prob′, i), the function pmf
returns the probability measure of the single state i in the distribution prob′.
We use coercion in Isabelle/HOL to simplify its syntax further to prob′(i). We
also use prob′(X ) to denote (Σax ∈ X • prob′(i)), the probability measure of a
set of states. We use the simpler syntax in the rest of the paper.

From the theorem, we know that the precondition p is unchanged after
embedding. The postcondition is a condition such that the probabilities of all
the final states of R sum to 1 and so prob′ is a distribution.

The embedding of abort, skip, assignment, and conditional is given in the
theorem below.

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L44
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L59
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L22
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L62
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L84
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Theorem 5.5.

K(⊥D) = ⊥D (⊥D � false � false) (1)

K(x :=D e) = (true �n prob′(v[e/x ]) = 1) (x :=D e � true � v′ = v[e/x ]) (2)

K(IID) = (true �n prob′(v) = 1) (IID � true � v′ = v) (3)
K(P � b � Q) = K(P) � b � K(Q) (4)

Embedding the design abort (1, defined on the right) is still itself. Embedding
an assignment x :=D e (2, defined on the right) is a probabilistic design with
precondition true and postcondition establishing that the probability of the
state with e substituted for x (the values of other variables are unchanged) is
equal to 1, that is, embedding an assignment results in a point distribution: from
each initial state v, prob′ in the final state has probability 1 for the state v[e/x ].
Based on the fact that prob′ is a distribution, this also implies the probabilities
for other states in prob′ are 0. A design skip is a special form of assignment and
so is its embedding (3). K distributes through conditional, shown in (4).

6 Distributions Combination and Probabilistic Choice

In this section, we introduce an operator to combine probability distributions,
and then use this operator to construct probabilistic choice.

6.1 Distribution Combinations

Definition 6.1 (Distributions combination). We fix P : [S ]pmf , Q :
[S ]pmf , and r : R, and define a distribution plus operator +r to merge two dis-
tributions P and Q based on the weight r :

P +r Q � join pmf (pmf of list [(P , r) , (Q , 1 − r)])

This combination is essentially a join from a distribution of type [[S ]pmf ]pmf
constructed from a list with two elements using pmf of list : the first element
is a pair from P to weight r and the second one is a pair from Q to weight
1− r . This join flattens two distributions based on their measure functions. The
distribution combination satisfies the theorem below.

Theorem 6.2. We fix i : S and assume r ∈ [0..1], then

(P +r Q) i = P(i) ∗ r +Q(i) ∗ (1 − r)

The probability of a particular state i in the combined distribution is a weighted
sum of P and Q based on their weights r and 1 − r .

This combination operator also satisfies several theorems below.

Theorem 6.3.

P +r Q = Q +(1−r) P (quasi-commutative)
P +r P = P (idempotent)

P +0 Q = Q (zero)
P +1 Q = P (unit)

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L87
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L122
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L130
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L191
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Because +r is idempotent, we know that the set of discrete distributions repre-
sented by [S ]pmf is convex-closed [15]: the combination of a distribution with
itself with any weight is still in the set. The operator is also quasi-associative:

Theorem 6.4 (Quasi-associativity). We fix r1, r2,w1,w2 : R, and assume
w1 ∈ [0..1], w2 ∈ [0..1], (1−w1) ∗ (1−w2) = (1− r2), and w1 = r1 ∗ r2. Then

P +w1 (Q +w2 R) = (P +r1 Q)+r2 R

This will be used to prove associativity of probabilistic choice in Theorem 6.8.

6.2 Probabilistic Choice

As shown in [1], we use UTP’s parallel-by-merge scheme [4, Chap. 7], P ‖M Q , to
define probabilistic choice. The two parallel programs P and Q share the same
initial observation space v, then establish their own final observation spaces
individually as 0.v′ and 1.v′. A merge predicate M then describes how v, 0.v′

and 1.v′ are merged. A conjunction of three separate programs is sequentially
composed with M . The three programs include the two parallel programs P and
Q , and one program to copy the initial observation space. The final observation
spaces from P , Q , and the copy program, therefore, are referred to as 0.v, 1.v,
and v in M . We start with the definition of a distribution merge operator:

Definition 6.5. PM (r) � (prob′ = 0.prob+r 1.prob)

The merge predicate establishes that the final distribution is the combination
of the distribution (0.prob) from the first program and the distribution (1.prob)
from the second program with weight r . Probabilistic choice is defined below.

Definition 6.6 (Probabilistic choice). We fix P ,Q : [S ]hrel pdes, r : R.

P ⊕r Q �
(
P ‖DPM(r) Q

)
� r ∈ (0..1) � (Q � r = 0 � (P � r = 1 � �D))

The probabilistic choice is defined as a conditional:

– if r is not in the open interval (0..1), the choice is defined as follows:
• if r is equal to 0, the choice is Q ;
• if r is equal to 1, the choice is P ;
• if r is not 0 and 1, the choice is the design miracle �D : a miraculous or

infeasible specification, defined as (true � false).
– if r is in the open interval (0..1), the choice is between P and Q by parallel-

by-merge: a design parallel composition (‖DPM(r) � ‖DM(PM(r))) using the
merge predicate PM (r) to merge prob and another design merge predicate
DM to merge ok .

We note that the definition of probabilistic choice is not simply a parallel com-
position between P and Q , but a conditional to characterise two special cases:

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L213
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L292
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L314
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r = 0 and r = 1. This is because of the definition of parallel composition. Let
P = (p �n P) and Q = (q �n Q), then

P ‖DPM(r) Q =
(
(p ∨ (q ∧ ¬ Pre(Q))) ∧
(q ∨ (p ∧ ¬ Pre(P)))

)
�n

(
P ‖PM(r) Q

)

Here Pre(P) is the predicate characterising the domain of a UTP relation P.
We note that r is not in the precondition. The parallel composition, therefore,
cannot be simplified to P or Q for the special cases as its precondition has to take
the other operand Q or P into account. Zero and unit, however, are important
algebraic properties for probabilistic choice, and so we define it as conditional.
The probabilistic choice satisfies the theorems below.

Theorem 6.7 (Quasi-commutative, zero, unit). We assume r ∈ [0..1].

P ⊕r Q = Q ⊕(1−r) P P ⊕0 Q = Q P ⊕1 Q = P

Theorem 6.8 (Quasi-associativity). We fix r1, r2,w1,w2 : R, and assume
w1,w2 ∈ [0..1], (1−w1) ∗ (1−w2) = (1− r2), w1 = r1 ∗ r2, and that P , Q , and R
are probabilistic designs. Then P ⊕w1 (Q ⊕w2 R) = (P ⊕r1 Q)⊕r2 R

Probabilistic choice, therefore, is quasi-associative, with the weights adjusted as
specified. This is basically the extension of quasi-associativity (Theorem 6.4) of
the distribution combination +r .

Probabilistic choice is also left-distributive and right-distributive over non-
deterministic choice and conditional.

Theorem 6.9. We assume r ∈ [0..1], P , Q , and R are normal designs.

P ⊕r (Q � R) = (P ⊕r Q) � (P ⊕r R) (distl-nondeterminism)
(Q � R) ⊕r P = (Q ⊕r P) � (R ⊕r P) (distr-nondeterminism)
P ⊕r (Q � b � R) = (P ⊕r Q) � b � (P ⊕r R) (distl-conditional)
(Q � b � R) ⊕r P = (Q ⊕r P) � b � (R ⊕r P) (distr-conditional)

Even though +r is idempotent (Theorem 6.3), ⊕r is not idempotent in general.
This is due to the parallel-by-merge scheme used in its definition. ‖M is not idem-
potent in general. Consider, for example, P ⊕r P for r ∈ (0..1). The probabilistic
choice is just P ‖DPM(r) P , according to its definition. Based on the definitions of
the parallel-by-merge scheme [4, Chap. 7] and the merge predicate, P(s, 0.prob′),
P(s, 1.prob′), and prob′ = 0.prob′ +r 1.prob′ are established. The parallel com-
position P(s, 0.prob′) ‖DPM(r) P(s, 1.prob′) is equal to P(s, prob′) (and so idem-
potent) only if the probability distributions in the final observation space of P
are convex-closed. If the final observation space of P is a single distribution (so
P is deterministic), then P ⊕r P = P because a singleton set is convex-closed
with respect to +r . If, for example, the final observation space of P contains two
distributions (so P is nondeterministic), then for any 0 < r < 1, P⊕rP �= P . We
note that the set of distributions in the embedding of nondeterministic choice,
as illustrated in Theorem 7.1, is convex-closed.

https://github.com/isabelle-utp/utp-main/blob/master/theories/designs/utp_des_parallel.thy#L49
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L338
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L1659
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L1638
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6.3 Merge Witness Distributions

In [1], we define two projections F and G for decomposition of a probabilistic
program into the probabilistic choice of two subprograms. The functions F and
G map a distribution prob over a set of states S into a distribution 0.prob over
a subset A of S and another distribution 1.prob over a subset B of S separately
with A ∪ B = S . They, therefore, are projections.

This decomposition is useful when implementing a probabilistic program with
multiway probabilistic choice, such as in the Reactive Modules formalism [16],
in this pGCL (with only binary probabilistic choice). This has been illustrated
in [1, Sect. 7]. This decomposition is also useful to provide witnesses for the merge
predicate, and the witnesses are indeed required later to prove Theorem 7.1, an
important distribution theorem for nondeterministic choice, as demonstrated in
its proof in [1, Sect. 8].

We define the projection F below. G shares the same definition (but with
different arguments in its applications).

Definition 6.10. We fix A,B : [S ]set , and p : [S ]pmf .

F (A,B , p) � measure of(
space(p), sets(p), λC • p (C ∩ (A − B)) ∗ ratio(A,B , p) + p (C ∩ A ∩ B)

)
ratio(A,B , p) � (p (B − A) + p (A − B)) /p (A − B)

The result of F is a measure space constructed by measure of from the space of
the probability measure space p (by space), the σ-algebra of p (by sets), and a
measure function (a curried function). In this function, we use A − B to denote
set difference between A and B . Indeed F defines a probability distribution:

Theorem 6.11. We fix P : [S ]pmf and A,B : [S ]set , and assume P(A ∪ B) =
1, P(A − B) > 0, and P(B − A) > 0, then prob space (F (A,B ,P)).

The constructed measure space by F is a probability space (prob space), that
is, its measure sums to 1.

7 Nondeterministic Choice

In predicative programming, including UTP, nondeterministic choice is defined
simply as P � Q � P ∨ Q , and, therefore, P ∨ Q � P . This is reflected in the
semantics of the embedding of nondeterministic choice. We show K distributes
through nondeterministic choice in the theorem below.

Theorem 7.1. We assume P and Q are normal designs.

K (P � Q) =
(�

r ∈ [0..1] • (K (P) ⊕r K (Q))
)

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_pmf_laws.thy#L789
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_pmf_laws.thy#L881
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L503
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This theorem demonstrates that an embedding of the nondeterministic choice
of two standard designs P and Q is just the nondeterministic choice of the
probabilistic choices of the embeddings of P and Q in all possible ways (all
possible weights from 0 to 1 inclusive). For the two special cases 0 and 1 for r ,
according to Theorem 6.7, they are just K (Q) and K (P) respectively.

In relational semantics for probabilistic programs here, nondeterministic
choice is refined by probabilistic choice with any particular weight in [0..1]:

Theorem 7.2. We assume r ∈ [0..1], P and Q are normal designs.

K (P � Q) � K (P) ⊕r K (Q)

So probabilistic choice refines nondeterministic choice, which is the most signif-
icant difference of this relational model from others.

8 Sequential Composition

In our previous work [1], we did not complete formalisation of the proof presented
in [3] that K is a homomorphism for sequential composition. In particular, a
Kleisli lifting operator ↑ [3, Def. 3.11] is defined to lift a probabilistic design
to a design taking (ok , prob) to (ok ′, prob′). A probabilistic design, therefore,
is able to be sequentially composed with this lifted design because sequential
composition requires the output alphabet of the first operand to be equal to the
input alphabet of the second operand (and so two probabilistic designs are not
allowed to be sequentially composed). The lifting operator ↑ is defined below.

Definition 8.1. ↑ P � kleisli lift2 (�preD(P)�<, preD(P) ∧ postD(P))

The operator ↑ has one parameter: a probabilistic design P : [S ]hrel pdes,
and is defined using another auxiliary function kleisli lift2. The first argument
(�preD(P)�<) to that function is the design precondition (preD(P)) of P with
its output alphabet dropped (by � �<), and so the argument is a condition. The
second argument is the postcondition of P .

The kleisli lift2, defined below, has two parameters: q of type [S ]upred,
and R of type [S ]hrel pdes, and characterises a homogeneous design of type
[S ]hrel hpdes, whose initial and final observation spaces are both over proba-
bilistic distributions.

Definition 8.2.

kleisli lift2 (q ,R)

�

⎛
⎜⎜⎜⎝

(
prob

(
[[q ]]p

)
= 1

)
�

∃Q •
⎛
⎝ (∀ ss • prob′(ss) = Σa t • prob(t) ∗ (Q(t))(ss))) ∧(

∀ s •
(¬ (prob(v′) > 0 ∧ v′ = s) ;
(¬ R ; (∀ t • prob(t) = (Q(s))(t)))

))
⎞
⎠

⎞
⎟⎟⎟⎠

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L518
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L450
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L409
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Generally, this definition establishes that if the program starts in every possible
state satisfying q , then it terminates with a distribution from that state which
makes R hold for that state and that distribution.

The precondition of the definition of kleisli lift2 means that the initial obser-
vation space prob is a distribution over all states satisfying the predicate q , where
[[q ]]p denotes extraction of the characteristic set of q .

The postcondition of the definition is an existential quantification over Q , a
function of type S → [S ]pmf . The predicate part of ∃Q is a conjunction of two
predicates. The first predicate establishes that for any state ss, its probability
in the final observation space prob′ is equal to the summation of the products
of the probability of each state t in the initial observation space prob and the
probability of ss in the distribution Q(t) corresponding to t . This predicate
characterises Q . The second predicate establishes that for any state s, if its
probability in the initial distribution prob is larger than 0, then R must be
satisfied with its initial observation state s (the initial observation of R is v,
which is the same as v′ in the precedent predicate where v′ is just s because
of v′ = s) and its final observation distribution prob′ being a distribution Q(s).
This predicate characterises R based on Q .

We now define sequential composition of probabilistic designs.

Definition 8.3 (Sequential composition). P ;p Q � P ; ↑ Q .

K distributes through sequential composition in the theorem below.

Theorem 8.4. We fix P ,Q : [S ]hrel des and assume P and Q are normal
designs, and S is finite. Then K (P ; Q) = K (P) ;p K (Q).

We note that the assumption, S is finite, is necessary to prove this theorem.
This assumption is hidden in the original proof [3, Theorem 3.12] when giving
the witness function f (u, v), where a cardinality # is used.

The ↑ satisfies the theorems below.

Theorem 8.5. We assume P and Q are probabilistic designs.

↑ (K (IID)) = (true �n prob′ = prob) (skip)
P ;p K (IID) = P = K (IID) ;p P (left/right unit)

P � Q ⇒ ↑ P � ↑ Q (monotonic)
(↑ P) is a normal design (normal design)

The lifted probabilistic skip is simply a skip, that is, its initial and final obser-
vation spaces are the same. The probabilistic skip is both a left unit and a right
unit (left/right unit). The operator ↑ is also monotonic. We note the definition
of ↑ is not a normal design (see Definition 8.2), and just a general design �.
We use it to ease type constraints in the definition. The operator ↑, however, is
proved to be a normal design ( ).

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des.thy#L464
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L805
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L611
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/utp_prob_des_laws.thy#L1586
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9 Examples

The first example illustrates the proof of a probabilistic program with sequen-
tial composition, conditional, and probabilistic choice from Hehner’s work [17,
Sect. 6]. We define P1, P2, and P3 used in Theorem 9.1.

P1 �
(K (x :=D 0) ⊕1/3 K (x :=D 1)

)
P2 �

(K (x :=D x + 2) ⊕1/2 K (x :=D x + 3)
)

P3 �
(K (x :=D x + 4) ⊕1/4 K (x :=D x + 5)

)

In P1, x is assigned 0 or 1 with probability 1/3 or 2/3. P2 has the equal prob-
ability to increase x by 2 or 3. P3 increases x by 4 or 5 with probability 1/4 or
3/4. The semantics of the composition of P1, P2, and P3 is shown below.

Theorem 9.1.

P1 ;p (P2 � x = 0 � P3) =(
true �n

(
prob′[2/x ] = 1/6 ∧ prob′[3/x ] = 1/6 ∧
prob′[5/x ] = 1/6 ∧ prob′[6/x ] = 1/2

))

The probabilistic program is equal to a normal design whose precondition is true
and postcondition establishes that in the final observation space, the value of x
is 2, 3, and 5 each with probability 1/6, and 6 with probability 1/2. The result
is the same as that of [17].

The second example originates in [15] to illustrate how probabilistic choice
interacts with nondeterministic choice in the relational semantics. It is also dis-
cussed in [17, Sect. 10] about nondeterminism. We define below P , a nondeter-
ministic choice between x assigned to 0 and 1, and Q , a probabilistic choice
between y assigned to 0 and 1.

P � (K (x :=D 0) � K (x :=D 1)) Q �
(K (y :=D 0) ⊕1/2 K (y :=D 1)

)

We now consider sequential composition of P and Q in either order with the
aim of establishing (x = y). If Q is after P , then

Theorem 9.2.

P ;p Q =
(
true �n

(
(prob′[0, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2)

))

The theorem shows that the probability of establishing (x = y) is 1/2: both
alternatives of the disjunction in the postcondition have the same probability
to establish (x = y). Informally, the nondeterministic choice in P cannot take
advantage of the value of x (because P is executed first), and, therefore, the
probability of establishing (x = y) in (P ; Q) is determined by Q , no matter
which value of x is chosen. If P is after Q , then

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_PPP.thy#L225
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_HKM_ex33.thy#L1266
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Theorem 9.3.

Q ;p P =

⎛
⎜⎜⎝true �n

⎛
⎜⎜⎝

(prob′[0, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[0, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2)

⎞
⎟⎟⎠

⎞
⎟⎟⎠

The theorem demonstrates that the probability of establishing (x = y) can be 0
(the second alternative of the disjunctions in the postcondition), 1/2 (the first
and fourth alternative), and 1 (the third alternative). Informally, the nondeter-
ministic choice in P can now take advantage of the value of x because y has been
probabilistically determined in Q (so the probability of y being 0 or 1 in each
alternative is 1/2). P , therefore, can choose (1) (2) x opposite to the value of y ,
and so the probability of establishing (x = y) is 0; (3) x the same as the value
of y , and so the probability of establishing (x = y) is 1; (4) x always 0, and so
the the probability of establishing (x = y) is 1/2; and (5) x always 1, and so the
the probability of establishing (x = y) is 1/2. The choice between the four cases
is nondeterministic and represented as disjunctions in the theorem.

Hehner [17] describes four varieties of nondeterminism: angelic, demonic,
oblivious, and prescient. For Q ;p P , if P is an angelic choice, the result corre-
sponds to the third alternative; if P is a demonic choice, the result corresponds
to the second alternative; if P is a oblivious choice, the results corresponds to
the first and the fourth alternative. Q ; p P in Theorem 9.3, therefore, is more
abstract and can be refined into angelic, demonic, and oblivious choice. P defined
above is not prescient, and so it does not know the future value of Q in (P ;p Q).
The program, therefore, has probability 1/2 to achieve x = y , shown in Theo-
rem 9.2.

The third example is the algorithm in Fig. 1 and its probabilistic program in
Definition 3.1. First, we find and define an invariant for the recursion.

Definition 9.4 (Invariant).

ChooseUniform inv(N )

�

⎛
⎜⎜⎜⎜⎝true �n

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

c ∧ i < (N − 1) ⇒⎛
⎝

(∀ j < (N − i − 1) •
prob′ (v[j + i , false/i , c]) = 1/(N − i)

)
∧

prob′ (v[N − 1, true/i , c] = 1/(N − i)))

⎞
⎠

⎞
⎟⎟⎠ ∧

(¬ (c ∧ i < (N − 1)) ⇒ prob′(v) = 1)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

The postcondition of the definition is a conjunction: (1) the first conjunct estab-
lishes that if c is true and i is less than (N − 1), the value of i in the final state
space v is a uniform distribution in close interval [i ,N − 1] (each with proba-
bility 1/(N − i)); (2) the second conjunct corresponds to the termination of the
program, the probability of the final state being the same as the initial state v
is 1. ChooseUniform inv(N ) indeed is an invariant for the recursion.

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_HKM_ex33.thy#L1423
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_ex1.thy#L240
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Theorem 9.5 (Invariant). We assume N is larger or equal to 1.

ChooseUniform inv(N ) � (μX • ChooseUniformBody(N ,X ))

Here ChooseUniformBody is an abbreviation for the body of the recursion in
Definition 3.1. Finally, ChooseUniform(N ) is proved to be a uniform distribution.

Theorem 9.6. We assume N is larger or equal to 1.
(
true �n

(
(∀ j • j < (N − 1) ⇒ (prob′ (v[j , false/i , c] = 1/N ))) ∧
prob′ (v[(N − 1), true/i , c]) = 1/N

))

� ChooseUniform(N )

The program ChooseUniform(N ) satisfies a contract, the left-hand side of �,
that (1) the probability of finally arriving a state, of which i is less than (N −1)
and c is false, is 1/N ; and (2) the probability of finally arriving a state, of which
i is (N − 1) and c is true, is also 1/N . We, therefore, conclude the program
implements a uniform distribution given N .

10 Related Work

Hurd [18] developed a formal framework in High-Order Logic (HOL) [19], a
predecessor of Isabelle/HOL [7], for modelling and verification of probabilistic
algorithms using theorem proving. The work uses mathematical measure the-
ory to represent probability space. Hurd et al. [20] also mechanised pGCL in
HOL based on the quantitative logic [21], enabling verification of partial cor-
rectness of probabilistic programs. Our mechanisation is also based on measure
and probability theory in HOL of Isabelle and uses the same notation pGCL. We,
however, mechanise the relational semantics of pGCL in the theory of designs in
UTP, enabling reasoning about total correctness.

Audebaud et al. [22] use the monadic interpretation of randomised programs
for probabilistic distributions (instead of measure theory) and mechanise their
work in the Coq theorem prover [23]. They consider only probabilistic choice
(without nondeterminism) in a functional language with recursion, not in a non-
deterministic probabilistic imperative program setting like us.

Cock [24] presents a shallow embedding of pGCL with Isabelle/HOL for
proof automation. The work is based on McIver and Morgan’s interpretation
of a pGCL program as an expectation transformer from post-expectations to
pre-expectations [25]. Its mechanisation uses real numbers (R) in Isabelle/HOL
as a type for probabilities, which improves automation. By contrast, we use
measure theory and PMFs in Isabelle/HOL to encode probability distributions.
Additionally, we base our formalisation on Isabelle/UTP (instead of the shallow
embedding of Cock’s work) which enables modelling at high-level abstraction
and unification of semantics with other paradigms such as time and reactive
systems (this is important in order to capture the semantics of RoboChart).

https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_ex1.thy#L250
https://github.com/RandallYe/Probabilistic_Isabelle_UTP/blob/ramics2021/probability/examples/utp_prob_ex1.thy#L899
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11 Conclusions

Previously, we gave the probabilistic semantics to RoboChart based on He, Mor-
gan and McIver’s relational model for pGCL, and formalised its proof. In this
paper, we present a mechanisation of the proof in Isabelle/UTP to enable auto-
mated reasoning for probabilistic programs.

We use measure theory and probability mass functions in Isabelle/HOL to
represent probability distributions. Our mechanisation shows that (1) PMFs are
convex closed, (2) the probabilistic choice is not idempotent in general, and (3)
embedding distributes through sequential composition for finite state space.

Based on the mechanisation, we use several examples to illustrate the auto-
mated reasoning, including the randomisation algorithm in RoboChart. We note
this notation is general enough to capture other distributions, and not restricted
to uniform distributions illustrated here.

As illustrated by the probabilistic nondeterministic programs in Theorems 9.2
and 9.3, computations of probabilistic programs are related to those of imper-
ative programs. Probability information has become predicates over the prob
variable and nondeterminism becomes disjunctions of these predicates, which,
therefore, enables us to reason about probabilistic programs using general designs
or relational facilities in UTP, such as contract-based reasoning [26]. This is the
way in the relational model to tackle reasoning complexity introduced in prob-
abilistic programs.

Our immediate future work is to lift probabilistic designs into UTP’s reactive
theory to unify the semantics of reactive, time, and probability in RoboChart.

Acknowledgements. This work is funded by the EPSRC projects RoboCalc (Grant
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Abstract. Relational semigroups with domain and range are a useful
tool for modelling nondeterministic programs. We prove that the repre-
sentation class of domain-range semigroups with demonic composition
is not finitely axiomatisable. We extend the result for ordered domain
algebras and show that any relation algebra reduct signature contain-
ing domain, range, converse, and composition, but no negation, meet,
nor join has the finite representation property. That is any finite repre-
sentable structure of such a signature is representable over a finite base.
We survey the results in the area of the finite representation property.

Keywords: Domain-range semigroups · Demonic composition · Finite
representation property

1 Introduction

Formal reasoning about programs and their correctness is an important, yet a
demonstrably difficult task and many well known approaches have been pro-
posed. Algebraically speaking, a deterministic program is a partial function
mapping from the state space to itself. Generalising this, to account for non-
determinism, we can say that a program (deterministic or nondeterministic) is
a binary relation over the state space. This ability to naturally express such
concepts motivates the endeavour of formalising the logic of binary relations.

A formalisation of this sort is found in Relation Algebra, obtained by extend-
ing the language of Boolean Algebra with operations specific to binary relations.
This enables us to reason about the behaviour of binary relations in an abstract
manner. However, these algebras are also very badly behaved, with an abun-
dance of undecidability results, see [6, Part V]. A possible way of combating
this is by dropping some operations from the language, sacrificing the ability
to encapsulate the behaviour of relational calculus in exchange for decidability
of certain decision problems. We will formally define some of these and how to
prove positive properties later in this section.

Here we examine some of these favourable properties, or lack thereof, for
languages containing domain and range, and put them in the bigger context of
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relation algebra reduct languages. We chose this subset of languages as they were
found useful in algebraically reasoning about correctness of nondeterministic
programs, see Sect. 2 for more details.

But first, some definitions. Let X be a base set. Domain (D) and range (R)
are operations, defined for some relation R ⊆ X × X as

D(R) = {(x, x) | ∃y : (x, y) ∈ R} R(R) = {(y, y) | ∃x : (x, y) ∈ R}
and together with composition, they form the signature of domain-range semi-
groups. However, relational composition is not always interpreted in the same
way. Two examples of interpretations include the angelic or ordinary com-
position (denoted ;) and demonic composition (denoted ∗), defined below for
R,S ⊆ X × X

R;S = {(x, z) | ∃y : (x, y) ∈ R ∧ (y, z) ∈ S}
R ∗ S = {(x, y) ∈ R;S | ∀z : (x, z) ∈ R ⇒ (z, z) ∈ D(S)}

Whilst the first definition seems pretty intuitive, the second one may appear a
bit odd, even arbitrary, so let us have a closer look. The operation is motivated
in the behaviour of a nondeterministic machine when the demon is in control of
nondeterminism. Imagine the relations R,S were programs over the state space
X. The pair (x, y) ∈ R;S is included in R ∗ S if and only if there is no run from
R to some z from which S aborts or loops forever, i.e. (z, z) /∈ D(S). Should such
a run exist, the demon will take the opportunity and abort the computation. For
more details on this refer to [9].

Any {D,R, ; }- or {D,R, ∗}-structure S with an underlying set S ⊆ ℘(X ×
X) for some base X and operations interpreted relationally (as defined above)
is proper. Let τ be a signature of operations that are well defined for binary
relations. The representation class for τ , denoted R(τ), is the class of all proper
τ -structures, closed under isomorphic copies. An isomorphism θ that maps a
representable structure to a proper structure is called a representation.

A representation is finite if the base set X of the proper image is finite. If
all finite members of R(τ) have finite representations, we say that the signature
has the finite representation property (FRP).

The two properties described above are of special interest to us. This is
because they both guarantee the decidability of determining membership in
R(τ) for finite structures, also known as the representability decision problem.
Although the properties both ensure decidability of the said decision problem,
they in no way follow from each other. This provides us with two non trivial ques-
tions for each Relation Algebra reduct language that, given either is answered
affirmatively, provide us with a decidability guarantee.

Here, we answer [12, Question 4.9] and show that R(D,R, ∗) is not finitely
axiomatisable. We do so by defining a two-player game that corresponds to a
recursively enumerable axiomatisation of the representation class. Then we show
that for each finite subset of this axiomatisation has a non-representable model.
By compactness of first order logic, we are able to reach a contradiction under
the assumption of finite axiomatisability.



Domain Range Semigroups and Finite Representations 485

Then we show that any relation algebra reduct signature containing domain,
range, converse and composition, but no negation, meet, nor join has the finite
representation property. This is an extension of a previous finite representation
property result for ordered domain algebras [5]. We conclude by putting the
result in a larger context of finite representation property for all reduct signatures
of relation algebra. We survey the existing results and raise some open questions
in the area.

2 Motivation and Context

In this section we take a closer look at the related work and motivate the prob-
lems. We have seen that structures of relations provide us with a natural way
of formally reasoning about nondeterministic programs [4]. In [3], a good intu-
ition on how to use structures with domain and range to model program control
flow using semigroups with domain and range – functional for deterministic,
and relational for nondeterministic programs. This allows us to express partial
correctness equationally.

However, to extend this to total correctness, we have to turn to the demon.
Demonic calculus was introduced to model the behaviour of programs, should the
demon be in control of making nondeterministic decisions. Recently, it has been
shown we may take this to our advantage and introduce equations to model total
correctness. One such approach expresses total correctness using the domain and
demonic composition [8] and another using ordinary composition and the bottom
element of the demonic lattice [9].

These applications motivate our search for computational guarantees. As we
have discussed, this includes looking for finite axiomatisability of the represen-
tation class and the finite representation property. A major negative result is
shown with R(D,R, ; ) and R(D, ; ) having no finite axiomatisation [7].

Both of these two signatures have the finite representation property open.
However, one may add the partial ordering, converse, the identity, and the empty
relation to obtain the signature of ordered domain algebras. Surprisingly, this
signature has both the finite representation property, as well as a finitely axioma-
tisable representation class [5]. Another interesting result is the axiomatisation
of R(D, ∗) is not only finite, but also the same as that of representable domain
semigroups of partial functions [11]. Furthermore, the equational theories of both
R(D,R, ; ) and R(D,R, ∗) are finitely axiomatisable [12].

Finally, it is important to note that although the finite axiomatisability of the
representation class and the finite representation property both guarantee the
decidability of the representation decision problem, neither is stronger or weaker
than the other. We have seen an example of a signature with both properties in
the ordered domain algebras, as well as the full signature of relation algebras with
neither property. However, you can find signatures with finitely axiomatisable
representation class but no FRP, like meet-lattice semigroups [2,14], and semi-
groups with demonic refinement [10] with FRP, but non finitely axiomatisable
representation class.
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3 Networks and Representation by Games

In this section we outline a representation game that will help us prove the non
finite axiomatisability result of R(D,R, ∗). This argument is based on [6], but
defined for this specific signature. The proofs presented are outlines, however,
they are more detailed in parts where it is necessary to show the argument can be
feasibly used to show results for demonic composition. For full details of proofs,
see [6, Chapter 7].

On an intuitive level, this approach entails defining a game where a player is
challenged to build a representation, on a step by step basis over a predetermined
number of moves. The design of our game must be such that the player challenged
will have a winning strategy if and only if they can survive the game of any
length.

We then, for every natural number, define a formula that corresponds to a
winning strategy for a game of that length. This means that we have defined a
recursively enumerable theory that axiomatises the representation class.

In later sections we define, for each length of the game, an unrepresentable
structure where the player challenged has got the winning strategy. This will
enable us to use the compactness of first order logic to reach a contradiction
under the assumption of finite axiomatisability.

Now, we will define these concepts more formally. A network N = (N,⊥,
)
where ⊥,
 : N × N → ℘(S) and S is some {D,R, ∗}-structure. We say it is
consistent if and only if

∀x, y ∈ N : 
(x, y) ∩ ⊥(x, y) = ∅
∀x, y ∈ N,∀s, t ∈ S :

(
s ∈ 
(x, y) ∧ (

s = D(t) ∨ s = R(t)
)) ⇒ x = y

Now, let us define for any a, b ∈ S the two networks Nref [a, b] and Nnref [a, b]
as follows

Nref [a, b] = ({x}, {(x, x) �→ {b}}, {(x, x) �→ {a}})
Nnref [a, b] = ({x, y}, {(x, y) �→ {b}}, {(x, y) �→ {a}})

And all other pairs map to ∅ for 
,⊥.
We also define two operations +�[N , x, y, a],+⊥[N , x, y, a] which take a net-

work N = (N,⊥,
), some x, y ∈ N ∪̇{x+} and some a ∈ S and return

+�[N , x, y, a] = (N ∪ {x, y},⊥,
+)

+⊥[N , x, y, a] = (N ∪ {x, y},⊥+,
)

where 
+(v, w) is the same as 
(v, w), or ∅ (if 
(v, w) is undefined), for all v, w,
except for x, y where a is also added to 
+(x, y). Similarly for ⊥+.

A network N ′ = (N ′,
′,⊥′) is said to extend N = (N,
,⊥), denoted N ⊆
N ′ if and only N ⊆ N ′ and for all x, y ∈ N we have 
(x, y) ⊆ 
′(x, y),⊥(x, y) ⊆
⊥′(x, y). Clearly, both +�,+⊥ for N with any operands are extensions of N .
Furthermore, observe how inconsistency is inherited under extensions.
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Fig. 1. Witness move (left) and composition-domain move (right)

Fig. 2. Composition move

We can now define a game for a {D,R, ∗}-structure S. It is played by two
players ∀,∃, we will call them Abelard and Eloise. The game, denoted Γn(S),
starts with the initialisation (zeroth) move and then continues for n moves where
0 < n ≤ ω. Let k ≤ n. At kth move ∀ challenges ∃ to return a Nk such that
N0 ⊆ N1 ⊆ ... ⊆ Nn. ∀ wins the game if and only if ∃ introduces an inconsistent
network.

Initialisation. ∀ picks a pair a �= b ∈ S and ∃ returns N0 that is an extension of
Nref [a, b], Nnref [a, b], Nref [b, a] or Nnref [b, a].

Witness Move. ∀ picks a pair of nodes x, z in the network Nk and a pair of
elements a, b ∈ S such that a ∗ b ∈ 
(x, z). ∃ picks a y ∈ N ∪̇{x+} and returns
Nk+1 ⊇ +�[+�[N , x, y, a], y, z, b], see Fig. 1 left.

Composition-Domain Move. ∀ picks, some x, y, z with a ∈ 
(x, y) and a ∗ b ∈

(x, z) and ∃ must return Nk+1 ⊇ +�[N , y, y,D(b)], see Fig. 1 right.

Composition Move. ∀ picks some x, y, z ∈ Nk along with a, b such that a ∈

(x, y) and b ∈ 
(y, z). ∃ has a choice between returning Nk+1 ⊇ +�[N , x, z, a∗
b] (Fig. 2 left) and Nk+1 ⊇ +⊥[+�[N , x, w, a], w, w,D(b)] where she picks a w ∈
N ∪̇{x+} (Fig. 2 right).

Domain-Range Move. ∀ picks x, y ∈ Nn, a ∈ S such that a ∈ 
(x, y) and ∃ must
return Nk+1 ⊇ +�[+�[N , x, x,D(a)], y, y,R(a)].

Domain Move. ∀ picks a node x and an a ∈ S such that D(a) ∈ 
(x, x) and ∃
must pick a node y ∈ N ∪̇{x+} and return Nk+1 ⊇ +�[N , x, y, a]
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Range Move. ∀ picks a node y and an a ∈ S such that R(a) ∈ 
(y, y) and ∃
must pick a node x ∈ N ∪̇{x+} and return Nk+1 ⊇ +�[N , x, y, a]

Lemma 1. A countable {D,R, ∗}-structure is representable if and only if ∃ has
a winning strategy for Γω(S).

Proof. If the structure is representable, ∃ can play the game by mapping the
responses from the representation. Conversely, if ∃ has a winning strategy for
Γω(S), she must also have the winning strategy for any length of the game where
∀ schedules moves in the way that eventually every move will be called and the 

label of the network will in the limit be closed under composition, domain-range
moves and saturated under witness, domain and range moves. Since the structure
is countable, ∀ can schedule moves in this manner. Take the limit network, call
it Nω[a �= b], after such a play with the initialisation pair a �= b. Observe how
due to saturation and closure, the 
 outlines a mapping from S to N × N that
represents D,R, ∗ correctly and ensures that a, b map to different relations. Thus
a disjoint union

⋃̇
a�=bNω[a �= b] is a representation of S. ��

Lemma 2. For every n < ω, there exists a first order formula σn such that ∃
has a winning strategy for Γn(S) if and only if S |= σn. Furthermore, the first
order theory Σ = {σi | i < ω} axiomatises R(D,R, ∗).

Proof. Let us define a variable network in a slightly different manner with the
mappings 
,⊥ : N × N → ℘(Vars). A valuation v : Vars → S defines a conven-
tional network v(N ). This allows us to define a formula φn(N ) in a way that,
together with a valuation v : S → Vars, ∃ can survive the conservative play of
the game for n more moves, starting from v(N ). By conservative, we mean that
∃ plays the network requested without proper extensions.

In the base case, observe how v(N ) only needs to be consistent and thus

φ0(N ) =
∧

x �= y ∈ N
s ∈ �(x, y)

¬∃t : s = D(t) ∨ s = R(t) ∧
∧

x, y ∈ N
s ∈ �(x, y)
t ∈ ⊥(x, y)

s �= t

In the induction case, if φn[N ] signifies that ∃ can survive for n more moves,
simply define φn+1 as

φn+1(N ) =
∧

x, z ∈ N
s ∈ �(x, z)

∀t, u : s = t ∗ u ⇒
∨

y∈N∪̇{x+}
φn(+�[+�[N , x, y, a], y, z, b])

∧
∧

x, y, z ∈ N
t ∈ �(x, y), u ∈ �(y, z)

∀s : s = t ∗ u →
(

φn(+�[N , x, z, s]

∨ ∀v : v = D(t) ⇒
∨

w∈N∪̇{x+}
φn(+⊥[+�[N , x, w, t], w, w, v])

)
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∧
∧

x, y, z ∈ N
t ∈ �(x, y)
s ∈ �(x, z)

∀u, v : (s = t ∗ u ∧ v = D(u)) ⇒ φn(+�[N , y, y, v])

∧
∧

x, y ∈ N
s ∈ �(x, y)

∀t, u :
(
t = D(s) ∧ u = R(s)) ⇒

φn(+�[+�[N , x, x, t], y, y, u]
)

∧
∧

x ∈ N
s ∈ �(x, x)

∀t : D(t) = s ⇒
∨

y∈N∪̇{x+}
φn(+�[N , x, y, t])

∧
∧

y ∈ N
s ∈ �(y, y)

∀t : R(t) = s ⇒
∨

x∈N∪̇{x+}
φn(+�[N , x, y, t])

Thus ∃ can win a conservative game Γn(S) if and only if S |= σn where

σn = ∀s, t : s �= t ⇒
(

φn(Nref [a, b]) ∨ φn(Nnref [a, b])

∨ φn(Nref [b, a]) ∨ φn(Nnref [b, a])
)

Since inconsistencies in networks are inherited in extensions, it is true that for
countable structures if ∃ has a winning strategy for conservative plays of Γn(S),
she will also have a winning strategy for any play of Γn(S). Furthermore, as
inconsistency is inherited in extensions, if S |= Σ, ∃ has a winning strategy
for Γω(S). Thus for all countable S, S ∈ R(D,R, ∗) if and only if S |= Σ.
As the representation class is pseudoelementary, it is closed under elementary
equivalence, and by Löwenheim-Skolem Theorem, we conclude S |= Σ is both
sufficient and necessary for membership, even for uncountable structures. ��

4 Demonic Refinement

Before we move on to defining structures used to prove non finite axiomatisabil-
ity, we will quickly have a look at the demonic lattice. We discuss in Sect. 2 that
the demonic lattice has found use in algebraically modelling total correctness.
However, in this section, it will help us show that the structures we will use in
the argument are in fact non-representable.

We do so by defining demonic refinement, the partial ordering predicate
arising from the demonic lattice. Furthermore, we observe that even though
the predicate is not in the signature, some pairs of elements of a representable
{D,R, ∗}-structure will always be represented as demonic refinement pairs.

Now assume that a {D,R, ∗}-structure has a cycle of elements where each
element is a demonic refinement of its successor. As the predicate is a partial
order, it means by antisymmetry and transitivity that these distinct elements
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will map the same binary relation in any representation and thus the structure
is not representable.

Now let us define demonic refinement for R,S ⊆ X × X as

R � S ⇐⇒ (D(S) ⊆ D(R) ∧ D(S);R ⊆ S)

This is motivated, again, with the demon in control of nondeterminism. Imag-
ine R,S were programs over the state space X. If the demon is given the choice
to run R or S, he will always run S. This is because when we are outside the
domain of S, running S rather than R will result abort and when in the domain
of S it will maximise the odds of reaching an erroneous state.

Now we recursively define a predicate � using infinitary {D,R, ∗}-formula
such that for every structure S with a representation θ we will have ∀s, t ∈
S : s � t ⇒ sθ � tθ. We take advantage of the fact that sometimes non domain
elements may compose to a domain element, and define �1. Then we inductively
close the predicate under monotonicity and transitivity. More formally, we say
that

s �1 t ⇐⇒ ∃u, v : D(u ∗ v) = u ∗ v ∧ s = R(u ∗ D(v)) ∧ t = s ∗ v ∗ u

s �n+1 t ⇐⇒
( ∃s′, t′, u, v : s′ �n t′ ∧ s = u ∗ s′ ∗ v ∧ t = u ∗ t′ ∗ v

∨ ∃v : s �n v ∧ v �n t

)

and �=
⋃

n<ω �n

Lemma 3. For any s, t ∈ S, if s � t, it is true that for any representation θ we
have sθ � tθ.

Proof. We show this by induction over n.
In the base case, we see that there exists a u, v such that u ∗ v = D(u ∗ v)

and s = R(u ∗ D(v)) and t = s ∗ v ∗ u. First see how if (x, x) ∈ tθ, there must
exist a witness for s ∗ v ∗ u and since s is a range element, it must hold that
(x, x) ∈ sθ. Since D(sθ) = sθ, we have D(tθ) ⊆ D(sθ). Furthermore, assume
that (x, x) ∈ D(tθ) and (x, x) ∈ sθ. See how there must exist a y such that
(y, x) ∈ (u ∗ D(v))θ. There must also exist a z such that (x, z) ∈ vθ. Since
(y, y) ∈ D(u∗D(v))θ, we can see that (y, z) ∈ (u∗v)θ and since u∗v is a domain
element, y = z. And because (x, x) ∈ D(t)θ and because (x, z) ∈ (s ∗ v)θ and
(z, x) ∈ uθ, we conclude (x, x) ∈ (s ∗ v ∗ u)θ = tθ.

The induction case follows from the fact that � is transitive as well as left
and right monotone for ∗ as discussed in [10]. ��
The use of refinement cycles may seem similar to [7] where the predicate 
 is
defined as the monotone, transitive closure of D(s); D(t)
D(t) to signify ordinary
inclusion (≤) for the angelic signature. However, for the demonic signature, 

can be simply described as D(s) ∗ t 
 t as the following axiom is sound

∀s, t : D(s ∗ D(t)) ∗ s = s ∗ D(t)

Thus, 
 does not show useful when trying to show R(D,R, ∗) is not finitely
axiomatisable, as avoiding cycles of 
 can be described in a single axiom.
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5 R(D,R, ∗) is Not Finitely Axiomatisable

We can now define the non representable structures for every n < ω for which ∃
will have a winning strategy in Γn. First we use the demonic refinement predicate,
defined in Sect. 4, to show these are not representable as they include a refinement
cycle. Then we show by induction that ∃ will have a winning strategy for n
moves in the representation game. Using the compactness trick, we show that
the representation class is not finitely axiomatisable.

For every n < ω, let N = 2n + 1. Define a {D,R, ∗}-structure Sn, with the
following underlying set

{0, d, r} ∪ {mi, εi, ai, bi, ci, di, aci, acdi, cdbi, dbi, abi | 0 ≤ i < N}
0, d, r,mi, εi are the domain-range elements, idempotent with respect to com-
position, and disjoint, i.e. composition of two distinct domain-range elements
evaluates to 0. We now examine domain-range elements, see visualisation in
Fig. 3. For all i < N , we have

d = D(ai) = D(aci) = D(acdi) = D(abi)
mi = D(ci) = D(bi) = D(cdbi) = R(ai) = R(di) = R(cdi)

εi = D(di) = D(dbi) = R(ci) = R(aci)
r = R(abi) = R(cdbi) = R(dbi) = R(bi)

The reader may find it helpful to pay close attention to Fig. 3 while we define
the compositions. First, we say that

di ∗ ci = εi ci ∗ di = cdi cdi ∗ cdi = cdi

for every i < N . Furthermore, some elements will result in a composition with
an index increasing by one, namely

ai ∗ cdbi = abi+1 acdi ∗ cdbi = abi+1 aci ∗ dbi = abi+1 acdi ∗ bi = abi+1

for i < N where + denotes addition modulo N . Composition results below are
defined more naturally

cdi ∗ ci = ci di ∗ cdi = di ai ∗ bi = abi ai ∗ ci = aci ai ∗ cdi = acdi

ci ∗ dbi = cdbi di ∗ bi = dbi aci ∗ di = acdi acdi ∗ ci = aci cdi ∗ bi = cdbi

All other compositions are either the mandatory domain-range compositions or
they evaluate to 0.

The following two Lemmas will now show that although Sn is not repre-
sentable, ∃ will be able to maintain consistency in the network for n moves.

Lemma 4. Sn is not {D,R, ∗}-representable.
Proof. Observe how mi � ci∗di and thus abi = ai∗mi∗bi � ai∗ci∗di∗bi = abi+1

for all i < N . This means by transitivity of � that for all i, j < N we have
abi � abj . Now assume that there existed a representation θ. We would have
abθ

i � abθ
j , abθ

j � abθ
i , even where i �= j. Since � is antisymmetric, we would have

abθ
i = abθ

j for i �= j. Therefore, no such θ can exist. ��
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Fig. 3. Visualisation of Sn

Lemma 5. For all n < ω, ∃ has a winning strategy for Γn(Sn)

Proof. First see how ∃ may play in a way that she returns a network that is
closed under composition, composition domain and domain-range moves. For
composition moves, she always chooses to add a ∗ b to the label, rather than
adding a node with D(b) in its ⊥ label. Furthermore, she may set the 
 label in
a way that for all (x, y)


k+1 ⊆ 
k(x, y) ∪ {abi+1 | abi ∈ 
k(x, y)}

where + is modulo N and

ai ∈ 
k(x, y) ⇒ acdi ∈ 
k(x, y) mi ∈ 
k(x, y) ⇒ cdi ∈ 
k(x, y)
bi ∈ 
k(x, y) ⇒ cdbi ∈ 
k(x, y) 0 /∈ 
(x, y)

as well as ensure that domain-range elements are only added to reflexive edge

 labels. If mi ∈ 
(x, x), there exists at most one y such that ci ∈ 
(x, y) ∨
di ∈ 
(y, x) and if cdi ∈ 
(x, x′), the y must be the same for x, x′. to prevent
compositional closure from adding mi to a 
(z, w), z �= w.

In the base case, observe how for every s �= t, it is possible to find either
s or t to put in 
(x, y) of the initialisation network. Without loss, if s = 0 or
s = ai, t = acdi or s = mi, t = cdi or s = bi, t = cdbi she has to play t. Otherwise,
she is free to play either s or t, making sure that she plays the reflexive network
if and only if she opts to play a domain-range element.

In the induction case, as the network is closed under domain-range, compo-
sition and composition-domain moves, ∀’s only non-redundant move options are
composition, domain, and range.

For the domain move, ∃ may add a new node unless ci is requested on some x.
In that case, she must pick to add ci to 
(x, y) to the designated y if such y exists,
otherwise create such a y and close it under all the necessary moves to maintain
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Fig. 4. Compositions with cdi

the induction hypothesis. All the compositions resulting in cdi, acdi, cdbi are
included in the appropriate labels due to her strategy, see Fig. 4. Otherwise
the move can be satisfied with a new node, satisfying all the properties in ∃’s
strategy. Similarly, the argument can be constructed for range moves including
di or otherwise.

In case a witness move is called and the left operand is ci or the right operand
is di (or both), the witness node returned must be the designated y and the
induction hypothesis is maintained (again, see Fig. 4). If the witness move has cdi

as an operand, she makes sure to designate the appropriate y, again preserving
the induction hypothesis. All other non-redundant operations result in abi. If
the index of the operands is i − 1, ∃ may ensure she does not include ai−1 ∗ bi−1

witness (see Fig. 5 left). Finally, for operands with index i she adds a witness
node with mi, cdi in the reflexive label, ai, acdi on the left and bi, cdbi on the right
(see Fig. 5 right). This covers all the possible non-redundant witness moves, but
results in abi+1 being added to the label. In any case, the induction hypothesis
is maintained.

Fig. 5. Witness moves for abi with i − 1 left and i on the right
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We have now seen that ∃ can play a game in a way that the only possible
inconsistency that can arise is from abi ∈ 
(x, y) and also in ⊥(x, y). Without
loss, this situation can only arise when the initialisation pair is ab0, abn+1. In
this case she plays the initial non-reflexive network with ab0 ∈ 
(x, y), abn+1 ∈
⊥(x, y). As she can only increase the maximal i such that abi ∈ 
(x, y) by 1
each move, she introduces an inconsistency at the n + 1st move at the earliest.
Thus she can win Γn(Sn). ��
This gives us all we need to conclude

Theorem 1. R(D,R, ∗) cannot be axiomatised by a finite first order theory.

Proof. Suppose such a theory existed, call it Ψ . Then R(D,R, ∗) is axiomatised
by a single axiom ψ =

∧
ψ′∈Ψ ψ′. Thus Σ∪{¬ψ} is not consistent as, by Lemma 2,

Σ ensures that any model of it is representable and ¬ψ ensures it is not. Now
look at any finite subtheory Ω ⊆ Σ ∪{¬ψ}. Observe how, since it is finite, there
exists n < ω such that for all m > n we have σm �∈ Ω. Thus Sn |= Ω as by
Lemmas 5, 2 we have Sn |= σi, i ≤ n, and by Lemmas 1, 4 we have Sn |= ¬ψ. By
compactness of first order logic, we conclude the Theory Σ ∪ {¬ψ} is consistent
and we have reached a contradiction. ��

6 Finite Representation Property

We have now seen that both the angelic and demonic representable domain-range
semigroups cannot be axiomatised finitely. However, it remains unknown if all
finite members of R(D,R, ; ) and R(D,R, ∗) have the finite representation prop-
erty. Although the finite axiomatisability (or lack thereof) is known for a number
of representation classes [13], FRP remains largely unknown for signatures with
composition. In this section we discuss some existing results and extend FRP
result for ordered domain algebras [5].

The known results regarding FRP are summarised in Table 1. The signa-
tures {; }, {1′, ; }, {D, ∗} are well known examples where Cayley representation
for groups can be used to represent the structure over a finite base. Neuzerling
shows that any signature containing meet and composition fails to have FRP
using Point Algebra [14]. In [10] we show that this structure can also be used
to show that FRP fails for any signature containing negation, partial order and
composition. In a forthcoming paper, we extend this result to any signature
containing {−, ; }.

A simple approach to constructing a finite representation of a relational par-
tially ordered semigroup was proposed by Zareckĭı in [16] where one may amend
a representable {≤, ; }-structure S with a compositional identity element e and
only add the mandatory (e, e) to ≤ to then define a simple representation θ over
the base S with

(s, t) ∈ aθ ⇐⇒ t ≤ s; a

The inclusion of e ensures faithfulness as for a �≤ b (e, a) ∈ aθ \ bθ and the
associativity and monotonicity ensure that ≤, ; are correctly represented.
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Table 1. Signatures with composition where FRP is known

FRP No FRP

{; }, {1′, ; }, {D, ∗} {·, ; } ⊆ τ [14]

{≤, ; }, {�, ∗} [16] {−, ; } ⊆ τ

{0, 1,D,R, ≤, 1′, �, ; } [5]

{�, ; } [10]

{≤, \, /, ; } [15]

Egrot and Hirsch [5] amend the idea to represent the ordered domain alge-
bras, the signature {0,D,R,≤, 1′,�, ; } where 0 is the empty relation (bottom
element of the Boolean lattice), 1′ is the relational identity and � is the rela-
tional converse. They represent the structures in R(0,D,R,≤, 1′,�, ; ) over the
base of subsets of the structure, rather than its elements.

However, their result can be adapted for a wider range of signatures. Below
we present an outline of the proof for the following theorem.

Proposition 1. For any signature {D,R,�, ; } ⊆ τ ⊆ {0, 1,D,R,≤, 1′,�, ; },
R(τ) has the finite representation property.

Proof. We can, for any representable τ -structure S, define a partial ordering
≤ (even if ≤ /∈ τ) as the set of all pairs where s ≤ t if and only if for all
representations θ, sθ ≤ tθ. Similarly, one can define at most one element 0
(again even if 0 /∈ τ) that will always be represented as an empty relation.

This means that we can define the set of closed sets G as the set of all
∅ � S ⊆ S \ {0} such that for D(S) =

∏
s∈S D(s) and similarly R(S), we have

(D(S);S; R(S))↑ = S where ↑ is upward closure with respect to ≤. Then define
a mapping ρ : S → ℘(G × G) such that (S, T ) ∈ aρ if and only if S; a ⊆ T and
T ; ă ⊆ S.

The mapping is faithful as for a � b, (D(a), a) ∈ aρ as a; ă ≥ D(a), but not in
b as that would mean a ≤ D(a); b ≤ b. It represents ≤ correctly by monotonicity
of ; over ≤ and 0, 1 correctly as 1 is the top element with respect to ordering
and a; 0 = 0; a = 0, for all a. Domain and range are correctly represented as
if there is an outgoing/incoming edge from S with a/ă, then S; a; ă ⊆ S and
since R(ă) = R(a; ă) = D(a), S; D(a) ⊆ S and thus D(a) = R(ă) is included in
(S, S). Furthermore if R(a) = D(ă) is included in (S, S) then (S; ă)↑ ensures that
there is an incoming edge with a and an outgoing edge with ă. Finally, domain
elements are only on reflexive nodes as if (S; D(a))↑ = S so if (S, T ) ∈ D(a) then
S ⊆ T ⊆ S and similarly (S, T ) ∈ (1′)ρ if and only S = T . Converse is correctly
represented as ˘̆a = a. Finally aρ; bρ ≤ (a; b)ρ by monotonicity and (a; b)� = ă; b̆

and (a; b)ρ ≤ aρ; bρ as if (S, T ) ∈ (a; b)ρ,
(
S; a; D(ă; T̆ ) ∪ T ; a; R(S; a)

)↑
is an

appropriate witness for the composition. ��
Note that the second part of the proof where we show that ρ is indeed a repre-
sentation is an outline. This is because the argument closely follows that in [5,
Section 6], refer to it for more detail.
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Finally, Rogozin shows that one can embed residuated semigroups into rela-
tional quantales in [15] and we show in [10] that a Zareckĭı representation can
be modified in a way to represent semigroups with demonic refinement. The
latter was the first example of a signature with composition without a finitely
axiomatisable representation class, but with FRP.

7 Problems

In this section we look at some open problems and outline the difficulties with
showing the finite representation property.

We begin with the observation that e in the Zareckĭı representation, as defined
in Sect. 6, is not represented as the true relational identity element, i.e. 1′ =
{(x, x) | x ∈ X}, as for some a � a′ we will have (a′, a) ∈ eθ. Thus this good
behaviour does not extend to the signature of {1′,≤, ; }, with R(≤, 1′, ; ) non-
finitely axiomatisable [7] and FRP unknown.

R(≤, 1′, ; ) suffers from the same problem as R(D,R, ∗) and R(D,R, ; ). That
is, some elements are always represented as partial functions, that is, for any
representation θ over X, if (x, y) ∈ fθ, (x, z) ∈ fθ then y = z. Simple exam-
ples of that include the domain-range elements, as well as those f ≤ 1′. How-
ever, composition makes for some more interesting examples, like ci in Sn in
Sect. 5 or in R(D,R, ; ), R(a); b will always be represented as a partial function if
D(a; b) = a; b. This is illustrated in Fig. 6, from left to right, observe how for any
representation θ if (x, y) ∈ (R(a); b)θ then (x, x) ∈ R(a)θ, so there must exist
a z such that (z, x) ∈ aθ. As a; b = D(a; b) and by composition, z must be the
same as y. Similarly, for any outgoing z with (x, z) ∈ (R(a); b)θ, it has to be the
case that y = z.

Fig. 6. Partial-functional nature of R(a); b when a; b = D(a; b)

Every function in the signature of domain-range algebras comes with a con-
verse. More specifically, if D(a; b) = a; b then not only is R(a); b a function, but
a;D(b) is its well defined converse. Unfortunately, this does not enable us to
use represent structures over a finite base in the same way as the structures in
Proposition 1.
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It is true that partial functions, their converses and arbitrary compositions of
those have their converse well defined. But take an a with its converse defined and
say a = b; c and R(b) = D(c). Observe that converses of b, c not defined. Both b
and c have a partial converse. That is, for every representation θ, (bθ)� ≤ (c; ă)θ

and (cθ)� ≤ (ă; b)θ, but the ≥ inclusions do not necessarily hold, see Fig. 7.

Fig. 7. Partial converse of b, i.e. b ≤ c; ă, but c̆; a �≤ b, where a, b, c are elements of a
domain range semigroup

This enables us to define the partial converse of s ∈ S to be the set C(s) ⊆ S
where C(s) is the set of all s′ ∈ S such that (sθ)� ≤ (s′)θ, for any represen-
tation θ. However, as we have seen there is no guarantee that C(C(s)) = s↑.
Furthermore, C(t); C(s) ⊆ C(s; t) but not necessarily C(t); C(s) ⊇ C(s; t). As
the proof of FRP for ordered domain algebras heavily relies on both ˘̆a = a
and (a; b)� = b̆; ă, the same representation cannot be used for converse-free
signatures.

Adding join (+) to the signature adds additional difficulty. The class of rep-
resentable join-lattice semigroups R(+, ; ) was shown non-finitely axiomatisable
in [1], with the finite representation property remaining open. Similar to the
case where 1′ is added to the signature of {≤, ; }, this slight modification com-
pletely breaks the Zareckĭı representation. That is because + is not necessarily
distributive, i.e. if a ≤ b + c there exists some b′ ≤ b and c′ ≤ c such that
a = b′ + c′.

For distributive lattices, one can define the Zareckĭı representation over the
set of minimal non-0 elements and preserve all operations in a faithful man-
ner. However, no signature including {+, ; } has been shown to have the finite
representation property for its representation class thus far.

The problems raised in this section can be summarised below

Problem 1. Do converse-free (ordered) domain-range semigroups have the finite
representation property? How about their demonic counterparts?
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Problem 2. Do signatures containing the join-semilattice and composition have
the finite representation property?

Problem 3. Does R(≤, 1′, ; ) have FRP? How about R(≤, 1′,�, ; ) or R(≤,�, ; )?

References
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