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Preface

This volume contains the proceedings of the 19th International Conference on Relational
and Algebraic Methods in Computer Science (RAMiCS 2021), which was held at
the Centre International de Rencontres Mathématiques in Marseille, France, during
November 2-5, 2021.

The RAMICS conferences aim to bring together a community of researchers to
advance the development and dissemination of relation algebras, Kleene algebras, and
similar algebraic formalisms. Topics covered range from mathematical foundations to
applications as conceptual and methodological tools in computer science and beyond.
More than 30 years after its foundation in 1991 in Warsaw, Poland, RAMICS, initially
named “Relational Methods in Computer Science,” remains a main venue in this field.
The series merged with the workshops on Applications of Kleene Algebra in 2003
and adopted its current name in 2009. Previous events were organized in Dagstuhl,
Germany (1994), Paraty, Brazil (1995), Hammamet, Tunisia (1997), Warsaw, Poland
(1998), Québec, Canada (2000), Oisterwijk, The Netherlands (2001), Malente, Germany
(2003), St. Catharines, Canada (2005), Manchester, UK (2006), Frauenworth, Germany
(2008), Doha, Qatar (2009), Rotterdam, The Netherlands (2011), Cambridge, UK (2012),
Marienstatt, Germany (2014), Braga, Portugal (2015), Lyon, France (2017), Groningen,
The Netherlands (2018), and Palaiseau, France (2020, online).

RAMICS 2021 attracted 35 submissions, of which 29 were selected for presentation
by the Program Committee. Each submission was evaluated according to high academic
standards by at least three independent reviewers and scrutinized further during two
weeks of intense electronic discussion. The organizers are very grateful to all Program
Committee members for this hard work, including the lively and constructive debates,
and to the external reviewers for their generous help and expert judgments. Without this
dedication, we could not have assembled such a high-quality program; we hope that all
authors have benefitted from these efforts.

Apart from the submitted articles, this volume features the abstracts of the
presentations of the three invited speakers: Marcelo Frias, Barbara Konig, and Dmitriy
Zhuk. We are delighted that all three invited speakers accepted our invitation to present
their work at the conference.

Last, but not least, we would like to thank the members of the RAMIiCS Steering
Committee for their support and advice. We gratefully acknowledge financial and
administrative support by the Centre International de Rencontres Mathématiques and the
Laboratoire d’Informatique et Systemes and financial support by the Institut Archimede
Mathématiques-Informatique, Aix-Marseille Université, the Métropole Aix-Marseille
Provence, and the Conseil Départemental des Bouches-du-Rhone.
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We also appreciate the excellent facilities offered by the EasyChair conference
administration system and Anna Kramer’s help in publishing this volume with Springer.
Finally, we are indebted to all authors and participants for supporting this conference.

August 2021 Uli Fahrenberg
Mai Gehrke

Luigi Santocanale

Michael Winter
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Relational Tight Field Bounds for Distributed Analysis
of Programs

Marcelo F. Frias
Instituto Tecnoldgico de Buenos Aires and CONICET, Argentina

Relational tight field bounds [1] are an abstraction of the semantics of data structures.
In the presence of appropriate symmetry-breaking predicates, these bounds can be com-
puted automatically and allow to dramatically speed up bug-finding using SAT-solving.
In this lecture, after giving an introduction to tight field bounds and symmetry-breaking
predicates, I will present a general technique for distributing program analyses. As exam-
ples, I will show how the technique allows one to distribute SAT-based bug-finding [2]
as well as symbolic execution over complex data types.

References

1. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: efficient SAT-based bounded
verification using symmetry breaking and tight Bounds. IEEE Trans. Softw. Eng. 39(9), 1283—
1307 (2013)

2. Rosner, N., et al.: Parallel bounded analysis in code with rich invariants by refinement of field
bounds. ISSTA 2013, 23-33 (2013)



Fixpoint Games

Barbara Konig
Universitit Duisburg-Essen

Solving fixpoint equations is a recurring problem in several domains: the result of a dataflow
analysis can be characterized as either a least or greatest fixpoint. It is well-known that
bisimilarity - the largest bisimulation - admits a characterization as a greatest fixpoint and
furthermore p-calculus model-checking requires to solve systems of nested fixpoint equations.

Often, these fixpoint equations or equation systems are defined over powerset lattices, how-
ever in several applications - such as lattice-valued or real-valued p-calculi - the lattice under
consideration is not a powerset.

Hence we extend the notion of fixpoint games (or unfolding games, introduced by Venema)
to games for equation systems over more general lattices. In particular continuous lattices admit
a very elegant characterization of the solution.

We will also describe how to define progress measures which describe winning strategies for
the existential players and explain how abstractions and up-to functions can be integrated into the
framework.

(Joint work with Paolo Baldan, Tommaso Padoan, Christina Mika-Michalski).



Quantified Constraint Satisfaction Problem:
Towards the Classification of Complexity

Dmitriy Zhuk
Lomonosov Moscow State University

The Quantified Constraint Satisfaction Problem (QCSP) is the generalization of the Constraint
Satisfaction problem (CSP) where we are allowed to use both existential and universal
quantifiers. Formally, the QCSP over a constraint language I” is the problem to evaluate a
sentence of the form

Vx13y1Vxodys .. Vx3yn (R1(G..) A~ ARs(...)),

where Ry, ..., Ry are relations from I". While CSP remains in NP for any I", QCSP(I") can
be PSpace-hard, as witnessed by Quantified 3-Satisfiability or Quantified Graph 3-Colouring. For
many years there was a hope that for any constraint language the QCSP is either in P, NP-complete,
or PSpace-complete. Moreover, a very simple conjecture describing the complexity of the QCSP
was suggested by Hubie Chen. However, in 2018 together with Mirek Ol§dk and Barnaby Martin
we discovered constraint languages for which the QCSP is coNP-complete, DP-complete, and
even @5 -complete, which refutes the Chen conjecture. Despite the fact that we described the
complexity for each constraint language on a 3-element domain with constants, we did not hope
to obtain a complete classification.

This year I obtained several results that make me believe that such a classification is closer
than it seems. First, I obtained an elementary proof of the PGP reduction, which allows to reduce
the QCSP to the CSP. Second, I showed that there is a gap between 1'[5 and PSpace, and found
a criterion for the QCSP to be PSpace-hard. In the talk I will discuss the above and some other
results.
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Amalgamation Property for Varieties
of BL-algebras Generated by One Chain
with Finitely Many Components

Stefano Aguzzoli' and Matteo Bianchi?®)

! Department of Computer Science, Universita degli Studi di Milano, Via Celoria 18,
20133 Milano, Italy
aguzzoli@di.unimi.it
2 Independent researcher, Milano, Italy
matteob@gmail.com

Abstract. BL-algebras are the algebraic semantics for Hajek’s Basic
Logic BL, the logic of all continuous t-norms and their residua. Every
BL-chain can be decomposed (up to isomorphism) as an ordinal sum of
non-trivial Wajsberg hoops - called components - with the first bounded.
In this paper we study the amalgamation property for the varieties of
BL-algebras generated by one BL-chain with finitely many components.

Keywords: BL-algebras + Hoops *+ Amalgamation property + Ordinal
sums - Lattices of varieties

1 Introduction

BL-algebras are the algebraic semantics for the Basic Logic BL, introduced in
[H4j98]. The class of all BL-algebras forms a variety, which is called BL. As
shown in [CEGTO00] BL is the logic of all continuous t-norms and their residua,
whence it is one of the major mathematical fuzzy logic (see [CHN11]) which are
useful to formally deal with vagueness and uncertainty.

In [AMO3] there is a general result concerning the structure of the totally
ordered BL-algebras, BL-chains. Every BL-chain is isomorphic to an ordinal
sum of totally ordered Wajsberg hoops, with the first bounded. Moreover, the
same paper provides a full description of the subdirectly irreducible members
of every variety of BL-algebras generated by one BL-chain with finitely many
components. Using these ingredients, in our recent work [AB21a] we classified
the finite model property for all the BL-algebras generated by a finite set of
BL-chains with finitely many components.

In this paper we focus on the amalgamation property (AP), for some vari-
eties of BL-algebras. We recall that the AP for a variety of BL-algebras corre-
sponds to the deductive interpolation property for the associated logic. This is
a well established topic, since the amalgamation property for BL and some of
its subvarieties was shown in [Mon06], and in [CMM11] the analysis was further
© Springer Nature Switzerland AG 2021

U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 1-18, 2021.
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extended. In [MMT14] the case of GBL-algebras (a far-reaching generalization of
BL-algebras) was also tackled, by providing a partial classification. Nevertheless,
the study of the AP for varieties of BL-algebras is far from over, since the lattice
of varieties of BL-algebras itself is uncountable and its structure is still poorly
understood. The present paper is an additional contribution to this topic, since
we will provide a full classification of the AP for all the varieties of BL-algebras
generated by one BL-chain with finitely many components.

The paper is structured as follows. After introducing in Sect.2 some prelim-
inary results, in Sect.3 we tackle the investigation of the AP for the varieties
of BL-algebras generated by one finite chain with finitely many components. In
Sect. 4 we discuss some open problems and future work.

2 Preliminaries

2.1 BL-algebras

Definition 1 ([H4j98]). A BL-algebra is an algebra (A,*,=,A,V,0,1) such
that:

(i) (A,A,V,0,1) is a bounded lattice with minimum 0 and mazimum 1.

(ii) (A, x,1) is a commutative monoid.
(iii) (x,=) forms a residuated pair: zxx <y iff z < x =y for all x,y,z € A.
(iv) The following identities hold, for all x,y € A:

(z=y) V=2 =1 (Prelinearity)

rAy=z*(x=y). (Divisibility)
A totally ordered BL-algebra is called a BL-chain.

Every algebra ([0, 1], x, =, min, max, 0, 1), where * is a continuous t-norm, and =
is its residuum, is a BL-algebra ([CHN11]), called standard BL-algebra. Two well-
known examples are the standard MV-algebra [0, 1], and the standard Gdodel-
algebra [0,1]g. In [0,1]§, we have z xy = max{0,z +y — 1}, and z = y =
min{l,1 —x + y}. In [0, 1]¢ it holds that = * y = min{x, y}, whilst x = y = 1 if

xgy,andxéy:yifa?>y.Wedeﬁneﬁxd:efx:O.

2.2 BL-algebras and Ordinal Sums

Every BL-chain can be decomposed as an ordinal sum of hoops. Before stating
the result, we need some preparation.

Definition 2 ([EGHMO03]). A hoop is an algebra A = (A,x,=,1) of type
(2,2,0) such that:

(i) (A,%,1) is a commutative monoid,
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(i1) = is a binary operation satisfying the following properties:
-—r=>x=1,
—zx(r=y) =y (y =),
—r=>(y=2)=(z*xy) = 2.

A bounded hoop is an algebra A = (A, *,=,0,1) such that (A, *,=,1) is a hoop,
and 0 < z for all x € A. The binary relation < on A is defined as = < y if and
only if x = y = 1. It follows from the hoop axioms that this binary relation is
indeed a partial order. An unbounded hoop is a hoop without minimum.

A Wagjsberg hoop is a hoop A satisfying

(z=y)=>y=@WY=2)=>uz
A cancellative hoop is a hoop satisfying
r=(xxy) =y.

It is well known that bounded Wajsberg hoops are term-equivalent to MV-
algebras (see [AFMO07], and [CDM99] for MV-algebras). We also recall that the
variety of Wajsberg hoops WH contains all cancellative hoops. In particular,
the class of totally ordered cancellative hoops coincides with the class of totally
ordered unbounded Wajsberg hoops. The class of all cancellative hoops forms a
variety, called CH. Of course CH C WH. BL-chains can be obtained by means
of the ordinal sum construction.

Definition 3. Let (I, <) be a totally ordered set with minimum 0. For alli € I,
let A; = (A, *i,=4,1) be a hoop such that for i # j, A; N A; = {1}. Then
@, Ai is called the ordinal sum of the family {A;}icr, whose universe is given
by U;er Ai, and whose operations =, * are given by:

=y ifw,y€ A,

d e
:c:>y:ef y ifj<i, v €A yeA,,
1 ifi<j, 1#x€A;, yeA;
Txy ifxy €A,
d e
x*y:ef Y Zf]<1a$€Ai71?éy€Aj7

T ifi<j, 1#x €A, ye A

The hoops A; are called components. When I is finite, for example I =
{0,...,k}, we sometimes use the notation Ay @© - -- © Ay, in place of @, As.

As shown in [AMO03] every BL-chain is canonically representable as an ordinal
sum of hoops.

Theorem 1 ([AMO3]). For every BL-chain A there are a unique (up to order-
isomorphisms) totally ordered set (I,<) with minimum 0 and a unique (up to
isomorphisms) family {A; | i € I} of non-trivial totally ordered Wagjsberg hoops
where Ag is bounded, such that A= @, ; A;.
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Observe that the idempotent elements in any ordinal sum of Wajsberg hoops are
exactly 1 and the bottoms of every component with minimum. Let A be a BL-
chain. With #.A we denote the number of the components of A, i.e., #A = |I],
in the decomposition of A described in Theorem 1.

Remark 1. — By slight abuse of terminology we shall often consider ordinal
sums @, ; Ai, where there are some A; (with ¢ # min I) being MV-chains,
with the obvious meaning that we are actually considering the 0-free reduct
of each such A;.

— By slight abuse of notation we shall sometimes consider ordinal sums P, ; A;
where two or more components have elements in common distinct from 1 (for
example, A; = A; for some i # j € I). In such cases we tacitly mean to
consider an ordinal sum EBiGI B;, with B; ~ A, for every i € I and B;NB; =
{1} for i # j.

— Unless stated otherwise, from now on we assume that all the ordinal sums of
Wajsberg hoops that we consider have non-trivial components.

It is possible to capture the property that a BL-chain 4 has at most n compo-
nents (#A < n), equationally.

Lemma 1 ([AMO03, Lemma 4.2]). Let A be a BL-chain. Then #A < n if and
only if it satisfies the following equation:

n—1 n
/\ ((.TZ'+1 = mi) = wi) = (\/ $i> =1. ()\n)

=0 =0

Consider the set Coo = {z € Z : © < 0}. The hoop Coo = (Coo,*,=,1) is
defined as follows, for x,y € Cy:

— 1%~ =0,
—alry =ty

0 if z <Zy,
7:c:>C°°y: =Y

y—x otherwise.

A direct inspection shows that C., is a cancellative hoop, and it is known that
V(Csx) = CH. In general, CH is generated by each of its non-trivial chains.
We assume that the reader is acquainted with some basic notions of univer-
sal algebra, and we refer to [BS81] for more details. If K is a class of BL-
chains, H(K),S(K),P(K),I(K),P,(K) denote, respectively, the classes of all
the homomorphic images, subalgebras, direct products, isomorphic algebras and
ultraproducts of members of K. If A is a BL-chain, with V(A) we denote the
variety generated by A, i.e., HSP(A) [BS81]: similarly, if K is a class of
BL-chains, then V(K) indicates the variety generated by them. For example
V(2) = B, where 2 is the two-element Boolean algebra, and B is the variety of
Boolean algebras. Let R, Q, Z be the additive totally ordered abelian groups
over, respectively, real, rational and integer numbers. For k£ > 2, let Qi be the
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totally ordered abelian subgroup of Q, with carrier {%5 : a € Z}. As it is cus-
tomary, given two lattice ordered abelian groups S, 7, with S X, 7 we denote
the lattice ordered abelian group obtained as the lexicographic product of S and

7. With I' we denote Mundici’s gamma functor!: see [CDM99)] for details. For

n > 2 we define £, < I'(Qy,1) and K, & I'(Z x1ex Z, (n — 1,0)). Finally,

we define [0, 1]f, ef I'(R,1). The radical of a totally ordered Wajsberg hoop

(MV-chain) A, is the intersection of all the maximal filters of A, and will be
denoted by Rad(A). Let A be an MV-chain. We say that A has a finite rank if
A/Rad(A) ~ Ly, for some k (in this case rank(A) = k), whilst A has infinite
rank if A/Rad(A) is an infinite simple MV-chain. We can define mutatis mutan-
dis the same notion for a totally ordered Wasjberg hoop?: the only difference
is that A/Rad(A) would be the 0-free reduct of a simple MV-chain (finite or
infinite). For k > 1 we define Py, as 2@ Coo @ -+ @ Coo. For k > 1, Py generates
—_—
a variety, called Py, where P; is the varietyk (;Ifmf)sroduct algebras. We refer the
reader to [AB19] for further details. For k > 2 we define Gy, as 2@ --- ® 2. Gi
e Ltimes
is a Godel-chain (G-chain, for short) with k elements: see [CHN11] for further
details. Let A be a BL-chain or the 0-free reduct of an MV-chain (i.e., a totally

ordered Wajsberg hoop with minimum). We define A dof {reA: x>-z}and

A {r € A: x < -z}. If Ais atotally ordered Wajsberg hoop with minimum

m, here -z stands for z = m. Let A be a BL.-chain or a totally ordered Wajsberg
hoop. With Si(A) we denote the class of the subdirectly irreducible algebras in
V(A). Finally, given a non-trivial variety L. of BL-algebras (Wajsberg hoops),
with Ch(LL) we denote the class of all the non-trivial chains in L. Every non-
trivial variety L. of BL-algebras is generated by its chains, i.e., L = V(Ch(L)).
To simplify the notation, if A is a BL-chain (a totally ordered Wajsberg hoop),
we will write Ch(A) instead of Ch(V(A)).

3 Amalgamation Property for Varieties Generated
by One BL-chain with Finitely Many Components

We start with the definition of the amalgamation property. With — we denote
an embedding between algebras.

Definition 4. We say that a class K of BL-algebras has the amalgamation
property (AP) if for every 5-tuple (called V-formation) (A,B,C,1i,5), where

ABCeK and A< B, A < C, there is a triple (called amalgam) (D, h, k),
with D € K, BLD, ¢ <D, such that hoi = ko j.

L I establishes a categorical equivalence between abelian l-groups with a strong order
unit (G, u) and MV-algebras, by equipping the interval [0, u] of G with MV-algebraic
operations obtained by truncation of the group ones. On arrows I" acts by restriction.

2 Note that every non-trivial totally ordered cancellative hoop A does not have rank,
since A/Rad(A) is an infinite cancellative hoop.
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For the varieties of BL-algebras a sufficient condition for the AP is the following,.

Theorem 2 ([Mon06, MMT14]). Let L be a non-trivial variety of BL-algebras.
If Ch(L) enjoys the AP then the same holds for L.

In this section we will provide a full classification of the AP for the varieties
of BL-algebras generated by one BL-chain with finitely many components. We
start with the following result.

Lemma 2 ([AB21b]). Let L be a variety of BL-algebras such that every chain
has finitely many components. Then there are k, h such that:

(i) Fvery chain in L has at most k components.
(i) Every chain in L is such that the rank of a component, if finite, is at most
h.

Lemma 3. Let L be a variety of BL-algebras. Then the following are equivalent.

(i) L contains neither G4 nor Ps.

(ii) Every chain A = @,c; A; in L is such that |I| < 3, there is at most one
i € I'\{0} such that A; is infinite, and there is at most one j € I'\ {0} such
that A; is bounded.

Proof. Let L be a variety of BL-algebras.

(#7) = (i) Immediate, as G4 and P do not satisfy condition ().

(i) = (ii) Assume that condition (i) holds true, and pick A = @, ; A; €
Ch(L). If |I| > 3, then there are ¢ # j € I\ {0} such that A;, A; are either
both bounded or both cancellative. But then G4, — A (since the subalgebra of
A generated by its idempotent elements is a G-chain with at least 4 elements)
or Py — A (since Co, embeds into every infinite totally ordered cancellative
hoop, see [AFMO07]), in contrast with condition (7). So we must have || < 3.
Suppose now that there are ¢,j € I\ {0} such that A;, A; are both infinite.
Assume w.l.0.g. that ¢ < j. By [AMO03, Theorem 7.9], P, € Si(26.A4;8.4,), but
then Py € L, in contrast with condition (7). So there is at most one ¢ € I'\ {0}
such that A; is infinite. Suppose now that there are i,j € I\ {0} such that
A;, A; are both bounded. This would imply that G4 — A, in contrast with
condition (7). Whence all the requirements of condition (i) are satisfied, and
the proof is settled.

O

Theorem 3. Let L be a variety of BL-algebras such that every chain has finitely
many components. If I contains G4 or Pa, then I does not have the AP.

Proof. Let L be a variety of BL-algebras such that every chain has finitely many
components. By Lemma 2 there is n € N which is the largest number of compo-
nents of a chain in L.
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Suppose first that L contains G4. Since every chain has at most n components,
then every G-chain in L has at most n + 1 elements. Let 4 < k < n + 1 be the
cardinality of the largest G-chain in L.

Pick now the V-formation (B,C,D,1,7), such that B ~ Gi_1, C ~ Gi and
D ~ Gj. Assume that the lattice reducts of B,C, D are, respectively, by < -+ <
bp—1,c1 <+ <cp,d <--- <dg. Let us define 4, j as follows:

- Z(bl) = (1, ’i(bk_l) = Ck-

— For2<r<k-—2 ib)=c.

— j(b1) = d1, j(bx—1) = dp.
—For2<r<k-2 j(b)=dry1.

It is immediate to see that i, j are embeddings.

We now show that there is no amalgam in L for the V-formation (B,C, D, 1, j).

Suppose by contradiction that there is an amalgam (£,1,m) for (B,C, D, i, j),
with £ € L. Then we must have that [(i(b)) = m(j(b)), for every b € B, and
hence an easy computation shows that S = I[(C) Um(D) has k + 1 elements,
and its elements are ordered (in €) as follows®: 0 = I(c1) = m(d1) < l(c2) <
l(C3) = m(dg) < e < l(Ckfl) = m(dkfg) < m(dkfl) <1= l(Ck) = m(dk)
We now show that S is a subuniverse of £. Note that every element of S is
idempotent. Also, since I(i(B)) = S\ {m(dx—-1)} and m(§(B)) = S\ {l(c2)},
then the operations * and = coincide with the ones of a G-chain, over S\
{m(di-1)} and S\ {l(c2)}. Then, to show that S is a subuniverse of £ we only
need to check that m(dy—1) = l(c2) € S. Clearly m(di_1) = l(c2) > I(c2),
and by monotonicity, m(dy—1) = (c2) < I(ck—1) = I(c2) = I(c2). This proves
m(dg—1) = l(ca) = l(c2) € S. Whence S is a subuniverse of £.

Let S be the subalgebra of £ with carrier S. It is immediate to see that
S =~ Giy1, and clearly S € L. However this is not possible, as the largest G-
chain (up to isomorphisms) in L is Gy.

Whence we conclude that (B,C,D,i,j) cannot have an amalgam in L, and
the AP fails for L.

Suppose, finally, that L contains P,. The proof strategy is very similar to
the G4 case, with the difference that instead of the idempotent elements we take
in account the number of cancellative components. Remember that every chain
in L has at most n components. Let A be the maximum number of cancellative
components of a chain in L: clearly 2 < h < n — 1. This means that I contains
Pi,...,Py.

Pick now the V-formation (B,C,D,%,j), such that B ~ Pj_;, C ~ P, and
D~ Ph~

More specifically we have that B = 2®B,®- - @B, _1,C = 20C1P- - -®Cp, D =
2®D1®---B Dy, and all the B,’s, Cs’s, D;’s are isomorphic to Cs,. Let us define
1,7 as follows:

- 4(0) =0,4(1) =1.
— For 1 <r < h—1, i maps isomorphically B, in C,..

3 To use this proof strategy is essential that k > 4.
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- j(0) =0, j(1) = 1.
— For 1 <r < h—1, j maps isomorphically B, in D, ;.

It is immediate to see that ¢, j are embeddings.

We now show that there is no amalgam in L for the V-formation (B,C, D, i, j).

Suppose by contradiction that there is an amalgam (&, 1, m) for (B,C,D,1, ),
with & € L. Then we must have that [(i(b)) = m(j(b)), for every b € B, and
hence an easy check shows that the elements of S = I(C) Um(D) are ordered
(in &) as follows®: 0 < I(Cy) \ {1} < I(C2) \ {1} = m(Dy) \ {1} < -+ <
H{C)\ {1} =m(Dp-1) \ {1} < m(Dp) \ {1} < 1. So, S contains the elements of
h + 1 totally ordered cancellative hoops, with the top element 1 in common. We
now show that S is a subuniverse of €. Since [(i(B)) = S\ (m(Dp) \ {1}) and
m(j(B)) = S\ ((C1)\{1}), then the operations % and = of I(i(B)) and m(j(B))
coincide with the ones of a chain isomorphic to Py, over S\ (m(Dy) \ {1}) and
S\ (I(Cy) \ {1}), respectively. Then, to show that S is a subuniverse of £ we
only need to check that x = y € S, for every z € m(Dy,) \ {1}, and every
y € 1(C1) \ {1}. Clearly = y > y, and by monotonicity, z = y < z = y = y,
for every z € I(C) \ {1}. This proves x = y = y € S. Whence S is a subuniverse
of £. Let § be the subalgebra of £ with carrier S. It is immediate to see that
S >~ Ph41, and clearly S € L. However this is not possible, as no chain in L has
more than h cancellative components. Whence we conclude that (B,C, D, 1, j)
cannot have an amalgam in L, and the AP fails for L. The proof is settled. O

Lemma 4. Let A be a simple MV-chain, and let B = @,.; B; be a BL-chain
such that Bo = 2 and |I| > 2 (i.e., B is an SBL-chain with at least two compo-
nents). Suppose that there is a BL-algebra C such that A — C and B — C. Then
A®Bien oy Bi = C.

Proof. Let A, B as above, and assume that there is a BL-algebra C such that

A <5 Cand B< C. Let D be the subalgebra of C generated by i(A) U j(B).
We now show that z *xp y = x, for every x € i(A\ {1}) and y € j(B\ {0}).
Pick © € i(A\ {1}) and y € j§(B\ {0}). It is easy to check that ——z =

z and —y = 0. Now, D is isomorphic to a subdirect product £ of a family

of subdirectly irreducible BL-chains {&, : r € R}. Then there are two tuples

(Zr)rer, (Yr)rer € € which correspond - via the isomorphism between D and &

- to x and y, respectively.

Since -y = 0, every y, in (y.),rcr is either 1 or it belongs to a component of
& which is different from the first-one. Indeed, if not we would have —y, > 0,
for some s € R, and this would imply —y > 0, a contradiction.

Since =~z = z, every x, in (z,),.cr belongs to the first component of &,.
Indeed, if not we would have =—z4 # x4, for some s € R, and then = # -z, a
contradiction. Since A is simple, then x is nilpotent, i.e., z™ = 0, for some n.
This implies that x, < 1 for every r € R.

* To use this proof strategy it is essential that h > 2. For every I(C;) (m(D;), respec-
tively), the elements are ordered as in the chain I(C;) (m(D;), respectively).
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From the previous observations we have that z, < y,, for every x, in (x,),cr
and every y, in (y,)rcr. Then an easy computation shows that z, * y,. = x,,
for every r € R, and hence x x y = x. Moreover we have that y = x = x, since
Yr = T, = T, for every z, in (z,),cg and every y, in (y,)rcr. This means that
i(A) U j(B) is closed under xp and =p, and it contains 0 and 1. Moreover we
have that x Apy =z, as z *xpy < 2 Ap y < z, and since i(A) and j(B) are
both chains we conclude that i(A) U j(B) is a totally ordered subuniverse of C.
Then we have D ~ A@®;c\ {0} Bi, and hence the theorem’s claim is an immediate
consequence. O

Remark 2. Note that Lemma 4 does not hold, in general, if we remove the
assumption that A is simple. For example, consider Chang’s MV-algebra ICy
and 2 @ L3, as well as their direct product Ky x 2@ L3. It is very easy to check
that o — Ko x2@ L3 and 20 L3 — Ko x2BL3. However oD L3y ~ Ko x2HL3.

Proposition 1. Let A =@, ; A; be a BL-chain. Suppose that:

~ |I] > 2, ie., A has at least two components.
- A is an MV-chain with infinite rank such that Ly ¥~ Ap, for some k> 3 or
Ag is an infinite MV-chain with rank k > 3, and Ly 4~ Ayg.

Then V(A) does not have the AP.

Proof. Let A be a BL-chain as above. Since Aj is an infinite MV-chain with
infinite rank or rank k, then £, € V(Ag) € V(A). Pick now the V-formation
(2, A, Ly,i,7), where i,j are defined in the unique and obvious way. Suppose
that there is an amalgam (D,l,m), with D € V(A). By Lemma 4, D contains
E=L, D @ie]\{o} A; as a subalgebra. Since L ¥~ Ag, by [AM03, Lemma 4.6]

the equation® e ((y=2z)=2)*((k—2)z & —x)) = (xVy) =1 is such
that A = e, whilst £ £ e. Whence £ ¢ V(A), and we conclude that V(A) does
not have the AP. O

We recall the following construction, introduced in [Jen03].

Definition 5. Let A be a totally ordered Wagjsberg hoop. The disconnected rota-
tion of A is an algebra denoted by A* and defined as follows. Let A" = {(a,0) :
a € A}. We define an order <u on A’ such that (A',<a/) and (A,<4) are

dually isomorphic. Let A* d:efA U A’. We extend the orders <, and <a/ to an
order < a~ in A*, by putting a <a~ b for every a € A’;b € A. For every a € A*
we define @’ = (a,0) ifa € A, and o’ =b if a = (b,0) € A’

® Here < y stands for (z = y) * (y = x). Moreover z ¥y def (x = (z*xy)) = v,
whilst na is defined inductively by 0z = 0 and n(z) = (n — 1)z W z.



10 S. Aguzzoli and M. Bianchi

Finally, we take the following operations in A*. 14« def 1a, 04« = (1a),
A g+ 1s the minimum w.r.t. <ax, V- 15 the mazimum w.r.t. < gx,

a*xab ifa,b e A,
def | (a=4 ) ifae Abe A,
a*pb = N /
(b=ad) ifacAbe A,
0.4~ ifa,be A'.
a=>4b ifa,b € A,
a:>A*bd:ef (axqb") z:faeA,beA’,
14 ifac A',be A,
O =4d ifa,be A

Theorem 4 ([NEGO05, Theorem 9]). Let A be a totally ordered cancellative hoop.
Then A* is isomorphic to a perfect MV-chain. Conversely, every perfect MV-
chain is isomorphic to the disconnected rotation of a totally ordered cancellative
hoop.

Let A be a totally ordered Wajsberg hoop. With A" we denote the O-free reduct
of A*.

Lemma 5. (i) Let A be a totally ordered cancellative hoop, and let B be a
totally ordered Wajsberg hoop with minimum. If A — B, then A” — B.
(ii) Let A, B be two totally ordered cancellative hoops. If A — B, then A™ — B".
(iii) Let A be an infinite totally ordered Wajsberg hoop with minimum. Then,
for every B € Ch(CH), B" € V(A).

Proof. (i) Let A, B as above, and suppose that A <% B. Let C be the subalgebra
of B generated by i(A) U {0}, where 0 is the minimum of B. Of course
i(A) U—i(A) C C, where —i(A) = {—z: = € i(A)}. We show that also the
other inclusion holds. Since A is a cancellative hoop, then i(A) C Rad(B) C
BT: this means that i(A4) is closed under *,=, and i(A) N —i(A) = 0.
As an easy check shows, —i(A) cannot contain a negation fixpoint, and
hence —i(A) C B~, which implies that —i(A) is closed under * (notice
that 0 € —i(A)). Since B has an involutive negation, then i(A) U —i(A)
is closed under #,—. To show that i(A) U —i(A) is a subuniverse of B, it
remains to show that given z,y € —i(A), with > y > 0, and y € —i(A4),
x =y € i(A)U-i(A). Suppose first x € —i(A). As it is well known, on MV-
algebras it holds that © = y = (—y) = (—x). since the negation is involutive
-y, ~x € i(A), and hence x = y = (-y) = (—x) € i(A4). Suppose, finally,
that = € i(A). Notice that z = y = =2 ® y = —(x *x —y). Since the negation
is involutive then —y € i(A), and since i(A) is closed under * we conclude
that z % —y € i(A). Then z = y = =(z * ~y) € —~i(A).

This means that i(A4) U —i(A) is a subuniverse of B, and hence C' = i(A) U
—i(A). By [Jen03, Definition 5] an easy check shows that C ~ A". Then we
conclude that A" — B.
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Immediate, by the definition of disconnected rotation.

Let A be an infinite totally ordered Wajsberg hoop with minimum. By
[AP02, Corollary 2.3] we know that there is an MV-chain A" such that A
is the O-free reduct of A’, and Ch(A) = Sh(Ch(A")), where Sh(Ch(A"))
denotes the class of 0-free subreducts of Ch(A’). Since A’ is infinite, then
C C V(A'). By Theorem 4 we conclude that for every B € Ch(CH), B" €
V(A). O

Theorem 5. (i) Let A be an MV-chain. Then Ch(A) has the AP.
(i) Let A be a totally ordered Wagsberg hoop. Then Ch(A) has the AP.

Proof. (i) Assume first that A is an MV-chain. If A has infinite rank, then

V(A) =MV. Then, as shown in [Mun88, Mon06] Ch(.A) has the AP.

If A has a finite rank, then (see [CDM99]) either V(A) = V(K,) or
V(A) = V(L,), for some n > 2. The rest of the proof is very similar to
the one [NLOO, Proposition 4], with some modifications. Let (B,C, D, 1, j)
be a V-formation with B,C, D € Ch(A). By [Mun88,Mon06] there exists an
amalgam (&, h, k), where £ is an MV-chain. By [NL0OO, Lemma 6, Proposi-
tion 7], Ch(A) N S(E) has a largest element &. Since h(C), k(D) € IS(E),
then both C and D embeds into &. Consider now (&, h1,k1), where
hi : C — & and ky : D — &) are maps such that hi(z) = h(z), and
k1(y) = k(y), for every x € C,y € D. An easy check shows that (o, h1, k1)
is an amalgam for (B,C,D,,7), and clearly & € Ch(A).

Suppose first that A is an unbounded Wajsberg hoop, i.e., A is an infinite
cancellative hoop. Then by [AFMO07, Theorem 6.3], V(.A) is the variety CH
of cancellative hoops, and as shown in [Mon06] Ch(A) has the AP.
Finally, assume that A is a totally ordered Wajsberg hoop with minimum.
This means that A is the 0-free reduct of an MV-chain, say A’. Then V(A)
can contain 0-free reducts of MV-chains and, possibly, cancellative hoops.
Let (B,C,D,i,7) be a V-formation with B,C,D € Ch(A). Let us define
(B',C',D,i1,71) as follows. For £ € {B,C, D}, & = £" if £ is a cancellative
hoop, and & = &£ if £ is a Wajsberg hoop with minimum. The maps 4 :
B — (', and j; : B — D’ are defined as follows.

i(z) itB=0

i1(x) = i(z) if B =B" and > —px.
g (i(-px)) B =B"and z < .
j(z) itB=8

Jji(z) =< j(x) if B =B"and z > —pz.
g (j(mpx)) it B'=B"and x < .

The maps i1, j1 are well-defined, since by Lemma 5, B — B’, C — (', and
D — D'. Since (B,C,D,i,j) is a V-formation, using Lemma 5 it can be
easily checked that (B',C’,D’,i1,71) is a V-formation as well. By Lemma 5
we also have that B',C’, D' € Ch(A). By the construction we have that
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B',C', D’ are the 0-free reducts of three MV-chains, say B”,C"”,D”. Then
we can construct a V-formation (B"”,C"” D" iy, j2), where iy and jo maps
the elements in the same way of i; and ji, respectively. By 1) there is an
amalgam (&, h, k) for (B”,C", D" is, j2), where & € Ch(A’). Then, by call-
ing &' the O-free reduct of £, we can construct an amalgam (&', hy, k1) for
the V-formation (B',C’,D’,41,51), where h; and j; maps the elements in
the same way of h and k, respectively. Clearly & € Ch(A).

Consider now (&', hg, j2), where hy : C — &', and ky : D — &’ are such
that ho(x) = hi(x), for every z € C, and kqo(y) = ki(y), for every y € D.
The maps hs, ko are well-defined, since by Lemma 5, C — C’, and D — D’.
It is straightforward to check that (&’ ha,j2) is an amalgam for
(B,C,D,1,7).

The proof is settled. a

Proposition 2 ([AB21b]). Let A = @LO A; be a BL-chain. Define A® —
@i-:ol A; & By, where:

- B = A if Ay is finite.

— By is the O-free reduct of [0,1], if Ax has infinite rank.

— By, is the O-free reduct of IC,, if Ay is non-simple and with rank n.
— B = C if Ay is an infinite cancellative hoop.

Then A® is subdirectly irreducible, and V(A) = V(A?®).
Lemma 6 ([AMO03]).

~ Let @,c; Ai be a non-trivial BL-chain. Then ISP (P,c; Ai) = I(D,e;
SPu(.AZ)), where @ie] SPu(.Al) = {@Z—el B;: B; € SPu(Al)}

— If A is an infinite totally ordered cancellative hoop, then ISP, (A) = Ch(CH).

— If A is a totally ordered Wajsberg hoop with infinite rank, and for everyn > 2,
L, — A, then ISP, (A) = Ch(A).

- If A is a totally ordered Wajsberg hoop with rank(A) =n, and L,, — A, then
ISP, (A) = Ch(A). If in addition A is also finite, then® ISP, (A) = IS(A) =
Ch(A).

We can finally state our main result.

Theorem 6. Let I be a variety of BL-algebras generated by one chain with
finitely many components. Then the following are equivalent:

(i) L has the AP.
(ii) Every BL-chain A = @, ; Ai such that V(A) = L satisfies the following
conditions.

o |I| <3.

5 The assumption that Ch(.A) does not contain trivial chains is essential. Indeed, if A
is non-trivial, then ISP, (A) does not contain trivial algebras.
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o There is at most one i € I\ {0} such that A; is infinite, and there is at
most one j € I\ {0} such that A; is bounded.
o If|I| > 2 then the following ones hold.
x If Ay has infinite rank, then L — Ag, for every k > 2.
x If Ao is infinite and rank(Ag) = k, then Ly — Ayp.

Proof. Let L be a variety of BL-algebras generated by one chain with finitely
many components.

(i) = (i) Suppose that condition 2 does not hold. The results of Lemma 3
plus an easy check show that the hypothesis of Theorem 3 or Proposition 1
are satisfied, and we conclude that I does not have the AP.
(i1) = (i) Let A = @, A;i be a BL-chain such that V(A) = LL. By hypoth-
esis A satisfies condition (i), which implies #A < 3. Our proof strategy is
to prove the AP for Ch(A). By Theorem 2 this implies that . = V(.A) has
the AP as well. We distinguish the cases #A4 =1, #A4 =2, and #A4 = 3.
#A = 1. In this case A is an MV-chain, and by [NL0OO], L has the AP.
#A = 2. We have that A = Ay ® A;. By Proposition 2, V(A) = V(A?%),
and A° = A;®.A5. An easy check shows that A® satisfies 2) as well as the
hypothesis of [AM03, Theorems 7.4,7.6]: by inspecting the proof of [AMO03,
Theorem 7.6] we have Ch(A) = Ch(A®) = ISP, (A?%). Let (B,C,D,1, )
be a V-formation in Ch(A). Since, by Lemma 1, every chain in V(.A) has
at most two components, without loss of generality we can assume that
B=By@® B, C=Cy®Cy, D="Dyd Dy, possibly with the trivial algebra
as second component. Because of the operations of an ordinal sum, 7 and
j can only map the first (second) component of B into the first (second)
component of, respectively, C and D. By Theorem 5 and Lemma 6, for
n € {0,1} we can find an amalgam (&, by, k) of (Bp,Cp, Dns ity s Jis, )
with & € Ch(Ag) = ISP, (Ap), and & € Ch(A5) = ISP, (A5). Pick
now (& @ &1, h, k), where:
— h(z) = ho(z) if z € Cy, and h(z) = hy(z) otherwise.
— k(x) = ko(x) if € Dy, and k(z) = kq(x) otherwise.
From this and Lemma 6, a direct inspection shows that (Eo@® &1, b, k) is an
amalgam of (B,C,D,1,j), and & & & € ISP, (A®) = Ch(A®) = Ch(A).
#A = 3. We have that A = Ay & A; ® As. Since 2) holds true, the only
possibility is that exactly one among .4; and A, is finite, and the other one
is an infinite cancellative hoop. Let us assume that A; is finite, and A is
cancellative: we will omit the other case since the proof remains basically
identical, mutatis mutandis. An easy check shows that A satisfies both 2)
and the hypothesis of [AMO03, Theorems 7.4,7.6]. By inspecting the proof
of [AMO3, Theorem 7.6] we have Ch(A) = ISP, (A) = I{R& S T :
R € SP,(Ap),S € SP,(A1),T € SP,(A2)}, where the last equality is
due to Lemma 6. By Lemma 6, if H, K are, respectively, a cancellative
totally ordered hoop, and a finite totally ordered Wajsberg hoop, then
ISP,(H) = {R : R € Ch(CH)}, and ISP, (K) = IS(K). This means
that for every C € Ch(A), if C = Cy @ Cy (i.e., #C = 2), then either
C, € ISP, (A2) and hence it is a cancellative hoop or C; € ISP, (A;) =
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IS(Ay), i.e., Cy is a finite Wajsberg hoop embeddable into 4;. Of course,
if C € Ch(A) has three components, i.e., C = Cy @® C; ® Ca, then C; is a
cancellative hoop, whilst Cs is a finite Wajsberg hoop embeddable into A;.
Let (B,C,D,i,j) be a V-formation in Ch(A). If both C and D have at
most two components, then we can find an amalgam by using the same
argument used for the case #.A4 = 2. Suppose then that either C or D has
three components, w.l.o.g. #C = 3. We have three subcases.
x #D = 1. This implies that #8 = 1. By our previous observa-
tions we know that By,Co, Dy € Ch(Ap) = ISP, (Ap). Whence by
Theorem 5 we can find an amalgam (&, h, k) for the V-formation
(Bo,Co, Dositg, s Jis, ), Where & € Ch(Ag) = ISP, (Ap). Consider
now (£, @ Cy @ Co,1,8), where r : C — & B C; P Co, and s : D —
&y @ C1 @ Cy are maps defined as follows.
- (i) = h(i), for i € Cp, and (i) =i if i € C1 U Cs.
- 8(i) = k(4), for i € Dy, and s(i) =i if ¢ € Dy U Ds.
A direct inspection shows that (£ @ C; @ Co, 1, s) is an amalgam for
(B,C,D,i,j), and & & C, @ Cy € ISP, (A) = Ch(A).
x #D = 2. This implies that 1 < #B < 2. We can assume that
#B = 2, i.e., B = By ® By, as the proof for the case #B = 1
can be obtained by replacing B; with the trivial Wajsberg hoop. As
in the #D = 1 case, we can find an amalgam (&, h, k) for the V-
formation (Bo,Co, Do, i}y, ,J1s,)s Where & € Ch(Ag) = ISP, (Ao).
By hypothesis D = Dy & D1, and from the previous parts of the proof
we know that D; is either an infinite cancellative hoop or a finite
Wajsberg hoop such that D; € IS(A;). We now analyze these two
subcases.
- Dy is cancellative. Then both Cy and D; belongs to ISP, (As).
Since we assumed #B = 2, then B; € ISP, (A3) (i.e., Bj is an
infinite cancellative hoop). Whence i(B1) C Cq, and j(B;) C Ds.
Consider the V-formation (Bi,C2, D144, ,J1s,). By Theorem 5
we can find an amalgam (&1,v,w), where & € Ch(WH) =
ISP, (Az). Consider now (& @ C; @ &1,71,8), where r : C —
EoBCL D&, and s : D — & ® Cy © & are maps defined as
follows.

hi) ifieC,

. (0) ificCo, k@) ifie Dy,

r(i) =41 ifi e C} s(i) = () ificD
v(@) ifie Cy Wi s

A direct inspection shows that (&g & Cy @ &1, 7, s) is an amalgam
for (B,C,D,i,7), and & @ C1 @ & € ISP, (A) = Ch(A).

- Dy is finite. Then both C; and Dy belongs to ISP, (A1) = IS(A;).
Since we assumed #B = 2, then By € IS(A;) (i.e., By is a
finite Wajsberg hoop). Whence i(B1) C Cy, and j(B1) € Dj.
Consider the V-formation (By,C1,D1,i1,, 1, )- By Theorem 5
we can find an amalgam (€, v, w), where & € Ch(A;) = IS(A;).
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Consider now (& @ & @ Ca, 1, 8), where r : C — £ B E ® Ca, and
s: D — & @ E ®Cy are maps defined as follows.

W) if i
. (i) ifi € Co,  [k() itie Dy,
r(i) =< v(i) ifieC s(i) = () ifieD
i ifieCy e

it is easy to check that (& @ & @ Ca,7,s) is an amalgam for
(B,C,D,i,7), and & @ & @ Cy € ISP, (A) = Ch(A).
* #D = 3. By Theorem 5 we can find an amalgam (&, h, k) for the
V-formation (BO,CO,DO,%O ,j[BO), where & € Ch(Ag) = ISP, (Ap).
We distinguish the cases #B = 2, and #B = 3. The case #B =1
can be omitted, since it is a subcase of #B = 2, when the second
component of B is the trivial Wajsberg hoop.
- #B = 2. We have that By is either cancellative or finite.
If B; is cancellative, then By,Cy, Dy € ISP, (As) = Ch(As),
which means that they are all cancellative hoops. Since C; and
D, are finite Wajsberg hoops, then i(B;1) C Cy and j(B1) C Ds.
By Theorem 5 we can find an amalgam (&, v,w), with & €
ISP, (Az) = Ch(Ay) for the V-formation (By,C2, D2, i1y, , j1s, )-
Moreover, by hypothesis C1, Dy € IS(A;), which means that there

are two embeddings I, m such that Cy < Ay and Dy N Ay
Consider now (£ ® Ay @ &a,1,8), where 1 : C — & @ A @ &,
and s : D — & ® Ay ® & are maps defined as follows.

h(i) ifi e Co, k(i) ifie Dy,
r(i) = 1(i) ifieCy s(i) = { m(i) ifie Dy,
v(i) ifi€ Cy w(i) if i€ Cs

A direct inspection shows that (& ® A1 @ &y, 7, s) is an amalgam
for (B,C,D,i,j), and & ® A1 @ & € ISP, (A) = Ch(A).

If By is finite, then By,Cy,D; € ISP,(A1) = Ch(A;), which
means that they are all finite Wajsberg hoops. Since C; and Dy
are cancellative hoops, then ¢(By) C C; and j(By) C Ds.

By Theorem 5 we can find an amalgam (&1,l,m), with & €
IS(Ay) = Ch(Ay) for the V-formation (B1,C1, D1, i1y, 515, )-

By Theorem 5 we can find an amalgam (&, v,w), with & €
ISP, (As) = Ch(Ay) for the V-formation (Z4,C2, Do, i1y, , jir, )
where 7Ty is the trivial Wajsberg hoop.

Consider now (&g ® A1 B &y, 1, 8), where 1 : C — Eg B E B &, and
$:D — & & Ay ® Ey are maps defined as follows.

h(i) ifie Co, k(i) ifie Dy,

r(i) =ql() ifieCy s(i) = ¢ m(i) ifie Dy,
v(i) ifieCy w(i) ifieCy
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A direct inspection shows that (£g ® & @ Es, 7, s) is an amalgam
for (B,C,D,i,7), and & @ & @ & € ISP, (A) = Ch(A).

- #B = 3. In this case B1,C1,D; € IS(A;) = Ch(A;), and
hence they are all finite Wajsberg hoops, whilst By,Co, Dy €
ISP, (A2) = Ch(A3), which means that they are all cancella-
tive hoops. In particular i(B;) C Cy, i(B2) C Ca, j(B1) C Dy, and
1(Ba) C Dy; moreover i(By) C Co, and j(By) C Dy. By Theorem 5
we can find an amalgam (&;,1,m), with & € IS(A;) = Ch(Ay),
for the V-formation (By,C1, D144, j1,, )- Using again Theorem 5
we can also find an amalgam (&, v,w), with & € ISP, (A;) =
Ch(Ay) for the V-formation (Ba,C2, D2,i}4,; s, )-

Consider now (&g @ &1 @ Es, 1, s), where r : C — Eg B E ® &, and
s:D— & @ E P E; are maps defined as follows.

(i) ifie Co, k(i) ifie Dy,
r(i)={16) ifieC, s(i) =< m(i) ifie Dy,
U(Z) ifieCy w(z) if i € Cy

A direct inspection shows that (&) @ & @ &a, 1, s) is an amalgam
for (B,C,DJ,j), and Eg D E P & € ISPu(A) = Ch(.A)

The proof is settled. O

4 Discussion and Open Problems

In this paper we studied the AP for the varieties of BL-algebras generated by
one BL-chain with finitely many components. Future works will be devoted to
generalize these results to a larger family of varieties. A first step could be the
study of the AP for the varieties of BL-algebras generated by a finite set S of
BL-chains with finitely many components. As shown in [AB21b] these varieties
coincide with the small varieties of BL-algebras, i.e., the varieties of BL-algebras
whose lattice of subvarieties is finite. We have some partial results in this direc-
tion, but the main issue is that for many of these varieties the AP for the class of
chains fails to holds, making the analysis of the AP for the whole variety harder.
One may argue that the requirement on the finiteness of S is quite strong, but as
the following result shows, one should be careful when removing this restriction.

Theorem 7. Every variety of BL-algebras is generated by some set of BL-chains
with finitely many components.

Proof. As shown in [AB21b] every variety of BL-algebras LL is equal to the join
of a family of strictly join irreducible varieties, let us say L. = \/,.; ;. Further
it is shown in [AB21b] that every L; is generated by one BL-chain with finitely
many components, say 4;. As a consequence . = V(S), where S = {A4; : i € T},
and clearly S is a set of BL-chains with finitely many components. a

So, by removing the restriction on the finiteness of S we get the whole lattice of
varieties of BL-algebras £(BIL), which is uncountable and poorly known.
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Abstract. A distributive lattice-ordered magma (d¢-magma) (4, A, V, -)
is a distributive lattice with a binary operation - that preserves joins in
both arguments, and when - is associative then (A, V,-) is an idempotent
semiring. A d¢-magma with a top T is unary-determined if z-y = (zT Ay)
V(zATy). These algebras are term-equivalent to a subvariety of distribu-
tive lattices with T and two join-preserving unary operations p,q. We
obtain simple conditions on p, ¢ such that z-y = (pz Ay) V (z A qy) is
associative, commutative, idempotent and/or has an identity element.
This generalizes previous results on the structure of doubly idempotent
semirings and, in the case when the distributive lattice is a Heyting alge-
bra, it provides structural insight into unary-determined algebraic models
of bunched implication logic. We also provide Kripke semantics for the
algebras under consideration, which leads to more efficient algorithms
for constructing finite models.

Keywords: Distributive lattice-ordered magmas - Bunched
implication algebras * Idempotent semirings + Enumerating finite
models

1 Introduction

Idempotent semirings (A, V,-) play an important role in several areas of com-
puter science, such as network optimization, formal languages, Kleene algebras
and program semantics. In this setting they are often assumed to have con-
stants 0,1 that are the additive and multiplicative identity respectively, with 0
also being an absorbing element. However semirings are usually only assumed to
have two binary operations +, - that are associative such that + is also commu-
tative and - distributes over 4 from the left and right [9]. They are (additively)
idempotent if z + = = x, hence + is a (join) semilattice, and doubly idempotent
if - = as well. If - is also commutative then it defines a meet semilattice.
The special case when these two semilattices coincide corresponds exactly to the
variety of distributive lattices, which have a well understood structure theory.
In [1] a complete structural description was given for finite commutative dou-
bly idempotent semirings where either the multiplicative semilattice is a chain,
or the additive semilattice is a Boolean algebra. Here we show that the second
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description can be significantly generalized to the setting where the additive
semilattice is a distributive lattice, dropping the assumptions of finiteness, mul-
tiplicative commutativity and idempotence in favor of the algebraic condition
zy = (pxAy)V (z Aqy) for two unary join-preserving operations p, g. While this
property is quite restrictive in general, it does hold in all idempotent Boolean
magmas and expresses a binary operation in terms of two simpler unary opera-
tions. A full structural description of all (finite) idempotent semirings is unlikely,
but in the setting of unary-determined idempotent semirings progress is possible.

In Sect.2 we provide the needed background and prove a term-equivalence
between a subvariety of top-bounded d¢-magmas and a subvariety of top-boun-
ded distributive lattices with two unary operators. This is then specialized to
cases where - is associative, commutative, idempotent or has an identity element.
In the next section we show that when the distributive lattice is a Brouwerian
algebra or Heyting algebra, then - is residuated if and only if both p and ¢
are residuated. This establishes a connection with bunched implication alge-
bras (Bl-algebras) that are the algebraic semantics of bunched implication logic
[14], used in the setting of separation logic for program verification, including
reasoning about pointers [16] and concurrent processes [13]. Section4 contains
Kripke semantics for df-magmas, called Birkhoff frames, and for the two unary
operators p, q. This establishes the connection to the previous results in [1] and
leads to the main result (Theorem 15) that preorder forest P-frames capture
a larger class of multiplicatively idempotent Bl-algebras and doubly idempo-
tent semirings. Although the heap models of Bl-algebras used in applications
are not (multiplicatively) idempotent, they contain idempotent subalgebras and
homomorphic images, hence a characterization of unary-determined idempotent
Bl-algebras does provide insight into the general case. In Sect. 5, as an applica-
tion, we count the number of such algebras up to isomorphism if their partial
order is an antichain and also if it is a chain.

2 A Term-Equivalence Between Distributive Lattices
with Operators

A distributive lattice-ordered magma, or dl-magma, is an algebra (A, A, V, -) such
that (A, A, V) is a distributive lattice and - distributes over V, i.e., 2(y V z) =
zyVazand (zVy)z =xzVyz for all z,y, z € A. If the distributive lattice has a
top element T or a bottom element | then it is called T-bounded or 1 -bounded,
or simply bounded if both exist. A df-magma A is mormal and - is a normal
operation if A is 1-bounded and satisfies -1 = 1 = 1-z. Similarly, a unary
operation f on A is an operator if it satisfies f(xVy) = faV fy, and it is normal
if f1 = L. For brevity and to reduce the number of nested parentheses, we
write function application as fx rather than f(x), with the convention that it
has priority over - hence, e.g., fay = (f(z))-y (this convention ensures unique
readability). Note that since operators distribute over V in each argument, they
are order-preserving in each argument. The operation f is said to be inflationary
if x < fx for all z € A.
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A binary operation - is said to be idempotent if xx = x for all x € A,
commutative if zy = yx and associative if (zy)z = x(yz). A semigroup is a set
with an associative operation, a band is a semigroup that is also idempotent, and
a semidlattice is a commutative band. As usual, a semilattice is partially ordered
by x Cy <= xy = x, and in this case xy is the meet operation with respect
to C. We also use this terminology with the prefix d¢, in which case the magma
operation satisfies the corresponding identities.

A dl-magma is called unary-determined if it is T-bounded and satisfies the
identity

ry=(xT AY)V (zATy).

As examples, we mention that all doubly-idempotent semirings with a Boolean
join-semilattice are unary-determined (see Lemma 3). Complete and atomic ver-
sions of such semirings are studied in [1], and the results from that paper are gen-
eralized here to unary-determined d¢-magmas with point-free algebraic proofs.
This is an improvement since the algebraic results apply to all members of the
variety, while the previous results applied only to complete and atomic algebras.

A dlpq-algebra is a T-bounded distributive lattice with two unary operators
p, q that satisfy

cApT <qr, zAqT <pzx.

These two equational axioms are needed for our first result which shows that
unary-determined d¢-magmas and d¢pg-algebras are term-equivalent. This means
that although the two varieties are based on different sets of fundamental oper-
ations (called the signature of each class), each fundamental operation of an
algebra in one variety is identical to a term-operation constructed from funda-
mental operations of an algebra in the other variety (and vice versa). From the
point of view of category theory, term-equivalent varieties are model categories
of the same Lawvere theory.

Although unary-determined d¢-magmas and dlpg-algebras seem rather spe-
cial, they are simpler than general d/-magmas, yet include interesting idempotent
semirings (as reducts).

Theorem 1. (1) Let (A,A,V, T,p,q) be a dlpg-algebra and define -y = (px A
y)V (z A qy). Then (A,A,V,T,) is a unary-determined d¢-magma and p,q
are given by pr = x-T and qr = T-x.

(2) Let (A,A,V,T,:) be a unary-determined d¢-magma and define pr = xT,
gr = T-x. Then (A,A\,V,T,p,q) is a dlpg-algebra and - is definable from
p,q via vy = (pr Ay) V(T A qy).

Proof. (1) Assume p, ¢ are unary operators on a T-bounded distributive lattice

(A, AV, T), and 2y = (px Ay) V (z A qy). Then

x(yVz)=(prA(yVez)VzAqyVz)
=z Ay)V(prAz)V(zAgy)V(zAqz)
=z Ay)V(zAqy)V(pxAz)V(TAQgz)

=y V xz.
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A similar calculation shows that (z V y)z = xz V yz, hence - is an operator.

Since p, g satisty z A ¢-T < pz, it follows that =T = (px AT)V (x A g T) =
pxV (x AqT) = pz, and similarly T-z = gz is implied by = A pT < gz. Now the
identity zy = (T Ay) V (z A T-y) holds by definition.

(2) Assume (A, A,V,T,-) is a unary-determined d¢-magma, and define px =
2T, gz = T-y. Then p,q are unary operators and pz = T = (x'T AT)V (x A
TT)=pxV(xAqgT), hence x AgqT < pzx. The inequation x ApT < gz is proved
similarly. The operation - can be recovered from p, g since zy = (px Ay)V (zAqy)
follows from the identity we assumed. O

The preceding theorem shows that unary-determined d¢-magmas and dfpg-
algebras are “essentially the same”, and we can choose to work with the signature
that is preferred in a given situation. The unary operators of d¢pg-algebras are
simpler to handle, while the binary operator - is familiar in the semiring setting.
Next we examine how standard properties of - are captured by identities in the
language of d¢pg-algebras.

Lemma 2. Let (A,A,V, T,p,q) be a dlpg-algebra and define x-y = (px A y) V
(xAaqy).

(1) The operator - is commutative if and only if p = q.

(2) If p = q then - is associative if and only if p((px Ay) V (z A py)) = (px A
py) V (z A ppy).

(3) The operator - is idempotent if and only if p and q are inflationary, if and
only if pT =T =¢qT.

(4) If - is idempotent then it is associative if and only if

p((px Ay) v (z Aqy)) = (px Apy) V (z A qy) and
a((px Ny) vV (z A gy)) = (pr Ay) v (gx A qy).
(5) The operator - has an identity 1 if and only if pl=T=¢ql and (pxVqx)A1 <

x.
(6) If - has an identity then - is idempotent.

Proof. (1) Assuming zy = yzx, we clearly have T = T-z, hence px = gz. The
converse makes use of commutativity of A and V: xy = (px Ay) V (z A py) =

(py N @)V (y A px) = yz.
(2) Assume p = q. If - is associative then (zy)T = x(yT), so by the previous
theorem, p(zy) = xpy, which translates to

p((pr Ay) V (z Apy)) = (px Apy) V (z Appy) (%)

Conversely, suppose (x) holds, and note that p(zy) = p(yx) by (1), hence

p((px Ay) V (z Apy)) = (px Apy) V (ppz Ay) = (pz Apy) V ( Appy) V (ppT AYy)  (%%).
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It suffices to prove (zy)z < x(yz) since then z(yx) < (zy)z follows by
commutativity. Now

(zy)z = [p((pz Ay) V (z Apy)) A2V [((pz Ay) V (z Apy)) A pz]
= [((px Apy) V (x Appy)) A 2| V [px Ay Apz] V [z A py A pz] using ()
=[px Apy N2V [z Appy A 2]V [px Ay A pz] V [z A py A p2]
<[pz Apy Az]V[pz Ay Apz]V [z Apy Apz| V [z Ay Appz] V [xAppyAz]
=[px Apy A2V [px Ay Apz] V [z A ((py Apz) V (y Appz) V (ppy A 2))]
= [pz A((py A 2) V (y Ap2))] V [z Ap((py A 2) V (y A pz))] using (xx)
= x(yz2).

(3) If - is idempotent, then = 2z < 2T = pr and = < Tz = gz. Conversely,
if p,q are inflationary then za = (pz Ax) V (z A qy) = V2 = z, hence
- is idempotent. For the second equivalence, if pT = T = ¢T then p,q
are inflationary since they satisfy A pT < gx,x A qT < pz. The reverse
implication holds because x < px, gr implies T < pT,qT.

(4) Assume - is idempotent and associative. Then (T-z) T = T(zT), hence gpz =
pgzx. Furthermore, pgr = T-xT = TazT = (qx)(px) = (pgxApx)V (qzAgpz).
By (3) p,q are inflationary, so px < pgz and qx < gpx. Therefore pgr =
px V qx. Now we translate (zy)T = z(yT) to obtain p(zy) = z(py), hence

p((pr Ay) V (z Aqy)) = (px Apy) V (z Agpy) = (px Apy) V (z A (pY V qy))
= (pr Apy) V (x Apy) V (z A qy) = (pr Apy) V (x A qy) since = < px by (3).

The identity g((px Ay) V (x Aqy)) = (px Ay) V (qz A qy) has a similar proof.
Conversely, assume the two identities hold. Then using distributivity

(zy)z = [p((pz Ay) V (x A gy)) A2V [((pz Ay) V(2 A gy)) A gzl
=prApyANz]VzAqyAz]VIprAyAqgz]V iz AqyAqz]
=[pzrApyAz]Vipz Ay Aqz]V ]z Aqy A qz] since xAqyAz < zAqyNgz
=[px Apy ANzl VIpr ANy Aqz] V[ Apy Az V [z A gy A gz
=[pz A((py A2)V (Y Aaz))IV [z Ag((py A 2) V(Y A gz))] = z(yz).

(5) Assume z has an identity 1. Then pl = 1T =T =Tl =¢l and z = 21 =
(pr A1)V (xAgl)=(px A1)V, sopr Al <z and similarly gz A1 < x.
Therefore (px Vqr) Al = (pr A1)V (gz A1) < z.

Conversely, suppose pl = T = ¢l and (pz V qz) A1 < z. Then 21 =
(pr A1)V (zAql)=(pr A1) Va=uzxsince pr A1l < z. Likewise 1z = z.
(6) This follows from (3) since z = 21 < xT = pzr and =z = 1z < qz. O

Note that if A also has a bottom bound L then p, g are normal if and only if
- is normal, hence the term-equivalence preserves normality.
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Table 1. The number of algebras of cardinality n up to isomorphism.

Cardinality n = 213 |4 5 6 7 8
1| Normal dl-magmas 2120 | 1116
2 | Normal df¢pg-algebras 2| 6 46 | 3435
3| Normal comm. df-semigroups 2 8 57 | 392 | 3212
4| Normal assoc. df¢p-algebras 2| 4 13 35 | 109 | 315 | 998
5| Normal comm. idem. df-semigroups | 1| 2 8 25 97 | 366
6 | Normal assoc. idem. d¢p-algebras 1] 2 7 18 57 1163 | 521
7 | Normal comm. idem. d¢-monoids 1] 2 6 15 44 | 115 | 326
8 | Normal assoc. idem. dfpl-algebras |1 | 2 5 10 24 | 47 | 108
9 | Distributive lattices 1] 1 2 3 5 8 | 15

This term-equivalence is useful since distributive lattices with unary opera-
tors are considerably simpler than distributive lattices with binary operators. In
particular, (2) and (4) show that associativity can be replaced by one or two 2-
variable identities in this variety. This provides more efficient ways to construct
associative operators from a (pair of) unary operator(s) on a distributive lat-
tice. The variety of T-bounded distributive lattices is obtained as a subvariety
of dlpg-algebras that satisfy pxr = x = gz, or a subvariety of unary determined
dl-magmas that satisfy z -y =z A y.

For small cardinalities, Table 1 shows the number of algebras that are unary-
determined (shown in the even numbered rows) for several subvarieties of normal
dl-magmas. As seen from rows 5-8, under the assumption of associativity, com-
mutativity and idempotence of -, the property of being unary-determined is a
relatively mild restriction compared to the general case of normal d¢-magmas.

A Boolean magma is a Boolean algebra with a binary operator. The next
lemma shows that if the operator is idempotent, then it is always unary-deter-
mined, hence the results in the current paper generalize the theorems about
idempotent Boolean nonassociative quantales in [1].

Lemma 3. Every idempotent Boolean magma (A,A,V,—, LT ) is unary-de-
termined, i.e., satisfies xy = (xT Ay) V (z A Ty).

Proof. Idempotence is equivalent to 2 Ay < 2y < 2 V y since (x Ay)? < xy <
(x V y)? holds in all partially ordered algebras where - is an order-preserving
binary operation. The following calculation

T Ay=z(yV-y) Ay = (zy Ay) V (z(=y)) Ay)
<zyV((@V-oy)Ay)=ayV(zAy)V(yAy) =2y

and a similar one for z A T-y < xy prove that zy > (zT Ay) V (z A Ty).
Using Boolean negation, the opposite inequation is equivalent to

zy A—-(zT Ay) <z ATy.
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By De Morgan’s law it suffices to show (zy A =(zT)) V (zy A —y) < x A Ty.
Since zy < x-T, the first meet disappears. Next, by idempotence, zy A -y <
(zVy) Ay =(xA-y)V(yA-y) <zand finally zy A ~y < zy < Ty. O

3 Bl-algebras from Heyting Algebras and Residuated
Unary Operations

We now recall some basic definitions about residuated operations, adjoints and
residuated lattices. For an overview and additional details we refer to [6]. A
Brouwerian algebra (A,A,V,—,T) is a T-bounded lattice such that — is the
residual of A, i.e.,

zANy <z <= y<zxT— 2.

Since — is the residual of A, we have that A is join-preserving, so the lattice
is distributive [6, Lemma 4.1]. The T-bound is included as a constant since it
always exists when a meet-operation has a residual: x A y < z always holds,
hence y < (x — z) = T. A Heyting algebra is a bounded Brouwerian algebra
with a constant | denoting the bottom element.

A dual operator is an n-ary operation on a lattice that preserves meet in
each argument. A residual or upper adjoint of a unary operation p on a poset A
is a unary operation p* such that

pr<y <= z<py

for all z,y € A. If A is a lattice, then the existence of a residual guarantees that
p is an operator and p* is a dual operator [6, Lemma 3.5]. Moreover, if A is
bounded, then pl = 1 and p*T =T.

A binary operation - on a poset is residuated if there exist a left residual \
and a right residual / such that

xy<z <= y<a\z <= z<z/y.

A residuated ¢-magma (A, N\, V,+,\,/) is a lattice with a residuated binary oper-
ation. In this case - is an operator and \, / are dual operators in the “numerator”
argument. In the “denominator” \,/ map joins to meets, hence they are order
reversing. A residuated Brouwerian-magma is a residuated f-magma expanded
with —, T such that (A, A,V,—, T) is a Brouwerian algebra.

A residuated lattice is a residuated £-magma with - associative and a constant
1 that is an identity element, i.e., (4,-,1) is a monoid. A generalized bunched
implication algebra, or GBI-algebra, (A,A,V,—,T,-,1,\,/) is a T-bounded
residuated lattice with a residual — for the meet operation, i.e., (A,A,V,—,T)
is a Brouwerian algebra. A GBI-algebra is called a bunched implication algebra
(Bl-algebra) if - is commutative and A also has a bottom element, denoted by the
constant |, hence a Bl-algebra has a Heyting algebra reduct. These algebras are
the algebraic semantics for bunched implication logic, which is the propositional
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part of separation logic, a Hoare logic used for reasoning about memory refer-
ences in computer programs. In this setting the operation - is usually denoted
by *, the left residual \ is denoted —, and / can be omitted since z/y = y—zx.

Note that the property of being a residual can be expressed by inequalities
(p* is a residual of p if and only if p(p*z) < x < p*(pz) for all z, and p,p* are
order preserving), hence the classes of all Brouwerian algebras, Heyting alge-
bras, residuated /-magmas, residuated Brouwerian-magmas, residuated lattices,
(G)Bl-algebras, and pairs of residuated unary maps on a lattice are varieties
(see e.g. [6, Theorem 2.7, Lemma 3.2.]). Recall also that a T-bounded magma is
unary-determined if it satisfies the identity zy = (2T Ay) V (x A T-y).

We are now ready to prove a result that upgrades the term-equivalence of
Theorem 1 to Brouwerian algebras with two pairs of residuated maps and unary-
determined residuated Brouwerian-magmas.

*

Theorem 4. (1) Let (A,A,V,—,T,p,p*,q¢,q*) be a Brouwerian algebra with
unary operators p,q and their residuals p*, q* such that xt ApT < qx, xAqT <

px. If we define z-y = (pxr Ay)V (z A qy),
w\y=(pz—y A" (x —y) and x/y=p"(y —z)A(qy— )

then (A, A\, V, T, \,/) is a unary-determined residuated Brouwerian-magma
and the unary operations are recovered by px = xT, p*x = z/T, qv = Tx
and ¢*xz = T\x.

(2) Let (AN V,—,T,\,/) be a unary-determined residuated Brouwerian-
magma and define pr = T, p*x = x/T, gz = T-x and ¢*z = T\z. Then
(A, A, V,—, T,p,0*,q,q%) is a Brouwerian algebra with a unary operators
p,q and dual operators p*,q* that satisfies x ANpT < qx, x AqT < px.

Proof. (1) The following calculation shows that - is residuated.

zy<z <= (pxAy)V(zAqy) <z — prAy<zandzAqy<z
— y<prozandy<qg'(z—2z2) <= y<(pz—2)A¢(z— 2)

hence z\z = (pr — 2) Aq*(xz — 2) and similarly z/y = p*(y — 2) A(qy — 2).
By Theorem 1 it follows that pz = T, gz = T-z and zy = (=T Ay)V(zATy).
Since 2T <y <= x <y/T we obtain p*(z) = /T, and similarly ¢*(z) =
T\z.
(2) Since - is residuated it follows that p* and ¢* are the unary residuals of p, ¢
respectively. The remaining parts hold by Theorem 1. a

Recall that a closure operator p is an order-preserving unary function on
a poset such that x < px = ppr. A dlp-algebra where p is a closure operator
is called a dfp-closure algebra. If - is idempotent and associative then zT =
z(TT)=(xT)T, so pr =T is a closure operator.

Lemma 5. Assume A is a dlp-closure algebra and let x-y = (px Ay)V (z A py).
Then - is associative if and only if px A py < p((px Ay) V (z V py)).
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Proof. By Lemma 2 - is associative if and only if the identity p((pz Ay) V (x V
py)) = (pxApy)V (xApy) holds. This is equivalent to prApy < p((pxAy)V(xVpy))
since z A py < px A py, p(px Ay) < ppx A py = px Apy and similarly p(z A py) <
pr A py. O

Hence the preceding theorems specialize to a term-equivalence for a subvariety
of unary-determined Bl-algebras as follows:

Corollary 6. 1. Let (A,A,V,—, T, L, p,p*, 1) be a Heyting algebra with a clo-
sure operator p, residual p* and constant 1 such that px A py < p((px Ay) V
(xApy)), pl =T and px A1 < z. If we define xxy = (px Ay) V (x Apy) and
=y = (pr — y)Ap*(zAy) then (A, A\, V, T, —, %, -, 1) is a unary-determined
Bl-algebra and x+T A yxT < ((xxT Ay) V (z Ay*T))«T holds.

2. Let (A, AV, —, T, L %, —,1) be a unary-determined Bl-algebra, and define
pr = xx and p*x = T—xx. Then (A, A, V,—, T,L,p,p*, 1) is a Heyting
algebra with a closure operator p that has p* as residual and satisfies pxApy <
p((px Ay)V(zApy)),pl =T and pr N1 < z.

By Lemma 2 (6) unary-determined Bl-algebras satisfy xxz = x, which does not
hold in Bl-algebras that model applications (e.g., heap storage). However, as
mentioned in the introduction, they are members of the variety of Bl-algebras,
and understanding their properties via this term-equivalence is useful for the
general theory. E.g., structural results about algebraic object (such as rings)
often start by investigating the idempotent algebras, followed by sets of idempo-
tent elements in more general algebras. Line 8 in Table1 also shows that finite
unary-determined Bl-algebras are not rare (normal join-preserving operators are
automatically residuated in the finite case, hence the algebras counted in Line 8
are indeed term-equivalent to unary-determined Bl-algebras).

4 Relational Semantics for d¢-magmas

We now briefly recall relational semantics for bounded distributive lattices with
operators and then apply correspondence theory to derive first-order conditions
for the equational properties of the preceding sections.

An element in a lattice is completely join-irreducible if it is not the supremum
of all the elements strictly below it. The set of all completely join-irreducible ele-
ments of a lattice A is denoted by J(A), and it is partially ordered by restricting
the order of A to J(A). For example, if A is a Boolean lattice, then J(A) = At(A)
is the antichain of atoms, i.e., all elements immediately above the bottom ele-
ment. The set M(A) of completely meet-irreducible elements is defined dually.
A lattice is perfect if it is complete (i.e., all joins and meets exist) and every
element is a join of completely join-irreducibles and a meet of completely meet-
irreducibles. For a Boolean algebra, the notion of perfect is equivalent to being
complete (i.e., joins and meets of all subsets exist) and atomic (i.e., every non-
bottom element has an atom below it).

Recall that for a poset W = (W, <), a downset is a subset X such that
y <z € X implies y € X. As in modal logic, W is considered a set of “worlds” or
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states. We let D(W) be the set of all downsets of W, and (D(W), N, U) the lattice
of downsets. The collection D(W) is a perfect distributive lattice with infinitary
meet and join given by (arbitrary) intersections and unions. The following result,
due to Birkhoff [2] for lattices of finite height, shows that up to isomorphism
all perfect distributive lattices arise in this way. The poset J(D(W)) contains
exactly the principal downsets |z = {y € W | y < z}.

Theorem 7 ([3, 10.29]). For a lattice A the following are equivalent:

1. A is distributive and perfect.
2. A is isomorphic to the lattice of downsets of a partial order.

Note that the set of upsets of a poset is also a perfect distributive lattice,
and if it is ordered by reverse inclusion then this lattice is isomorphic to the
downset lattice described above. It is also well known that the maps J and D
are functors for a categorial duality between the category of posets with order-
preserving maps and the category of perfect distributive lattices with complete
lattice homomorphisms (i.e., maps that preserve arbitrary joins and meets).

A complete operator on a complete lattice is an operation that is either
completely join-preserving, completely meet-preserving, maps all arbitrary meets
to joins or all arbitrary joins to meets in each argument. A lattice-ordered algebra
is called perfect if its lattice reduct is perfect and every fundamental operation on
it is a complete operator. The duality between the category of perfect distributive
lattices and posets extends to the category of perfect distributive lattices with
(a fixed signature of) complete operators. The corresponding poset category has
additional relations of arity n + 1 for each operator of arity n, and the relations
have to be upward or downward closed in each argument. For example, a binary
relation Q C W?2 is upward closed in the second argument if 2Qy < z = 2Qz.
Here xQy < z is an abbreviation for zQy and y < z.

Perfect distributive lattices with operators are algebraic models for many log-
ics, including relevance logic, intuitionistic logic, Hajek’s basic logic, Lukasiewicz
logic and bunched implication logic [6,7]. In such an algebra A, a join-preserving
binary operation is determined by a ternary relation R on J(A) given by

TRyz <—= z < yz.

The notation zRyz is shorthand for (x,y, z) € R. For b,c € A the product bc is
recovered as \/{z € J(A) | zRyz for some y < b and z < c}.

The relational structure (J(A), <, R) is an example of a Birkhoff frame. In
general, a Birkhoff frame [5] is a triple W = (W, <, R) where (W, <) is a poset,
and R C W3 satisfies the following three properties (downward closure in the
1st, and upward closure in the 2nd and 3rd argument):

(R1) v < zRyz = uRyz
(R2) zRyz & y <v = zRvz
(R3) zRyz & 2 < w = xRyw.
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A Birkhoff frame W defines the downset algebra D(W) = (D(W),N,U, ")
by
Y -Z ={x €W |xzRyz for some y € Y and z € Z}.

The property (R1) ensures that Y - Z € D(W).

In relevance logic [4] similar ternary frames are known as Routley-Meyer
frames. In that setting upsets are used to recover the distributive lattice-ordered
relevance algebra, and this choice implies that J(A) with the induced order
from A is dually isomorphic to (W, <). Another difference is that Routley-Meyer
frames have a unary relation and axioms to ensure it is a left identity element
of the - operation.

The duality between perfect d¢-magmas and Birkhoff frames is recalled below.
Here we assume that the binary operation on a complete d/-magma is a complete
operator, i.e., distributes over arbitrary joins in each argument. Such algebras
are also known as nonassociative quantales or prequantales.

Theorem 8 ([5]).

1. If A is a perfect dl-magma and R C J(A)? is defined by vRyz < = < yz
then J(A) = (J(A), <, R) is a Birkhoff frame, and A =2 D(J(A)).

2. If W is a Birkhoff frame then D(W) is a perfect df-magma, and W =
(J(D(W)), <, Ry), where (lz, |y, |z) € R| < zRyz.

A ternary relation R is called commutative if tRyz —> xRzy for all x,y, 2.
The justification for this terminology is provided by the following result.

Lemma 9. For any Birkhoff frame W, D(W) is commutative if and only if R
18 commutative.

Lemma 10. Let W be a Birkhoff frame. Then D(W) is idempotent if and only
if tRxx and (xRyz — xz <y orx <z) forallxz,y,z € W.

Proof. Assume D(W) is idempotent, and let x € W. Then |z - |2 = |z since
lz € D(W). From = € |z we deduce = € |x - |z, whence it follows that zRyz
for some y € |x,z € |x. Therefore zRyz for y < x,z < x, which implies xRxx
by (R2) and (R3).

Next assume z Ryz holds. Then = € [{y, z}-|{y, 2} = |{y, 2z} by idempotence.
Hence for some w € {y, z} we have x < w, and it follows that < y or z < z.

For the converse, assume xRzxx and (xRyz — z < y or x < z) for all
z,y,2 € W and let X € D(W). From zRxx we obtain X C X - X.

For the reverse inclusion, let € X - X. Then zRyz holds for some y, z € X.
By assumption xRyz implies x < y or « < z. Since X is a downset, z <y =
rzeXandor <z — z€ X.Hence X-X =X. O

The previous two results are examples of correspondence theory, since they
show that an equational property on a perfect df-magma corresponds to a first-
order condition on its Birkhoff frame.

The relational semantics of a perfect d¢pg-magma is given by a PQ-frame,
which is a partially-ordered relational structure (W, <, P, Q) such that P, Q are
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binary relations on W, v < zPy < v = wuPv and u < zQy < v =
uQu. Relations with this property are called weakening relations [5,11], and
this is what ensures that if we define p(Y) = {z | Jy(zPy & y € Y)} for a
downset Y, then p is a complete normal join-preserving operator that produces a
downset, and P is uniquely determined by 2Py < = € p(ly). Similarly, a normal
operator g is defined from @, and uniquely determines (). The residual p’ of p is
a completely meet-preserving operator, defined by p'(Y) = {z | Vy(yPx = y €
Y)}, and likewise for ¢’. If P = @ then we omit @ and refer to (W, <, P) simply
as a P-frame.

We now list some correspondence results for d¢pg-magmas. We begin with
a theorem that restates the term-equivalence of Theorem 1 as a definitional
equivalence on frames. A direct proof of this result is straightforward, but it also
follows from Theorem 1 by correspondence theory.

Theorem 11. (1) Let (W, <, P,Q) be a PQ-frame such that x < y & zPz =
2Qy and x <y & rQz = xPy. If we define xRyz < (xPy & x < 2) or (x <
y & zQz) then (W, <, R) is a Birkhoff frame, and P,Q are obtained from R
via tPy < 3z(xRyz) and xQy < Jz(zRzy).

(2) Let (W, <, R) be a Birkhoff frame that satisfies tRyz < (Jz(xRyz) & z <
z) or (x <y & Fz(xRzy)) and define x Py < 3z(xRyz), rQy < Jz(xRzy).
Then (W, <, P,Q) is a PQ-frame in which x <y & zPz = zQy and x <
y & 2Qz = xPy hold.

Note that the universal formula x < y & *xPz = xzQy corresponds to the
dlpg-magma axiom Y A pT < qY.

A significant advantage of PQ-frames over Birkhoff frames is that binary
relations have a graphical representation in the form of directed graphs (whereas
ternary relations are 3-ary hypergraphs that are more complicated to draw).
Equational properties from Lemma 2, Corollary 6 correspond to the following
first-order properties on PQ-frames.

Lemma 12. Assume A is a perfect dlpq-algebra and W = (W, < P, Q) is its
corresponding PQ-frame. The constant 1 € A (when present) is assumed to
correspond to a downset E C W. Then

(1) a < pa holds in A if and only if P is reflexive,

(2) ppa < pa holds in A if and only if P is transitive,

(3) pa = qa holds in A if and only if P = Q,

(4) pl =T holds in A if and only if VaTIy(y € E & xPy) holds in W,

(5) paAl<a holdsin A if and only if v € E & xPy = x <y holds in W,
(6) pa Apb < p((paAb)V (aApb)) holds in A if and only if

wPz & wPy = Jv(wPv & (vPx & v <y orv <z & vPy)) holds in W.

Proof. (1)—(3) These correspondences are well known from modal logic.
(4) For x € J(A) and E = |1 we have < pl if and only if there exists
y € J(A) such that y <1 and = < py, or equivalently, y € F and zPy.
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(5) In the forward direction, let a = |y. Then it follows that = € p(ly) N E
implies x € |y, and consequently x € E & Py — = < y.

In the other direction, let Y be a downset of W and assume = € pY N F.
Then = € E and Py for some y € Y. Hence x < y, or equivalently z € |y C Y.
Thus, pY N E C Y, so the algebra A satisfies pa A1 < a for all a € A.

(6) In the forward direction, let @ = |z and b = |y. Then it follows from the
inequation that w € plzN ]y = w € p((plzNly)U(lzNply)) for all w € W.
This in turn implies wPz & wPy — Jv(wPv & v € (plz N ly) U (lzNply)),
which translates to the given first-order condition.

In the reverse direction, let X, Y be downsets of W and assume w € pX NpY.
Then wPx and wPy for some z € X and y € Y. It follows that there exists
av € W such that (wPv & (vPx & v < yorv < z & vPy)), hence v €
(pX NY)U (X NpY). Therefore w € p(pX NY) U (X NpY). O

Recall that a ternary relation R is commutative if Ryz < xRzy for all x,y.
From Theorem 11 we also obtain the following result.

Corollary 13. Let (W,<,P,Q) be a PQ-frame and define R as in
Theorem 11(1). Then R is commutative if and only if *Py < xQy for all
z,y e W.

This corollary shows that in the commutative setting a PQ-frame only needs
one of the two binary relations. Hence we define W = (W, <, P) to be a P-frame
if P is a weakening relation, i.e., u < xPy <v = uPv.

We now turn to the problem of ensuring that the binary operation of a
df-magma is associative. For Birkhoff frames the following characterization of
associativity is well known from relation algebras [10] (in the Boolean case) and
from the Routley-Meyer semantics for relevance logic [4] in general.

Lemma 14. Let W = (W, <, R) be a Birkhoff frame. Then D(W) is an asso-
ciative L-magma if and only if Vwayz(Fu(uRzry & wRuz) < Jv(vRyz & wRav)).
If R is commutative then the equivalence can be replaced by the implication
Vuwayz(uRry & wRuz = Jv(vRyz & wRxv)).

This lemma is another correspondence result that follows from translating
we (XY)Z & we X(YZ) for X,Y,Z € D(W). In the commutative case
(XY)Z C X(YZ) implies the reverse inclusion, hence only one of the implica-
tions is needed. We now show that for a large class of P-frames the 5-variable
universal-existential formula for associativity can be replaced by simpler univer-
sal formulas with only three variables.

A preorder forest P-frame is a P-frame such that P is a preorder (i.e. reflexive
and transitive) and satisfies the formula

(Pforest) xPyand 2Pz = z <yorz <z oryPzor zPy.

Note that since P is a weakening relation, reflexivity of P implies that < C P
because xPx and x < y implies x Py.
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It is interesting to visualize the properties that define preorder forest P-
frames by implications between Hasse diagrams with <-edges (solid) and P-
edges (dotted) as in Fig. 1. However, one needs to keep in mind that dotted lines
could be horizontal (if Py and yPz) and that any line could be a loop if two
variables refer to the same element.

Yy
(Pforest) y Z — y\ Z or y /Z or y or Z

Fig. 1. The (Pforest) axiom. The partial order < and the preorder P are denoted by
solid lines and dotted lines respectively.

We are now ready to state the main result. We use the algebraic characteri-
zation of associativity in Lemma 2.

Theorem 15. Let W = (W, <, P) be a preorder forest P-frame and D(W) its
corresponding downset algebra. Then the operation x-y = (px ANy) V (x A py) is
associative in D(W).

Proof. Let W = (W, <, P) be a preorder forest P-frame and D(W) its dfp-
algebra of downsets with operator p. Since P is a preorder, D(W) is a d{p-
closure algebra. By Lemma 5, a dlp-closure algebra is associative if and only if
p(z) Ap(y) < p(p(x) Ay) V (z Ap(y)). By Lemma 12 this is equivalent to the
frame property

(%) 2Py & 2Pz = Jw(xPw & (wPy & w < z or w < y & wPz)).

We now show that this frame property holds in W. We know that P is
reflexive and (Pforest) holds.
Assume Py and xPz. By (Pforest) there are four cases:

x < y: take w = x. Then xPzx, x < y and Pz, hence (x) holds.

x < z: again take w = x. Then the other disjunct of (x) holds.

yPz: take w = y. Then xPy, y < y and yPz, hence (x) holds.

zPy: take w = z. Then xPz, 2Py and y < y, hence again (x) holds. O

=W

The universal class of preorder forest P-frames is strictly contained in the
class of all P-frames in which z-y is associative. In fact the latter class is
not closed under substructures, hence not a universal class: W = {0,1,2, 3},
< =idw U{(0,1),(0,2),(0,3)}, P =<U{(1,0),(1,2),(1,3)} is a P-frame with
associative - (use e.g. Lemma 5), but restricting <, P to the subset {1, 2, 3} gives
a P-frame where - fails to be associative, hence (Pforest) also fails.

A dl-semilattice is an associative commutative idempotent distributive /-
magma. The point of the previous result is that it allows the construction of per-
fect associative commutative idempotent df-magmas and idempotent bunched
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Fig. 2. All 40 preorder forest P-frames (W, <, P) with up to 3 elements. Solid lines
show (W, <), dotted lines show the additional edges of P, and the identity (if it exists)
is the set of black dots. The first row shows the lattice of downsets, and the Boolean
quantales from [1] appear in the first three columns.

implication algebras from preorder forest P-frames. This is much simpler than
constructing the ternary relation R of the Birkhoff frame of such algebras. For
example the Hasse diagrams for all the preorder forest P-frames with up to 3
elements are shown in Fig. 2, with the preorder P given by dotted lines and
ovals. The corresponding ternary relations can be calculated from P, but would
have been hard to include in each diagram.

We now examine when a preorder forest P-frame will have an identity ele-
ment. For any P-frame W we define F = {z € W |Vy(zPy = =z < y)}.

Lemma 16. Let W be a P-frame. Then E is an identity element for - in the
downset algebra D(W) if and only if E is a downset and pE =W .
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Proof. In the forward direction, E is certainly a downset and it follows from
Lemma 2(5) that pE = W since W is the top element in D(W).

Conversely, by the definition of F, if z € E then Py = = < y holds for all
y € W. Hence by Lemma 12(5) for all X € D(W) we have pX N E C X. Since
pE = W together with Lemma 2(5), it follows that F is an identity element in
the downset algebra. O

5 Counting Preorder Forests and Linear P-frames

In the case when the poset (W, <) is an antichain, a preorder forest P is simply
a preorder P C W?2 such that Py and Pz implies yPz or zPy. A preorder
tree is a connected component of a preorder forest. A rooted preorder forest is
defined to have an equivalence class of P-maximal elements in each component.
For finite preorder forests this is always the case. Let F}, denote the number of
preorder forests and 7,, the number of preorder trees with n elements (up to
isomorphism). We also let Fj = 1.

A preorder forest has singleton roots if the P-maximal equivalence class of
each component is a singleton set. The number of preorder forests and trees with
singleton roots is denoted by F,’ and T, respectively.

Note that every preorder forest gives rise to a unique preorder tree with a
singleton root by adding one new element r such that for all z € W we have
xPr. It follows that T)? = F,,_; (Table2).

Table 2. Number of preorder trees and forests (up to isomorphism)

Cardinality n = 1/2/3 |4 |5 6 7
Preorder trees T,, = 112 5 13 | 37 | 108 | 337
Cn = 1/5/16 |57 | 186 | 668
Preorder forests Fj, = 13| 8124 | 71 |224
Preorder trees with singleton roots T, = |11 8| 24| 71 |224
c, = 1/3/10 |35 |121 | 438
Preorder forests with singleton roots F, = |1|2| 5 |14 | 41 | 127

Every preorder tree with a non-singleton root equivalence class and n ele-
ments is obtained from a preorder tree with n — 1 elements by adding one more
element to the root equivalence class. Hence for n > 0 we have T,, = F,,_1+7T,_1.
The Euler transform of T}, is used to calculate the next value of F,, as follows:

cn:Zd-Tn Fn:%ch~Fn_k.
dln k=1

Since preorder forests with singleton roots are disjoint unions of preorder trees
with singleton roots, F}; is calculated by an Euler transform from 7.
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Corollary 17. The sequence F; is the Euler transform of T};.

While it is difficult to count preorder forest P-frames in general, it is simple to
count the linear ones. Let L,, be the number of linearly ordered preorder forest
P-frames with n elements. Note that (P3) is actually redundant for linearly
ordered frames.

Theorem 18. For linearly ordered forest P-frames L,, = 2"~ 1. In the algebraic
setting there are 272 unary-determined commutative doubly idempotent linear
semirings with n elements, and n — 1 of them have an identity element.

Proof. Let W be a linearly ordered P-frame with elements W ={1<2<--- <
n} such that P is transitive and (P0) holds. Then each possible relation P on W
is determined by choosing a subset S of the edges {(2,1),(3,2),...,(n,n — 1)}
and defining P to be the transitive closure of S U <. Since there are n — 1 such
edges to choose from, the number of p-frames is 27~ *.

Let A be a unary-determined commutative doubly idempotent linear semir-
ing with n elements. Then the P-frame W associated with A has n—1 elements,
is linearly ordered, and P is reflexive and transitive since - is idempotent and
associative. Hence there are 2”2 such algebras.

By Lemma 16, the subset E = {x € W | Vy(zPy = z < y)} will be an
identity of the downset algebra if and only if it is a downset of W and p(E) = W.
This will only be the case if there exists an element w € W such that for all
y € W we have y > w if and only if wPy. Every choice of w € W determines
one such P, hence there are n — 1 algebras with an identity element. a

6 Conclusion

We showed that unary-determined d¢-magmas have a simple algebraic structure
given by two unary operators and that their relational frames are definitionally
equivalent to frames with two binary relations. The complex algebras of these
frames are complete distributive lattices with completely distributive operators,
hence they have residuals and can be considered Kripke semantics for unary-
determined bunched implication algebras and bunched implication logic. Asso-
ciativity of the binary operator for idempotent unary-determined algebras can
be checked by an identity with 2 rather than 3 variables, and for the frames
by a 3-variable universal formula rather than a 6-variable universal-existential
formula. All idempotent Boolean magmas are unary-determined, hence these
results significantly extend the structural characterization of idempotent atomic
Boolean quantales in [1] and relate them to bunched implication logic. As an
application we counted the number of preorder forest P-frames with n elements
for which the partial order is an antichain, as well as the number of linearly
ordered preorder P-frames.

Acknowledgments. The investigations in this paper made use of Prover9/ Mace4
[12]. In particular, parts of Lemma 2 and Theorem 11 were developed with the help of
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Prover9 (short proofs were extracted from the output) and the results in Table 1 were
calculated with Mace4. The remaining results in Sections 2-4 were proved manually,
and later also checked with Prover9.
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Abstract. We study convolution and residual operations within con-
volution quantales of maps from partial abelian semigroups and effect
algebras into value quantales, thus generalising separating conjunction
and implication of separation logic to quantitative settings. We show
that effect algebras lift to Girard convolution quantales, but not the
standard partial abelian monoids used in separation logic. It follows that
the standard assertion quantales of separation logic do not admit a linear
negation relating convolution and its right adjoint. We consider alterna-
tive dualities for these operations on convolution quantales using boolean
negations, some old, some new, relate them with properties of the under-
lying partial abelian semigroups and outline potential uses.

1 Introduction

Separation logic and linear logic reason about resources. Both, in fact, have pow-
erset quantale semantics that lift certain monoids. The phase quantale seman-
tics of linear logic is even a Girard quantale [26]: it admits a dualising element
that relates the quantalic mutltiplication with its residuals in the way negation
relates conjunction and implication in classical logic. For the standard statelet
and heaplet models of separation logic [6], previous work [3,4] suggests that such
a linear negation between separating conjunction and implication is impossible.
But an algebraic account is missing.

We investigate the relationship between the standard models of separation
logic and Girard quantales in the more general setting of convolution quantales
formed by spaces of functions from partial monoids to quantales [7,12,14]. These
yield quantale-valued semantics for linear and separation logic with applications
in quantitative, for instance probabilistic program verification [16].

The classical heaplet models of separation logic are generalised effect alge-
bras [17], but lack the greatest element present in effect algebras [15]. Effect
algebras, in turn, are equipped with an orthosupplementation that seems suit-
able for extending previous lifting results from generalised effect algebras to
convolution quantales to those from effect algebras and Girard quantales.

We prove that this extension works: effect algebras lift to commutative Girard
quantales and in particular phase semantics for linear logic. We also show that
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https://doi.org/10.1007/978-3-030-88701-8_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88701-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-88701-8_3

38 C. Bannister et al.

it is impossible to lift generalised effect algebras without a greatest element
that way. This rules out a linear negation between separating conjunction and
implication over the classical heaplet models. Further, we present a read-only
heaplet model that forms an effect algebra and makes linear negation available
to separation logic in some situations, and we outline its use.

We generalise these lifting and impossibility results to cover partial abelian
monoids with several units, as in the statelet models of separation logic [6], and
from powersets to convolution quantales, for quantitative applications.

Beyond these results, we show how separating conjunction and implication in
convolution quantales relate to operations in value quantales and partial abelian
monoids. In the absence of linear negation, we follow [5] in studying the effect
of boolean negation on separating conjunction and implication. This leads to
operations of septraction and coimplication [2,5] as well as some new ones. We
also expose the symmetries and dualities between these operations in boolean
convolution quantales. Boolean negation may not be the most natural duality for
quantales, but the resulting operations are at least useful for program verifica-
tion [2]. Finally, we constrast these results with a non-boolean assertion quantale
for separation logic based on Alexandrov topologies for posets that captures the
sub-heaplet and sub-statelet orderings more faithfully than the standard one.

Our main results have been checked with the Isabelle/HOL proof assis-
tant.! Our Isabelle theories already contain more general lifting results for non-
commutative partial monoids and Girard quantales appropriate for the non-
commutative linear logics originally studied by Yetter [26]. These, however, are
beyond the scope of this paper.

2 Partial Abelian Monoids and Effect Algebras

We recall the basics of partial abelian monoids. Most of the development has
been formalised with Isabelle [11]. Most results are known in the special case of
generalised effect algebras [17].

A partial abelian semigroup (PAS) is a structure (S, ®, D) with domain of
definition D C S x S for the partial composition & : S xS — S (or & : D — S)
such that, for all ,y,2 € S, Dxy and D (z @ y) z imply that Dy z, Dz (y ® 2)
and (z@y)Dz=2® (y P 2), and Dxy implies that Dyz and 2 Py =y P x.

We identify sets and predicates. The above associativity and commutativity
axioms state that if one side of the equation is defined, then so is the other, and
both are equal. This notion of equality is known as Kleene equality. We write
x =~y for it. Hence, more briefly, (z®y)®z~x® (yP2z) and z Dy ~y P .

Units of a PAS S can be defined like for (object-free) categories: e € S is a
unit in S if there exists an x € S such that x ~ e ® = and for all x,y € S if
y ~ e®x then y = x. A partial abelian monoid (PAM) is a PAS S in which every
element has a unit: Vo € S.3e € E. D ex, writing E for the set of units of S.

! Most results on partial abelian monoids, more generally relational monoids, and
(convolution) quantales can be found in the Archive of Formal Proofs [11,24]. The
complete formalisation can be found online http://hoefner-online.de/ramics21.
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Every element of a PAM has precisely one unit, different units cannot be
composed and total PAMs have precisely one unit [8].

PAMs and related partial algebras appear across mathematics. They are
instances of relational semigroups and monoids or multisemigroups and mul-
timonoids, see [7,13] for details. Relational monoids, in particular, are monoids
in the category Rel equipped with the canonical monoidal structure.

In any PAM S| the divisibility preorder is defined, for all x,y € S, by x <y
iff t ® 2~y for some z € S. Hence x < y iff x ® z ~ y has a solution in z. This
preorder is a precongruence: x < y and Dzz imply z®z <X 2@y (and Dy z).
A subtraction can now be defined.

A PAM §'is cancellative if @ z ~y @ z imply x =y for all z,y,z € S.

Lemma 2.1. In a cancellative PAM, x <y implies x @ z ~ y for exactly one z.
One can thus write y © z for this solution.
Lemma 2.2. In a cancellative PAM,

l.zdzxyer3yNz=yOux,
2. Dey=(z@y)Ozx=yandzXy=z®(yoz) =y,
3. Dry=zxx®yandx y=>yox=y.

By Lemma 2.2 (1) and (2), « @ (_) and (_) © z are inverses up-to definedness.
Finally, a PAM is positive if Dxy and x @y € E imply z € E.

Lemma 2.3. In any positive cancellative PAM, < is a partial order in which all
units are <-minimal.

Cancellative positive PAMs with a single unit £ = {0} are known as gener-
alised effect algebras (GEAs) [17] in the foundations of quantum mechanics. The
resource monoids used in separation logic [6] are nothing but GEAs.

Ezample 2.4 (Heaplets). Partial maps X — Y form a GEA H with Dny no iff
dommny Ndomny = 0, m ®ny = Uny and E = {e}, where ¢ : X — Y is
the empty partial function. By definition, dome = ). These are the heaplets of
separation logic. Alternatively, heaplets have been modelled as a GEA of finite
partial maps X —g, Y. The latter captures the fact that programs use finitely
many variables and heaps can always be extended. The former admits full heaps
where no additional memory can be allocated. O

Ezample 2.5 (Generalised Heaplets). Heaplet models readily generalise to addi-
tions defined as union whenever heaplets coincide where they overlap: D n; o iff
m x = nz x for all x € n; N domny. The resulting PAM is not cancellative. O

An effect algebra (EA) [15] is a PAM S with single unit 0 and orthosupplement
(_)*+ : S — S such that for each z € S, x is the unique element satisfying
z @zt = 0t and if Dx0+, then x = 0. It is standard to write 1 for 0. It
follows that 2+ = z. The following fact is well known.
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Proposition 2.6. Every EA is a GEA with greatest element 1 = 0 while every
GEA with greatest element 1 is an EA with (_)* =1 (_).

Ezxample 2.7. PAM H from Example 2.4 is not an EA: it is cancellative positive,
but has no greatest element when |Y'| > 1. Replacing any m +— n € n by m +— n/
with n # n’ in heaplet 7 yields an incomparable heaplet. ad

Statelet models of separation logic [6] are based on the following coproduct.
Lemma 2.8. Let X be a set and (S,®, D, E) a PAM.
1. (X xS8,&,D, E) forms a PAM with D (z1,31) (z2,y2) iff 21 = x2 and D y1 s,

(z1,11) @ (22,y2) = (1,91 D y2) and E (z,e) iff t € X and e € E.
2. If S is cancellative or positive, then so is X x S.

Ezample 2.9 (Statelets). The PAM H from Example 2.4 is formed by (finite)
partial functions X — Y. Program stores can be modelled as a set Z (e.g. a
function from variables to values). Lemma 2.8 then shows that Z x (X — Y)
forms a cancellative positive PAM with many units £ = {(z,¢) | z € Z}. O

3 Convolution Quantales over PAMs

We apply a lifting construction for functions from partial monoids, and even
ternary relations with suitable algebraic properties, to quantales, so that a gen-
eralised quantale-weighted separating conjunction arises as a convolution and
a quantale-weighted separating implication as its right adjoint [13,14]. A sim-
ple instance yields the assertion algebra of separation logic [12]—a convolution
quantale of functions from the PAM of statelets into the quantale of booleans.

A quantale [23] is a structure (Q, <, -, 1) such that (@, <) is a complete lattice,
(Q,-,1) a monoid, and - preserves arbitrary sups in both arguments. We write
\/ X for the sup of X C @, A X for its inf, V for the binary sup and A for the
binary inf. We write L = \/ () for the least element of the lattice and T = A0
for its greatest element. It follows that L is a zero of multiplication.

A quantale is commutative if its monoid is abelian, and boolean if its complete
lattice is a boolean algebra. We write T for the boolean complement of z in Q.

As quantalic multiplication preserves sups in both arguments, it has two right
adjoints, \(_) of - (_) and (_)/z of (_) -z, for all x € @, given, as usual, by

PNe=\{ylz-y<z} and  z/e=\{yly x<z},

and related by the Galois connection y < z\z & -y < z & = < z/y. The
residuals coincide in commutative quantales: y/x = x\y. As right adjoints, z\(_)
and (_)/x preserve infs and therefore z -y = A{z |y < z\z} = A{z |z < z/y}.

Example 3.1

1. Every frame is a commutative quantale and hence every complete boolean
algebra. In the latter, finite sups and infs are related by De Morgan duality;
the residual is definable as ¢ - y =T V y.
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2. The booleans B = {f,t} form a two-element commutative quantale with - as
A/min, \/ as max and \ as boolean implication —. Predicates over a PAM S
are functions S — B; B¥ is isomorphic to PS. O

We now fix a PAM (S, ®, D, E) and a commutative quantale (@, <,-,1). We
equip the function space Q° with quantalic operations following [14]. Sups, infs
and the order extend pointwise from Q to Q°. Thus L =Xz. L and T=Xz. T
in Q°. We define the convolution of f,g:S — @Q and the unit idg : S — Q as

1 ifzekFE,
1 otherwise.

r>yDz
The following lifting result characterises the convolution algebra on Q%.

Theorem 3.2 ([14]). If S is a PAM and @ a commutative quantale, then the
convolution algebra (Q°, <, *,idg) is a commutative quantale.

In addition, properties, such as being boolean lift from ) to the convolution
quantale Q°. As an instance of Theorem 3.2, Q = B yields the commutative
powerset quantale (P.S, C, *, E') over the PAM S.

Cancellative PAMs give us an arguably more elegant variant of convolution.

Lemma 3.3. If S is cancellative, then (f xg)x = \/yjm fy-glxoy).

Remark 3.4. Lemma 2.8 yields the following instance of Theorem 3.2: if X is a

set, then QX*% is a quantale with (f * g) (x,y) = \/y:yl@m f(zy) - g(z,y2)
and idg (z,y) = idg y, where, in the second identity, the left F is on X x S and
the right one on S.

The right adjoint f = (_) of f*(_)inQ%is f +«h=\{g| f*xg<h}. In
quantalic notation, f — g = f\g.

Theorem 3.5. In every PAM S,

1L(f*9)v=N\,_pe, fY\G2=Ap., f¥\g(z DY),
2. (f % 9)x = Nycsoy, fY\g 2z, if S is cancellative.

Proof.

1. Suppose Dzy. Then fy-(f =« g)x < (f*(f =*g)) (zdy) <g(z@y), thus

Vy. (f =+ g)z < fy\g(z®y) and finally (f = g)z < A{fy\g(z®y),| Dry}
by the adjunction and properties of inf.
Conversely, suppose Dxz and let oz = A{fy\g(z ®y) | Dxy}. Then
pr< f2\gx®z), fz-px < g(x® z) by the adjunction and f * ¢ < g by
definition of convolution. Finally, oz < (\/{h | fxh < g}) 2 = (f = g)x.

2. Immediate from (1) using Lemma 2.2(1).
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Ezample 3.6 (Powerset Lifting). Theorem 3.2 shows that the convolution alge-
bra (PS,C,*, E), for Q = B, is a commutative quantale of predicates over any
PAM (S,@®, E), in fact a boolean atomic one. For the PAM on X x S and in
particular for statelets, convolution is separating conjunction and its residual
separating implication (a.k.a. magic wand):

Frg={(x,1) ® (,92) | (x,51) € f A (2,92) € g A Dy1ya},
fg={(z,9) V. (z,¥) e fADyy — (z,y@Y) € g}
={(@,y10v2) | (x,y2) € fAy2 21 — (z,91) € g},

where the second step requires cancellation. This powerset quantale is the stan-
dard assertion algebra of separation logic. These set-based operations are also
described in [9]. O

4 PAMs and Girard Quantales

Additional operations have been defined on quantales. A linear negation is
inspired by linear logic—a classical multiplicative negation that coincides with
boolean negation if - is A.

Formally, an element d of a quantale Q is dualising if (d/x)\d =z = d/(x\d)
for all € Q. An element ¢ € Q is cyclic if ¢/ = x\c for all z € Q. A Girard
quantale [23,26] is a quantale with a cyclic dualising element d.

This definition is meant for non-commutative quantales; in the commutative
case all elements are cyclic. A linear negation can be defined as ¢ = '\ d (which
is then the same as d/z). It has many features of classical negation: it is involu-
tive, reverses the order and all sups and infs, hence in particular 0 and T; and
it allows expressing residuation in terms of multiplication and vice versa:

z\y = (yd . :v)d and Ty = (y\xd)d.

Moreover, d* = 1 and therefore 1¢ = d, (V X) = A{z? | z € X} and
(AX)? = \V{z? | * € X} [23]. Also d = T implies T = L. In a boolean
Girard quantale, where the underlying complete lattice is a boolean algebra,
both negations commute: z? = 4.

First we show that any EA gives rise to a commutative Girard quantale. In

any EA S we define X+ = {2+ |z € X} for X C S. Then X+ = {z | 2+ € X},
X+ = X and X = XL because a-+ = z. Also note that 0+ = 1 [23].

Proposition 4.1. Let (S,®,0,%) be an EA. Then (PS,C,*,{0}) is a commu-
tative Girard quantale with dualising element A = S — {1}.

Proof. Theorem 3.2 implies that every PAM lifts to a powerset quantale. It thus
remains to check that A is a dualising element, that is, X424 = X for any X C S.
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First we compute X4:

X2={y|VeeX. Day —»x®yc A}
={y|FreX vpyx~1}
={y|-FwreX =y}
={yly* X}
=X,
using the definition of (_)* in the second step. Then X244 = X follows imme-
diately from the equations preceding this theorem. O

As a sanity check, A4 = A = {1}+ = {1+} = {0}. Next we show that
commutative Girard quantales contain EAs.

Lemma 4.2. Let x ¢ A in a commutative powerset Girard quantale over set S
with unit {0}. Then {x}? = {0} and {z} = A.

Proof. We have ¢ A & {2} C A & AA C {2} & {0} C {z}?. It then
follows that {z}? = {0} because if S — {0} = {0} C {z}?, then {z}* = S
and therefore {z}44 = S4 = () # {z}, a contradiction. Finally, therefore,
(o} = {2}22 =10} ={0}4 =24 0

It follows that A is a singleton set. We call its element 1.

Proposition 4.3. Let S be a positive PAM and PS a commutative Girard quan-
tale with unit {0} and dualising element A. Then S is an EA.

Proof. For every convolution quantale Q°, S forms a PAM [7]. It remains to check

the two EA axioms. For any € S, we abbreviate {z}+ = QA. By Lemma 4.2,
A={1}. Then {z}t ={z2}2 ={y | Deyrzdyc Ay ={y| 2@y ~ 1}, for
all z € S. Also, {x}+ # () because otherwise QAA = S +# {x}. For each x € S
there thus is a y € S such that x @y ~ 1, that is, 1 is the greatest element of S.
It also follows that {z} * {z}* = {1} and {0}* = {1} using Lemma 4.2.

Next we show that S is cancellative. Suppose {z} * {y} = {z} * {z}. Then,
using {x}* {y} = {z @y}, we have {z@y}+ {z @y}’ = {z@2}* {z @y}t = {1}
and therefore {y} = ({z} * {z ®y}+)*+ = {z}.

Cancellativity implies that x &y ~ 1 for at most one y by Lemma 2.1. Thus
{x}+ is a singleton set, and we call its element z. It satisfies {x1} = {z}* and
therefore {z} * {1} = {1}, which verifies the first EA axiom.

Moreover, < is a partial order that extends to singleton sets. For the second
EA axiom, now suppose Dz 1. Then {1} < {z} * {1} by Lemma 2.2(3) and
therefore {1} = {z} * {1}. Yet {1} = {0} x {0+} = {0} * {1} and = = 0, once
again by cancellativity. ]

We leave the question whether positivity is derivable open.
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Corollary 4.4. Let S be a GEA without greatest element. Then the commutative
quantale PS is not Girard.

In particular, therefore, the standard heaplet model of separation logic, which
is not an EA by Example 2.7, does not give rise to Girard quantales. Con-
sequently, separating conjunction and implication over the heaplet models in
Example 2.4 cannot be related by a quantalic linear negation. Next we give an
alternative no-Girard proof for heaplets that extends to statelets.

Theorem 4.5. The unital commutative quantale (PH, C,*,{e}) over the PAM
H of heaplets is not Girard.

Proof. Let A be a dualising element in P H. By a remark above, we know A # H.
In fact, we can show that there are two (different) heaplets outside of A. Then,
by Lemma 4.2, this yields a contradiction.

Claim: Jvy, vy with v, v € A and v; # vs.

Proof of Claim. There are exotic cases where this is not the case, e.g., when
either X or Y of type X — Y have cardinality 1.

Example 2.4 shows two standard models for heaplets: arbitrary partial func-
tions and finite mappings.

In the former we can characterise a full heap using heaplets n with dom(n) =
X. When |Y| > 1—in most standard models it is Z—there are at least two
different full heaplets (Example 2.7). It suffices to show that any heaplet ¢ with
dom(¢) = X is not part of A. We use the equality z¢ = ¢ and the equivalence
In. Doy Ay e XAnon € A & Y. Doy Ay € X —n@n € A, asin
Proposition 4.1. Using ¢ for 7, X = {¢} and the fact that the only heaplet that
can be added to ¢ is the empty heaplet € (D {n < n = ¢) yields

(€A & V. DAy #e—(CdncA
s W.fo(ened &t

Now consider the model of finite mappings. We follow [22] and assume that
the partial functions are of type Z —g, Y. We know there exists one heaplet v
with v € A, for otherwise the algebra collapses. Next we assume that {v} is a
dualising element and derive a contradiction. In the heaplet model we have

{3/ {vh\{v} = ({v} = {v}) = {v} = {n | V0" D/ An@y =v—n' =¢}

If {v} is a dualising element, this set equates to {v}. However, every heaplet v’
that is strictly larger than v, i.e. v < v’ is an element of this set as well, since
v @ n # v, for all 1/, and therefore the antecedent inside the set evaluates to
false. Since v is a finite mapping and the set of locations is Z, we can always
find a larger heaplet v'. O

Theorem 4.5 holds in the standard heaplet models (Examples 2.4 and 2.5)
of separation logic and generalises easily to statelets. It shows in particular that
separating conjunction and separating implications over PAMs of statelets cannot
be related by a linear negation. Similar results are claimed in [3,4], but not in a
quantalic setting.
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5 Binative PAMs and Girard Convolution Quantales

We now generalise Proposition 4.1 to PAMs with multiple units and general
convolution quantales. This yields the main lifting theorem in this paper.

EAs generalise to several units. An element x of a PAS S is mazimal if
x®y ~ x for all y. A PAS S is orthosupplemented if x®x" is defined and maximal
for all x € S, and if z is maximal, then z @y ~ z iff y = x*. Orthosupplemented
PAMs are automatically PASs, and e is maximal for each e € E.

Ezample 5.1. (Read-only-heaplets). Heaplets become an orthosupplemented
PAM H™ with many units when switching to total maps X — Y x B. We
define domyn={x € X |Jy €Y. nz = (y,t)} and write w1, ma for the cartesian
projections. We define heaplet composition by D ny ng iff domyn1 N domyny = 0
and 71 0 mp = w0 M2, and (g1 © n2)x = ((m1 0 Ny)x, (M2 0 M V M2 O M2) T).
We define the set of units as £ = {n € H | domyn = (0}. Finally, we define
orthosupplementation by n+z = (y,b) & nx = (y,b).

In this model, we denote ownership of locations by the boolean flag. Such
heaplets are “read-only” in the sense that if the composition of heaplets 7; and
72 is defined, they must agree on the values at each location in memory, and
updating one requires updating the other. Hence, for any f : H® — H°, we
have D1 me = D (fm)ne = m o (fm) =m ona. O

A generalised heaplet model mapping natural numbers to sets of integers and
a second model reminiscent of a PAM with abelian group-like negative elements
have been studied by Brotherston and Calcagno [3] among many other mod-
els relevant to separation logic. Both yield models of classical logic of bunched
implication and thus probably Girard quantales. Both of these models have a
single unit. They are thus quite different to the one in Example 5.1.

We generalise orthosupplementation further to cover more models. A PAS S
is binative if it is equipped with a function (_)* : S — S such that Dz z*, for
allz € S, and, for all z,y,2 € S,  ® x- ~ y ® z implies y = 2. Thus z = -+
holds because = ® v+ ~ z @ x1. We call (z,x1) the binates of S.

Intuitively, binativity generalises positivity for PAMs from units to binates.

Lemma 5.2. Fvery binative PAS S is a cancellative PAM with
E={(z®z") |2z S}

Proof. For cancellation, suppose * @y ~ = @ z. Then (z ®y) ® (z © y)* ~
(xDy)@(x@2), hence (z@y) @ (2D y)t ~yD (@ (2@ 2)*) and therefore
z=y= (& (x®2)")* by binativity.

For the units, @2+ @ (z @ 2H)t ~ 2t @2 @ (z @ 2)* by commutativity.
Then, by binativity, z = 2*+ =2z @ (z @ 21)*. O

Ezample 5.3 (Binative PAMs).

1. Orthosupplemented PASs are binative PASs where compositions of binates
are maximal. Equivalently, positive binative PASs are orthosupplemented.
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2. EAs are binative PASs with single unit 0 and greatest element 1.

3. Abelian Groupoids are binative semigroups with (_)* a inverse and binates
composing to units.

4. Partial deterministic CBI models [21] are precisely binative PASs with single
unit 0 and the composition of any binate equals 0+ .2

We now generalise Theorem 4.1.

Theorem 5.4. Let S be a binative PAM and (Q, -, <,d) a commutative Girard
quantale. Then (Q°,<,, A) is a commutative Girard quantale with

A d ifx=y®yt for someyc S,
Tr =
T  otherwise.

Proof. Relative to Theorem 3.2 we need to check f44 = f for all f: S — Q.
Define f+z = f(z%) and féx = (fx)? Then ftt = f = fdd and f1d = fdt.
First we compute

fhe= /\ f\A@ey) = flat A /\ FONT = fLianT = fLig,
Dzy Day
y#wt

Binativity is used in the second step. Hence f44 = fldld — flldd — ¢ O

A natural question is whether Theorem 5.4 could be generalised by restricting
Dz 2" while avoiding the collapse into a monoid. But if Q° and Q are both
unital and 1 # | in @, then the underlying PAS must be unital, too, and thus
a PAM [7, Proposition 4.1]. Girard quantales, in particular, are unital [23].

Theorem 5.4 generalises further to non-abelian binative semigroups and non-
commutative Girard quantales, yet this is beyond the scope of this paper. A
proof can be found in our Isabelle theories.

6 Using Linear Negation in Separation Logic

Statelets do not lift to a Girard quantale. It is therefore natural to ask how the

lifting results in the previous section might be applied. We show that lifting

assertions on ordinary heaps to those on read-only heaps makes it possible to

use linear negation for reasoning about resources that lack binativity.
Separation logic allows enriching a Hoare triple with a frame

VR. {P x R} C{Q * R},

which states that the execution of C only modifies the resources whose own-
ership is asserted by P. If these are assertions over a standard heap, then the
validity of adding a frame means the only variables that C' touches are claimed

2 CBI models are relational monoids, deterministic means that results of compositions
are singletons, partial deterministic that they are singletons or empty.
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by P. However, if they are assertions on a read-only heap, a triple can only be
enriched with a frame if C' does not mutate the heap. This restriction is some-
what artificial: if a frame R only specifies the values of the heap portion it owns,
then C would be free to mutate.

Hence we lift R to (R), where (_) : P H — P H® asserts R over the heap
where (v,t) is kept and (v, f) is discarded. Note that (_) is an injective quantale
morphism: (P * Q) = (P) = (@), (V S) = (Vx € S.{x)) and even(T) = T,
hence a quantale embedding. We can thus obtain triples

VR. {P % (R)}C{Q * (R)},

where C is free to mutate the resource described by P. What does linear negation
mean in this setting? If we take (p — —) to be the assertion that only the
address p is allocated, and (p — —) says that at least p is allocated, then for
boolean negation we have that (p — —) says that if p is allocated, then some
other address is, and (p — —) says that p is not allocated. For linear negation
we have (p = =)' = (p——) = (p— —),and (p— —)* = (p— ) , which
says that if p is not allocated, then some other address is not.

With a PAM that cannot be lifted to a Girard quantale, and a binative
PAM seemingly unsuitable for standard applications of separation logic, we have
obtained an enriched assertion language taking the best parts of both. It might
therefore be fruitful to find binative semigroups that can serve as targets for
embeddings, rather than taken as resource models directly.

7 Other Residuals

A linear negation is not available in separation logic, but —x has been dualised,
perhaps less naturally, with respect to boolean negation on the boolean assertion
quantale. The resulting operation is known as septraction [5,25]. We study it in
convolution quantales over a PAM without boolean complementation.

We define the septraction operation more generally as the convolution of
f,9:S5 — @, where S is a PAM and ) a commutative quantale, as

(fogz=\ fyg=

rDy=z2

The only difference to separating conjunction is that the supremum in y
and z is now taken over x @ y = z rather than x = y & 2. In the ternary
relation (_) @ (_) = (), septraction is thus separating conjunction up-to an
exchange of variables. In such a general relational setting it has been shown that
a convolution —® is associative if and only if the dual ternary relation satisfies a
relational associativity law [7]. For S, this clearly cannot be expected. Similarly,
a unit exists in the convolution algebra if and only if the underlying PAM or
relational structure has units [7]. It has also been shown that associativity of the
ternary relation is not needed to make the convolution operation sup-preserving
in both arguments [13]. These results specialise as follows.
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Lemma 7.1

1. If S is a PAM and @ a complete lattice equipped with sup-preserving opera-
tion -, then —® preserves all sups on Q5.

2. The operation —® need not be associative, commutative or have a unit, even
for the PAMs of heaplets and statelets and for Q) = B.

It follows that —® has two residuals: the right adjoints of f —® (_) and
(_) —® f. The first one has already been studied for the PAM H and Q = B
as (separating) coimplication [2]; it is suitable for symbolic reasoning within
separation logic. Here we define it abstractly on the convolution quantale Q° as

fh=\{g|f-®g<h}

As a right adjoint, coimplication preserves infs, but is neither associative nor
commutative. It does not have a unit either.

In Sect.3 we have related separating conjunction and implication in Q° to
corresponding operations in S and Q. For —®, a simple substitution yields

(fogz=\ fyg@ay).
Dzy
The name “septraction” is motivated by the following fact.

Lemma 7.2. If S is a cancellative PAM and Q a quantale, then

(f®g) x= \/f(z@x)-gz.

=z
Similar results hold for ~.
Theorem 7.3. If S is a PAM and Q a quantale, then

L (f~gz=N\ye.f¥\9%,
2. (f~g)z=N\,<, fy\g(@©y) if S is cancellative.

So far, we have considered septraction and coimplication in isolation. Even
when they occur together with separating conjunction and magic wand in one
single PAM, the target algebra ) could still be a double quantale with different
monoidal multiplications for separating conjunction and septraction and differ-
ent residuals for magic wand and coimplication—yet these two operations could
also coincide, like in the following example.

Ezample 7.4. (Powerset Lifting) For the PAM on X X S and in particular for
statelets,
f-eg9={(zy) |3 Dyy A(z,y) e fA(z.y®Y) € g},
freg={(x,y) |V .y y=y @y’ Al,y) € f— (2,9") € g}
={@ . ¥ 2yr(ey) e f—(x,yoy) € g},

where the second step for ~» requires cancellation. O
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T

1dual dualI ‘M

Fig. 1. Relationship between operators of separation logic

In boolean quantales, boolean complementation relates separating conjunc-
tion and coimplication on one hand, and septraction and magic wand on the
other hand. In fact, this is how septraction and coimplication were originally
defined for powerset quantales [2,5].

Theorem 7.5. Let S be a PAM and Q a boolean quantale, Then, in Q°,
fxg=fxg  and  f-®g=f=*7

The relation between separating conjunction, implication, septraction and coim-
plication is also shown in Fig. 1.

Using the adjunction between —® and ~», a complete method for generat-
ing strongest postconditions in separation logic is available [2]. It enables the
transformation of any given Hoare triple—enriched with a frame—into a rule
for forward reasoning. Symmetrically, the adjunction between % and — yield a
method for backward reasoning, generating weakest preconditions. Ideas for this
go back to the origins of separation logic [22].

To the best of our knowledge, the second right adjoint of septraction men-
tioned above has not been studied within the setting of separation logic. We
define it abstractly on the convolution quantale Q° as

g—h=\/[{f|f-®g<h}

The adjunction implies that preserves infs, but is neither associative nor com-
mutative. It does not have a unit either.

Theorem 7.6. If S is a PAM and Q a quantale, then

(f>gaz= N\ f@ay\gy.

Dzy

Ezample 7.7 (Powerset Lifting). For the PAM on X x S,

f=g={(z,y) VY. Dyy Nz,ydy') € f— (z,y) € g}.

Boolean complementation relates this right adjoint back to magic wand.
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Theorem 7.8. Let S be a PAM and Q a boolean quantale, Then, in Q°,
f—oxg= ? - g.

This fact completes Fig. 1. I reveals an interesting asymmetry, which emerges
from the fact that coimplication has a contrapositive f ~» g = —g ~» —f,
whereas — does not.

Theorems 7.5 and 7.8 suggest looking at the boolean dual f — g as well. In
the PAM on X x S this equates to {(z,y) | 3. Dyy' A (z,y') € fAyD Y €7}
However, this is the same as f —® § and and therefore the residual is g ~ f.
Hence we stay in the setting of the well-known operators of separation logic.

Finally, we summarise these residuals in boolean Girard quantales.

Theorem 7.9. Let S be a binative PAS and @ a boolean Girard quantale. Then
in Q%

1. fr~xg=fxgand f -®g=f g,
2. frg=(f=gN and f —® g = (f ~ g%,
S fwg=(f*gh)tand frg=(f —®g")".

Item (1) has been copied from Theorem 7.5. The first part of (2) follows directly
from linear negation of Girard quantales (see Sect.4). The remaining identities
follow Theorem 5.4. This combines the different strands of this paper, showing
that in a boolean Girard quantale, such as the assertions over an effect algebra,
there are three dualities—a boolean, a linear, and a binative one.

8 Another Assertion Quantale for Separation Logic

The standard assertion quantale of separation logic is also somewhat unnatural
mathematically in that it does not reflect the order < on heaplets and statelets:
it is not the case that {z} C {y} iff # < y. We present an alternative that
supports such more fine-grained comparisons.

We fix a cancellative positive PAM S. Then = is a partial order for which
the units are minimal by Lemma 2.3. For each « € S, x| = {y | y < z}; for each
X C 5, X| is the image of X under |. We write P|S for the set of downsets in
S—the closed sets of the Alexandrov topology over <.

We also need the following Riesz decomposition property [18] of S: for all
T,y1,Y2 €5, r <X y1 D yo implies that there exist xq,x2 € S such that x1 <y,
To X yo and 1 ® T2 =X Y1 D yo. It obviously holds in the heaplet and statelet
models of separation logic.

Proposition 8.1. Let S be a cancellative positive PAM that satisfies the Riesz
decomposition property. Then P|S forms a commutative quantale.
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Proof. Relative to Theorem 3.2 we need to check that {e} is closed for each
e € E, which is the case due to positivity (Lemma 2.3), and that the quantalic
multiplication and sups preserve downsets. First, using Riesz decomposition,

(X*xY)|={z|FreXyeY. z2=azdyADay}
Cl{rey |IreXyeY. o' <zAy yADz'y'}
= X|+Y].

Hence (X| xY|)| = X| x Y|, by extensivity and transitivity of | . Second,
it is routine to check that ({J,c; Xi)l = U,;c;(Xil), for all I and therefore
(U; Xi1)l = U;(X;]) by transitivity of |. (Similarly, ("), X;l)l = N,(X:il),
which is not strictly needed in the proof). a

Obviously, (X])] need not be equal to X |: in the two-element poset defined by
p < g, for instance, {¢} = {p}| is not closed. The quantale P|S is therefore not
boolean in general. Many of the theorems in Sect. 7 fail. Whether this quantale is
Girard is open as well. On one hand, the dualising set A used in Proposition 4.1
is closed. On the other hand, residuals are sups taken on the whole of PS, so we
should not expect that they preserve downsets. Similar models based on upclosed
PAMs are well known as intuitionistic or affine assertion algebras of separation
logic. See [19] for an overview and general approach.

9 Conclusion

In the context of convolution algebras of functions from partial abelian semi-
groups into commutative quantales, we have explored the standard operations of
separation logic—separating conjunction and implication—and some less known
ones (septraction, coimplication and a second right adjoint of septraction). Due
to the generality of the approach, it can be used with weighted assertions. The
Lawvere quantale makes them available in fuzzy settings, the well known iso-
morphic quantale on the unit interval to probabilistic reasoning.

As the combination of boolean complementation with the quantalic multipli-
cation is somewhat unnatural, we have also investigated the link with the linear
negation of Girard quantales. We have established a correspondence between
effect algebras and commutative powerset Girard quantales, but shown that gen-
eralised effect algebras, where a greatest element is missing, cannot be lifted to
such quantales. Our results imply that the classical heaplet and statelet models
of separation logic do not admit a linear negation; separating conjunction and
implication are therefore independent. Yet we have also shown how these models
can be embedded into effect algebras and thus made linear negation available
for separation logic in some cases.

We have generalised the lifting of effect algebras to binative partial semi-
groups and extended it from powerset quantales to arbitrary convolution Girard
quantales. In this paper we only consider commutative algebras, but liftings for
non-commutative algebras can be found in our Isabelle theories. We believe that
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these results are only stepping stones towards more general ones for binative
relational monoids or multimonoids. In this setting one may consider the binary
operations of separation logic as binary modalities and the underlying monoidal
structures as ternary Kripke frames, as in the Jénsson-Tarski duality for boolean
algebras with operators. The correspondence between effect algebras and com-
mutative powerset Girard quantales is then a modal correspondence based on
this duality. For convolution algebras we expect modal correspondence trian-
gles between properties of relational monoids, value quantales and convolution
quantales [7]. All this, and the relationship of other models that appear within
the vast literature on separation logic (see for instance [1,20]), remains to be
explored with a view on linear negation.

Other research questions relate to the generalisation of the adjunctions and
dualities between the operations in Sect. 7 to non-commutative algebras, to their
counterparts in convolution Girard quantales over effect algebras, where linear
negation is present, to their status in the setting of non-boolean quantales, as the
one introduced in Sect. 8 or those for affine and intuitionistic separation logic,
and finally their generalisation to the setting of enriched categories [10].
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Abstract. We present a technique for the relational computation of sets
R of relations. It is based on a specification of a relation R to belong to
R by means of an inclusion s C t, where s and t are relation-algebraic
expressions constructed from a vector model of R in a specific way. To get
the inclusion, we apply properties of a mapping that transforms relations
into their vectors models and, if necessary, point-wise reasoning. The
desired computation of R via a relation-algebraic expression t is then
immediately obtained from s C t using a result of [3]. Compared with a
direct development of t from a logical specification of R to belong to R,
the proposed technique is much more simple. We demonstrate its use by
some classes of specific relations and also show some applications.

1 Introduction

Reduced ordered binary decision diagrams (ROBDDs) are a very efficient data
structure for the representation of sets and relations. This is also proved by
numerous applications of RELVIEW, a ROBDD-based tool for the manipulation
and visualisation of relations and relational programming. The use of ROBDDs
often leads to an amazing computational power of RELVIEW, in particular, if
the solution of a hard problem is based on the computation of a subset R of
a powerset 2. See e.g., [2-4] for such applications. In certain situations X
is a direct product, which means that RELVIEW is used to compute a set R
of relations. This is e.g., the case in [2], where R is the set of solutions of a
timetabling problem and RELVIEW is used to get solutions. Also in [5] a set
R of relations is computed, viz. the set of up-closed multirelations on a given
set. Experiments with RELVIEW then lead to an appropriate definition of an
approximation order for modeling computations which also may be infinite. A
third example is [4]. Here R equals the set of pre-orders on a given set and REL-
ViEw-results show a variant of the Kuratowski closure-complement-theorem,
with closure-interior relatives instead of closure-complement relatives.

In this paper we present a general technique for the relational computation
of sets R of relations. It is based on a specification of a relation R to belong to R
by means of an inclusion s C t, where s and t are relation-algebraic expressions
constructed from a vector model s of R in a specific way. Such expressions are
introduced in [3] and can be seen as the syntactical counterparts of the vector
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predicates of [7]. To get the specification s C t, we frequently apply properties
of a mapping that transforms a relation to its vector model, but also argue
point-wisely if this helps. The desired computation of R via a relation-algebraic
expression t is then obtained from s C t in one step using a general result
proved in [3]. Compared with the technique that directly develops t from a
logical specification of the relation R to belong to R, the proposed technique is
much more simple. We demonstrate its use by some classes of specific relations
and also show some applications and how the expressions t can be implemented
as RELVIEW-programs and then evaluated using the tool.

2 Relation-Algebraic Preliminaries

Given sets X and Y, we write R : X « Y if R is a (binary) relation with
source X and target Y, i.e., a subset of the direct product X x Y. If the sets
X and Y of the type X < Y of R are finite, we may consider R as a Boolean
matrix with |X| rows and |Y| columns. Since a matrix interpretation of relations
is well suited for many purposes and also used by RELVIEW as the main possi-
bility to visualise relations, in the following we often use matrix terminology and
notation. Especially, we speak about entries/components, rows and columns of
a relation/matrix and write R, , instead of (x,y) € R or z Ry.

We assume the reader to be familiar with the five basic operations on rela-
tions, written as RT (transposition), R (complementation), R U S (union), RN S
(intersection) and R; S (composition), the two basic predicates, written as R C .S
(inclusion) and R = S (equality), and the three special relations, written as O
(empty relation), L (universal relation) and | (identity relation).

We denote the set of relations of type X «+ Y by [X « Y] instead of 2X*Y,
For each type X < Y then [X < Y] together with the Boolean operations
U, Nand ~ and the constants O : X < Y and L : X < Y forms a complete
Boolean lattice, where the lattice order is given by inclusion. Further well-known

laws of relations are, for instance, (RT)T =R, (R;S)" = ST;RT, Q;(RNS) C

Q;RNQ;S, Q;(RUS) = @Q;R U Q;S and R = RT, for all relations Q, R
and S (of fitting types). We assume that transposition and complementation
bind stronger than composition and composition binds stronger than union and
intersection.

The theoretical framework for these laws and many others to hold is that
of a (heterogeneous) relation algebra, introduced in [9] as generalisation of a
(homogeneous) relation algebra in the sense of A. Tarski and further developed
in [10,11], for example. The five operations and three constants of this algebraic
structure are denoted as those of the set-theoretic relations. As usual, in relation-
algebraic expressions we overload the symbols O, L and I, i.e., avoid the binding
of types to them. The axioms of a relation algebra are those of a complete
Boolean lattice for U, N, =, O and L (with lattice order C), that composition is
associative and possesses identity relations as neutral elements, that the Schrider
equivalences Q7;S C R iff Q; R C S iff S; RT C @ hold, for all relations @, R
and S, and that R # O implies L; R; L = L, for all relations R. In later proofs we
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shall mention only the Schréder equivalences and “non-obvious” consequences of
the axioms like Q; RNS C (QNS; RT); (RNQT; S), for all relations @, R and S,
called Dedekind rule. Well-known laws as those presented above or in Sect. 2.1
to 2.3 of [10] remain unmentioned.

Relation algebra as just introduced can express exactly the formulae of first-
order predicate logic with at most two free variables and all in all at most three
variables. The expressive power of full first-order predicate logic is obtained if
projection relations or equivalent notions are assumed to exist. Because of the
intended applications in later sections, in this paper we consider set-theoretic
relations only. But we treat them, as far as possible, with relation-algebraic
means. So, for all direct products X x Y the two projection relations exist, which
we denote asm : X XY < Xand p: X XY « Y. We always assume a pair
u from a direct product to be of the form u = (uy,us). This allows to describe
m and p point-wisely by 7y, iff u1 =z and pyy iff ug =y, for all u € X x Y,
r € X and y € Y. In [10] it is shown that the formulae 7";7 = I, p";p = |,
mm Np;p’ = land 77;p = L specify projection relations up to isomorphism
and imply 7 and p to be surjective functions. Recall that R is a function (in the
relational sense) if it is univalent, specified by R"; R C |, and total, specified by
R;L =L or, equivalently, by | C R; RT, and R is surjective iff R is total.

Based on the projection relations m: X XY < X and p: X XY < Y for
two relations R: X < Z and S:Y < Z their left pairing is defined by [R, S|
= m; RN p; S, thereby being of type X xY < Z. Using point-wise notation,
from this we get that [R, S|,  iff Ry, . and Sy, ., forallu € X xY and z € Z.
The counterpart to the left pairing, with now Z < X x Y as type, is the right
pairing [R, S] of two relations R: Z <« X and S : Z < Y. To get the desired
property that [R,S], , iff R, ,, and S, u,, for all 2 € Z and u € X x Y, the
notion is defined as [R,S] := R;7" NS;p. In Sect.3 we will use that for all
relations Ry : Z7 < X, Ry : X < Z5,51: 77 <« Y and S3:Y < Zs from the
univalence of Ry and S; or the univalence of Ry and Sy the subsequent Eq. (1)
follows:

[R1, S1]; [R2, S2] = R1; R N 513 52 (1)

A relation-algebraic proof of this fact can be found in [1]. For a point-wise proof
of (1) it is not necessary that R; and S; are both univalent or Ry and Sy are
both univalent. But, as shown by R. Maddux in [8], a proof of (1) that only is
based on the axioms of a relation algebra, the above axiomatisation of projection
relations and the definitions of left pairings and right pairings is impossible.

If the two arguments of a right pairing with reference to the projection rela-
tionsm: X XY < Xand p: X XY < Y are compositions a; R and 3; 5,
respectively, witha: Z x U < Zand : Z x U < U as projection relations of
a further direct product Z x U and relations R: Z <~ X and S : U « Y, then
we define R || S := [a; R, 8; S] as the parallel composition of R and S, thereby
being of type Z x U < X x Y. Using a point-wise notation we have (R || S)u,v
iff Ry, v, and Sy, v,, forallu e Z x U andv e X x Y.

In the next sections we also will use the relation-level equivalents of the
set-theoretic symbol ‘€’ as basic relations. These are the membership relations
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M : X « 2% and point-wisely described by M,y iff z € Y, for all z € X
and Y € 2X. There exists a relation-algebraic axiomatisation of membership
relations which specifies these up to isomorphism. See e.g., [11]. But for the
applications of the present paper the above point-wise description suffices.

3 Vectors and the Modeling of Sets and Relations

In this paper we use (relational) vectors to model sets. A vector is a relation s
such that s = s;L. In the Boolean matrix interpretation this means that each
row of s consists only of ones or only of zeros. As the targets of vectors are
irrelevant, we only consider vectors of type X « 1, with a specific singleton
set 1 := {L} as common target. Such vectors correspond to Boolean column
vectors and, therefore, as in linear algebra we write s, instead of s, | .

By definition s : X < 1 models (or is a vector model of ) the subset Y of X
if for all z € X we have x € Y iff s,. This means that precisely those entries of s
are 1 that correspond to an element of Y. Obviously, the mapping (in the usual
mathematical sense) set : [X «» 1] — 2%, defined by set(s) = {z € X | s, }, for
all s : X « 1, is a Boolean lattice isomorphism from ([X < 1],U,N,”,0,L)
to (2%,U,N, ™, 0, X), with the inverse mapping set~! : 2% — [X « 1] given by
set ™1 (Y) =Y x {1}, for all Y € 2%X.

A general technique to compute for a subset Y of a given set X a vector
model s : X < 1 is to start with an arbitrary element x from X and a logical
specification @(z) of x to belong to Y. Using the point-wise descriptions of
relational constants and operations, e.g., of those introduced in Sect. 2, then the
formula ¢(x) is transformed step-by-step into the form s,, where now s is a
relation-algebraic expression of type X « 1, i.e., a vector expression. From the
equivalence of p(x) and the relationship s,, for all x € X, it follows set(s) =Y
and, hence, s relation-algebraically specifies the vector s we are looking for.

If the just sketched technique is applied for the development of a vector that
models a subset R of a powerset 2%, then the starting point is a formula (")
that specifies the arbitrarily given set Y from 2% to belong to R. In such a case
the development of the relationship sy from ¢(Y') frequently becomes lengthy,
cumbersome and error-prone if carried out by hand. To considerable simplify
the development of s, in [3] instead of Y and ¢(Y) a vector model s : X « 1
of Y and a relation-algebraic specification of set(s) to belong to R are taken as
starting point. E.g., if R : X < X is the adjacency relation of a directed graph
G = (X, R) and the goal is to get a vector model stable(R) : 2% « 1 of the
set R of stable vertex sets of G, then instead of starting with Va,y: R, , Ay €
Y = 2 ¢Y as formula p(Y) one starts with R; s C 5, with an arbitrary vector
s: X « 1, since set(s) € R iff R;s C 3. Decisive for this approach to work
are vector expressions of a specific syntactic form, which in [3] are introduced as
follows.

Definition 3.1. Given s : X <« 1, the set U(s) of typed column-wise
extendible vector expressions over s is inductively defined as follows:
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a) We have s € U(s) and its type is X < 1.

b) If v:Y < 1 is different from s, then v € U(s) and its type is Y « 1.

c) If s € B(s) is of type Y «— 1, then's € V(s) and its type is Y «— 1.

d) Ifs,t € B(s) are of type Y — 1, then sUt € V(s) and sNt € V(s) and their
types are Y < 1.

e) If s € V(s) is of type Y — 1 and R is a relation-algebraic expression of type
Z <Y in which s does not occur, then R;s € V(s) and its type is Z < 1.

So, the vector expressions from U(s) are built from s using other vectors and
as operations only complementation, union, intersection and left-composition
with a relation different from s. They can be seen as syntactical counterparts of
B. Kehden’s vector predicates, which are introduced in [7] as mappings in the
usual mathematical sense for the relational treatment of evolutionary algorithms.

In s € B(s) the vector s can be seen as a variable in the logical sense. Using
this interpretation, we define next the replacement of s in s by R as in [3].

Definition 3.2. Givens: X < 1,5 € U(s) and R: X «— Z, we define s|R/s]
as follows, using induction on the structure of s:

a) s[R/s] = R.

b) v[R/s| =wv;L, withL:1 < Z.

c) t{R/s] = t{R/s].

d) ({Uuw)[R/s] =t{R/s] Uu[R/s] and (tNu)[R/s] =t{R/s]Nu[R/s].
e) (R;[R/s| = R; (H{R/s]).

Forall s: X < 1,5 € B(s) of type Y <~ 1 and R : X « Z the type of
s[R/s] is Y « Z; see [3]. So, for R as membership relation M : X « 2% we
get Y« 2% as type of s]M/s]. As main result in [3] the following theorem is
shown. It states a general procedure for developing a vector model of a subset
R of 2X.

Theorem 3.1. Assume R to be a subset of the powerset 2% . If it is specified as
R ={set(s)|s: X < 1As Ct}, withs,t € U(s) both of type Y — 1, then

T
v:=L;(s[M/s]NtM/s]) 2% < 1
(where L:1 « Y and M : X « 2% ) is a vector model of R.

For R being the set of stable vertex sets of the directed graph G = (X, R) we
get R = {set(s) | s : X < 1LAR;s C5}. As R;s € U(s) and 5 € U(s),
Theorem 3.1 yields stable(R) = L; (R;M N M)T as vector model of the set R.

In Sect. 4 we will apply Theorem 3.1 for the computation of sets of relations.
This means that R is a subset of a set [X < Y], the vector s of the specification
of R in Theorem 3.1 has type X x Y < 1 and ¢ has type [X < Y] < 1. Since
in such a case s models a relation, instead of set(s) the notation rel(s) is used.
This leads to s, iff 7el(s)y, uy, for all u € X x Y. In [10] a relation-algebraic
specification of the mapping rel : [X xY < 1] — [X < Y] is given, viz.
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rel(s) = n';(s;LNp), forall s : X xY « 1, where 7 : X xY < X and
p: X xY < Y are the projection relations of X x Y and L: 1 < Y. In [10]
also the inverse mapping, which we denote as vec: [X < Y] = [X XY < 1],
is specified with relation-algebraic means. Translating the specification of [10]
into a version with a left pairing, we get vec(R) = [R,I];L, forall R: X < Y,
where | : Y < Y and L:Y < 1. With relation-algebraic means the following
theorem is shown in [10].

Theorem 3.2. The mappings rel and vec are Boolean lattice isomorphisms
from (X xY < 1J,u,n,”,0,L) to ([X < Y,u,nN,~,0,L) and vice versa
and mutually inverse.

For typing reasons, the mapping vec neither can distribute over compositions
nor commutate with transpositions. Instead we have the following two results,
which also decisively will be used later. The first one, published in [7] deals with
vector models of compositions.

Theorem 3.3. Assume Q, R and S (of fitting types) to be given. Then we have
vee(Q; R; S) = (Q|| ST);vec(R).

The second result shows how vec(RT) can be reduced to vec(R). We formulate
and prove it only for relations for which source and target coincide, so-called
homogeneous relations, since this suffices for our later applications.

Theorem 3.4. Given R : X « X, we have vec(R") = [p,n];vec(R), where
7:X%2 & X and p: X? < X are the projection relations of X2.

Proof. First, we apply the definition of vec(R) in combination with (1) and get
[p, 7];vec(R) = [p,7]; [R, ;L = (p; RN m;1);L = (p; RNm); L.
Next, the definitions of vec(RT) and [RT, 1] yield
vec(R") = [R", ;L= (m;R"np;1);L = (m; R" N p);L.
Now, the proof is concluded by the following calculation:
(p;RN7);LC (pNmRY); (RNpT;7);L Dedekind rule
C (m BTN p)iL
C(rnpR);(RTNx";p);L Dedekind rule
C(p;RnNm);L
O

If a vector model of a subset R of [X < Y] is specified as vector expression t, it
is simple to compute a relation of R. We select an injective and surjective vector
p, i.e., a (relational) point p, such that p C v. With the membership relation
M: XXY < [X<Y]then Mjp: X XY < 1 is the vector model of a
relation R € R and, hence, R itself is obtained via R = rel(M;p). In RELVIEW
for the selection of a point from a vector there exists a pre-defined operation
point.
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4 Computing Sets of Specific Relations

In Sect. 2 we have mentioned relation-algebraic specifications of a relation R to
be univalent, total and surjective, respectively. R is injective iff RT is univalent.
Based on these specifications and using the Schroder equivalences, Theorem 3.2
and Theorem 3.3, in [2] the following equivalences are shown.

Theorem 4.1. Assume s : X XY « 1 to be given and let 71 : X XY — X
and p: X XY < Y be the projection relations of X x Y. Then we have:

rel(s) univalent <= (!Hi),s Cs rel(s) total <= L C 7' ;s
rel(s) injective <= (I||1);s C 3 rel(s) surjective <=L C p';s

Each side of the four inclusions of Theorem 4.1 is a column-wise extendible vector
expression over s. Hence, Theorem 3.1 is applicable and immediately yields the
following vector models of type [X < Y] < 1 of the sets of univalent, total,
injective and surjective relations of type X « Y:

— T —_—T

unival(X,Y) :=L; ((1{|1); M N M) total(X,Y) :=L;7n"; M
— T —T

injec(X,Y) :=L; ((I||; M N M) sutjec(X,Y) :=L;p"; M

The types of the basic relations of these four specifications easily can be derived
from the typing rules of the relational operations. E.g., in case of unival(X,Y)
the universal relation has type 1 < X x Y, the left identity relation of I||1 has
type X < X, the right one has type Y < Y and the type of the membership
relation is X XY « [X < Y]. Therefore, in the remainder of the paper we
make no mention of types of basic relations in such specifications.

Obviously, conjunction of relational properties corresponds to intersection of
the corresponding vector models such that, for example, vector models of the
sets of functions and bijective relations of type X <« Y can be specified as
follows:

funct(X,Y) := unival(X,Y) Ntotal(X,Y)
bijec(X,Y) := injec(X,Y) Nsutjec(X,Y)

Now, we consider some important properties of homogeneous relations. Recall
that R : X < X is reflezive iff | C R, irreflexive iff R C I, symmetric iff
RCRT, antisymmetric iff RN RT CI, asymmetric iff RN RT C O, transitive iff
R; R C R and complete iff | C RURT. Except transitivity, from Theorem 3.2 and
Theorem 3.4 we immediately get the following specifications of these properties
of a relation R by means of the vector model s := vec(R).

Theorem 4.2. Assume s : X2 « 1 to be given and let 7 : X? < X and
p:X?% < X be the projection relations of X2. Then we have:

rel(s) reflexive <= vec(l) C s
rel(s) irreflezive <= s C vec(l)
rel(s) symmetric <= s C [p,7]; s
rel(s) antisymmetric < s N [p,7];s C vec(l)

rel(s) asymmetric <= sN[p,7];s CO

rel(s) complete <= vec(l) C sU [p,7];s
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Again all sides of the six inclusions of Theorem 4.2 are column-wise extendible
vector expressions over s. So, a combination of Theorem 4.2 with Theorem 3.1
(and wvec(l); L = vec(l); L in the second case) immediately yields the following
vector models of type [X < X] < 1 of the sets of reflexive, irreflexive, sym-
metric, antisymmetric, asymmetric and complete relations of type X « X:

—T
refl(X) := L; (vec(l); LN M)
beginegnarrayx — 0.0mmliveef((X) := L; (M Nwec(l); L)T

spmm(X) := L; (M N [p, 7]; M)T
antispmm(X) := L; (M N [p, 7]; M Nwece(l); L)T

asymm(X) := L; (M 11 [p, 7] M)
compl(X) = L; (vee(l); LA M A [p a]: M)

The right-hand side of vefl(X) already can be found in [4], with a direct derivation
from the point-wise description V,y : Ry, of the reflexivity of R. The other
vector models are not part of [4].

Given s : X2 « 1, in the next theorem we also specify the transitivity of
rel(s) by means of an inclusion between column-wise extendible vector expres-
sions over s in such a way that Theorem 3.1 again can be used and directly
yields a vector model trans(X) : [X < X]| < 1 of the set of transitive rela-
tions of type X < X. The two-fold occurrence of R within the left-hand side of
R; R C R prevents an application of Theorem 3.3. Instead we use the following
lemma. It is a special case of an unpublished theorem of M. Winter (where R
and S may be heterogeneous), told to the author as a private communication.
The relation-algebraic proof of M. Winter is too complex and too long to be
presented here.

Lemma 4.1. Assume R: X < X and S : X < X to be given. Furthermore,
let m: X2 « X and p : X? < X be the projection relations of X? and
a: X?’xX? & X2 and B: X2xX? < X2 be the projection relations of
X2 x X2. Then we have vec(R;S) = CT; [vec(R),vec(S)], where

C = (10 azpir s 687 (xlp) s X2 x X2 o> X2,

Proof. Let arbitrary pairs (u,v) € X2 x X? and (w, z) € X2 x X? be given. The
definition of the projection relations and of the relational composition yields

(OGPQ 7-‘-T;ﬁ-r)(u,v),(w,z) — U2 = 21.

To enhance readability, in the following we abbreviate in formulae conjunctions
of equations as equational chain. Then the above equivalence implies

(1N 775 BT (o) (w,e) &= w1 = w1 Aug = wa = 21 = V1 A V2 = 2.
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Using this equivalence and the definition of C' in the first step, for all pairs
(u,v) € X2 x X? and (z,y) € X? we now calculate as follows:

C(uﬂ,)y(g;’y) < E|’LU,Z:
U = w1 AUg =Wy = 21 = V1 N\ VU2 =Z2/\(7T||P)(w,z),(z,y)
<— Jw, z:
Ul =W NUg =W2 =21 =V1 NVg =2 NW1 =T Nz2og=1Yy
= U =T Nva=YANuz =1

As a consequence, we get for all pairs (z,y) € X? the following equivaleces,
which show the claim:
(CT; [vec(R),vee(S))) (@) <= T, v : Clu), (y) A [vec(R), vec(S)] (v
<~ Ju,v:u; =xAvyg =9y A
ug = v1 Avec(R),, Avec(S),
<= Jda : vec(R)(y,q) N vec(S)(ay)
< Ja:RyqNSay
< (R;S)ay
= vec(R; 5) ()

Here is the announced specification of transitivity,

Theorem 4.3. Assume s : X? < 1 to be given. With C : X?> x X? < X2 as
defined in Lemma 4.1 we have:

rel(s) transitive <= CT;[s,5] C s
Proof. The claim follows from the calculation
rel(s) transitive <= rel(s); rel(s) C rel(s)
<= vec(rel(s);rel(s)) C vec(rel(s))
= CT; [vec(rel(s)),vec(rel(s))] C vec(rel(s))
— CT;[s,s] C s,

where we use the definition of transitivity, then Theorem 3.2, then Lemma 4.1
and, finally, again Theorem 3.2. a

Left pairings of column-wise extendible vector expressions are again column-
wise extendible vector expressions. As a consequence, both sides of the inclusion
of Theorem 4.3 are column-wise extendible vector expressions over s. Hence,
Theorem 3.1 is applicable and at once yields the following specification:

teans(X) := L; (CT; [M, M] HM)T

A lengthy direct derivation of a specification of trans(X) from the point-wise
description Vz,y,z : Ry y A Ry . = R, . of the transitivity of R can be found
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in [4]. Experiments with the RELVIEW-implementations of both versions have
shown that the second one is less efficient than the above specification.

Intersections of the above specifications directly allow to get vector models of
the set of pre-orders, partial orders, equivalence relations, tournaments and many
other well-known classes of homogeneous relations. To give an example, if we
want to model the set of proper involutions (that is, of self-inverse permutations
without fixpoints) on X, we can do this as follows:

propInvolut(X) := funct(X, X) N bijec(X, X) Nsymm(X) N iveef((X)

Next, we treat three classes of specific strict-orders which play a prominent
role in preference modeling, viz. weak-orders, semi-orders and interval-orders. A
relation R : X < X is a weak-order if it is asymmetric and negatively transitive,
where the latter means R to be transitive. For defining semi-orders and interval-

orders we need the notions of semi-transitivity of R, defined as R; R; ET C R, and

of R to be a Ferrers relation, defined as R; RT; R C R. Then R is a semi-order if
it is irreflexive, semi-transitive and a Ferrers relation. If it is only an irreflexive
Ferrers relation, it is an interval-order. Usually, these classes of relations are not
defined in such a way. For instance, interval-orders < are defined by assigning
intervals of the real line to the elements of the carrier sets and then = < y holds
iff the interval assigned to x is completely left of that assigned to y. The above
relation-algebraic specifications can be found in [11].

We want to apply our technique also to specify vector models weatOrd(X),
semiOr0(X) and intOr0(X) of type [X < X] < 1 of the sets of weak-orders,
semi-orders and interval-orders of type X < X. Decisive for that is the following
theorem. In it we treat the basic properties of the above definitions not been
addressed until now.

Theorem 4.4. Assume s : X2 < 1 to be given. With C : X? x X? « X?
as defined in Lemma 4.1 and 7 : X? < X and p: X?> < X as the projection
relations of X2 we have:

rel(s) negatively transitive <= C7;[3,3] C 3
rel(s) semi-transitive <= CT;[3,3] C CT;[s, 5]
rel(s) Ferrers relation <= CT;[[p,7];s,3] C CT;[[p,7];5, s]

Proof. To prove the first claim, we start as follows, where we use the definition
of negative transitivity and Theorem 3.2:

rel(s) negatively transitive <= rel(s);rel(s)
<~ rel(3);rel(s)

rel(s)
rel(s)

NN

The remaining steps are as in the proof of Theorem 4.3, with s instead of s.

In case of the second claim, we start with the definition of semi-transitivity,
use then one of the Schroder equivalences and then Theorem 3.2, leading to the
following calculation:
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rel(s) semi-transitive <= rel(s);rel(s);rel(s)T C rel(s)

< rel(s);rel(s) C rel(s);rel(s)
< vec(rel(s);rel(s)) C vec(rel(s);rel(s))

Next, we transform the left-hand side of the last inclusion as follows:

vec(rel(s);rel(s)) = CT; [vec(rel(s)), vec(rel(s))] Lemma 4.1
= CT; [vec(rel(s)), vec(rel(s))] Theorem 3.2
=CT,[35,9] Theorem 3.2

In a similar way vec(rel(s);rel(s)) = CT; [s, s] can be shown and we are done.
Also in case of the third claim we start with the definition of a Ferrers relation,
use then one of the Schréder equivalences and then Theorem 3.2. This yields:

rel(s) Ferrers relation <= Tel(s);rel(s)T;rel(s) C rel(s)

— rel(s) ;rel(s) C rel(s)T;rel(s)

— wec(rel(s)";rel(s)) C vec(rel(s)T;rel(s))

The treatment of both sides of the last inclusion is rather similar to the calcu-
lation in the proof of the second claim. In case of the left-hand side we have:

vec(rel(s) ;rel(s)) = CT; [[vec(rel(s)T) vec(rel(s))] Lemma 4.1
= CT;[lp, 7]; vec(rel(s)),vec(rel(s))]  Theorem 3.4

= CT;[lp, 7]; vec(rel(s)),vec(rel(s))]  Theorem 3.2
=CT;[lp,7]; 5, 3] Theorem 3.2

Eqution Uec(rel(s)T; rel(s)) = CT;[[p, 7];3, s] can be shown in a similar way. O

All sides of the three inclusions of Theorem 4.4 are column-wise extendible vector
expressions over s. Hence, Theorem 3.1 immediately yields the following vector
models of type [X < X] < 1 of the sets of relations Theorem 4.4 deals with:

— T
negZrans(X) :=L; (CT; [M,M] N M)

M,
semiTrans(X) = L; (CT; [M, M] 0 C'T [M, M]
fereers(X) := L; (CT; [[p, 7]; M, M] N CT; [[p, 75 M, MDT

From the definitions of weak-orders, semi-orders and Ferrers relations we now
obtain the vector models roeatOrd(X), semiOrd(X) and intOrd(X) we are look-
ing for by means of intersections as follows:

weatOrd(X) := asymm(X) N negTrans(X)

semiOrd(X) = ireefl(X) N semiTrans(X) N fervers(X)
tOr0(X) := ieefl(X) N fervers(X)
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There are situations where each relation of the set R of relations we want
to compute is contained in a given relation R or contains R. This is e.g., the
case if R: X < X is a partial order and R is the set of linear extensions of R,
i.e., of the superrelations of R which are partial orders and complete. Having a
vector model suprel(R) of type [X < X] < 1 of the set of superrelations of R
at hand, it immediately allows to specify a vector model of type [X « X] < 1
of the set of linear extensions of R as follows:

lin€rt(R) := refl(X) N antisymm(X) N trans(X) N compl(X) N suprel(R)

To get a specification of suprel(R) and also of the vector model subrel(R) of
the set of subrelations of R, we use the following theorem, which is a direct
consequence of Theorem 3.2.

Theorem 4.5. Assume s: X XY < 1 and R: X < Y to be given. Then we
have:

R Crel(s) < vec(R) C s rel(s) C R <= s Cvec(R)

The sides of the two inclusions of Theorem 4.5 are column-wise extendible vec-
tor expressions over s. Using Theorem 3.1 we, therefore, immediately get the
following specifications of suprel(R) and subrel(R):

—T T
suprel(R) := L; (vec(R); LN M) subrel(R) := L; (M Nwvec(R); L

We close this section with an application of subvel(R), where R : X < X
is again a partial order. Recall that a closure operator with respect to R is an
extensive, idempotent and monotone mapping on X. If it is considered as a
function C': X < X in the relational sense, then extensiveness is described by
C C R, idempotency by C;C C C and monotonicity by R;C C C; R. In the
next theorem we show how the homomorphism property R; FF C F; S of F' with
respect to R and S can be specified in terms of the vector model of F'

Theorem 4.6. Assume s: X XY < 1l and R: X < X and S:Y < Y to
be given. Then we have:

R;rel(s) Crel(s); S <= (R|1);s C (1]|ST);s

Proof. The following calculation shows the claim, where we use Theorem 3.2,
then Theorem 3.3 and finally again Theorem 3.2:

R;rel(s) Crel(s); S < vec(R;rel(s);1) C vec(l;rel(s); S)
< (R||1");vec(rel(s)) C (1]|ST); vec(rel(s))
= (R|);s € (11ST):s
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As both sides of the inclusion of Theorem 4.6 are column-wise extendible vec-
tor expressions over s, Theorem 3.1 yields the following vector model of type
[X < Y] < 1 for the set of relations which satisfy the homomorphism property
with respect to R: X < X and §:Y < Y:

homProp(R, ) = L: (R[1):M A (1] ST): M)

And here is the specification of the vector model of type [X < X]| < 1 for the
set of closure operators with respect to the partial order R : X « X:

closOp(R) := funct(X, X) Nsuprel(R) N trans(X) N homProp(R, R)

5 Applications and Implementation

Each specification of the vector models of Sect.4 immediately can be imple-
mented within the programming language of RELVIEW. To demonstrate this, we
consider the following RELVIEW-program for injec(X,Y"), where (since RELVIEW
knows relations as the only data type) the two inputs X and Y are homogeneous
relations the carrier sets of which determine the sets X and Y.

injec(X,Y)
DECL XxY = PROD(X,Y);
pi, M, L

BEG pi = p-1(XxY); M = epsi(pi); L = Lni1(pi)~
RETURN - (L*(parcomp(-I(X),I(Y))*M & M))~
END.

In the program’s declaration part a relational direct product XxY for X x Y and
variables pi for the projection relation 7 : X xY « X, M for the membership
relation M : X XY < [X < Y] and L for the universal relation L : 1 < X x Y
are introduced. The three assignments of the body then compute these rela-
tions by means of three pre-defined RELVIEW-operations and store them in pi,
M and L. Finally, the return-clause — a direct translation of the specification
of injec(X,Y) into RELVIEW-code — computes the result. In this RELVIEW-
expression a small RELVIEW-program parcomp for computing parallel composi-
tions is used.

If relation algebra is extended by projection relations and membership rela-
tions, the expressive power of full second-order predicate logic is obtained. This
logic allows to specify for each set X the size-comparison relation S : 2% « 2%
such that S4 p iff |A| < |B], for all A, B € 2. As usual in set theory, |A| < |B|
means that there exists an injective mapping f : A — B. As first application of
the results of Sect.4 we present a relation-algebraic specification of S. To this

end, we introduce the right residual R\ S := RT;S and the symmetric quotient
syq(R,S) == (R\ S)N(R\ S) of relations R: X «» Y and S: X « Z. Then
both, R\ S and syq(R,S) have type Y < Z and for all y € Y and z € Z they
point-wisely are described as follows:

(R\S)y, < Yo : Ry y= Sy syq(R,S)y,, <= Vo : Ry y < Su. (2)
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Besides these two derived relational operations we need the projection relations
7:X?2 < X and p: X2 — X of X? and two membership relations. Since the
latter have different types, we use different symbols. For that of type X « 2%
we use M as before, for that of type X? < [X < X| we use M. After these
preparations we can prove the following result.

Theorem 5.1. For all size-comparison relations S : 2% — 2% we have:
S = (syg(M,7"; M) N Liinject(X, X)T); (0 ;M) \ M)

Proof. Assume arbitrary sets A, B € 2% to be given. Using the right description
of (2), for all R: X < X we obtain

syqg(M, 7T M)a g <= Vo : My a4 & (7 ;M)
—=VeizceAes Ju:imy, AMyr
= Vr:izeAsJy: Ryy
< A =dom(R),

where dom(R) denotes the domain of R. Similarly, using the left description of
(2), for all R: X < X we get ((p"; M)\ M)g p iff ran(R) C B, where ran(R)
denotes the range of R. As a consequence, the relationship

((sya(M,wT; M) N Lyinjec(X, X)"); ((p7: M) \ M)) 4.5 (3)

holds iff there exists an injective relation R : X < X such that A = dom(R)
and ran(R) C B. Restricting the source of R to A and the target of R to B
we get that (3) holds iff there exists an injective relation S : A < B such that
A = dom(S) and ran(S) C B. Hence, S is also total. The Axiom of Choice
implies that S contains a function as a subrelation. So, an injective relation
S: A « B exists iff an injective function F': A < B exists, i.e., iff Sy p. O

Translated into a RELVIEW-program, the specification of the size-comparison
relations of Theorem 5.1 looks as follows:

sizeComp (X)
DECL XxX = PROD(X,X);
pi, rho, M, MM
BEG pi = p-1(XxX); rho = p—2(XxX); M = epsi(X); MM = epsi(pi)
RETURN (syq(M,pi~*MM) & Ln1(M)*injec(X,X)~)*((rho~*MM)\M)
END.

Systematic experiments are an accepted means for doing science and mean-
while they have also become important in mathematics and computer science.
They are used, e.g., for gaining insight and intuition, for identifying properties
and for testing conjectures. In the following we demonstrate how RELVIEW and
the results of Sect. 4 can be used in that regard.

For given R : X < X and S :' Y < Y arelation FF : X < Y is a
homomorphism from R to S if it is a function and satisfies the homomorphism
property R; FF C F;S. If F is a bijective function and satisfies R; F' = F; S,
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then it is an isomorphism from R to S. By an intersection of the vector models
funct(X,Y") and homProp(R, S) of Sect.4 we get the following vector model of
type [X < Y] < 1 for the set of homomorphisms from R to S:

hom(R,S) := funct(X,Y) N homProp(R, S)

The equation R; F = F;S is equivalent to R; FF C F;S and F;S C R;F. To
obtain a vector model of the set of relations F' which satisfy F'; S C R; F', we can
proceed as in the case of homProp(R, S). Doing so, we finally get the following
vector model of type [X < Y] < 1 for the set of isomorphisms from R to S:

iso(R,S) := hom(R,S) Nbijec(X,Y)NL; ((I|ST); MN (R|1); M)T

There exist relations R and S with a bijective homomorphism from R to §
that is not an isomorphism — even if the types of R and S are equal. We have
investigated the still stronger restriction R = S. To this end, we formulated the
equation hom(R, R) N bijec(X, X) = iso(R, R) as a RELVIEW-program. Then
we executed it for all relations R: X < X on X ={1,...,n}, with 1 <n <5.
Doing so, the relations R were computed by a loop through all points p contained
inlL:[X<X] < 1 and using R = rel(M;p) as explained at the end of
Sect. 3. In each case the result was ‘true’. This and a generalisation to again two
relations R and S (which was obtained by an analysis of a previous proof of the
specific case R = 5) led to Theorem 5.2 below. To our knowledge, it seems not
been published until now. For the proof of Theorem 5.2 we need the following
properties, for all relations @), R and S, where, again as in set theory, |A| = |B|
means that there exists a bijective mapping f: A — B:

IRT|=|R|  Q univalent = |[RNQT; S| <|Q;RN S| (4)

The equation is obvious. The implication is shown in [6] by Y. Kawahara. Both
properties are part of an axiomatisation of the cardinality of relations in [6].

Theorem 5.2. Assume R: X < X, S:Y & Y and F: X < Y to be
given such that |R| = |S| and F is a bijective function. Then |R; F| = |F;S|.
Furthermore, if R is finite and R; F C F; S, then R;FF = F;S.

Proof. The following calculation shows |F; S| = |S]:

|S| = |SNFT;L| F surjective
<|F;SNL| F univalent, implication of (4)
=|LNEFTT; 9|
<|FT;LN S| F injective, implication of (4)
= 15| F surjective

If we replace in this calculation S by RT and F by FT, we get |FT; RT| = |RT|
and the equation of (4) yields |R;F| = |(R;F)'| = |F";R"| = |R"| = |R|.
Altogether, we have |R; F| = |R| = |S| = |F; S|.
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Now, let R be finite. Then |R| = |R; F'| = |F; S| shows that F'; S is finite. By
the usual definition of finitenes in set theory there is no @) such that Q C F; S
and |Q| = |F; S| or, equivalently, for all @ from Q C F;S and |Q| = |F;S] it
follows @ = F';S. So, R; F C F'; S and |R; F| = |F; S| imply R; F' = F; S. O

In particular, already a bijective homomorphism on a finite relation (or a graph)
is an automorphism. Notice that neither X nor Y nor F have to be finite.
Finiteness of R and S, however, is necessary as the following example by M.
Winter shows. Consider R : Z < Z and F : Z < Z, defined by R, , iff £ > 0
and z =y and F, , iff t+1 =y, for all z,y € Z. Then F is a bijective function.
Simple calculations show (R;F),, iff + > 0 and z + 1 = y and (F;R),, iff
x> —land z+1 =y, for all z,y € Z. From these properties we get R; F' C F; R.

In 1969 D. Scott presented a partially ordered set (D, <) that is isomorphic
to the partially ordered set ([D— D], C) of continuous mappings on D ordered
by the function order induced by <, i.e., by f C g iff f(z) < g(z), for all
x € D. The set D is the inverse limit of a retraction sequence starting with
(X0, <o), where Xy := {L, T} and L <y T, and continued by X, 1 as set of
monotone mappings on X, and <, as function order induced by <,. In [12]
the construction is described in detail, the partially ordered sets (X7, <;) and
(X2, <3) are presented and it is noted that |X5| = 120 549. We have used REL-
VIEW to verify this number and even have been able to compute <3. Decisive for
that is the following relation-algebraic specification of the function order, where
inj(v) : F < [X < X] is the injective embedding induced by v, that is, the
identity function.

Theorem 5.3. Let R: X <« X be a partial order, v : [X < X| < 1 be the
vector model of a set F of functions and F : F < F be the function order

induced by R. Then we have F = inj(v); MT; (R||R);M;inj(v) .

Proof. For all F,G € F we calculate as follows to show the claim:

FF,G < Vu,v : Ful,u2 A GU17U2 A Ru1,U1 = Rug,vz
= Fu, v Fyy s A Gy oy A Ry on A Ry v,
< —3u,v: Fyy uy A (RHR)W} A Gy v,
— ~Ju:ue€ FATv: (R||R)up AvEG
— —Fu: (M;inj(v) )ur A : (R|R)uw A (M;ing(v) )o.g
— —3u: (inj(v);MT) pu A (R R); M;ing(v) ua
= inj(v); MT; (R]| R); M;inj(v) 5 g

O

RELVIEW contains a pre-defined operation inj for computing injective embed-
dings. If we take F as set of monotone functions and suppose hom to implement
hom(R, S), then the following RELVIEW-program computes <, 41 from <,.
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functOrder(R)
DECL XxX = PROD(R,R);
Inj, M
BEG Inj = inj(hom(R,R)); M = epsi(p-1(XxX))*Inj"
RETURN - (M~ *parcomp(R,-R)*M)
END.

The following three pictures show the partial orders <g, <; and <, as Boolean
RELVIEW-matrices, where a black (white) square means a 1-entry (0-entry).
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) :

N~y v 1 6
7

1 2 8
2 3 0

On a PC with 2 CPUs of type Intel® Xeon® E5-2698, each with 20 cores
and 3.60 GHz base frequency, 512 GByte RAM and running Arch Linux 5.2.0,
RELVIEW needs 31.36s to compute the partial order <3 as a ROBDD with
2500126 nodes and to report that its carrier set consists of 120549 elements
and its Boolean matrix has 1805247020 1l-entries. It is noteworthy that only
0.02s suffice for the evaluation of hom(R,R), i.e., for the computation of the
vector model of the set of mappings on X5 which are <s-monotone.

6 Concluding Remarks

We have applied our technique to some other classes of relations including rect-
angles, matchings, Aumann contact relations, difunctional relations, Noetherian
relations and bipartitions respectively bichromatic partitions of relations. By it
we also obtained the vector model of [5] for the set of up-closed multirelations
in a simple way.

During the past 30 years RELVIEW proved to be an excellent tool for sup-
porting work with relations, especially the development of relational algorithms.
But it only is able to treat set-theoretic relations on finite carrier sets. For this
reason results that seem to confirm an abstract relation-algebraic property are
to handle with some care. Namely, it may happen that the considered prop-
erty holds for all set-theoretic relations on finite carrier sets but not in case of
infinite carrier sets. It is known that there are even properties that hold for all
set-theoretic relations (i.e., also with infinite carrier sets) but not in axiomatic
relation algebras. Theorem 5.2 is an example for the first situation and Eq. (1)
is an examples for the second one. But, fortunately, such situations are rare.
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comments and suggestions.
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Abstract. We investigate four well-known criteria for the existence of
kernels in directed graphs/relations which can be tested efficiently, viz.
to be irreflexive and symmetric, to be progressively finite, to be bipartite
and to satisfy Richardson’s criterion. The numerical data, obtained by
the evaluation of relation-algebraic problem specifications using REL-
VIEW show that even the most general of them is very far away from a
characterisation of the class of directed graphs/relations having kernels.

1 Introduction

When written as a logical formula, most mathematical theorems have the form
Vo : d(z) = ¥(x),

where x is a list of variables, each variable ranges over a certain class of math-
ematical objects, ¥(x) describes the property one is actually interested in and
&(x) describes a property that ensures ¥(z). Mostly, one tries to get ®(x) as
general as possible. Whenever ¥(z) is equivalent to ®(x) it characterises the
class of mathematical objects for which ¥(x) holds. An example is the fixpoint
theorem of A. Tarski (see [12]). Here there is only one variable = that ranges
over the class of lattices, ¢(z) describes that z is complete and ¥(z) describes
that each monotonic function on = has a least fixpoint. That in this case @(x)
and ¥(x) are equivalent is an immediate consequence of a theorem of A. Davis,
published in [6]. Other prominent examples are characterisations of classes of
mathematical objects by means of forbidden substructures, e.g., that a lattice is
modular iff it does not contain a sublattice isomorphic to the pentagon-lattice
N5 (R. Dedekind, see [7]) and that a finite graph is planar iff it does not contain
a subgraph that is a subdivision of the Kuratowski graph K5 or the Kuratowski
graph K33 (K. Kuratowski, see [9]).

In this paper we investigate kernels within graphs. A kernel of a directed
graph is a subset K of the set of vertices such that no pair of vertices of K
is connected by an edge and from each vertex outside of K there is an edge
to a vertex of K. This concept is introduced in [13] by J. von Neumann and
O. Morgenstern as a generalisation of a solution of a cooperative game. In [5]
V. Chvatal shows that determining whether a directed graph possesses a kernel
is NP-complete.
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Mapping kernels the aforementioned formula results in x ranging over the
class of directed graphs, ¥(x) describes that = has a kernel and &(z) describes
a sufficient criterion for this property. Hence, with ¥(x) as just introduced, it is
very unlikely to get a @(x) such that &(z) and ¥(x) are equivalent and #(x) can
be computed efficiently.

There exist a series of sufficient criteria for the existence of kernels which
can be tested efficiently. An interesting question is how close these are to a
characterisation of the class of directed graphs having kernels. To this end, in
this paper we present for all vertex sets X up to 7 vertices the number of directed
graphs ¢ = (X, R) having kernels. Then we consider the four most popular
criteria for the existence of kernels and present for each criterion the number
of directed graphs g = (X, R) which satisfy it. These numerical data show that
even in case of the most general of the four criteria, the absence of cycles of
odd length (as shown by M. Richardson in [10]), only a very small portion of
the directed graphs with kernels satisfy the criterion. We may conclude that the
criteria are very far away from a characterisation of the class of directed graphs
having kernels.

In case of 7 vertices there are 5.62 - 1014 directed graphs and 1.88 - 10** of
them have kernels. Only 1.62 - 10'° of them satisfy Richardson’s criterion. We
have been able to compute the numerical data for such large numbers of directed
graphs using only their adjacency relations R, relation-algebraic problem spec-
ifications and RELVIEW for the evaluation of the latter. RELVIEW is a tool
for the manipulation and visualisation of relations and relational programming.
It uses reduced ordered binary decision diagrams (ROBDDs) for implementing
relations. See [3,4] for more details. Besides the excellent and manifold capa-
bilities of relations and relation algebra in problem solving, this paper again
demonstrates the amazing computational power of RELVIEW.

2 Relational Preliminaries

If X and Y are given sets, a subset of the direct product X x Y is a relation with
source X and target Y. We denote the set of all relations with source X and
target Y (i.e., the powerset 2%X*Y) by [X « Y] and write R : X « Y instead
of R € [X < Y]. In such a case X < Y is called the type of R. A (typed)
relation corresponds to a Boolean matrix. This interpretation is well suited for
many purposes and also used as one of the graphical representations of relations
within RELVIEW. Therefore, in this paper we also use matrix terminology and
notation for relations. In particular, we write R, , instead of (x,y) € Ror z Ry.

We will use the following five basic operations on relations: R (complementa-
tion), RU S (union), RN S (intersection), RT (transposition) and R;S (compo-
sition). We assume that transposition and complementation bind stronger than
composition and composition binds stronger than union and intersection. As
derived operation we will use the right residual of two relations with the same

source, defined by R\ S := RT;S.If R: X < Y and S: X « Z, from the typ-
ing rules and the point-wise definitions of complementation, transposition and
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composition we get R\ S : Y « Z and, given arbitrary y € Y and z € Z, that
(R\ 8)y, iff for all z € X from R, , it follows S, ..

Besides the just mentioned operations, we will use the three special relati-
ons O (empty relation), L (universal relation) and | (identity relation). Here we
overload the symbols, i.e., avoid the binding of types to them. Finally, if R is
included in S we write R C S and R = S means their equality.

Relation algebra as just introduced can express exactly those formulae of
first-order predicate logic which contain at most two free variables and all in
all at most three variables. The expressive power of full first-order predicate
logic is obtained by means of projection relations or equivalent notions. In this
paper we always assume that a pair u from a direct product is of the form
u = (u1,us). This allows to describe the meaning of the projection relations
m: XXY < Xand p: X XY < Y of a direct product X xY by =, , iff
up =z and p,y iff ug =y, forallu € X xY, v € X and y € Y. Based on the
projection relations 7 : X XY < X and p: X XY < Y for R: X < Z and
S Y < Z their left pairing is defined by [R, S] := m; RN p; S, thereby being
of type X xY « Z. Using point-wise notation we have [R,S], , iff R,, . and
Suy.zy for all w € X x Y and 2z € Z. The counterpart to the left pairing, with
now Z < X XY as type, is the right pairing of R: Z <~ X and S: Z < Y,
defined as [R,S] := R;n' N S;p'. Point-wisely we get [R,S], , iff R, ., and
Sius, for all w € X xY and z € Z. The parallel compositibn (or product)
RIS X xX' «YxY of R: X < YandS: X' < Y’ suchthat (R||S)u,v
iff Ry, v, and Sy, vy, forallu € X x X’ andv € Y x Y, can be defined by means
of the right pairing. We get the desired property if we define R|| S := [m; R, p; 5],
where 7 : X x X’ < X and p : X x X’ + X’ are the projection relations of
X x X’ and the right pairing is formed with respect to the projection relations
of Y x Y.

Assume the projection relations 7 : X XY < X and p: X XY < Y of
X xYand R: X xY < Z to be given. A property that we will use frequently
in Sect. 4 is the equivalence of ([p, 7]; R)v,. and Ry, v,),», for allu € X x Y and
z€Z.

The relation-level equivalents of the set-theoretic symbol “€” are the member-
ship relations M : X < 2% point-wisely defined by Mgy iffx € Y, forallz € X
and Y € 2%. By means of projection relations and membership relations the
expressive power of full second-order predicate logic is obtained and this suffices
for our later applications. If the source of a membership relation is a direct prod-
uct and, hence, its target is a set of relations, we use the symbol M instead of M.
An important property of such a membership relation M : X x Y < [X < Y]
is the equivalence of M, g and Ry, 4,, forallu € X xY and R: X < Y, which
we also will use frequently later in Sect. 4.

At the end of this section it should be mentioned that — except the parallel
composition — all specific relations and all relational operations and tests we
have introduced in this section are available in the programming language of
RELVIEW. Details will be presented in Sect. 5. See also the Web-site [14].
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3 The Experiments and Their Results

In this section we present the numerical data we already have mentioned in the
introduction. By means of RELVIEW we have been able to count for a given set X
having at most 7 elements the number of directed graphs g = (X, R) possessing
kernels. These numbers are presented in the third column in Tablel. In the
second column the numbers of all directed graphs with vertex set X are given,
i.e., the numbers 2‘X|2, where 1 < |X| < 7. The percentages of the directed
graphs having kernels with regard to the total number of directed graphs are
given in the last column of the table. Notice that the last number of the second
and the last number of the third column of this table are the exact values of the
approximations 5.62 - 10" and 1.88 - 10'* mentioned in the introduction.

Table 1. Occurrences of kernels within graphs having at most 7 vertices.

|X| | All relations Rel. with kernel Percentage
1 2 1 150.00 %
2 16 8 150.00 %
3 512 230 |44.92 %
4 65 536 26 346 |40.19 %
5 33 554 432 12 378 964 | 39.98 %
6 68 719 476 736 23 921 882 920 |34.80 %
7 562 949 953 421 312 | 188 553 949 010 868 |33.49 %

We investigate four sufficient criteria for the existence of kernels in a directed
graph which can be tested efficiently. That each of them indeed ensures the
existence of kernels is shown in [11] with relation-algebraic means.

The first criterion is that the adjacency relation R is irreflexive and symmet-
ric, that is, g = (X, R) is the directed version of an undirected graph, where each
undirected edge is replaced by two parallel directed edges with opposite direc-
tions. The corresponding numbers are presented in the second column of Table 2

corresponding to QW, where 1 < |X| < 7. The second criterion is that
R : X < X is a progressively finite relation in the sense of [11] which means
that there is no non-empty subset A of X such that for each x € A there exists
ay € A with R, . In other words, R is progressively finite iff RT is Noetherian
iff there is no infinite sequence (z,)nen in X such that R, . .,, for alln € N.
This criterion generalises the criterion “to be cycle-free” of [13] since on a finite
set X the relation R is progressively finite iff it is cycle-free; see [11]. The data
for this criterion (i.e., the number of cycle-free directed graphs g = (X, R) with
1 <|X| <7), are presented in the third column. The fourth column of the table
shows the number of bipartite directed graphs ¢ = (X, R), with 1 < |X| < 7,
since “to be bipartite” is also a sufficient criterion for the existence of kernels.
In the introduction we already have mentioned Richardson’s criterion stating
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that a graph has no cycles of odd length. The data for this fourth criterion can
be found in the last column of the table. Notice that the theorem of [10] on
the existence of kernels in directed graphs without cycles of odd length assumes
finite graphs. In case of an undirected graph the set of kernels equals the set of
maximal stable sets such that kernels exist if the vertex set is finite. The other
two criteria also hold for infinite graphs.

Each directed graph with a progressively finite relation is cycle-free and, as
a consequence, also does not contain cycles of odd length. From a well-known
theorem of D. Konig (see [8]) we immediately get that each bipartite directed
graph has no cycles of odd length. Therefore, on finite directed graphs (which are
important in practical applications) Richardson’s criterion is more general than
the criteria “to be cycle-free” and “to be bipartite”, which also is demonstrated
by the numerical data given in Table2. The last number of the last column is
the exact value of the approximation 1.62-10'° mentioned in the introduction. A
comparison of the second and the last column shows that Richardson’s criterion is
also much more general than the first criterion “R is irreflexive and symmetric”.
Notice that, however, neither the first criterion implies Richardson’s criterion
nor vice versa.

Table 2. Number of graphs for the four criteria having at most 7 vertices.

|X| | Irr., symm. | Progr. finite | Bipartite Richardson

1 1

2 2 3 4 4
3 8 25 37 49
4 64 543 829 1 699
5 1024 29 281 36 616 150 736
6 32 768 3 781 503 3 327 499 32 398 249
7 2 097 152 |1 138 779 265 581 809 537 | 16 230 843 049

At the end of this section it should be mentioned that each of the above four
criteria not only can be tested efficiently but also can be used to obtain efficient
algorithms for computing a kernel of a graph that satisfies the criterion. In case
of Richardson’s criterion such an algorithm is presented in [2]. It is formulated
as a relational while-program and formally derived by means of the assertion
technique and reconstructing a proof of Richardson’s theorem.

4 Computing Classes of Relations Having Kernels

In this section vectors play a central role. A (relational) vector as introduced in
[11] is a relation s : X < Y such that s = s;L, for L: Y < Y. In the Boolean
matrix interpretation this means that each row of s consists only of ones or only
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of zeros. Consequently, the targets of vectors are irrelevant and we only consider
vectors of type X « 1, with a specific singleton set 1 := {_L} as common target.
Such vectors correspond to Boolean column vectors and, therefore, as in linear
algebra we write s, instead of s, |. For R: 1 < X we retain the notation R ,.
Given a set X and a subset S of X, we call s : X < 1 a vector model of
S (for short s models S) if for all z € X it holds « € S iff s,. If X is a direct
product, say Y x Z, then s models a relation S : Y < Z and we have S, v,
iff s, for all u € Y x Z. The computation of s := vec(S) from S can be done
relation-algebraically, as vec(S) = [S,1];L, where | : Z < Z and L: Z < 1.

Convention 4.1. For the following we fix a set X. Throughout this section
then m: X? < X and p : X? < X denote the two projection relations of the
direct product X2 and M : X « 2% and M : X? < [X < X] are membership
relations.

Instead of working with directed graphs g = (X, R) in the following we work
with their adjacency relations R : X < X (in [11] called associated relation)
and use the notions kernel, cycle, bipartite etc. for R in an obvious way. The
computations we will present consist of relation-algebraic specifications of vector
models of those sets of relations on X which satisfy the first, second, third
respectively fourth of the four sufficient criteria for the existence of kernels we
have mentioned in Sect. 3. In Sect. 5 we will demonstrate how these specifications
rather straightforwardly can be implemented in the programming language of
RELVIEW and the executions of these RELVIEW-programs led to the numerical
data of Sect. 3.

Given R : X < X, from the description of kernels in Sect.1 we get that a
subset K of X is a kernel of R iff the following two formulae hold, where the
variables x and y range over X:

—dr,y:r e KANye KAR;y Ve:x € K=3y:y€ KANRyy

The first formula defines K as R-stable and the second one as R-absorbant. As
a consequence, kernels of R are precisely those subsets of X which are R-stable
and R-absorbant at the same time. Based on two auxiliary specifications for
R-stable and R-absorbant subsets, in the following theorem we specify relation-
algebraically a vector model ternel : [X < X] < 1 for the set of relations on
X having kernels. Besides the relations of Convention 4.1 the second projection
relation B : X x 2% « 2% of the direct product X x 2% is used. Notice that
the backslash-symbol used in the second auxiliary specification absotb denotes
the right residual operation.

Theorem 4.1. We consider the following three relation-algebraic specifications:
stable := [MT,MT]; M : 2% < [X < X]
absotb := (B Nwec(M);L) \ ((I[|MT);M) : 2% « [X « X]
gernel := (L; (stable N absorb))' : [X — X] — 1
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For all A € 2% and R: X < X then stables g iff A is R-stable, absorba g iff
A is R-absorbant and ternelr iff R has a kernel.

Proof. Assume arbitrary A € 2% and R: X < X. Then the first claim is shown
by the following calculation, where the variable u ranges over X?:

stabley p <= WA’R
= —3u: [MT,MT],  AM, g
= —Ju:Mp, AMY,, A Ruy
= —Ju:us EANus € ANRy, v,
<= Ais R-stable

To prove the second claim, we calculate as follows, where the variables z and y
range over X, the variable u ranges over X2 and the variable B ranges over 2%X:

absotba p <= ((BNwvec(M);L)\ ((1|MT);M))4.r
< Vx,B: (fNvec(M); L)(z,B),4 = ((I]] MT)§M)(z,B) R

< V2,B:B=AAM, = 3u: (I|M") 5. AMur
= VJU,B:B=A/\m¢B:>E|u:m=u1/\|\/|TB7u2/\Ruhu2
= Vr:xgA=>3Jy:yc AANR,,

<= A is R-absorbant

Finally, we calculate as follows, where the variable A ranges over 2%:

ternelp <= (L; (stable N absotb)) | g
<= JA: Ly g A (stable N absorb) s r
— JA: stablea g A absotby g

Together with the first two claims this implies the third claim. O

We have used the prevalent mathematical theorem-proof-style to emphasise the
result of this theorem and to enhance readability. However, in fact, we have
obtained the relation-algebraic specifications by developing them formally from
the corresponding logical specifications by replacing step-by-step logical con-
structions by equivalent relational ones. This remark also holds for the other
theorems of this section.

The next theorem presents relation-algebraic specifications of vector models
ireefl : [X & X] « 1 and sym : [X — X] < 1 for the set of irreflexive respec-
tively symmetric relations on X such that the intersection irreflNsym models the
set of relations on X which satisfy the first sufficient criterion for the existence
of kernels we have mentioned in Sect.3. Only the three relations 7 : X? < X
and p: X? < X and M : X? < [X < X] of Convention 4.1 are used.
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Theorem 4.2. We consider the following relation-algebraic specifications:

T:[

iveefl:=L; (M Nuwec(l);L) :[X & X] & 1

— T
sym:=L;(Mnp,n]|;M) :[X < X] < 1

Forall R: X < X then irvefly iff R is irreflezive and symp iff R is symmetric.

Proof. Assume an arbitrary R : X < X. Then the following calculation shows
the first claim, where the variable u ranges over X?2:

irreflp < Li(MNwec(l);L), g

<= —Ju: Ly, A My g Avec(l)y
= 3u: Ry us Al u,

— —Ju: Ry, up AU = Ug

<= R is irreflexive

Also in the following calculation the variable u ranges over X2:

symp < L (M N [p,7]; M)J_,R
< —Ju:L; w AMyrA-(lp,7];M)y.r
<~ Yu:Myr= ([p,7]; M)y.r
= Vu: Ryjuy = Muy,u),R
= Yu: Ry, u = Rusuy
<= R is symmetric

With this verification of the second claim the proof is complete. O

The second sufficient criterion for the existence of kernels we have mentioned
in Sect. 3 is “to be progressively finite”. In the following we show how to spec-
ify relation-algebraically a vector model progFin : [X < X] < 1 of the set of
progressively finite relations on X. As in the case of Theorem 4.1 besides the rela-
tions of Convention 4.1 we use the second projection relation 3 : X x 2% « 2%
of the direct product X x 2.

Theorem 4.3. We consider the following relation-algebraic specification:

———————— T
progFin := L;M; (8T N L;vec(M)); [m, p;M] ;M < [X & X] — 1

For all R: X < X then progging iff R is progressively finite.

Proof. To structure the proof, we define the following auxiliary relation:

R o= (BT N Lvee(M) )i [m, ps M]Ts M2 2% o [X o X]
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Now, assume an arbitrary R : X « X. For all A € 2¥ we then calculate as
follows, where the variables x and y range over X, the variable B ranges over
2% and the variable u ranges over X?2:

Rar <= (670 Livee(M)'): [m, pM]T: My g
= ~32,B: (BT NLivec(M) )4 o) Alm, s M M, )
<= —3r,B: A= B Avec(M) gy A ([T, p; I\/I]]T; M) (2,B).R
= =3z vec(M) g ) A =Fu: [T, p; M]]-(I—I,A),u AMy r
< 2dr Mg a A=Ju: [mp M), oay A Rugus
= VrizeA=>Fuiui=xNus € ANRy, u,
= Vr:z€eA=3Jy:ye ANR,,

Using this result, we now calculate as follows, where the variable A ranges over
2% and, as above, the variables z and y range over X:

progfing @WL,R
< -3JA: (LM) L AARar
= -JA: (MT,)aAVr:2€ A= Ty:y€ AANR,,
— —JA:A#0ANVz:2 € A=3Ty:yc ANR,,

The last formula is the logical specification of R being progressively finite; see
the definition given in Sect. 3. O

We continue with the third sufficient criterion for the existence of kernels we have
mentioned in Sect. 3, viz. “to be bipartite”. A corresponding relation-algebraic
specification of a vector model bipattite : [X < X] < 1 of the set of bipartite
relations on X is given in the theorem below. In this theorem only the two
membership relations of Convention 4.1 are used.

Theorem 4.4. We consider the following relation-algebraic specification:
bipartite := (M \ ([M,M] U [M,M]));L: [X < X] < 1
For all R: X < X then bipartitey iff R is bipartite.

Proof. Assume an arbitrary R : X < X. Then we calculate as follows, where
the variable A ranges over 2% and the variable u ranges over X?2:

bipartite, <= (M \ ((M,M] U [M,M]));L)r
< JA: (M \ (M,M]U[M,M]))g.a ALa
— JA:Vu:M, r= [M,M]]U)A Vv [M, I\/I]]u’A
<~ JA:Vu: Rul,u2 = (Mul,A /\MUQ,A) \Y (Vul,A A Mu%A)
= JA:Vu: Ry, uy = (w1 EANus € A)V (w1 € ANug € A)
<= R is bipartite

This completes the proof. a
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Concerning Richardson’s criterion, we have not been able to specify a vector
model of the set of relations on X without cycles of odd length with purely
relation-algebraic means. Experiments with the RELVIEW tool have shown that
the RELVIEW-implementation of the vector model £etnel of Theorem 4.1 seems
to be successfully executable up to | X| = 7 only. For | X| = 8 we cancelled the
computation after about 20 h. Based on this fact, we have decided to consider
one after the other the lengths 1, 3, 5 and 7 of cycles. If | X| < 2, then a relation
on X has no cycle of odd length iff it is irreflexive. As a consequence, the first two
numbers of the last column of the second table of Sect. 3, i.e., the numbers for
|X| =1 and |X| = 2, are 2/XIUXI=1) "since this expression specifies the number
of irreflexive relations on X. The next three theorems present relation-algebraic
specifications of three vector models with the following meanings:

a) ez : [X « X]| < 1 models the set of relations on X which have a cycle of
length 3.

b) eye5 : [X < X] < 1 models the set of relations on X which have a cycle of
length 5.

c) ey : [X « X] < 1 models the set of relations on X which have a cycle of
length 7.

Since the complement thc3 models the set of relations on X without cycles of
length 3 and for the complements thc5 and thc7 the same applies for length 5
and 7, respectively, the vector

irreflNehez Nepes Nepey - [X o X] « 1

models the set of relations on X which have no cycles of length 1, 3, 5 and 7.
Consequently, we get for | X | < 8 that it models the set of relations on X without
cycles of odd length. This way we have obtained the numbers of the last column
of Table2 for 3 < |X| < 7.

The following relation-algebraic specification of the vector model cyc3 uses
the relations of Convention 4.1 except the membership relation M : X « 2%,
Furthermore, it uses the two projection relations of the direct product X2 x X2,
which we denote as v : X? x X? < X?and 6 : X% x X? < X2,

Theorem 4.5. We consider the following relation-algebraic specification:
ene3 = (L; ([6,7]; (o m); M N M, M] Nvee(prn’ ;L) [X o X] = 1
Forall R: X < X then cyc3p iff R has a cycle of length 3.

Proof. Assume an arbitrary R : X < X. Furthermore, let u,v € X2. Then we
have

([57 ’YII,(,D||7T);M)(u,U)7R — ((p”ﬂ)aM)(u,u),R — M(Uz,u1),R — RU2,U1
and

[M, M](u,v),R = My r AMyr = Rujuy N Roy o,
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and
(Uec(p; WT); L)(u,v),R <~ vec(p; 71—T)(u,v) <~ (P; ﬂ—T)u,v <~ Uz = V1.
From these equivalences we get

wesp <= (L ([6,7]; (pllm); M N [M, M] Nwec(p; ' ); L)) 1k
< v L1 (o) A Ruoyug A Ry uy A Ry oy Auz =11
< dr,y,2: Rey NRy . AR, 4,
where the variables v and v range over X2 and the variables x, y and z range

over X. The last formula of this calculation is the logical description of R having
a cycle of length 3. O

In the next theorem we present a relation-algebraic specification of the vector
model cyes. Precisely, it is based on the same projection relations and mem-
bership relations as Theorem 4.5 and uses two auxiliary specifications for the
construction of paths.

Theorem 4.6. We consider the following relation-algebraic specifications:

R:=(m;7 [[p;p"); (IM,M] Nvee(p;mT);L) : X2 x X2 o [X < X]
6 := [[p, 7l; M, [p, 7] M N [6,7]; (m [ p); M s X? X X2 o [X > X]
e = (L;(RNG)) : [X & X] & 1

For all R: X < X then cyesp iff R has a cycle of length 5.

Proof. Assume an arbitrary R : X < X. Furthermore, let u,v € X?2. First, we
treat R and calculate as given below, where the variables a and b range over X2
and the variable x ranges over X:

Ru,w),r == Ja,b: (m; ar Il o; pT)(uﬂ,),(a,b) A ([M, M] Nwec(p; 7TT); L) (ab),R
= 3a,b: (mm )ua AP p" o AIM M, g Avec(p; T ) (an)
< da,b:uy = a; ANvg :bg/\M%R/\Mb’R/\ag =b
<— dx: M(ul,z),R N M(va%R
<= 3z : Ry, » N Ry,

Hence, R (y,.),r specifies that there exists a path (uj,z,v2) in R. With regard
to & we calculate as follows:
6(u,v),R <~ [Hpv 71']]; Ma [p? 77]]; M}(u"[}),R A ([67 ’Y]]’ (7'[' || p)7 M)(u,v),R

g ([P> Wﬂ; M)u,R A ([P7 7]]3 M)v,R A ((71— ” p); M)(v,u),R
<~ M(uQ,ul),R A M(vz,vl),R A M(UlvuZ)vR
= Ry,.00 AN Ry uy N Ry oy
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S0, &(u,v),r specifies that (ve,v1,uz,u1) is a path in R. After these preparations
we now prove the claim. We start with the following calculation, where the
variables u and v range over X2 and the variable = ranges over X:

5 <= (LLRNG)) LR
<~ Ju,v: le(uﬂ,) AN %(u,v),R A G(u,v),R
<~ Ju,v: %(u,v)ﬁ A G(uﬂ;),R
< FJu,v: (3z: Ry, o A Rywy) A (2,01, u2,u1) is a path in R

It remains to verify that the last formula holds iff R has a cycle of length 5.
For the direction “=", let the formula be true. Then (uq,x,vq,v1,us,u1) is
a cycle of length 5 in R. For the converse, suppose that R possesses a cycle
(c1,¢2,¢3,¢4,c5,c1) of length 5. We define u := (c1,¢5), v := (cq,¢3) and x := ca.
Then (u1,x,v2) and (va, v1,us,u1) are paths in R and the formula holds. O

The relation-algebraic specification of the vector model cycy is given in the next
theorem. We follow the ideas of Theorem 4.6, but the realisation is far more com-
plex. We use a further projection relation, viz. the second projection relation of
the direct product (X2 x X2)2, which we denote as pu : (X2 x X2)? « X2 x X2
Furthermore, we use the auxiliary specification R of Theorem 4.6 and three fur-
ther auxiliary specifications.

Theorem 4.7. With R : X2 x X? « [X < X] as defined in Theorem 4.6 we
consider the following relation-algebraic specifications:

S = [[p,7]; M, [p,7];M] : X? x X? < [X < X]

T=[lpsp" pin M [min T mi p T M s (X2 % X?)? o [X o X]

U= (YT IY); (N6, MNwee(8;67);L) : X2 x X2 o [X < X]
ez = (L;RNSNU) : [X - X] — 1

Forall R: X < X then cycyp iff R has a cycle of length 7.

Proof. Assume an arbitrary R : X < X. Furthermore, let u,v € X2. From the
proof of Theorem 4.6 we already know the following facts, where the variable x
of the left equivalence ranges over X:

%(u,v),R <— dx: Rul’m A Rm,w G(u,v),R S Ruz’ul A Rw’vl

So, we have (RN &)y, iff there exists a path (uz,u1,z,vs,v1) in R. In the
remainder of the proof we show that i, .y g iff there is a path (vy,w, w2, us)
in R, from which then the claim follows similarly to the last step of the proof of
Theorem 4.6.

First, we concentrate on ¥. Guided by its source we assume arbitrary pairs
(a,b) € X2 x X% and (c,d) € X% x X? to be given. For all e € X? we then have

[0 0T 037 N aiy.e <= (03 are A(pi T pe <= as =3 Aby = e
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and this implies

([osp" s s M) () R <= M(by.00). <= BRbsoas-
In the same way we show that

(Im; 7" 75 p s M) ey, r <= Mieya).r <= Beya,-
So, altogether, we get:

3((a,b),(c,d)),R = [ PTaP; WT]; M, [r; 7TTa W;PTk M]((a,b),(c,d)),R

= (I p", 7 M) iy A ([ 7,70 s M) (a1
S Rb27a2 A RC17d1

Second, we concentrate on U and calculate as follows, where the variables a, b, ¢, d
and w range over X2

Uwwyr == (Y1177 (TN 56 M N vee(d;67); L)) (). g
= 3a,b,¢,d: (V177 (ww).((@b).(erd))
A (T 0 ;6 M Nwee(8;07); L) (ab),(c.)). R
= Ja,b,c,d: (V7)) (@b)(ed)) A T((ab)(ed),R
A (1558 M) (a,),erd) R A 0EC(856) (a,),(er))
<= da,b,c,d: Y(a,b)u N Ved),o N By an N Reydy
A (M) (cay,m A (8567 ) (a,).(c.a)
Jda,b,c,d:a=uANc=vARp 0, NRey gy A\MgrANb=d
Fw : Ryy s A Ryy s A My R
Jw : Ry, g A Ry N Ry us

111

Hence, we have i, . g iff there exists a path (vi,w:,ws,uz) in R as required
to conclude the proof. O

5 Implementation in RELVIEW

RELVIEW is a specific purpose computer algebra system for the manipulation
and visualisation of relations, relational prototyping and relational program-
ming. Computational tasks can be described by short and concise programs,
which frequently consist of only a few lines that present the relation-algebraic
expressions or formulae of the notions in question. At the beginning of Sect. 4
we have mentioned that all relation-algebraic specifications of the section rather
straightforwardly can be implemented in the programming language of REL-
VIEW. In the following we will demonstrate this by means of the specifications
ternel, progFin and bipartite.
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Projection relations play a decisive role. Therefore, we start with the follow-
ing two RELVIEW-programs prl and pr2, which implement the two projection
relations 7 : X XY < X and p: X XY < Y of the direct product X x Y.

pri(X,Y) pr2(X,Y)
DECL XY = PROD(X,Y) DECL XY = PROD(X,Y)
BEG RETURN p-1(XY) END. BEG RETURN p-2(XY) END.

RELVIEW knows relations as the only data type. In the above programs the
parameters X and Y stand for homogeneous relations and X is assumed as carrier
set of X and Y as carrier set of Y. The declaration XY = PROD(X,Y) introduces XY
as name for the relational direct product (X x Y, 7, p) in the sense of [11]. In pri
the return-clause yields the first projection relation 7 : X x Y « X by means
of the pre-defined RELVIEW-operation p-1 and in pr2 the second projection
relation p : X xY « X is obtained via the pre-defined RELVIEW-operation
p—2.

The following RELVIEW-program par implements the parallel composition
of relations. It immediately is obtained from the definition R || .S := [m; R, p; 5]
using the above RELVIEW-programs pri and pr2. A comparison with the def-
inition of the parallel composition shows that * is the RELVIEW-notation for

composition, ~ that for transposition and [-, - |1 that for right pairing.

par(R,S)
DECL pi, rho
BEG pi = pri(R*R™,S*S7);
rho = pr2(R*R",S*S7)
RETURN [pi*R,rhox*S|]
END.

Also the following RELVIEW-function vec immediately follows from the defi-
nition vec(R) = [R, l]; L, where the pre-defined RELVIEW-operation I computes
the identity relation of the same type as its argument, the pre-defined RELVIEW-
operation dom computes the composition of its argument with an universal vector
of appropriate type (i.e., a vector that models the domain of the argument) and
[l-,-] is the RELVIEW-notation for left pairing.

vec(R) = dom([IR,I(R"*R)]).
We now implement ternel as follows, where the parameter X of the RELVIEW-

program kernel stands for a homogeneous relation and the set X of Convention
4.1 is defined as the carrier set of X.
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kernel (X)

DECL M, MM, beta, stable, absorb

BEG M = epsi(X);
MM = epsi(pri1(X,X));
beta = pr2(X,M~*M);
stable = -([M~,M~|]*MM) ;
absorb = (beta & vec(-M)*L1in(M)) \ par(I(X),M~)*MM
RETURN (Lin(M)*(stable & absorb))"

END.

By means of the pre-defined RELVIEW-operation epsi and the first two assign-
ments the two membership relations M : X < 2% and M : X2 < [X < X] are
computed and stored in the variables M and MM. The third assignment computes
the second projection relation 3 : X x 2X «— 2% of the direct product X x 2%
and stores it in the variable beta. The right-hand sides of the following two
assignments are the RELVIEW-versions of the relation-algebraic specifications of
stable and absotb of Theorem 4.1. Finally, the expression of the return-clause is
the RELVIEW-version of the relation-algebraic specification of gernel of Theorem
4.1, where & means intersection, - means complementation and the pre-defined
RELVIEW-operation Lin computes a transposed universal vector L : 1 < YV
with the target Y equal to that of the argument.

In the same way the relation-algebraic specifications of proggin and bipartite
of Theorem 4.3 and Theorem 4.4 immediately lead to the following two REL-
VIEW-programs for their computation. In progFin the variable R corresponds
to the auxiliary relation SR of the proof of Theorem 4.3 and in bipartite the
symbol | denotes union of relations.

progFin(X)

DECL pi, rho, M, MM, beta, R

BEG pi = pri(X,X);
rho = pr2(X,X);
M = epsi(X);
MM = epsi(pi);
beta = pr2(X,M"*M);
R = -((beta” & Lin(M) “*vec(M) ") *-([pi,rho*M|]~*MM))
RETURN -(L1in(X)*M*R)"

END.

bipartite(X)
DECL M, MM
BEG M = epsi(X);
MM = epsi(pri(X,X))
RETURN dom(MM \ ([IM,-M] | [I-M,M]))
END.

When RELVIEW computes a relation and displays it in the relation window,
it shows in the window’s frame the number of rows, of columns and of 1-entries.
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Using this feature, we have obtained the numerical data of Sect.3. The running
times (in seconds) of the computations are given in Table3. A computation of
the vector model of the set of relations on X means the computation of the uni-
versal vector L : [X < X] < 1. In RELVIEW this is possible via the expression
Lin(epsi(pri(X,X)))" and practically needs no time (see last column of the
table). For the computation of the numerical data we have used a PC with 2
CPUs of type Intel Xeon® E5-2698, each with 20 cores and 3.60 GHz base
frequency, 512 GByte RAM and running Arch Linux 5.2.0, and version 8.2 of
RELVIEW. This newest version of the tool is described at the Web-site [14] and
the source code is available from Github via [15] and from Zenodo via [16]. The
virtual machine of [16] was built to ease running RELVIEW not only using Linux
but also Microsoft Windows and Mac OSX.

Table 3. Running times within RELVIEW.

|X| | Irr., symm. | Progr. fin. | Bipartite | Richardson | With kernel | All rel.
1 10.0010 0.0012 0.0009 0.0012 0.0015 0.0006
2 10.0026 0.0032 0.0018 0.0067 0.0057 0.0007
3 10.0069 0.0082 0.0053 0.0117 0.0117 0.0007
4 10.0081 0.0172 0.0194 0.0150 0.0171 0.0008
5 0.0169 0.0262 0.0199 0.1807 0.0213 0.0010
6 ]0.0181 0.1211 0.0833 10.4710 0.3141 0.0011
7 10.0476 1.8771 2.3501 32220.5500 | 138.6700 0.0011

The amazing computational power obtained by the use of ROBDDs and
RELVIEW becomes clear if we compare the running times of Table3 with the
times needed in case of a “classical” brute-force approach. If we assume that
some algorithm could generate every relation on a given finite set X and test
the existence of a kernel in, say, 1076 seconds, it would take 5.62 - 10** - 106
seconds, i.e., more than 17 years, for this task in the case of | X| = 7.

6 Concluding Remarks

There exist some extensions of Richardson’s theorem which allow the existence
of cycles of odd length but demand certain properties for them to hold. In [1] C.
Berge and P. Duchet prove that a finite directed graph g = (X, R) has a kernel
if every cycle of odd length has all its arcs belonging to pairs of parallel arcs,
meaning for each cycle (¢1,ca, ..., ¢pn,c1) of odd length of g also the reversed list
(c1,¢n,-..,c2,¢1) is a cycle of g, that is, all cycles of odd length are symmetric.

Although not explicitly mentioned, this criterion of Berge and Duchet
includes g to be irreflexive. This becomes clear if one studies the proof of Proposi-
tion 1.1 of [1] in detail. Roughly the idea is as follows. Suppose X = {z1,...,2,}.
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From g then construct a graph ¢’ by removing all edges (z;,z;) for which ¢ > j
and also (z;,z;) is an edge of g. Since cycles of length 1 do not occur and all
cycles of odd length are assumed as symmetric, this way each cycle of odd length
is split into non-cyclic paths. Hence, the graph ¢’ has no cycles of odd length.
Richardson’s theorem implies that it has a kernel K and K is also a kernel of g.

In contrast to the four criteria we have mentioned in Sect.3, testing the
criterion of Berge and Duchet seems to be rather expensive since it requires
to check all cycles of odd length in view of symmetry. The same holds for all
other extensions of Richardson’s theorem mentioned in [1]. We also have been
concerned with the question whether such weaker criteria are satisfied by much
more graphs/relations with kernels than Richardson’s criterion.

To get at least a feeling for their behaviour, we have applied our approach to
the criterion of Berge and Duchet and computed, again for small sets X, the set
of all irreflexive relations on X such that all cycles of odd length are symmetric.
In case of 1 < |X| < 2 the criterion of Berge and Duchet is equivalent to that
of Richardson and, hence, is satisfied by 1 respectively 4 relations on X. For
|X| = 3 the number of relations on X which satisfy the criterion of Berge and
Duchet is 50; this are 2.04% more than the 49 relations on X which satisfy
Richardson’s criterion. For 4 < |X| < 6 the numbers of relations on X which
satisfy the criterion of Berge and Duchet are 1778 (or 4.64% more than those
which satisfy Richardson’s criterion), 161254 (or 6.97% more than those which
satisfy Richardson’s criterion) and 35280286 (or 8.89% more than those which
satisfy Richardson’s criterion). Hence, the criterion of Berge and Duchet seems
to be only slightly more general than Richardson’s criterion.

In [1] it is also mentioned that the existence of kernels already follows from
the fact that (besides irreflexivety) every cycle of odd length has at least two arcs
belonging to pairs of parallel arcs. This criterion is ascribed to P. Duchet. We
also have checked it and RELVIEW computed for 1 < |X| < 6 the following num-
bers of relations on X which satisfy it: 1, 4, 56, 2534, 348 064 and 138 636 886.
Compared with Richardson’s criterion we get for 1 < |X| < 6 that Duchet’s
criterion is satisfied by 0%, 0%, 14.28%, 49.14%, 130.90% respectively 327.91%
more relations on X than Richardson’s criterion. Despite these better percent-
ages it still seems to be very far away from a characterisation of the class of
directed graphs having kernels. E.g., in case | X| = 6 it is satisfied by only 0.9%
of the graphs of this class.

Acknowledgment. We thank the referees for their very helpful comments and sug-
gestions.
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Abstract. We introduce ¢r-multisemigroups as duals of modal quan-
tales and study modal correspondences between equations in these multi-
semigroups and the domain and codomain axioms of modal quantales.
Our results yield new insights on the origin of locality in modal semi-
rings and quantales. They also yield construction principles for modal
powerset quantales that cover a wide range of models and applications.

1 Introduction

This work adds to a series on convolution semirings and quantales built over
relational monoids and multimonoids [3,8,12]. It explains the structure of modal
semirings and quantales [7,11], not generally for convolution algebras [12], but
specifically for modal powerset quantales—the standard setting for computa-
tional models in this context. We consider such quantales as boolean algebras
with operators [19]. The quantalic composition is then a binary modality; the
domain and codomain operations needed for defining modal operators are unary
ones. We ask about the dual relational structure in the sense of Jénsson and
Tarski [19] and its equational properties corresponding to the modal quantale
axioms for domain and codomain [7,11] in the sense of modal correspondence
theory. For plain quantales, this is well known: the dual monoidal structure
is a ternary relation equipped with a relational monoid structure and many
units [3,8]—a monoid in the category Rel with the standard tensor. Yet which
relational structure corresponds to domain and codomain?

The standard models of modal semirings and quantales give us a hint: modal
quantales of binary relations, for instance, are powerset liftings of pair groupoids;
modal quantales of paths lift from path categories. We might therefore try to
lift (object-free) categories [23, Chap. XIL.5] to modal quantales so that their
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source and target maps match the domain and codomain operations of modal
quantales. Categories, however, are partial monoids, whereas relational monoids
are isomorphic to multimonoids, whose composition maps pairs of elements to
sets, like the shuffle of words. Other examples, such as the lifting of partial
abelian monoids of heaplets to assertion quantales of separation logic, do not
fall into this lifting scheme with categories either. A generalisation is desirable.

We introduce fr-multisemigroups as relational structures in disguise and
the appropriate dual structures to modal powerset quantales. Categories then
arise as partial fr-semigroups (where the image of the multioperation is suitably
restricted) that satisfy a locality property capturing the categorical composition
pattern: two arrows are composable precisely if the target of the first equals the
source of the second. Thus, ¢r-multisemigroups generalise object-free categories
and related structures such as function systems [28], ordered semigroupoids [21]
and modal semigroups [5] from (partial) operations to multioperations.

Our second main contribution lies in modal correspondences between identi-
ties in families of modal quantales with axioms of varying strength and those of
families of ¢r-multisemigroups. The most intriguing one holds between the well
studied locality axioms for domain and codomain in modal semirings and quan-
tales and similar identities in ¢r-multisemigroups, which in turn are equivalent
to the composition pattern for categories mentioned. This explains the origin of
locality of domain and codomain in modal semirings and quantales in terms of
this fundamental pattern. It also makes local ¢r-multisemigroups the algebras of
choice for constructing modal quantales axiom by axiom.

Our results thus provide a generic construction recipe for modal quantales
from simpler structures: every {r-multisemigroup gives us a modal powerset
quantale for free—and even modal convolution quantales capturing weighted
variants of the models presented in this text. This generalisation is briefly out-
lined at the end of this article, see [12] for details.

All results about fr-multisemigroups and the lifting to modal power-
set quantales have been formalised with Isabelle/HOL'. The proofs for fr-
multisemigroups are straightforward equational calculations that do not need
to be shown on paper. The proof of the powerset lifting has been added because
it yields an intuition for the more complex construction of modal convolution
quantales. Additional proofs, definitions and explanations can be found in [12],
including a glossary of the algebraic structures featured in this text.

2 {¢r-Multisemigroups and Object-Free Categories

As mentioned in the introduction, the dual of the binary composition of a quan-
tale is a ternary relation. For powerset quantales it is defined on their atom
structure of singleton sets. But instead of a ternary relation R C X x X x X on
a set X, say, we work with the isomorpic multioperation ® : X x X — PX and
the resulting multisemigroups. See [22] for an overview. Henceforth we are using

! https://github.com/gstruth/lr-multisemigroups.
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“set” naively, so that we can speak, for instance, about the set of all posets and
include large categories as examples.
We extend the multioperation ® to PX x PX — PX by

AoB=|J{zroy|zec Adandye B} for all A, B C X.

We write x ® B instead of {x} ® B, A®x instead of A® {z}, f(A) for the image
of A under f and drop ® when convenient. Finally, ® is a partial operation if
| ®y| <1 and a (total) operation if |z ©® y| = 1, for all z,y € X.

A multimagma (X,®) is a set X with a multioperation ® on X. A multi-
semigroup X is an associative multimagma, it satisfies x © (y @ 2) = (z O y) © 2
for all z,y, z € X. Partial semigroups and semigroups are defined by restricting
the image of ® as just explained.

Object-free categories are obtained either by defining source and target maps
on partial semigroups or by equipping partial semigroups with many units [23].
We explore both ways more generally for multisemigroups.

An fr-multimagma is a multimagma X with operations ¢, : X — X that
satisfy, for all z,y € X,

roy#0=r@) =Ly, (le)oz={c}, zor(r)={z}

An flr-multisemigroup is an associative fr-multimagma. We call £ the source
operation and r the target operation of X. The letters indicate “left” and “right”.

Alternatively, a multimagma X is unital if there exists a set E C X such
that E@z = {2} = 2 © E for all z € X. A multimonoid is then a unital
multisemigroup. See [12] for a more detailed discussion.

We briefly summarise the relationship between the two structures. First, in
unital multimagmas, every e € E satisfies e © e = {e} and, if e,¢’ € FE, then
e®e # () & e=¢. Units are thus “orthogonal” idempotents. In multimonoids,
every element has therefore precisely one left and one right unit, and this allows
defining source and target maps. Second, the set ¢(X) of all source elements
in any ¢r-multisemigroup X equals the set 7(X) of all target elements and the
elements of those sets satisfy the unit axioms for multimonoids (see also Sect. 4).
Third, ¢r-multisemigroups and multimonoids form categories with morphisms
satisfying f(x ®1y) C f(z) ®2 f(y) for multisemigroups (X;, ®;) with i € {1, 2}.
For /r-multisemigroups, morphisms need to preserve £ and r as well; for multi-
monoids they need to preserve units. It is then easy to see that the categories of
¢r-multisemigroups and multimonoids are isomorphic [12].

Partial ¢r-semigroups are not yet (object-free) categories—see Examples 7
and 8 below. We need to impose the typical composition pattern of categories:
two morphisms can be composed if the target of the first equals the source of
the second. So we call an ¢r-multimagma ¢r-local if

rx)=Ly)=>z0y#0 for all z,y € X.

We relate this property with notions of locality known from modal semigroups
and semirings in Sect. 4. Example 6 below shows a local ¢r-multisemigroup with
a proper multioperation that does not form an object-free category.
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An fr-multisemigroup X is ¢r-local if and only if

UETOY ANYO2z#£D = u©z#0 for all u,z,y,2 € X.

This implication is expressible in any multimagma. The connection to the two
equivalent formalisations of (object-free) categories in Mac Lane’s book [23] is
thus as follows.

Proposition 1 ([4]). The categories of object-free categories [23, Chap. I1.1] and
those of local partial monoids are isomorphic.

Proposition 2. The categories of object-free categories [23, Chap. XIL.5] and
those of Lr-local partial fr-semigroups are isomorphic.

The morphisms used are those outlined above. Hence local partial {r-semigroups
are categories (when these structures are defined over classes).

3 Examples of ¢r-Multisemigroups

We start with concrete instances of categories.

Ezample 3 (Monoids). Monoids are one-object categories. The monoid 1 %
1, for instance, corresponds to a partial monoid X = {1,a} with composition
defined by 11 = {1} and la = al = aa = {a}. Obviously, ¢(a) = 1 = r(a) and
locality follows from totality of composition. O

Multimonoids must have precisely one unit if the multioperation is total (in
the sense that images of compositions cannot be empty).

Ezample 4 (Pair Groupoids). The pair groupoid (X x X,®,Idx) on set X (or
the universal relation on X) is a local partial ¢r-semigroup with

(0,2)® (5, ) = {{(w)} if 2 =y,

1] otherwise,
identity relation Idx on X, ¢((x,y)) = (x,2) and r((x,y)) = (y,y). O
Pair groupoids lift to quantales of binary relations.

Ezample 5 (Matriz Theories). Elgot’s matricial theories [9] consist of sets MLS =
Un’m>0 S™*™ of matrices over a semiring S with matrix multiplication as partial
composition. These form a category with natural numbers as objects and n x m-
matrices as morphisms. Defining £ and r to map any M € S™ ™ to the identity
matrices (M) = I,, and r(M) = I,,, of the appropriate dimensions, MLS forms a
local partial £r-semigroup. Matrix theories become categories of finite relations
if S is the semiring of booleans. O

The next example presents a local proper ¢r-multisemigroup.
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Ezample 6 (Shuffle Algebras). The shuffle multimonoid (X*, |, {¢}) over the free
monoid X* has the empty word ¢ as its unit, and the proper multioperation
| - X2* x 2* — PX* models the standard interleaving of words that respects
the orders of their letters. The shuffle multimonoid is local because || is total
(defined everywhere) and ¢(w) = ¢ = r(w). O

Finally, here are two non-local partial semigroups.

Ezample 7 (Broken Monoid). The monoid in Example3 becomes a non-local
partial £r-semigroup when composition is broken by imposing aa = (). a

Ezample 8 (Heaplets). The partial abelian monoid of heaplets (H,®,¢) from
separation logic is formed by the set of partial functions X — Y. Its partial
operation f ® g equals f U g if dom(f) N dom(g) is empty and @) otherwise. The
unit is the empty partial function € with empty domain. Locality fails because
0(f) = e =r(g) always holds while f ® g = () if domains of f and g overlap. O

4 €r-Multisemigroups in Context

We have already seen that local partial ¢r-semigroups are categories. Here we
relate them with Schweizer and Sklar’s function systems [28] and modal semi-
groups [5]. The following property gives us half of our results for free.

Duality (by opposition) for ¢r-multimagmas arises by interchanging ¢ and
r as well as the arguments of ©. The classes of ¢r-multimagmas and #r-
multisemigroups are closed under this transformation. Locality and partiality
are self-dual. Hence the dual of any property that holds in any of these classes
holds as well.

Lemma 9. In any ¢r-multimagma, the following laws hold:

Lor =r,rol=/{ (compatibility),

lol=1{, ror=r (retraction),
{(z)l(z) = {€(z)} (idempotency),
((x) (y) = L(y)r(z) (commutativity),
«

U(x)y) = L(x)l(y) and r(zr(y)) = r(z)r(y) (export),
xy)x C xl(y) and zr(yx) C r(y)z (weak twisted).

919“4:\90@{‘

All proofs have been checked with Isabelle. All laws in Lemma 9 correspond
to axioms for Schweizer and Sklar’s function systems [28] (see [12] for a detailed
comparison), yet generalised to multioperations.

The compatibility laws imply that ¢(z) = z < r(z) = = and further that

Xe={z|l(x) =2} ={z]|r(z) =2} = X,.

Moreover, by the retraction laws, X, = £(X) and X, = r(X).

Lemma9 also implies that £(z)¢(y) = £(y)l(x), r(x)r(y) = r(y)r(z) and
r(z)r(z) = {r(x)}. Further, the orthogonality law £(z)l(y) # 0 < £(x) = L(y)
and its dual hold. As ¢r-Multimagmas are unital, we may write E for X, or X,.
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Lemma 10. In any {r-multisemigroup, the following laws hold:

L(xy) CL(xl(y)) and r(zy) C r(r(x)y) (weak locality),

xy # 0 = l(zy) = L(zl(y)) and xy # O = r(zy) = r(r(z)y) (cond. locality),
U(zy) S {l(x)} and r(zy) € {r(y)},

2y £ 0 = Uzy) = {62)} and 2y £ 0 = r(zy) = {r(y)},

xy # 0 = l(zy)z = 2l(y) and zy # O = yr(zy) = r(x)y (cond. twisted).

Crds fo 2o~

Proofs have again been checked with Isabelle. The locality and twisted laws
generalise the remaining axioms of function systems. Function systems without
the twisted laws correspond to modal semigroups [5] and therefore semigroups
of binary relations. The twisted laws are specific to semigroups of functions. £r-
Multisemigroups thus generalise function systems and modal semigroups beyond
totality. See [5] for a discussion of related structures studied in semigroups theory
and applications.

5 /{r-Locality in Context

Next we return to locality, the specific difference between object-free categories
and partial ¢r-semigroups according to Sect. 2.

Lemma 11. In any local ¢r-multisemigroup, the following laws hold:

1. L(zy) = L(xl(y)) and r(zy) =r(r(x)y) (equational locality),
2. U(zy)x = xl(y) and yr(zy) = r(x)y (twisted).

Once again, all proofs have been done with Isabelle. In fact, ¢r-locality, the
composition pattern of categories, is an equational property. We henceforth refer
to equational locality simply as locality.

Proposition 12. An fr-multisemigroup is r-local if and only if

Uxl(y)) C L(xy) and r(r(z)y) C r(zy).

Proof. Isabelle confirms that the equational locality laws imply fr-locality in
any ¢r-multimagma. Equality in ¢r-multisemigroups follows from Lemma11. O

Locality and weak locality are known from (pre)domain and (pre)codomain
operations for modal semirings [6]. Predomain and precodomain operations are
weakly local, domain and codomain are local. Relative to ¢r-multisemigroups,
these laws are at powerset level. Modal semirings are meant to model semirings
of binary relations. These in turn are based on pair groupoids, as we shall see.
Equational locality and the equivalent variant

zy # 0 < r(x) = Ly)

of ¢r-locality thus describe the origin of locality in categories and more generally
£r-multisemigroups. The precise relationship to modal semirings and quantales
is explained in the following sections.

Our final lemma on ¢r-multisemigroups yields a more fine-grained view on
definedness conditions and ¢r-locality.
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Lemma 13

1. In any fr-multimagma,
r(z) =L(y) & r(x)l(y) £ 0 and r(x)l(y) =0 = zy = 0.
2. In any local br-multisemigroup, xy = O < r(z)l(y) = 0.

A property analogous to Lemma 13(2) is well known from modal semirings [6].
An analogue to ¢r-locality fails already in the one-element modal semiring.

6 Modal Quantales

We have already extended ©® : X x X — PX to PX x PX — PX and the
functions £, 7 : X — X to PX — PX by taking images. We wish to explore the
algebraic structure of such powerset liftings over ¢r-multimagmas and related
structures. Powerset liftings of relational monoids, and therefore those of #r-
multisemigroups, yield unital quantales [8,26]. But the precise lifting of source
and target operations remains to be explored. This requires some preparation.

A quantale [25] (Q, <, -, 1) is a complete lattice (@, <) with a monoidal com-
position - with unit 1 that preserves all sups in both arguments. A quantale is
boolean if its lattice reduct is a complete boolean algebra—a complete lattice
and a boolean algebra. Some applications require weaker notions. A prequantale
is a quantale where the associativity law is absent [25].

We write \/ for the sup and A for the inf operator, and V, A for their binary
variants. We also write L = AQ = V0 for the least and T = \VQ = A0
for the greatest element of @), and — for boolean complementation (both unary
and binary) if @ is boolean. We write Q1 = {a € @ | a < 1} for the set of
subidentities of Q. In a boolean quantale, Q1 is a complete boolean subalgebra
with complementation Az. 1 — z and composition coinciding with meet [11].

We lift the source and target operations of ¢r-multisemigroups to domain
and codomain operations at powerset level. Modal quantales of relations, which
are formally lifted from pair groupoids below, provide some intuition:

dom(R) = {(a,a) | 3. (a,b) € R},  cod(R) = {(b,b) | Ja. (a,b) € R}

and hence dom(R) = ¢(R) and cod(R) = r(R).
More generally, a domain quantale [11] is a quantale (@, <,-,1) equipped
with a domain operation dom : Q — @ that satisfies, for all o, 8 € Q,

a < dom(a) - a, dom (« - dom(B)) = dom(« - ), dom(a) < 1,
dom(Ll) = 1, dom(a V B) = dom(a) V dom().

We call these equations the absorption, locality, subidentity, strictness and
(binary) sup-preservation axiom, respectively. Absorption can be strengthened
to dom(a)a = a. These domain axioms are precisely those of domain semi-
rings [7]. Domain quantales are thus quantales that are also domain semirings.
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Properties of domain semirings therefore translate [11,12]. Interestingly, domain
axioms for \/ are not needed in domain quantales [11] because dom preserves
arbitrary sups. The interaction of dom with /\ is weaker and not our concern.

Much of the structure of the domain algebra induced by dom is inherited from
domain semirings as well. In particular, Qgom = {z | dom(z) = z} = dom(Q),
and it follows that the domain algebra (Q gom, <,-,1) is a subquantale of @ that
forms a bounded distributive lattice with - as binary inf [7]. The elements of
Q dom are called domain elements of (). Yet, by contrast to modal semirings, the
lattice Q gom is complete [11], and if Q is boolean, then Q gom = @1 is a complete
boolean algebra. For powerset quantales, this complete boolean algebra is atomic.

Quantales are closed under opposition: interchanging the order of composi-
tion in @ yields the quantale Q°P; properties translate under this duality. The
dual of dom on a domain quantale is of course a codomain operation cod.

A codomain quantale (Q, cod) is thus simply a domain quantale (Q°P, dom).
It satisfies the dual domain axioms. A modal quantale is a domain and codomain
quantale (Q, <,-,1, dom, cod) that satisfies the compatibility axioms

dom o cod = cod and cod o dom = dom.

These force Q gom = Qcod-
Some {r-structures of interest fail to yield associativity or locality laws when
lifted. This requires more general notions.

— A modal prequantale is a prequantale in which the locality axioms for dom and
cod are replaced by the export axiom dom(dom(«)B) = dom(a)dom(() and
its dual for cod. Then Q4om = dom(Q) = cod(Q) = Qcoq is still a complete
distributive lattice, but locality laws for dom and cod are not even derivable
as inequalities.

— A weakly local modal quantale is a modal quantale that satisfies the previous
axioms for dom and cod. The weak locality law dom(aB) < dom(adom(())
and its dual for cod are now derivable, but not the equational laws.

7 Constructing Modal Powerset Quantales

We now construct modal powerset quantales from ¢r-multisemigroups in the
spirit of modal correspondence theory for boolean algebras with operators. First
we recall the quantalic part.

Proposition 14. Let (X,®,4,1) be an ¢r-multisemigroup. Then (PX,C, 0, E)
forms a boolean quantale whose underlying lattice is boolean atomic.

Proof. If (X,®,¥,r) is an fr-multisemigroup, then it is isomorphic to a multi-
monoid and further to a relational monoid, and its powerset algebra forms a
quantale [8,26]. The complete lattice on PX is trivially boolean atomic. a

Similarly, ¢r-multimagmas lift to prequantales.
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Ezample 15 (Powerset Quantales over fr-Semigroups). The powerset lifting of
any category yields a powerset quantale. It is boolean and has the arrows of the
category as atoms. The pair groupoid on set X lifts to the quantale of binary
relations over X. Its elements are possibly infinite-dimensional boolean-valued
square matrices in which the quantalic composition is matrix multiplication. O

The fact that groupoids can be lifted to algebras of binary relations with an
additional operation of converse was known to Jénsson and Tarski [20].

Proposition 14 combines source and target elements into the unit E of the
powerset quantale. The lifting to modal quantales is more refined. In the follow-
ing theorems, we identify dom(A) with ¢(A) and cod(A) with r(A) for A C X.
We develop our main theorem step-by-step from ¢r-multimagmas.

Lemma 16. Let X be an {r-multimagma. For A, B C X and A CPX,

1. L(r(A)) =r(A) and r(L(A)) = L(A) (compatibility),

2. L(A)- A=A and A-r(A) = A (absorption),

3. A (UA) =Uscal(A) and r (UA) = Usear(A) (sup-preservation),
4. f(A)g(B) = g(B)f(A) hold for f,g € {{,r} (commutativity),

5. U(A) C Xy and r(A) C X, (subidentity),

6. L(L(A) - B) =L(A)(B) and r(A-r(B)) =r(A)r(B) (export).

Proof. We show proofs up-to duality.
;. Lr(A)) ={l(r(x)) |z e A} ={r(x) | x € A} =r(A).
A = J{(x)y | 2,y € Aand l(z)y # 0}
= J{l@)y | 2,y € A, t(z)y # 0 and r(i(z)) = £(y)}
= J{l@)y | 2,y € A, (x)y # 0 and ((x) = ((y)}
= J{twy |y € A}
=iy lye 4y =4

3. ((UA) = {6x) | = € UA} = UL0(A) | A € A},
4. We only prove the identity for £(A)r(B). The others then follow from (1).

U{€ y)|x € Aand y € B}
—U{r z) |z € Aandye B}
:r(B)E(A).

5 U(A)={l(z) |z e A} C{{(z) |z e X} ={z|l(z) =2} =E.
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Jy) |z € A,y € B and {(z)y # 0}
(y) |2 € A, y€ B, ((x)y # 0 and r(0()) = £(y)}
(y) |z €A,y € B, lz)y#0and {(z) = L(y)}
(y) |z € A, y € B and £(y)y # 0}
(y) |z € Aand y € B}
= ((A)¢(B). 0

The proof has also been checked with Isabelle. And now for locality.
Lemma 17. Let X be an {r-multisemigroup and A, B C X. Then
¢(AB) CU(AL(B)) and r(AB) C r(r(A)B).
The converse inclusions of these weak locality laws hold if X is local.

Proof. The inclusions hold in any quantale that satisfies the laws of Lemma 16.
For the opposite direction, suppose that X is a local ¢r-multisemigroup. Then,
writing r(z) = £(y) in place of x ® y # () owing to locality,

((AUB)) = J{l(=t(y)) | = € A, y € B and r(z) = £(L(y))}
= U{f(xy) |z €A, ye€ Bandr(x)=4~{y)} =LAB)
and the opposite result for r is obvious. a
The proofs have again been checked with Isabelle. We can now summarise.

Theorem 18. Let X be an {r-multimagma.

1. Then (PX,C,®, E, dom, cod) is a boolean modal prequantale, and the com-
plete boolean algebra is atomic.

2. It is a weakly local modal quantale if X is an r-multisemigroup.

8. It is a modal quantale if X is a local r-multisemigroup.

This result highlights the role of weak locality and locality in the three
stages of lifting. Its construction follows one direction of Jénsson-Tarski dual-
ity between relational structures and boolean algebras with operators [13,19],
which it refines. Like in modal logic, it leads to correspondences between iden-
tities in relational structures and boolean algebras with operators. Those lifted
in Lemma 16 and 17 are one direction of these. Their converses are explored in
Sect. 8.

Ezample 19. (Modal Powerset Quantales over ¢r-Semigroups)
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1. Any category as a local partial £r-semigroup can be lifted to a modal powerset
quantale. The domain algebra is the entire boolean subalgebra of subidentities
of the quantale, the set of all objects of the category (or its identity arrows).
A modal quantale can thus be obtained from any category.

2. An instance is the modal powerset quantale of binary relations over X lifted
from the pair groupoid on X. Domain and codomain elements are precisely
the subidentity relations below Id x. In the associated matrix algebras, these
correspond to (boolean-valued) sub-diagonal matrices (which may have zeros
along the diagonal) and further to predicates.

3. Recall that the partial £r-semigroup of the broken monoid is only weakly local.
The powerset quantale is only weakly local, too. To check this, we simply
replay the non-locality proof for the partial ¢r-semigroup with A = {a}:
dom(AA) = dom(0) = 0 C {1} = dom(A{1}) = dom(Adom(A)). Locality of
codomain is ruled out by duality. a

Most models of domain and modal semirings considered in the literature
are powerset structures lifted from categories. Theorem 18 yields a uniform con-
struction recipe for all of them. The final example of this section shows that the
twisted laws for function systems do not lift to powersets.

Ezample 20. The category 1 - 2 is a partial local ¢r-semigroup with X =
{1,a,2}, ¢ and r defined by £(1) = r(1) = 1 = £(a) and £(2) = r(2) = 2 = r(a)
and composition 11 = 1, la = @ = a2 and 22 = 2. Then, for A = {1,a} and
B={2}, A-dom(B)=A-B={a} C A={1} - A= dom(A- B) - A refutes the
twisted law in PX. The opposite law for cod is refuted by a dual example. O

8 Recovering £r-Multisemigroups

We know from Jénsson-Tarski duality that one can find an ¢r-multisemigroup
within each modal powerset quantale, using its atom structure. Here we prove
correspondence results in this direction. These strengthen the relationship
between locality in modal quantales and fr-multisemigroups further. Parts of
these results are special cases of more general theorems for convolution alge-
bras [3,12].

Proposition 21

1. If PX is a prequantale in which O # E, then X is an fr-multimagma.
2. If PX is a quantale in which () # E, then X is an Lr-multisemigroup.

Proof. The results are known for unital relational magmas and relational
monoids [3, Proposition4.1 and Corollary4.7]. They thus hold for /¢r-
multimagmas and multisemigroups via the isomorphisms. a

The ¢r-semigroup X is thus completely determined by the subidentites below
E in PX. We calculate the absorption law for ¢ explicitly as an example:

lz) ©x = {l(x)} © {z} = dom({z}) © {w} = {x},
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where the second step uses domain absorption in modal quantales. The fact
that dom appears in the calculation does not go beyond Proposition 21 because
dom({z}) ={l(z)} CE in PX.

The next statement adds locality to the picture.

Theorem 22. If PX is a modal quantale in which O # E, then X is a local
Lr-multisemigroup.

Proof. Relative to Proposition 21 it remains to consider locality:

Uz © ly)) = dom({z}) © dom({y}) = dom({z} © {y}) = L(z O y).
Locality of r follows by duality. O

In light of Jonsson-Tarski duality, these results extend to atomic boolean
quantales. With the lifting results from Sect.7 they yield in particular a cor-
respondence between locality in ¢r-multisemigroups and modal powerset quan-
tales. To construct such a quantale one should therefore look for the underlying
£r-multisemigroup, and often, more specifically, the underlying category.

9 Further Examples

We apply our construction to further examples of £r-multisemigroups and modal
convolution quantales. We start with those based on categories.

Path Quantales. A quiver (or digraph) K is formed by a set Vi of vertices,
a set Ex of edges and source/target maps s,t : Ex — Vi. The path category
of K has vertices as objects and sequences m = (v1,€1,V2,...,Un—1,€n—1,Vp) :
v1 — U, as arrows in which vertices and edges alternate. Composition 7y - 7o
of m : v3 — v4 and my : V1 — vy is defined if v = wv3. It concatenates the
two paths while gluing the common end vy = v3. Sequences (v) of length 0 are
identities. Path categories are local partial ¢r-semigroups, with ¢(7) = (v1) and
r(m) = (v,) for m as above. Theorem 18 shows that the powerset algebra over
the path category of any quiver is a modal quantale—a modal quantale of path
languages.

The path category generated by the one-point quiver with n arrows repre-
sents the free monoid with n generators. The ¢r-structure and hence the modal
structure is then trivial. Lifting along Theorem 18 yields the quantale of formal
languages. Path categories are relevant to computing: they capture execution
sequences of programs, automata or transition systems.

Interval Quantales. Pair groupoids over X become poset categories in which
pairs represent (closed) segments or intervals when the universal relations used
for pair groupoids are generalised to partially or totally ordered relations. Seg-
ments or intervals can be composed like the elements of the pair groupoid; the
units are the singleton intervals. Modal powerset quantales over such categories
yield algebraic semantics for interval logics [17] and interval temporal logics [24]
via the isomorphism between sets and predicates [8]. The modalities lifted from
source and target maps express properties of endpoints of segments and intervals.
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Pomset Quantales. Finite posets form partial £r-multisemigroups with respect
to serial composition, which is the disjoint union of posets with all elements of
the first poset preceding that of the second one in the order of the composition.
The only unit is the empty poset, the algebra is therefore non-local and the
modal structure of the powerset quantale trivial.

Partial words [14] or pomsets are isomorphism classes of finite node-labelled
posets. The serial composition becomes total on pomsets, which yields a monoid
and establishes locality. Pomsets and pomset languages, obtained by powerset
lifting, form a standard model of concurrency.

Pomsets can be equipped with interfaces [29]. The source interface of a pom-
set consists of its minimal elements (with their labels); its target interface of its
maximal elements (again with their labels). Pomsets with interfaces form partial
{r-semigroups with ¢ and r mapping pomsets to their source and target inter-
faces, and composition defined by gluing pomsets on their interfaces whenever
they match and extending the order as in serial composition. The partial £r-
semigroups are local and therefore categories. The modal structure at powerset
level is no longer trivial.

Path Quantales in Topology. A path in a topological space X is a continuous
map f :[0,1] — X. The source of path f is £(f) = f(0), its target r(f) = f(1).
Paths f and g in X can be composed whenever r(f) = £(g), and then

) f2e) ifo<z<i
(f.g)(x)_{g@x—l) if%§x§21

The parameterisation destroys associativity; (X [0’1]7~,€,r) is therefore only a
local partial £r-magma. The powerset lifting to P(X[*1)) satisfies the properties
of Lemma 16, but even weak locality fails due to the absence of associativity in
X011 and, accordingly, P(X [0’1]). This leads to modal prequantales.

Yet path composition is associative up-to homotopy. The associated local
partial £r-semigroup then lifts to a modal quantale like any other category. Alter-
natively, categories of paths can be defined on intervals of arbitrary length [1].

Higher Path Algebras. A 2-polygraph is a quiver X = (Sp,t0 : X1 — Xo),
whose edges (or 1-cells) are equipped with a cellular extension. This consists of
a quiver (31,¢1 : I' — X*), where X* is the free category generated by X and
I' is a set of globular 2-cells relating parallel 1-cells. A 2-polygraph generates a
2-category pictured in the following diagram:

\\T

Here, s;,t; are the source and target maps induced by the free category
construction, and the globular equations sgt; = sgs; and tgt; = tps; hold,
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see [16] for details. In the example of abstract rewriting systems, X is a carrier
set, X a set of generating rewrite rules, I" a set of relations between these rules.

For i € {0,1}, the set I'* of freely generated 2-cells forms a local partial
¢r-semigroup (I'*, ®;,4;,r;), where ®; is forward i-composition of 2-cells and
l; = s;, r; =t;. By Theorem 18, (PI'*,C, ®;, E;, dom;, cod;) is a modal quantale
with By = {11, |z € Yo} and Ey = {1, | u € X1 }. Beyond Theorem 18, we get a
globular 2-quantale [2] when combining the two structures. For all A, A’, B, B’ €
PI'*, a lax interchange law (A ®1 B) ©®g (A’ ©®1 B') C (AGg A") ®1 (B Gy B')
holds, and also E; ®g E1 = E;. The absorption laws dom; o domg = domgy and
cody o cody = cody hold as well. Finally, we recover the globularity conditions that
domg o cody = domyg, that cody o domy = cody and that dom; as well as cod; are
morphisms for ®g. This construction generalises to n-polygraphs and globular
n-quantales [2]. Applications include higher dimensional algebraic rewriting [16].

A-sets. A presimplicial set [27] K is a sequence of sets (K,,)n>0, called simplices,
equipped with face maps d;,, : K, — K,_1, i € {0,...,n}, satisfying the
simplicial identities d; ,—1 0 d;n = d;j—1n—10d;y for all i < j <n (we omit the
extra indices n from now). The set K = | |-, K, forms an ¢r-multisemigroup
(K,®,¢,r) with

rEYOz < Fi.y=si(r) Nz =t,_i(z)

and £(x) = so(z), r(x) = to(z), where s;(z) = (diz1 0 diy2 0 ---ody,)(x) and
ti(x) = (dyodyo---od,_;—1)(x) stand for the initial and the final i—face of
x € K, respectively. In general, (K, ®, ¢, r) is neither local nor partial. Locality
and partiality hold if K is the nerve of a category (we omit degeneracies).

Also, the set of triples (s;(x), z,t;(x)) (z € Ky, 0 < 1,7 < n), called simplices
with interfaces, forms an ¢r-multisemigroup Int(K) with

(sp(@), 2, t4(x)) € (5i(y), 4, 15(y)) © (s(2), 2, ta(2))
& sp(w) = si(y) Ati(y) = su(2) Ng(2) = ti(2) Ay = su(2) Az = tnupj (@),

for x € Ky, y € Ky, 2 € Kj_y4j. There is an obvious embedding K > z
(so(x),z,to(x)) € Int(K) of r-multisemigroups. Hence Int(K) is again neither
partial nor local in general.

Precubical Sets. A precubical set X [15] is a sequence of sets (X, )n>0 equipped
with face maps d5 : X,, — X,_1, 1 <i <n, e € {0,1}, satisfying the identities
d; od] = d]_,od; fori < jand ¢,n € {0,1}. Denote d3 = d o---od,
for A ={a1 < - - < ag} C[n] and € € {0,1}. The precubical set X forms an
¢r-semigroup (X, ®, ¢, r) with

rey®z e dJACh. y=dy(x)Az= d[ln]\A(x),

Uzx) = do € Xy, r(x) = d[ln](x) € Xy for all € X,,. Like the previous
example, tﬂle fr-multisemigroup X is neither partial nor local.
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A special case of this example is the shuffle multimonoid (Example 6). Let X
be a finite alphabet, X,, the set of all words of length n, and df : X,, — X,,_;
the map that removes the i—th letter. Then X = (X,,, d5) is a precubical set and
the associated ¢r-multisemigroup (X, ®,¥¢,r) is the shuffle multimonoid on X.
The domain/codomain structure of the quantale of shuffle languages is trivial,
as there is no element between () and the set containing the empty word.

Assertions Quantales of Separation Logic. The non-local partial fr-
semigroups of heaplets lift to weakly local modal powerset quantales, but once
again with trivial domain/codomain structure. The set {¢} containing the empty
heaplet is the only unit. These form the assertion quantales of separation logic.
The modal structure is again trivial as there is no element between @) and {e}.

10 Discussion

We summarise some additional results and generalisations in this section. See
[12] for details.

Extension to Convolution Algebras. The powerset lifting in Sect.7 can
be seen as a lifting to function spaces X — 2 and generalised to X — @Q for
an arbitrary (modal) quantale Q. The composition ® : 2% x 2X — 2% then
generalises to a convolution * : QX — QX — QX with \/ and - taken in Q:

(fx9)@) =\ fly)-92).

EASTIOF

Theorem 18 also generalises: if X is a local ¢r-multisemigroup and ¢ a modal
quantale, then Q¥ is a modal quantale with

Dom(f) = \/ dom(f(x)) - u(x),

zeX

where 0,(y) is 1 if z = y and L otherwise, and Cod given by duality. The
monoidal identity in QX, idg(z) is 1 if # € E and L otherwise. Beyond lifting,
there is now a triangle of correspondences between identities in X, @ and Q.
The results in this text thus generalise to modal quantales of weighted languages
or weighted relations, and towards group, incidence or category algebras.

Finite Decomposability. Some ¢r-multisemigroups in our examples are
finitely decomposable: for every x the fiber ® 1(2) = {(y,2) | z € y ® 2} is
finite. Examples are shuffle quantales, where each word can only be decomposed
into finitely many pairs of words, or quantales of n X m-matrices, where multi-
plications sum over finitely many indices. The sups in convolutions can then be
replaced by sums and quantales by semirings. In modal settings, one can then use
modal semirings [7] and, if X is a finitely decomposable local ¢r-multisemigroup
and S a modal semiring, then S¥ forms again a modal semiring.
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Modal Concurrent Quantales. Concurrent semirings and quantales [18] can
be constructed as convolution algebras from concurrent relational semigroups [3],
hence from concurrent local ¢r-multisemigroups equipped with two multiopera-
tions that satisfy a weak interchange law. In combination with the corresponding
results for modal structures we can construct modal concurrent semirings and
quantales as convolution algebras. Target models are categories of pomsets with
interfaces, with applications in concurrency theory [10,29], and n-polygraphs [2].

Algebras of Modalities. The domain and codomain operations in convolution
algebras support definitions of modal box and diamond operators along the lines
of modal semirings [7] as |f)7m = Dom(f * ), where f € Q¥ and 7 € (Q%) pom,
and dually (f|m = Cod(m * f). In modal quantales, diamonds preserve arbitrary
sups and box operators exist as right adjoints, even if (Q%) poy, is not a boolean
algebra. For box and diamond modalities, locality in £r-multisemigroups is cru-
cial. Without it, the action laws |f * g) = |f) o |g), (f * g| = (g| o (f| and their
analogues for boxes would not exist. Our results thus lead to uniform construc-
tion principles for dynamic algebras and predicate transformer algebras based
on more general semantics than Kripke frames, including arbitrary categories,
and weighted variants.

11 Conclusion

We have introduced {¢r-multisemigroups, related them with categories, and
shown how their source and target operations give rise to the domain and
codomain operations studied previously in the contexts of function systems,
modal semigroups, modal semirings and modal quantales. In particular, we have
explained how the typical composition pattern of categories corresponds to the
well-known locality axioms that appear in such modal algebras. This analysis is
based on a generic lifting construction from #r-multisemigroups to modal quan-
tales and the modal correspondences to which it leads. It captures most known
models of computational interest of modal semirings and quantales, and explains
how additional models for them could be built, including modal-concurrent ones.
For every local #r-multisemigroup we find, we get a dual modal quantale for
free. The approach extends to modal convolution algebras that seem relevant
to quantitative verification, but this requires concepts and proofs beyond these
pages [12].
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Abstract. Normalisation strategies give a categorical interpretation of
the notion of contracting homotopy via confluent and terminating rewrit-
ing. This approach relates standardisation to coherence results in the con-
text of higher-dimensional rewriting systems. On the other hand, globu-
lar 2-Kleene algebras provide a formal setting for reasoning about coher-
ence proofs in abstract rewriting systems. In this setting, we formalise
the notion of normalisation strategy and we prove a formal coherence
theorem for convergent abstract rewriting systems.

Keywords: Normalisation strategies - Kleene algebras -
Formalisation - Coherence * Higher-dimensional rewriting

1 Introduction

As pointed out in [5,29] a central difficulty in formal mathematics is in bal-
ancing readability of specifications and proficient automated proof search. Cap-
turing intuitions while remaining formally rigorous constitutes a first stumbling
block, which ideally should result in a setting that provides correct, automated
proofs which are readable and even illuminating. A powerful formalisation of
abstract rewriting theory may be found in the theory of Kleene algebras. Alge-
braic abstraction allows for simple proofs in which deduction is replaced by
calculation [29]. Proofs in this setting reconstruct intuitive proofs by diagram-
matic reasoning, making Kleene algebras a formal setting well suited to capture
abstract rewriting results. Modal Kleene algebras (MKAs) formalise abstract
rewriting systems (ARS), abstractions of graphs of (1-dimensional) transitions,
especially with respect to termination and normalisation properties [5,29]. This
setting does not suffice to formalise more subtle properties of normalisation
strategies [24], such as standardisation properties, nor for dealing with inher-
ently higher-dimensional transition systems. Indeed, these need a formalisation
of equivalences between paths. This line of work started in [12,20], culminating
in the introduction of a specific axiomatics on a 2-dimensional refinement of
ARSs.

In this work, we are going one step further by giving a formalisation of a
coherent extension of diagrammatic reasoning in the algebraic style of MKAs,
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inspired by coherent presentations in categorical algebra [23], or in algebra [10],
and using a rewriting approach in the line of [27]. In a higher categorical struc-
ture, certain algebraic properties, e.g. associativity of composition, may only
hold up to the existence of higher-dimensional morphisms. Given a collection
of such higher morphisms, coherence is the requirement that the whole struc-
ture is contractible, i.e. all parallel morphisms are linked by higher morphisms.
A coherence theorem states that, given a (generating) collection of such mor-
phisms, coherence is satisfied. The objective is to obtain a minimal collection
of generating higher morphisms. Graph-theoretical methods on string rewriting
systems (SRS) were initiated by Squier in [27] to study coherence problems for
monoids, a two dimensional word problem. The main point is to compute exten-
sions of a SRS by homotopy generators which take the relations amongst the
rewriting paths into account. That is, every pair of zig-zag sequences of rewrit-
ing paths with same source and same target can be paved by compositions of
these generators. In Squier’s approach, when the SRS is convergent, the homo-
topy generators are defined by the confluence diagrams of the critical branchings
of the SRS. This rewriting method for coherence was applied to solve coherence
problems in algebra [4,10,17], and for monoidal categories [14]. Thereby, the
homotopy generators constitute the bottom part of a cofibrant replacement of
the monoid presented by the SRS [10,15]. Squier’s constructions were formu-
lated in the categorical language of polygraphs in [16] for monoids and in [13]
for higher categories.

In this work, we consider the case of ARS. The extension to the case of SRS
will be done in a subsequent work because requires a formalisation of algebraic
contexts and of the critical branching lemma, which constitutes a further devel-
opment of the theory presented here. An ARS is represented by a quiver &,
aka a 1-polygraph, see Sect. 2. Parallel zig-zag sequences of rewriting paths are
pairs of 1-cells in the free groupoid @ "on @ with same source and same target.
Homotopical generators for the ARS consist of such pairs and form a cellular
extension X of @, see Sect. 2. The coherence theorem for (&, X) states that all
parallel 1-cells in @' are equal modulo X. When & is convergent and X is the
set of confluence diagrams of (critical) branchings, Squier’s method gives a proof
of the coherence theorem for @. It is exactly this proof that we formalise in this
article.

This work uses the algebraic setting of a 2-dimensional (globular) version of
MKASs, which model relation algebras and relations among relations, introduced
in [3]. Interestingly enough, these 2-dimensional MKAs are close to Concurrent
Kleene Algebras (CKAs), which introduce an extra algebraic operation modelling
parallel composition, hence equivalences between (1-dimensional) paths.

Structure of the Article, and Main Results. This article is about formal-
ising normalisation strategies and coherence properties in view of automating
proofs. In Sect.2, we present the categorical formulation of relations among
relations in terms of cellular tilings, and based on Squier’s coherence result. We
then recap the MKA approach for ARS in Sect. 3. Coherent rewriting in globular
modal 2-Kleene algebra, which we introduced in [3], is recalled in Sects. 4 and 5.
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Sections 6 and 7 form the core of our new results, where we first model normal-
isation strategies in 2-MKAs, and prove abstract coherence properties therein.
Our first result, Theorem 1, gives a formalisation of a coherent normalising New-
man’s lemma. We thereby deduce our main result, Theorem 2, which formalises
a proof of contractibility via normalisation strategies.

2 Squier’s Theorem for ARS

We consider an ARS as a quiver, i.e. a directed graph with parallel and loop-
ing transitions, which we call a 1-polygraph from the terminology of higher-
dimensional rewriting [2,28]. Denote by ¢ := (P, P1) a 1-polygraph with source
and target maps sg, tg : @1 — @y. We model the reflexive, transitive closure of @
by the free 1-category @* generated by @, the underlying graph of which consists
of the directed paths in @. Similarly, the symmetric, reflexive, transitive closure
of @ is modelled by the free 1-groupoid &' generated by @, its underlying graph
consisting of undirected paths. In both cases the source and target maps are
obtained by naturally extending those of @. The vertices (resp. edges) of such
structures will henceforth be referred to as 0-cells (resp. 1-cells), and the set of
i-cells of @* (resp. @) will be denoted by ®; (resp. @, ). The 0-composition of
1-cells z,y is defined when tg(z) = so(y) and is denoted by = xg y. The identity
1-cell on a € @ is denoted by 1, and the inverse of a 1-cell x is denoted by z~.
Two 1-cells are parallel when they have the same 0-source and 0-target. Directed
paths correspond to compositions x1 *q - - - *g Tg, with x; € @1. Similarly, undi-
rected paths correspond to finite compositions of elements of ¢; and their formal
inverses, quotiented by the relations z xg £ ~ 1,,(s), for x € &;.

A cellular extension X of @' is a quiver on the edges of @', i.e. a pair
(@], X) with source (resp. target) map s; (resp. t;), such that the globular
relations too 81 = tgot; and sg o 81 = sg o t; are satisfied. The elements of X
are called generating 2-cells and may be thought of as (directed) tiles filling the
space between parallel 1-cells. The pair (@, X) is called a (2,0)-polygraph.

Recall that the 2-cells in a 2-category may be composed in two different
ways. The 0-composition of v : x = y and ¢ : 2’ = ¢/, where 2,y : a — b and
',y : b — c are pairs of parallel 1-cells, is a 2-cell Y x¢ 8 : z %9 2’ = y *o y'.
The 1-composition of 2-cells a : @ = y and ( : y = z, where z,y, z are parallel
1-cells, is a 2-cell a x1 B : x = z. A 2-groupoid is a 2-category in which all 1-
and 2-cells are invertible for 0- and 1-composition, respectively. Given a (2,0)-
polygraph (&, X), we consider the free 2-groupoid generated by (&, X), denoted
by X T, which has ¢ as its underlying 1-groupoid and containing all finite 0-
and 1-compositions of the generating 2-cells in X and their inverses, as well as
0-compositions with 1-cells of &7 .

The confluence properties of an ARS & can be stated
with respect to a cellular extension X of . This approach /> b- \
first appeared in [20] under the terminology of commuting
diagrams. A local branching (z,y) of @ is X-confluent if \\> /
there exist 1-cells 2/, 4y’ in @7, and a 2-cell « in the free 2-
groupoid X " as in the adjacent diagram. The ARS & is locally X -confluent When
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every local branching of @ is X-confluent. We say that parallel 1-cells f and g
of @ are X -congruent if there exists a 2-cell a: f = g in X ', and that (®, X)
is acyclic if all parallel 1-cells of @' are X-congruent. The ARS & terminates if
it contains no infinite directed paths.

Let us recall the proof that a terminating, locally X-confluent (2,0)-
polygraph (2, X) is acyclic. Firstly note that if an ARS @ is locally X-confluent
then it is locally confluent so, under the hypothesis of termination, is confluent
by Newman’s lemma. In this case, from every O-cell a, a normal form, i.e. a
0-cell irreducible by @, may be reached in a finite number of steps. Since @ is
confluent, the normal form of a is unique; we denote it by a.

By local X-confluence and termination, we may therefore choose, for every
0-cell a of @, a 1-cell 0, : a — a in D]. A normalisation strategy o is a function
@y — @] which assigns such a o, to every 0-cell a, under the condition that
op = 1p for any normal form b. Just as normal forms provide a representative
0-cell for connected components in ¢, a normalisation strategy is the given of
a representative 1-cell in @ among parallel reductions to normal forms.

Now that we are equipped with a normalisation

strategy o, we prove by Noetherian induction on the z >b '\Ub\\\
distance from a normal form that for any branching a :a> h—¢

(z,y) of &*, there exists a 2-cell « as in the adjacent \) %
diagram. When s¢(z) = so(y) is a normal form, we can
simply use identity 1- and 2-cells to obtain the desired
diagram. For the induction step, we observe that we can write  as x = z1 ¢ x,
where x; is a 1-cell of @ and z, is one step closer to a normal form, and simi-
larly for y. By the hypothesis of local confluence and the Noetherian induction
hypothesis, we obtain the result by composing the 2-cells in the diagram on the
left below:

P T A o
(0% « T
b \\U/ blﬂd/ d \ \U/ “ ¢ a.L d
ob BAZ/

Let x : a — b be a 1-cell of &*, consider the branching (z xg oy, 0,) of &*.
Since we cannot reduce any further than normal forms, by the above result, as
well as a rotation of the 2-cell by properties of 2-groupoids, we obtain a 2-cell o,
as pictured above on the right. A similar 2-cell for all inverses of 1-cells may be
found, again using properties of 2-groupoids which we will not develop here. Note
that every 1-cell f : @ — bof @' can be factorised as f = z1%oy; *o- - KO Tp*0 Y 5

Ud\ he—
~ . .
d ¢

where the z; and y; are 1-cells of @*. Denote by a; the composite 2-cell of X iE

Yy Tp Yp
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Compiling all of the above, we obtain the coherence theorem for ARS:

Theorem A. Let & be a terminating ARS and X be a cellular extension of 7.
If & is locally X -confluent, then for every 1-cell f:a — b of T, there exists a
2-cell ay: fxoop = 04 in the free 2-groupoid generated by (@, X).

Squier’s theorem [27] is deduced from the above result. Indeed, we prove that
for all parallel 1-cells f,g:a — b of T, the composite 2-cell

f b= T 1p
~
o =
ﬂ)af b\
a g
\a; Jb/ =
g b/ 1y

in X T has source f and target g. This proves that the pair (@, X) is acyclic.

Theorem B. Let & be a terminating ARS and X be a cellular extension of @7 .
If & is locally X -confluent, then (@, X) is acyclic.

This is Squier’s formulation of the coherence theorem for ARSs, and is an imme-
diate consequence of Theorem A, relying solely on the definitions of acyclicity
and of 2-groupoids.

3 Modal 1-Kleene Algebras

In order to fix notation, we recall the definitions of Boolean modal Kleene alge-
bras from [5,6] and of converse from [1]. We adapt one of the converse axioms
in order to establish a natural relationship between domain and conversion akin
to that of inverse semigroups, see e.g. [22].

Semirings. A semiring is a structure (S, +,0,-, 1) such that (S, +,0) is a com-
mutative monoid, (S,-,1) is a monoid whose multiplication - (often denoted by
juxtaposition) distributes on the left and the right over the addition +, and 0 is
a left and right annihilator for -. A dioid is a semiring in which addition is idem-
potent. In this case, the relation defined by * <y <z +y =y, forall z,y € S,
is a partial order on S, with respect to which addition and multiplication are
monotone, and for which 0 is the minimum.

(Boolean) Domain Semirings. A domain semiring is a dioid S equipped
with a domain operation d : S — S satisfying the following five axioms for all
T,y €S:

v <d(x)z, dry)=d(zd(y)), dx)<1, d0)=0, dzty)=d(z)+d(y).

The set Sy of fixpoints of d forms a distributive lattice with + as join and - as
meet, bounded by 0 and 1. We write p, g, r, ... for elements of S; and refer to Sy
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as the domain algebra of S. A Boolean domain semiring is a dioid S equipped
with an antidomain operation ad : S — S satisfying the following three axioms:

ad(z)x =0, ad(zy) < ad(x ad?(y)), ad?(z) + ad(z) = 1,

for all 2,y € S. Setting d = ad?, we recover a domain semiring. In the presence
of an antidomain, Sy = ad(S) and ad acts as Boolean complementation on Sy.
We denote the restriction of ad to Sy by —.

Modal Semirings. We denote by S°P the opposite of a dioid S, in which the
order of multiplication has been reversed. A codomain (resp. Boolean codomain)
semiring is a dioid equipped with a map r : S — S (resp. ar : S — §) such
that (S°P,r) (resp. (S°, ar)) is a domain (resp. Boolean domain) semiring. A
modal semiring is a dioid S which is both a domain and codomain semiring, and
satisfies for every x € S, d(r(z)) = r(z) and r(d(x)) = d(z).

Modal Kleene Algebras. A Kleene algebra is a dioid K equipped with an
operation (—)* : K — K called the Kleene star, satisfying the following axioms:

i) 14+ zz* <z* and 1+ z*z < z* (unfold azioms),
ii) z4+ay <y=a2*z<yand z+yx <y = zz* <y (induction axioms),

for all x,y,2z € K. The Kleene plus is defined by 2T = zz*. (Anti-)domain
and (anti-)codomain operations extend to Kleene algebras without additional
axioms. We thus define a (Boolean) modal Kleene algebra, or (Boolean) MKA
for short, as a Kleene algebra that is also a (Boolean) modal semiring.

Converse. A Kleene algebra with converse [1] is a Kleene algebra K equipped

with an involution (—) : K — K that satisfies, for all z,y € K,

@+y) =7+y, (y)=77 ()=@"5 @=2 (1)

and the inequality x < xZz. In this work, we alter the final axiom in order to
relate conversion to the domain operation. We consider an involution (=) : K —
K satisfying axioms (1) and

2T > d(x), (2)

a similar axiom to that found in inverse semigroups [22]. We observe that such
a converse operation exchanges domain and codomain, i.e. d(Z) = r(z) and
r(Z) = d(x), and that for p € K4, D = p. A (Boolean) MKA with converse is a
(Boolean) MKA equipped with such a converse operation.

Modalities in Dimension One. Let K be a MKA. For x € K and p € Ky,
we define modal forward and backward diamond operators:

lz)p = d(xp), (z|p = r(px). (3)
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When a statement holds for both forward and backward diamonds, we will write
(x). Note that by monotonicity of domain, the assignment z — (x) is mono-
tone for the point-wise order on operators. When K is a Boolean MKA, we
additionally define modal box operators:

|z]p = =|z)(=p), [z]p = =(z[(=p).

These are modal operators in the sense of Boolean algebras with operators [21].
For K with converse, we have |Z) = (z| and (Z| = |z), and similarly for boxes.
Boxes and diamonds form a Galois connection, i.e.

|z)p < q < p < [z|q and (zlp < q = p < xlq. (4)

We have |zy) = |z) o [y), (zy| = (y| o (x|, [xy] = [a] o |y] and [zy| = [y| o [x]
for all z,y € K; in what follows we will denote functional composition of modal
operators simply by juxtaposition. Finally, star unfold and induction axioms lift
to modalities:

1)+ [)|27) = [27), D)+ [2)|2%) = [27), (5)
ly) +[2)|z) < [2) = [aM)]y) <2), (6)

where the addition is the point-wise lifting of that in K .

Rewriting and Modal Kleene Algebras. We recall from [5] formalised prop-
erties of ARS expressed in MKA. An element x € K terminates, or is Noetherian,
provided that for all p € K the implication p < |z)p = p = 0 holds. The set of
Noetherian elements of K is denoted by N'(K'). The Galois connections (4) yield
the following equivalent characterisation of termination:

Vpe Ky, lzlp<p=p=1L1
The ezhaustion of an element 2 € K, denoted by exh(x), is defined by
exh(z) =z - —d(z). (7)
The normal forms element of x € K, denoted by nf,, is defined by
nf, := r(exh(z)) € Ky. (8)

Confluence properties are captured in MKA by semi-commutation. Given z,y €
K, we say that the ordered pair (x,y) semi-commutes locally if xy < y*z*, semi-
commutes if z*y* < y*z*, and has the Church-Rosser property if (x + y)* <
y*x*. An element © € K is (locally) confluent (resp. Church-Rosser) if the pair
(T, z) semi-commutes (resp. has the Church-Rosser property). We say that z is
convergent if it is both terminating and confluent. These properties are related
to exhaustion as follows:

Lemma 1 ([5]). Let K be a Boolean modal Kleene algebra and x € K. If x
terminates, then d(exh(x)) = 1. If x is confluent, then exh(x) is deterministic,
ie. (exh(z)|lexh(z)) < (1).
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4 Globular 2-Kleene Algebras

In [3], the notion of p-Boolean globular n-Kleene algebra was introduced as a
higher-dimensional extension of MKAs. Here we briefly recall the case of p = 0
and n = 2, and append the notion of converse.

A modal 2-Kleene algebra is a structure (K,+,0,®4,1;, di, 73, (=)™ )i=o0.1,
such that for each ¢ € {0,1}, K is a MKA with respect to i-operations, and
in which the following additional axioms hold:

i) (2-dioid axioms) The lax interchange law: for all A, A’,B,B’ € K,
(A ©1 A/) ®o (B ©®1 B/) < (A ®o B) ®1 (A/ ®o B/),

and the 1-unit is an idempotent for O-multiplication, i.e. 1; ®¢ 17 = 1;.
Note that these correspond to the standard concurrent semiring axioms [18],
except that the equality 1o = 17 is normally assumed in this case.

ii) (Domain 2-semiring axioms) The (co-)domain operations satisfy absorption
axioms dj o dy = dy and 7 019 = 19. The set K, is called the i-dimensional
domain algebra, and is denoted by K;.

iii) (Kleene star azioms) The 1-star (—)*! is a lax morphism with respect to
O-multiplication of 1-dimensional elements on the right (resp. left), i.e. for
all A € K and ¢ € K1,

¢ O A < (p @A), (resp. A™ ©p ¢ < (A @ §)™).

For more details, see [3]. In order to distinguish elements of distinct dimensions,
we denote elements of Ky by p, q,7, ..., elements of K1 by ¢,1,&, ..., and general
elements of K by A, B,C,....

As additional conditions, we may ask that a modal 2-Kleene algebra be glob-
ular, Boolean or equipped with converses. These notions are recalled below.

Globular Axioms. A modal 2-Kleene algebra K is globular if the following
globular relations hold for all A, B € K:

d() o d1 = d() and d() or = d(), dl(A ®o B) = dl(A) ®o dl(B),
roody =19, and rgor = rog, (A ®¢ B) = 1 (A) ©®9 11 (B).
As a consequence of the rightmost axioms, K3 di (A)
is a MKA with respect to 0-operations. An TG
element A of K will be represented graphically do(A) I A 10(A)
by the adjacent diagram with respect to its 0- ~N 7
and 1-domains and codomains. r1(A)

Boolean Axioms. A modal 2-Kleene algebra is Boolean if it is augmented with
maps adg : K — K and arg : K — K, such that (K, +,0, ®q, 1o, adg, arg) is a
Boolean MKA, i.e. adg (resp. arg) satisfies the antidomain (resp. anticodomain)
axioms and dy = adj (vesp. 1y = ar?). The domain algebra K is thus a Boolean
algebra whose complementation, denoted by —, is given by the restriction of adg
(and arg) to K.
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Converses. We will consider modal 2-Kleene algebras with 0-converses, i.e.
equipped with an operation (—) : K; — K such that (K3, 4,0, ®g, 1o, (—)*, (-))
is a MKA with converse. For a more general notion of converse in higher-

dimensional Kleene algebra, we refer the reader to [3].

Modalities in 2-semirings. Recall from [3], that the i-diamond operators of
a modal 2-Kleene algebra K are defined via the (co-)domain operators in each
dimension. For i € {0,1}, A € K and ¢ € K,

|A)i(¢) = di(A©®; ¢), and (A]i(¢) = ri(d ©; A).

These modal operators have all of the properties recalled in Sect. 3 with respect
to i-operations and elements of K. Since we are considering Boolean modal
2-Kleene algebras we may additionally define 0-boxes.

Polygraphic Model. Let (¢, X) be a (2,0)-polygraph. We define K(®, X), the
full 2-path algebra over (¥, X) as follows. Let X, denote the set of 2-cells in X .
The carrier set of K(®, X) is the power set P(X, ), whose elements, denoted by
A, B,C ... are sets of 2-cells, which in turn are denoted by a, 3,7 ... Recall that
for each 1-cell 2 of X, there exists a unique 2-cell 1,, its identity 2-cell, and
similarly, for each 0-cell a there exists a unique 2-cell 1;_, the identity 2-cell on
its identity 1-cell. For ¢ € {0, 1}, the i-composition, i-source and i-target maps
are thereby defined for cells of any dimension.

For i € {0,1}, the multiplication ®; on K (@, X) is the lifting of the compo-
sition operations of X T to the power-set, i.e. for any A, B € K(®, X),

Ao;B:={ax;f|lacAANpeBAt(a)=s(0)}

The units are the sets 1p = {11, | @ € &}, and 1; = {1, |z € &]}. The
addition in K (&, X) is given by set union; the ordering is therefore given by set
inclusion. The domain and codomain maps are defined by

do(A) = {1150(a) | a € A}, ro(A) = {11t0(0¢) | a € A},
d1(A) = {151(a) | [ RS A}, and 7”1(14) = {1t1(a) | o€ A},

and are thus given by lifting the source and target maps of X | to the power set.
The i-antidomain and i-anticodomain maps are then given by complementation
with respect to the set of i-cells. The i-star is given by A* = J, oy AFi | where in
the above, A% := 1; and A% := A ©; A®~Vi. For ¢ € K(®,X);, the converse
is given by ¥ := {1, |1, € ¥}.

Proposition 1 ([3]). Let (@, X) be a (2,0)-polygraph. Then, K(P,X) is a glob-
ular Boolean modal 2-Kleene algebra.
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5 Coherent Rewriting and Modal 2-Kleene Algebras

We fix K a globular 2-Kleene algebra. Given A € K and ¢, ¢’ € K7, |A)1(¢) > ¢’
is equivalent to dj(A ®1 @) > ¢’ by definition. In terms of quantification over
collections of cells, this means that for every w in ¢', there exist v in ¢ and «
in A such that the 1-source (resp. 1-target) of «v is u (resp. v). This observation
motivates the following definitions from [3]. For ¢, in K;, an element A in K
is a local confluence filler for (¢, ) if |A)1(1p*0 ©g @) > ¢ O ¥, is a confluence
filler for (@,7) if |A)1 (™0 @9 ¢*0) > ¢*° ©g Y™, and is a Church-Rosser filler
for (6,49) if |A)1 (67 @p 6%0) > (6 + 9.

The right (resp. left) whiskering of an element A € K by ¢ € K; is the
element A @y ¢ (resp. ¢ ®g A). Recall from [3] that whiskering commutes with
1-diamonds, that is, for all A € K and ¢,v,¢’,9',v € K; such that ¢’ < ¢,
Y <1, and di(A) <, we have:

@ ©o |A)1(7) ©o V' = [¢" @9 A ®o ¢ )1(P ©o ¥ @o ). 9)

Fix a (local) confluence filler A of a pair (¢,?) of elements in K;. The total
whiskering of A, denoted by A, is the following element of K:

A= (¢+)" @0 Ao (¢ +1)". (10)

The 1-star of A is called the completion of A. Note that this element absorbs
whiskers, that is, for every £ < (¢ + 1)*0,

EGp A <A™ and A% o€ < A*, (11)

6 Formalisation of Normalisation Strategies

In this section, we formalise the notion of normalisation strategy, introduced
in [15]. We first define notions of section, skeleton and strategy in omne-
dimensional Kleene algebras and show properties thereof. In what follows, we
consider a Boolean MKA K with converse and an element z € K.

i) The equivalence generated by = is the element 27 := (z +Z)*. For p € Ky,

the z-saturation of p is the element |z )(p) € K.

ii) A covering set for x is an element q € K4 such that |27 )(q) > 1, i.e. whose
z-saturation is total. A section of x is a minimal covering set.

iii) A wide sub of z is an element w < z such that |w) = |z) and (w| = (z|. A
skeleton of = is a minimal wide sub.

iv) Given a section sq of z, a strategy for = relative to s¢ is a skeleton o of 2" s¢
such that sgo < sp.

Note that when (@, X) is a (2, 0)-polygraph, we describe @ in K (®, X) as the
element ¢ := {1, |z € $1} U {11, |a € $o}. In K(P,X)1, which we recall is a
Boolean MKA for 0-operations, the equivalence generated by ¢ corresponds to
the 1-groupoid @, and a section corresponds to a choice of a representative 0-cell
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for each connected component in @7. A wide sub of ¢ is a subset 7 such that
for any 1-cell x : a — b € &1, there exists some parallel 1-cell ' : a — b € &4
such that 1,/ € ¥. A skeleton of ¢ therefore corresponds to the choice of a single
1-cell amongst the sets of parallel 1-cells in &; it is thus not unique and does not
coincide with ¢ in general. When & is convergent and {0, }eeq, is a strategy in
the sense of Sect.2, then o = {1, |a € ¢o} is a strategy for ¢ in K (¢, X) with
respect to nfg. This result is proved for any convergent element of a MKA in
Proposition 2.

By definition, a strategy o satisfies d(o) = d(z"sg) = 1, and r(o) =
r(xTsy) = sg. The following lemma states that a strategy contains the asso-
ciated section:

Lemma 2. Given a section sy of x and a strateqy o for x relative to sy, we
have sgo = sg and sg < 0.

Proof. By hypothesis we have sgo < s¢. Showing that syo is a covering set allows
us to deduce by minimality of so that so < spo < o, which gives both desired
conclusions. Since o is a strategy relative to z, we know that (z'sg| = (o]. We
calculate the saturation of syo

(@"](s00) = r(sooz") = (z " [{o](s0) = (& [{z " 50/(s0) = (2 [(s0) = 1,

where we used properties of modalities for the first two steps, then the hypothesis
that o is a strategy. To conclude, we used that (z"so|(s0) > (s0/(s0) = s0 and
that sg is a covering set. O

By conversion, we also get sg = sg and sg < &. This immediately gives the
following properties of a strategy o relative to a section sg:

c-0=0, 0-0=0, 0<o0-0 and c<0-0. (12)

Indeed, oo = 0sgo = 0sg = o by the fact that r(c) = so and Lemma 2, the
case of & follows by conversion. Additionally, so < @ so 0 = osg < oo and
symmetrically for .

Next, we will show that the normal forms and exhaustive iteration of a con-
vergent element give us a section and a strategy, respectively. First, we show:

Lemma 3. Let K a Boolean MKA. For a convergent element v € K, we have
|z T) = |exh(x))(exh(x)|.

Proof. One direction holds since exh(z)exh(z) < 2*T* < 2" so by monotonicity
of taking diamonds and reversal of diamonds by conversion, we get |z ') >
lexh(z)){exh(z)|. The other inequality is obtained via the star induction law for
modalities (6). Indeed, it suffices to prove that

1) + |z + T)|exh(z)exh(z)) < |exh(x)exh(x)).

We prove the inequality for each of the summands. We treat the case of |1) first:
by definition,

lexh(z)exh(z))(p) = d(z"~d(x)r(pr")) = d(z"r(pz”)~d(z)),
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where we used the so-called import-export law [5] r(yp) = r(y)p for codomains
and that multiplication is commutative in K. Since p < 1 we have

pr'r(pz®)-d(z) < z*r(pz”)-d(x),
and since (pz*)r(pz*) = pz*, applying domain on both sides yields
lexh(z)exh(x))(p) = d(pz*~d(x)) = pd(exh(z)) = p,

where we used the import-export law for domains d(py) = pd(y) and Lemma 1.
Thus |exh(xz)exh(x)) > |1). The case of |x) follows by the star unfold axiom:

|x)|z*=d(2)T*) = |za*—~d(x)T*) < |z*—d(x)T*).
The final case follows by the hypothesis of confluence:
) |z"~d(2)z") = (l|a™)(exh(z)| < (z*[|z7)(exh(z)]
< Jz*){x*[(exh(z)|

< o) (exh(@)e*| = |o"—d(2)"),

where we also used exh(z)x* = exh(x). Applying the star induction axiom for
modalities, we obtain the result. a

Now we are ready to relate exhaustion and normal forms to strategies and
sections, respectively:

Proposition 2. If z is convergent, then nf, is a section of x. Furthermore, any
skeleton o of exh(z) is a strategy for x with respect to nf,,, and we have

o< nf,+a, c<nf +7" and To = nf,
Proof. First we show that nf, is a section. It is a covering set since
|z ") (nf,) > |exh(z))(nf,) = d(exh(z)) =1

where the last step is by Lemma 1. Suppose now there is some s € Ky such that
s < nf, and s is a covering set. Since s < nf, < —d(x), the star unfold and
antidomain axioms give s - exh(x) = s, so {exh(z)|(s) = s.

Therefore 1 = |z 7)(s) = |exh(z)){exh(x)|(s) = |exh(x))(s), where we used
Lemma 3. This means that

s > (exh(z)||lexh(z))(s) = (exh(z)|(1) = r(exh(a)) = nf,,

where the first inequality is by Lemma 1, so we may conclude nf, = s, i.e. nf, is
minimal.

Now we show that a skeleton o of exh(z) is a strategy for z relative to nf,.
Note that |z 'nf,) = |z 7)(nf,) and (z "nf,| = (nf,)(z|. By Lemma3,

|z "nf,) = |exh(z))(exh(z)|(nf,) = |exh(z))(nf,) = |exh(z)),
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since nfyexh(x) = nf,, and exh(z)nf, = exh(z). A symmetric proof gives
(x"nf,| = (exh(z)|. Since o is a skeleton of exh(r), its diamonds coincide
with those of exh(x) and so, by what precedes, also with those of = " nf,. Since
exh(z) < znf,, o is a wide sub of 2 "nf,. Minimality of o as a wide sub follows
from that same inequality plus the hypothesis that it is a skeleton of exh(x). To
conclude, note that nf,o < nf exh(z) = nf,. The first inequality follows from

o <exh(r) = z*nf, = (1 + z2*)nf, < nf, + z2* = nf, + 27,

where we used the definition of exh(z), the left star unfold axiom, nf, < 1
and the definition of the Kleene plus. The inequality for & is then obtained by
conversion. Finally, since o < exh(z) and x is confluent, we get

oo < exh(xz)exh(x) = nf,T 2" nf, < nf,2*Z"nf, = nf,,

where we also used that nf, < —d(z) = —r(Z). O

7 Abstract Coherence in 2-MKA

Here we state and prove a formalisation of Theorem A in the context of globular
modal 2-Kleene algebras. First we prove the main result of this paper:

Theorem 1 (Coherent normalising Newman’s lemma). Let K be a
Boolean globular 2-Kleene algebra such that

i) (Ko, +,0,®0, 1o, 0) is a complete Boolean algebra,
ii) K is continuous with respect to 0-restriction, that is for all ¥, ¢’ € Ky and
(pa)oz C Ko we have 1 Og Sup pa Oo W = sup (¢ ©0 Pa ©o wl)

Let ¢ € Ky be convergent and o be a skeleton of exh(¢). If A is a local
confluence filler for (¢, ), then |A*1), (o ©gT) > 6 O ¢™.

Proof. We denote O-multiplication by juxtaposition. First, we define a predicate
RN P expressing restricted normalised paving. Given p € K, let

RNP(p) & |A")1(07) 2 ¢ 'pg™.

By completeness of Ky, we set r := sup{p|RNP(p)} and by continuity of
restriction we may infer RN P(r). Furthermore, by downward closure of RN P,
we have RN P(p) if, and only if, p < r. We thereby deduce:

Vp. (RN P({¢lop) = RNP(p)) < Vp. ({(¢plop <7 =p<7)
< Vp. (p<|plor =p<r)
< |dlor <

where we used the Galois connection (4). Thus, it suffices to show that

Vp. (RNP({¢lop) = RN P(p))
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in order to conclude that r = 1p, by Noethericity of ¢. This method constitutes
formalised Noetherian induction for Boolean MKA.
Given p € Ky, we denote by p, the element (¢|o(p) = |¢)o(p). We have

pp = péro(pd) = pd(dlo(p) < Ppy,
and similarly ¢p < p,é. Using the star unfold axioms, we thereby deduce that

B pp* <G D+ hpdd© + pd <GP+ psddped™ + pde.

We first examine the middle summand:

® "pedppsd™

<6 "polA)1 (6706 " )ped™ »

< |6*°p¢Ap¢¢*°>1<$*°p¢¢*°$*°p¢¢*°> N

PrSalt] * P
< |A)1(8"pss™d p¢¢ °) g*/w “ 5*’% \i*
< A (|A")1(07)6 "pso™) N

< AN (1A)1 (056" ps6™)) N / \ i
< [A)1 (| A1) (|A)1(0007)))
< |A®, A% 01 A*1)1(0505) < |A*1),(07).
where we used that A is a local confluence filler for the first step, then com-
mutation of modalities with whiskering (9) and the definition of A (10) for the
second and third steps. We then use the induction hypothesis RPN (py) on the
left instance of 5*0 Py @™, followed by commutation of modalities with whisker-
ing and whisker absorption (ll), and then repeat for the instance on the right.
Finally, we used that A ®; A" < A" ©; A** < A*' monotonicity of taking
diamonds and o = nf; = r(0), a consequence of Proposition 2.
It remains to show that a*op,pgb*o < |fl*1>1(05). First, observe that we have

Tpg" =T+ 7po™. o ’ Yﬁ

<T+(nfs+¢ )ppto
=548 "ppto <oT+ 6 ‘ppto <|A*1)1(07). N . /F

The first step is by the unfold axiom, the second uses Proposition2 to bound
7. The third step uses the fact that nf, is a left annihilator for ¢ since by
definition we have nf, < —dy(¢). Finally we use the fact that ¢ < o7 (12)
coupled with idg, = |11); < |A*1)q, i.e. reflexivity of A*1, as well as the bound
established by the previous calculation.

For convergent ¢, we have dy(exh(¢)) = do(¢p*°—dy(¢)) = 1o by Lemma 1.
Since o is a skeleton of exh(¢), we have dy(o) = 1g. By the converse axiom (2),
this means that 0@ > 1g. Therefore,
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po™ < oTPG™ | N ' \b*
< o|A*1)(07) ' :

< |A*1) (00T) = |A™1)1(07), A _ /E

where we used commutation of whisker with modalities and whisker absorp-
p— ”

tion, as well as 0o = o (12). A symmetric argument yields ¢ 'p < |A*1),(07),

concluding the proof. O

The use of formalised Noetherian induction, as well as the calculation establish-
ing the upper bound for the middle summand, are similar to those in the proof
of Newman’s lemma in [5]. Due to the fact that our result involves confluences
in o, the bounds for the outer summands require a different approach.

As a direct consequence of Theorem 1, we obtain the following result, which
formalises Theorem A. Indeed, if (@, X) is a (2, 0)-polygraph satisfying the corre-
sponding hypotheses, Theorem 2 lifts the result to the power set when applied to
¢ ={lylzePr}U{ly, |a € Py} and A = X, viewed as elements of K (P, X).
Following the argument given in Sect.5, the conclusion asserts that for every
zig-zag sequence f :a — b € ], there exists a 2-cell a1 f = 04%0 o, obtained
by whiskering and composing elements of X. In a 2-groupoid, this is equivalent
to the existence of a 2-cell f xg op = 04.

Theorem 2 (Abstract coherence theorem). Let K be a Boolean globular
2-Kleene algebra satisfying the additional hypotheses in Theorem 1 and ¢ € K;
convergent. Given a normalisation strateqy o and a local confluence filler A for

(¢, ), we have R _
[A*)1(0 @0 7) 2 070 = (¢ + ¢)*.

Proof. We denote 0-multiplication by juxtaposition. As a result of Theorem 1
we have |A*1)1(07) > ¢ ¢*°. By the star induction axiom, it suffices to show:

Lo+ (¢ + @)|A™)1(07) < |A™)1(07).

By (2) and Proposition 2, we have oo > do(0) = 1o, so by reflexivity of A*1,
i.e. 11 < A*') we have 1o < |A*1)1(07). Furthermore, since ¢ < @ " ¢*0 we have:

BA™)1(07) <TG 1A )1 (07) < [A(09) A1 (09) < | A" )1 (07).

The case of ¢ is identical. We conclude via the star induction axiom. O

8 Outlook

In this article, we have introduced a formalisation of the notion of strategy
for convergent ARS and thereby obtained an abstract coherence theorem. This
constitutes an initial result formalising cofibrant replacements of algebraic struc-
tures by rewriting, such as polygraphic resolutions from convergent SRS, [15].
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In this perspective, the first step is to formalise the critical branching lemma, a
coherent confluence result for SRS. Kleene algebra axioms only allow iteration
on the left or right of expressions, but not in context. We expect a formalisa-
tion of coherent confluence for SRS using the structure of higher-dimensional
quantales [26], similar to higher-dimensional semirings [3] but in which multi-
plication distributes over arbitrary sums. The second step consists in extending
our formalisation of normalisation strategies to higher dimensions, necessary
for constructing cofibrant replacements, for example polygraphic resolutions via
convergent rewriting systems [15].

Another direction is found in the domain of concurrency theory. Concurrent
Kleene algebras (CKA) [19] are a convenient extension of Kleene algebras. While
similar to 2-MKAs, these are used to give semantics to concurrent languages
and their corresponding proof systems. CKAs enrich classical Kleene algebras
with an extra parallel composition operation alongside the classical sequential
composition. In particular, CKAs have applications for validation of concurrent
programs by formalising Hoare-like proof systems for parallel computations, sim-
ilarly to MKAs which have applications to verification of hybrid systems [30] and
program correctness [11]. We expect that our approach to abstract coherence
proofs in 2-Kleene algebras can also find applications to formalisation of proof
systems for verifying general concurrent systems, for example based on higher-
dimensional trace semantics of Higher-Dimensional Automata [9,25] (a form of
higher-dimensional rewriting system), see e.g. [7,8].
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Abstract. The non-deterministic algorithmic procedure PEARL
(acronym for ‘Propositional variables Elimination Algorithm for Rel-
evance Logic’) has been recently developed for computing first-order
equivalents of formulas of the language of relevance logics L in terms of
the standard Routley-Meyer relational semantics. It succeeds on a large
class of axioms of relevance logics, including all so called inductive formu-
las. In the present work we re-interpret PEARL from an algebraic perspec-
tive, with its rewrite rules seen as manipulating quasi-inequalities inter-
preted over Urquhart’s relevant algebras, and report on its recent Python
implementation. We also show that all formulae on which PEARL suc-
ceeds are canonical, i.e., preserved under canonical extensions of relevant
algebras. This generalizes the “canonicity via correspondence” result in
[37]. We also indicate that with minor modifications PEARL can also be
applied to bunched implication algebras and relation algebras.

1 Introduction

This work relates two important areas of development in non-classical logics, viz.
relevance logics and algorithmic correspondence theory, by applying the latter
to the possible worlds semantics for relevance logic based on Routley-Meyer
frames [31], by means of an implementation of the recently developed in [7]
algorithm PEARL. That semantics is, in turn, duality-theoretically related to the
algebraic semantics for relevance logic based on Urquhart’s relevant algebras [37].
Routley-Meyer frames also capture the semantics of (positive) relation algebras
[14,24], and of bunched implication algebras [30], hence the algorithm PEARL
implemented here is also applicable to arrow logic [3,15] and bunched implication
logics [30].
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Modal Correspondence Theory. The Sahlqvist-van Benthem theorem [2,32],
proved in the mid 1970s, is a fundamental result in the model theory of modal
logic. It gives a syntactic characterization of a class of modal formulas which
define first-order conditions on Kripke frames and which are canonical, hence,
when added to the basic normal modal logic K, they axiomatize logics which are
strongly complete with respect to elementary frame classes. The Sahlqvist-van
Benthem theorem sets the stage for the emergence and development of the so
called correspondence theory in modal logic, cf. [4]. The literature on the topic
contains many analogues of the Sahlqvist-van Benthem theorem for a wide range
of non-classical logics. Various illuminating alternative proofs have appeared,
including Jonsson’s purely algebraic proof of the canonicity part [25], and the
‘canonicity-via-correspondence’ approach pioneered by Sambin and Vaccaro [33].

The Sahlqvist-van Benthem class of formulas has been significantly extended
to the class of so called inductive formulas [21-23] which cover frame classes not
definable by a Sahlqvist-van Benthem formula while enjoying the same properties
of elementarity and canonicity. At about the same time, a new line of research
known as algorithmic correspondence theory emerged. It involves the use of algo-
rithms like SCAN and DLS to try and compute first-order frame correspondence
for modal formulas by eliminating the second-order quantifiers from their stan-
dard second-order frame correspondents. In particular, the algorithm SQEMA
[9] was developed for algorithmic correspondence in modal logic. It manipulates
formulas in an extended hybrid language to eliminate propositional variables
and thereby produces pure hybrid formulas which translate into first-order logic
via the standard translation, and simultaneously proves their canonicity via an
argument in the style of Sambin and Vaccaro. This approach was extended to
logics algebraically captured by normal (distributive) lattice expansions [10,11]
in a line of research known as unified correspondence [6].

Correspondence Theory for Relevance Logic. Much work has been done over the
years on computing first-order equivalents and proving completeness of a range of
specific axioms for relevance logics with respect to the Routley-Meyer relational
semantics (cf. [31]). Routley-Meyer frames involve not a binary, but a ternary
relation, with several conditions imposed on it, needed to ensure upward closed-
ness of the valuations of all formulas. That makes the possible worlds semantics
for relevance logic based on such frames technically more complex and proving
correspondence results for it “by hand” can be significantly more elaborate than
those for modal logics with their standard Kripke semantics, which calls for a
systematic development of respective correspondence theory for relevance logics.
Until recently, that problem remained little explored, with just a few works, incl.
those of Seki [34] and Badia [1], defining some classes of Sahlqvist-van Benthem
type formulas for relevance logics and proving correspondence results for them.
Likewise, Suzuki [35,36], has established correspondence for the full Lambek
calculus with respect to the so-called bi-approximation semantics, obtained via
canonical extensions in the style of [16]. For closely related distributive substruc-
tural logics, such as bunched implication logics, an elegant categorical approach
to canonicity and correspondence is based on duality theory and coalgebras [12].
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A general algorithmic correspondence theory of relevance logics has recently been
developed in [7], on which the presently reported work is based.

The Algorithm PEARL and Its Implementation. A non-deterministic algorithmic
procedure PEARL (acronym for Propositional variables Elimination Algorithm for
Relevance Logic) for computing first-order equivalents in terms of frame validity
of formulas of the language Lp for relevance logics is developed in [7]. PEARL is
an adaptation of the above mentioned procedures SQEMA [9] (for normal modal
logics) and ALBA [10,11] (for distributive and non-distributive modal logics).
Furthermore, a large syntactically defined class of inductive relevance formulas
in L is defined in [7], based on specific order-theoretic properties of the algebraic
interpretations of the connectives, following the general methodology of [11]. It
is shown in [7] that PEARL succeeds for all such formulas and correctly computes
for them equivalent with respect to frame validity first-order definable conditions
on Routley-Meyer frames. This gives a general basis for comparing inductive and
Sahlqvist formulas across different logics and for different relational semantics
for the same logic. Thus, [11, Example 3.14] has shown that Suzuki’s Sahlqvist
class is properly included in the respective class of inductive formulas. Likewise,
for the case of L, it is shown in [7] that the class of inductive formulas properly
extends the classes of Sahlqvist formulas of Seki [34] and Badia [1].

In the present work we re-interpret the algorithm PEARL from an algebraic
perspective with its rewrite rules seen as manipulating quasi-inequalities inter-
preted over Urquhart’s relevant algebras [37]. This enables us to complete the
part of the Sahlgvist-van Benthem theorem still outstanding from the previous
work, namely the fact that all inductive £g-formulas are canonical, i.e., are pre-
served under canonical extensions of relevant algebras. Via the discrete duality
between perfect relevant algebras and Routley-Meyer frames, this establishes the
fact that all inductive L£z-formulas axiomatise logics which are complete with
respect to first-order definable classes of Routley-Meyer frames. This general-
izes the “canonicity via correspondence” result in [37] for (what we can now
recognise as) a certain special subclass of Sahlqvist-van Benthem formulas in
the “groupoid” sublanguage of Lz where fusion is the only connective. We then
present an optimised and deterministic version of PEARL, which we have recently
implemented in Python and applied to verify the first-order equivalents of a num-
ber of important axioms for relevance logics known from the literature, as well as
on several new types of formulas. In this paper we report on the implementation
and on some testing results.

Relevance Logics and Relation Algebras. Even though developed with differ-
ent motivations, these two areas are technically closely related, as noted and
explored in several papers besides [37], incl. [5,15,24,26,28]. We note that, by
extending L with a Heyting implication (which is a residual of the meet oper-
ation), removing relevant negation, and adding commutativity and associativity
as axioms of fusion, our results can also be applied to bunched implication alge-
bras. Alternatively one can extend Lz with classical implication and apply the
same algorithm to relation algebras. In this case the Routley-Meyer frames have



Algorithmic Correspondence via Algorithm PEARL 129

the order of an antichain and are the same as atom structures of relation alge-
bras. Further details are discussed at the end of Sect. 7.

Structure of the Paper. In Sect.2 we provide the necessary background on the
syntax, algebraic and relational semantics of relevance logic, define relevant
algebras and then extend their language by adding adjoints and residuals of
the standard operators of relevance logic. Then, in Sect.3 we establish dual-
ity between perfect relevant algebras and complex algebras of Routley-Meyer
frames. Section4 presents the rules of the calculus on which PEARL is based,
and Sect. b contains a concise description of the main phases of the algorithm
itself. In Sect.6 we give a brief description of the implementation of PEARL,
and in Sect.7 we state some results. We then conclude with Sect.8. After the
references we have included a short appendix containing some additional tech-
nicalities and some examples of the output of PEARL.

2 Preliminaries

In this section we provide background on the syntax and algebraic and relational
semantics of relevance logic. For further details we refer the reader to [17,31] and
(for relevance logics) to [37] and [7].

2.1 Relevance Logic and Its Algebraic Semantics

The language of propositional relevance logic L over a fixed set of propositional
variables VAR is given by

A=p| LIT[t] ~A[(ANA)[(AVA)|(AcA)[(A—A)

for p € VAR. The relevant connectives o, ~ and — are called fusion, (relevant)
negation and (relevant) implication, respectively. The constant t is referred
to as (relevant) truth. We also add the constants T and L for convenience.
Equations and inequalities of Lr-formulas can be algebraically interpreted in
relevant algebras as defined by Urquhart in [37].

Definition 1 ([37]). A structure A = (A, A\, V,0,—,~,t, T, 1) is called a rel-
evant algebra if it satisfies the following conditions:

1. (A, NV, T,1)
18 a bounded distributive lattice,
2. ao(bVe)=(aob)V(aoc),
3. (bVve)oa=(boa)V(coa),
4. ~(aVb)=n~aA~Db,

~(aAb) =r~aV ~b,
~T=Land~L =T,
aol =1oa=1,
toa=a, and
aob<ciffa <b—c.

© X RS =

An Li-formula ¢ is valid on a relevant algebra A if the inequality t < ¢
(implicitly universally quantified over all propositional variables) is valid on A
and valid on a class of relevant algebras if it is valid on each member of
that class. We also refer the reader to [37] for axiomatizations of the logic of the
class of all relevant algebras.
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2.2 Relational Semantics

Relevance logic can be given relational semantics based on structures called
‘Routley-Meyer frames’, which we will now define. A relevance frame is a
tuple F = (W, O, R,* ), where:

— W is a non-empty set of states (possible worlds);

— O C W is the subset of normal states;

—~ R C W3 is a relevant accessibility relation;

*: W — W is a function, called the Routley star.

The binary relation = is defined in every relevance frame by specifying that
u =< v iff Jo(o € OARouv). A Routley-Meyer frame ! (for short, RM-frame)
is a relevance frame satisfying the following conditions for all u, v, w,x,y,z € W:

l.z=<z 5. If x < y then y* X z*.

2. If x <X y and Ryuv then Rzruwv.

3. If x <y and Ruyv then Ruzv. 6. O is upward closed w.r.t. <,

4. If x X y and Ruvx then Ruvy. ie.if o € O and 0 < ¢’ then o' € O.

These properties ensure that < is reflexive and transitive, hence a preorder,
and that the semantics of the logical connectives has the upward monotonicity
property stated below.

A Routley-Meyer model (RM-model) is a tuple M = (W, 0, R,*, V),
where (W, O, R,* ) is a Routley-Meyer frame and V' : VAR — P (W) is a mapping,
called a relevant valuation, assigning to every atomic proposition p € VAR a
set V(p) of states which is upward closed w.r.t. <.

Truth of a formula A in an RM-model M = (W,0,R,*,V) at a state
u € W, denoted M, u Ik A, is defined as follows:

- M,ulkpiff u e V(p);

- Mul-tiff ue O;

- M,ulk ~A iff M,u* I} A;

- M,ulF AANB iff M,ul- A and M, u I+ B;

- M,ul- AV B iff M,ulF A or M,ul+ B;

- M,ul- A — B iff for every v, w, if Ruvw and M,v Ik A then M, w I+ B.

- M,ul- Ao B iff there exist v, w such that Rvwu, M,v Ik A and M,w I+ B.

Thus, the Routley-Meyer semantics follows a standard pattern for relational
semantics of modal operators. In particular, the fusion is a binary ‘diamond’,

1 The definition of Routley-Meyer frames takes the relation R and subset O as primary
and defines the pre-order < in terms of them. This does not restrict the pre-orders
that can occur within Routley-Meyer frames. Indeed, given an upward closed subset
O C W and a pre-order < on W one can define a respective ternary relation R C W?
by specifying that, for all triples (z,y, z), Rzyz iff z < o for some 0 € O and = < y.
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interpreted with a ternary relation, and negation is both a unary box and dia-
mond, interpreted via a functional binary relation. One can show, by a rou-
tine structural induction on formulas, (cf. e.g. [31]) that this semantics satisfies
upward monotonicity: for every RM-model M and a formula A of Lg, the
set [A]m = {u | M,ul- A} is upward closed.

A formula A is declared true in an RM-model M, denoted by M IF A, if
M, ol A for every o € O. It is valid in an RM-frame F, denoted by F I- A,
iff it is true in every RM-model over that frame, and A is RM-valid, denoted
by IF A, iff it is true in every RM-model.

All semantic notions of truth and validity defined above can be translated to
FOL, resp. universal monadic second order, by means of a standard transla-
tion, analogous to the one applied to modal logic (cf. [4]). See the details in the
full paper [8].

2.3 Perfect Relevant Algebras and the Extended Language L',E

Given a Routley-Meyer frame F = (W, R,*,O), its complex algebra is the
structure
Fr=(PI(W),N,U,—,0,~,0,W,0)

where PT(W) is the set of all upwards closed subsets (hereafter called up-sets)
of W, N and U are set-theoretic intersection and union, and for all Y, Z € PT(W)
the following hold:

Y—>Z={xeW| forall y,z € W, if Reyz and y € Y, then z € Z},

YoZ={xeW)| thereexist y € Y and z € Z such that Ryzz},

~Y={zeW|a*¢Y}.

It is easy to check that F* is a relevant algebra.

An element a of a lattice L is completely join-irreducible (resp., com-
pletely join-prime) if whenever a = \/ S (a </ S) for some S C L, then a = s
(a < s) for some s € S. The notions of meet-irreducibility and primality are
defined order-dually. Complete join/meet primality implies complete join/meet
irreducibility and for complete distributive lattices the notions coincide.

A relevant algebra A = (A, A,V,0,—,~,t, T 1) is perfect if (A, AV, TL)
is a complete, completely distributive lattice that is join-generated (resp., meet-
generated) by the set of its completely join-irreducible elements J*(A) (resp.,
the set of its completely meet-irreducible elements M°°(A)), while \/ S oa =
Vies(s0a) a0V =V, 5(aos), VS = a = Acsls — a).a — AS =
Nsesla = 5), ~\/ S =N\, cg~sand ~ A S =\, g~sforall S C Aandac A
Now, in fact, every FT is a perfect relevant algebra. Further, every relevant
algebra A can be compactly and densely embedded in a unique perfect relevant
algebra, namely in its canonical extension (cf. e.g. [16]) which we will denote A?.

For any perfect distributive lattice A, the map x : J*°(A) — M°°(A) defined
by j — V{u € A | j £ u} is an order isomorphism (cf. [19, Sec. 2.3])
when considering J*°(A) and M (A) as subposets of A. The inverse of & is
A M*®(A) — J*(A), given by the assignment m — A{u € A | u £ m}. From



132 W. Conradie et al.

these definitions, we immediately have that, for every u € A, every j € J®(A)
and every m € M>(A),

j£u it u<k(j), (1)
ugm iff A(m)<u. (2)

Since in perfect relevant algebras each of ~, V, A, o and — preserves or
reverses arbitrary meets and/or joins in each coordinate, they are residuated in
each coordinate (see e.g. [18]). The algebra therefore supports the interpretation
of an extended language with connectives for the residuals of these operations.
In particular, we extend the language Lg to L’E by adding the left adjoint ~’
and the right adjoint ~* of ~ , the intuitionistic (Heyting) implication
= (as right residual of A), the coimplication — as the left residual of Vv, and
the operation — as the residual of o in the second coordinate and of — in the
first coordinate. Thus, in any perfect relevant algebra A we have that:

1. ~a<biff ~Pb<a 4. anb<ciffa<b=c
2. a<~biff b < ~tg 5. aob<cifa<b—c¢
3.a<bvcifa—b<c 6. aocb<ciff b<a<—c

We also include in E; two countably infinite sets of special variables, NOM =
{jo,j1,j2,.--} and CNOM = {mg,m;,m,,...}. These are respectively called
nominals and co-nominals and will be interpreted as ranging respectively
over completely join-irreducibles and completely meet-irreducibles. Informally,
we will denote nominals by i, j, k, possibly with indices, while co-nominals will
be denoted by m, n, possibly with indices. To distinguish visually from Lg, the
formulas of the extended language LE will be denoted by lowercase greek letters,
typically «, 8,7, ¢, 1, &, etc. and are defined by the following grammar:

p=plilm|T|[L[t|~p| (@A) (BV)]|(d00)]|(d— )|
Mo ~o ] (6 —<0) | (0= 9) | (6 — ¢)

where p € VAR, i € NOM and m € CNOM. We denote ATOMS := VAR U
NOMUCNOM. The elements of ATOMS will be called atoms. An E;g—formula is
called pure if it contains no propositional variables but only, possibly, nominals,
co-nominals and constants. To each connective we assign a polarity type?
indicating whether each coordinate of its interpretation in (perfect) relevant
algebras is order-preserving or order-reversing, as follows:

l.ew=€p =€ =(—) 3. e, =€x =€, = (—,4)
2. ep=€y =€ = (+,4) 4. e =(+,-)

We write €,(i) for the i-th coordinate of €,. We now define the notions
of positive and negative occurrences of atoms in £}-formulas recursively:
an occurrence of an atom a is positive in a; an occurrence of a which is pos-
itive (negative) in ¢ is positive (negative) in h(¢1,...,Yi—1,¢,%it1,...0y)

2 Also called an order type (e.g. [19]) or monotonicity type (e.g. [20]).
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if e,(i) = 4+ and negative (positive) in h(¢1,...,%i—1,P,Vit1,..., ) if
en(i) = — We then say that a formula ¢ € L}, is positive (negative) in
an atom a iff all occurrences of a in ¢ are positive (negative). An inequality
¢ < 1 is positive (negative) in an atom a if ¢ is negative (positive) in a
while ¢ is positive (negative) in a.

3 Duality Between Perfect Relevant Algebras and
Complex Algebras of Routley-Meyer Frames

As already mentioned, the complex algebra F+ of any Routley-Meyer frame F =
(W,R,*,0) is a perfect relevant algebra. Moreover, J°(F*t) = {lz | z € W}
the set of all principal up-sets 1z = {y € W | y = 2} and M (F*t) = {(|z)° |
x € W} the set of all set-theoretic complements of principal downwards closed
subsets (hereafter called co-downsets) |z = {y € W | z > y}. Conversely,
we will show that every perfect relevant algebra is isomorphic to the complex
algebra of a Routley-Meyer frame.

Lemma 2. In a perfect relevant algebra A, it is the case that ~* maps J*(A)
into M (A) and ~° maps M>(A) into J>(A).

Proof. See proof in the full paper [8].

The following definition adapts a well-known method (see [16]) for obtaining
dual relational structures from perfect algebras:

Definition 3. The prime structure of a perfect relevant algebra
A= (A NV, 0,— ~ t, TL) is the structure Ay = (J(A), O, Ro,*~ ) where:
1. Roabc iffc<aob 2. Oy={je€J®(A)j<t} and 3 a*~ = \(~fa)

Lemma 4. A, is a Routley-Meyer frame. Moreover the order = on A, coincides
with the dual lattice order > restricted to J>®(A).

Proof. We begin by noting that b < ¢ iff there exists jo € Oy = {j € J*(A) | j <
t} such that R, jobe. By definition, the latter is equivalent to ¢ < jg o b for some
completely join-irreducible jo < t. By the monotonicity of o, this implies that
¢ < tob which is equivalent to ¢ < b by the clause 8 of Definition 1. Conversely,
if ¢ < b, then, by the same clause, we have ¢ < tob = \/{j € J*(A) | j <
thob=\{jobe J®(A)|j <t} Since c € J*®(A), this means there is some
jo € J°(A) such that j <t and ¢ < job, which implies b < ¢. It is clear from the
construction that A, is a relevance frame. In particular, the fact that *~ maps
elements of J*°(A) into J*°(A) follows from the definition of A and Lemma 2.
We verify the six defining properties of Routley-Meyer frames in [§].

Proposition 5. For any perfect relevant algebra A it is the case that A ~ (A,)T.

Proof. We show that the map 6 : A — (A,)*" given by 6(a) — {j € J®(A) | j <
a} is a relevant algebra isomorphism. See details in the full paper [8].
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4 The Calculus of the Algorithm PEARL

In this section we present a calculus of rewrite rules®, in the style of the algo-
rithms SQEMA [9] and ALBA [10,11], which is sound and complete for deriving
first-order frame correspondents and simultaneously proving canonicity for a
large class of formulas of Lg, viz. the class of inductive (relevance) formulas
(see [7]). The algorithm PEARL and its implementation, described in the next
section, are based on this calculus. The algorithm accepts (inequalities of) E}E
formulas as input and, if it succeeds, it produces first-order formulas in the lan-
guage of RM-frames that is valid in an RM-frame if and only if the original
formulas are valid in the complex algebra of this RM-frame.

The rules manipulate quasi-inequalities* of EE formulas, i.e., expressions of
the form ¢ < ¢1,..., ¢, < b, = ¢ < with ¢, v, ¢;,1; € Lk In the setting
of relevant algebras, quasi-inequalities are considered universally quantified over
all propositional variables. Any formula ¢ € E; can be treated as the inequality
t < ¢, which is a quasi-inequality with no assumptions. The inequalities not
affected by the application of the rule are regarded as a context, which will be
denoted by I'. Given a set of inequalities I, we say that I" is positive (negative)
in an atom a whenever each member of I' is positive (negative) in a. We will
write I'(a/p) for the set of inequalities obtained by uniformly substituting « for
atom p in each member of I'.

All rules that are indicated below by a double line are invertible, although
the algorithm PEARL only applies the approximation rules in the downward
direction.

Monotone Variable Elimination Rules

I'(p) = ~(p) <B(p) Alp) = B(p) <~(p)
I(T/p) = ~(L/p) <B(L/p) A(L/p) = B(T/p) <~(T/p)

where §(p) and I are positive in p, while v(p) and A(p) are negative in p.

These rules can be seen as instantiations of the rules of the general-purpose algorithm
ALBA [11] in the context of perfect relevant algebras. However, the fact that the
latter are distributive lattice expansions allows us to present simpler formulations
of these rules closer to those in [10] and, to some extent, [9]. The approximation
rules presented in [11] allow for the extraction of subformulas deep from within
the consequents of quasi-inequalities, subject to certain conditions, rather than the
connective-by-connective style of our presentation. Although the former style of rule
is also sound in the present setting, we opted for the latter as we believe it is simpler
to present since the formulation requires significantly fewer auxiliary notions.
* In [7] these are treated set-theoretically and are called there ‘quasi-inclusions’.
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First Approximation Rule
I' = ¢<v
Jj<¢,v<m, I' = j<m

where j is a nominal and m is a co-nominal not occurring in the premise.

Approximation Rules

X—¢<m, I' = a<p

X—¢<m, I' = a<p
(—Appr-L) (—Appr-R)
i<x,j—¢<m, I' = a<p ¢<n, x—>n<m, I' = a<p
i<xo¢, ' = a<p i<xo¢, ' = a<p
(oAppr-L) (oAppr-R)
j<x,i<joo, I' = a<p J<¢,i<x0j I' = a<
~p<m, ' = a<p i<~¢, I' = a<p
(~Appr-L) (~Appr-R)

¢<n ~n<m [ — a<§B j<¢, i<~j, I = a<

where j a nominal and n is a co-nominal not appearing in the premises.

Residuation Rules

p<xVvy, I' = a<lp (VRes) dpAXSY, I' = a<p (ARes)
¢—=x<Y, I' = a<p p<x=v,I' = a<p
p<x—¢, I' = a<lp (—Res) Y<p—x, I' = (Res)
pox <y, I' = a<p pop<x, I' = a<

Adjunction Rules

Y<oAx, I' = a<p

GVXSU T = asp "
st x0T = oz VM) T o T = acg MY
~9SU T = a<B o GEeRT —= a<h o

~MY<o I = a<p V<o, I = a<p

Not to clutter the procedure with extra rules, we allow commuting the argu-
ments of A and V whenever needed before applying the rules (AAdj) and (VAd))
above. These rules are applied exhaustively in the downward direction, and pro-
duce the same results regardless of how an expression is parenthesized.

Ackermann-Rules: The Right Ackermann-rule (RAR) and Left Ackermann-
rule (LAR) are subject to the following conditions:
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— p does not occur in «, — I' is negative in p,
— [ is positive in p,
— ry is negative in p, — A is positive in p,

a<p, Alp) = ~(p) < B(p) p<a, I'(p) = B(p) <~(p)

RAR LAR

Aa/p) = Aalp) < Alaf) N Tafn) = Bafp <ataln)

Note that the rules (L) and (T) are, in fact, special cases of the Ackermann-
rules (RAR) and (LAR), respectively.

Simplification Rules: In the rules below I' is a possibly empty list of
inequalities.

[i<¢ — i<y [ y<m = ¢<m
(Simpl-Left) (Simpl-Right)
I' = ¢<% I' = ¢<9

In the rule (Simpl-Left) the nominal i must not occur in ¢, or ¥, or any
inequality in I'. Likewise, in the rule (Simpl-Right) the co-nominal m must not
occur in ¢, or 1, or any inequality in I'. These rules are usually applied in
the post-processing, to eliminate nominals and co-nominals introduced by the
approximation rules.

Ezxample 6. We illustrate an application of PEARL on the following formula
(known as axiom B2 in [31]): (p — ¢) A (¢ — ) — (p — 7). In the full paper
[8] we show that the elimination phase of PEARL succeeds and produces the
following pure quasi-inequality:

io(ioj1)<mny, j—m—m<m = i<m.

5 Algorithmic Description of PEARL

5.1 Pre-processing and Main Phase of PEARL

Here we will present a deterministic algorithmic version of the procedure PEARL,
which is used for the implementation.

1. Receive a formula ¢ in input.

2. If ¢ is an implication ¢y — 6 set X := {¢p < 0}, otherwise form the initial
inequality t < ¢ and set X := {t < ¢}.

3. Now preprocess the set X by iterating steps 3a, 3b until a pass is reached in
which none of the steps are applicable.
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(a) For any (# < x) € X, find the first positive occurrence of V or negative
occurrence of A in 6 which is not in the scope of any positive occurrence
of — or a negative occurrence of o. Letting 6(« ¢ 3) denote 6 with the
occurrence of the found subterm, where ¢ € {V, A}, replace § < x in X
by 0(a) < x,0(8) < x.

(b) For any (6 < x) € X, find the first positive occurrence of A or negative
occurrence of V in x which is not in the scope of any negative occurrence
of — or a positive occurrence of o. Again letting x(a ¢ 3) denote x with
the found subterm, replace 8 < x in X by 6 < x(«a),0 < x(5).

The preceding two “splitting” steps are justified by the distributivity of
the operations o, —, ~ and the adjunction rules (VAdj) and (AAdj).

(¢) Apply the monotone variable elimination rules to all inequalities in X
where they apply, replacing the involved inequalities in X with the results.

4. Proceed separately in each inequality ¢; < ; in X. Apply the first-
approximation rule to ¢; < ; to produce the quasi-inequality i < ¢;,1; <
mkti<m.

5. As long as one of x, ¢ in the approximation rules is matched by a subformula
that is neither a nominal or conominal, apply these rules exhaustively to this
quasi-inequality, interleaved with the splitting steps 3a—3b, where X is the set
of premises. The resulting quasi-inequality has premises that are irreducible
with respect to the approximation steps and splittings. This step terminates
since approximation rules are only applied downwards and splittings eliminate
a A or V-symbol.

6. For each variable p in the quasi-inequality, and for each choice of polarity,
+p or —p, check if the right Ackermann-rule (for +p) or the left Ackermann-
rule (for —p) can be applied to eliminate p from the premises of the quasi-
inequality. This is done by applying the residuation and ~-adjunction rules
exhaustively to all premises that contain exactly one occurrence of +p (or
—p) to solve the inequality for p (if possible) and checking that p only occurs
(if at all) with the opposite sign in all other premises. If possible, apply the
right or left Ackermann-rule. Otherwise, p cannot be eliminated, in which
case the next variable is tried. Backtracking is used to attempt to eliminate
all variables in all possible orders and with either positive or negative polarity.
If a variable cannot be eliminated in some particular quasi-inequality, then
the algorithm stops and reports this failure.

7. If the elimination phase has succeeded on all quasi-inequalities, the algorithm
proceeds to post-processing, including simplification and translation phases.

5.2 Post-processing and Translation to First-Order Logic

This phase® applies if/when the algorithm succeeds to eliminate all variables,
thus ending with pure quasi-inequalities, containing only nominals and co-
nominals, but no variables. The purpose of the post-processing is to produce
a first-order condition equivalent to the pure quasi-inequality produced as a

5 This is an optimised version of the post-processing procedure outlined in [7].
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result of the main phase described in Sect. 5.1, and hence to the input formula.
Each pure quasi-inequality produced in the elimination phase is post-processed
separately to produce a corresponding first-order condition, and all these are
then taken conjunctively to produce the corresponding first-order condition of
the input formula. So, we focus on the case of a single pure quasi-inequality.
Computing a first-order equivalent of any pure quasi-inequality can be done
by straightforward application of the standard translation, but the result would
usually be unnecessarily long and complicated. This can be compensated by addi-
tional post-translation equivalent simplifications in first-order logic, also taking
into account the monotonicity conditions in Routley-Meyer frames. Instead, we
have chosen to first apply some pre-translation simplifications of the pure quasi-
inequality, using again some of the PEARL rules, and then to modify the standard
translation by applying it to pure inequalities, rather than to formulas, and by
extending it with a number of additional clauses dependent on the type (main
connective) of the formulas on both sides of these inequalities, thus applying
simplifications on the fly. For lack of space we have omitted the list of these
additional post-processing rules, which can be found in the full paper [8].

The resulting modified translation Tr is not restricted to pure quasi-
inequalities and can be applied to arbitrary pure formulas.

The post-processing of the pure quasi-inequality produced in Example 6 using
the translation Tr is illustrated in the full paper [8]. The resulting first-order for-
mula is Vi, 2, T3, , Un, (BT, Yn, — I2j(Rzizj, 5 A RTiZiyn, ) which is equiv-
alent to the first-order condition known from [31] for the axiom B2, and to the
one computed by the implementation of PEARL reported here.

6 Implementation of PEARL

Here we give a brief description of an implementation of PEARL in Python, based
on the description given in Sect. 5. The input is a TEX string using the standard
syntax of relevance logic expressions. Intuitionistic implication =, coimplication
—, the right residual < of o, and the adjoints ~f and ~° can also appear in
an input formula. The expression is parsed with a simple top-down Pratt parser
[29] using standard rules of precedence. For well-formed formulas, an abstract
syntax tree (AST) based on Python dictionaries and lists of arguments is created
for each formula.

Five short recursive Python functions are used to transform the AST repre-
sentation step-by-step according to the specific groups of PEARL transformation
rules. The function preprocess(st) takes a WTEX string st as input and parses
it to an AST which we refer to as A. If the formula A is not well-formed, an error-
string is returned. If it has a top-level — symbol, it is replaced with a < to turn
the formula into an inequality, and otherwise the equivalent inequality t < A is
constructed. Subsequently the splitting rules and monotonicity rules from Sect. 4
are applied and the resulting list of inequalities is returned.

For example, with r"p\to g\land\mathbf t" as input, the formula is
parsed, rewritten as p < gAt, then the splitting rules produce the list [p <
q,p < t] and monotonicity returns [T < L, T < t].



Algorithmic Correspondence via Algorithm PEARL 139

The function approximate (As) takes this list as input, and applies the first
approximation rule to each formula, followed by all possible left and right approx-
imations interleaved with further applications of the splitting rule. The result is
a list of quasi-equations that always have conclusion i < m and premises that
are irreducible with respect to the approximation and splitting rules.

The function eliminate(As) then attempts to apply the Ackermann-rules
to each quasi-equations by selecting each variable, first with positive polarity
and, if that does not succeed, then with negative polarity. Backtracking is used
to ensure that all variables are tried in all possible orders. If for some quasi-
equations none of the variable orders allow all variables to be eliminated, then the
function reports this result. On the other hand, if for each quasi-equations some
variable order succeeds to eliminate all formula variables then the resulting list
of pure quasi-equations (i.e., containing no formula variables, but only nominals
or co-nominals) is returned.

Since these pure quasi-equations contain redundant premises, the function
simplify(As) is used to eliminate them, and to also apply the left and right
simplification rules. Finally the variant of the standard translation described in
Sect. 5.2 is applied to the pure quasi-equations and produces a first-order formula
on the Routley-Meyer frames.

The Python code can be used in any Jupyter notebook, with the output
displayed in standard mathematical notation. No special installation is needed
to use the program in a personal Jupyter notebook or in a public cloud-based
notebook such as Colab.google.com, and the output can be pasted into standard
KTEX documents. Moreover the program can be easily extended to handle the
syntax of other suitable logics and lattice-ordered algebras. The resulting formula
can also be translated to TPTP, Prover9 or SPASS syntax. The Python code is
available at github.com/jipsen/PEARL in the form of a Jupyter notebook. It can
also be copied and used directly in a browser at https://colab.research.google.
com/drive/1p0PTkmyq7vITWgYDxCTFHVRwjaLeT45uX?usp=sharing. In the
full paper [8] we provide some examples of output from the PEARL
implementation.

7 Canonicity and Applications to BI-Logic and Relation
Algebras

Here we report on some new theoretical and practical results related to the theory
and implementation of PEARL. We begin with a theoretical result, which, for
lack of space, we only sketch here.

Theorem 7. The validity of all E;-formulas on which PEARL succeeds is pre-
served under canonical extensions of relevant algebras.

Proof. Let ¢ < 1 be an Lg-inequality on which PEARL succeeds and let A
be a relevant algebra. Let PEARL(¢ < 1) denote the purified quasi-inequality
produced from input ¢ < . For any E; quasi-inequality I’ = a < [,
we write A° Es I' = «a < (8 to indicate that ' = « < (3 is true in


https://www.github.com/jipsen/PEARL
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing
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A% under all assignments that send propositional variables to elements of the
original algebra A (and nominals to J*°(A) and co-nominals to M>°(A)) while,
as usual, A° = I' = a < 3 indicates truth under all assignments. The
following chain of equivalences establishes the canonicity of ¢ < ¥:

A |=¢§w All=g <
Ad =g @ < )

(i
A’ ) PEARL(¢ <) & A’ |E PEARL(¢ <)

The uppermost bi-implication on the left is immediate by the way we defined
=4 and the fact that A is a subalgebra of A%. The lower bi-implication on the
left follows by that fact that, if a quasi-inequality A’ = +/ < x’ is obtained
from another, A = ~ < x, through the application of PEARL rules, then
AV =y A = v < xiff A% =y A’ = +/ < x/. This is straightforward to check
for all rules except the Ackermann-rules. We refer the reader to [10] and/or [11]
for the details of the latter. The horizontal bi-implication follows from the facts
that, by assumption, PEARL(¢ < ) is pure, and that restricting assignments
of propositional variables to elements of A is vacuous for pure formulas, as they
contain no propositional variables. The bi-implication on the right follows by the
soundness of all PEARL rules on perfect algebras, which is routine to verity.

Via the discrete duality between perfect relevant algebras and Routley-Meyer
frames established in Sect. 3, it follows that all EE—formulas on which PEARL
succeeds axiomatise logics which are complete with respect to their respective
first-order definable classes of Routley-Meyer frames.

As mentioned in the introduction, a large syntactically defined class of
inductive relevance formulas in Lg is defined in [7], where it is shown that
PEARL succeeds for all such formulas and correctly computes their equivalent
with respect to frame validity first-order definable conditions on Routley-Meyer
frames. Therefore, all inductive LE—formulas are canonical. This result general-
izes the “canonicity via correspondence” result in [37], applied there to the frag-
ment of L involving of all specific relevance logic connectives only the fusion.

We can now state the results above applied to the specific implementation
of PEARL reported here. However, the proof of the correctness of the implemen-
tation is beyond the scope of this paper. Still, we can report that the imple-
mentation has succeeded on all axioms A1-A9, B1-B30, and D1-D8 listed in the
appendix of [7], copied there from [31], and has computed first-order conditions
equivalent to those known from the literature.

Bunched implication logic [30] is closely related to a negation-free relevance
logic. The algebraic semantics of bunched implication logic is given by bunched
implication algebras, or Bl-algebras. They are defined by axioms 1-3 and 7-9
of Definition 1 together with a new binary operation symbol = such that



Algorithmic Correspondence via Algorithm PEARL 141

10. anb<ciffa<b=c¢ (hence = 11. (aob)oc=ao(boc),
is a Heyting algebra implication) 12. aob=boa.

The steps of the PEARL algorithm are not affected by these addition axioms
(although additional rules for the associativity and commutativity of o could
be added), and the relational semantic structures of Bl-logic and Bl-algebras
are precisely Routley-Meyer frames. However in Bl-logic the notation differs
slightly, since —, 0, = are replaced by —, %, —, and this alternative notation is
user-selectable in the implementation.

Lastly, we note that the algorithm PEARL can also be applied to relation
algebras, as they form a subvariety of relevant algebras extended with a Heyting
implication =. An axiomatization of relation algebras in this setting consists of
axioms of relevant algebras (1-9 from Definition 1), 10, 11 above and®

13. (z=1)=1l=z 1. x —y=nr~(~youx),
(hence = is a classical implication ~ 15. 7 = ~(z = 1),
and x = L is denoted —x), 16. (xoy)" =y~ ox~.

Axiom 18 ensures that the lattice structure is a Boolean algebra, hence the
partial order in the Routley-Meyer frames of a relation algebra is an antichain.
In the theory of relation algebras these frames are known as ‘atom structures’,
defined in [27, Def. 2.1]. For the application of PEARL to relation algebras, it
suffices to replace the converse operation by the term ~(x = L) and to interpret
any = symbol in the resulting first-order formula as an equality symbol. Note
that relevant negation ~x can, in turn, also be defined via the relation algebra
term (—z)~. While there is a long history of Sahlqvist formulas and correspon-
dence theory for Boolean algebras with operators [13,25], it is interesting to note
that the PEARL algorithm and its implementation can be adapted to relation
algebras and covers the more general class of inductive formulas.

8 Concluding Remarks

In this paper we have re-interpreted the algorithm PEARL from [7] as an algo-
rithm which manipulates quasi-inequalities interpreted over perfect relevant alge-
bras. Implementing the algorithm in a way that produces reasonably optimal
(in size) versions of first-order correspondents required detailed specifications
and strategic choices in the pre-processing, main, and post-processing phases
(Sects. 5.1 and 5.2) and in the specialized post-processing and translation pro-
cedure, refining the normal standard translation, developed in Sect.5.2. It is
easy to see that the complexity of the problem solved by PEARL is in NP-time
because, once the correct ordering or elimination of the variables is selected,
PEARL completes its work in polynomial time. However, theoretically, it may

5 While this equational basis for relation algebras appears to be quite long, it can
be shown that axioms -7 are redundant. Hence, it is comparable in length to the
original axiomatization of relation algebras.
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take trying an exponential number of such orderings until success. Whether this
is possible is not yet known, so the optimal complexity of the problem is still
under investigation.
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Abstract. We show a necessary and a sufficient condition for a qua-
sivariety to be a variety. Using this, we show that the quasivariety of
representable relation algebras over the signature (-,N, 1) is not avariety.
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1 Introduction

Relations can be equipped with several natural operations: union U, intersection
N, complementation ~, composition -, converse ¢, the empty relation 0, the full
relation T and the identity relation 1. A set of relations closed under these
operations forms a proper relation algebra. We call representable relation algebras
(RRA) those algebras which are isomorphic to a proper relation algebra.

Representable relation algebras received a lot of attention since the seminal
work of Tarski [11]. However, many of these results are actually negative results.
For instance, RRA is not finitely axiomatizable [10] and its equational theory is
undecidable [11, p88].

This motivated the investigation of the subreducts of RRA, that is, restric-
tions of RRA to smaller signatures, hoping that these negative results would turn
out to be positive. The subreduct that we focus on in this work is RRA(-,N, 1),
the restriction of RRA to the operations of composition, intersection and the
identity relation, also known as the class of representable semi-lattice ordered
monoids. It was deeply studied in [2] and [8]. For example, its equational theory
is decidable [1] but not finitely axiomatizable [5].

Despite all the negative results about RRA, it enjoys an important positive
result: it is a variety [12]. That is to say, membership in RRA can be character-
ized by (a possibly infinite) set of equations. It was then natural to ask whether
this result holds also for its subreducts.

The positive subreducts' of RRA are known to be quasi-varieties, i. e., mem-
bership can be characterized by (a possibly infinite) set of Horn clauses [2].
However, some of them are not varieties [1, Thm.6].

! Those subreducts that do not use negation.
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Despite an attempt in [8], the status of RRA(-,N, 1) is not known?. In this
paper, we show that RRA(-,N, 1) is also not a variety.

We use a technique similar to [1]. Actually, we abstract their argument in a
more general setting, then we apply it to our particular case. More precisely, we
proceed in two steps.

First, we give a necessary and sufficient condition for a quasivariety to be
a variety. In words, this condition says that a quasivariety C is a variety if and
only if, for every Horn clause (H = t = u)® which is valid in C, its conclusion
(t = u) can be “deduced” from its hypothesis H.

This gives us a strategy to show that RRA(-,N,1) is not a variety. It is
“enough” to find a Horn clause which is valid in RRA(-,N, 1) but whose conclu-
sion cannot be deduced from its hypothesis. Of course, the difficulty here is to
guess this Horn clause and to show that indeed its conclusion is not provable
from its hypothesis. For this purpose, we rely on graph theoretical tools and intu-
itions coming from a well established graph characterization of the equational
theory of RRA(-,N, 1) [1].

Outline. In Sect. 2, we define varieties, quasi-varieties and their equational and
Horn theories. Then we introduce the quasivariety RRA(-,N,1) and the graph
characterization of its equational and Horn theories. We show in Sect. 3 the
necessary and sufficient condition for a quasivariety to be a variety. Building on
this, we show in Sect. 4 that RRA(-,N, 1) is not a variety.

2 Preliminaries

2.1 Algebras, Varieties and Quasi-varieties

Algebras. A signature is a pair § = (O, ar) where O is a set of operations, and
ar : O — w is a function assigning to each operation an integer called its arity.
An algebra over S consists of a set D called its domain, and for each operation
o of § with arity n, a function f, : D™ — D.

Equations and Horn Clauses. We fix in the rest of the paper a set X of
variables. Terms over a signature S = (O, ar) are generated by the following
syntax:

t = x| o(tr,...,tn) x € X, o€ O and n=ar(o).

We denote the set of terms by 7x (S), but if the signature and the set of variables
are clear from the context, we denote it simply 7. An equation is a pair of terms

2 The proof that RRA(-,N,1) is not a variety in [8] relies on the claim that the equa-
tional theory of RRA(-,N,1) is finitely axiomatizable [2], which turns out to be
wrong, see [9] and [5].

3 Here, H is a conjunction of equations called the hypothesis, the equation (t=u)is
the conclusion.
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that we usually write (t = u). A Horn clause consists of a finite set of equations
‘H called its hypothesis and an equation called its conclusion, we usually write it
like this (H = ¢ = u). An equation can be seen as a Horn clause with an empty
set of hypothesis.

Truth. Let A be an algebra over a signature S, and let D be the domain of A.
An interpretation is a function o : X — D mapping variables into elements of
D. We can extend o to all terms o : 7 — D, by interpreting the operations of
S as the corresponding functions of A.

Let o be an interpretation as above. An equation (¢t = u) is true in A under
o, noted

Ao l=(t=u)
if o(t) = o(u). A set of equations H are true in A under o, noted
Ao EH
if this is the case for every equation in H. A Horn clause
p:=H=t=u)
is true in A under o, noted

Ao kEp

if either A,0 = H or A, o |= (t = u). We say that ¢ is true in A, noted A = ¢,
if  is true in A under all possible interpretations.

(Quasi-) Varieties. We have introduced individual algebras, now we focus on
classes of algebras. Let C be a class of algebras over a signature S. We say that
an equation or a Horn clause ¢ is valid in C, and write C = ¢ if ¢ is true in
every algebra of C. The equational theory (resp. Horn theory) of C denoted E¢(C)
(resp. Horn(C)) is the set of equations (resp. Horn clauses) which are valid in C.

Let C be a class of algebras over § and let E be a set of equations or Horn
clauses. We say that E aziomatizes C if for every algebra A over S:

AeC iff AEE

We say that a class of algebras is a wvariety (resp. quasivariety) if it can be
axiomatized by a set of equations (resp. Horn clauses).

Remark 1. Note that if C is a variety (resp. quasivariety), then C is axiomatized
by its equational (resp. Horn) theory.
2.2 Representable Relation Algebras

In this paper, we focus on the signature whose set of operations is {-,N, 1}, the
operations - and N being of arity 2 and the operation 1 being of arity 0. We will
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write this signature (-,N,1). To lighten notations of terms over this signature,
we often write tu for ¢-u, and assign priorities to operations so that abNc parses
as (a-b)Ne.

A proper relation algebra is an algebra over (-,N,1) whose universe U is a
set of relations, that is U C P(B x B), where B is a base set, the operations
- and N are respectively the composition and intersection of relations, and 1 is
the identity relation over B. A representable relation algebra is an algebra over
(-,N, 1) which is isomorphic to a proper relation algebra; we denote their set by
RRA(-,N,1).

The class of algebras RRA(-,N, 1) forms a quasivariety [2, p. 2]. The goal of
this paper is to show that we cannot say more: RRA(-,N,1) is not a variety.

In RRA(-,n,1), it will be convenient to work with inequations instead of
equations. An inequation is a pair of terms written as (¢ > ), which is a shortcut
for the equation (t N u = w). Similarly, we will work with Horn clauses which
use inequations in their hypothesis and conclusions instead of equations. By
definition, every inequation is an equation, and conversely every equation (¢t = u)
is equivalent to the two equations (¢ > w) and (u > t). Similarly, every Horn
clause is equivalent to a set of Horn clauses using inequations. In the sequel,
when dealing with relation algebras, we will mostly work with inequations and
Horn clauses using inequations. We call the inequational (resp. Horn) theory of
relations the set of inequations (resp. Horn clauses using inequations) which are
valid in RRA(-,N, 1).

2.3 Characterization of the Inequational and Horn Theory
of RRA(-,N, 1)

Graphs. A 2-pointed labeled graph is a tuple (V, E,t,0) where V is a set of
vertices, E C V x A XV is a set of edges, A is a set of labels and ¢ and o are two
distinguished vertices called the input and output. We simply call them graphs
in the sequel; we depict them as expected, with unlabeled ingoing and outgoing
arrows to denote the input and the output, respectively. We denote by G the set
of all graphs.

We define the operations - and N on graphs as follows:

GmH:—’<§>‘>—> G- H = >o—G—o0—[—>0>

We associate to every term ¢ € 7 a graph G(t) called the graph of t, by letting:
G(1) = o g(.%‘):—>o—x>o—> (reX)

and by interpreting the operations - and N on graphs as above.

Example 1. The graphs of the terms xy N xz and zy N 1 are respectively the
following:
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< &

Graph Terms. A graph term is a graph which is the image of some term, and
we denote by G; the set of graph terms. Not every graph is a graph term. For
instance, graph terms do not contain the graph K, the complete graph with
four vertices (see Fig.1(a)), as a minor* [3]. Graph terms also do not contain
back patterns [5], which we recall below.

Definition 1 (Back pattern). A back pattern in a graph is a pair of distinct
nodes m,n together with three directed paths: 7w from the input to m, k from n
to m, and p from n to the output, such that w and K intersect exactly on m and
Kk and p intersect exactly on n.

Such a back pattern can be depicted as follows: © — m«—n L5o.

Proposition 1 ([3, Cor. 27|, [5, Prop. 12]). Graph terms do not contain back
patterns, nor K4 as a minor.

Ezample 2. The graph of Fig. 1(b) is not a graph term, no matter how we label
or orient the edges, because it contains K4 as a minor. Indeed, if we remove the
green edge and contract one of the two blue edges, we obtain K4. The graph
of Fig. 1(c) is not a graph term, no matter how we label its edges, because it
contains a back pattern, colored in red.

(a) (b)

@@@

Fig. 1. (a) The graph K4. (b) A graph containing K4 as a minor. (¢) A graph with a
back pattern.

Homomorphisms. Given two graphs G = (V, E,t,0) and G' = (V' E',//,0'),
a homomorphism h : G — G’ is a mapping from V' — V' that preserves labeled
edges, i.e. if (z,a,y) € E then (h(x),a,h(y)) € E’, and preserves input and
output, i.e. h(r) =" and h(o) = o’. We say that the homomorphism h identifies
the vertices z and y if h(x) = h(y). We write G > G’ if there exists a graph
homomorphism from G to G'.

4 A graph G is a minor of a graph H if G can be obtained from H by deleting some
edges and vertices and contracting some edges.
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Characterizing the Inequational Theory of Relations. The inequational
theory of RRA(-,N,1) can be characterized using graphs and homomorphisms
as follows.

Theorem 1 ([1, Thm. 1], [6, p. 208]). For all terms t,u,

RRACN1) E(t>w)  iff  G(t)>G(u)

Ezample 3. The validity of the inequation xy Nxz > z(y N z) is witnessed by
the following homomorphism:

lliweggeeeeaaia.,,

Characterizing the Horn Theory of Relations. A graph context is a graph
with a distinguished edge labeled by a special letter e, called its hole. If G is a
graph and C' a graph context, then C[G] is the graph obtained by “plugging G
in the hole” of C, that is, C[G] is the graph obtained as the disjoint union of
G and C, where we identify the input (resp. output) of G with the input (resp.
output) of the edge labeled by e in C, and we remove the edge of C labeled e.
Here is an example:

T T T

G: —>O<y30—> C: —><<°—>°—>‘ ClG] >« ijﬁ ’

Definition 2 (The relation >y). Let H be a set of inequations. We define
the relation >,, on graphs as follows. We set G >,, H if there exists a graph
context C and an inequation (t > u) € H such that:

G=ClG({t)] and H=C[G(u)]
We define ©>,, as the transitive closure of > U >, .
In the definition above, the graphs GG, H and C are not necessarily graph terms.

Theorem 2 ([4, Thm. 12]). For all terms t,u and set of inequations H, we

have:
RRA(\N, )= (H=1t>wu) iff G(t) >, G(u)
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Hence, in order to show that a Horn clause (H = ¢ > w) is valid, we need to find
a sequence of graphs Gy, ..., G, such that Gy = G(t), G, = G(u) and for every
1 € [0,n — 1] the graphs G; and G;41 are either related by homomorphism or by
the relation >_,. We say that this sequence witnesses the validity of this Horn
sentence.

Example 4. The validity of the following Horn clause
xy>x = xyyNaz > xz(yNz)

is witnessed by the following sequence:

The picture should be read from left to right. First, we identified in the graph
of zyy Nzz a context (in red) and the graph of zy (in green). As allowed by the
hypothesis zy > x, we replaced the graph of zy by that of x, this is a >,, step.
Finally we apply a homomorphism to get the graph of z(y N z).

3 When Is a Quasivariety a Variety?

In the rest of this section we fix a signature S and a set of variables X. Algebras
will be over § and terms over S and X. We omit the mention of the signature
as it is clear from the context. In the following we give a necessary and sufficient
condition for a quasivariety to be a variety.

A contert is a term with a unique occurrence of the special variable e called
its hole. If C' is a context and ¢ a term, then C[t] denotes the substitution of the
variable e by t in C.

Definition 3. Let C be a class of algebras and H be a set of equations. We
define the relation = on terms as follows. We set (t = u) if there exists a term
H

context C and an eguation (t' = u') € H such that:
t=C[t'] and u=C[
We define the relation = as the transitive closure of the relation (E£q(C) U =)
, the union of the equcatzonal theory of C and the relation =. "
If (t = u) we say that the equation (t = u) is a consequence of the hypothesis
H in the algebras C.
In words, we have (¢ = u) if there exists a sequence of terms tg, . . ., t, such that

to =t, t, = u and for every ¢ € [0,n — 1] the equation t; = ;41 is either valid
in C or is obtained as the application of a context to an equation of H. We call
such sequence a witness of (t = u).

H,C
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Remark 2. An alternative definition for = would have been to use a proof sys-
H,C

tem which uses the equations of H and & q(C) as axioms.

A congruence on terms is an equivalence relation on terms that is stable
under contexts.

Lemma 1. The relation = is a congruence on terms.
H,C

Proof. The relation = is clearly an equivalence relation. Let us show that it
is stable under cont&‘zs. We proceed by induction on the length of a witness
sequence for (¢ = w). If (t,u) € Eq(C) then we have also (C[t],Clu]) € Eq(C)
because £¢(C) is a congruence. If (¢ = u) then (C[t] = Clu]), because the
composition of two contexts is also a context. The inductive step is immediate.

The following theorem says that a quasivariety C is a variety if and only if
the conclusion of every valid Horn clause is a consequence of its hypothesis in C.

Theorem 3. A quasivariety C is a variety if and only if the following holds
(H=1t=u) € Horn(C) = t=u )

H,C
Remark 3. Note that the reverse implication of () is true, regardless of whether
C is a variety or not.

Proof. (=) Suppose that C is a variety and let (H = ¢ = u) be a Horn clause
valid in C. Let 7,, . be the algebra of terms quotiented by the congruence =.
H,C

The algebra 7, . satisfies all the equations in £¢(C) because = contains £q(C).

H,C
Since C is a variety, we have that 7,, . € C.

Consider the interpretation o which assigns to every letter its equivalence

class w.r.t. the relation = . We have that
H,C

Trnc, o EH

because the relation = contains H. Since (H = t = u) € Horn(C), we have
H,C
that
Tnc, 0 E(t=1u)
which is the same thing as (¢t = w).
H,C

(<) Suppose that (1) holds and let us show that C is a variety. Let A be an
algebra satisfying all the equations in £¢(C), we show that A is an algebra in C.
As C is a quasivariety, it is enough to show that A satisfies all Horn clauses valid
in C. Let (H =t = u) be such Horn clause and let o be an interpretation such
that A, o = H. By (1), we have that (¢t = ). We can show by a simple induction

H,C
on the length of a sequence justifying (¢ = w) that we have A, o |= (t = w). This
H,C

concludes the proof.
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4 The Quasivariety RRA(-,N,1) Is Not a Variety

Let us first specify Theorem 3 for the quasivariety RRA(-,N,1). For that, we
define below the relation »,, on graph terms. Recall that graph terms are those
graphs coming from terms, and that we denote their set by G;.

Definition 4 (The relation » ). Let H be a set of inequations. We define
the relation =,, on graph terms as follows. For G,H € G;, we set G ~,, H if
there exists a context C € Gy and an inequation (t > u) € H such that:

G=C[G(t)] and H=C[G(u)]

We define the relation »,,C Gy x G as the transitive closure of the relation
>U>,,.

In words, G »,, H if there exists a sequence of graph terms Gy, ..., G, such
that Go = G, G,, = H and for every i € [0,n — 1] the graphs G; and G,
are either related by homomorphism or by the relation ~,,. We say that this
sequence is a witness for G »,, H. The relation »,, should not be confused with
the relation >, . Indeed, for the latter, the graphs of a witness sequence may not
be graph terms.

Using Theorem 1, we can adapt Theorem 3 to get the following version for
relation algebras.

Theorem 4. If RRA(-,N,1) is a variety then the following holds
RRA(,N, 1) E(H=1t>u) = Gg@t)»,, G(u)

Proof. Suppose that RRA(-,N, 1) is a variety and let (H = t > u) be a Horn
clause valid in RRA(-,N,1). To simplify notations suppose that H = {v > w}.
The general case can be treated similarly. Note that the Horn clause above is a
shortcut for

wNw=w) = (tNu=u)

By Theorem 3, there is a sequence of terms to, . . ., t,, such that tg = (tNu),t, = u
and for every i € [0,n — 1] the equation (¢; = ¢;41) is either valid in RRA(-,N,1)
or is obtained as an application of the hypothesis (v N w = w) under some
context.

Let us show that G(t) »,, G(u). We have that G(t) > G(tNu), so we only need
to show that G(t Nu) »,, G(u). For that, we exploit the sequence above. Note
that if (¢; = t;41) is valid in RRA(-,N,1), then G(¢;) > G(t;4+1) by Theorem 1.
If (t; = t;11) is obtained as an application of the hypothesis (v N w = w) under
some context C, we can distinguish two cases.

— Either t; = Clw] and t;11 = Clv N w]. In this case we have G(t;) > G(ti+1)
because G(w) > G(v Nw).
- Ort; = ClvNw| and ;41 = Clw]. In this case we show that G(t;)»,,G(ti+1)-

Indeed, Let C' be the graph context G(C[e Nw]). We have that

G(t:) = C'[G(v)]>, C'[G(w)] = G(Clw Nw]) > G(Clw]) = G(tit1)
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This ends the proof.

This gives us a strategy to show that RRA(-,N, 1) is not a variety: it is enough
to find a Horn clause (H = ¢ > wu) which is valid for relations, but for which
G(t) ¥,, G(u). We explicit such counter-example below.

Definition 5 (The counter-example). Let X = {z,y,z,a,b,¢c} be a set of
variables. We define the terms n and p and the set of equations K over X as
follows:

n = zy(zNa(bya N 1)be(dzcN1)d) N1 pi=xyzNl K :={ab> zz, cd > yz}

We show that (K = n > p) is indeed a counter-example. This is Proposition 2
below.

Proposition 2. We have that:

RRA(-,N,1) = (K=mn2>p) but G (n) ¥ G(p).
Corollary 1. The quasivariety RRA(-,N,1) is not a variety.

Proof (of the first part of Proposition 2). To prove that (K = n > p) is a valid
Horn clause, we can either proceed by a direct but boring proof, or use Theorem 2.
We choose the second option, and show that G(n) >, G(p). In Fig. 2, we explicit
a sequence witnessing that G(n) >, G(p). It should be read from top left, then

Fig. 2. A sequence witnessing that G (1) >, G (p).
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down, then top right: we start by applying a homomorphism to the graph G(n);
the nodes which are identified by the homomorphism are linked by the dotted
lines. Then we apply the relation >, : the graph of ab is colored in green, we
replace it by zz as allowed by the set . We apply again >, this time by
replacing the graph of cd by the graph of yz. We finally apply a homomorphism
to get G(p).

Note that the intermediary graphs of the witness sequence of Fig. 2 are not graph
terms. For example, the second graph from the right contains a back pattern
(Definition 1), colored in red.

Let us now explicit our strategy to prove that G(n) ¥. G(p). First, let
us remark that G(n) /G (p). Indeed, no homomorphism can preserve the edges
labeled a, b, c and d. We will show that under some constraints on GG and H, we
have the following result:

If Gwo, H and G(n)>G then Gn)>H (Lem. 4)

By taking G and H to be respectively G(n) and G(p) in this result, and using
the remark above, we can show by contradiction that G(n) ¥, G(p).

As said before, Lemma 4 is true under some constraints on the graphs G and
H. More precisely, it is true when they do not contain some specific graphs called
persistent patterns as sub-graphs. In the following we define these persistent
patterns and show Lemma 4.

Definition 6 (Persistent patterns). Persistent patterns are the graphs of

Fig. 3.

[e%

O QC > ; a8 S

Q—L—)o——b—)t ——— e O—L*o———)o o——’—)'—i-bc

Fig. 3. Persistent patterns. The vertices of these graphs may not be distinct. All labels
belong to X, the variables used in the counter example (Definition 5) with the following
constraints: a # 3, v # a, d # b, 0 # c and 0 # d.

Persistent patterns are called so because they satisfy the following property,
whose proof is a simple case distinction.
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Lemma 2. If G » . H and G contains a persistent pattern, then H also con-
tains a persistent pattern.

Fig. 4. Labeling the vertices of G (7).

For convenience, we label the nodes of G(n) as in Fig.4. We say that a
vertex of G(n) is tagged by an integer i if its label contains ¢. For instance, the
vertex labeled by 2’ is tagged by the integer 2. To prove Lemma 4, we need the
following result, which says that a homomorphism from G(n) to any graph term
not containing a persistent pattern cannot identify vertices tagged by distinct
integers.

Lemma 3. Let G be a graph term not containing a persistent pattern, and let
h:G(n) — G be a homomorphism from G(n) to G. The homomorphism h cannot
identify two vertices tagged by distinct integers.

Note however that A may identify two vertices tagged by the same integer, for
instance the vertices labeled by 2 and 2.

Proof (of Lemma 3). We show that if h identifies two nodes tagged by distinct
integers, then G contains necessarily a persistent pattern, a back pattern or K, as
a minor. Figure 5 shows the persistent patterns that appear if we identify nodes
with distinct tags. The gray cells are symmetric and the white cells correspond to
vertices tagged by the same integer. To complete the proof, we need to prove that
the vertex tagged by 1 cannot be identified by a vertex tagged by 4, these cases
correspond to the cells (x), (1) and (1). We show that if we do such identification,
we create a back pattern or K4 as a minor.

(%) If we identify the vertices labeled 1 and 4 we create the following back
pattern, where the vertex labeled (1,4) is the image of 1 and 4 by h. It is a back
pattern because its vertices are pairwise distinct. Indeed, if its vertices were not
pairwise distinct, then we would create one of the patterns treated in Fig. 5.

144—3 L)

N
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(1) If we identify the vertices labeled 1 and 4’ we create the same back pattern.

(1) If we identify the vertices labeled 1 and 4" we distinguish two cases. Either
the vertices 0 and 0’ are not identified by h, and in this case we create this back
pattern:

L4 <2 g5

Otherwise, 0 and 0’ are identified by h. We can suppose that 1 and 4 are not
identified by h (otherwise, this case was treated by (x)). In this case, we obtain
the following graph as a subgraph, which contains the graph K, as a minor:

Lemma 4. Let G, H be two graphs and suppose that H does not contain a per-
sistent pattern. We have that:

If Gw. . H and G(n)>G then Gn)>H

Proof. We proceed by induction on length of the sequence witnessing that G' »,
H. Note that since H does not contain a persistent pattern, all the graphs of the
witness sequence do not contain a persistent pattern as well thanks to Lemma 2.

The inductive step is easy, the interesting part are the base cases. The first
one is when G > H, and we have clearly that G(n) > G implies that G(n) > H
because we can compose these two homomorphisms. Now suppose that G >, H.
There are two cases to consider: we have either used the inequation ab > zx or
cd > yz to justify G >, H. Suppose that we are in the first case, i. e., there
exists a context C' € G, such that:

G = C[G(ab)] and H = C[G(zx)]

Let h be a homomorphism from G(n) to G. Our goal is to show that the image
of h lies in C. If we do so, we can easily prove that G(n) > H because h can also
be used to map G(n) to H.

Let m be the inner vertex of the graph G(ab), that is the vertex distinct from
the input and output. We show that no vertex of G(n) can be mapped by h to
m. Suppose for contradiction that there exits a vertex of G(n) whose image is
m. This vertex is necessarily the vertex 3 (see Fig.4), and we have necessarily
that h(2) = h(2") and h(4) = h(4"). But this creates the following back-pattern
in GG, where as usual a node labeled by two integers is the common image of the
corresponding vertices of G(n):
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Fig. 5. Identifying two vertices tagged by distinct integers creates persistent patterns.

This is indeed a back pattern because its vertices are pairwise distinct thanks
to Lemma 3.

We treat the case where the hypothesis c¢d > yz was used to derive G >, H
in a similar way. In this case, the following back pattern appears:

4”4—34—2

S,

This concludes the proof of this lemma.
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Now we can complete the proof of Proposition 2.

Proof (of the second part of Proposition 2). Let us show that G(n) ¥, G(p).
Suppose for contradiction that G(n) »,. G(p). Note that G(n) does not contain
a persistent pattern and that G(n) is homomorphic to itself, hence by Lemma 4,
we have that G(n) > G(p), which is clearly not possible because the edges of G(n)
labeled by a cannot be preserved by such a homomorphism.
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Abstract. Global transformations form a categorical framework adapt-
ing graph transformations to describe fully synchronous rule systems on
a given data structure. In this work we focus on data structures that
can be captured as presheaves and study the computational aspects of
such synchronous rule systems. To obtain an online algorithm, a com-
plete study of the sub-steps within each synchronous step is done at the
semantic level. This leads to the definition of accretive rule systems and
a local criterion to characterize these systems. Finally an online compu-
tation algorithm for theses systems is given.

Keywords: Global transformation - Synchronous rule application -
Rewriting system - Online algorithm - Category theory

1 Introduction

Classically, a graph rewriting system consists of a set of rewriting rules I = r
expressing that [ should be replaced by r somewhere in an input graph. Usually
rules are applied one after the other in a non-deterministic way [3,4,6]. Allowing
multiple rules to be applied simultaneously has been the subject of multiple
studies, leading to the concepts of parallel rule applications, concurrent rule
applications [7], and amalgamation of rules [2]. For instance, amalgamation of
rules is considered when two rules I = r and I’ = 1’ are applicable but [
and [’ overlap. Basically, the behavior on the overlap is given by a third rule
specifying how r and r’ should consequently overlap. But some systems do not
only require the amalgamation of a few, finite, number of rule applications, but
the amalgamation of an unbounded number, the whole input being transformed.
A simple example is triangular mesh refinement where the triangles of a mesh
are all subdivided into many smaller triangles simultaneously, with a coherent
behavior on the overlap between triangles [14]. In this extreme case, the notion of
replacement is not appropriate, no part of the initial mesh is really kept identical.

Rethinking rewriting for those particular systems where the transformation is
globally coherent leads to a generic and economical mathematical structure cap-
tured easily with categorical concepts, the so-called global transformations [14].
This point of view has been applied mathematically to examples like mesh refine-
ments on abstract cell complexes [14], but also deterministic Lindenmayer sys-
tems acting on formal words [8], and cellular automata acting on labeled Caley
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graphs [10]. In the present work, we tackle global transformations in an algo-
rithmic perspective and show how they can be computed in an online fashion
when transforming graphs, but also any generalization of graphs suitably cap-
tured by categories of presheaves (labeled graphs, higher-dimensional graphs,
etc.). This online strategy saves memory during the computation, more memory
being also saved through a condition allowing the modifications to happen in
place: accretiveness.

The article is organized as follows. After adapting in Sect. 2 the definition of
global transformations to presheaves, Sect. 3 unfolds all implications of the online
and accretive perspective at the semantic level, and gathers all necessary formal
results. This leads to the presentation of the algorithm in Sect. 4, followed by a
discussion in Sect. 5. In the present version, facts are only stated. An extended
version with all the proofs can be found at [9].

2 Background on Global Transformations

In the section, we adapt the definitions of global transformations given in [8,14]
to fit with the context of presheaves and monomorphisms between them. The
reader is assumed to be familiar with the definitions of categories, functors,
monomorphisms, comma categories, diagrams, cocones, colimits and categories
of presheaves. Refer to [13] for details. These constructions are also pedagogically
introduced in the context of global transformation in [8].

In the following, we consider an arbitrary category C and write C for the
category Set®” of all presheaves on C, C m for the subcategory restricting
morphisms to monomorphisms, and U : Cyy — C for the obvious forgetful
functor. Morphisms of C m and monomorphisms of C are written p— p. We
write y : C — C for the Yoneda embedding, and call representable presheaves
the image yc of any ¢ € C. The category Cis cocomplete and for any diagram
D : T — C, the colimit C of D is directly written Colim(D); C also abusively
designates the apex and C; : D(i) — C' the cocone components for any i € I.

The examples are spelled out with C set to the category with two objects
v and e, and two morphisms s,t : v — e. A presheaf p € C is then a directed
multigraph with self-loops: p(v) and p(e) are respectively the sets of vertices and
edges composing the graph, and p(s) (resp. p(t)) is a function mapping each edge
to its source (resp. target). The representable presheaves are the graph yv with
a single vertex and the graph ye with two vertices and a single edge. We will
make use of the following particular graphs: dy, the discrete graph with k vertices
and no edge, pi the path of length k, and ¢ the cycle of length k, & > 0.

Given two categories A and B, a functor F' : A — B, and an object b in B, the
comma category F'/b sees its objects described as pairs (a € A, f : F(a) — b)
and its morphisms from (a, f) to (@, f’) as pairs {e : a — d/, f’) such that
f = f' o F(e). The composition of {¢/, "'} o (e, f') is therefore (¢’ o e, f"').

Specification of Global Transformations. In this paper, we restrict ourselves to
global transformations acting on C 4. At a basic level, they are rewriting systems
transforming presheaves into presheaves. As such, their specification is based on
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Y2
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71
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Fig. 1. Sierpinski rule system: one rule to divide the relevant triangles, the two others
and their inclusions to specify the connections in the output based on the connections
in the input. (Color figure online)

a set of rules. Each rule « is a pair written [ = r with [,r € CM. Given an
input presheaf p, it expresses that any occurrence of the left hand side (Lh.s.)
I in p produces the corresponding right hand side (r.h.s.) r in the associated
output. The main feature of global transformations is to endow this set of rules
with a structure of category where morphisms describe inclusions of rules. A rule
inclusion i : y1 — o from a sub-rule v1 = [y = r1, to a super-rule vo = lo = ro
expresses how an occurrence of [; in [5 is locally transformed into an occurrence
of r1 in 9. So a rule inclusion ¢ is a pair (i; : Iy — 3,4, : 71 — 72). Formally,
such a presentation is captured by a category and two functors.

Definition 1. A rule system T on CM is a tuple (T, Ly, Rr) where T'r is a
category whose objects are called rules and morphisms are called rule inclusions,
Ly :Tp — CM is a full embedding functor called the lh.s. functor, and Ry :
Ty — Cpy is a functor called the r.h.s. functor. The subscript T is omitted when
this does not lead to any confusion.

Figure 1 illustrates a global transformation specification for generating a Sier-
pinski gasket. The rule system is composed of 3 rules transforming locally vertices
(71), edges (12) and acyclic triangles (y3). These rules are related by 5 main rule
inclusions: i1 : 1 — 72 (plain red), i : 11 — 72 (dashed red), iz : 2 — 73
(dotted blue), i4 : 72 — 3 (plain blue), i5 : v2 — 3 (dashed blue). For instance,
consider the inclusion i3 which expresses that the left edge of triangle L(~3) is
transformed into the left double-edge of R(~3). Formally, this is specified via the
inclusion i3 whose both components L(iz) and R(i3) are depicted in dotted blue
arrows. The reader is invited to pay attention that even if Fig. 1 does not show
them, the category I' also contains compositions of the 5 main rule inclusions
(e.g. i3 0 i1), identities and symmetries, that, as functors, L and R do respect.

Computing with Global Transformations. Given a rule system T, its application
on an arbitrary presheaf p is a three-step process. An illustration is given Fig. 2
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Fig. 2. Step of computation of the Sierpinski gasket using the rules of Fig. 1. (Color
figure online)

based on the rule system of Fig. 1. The input is depicted at the top left and the
output at the top right.

1. Pattern matching which consists in decomposing the input presheaf by mean
of the rule L.h.s. It results a collection of 1.h.s. instances, also called matches,
structured by rule inclusions. This step is achieved by considering the comma
category Lz /p: objects in that category are indeed all the morphisms from
some l.h.s. to p; morphisms are the instantiations of the rule inclusions
between those matches. See arrow (1) in Fig.2 for an illustration. Formally,
the figure at bottom left is a representation of Ly o Proj[Ly/p] where Proj
designates the first projection of the comma category mapping each instance
(v € T, f : Lr(y) — p) to the used rule v. Notice the role of the rule
inclusions (in red and blue) which are reminiscent of the input structure.

2. Local application of rules which consists in locally transforming each found
Lh.s. into its corresponding r.h.s., the structure being conserved thanks to
rule inclusions. This step is achieved by applying the r.h.s. functor Ry on
each rule instance: Ry o Proj[Lz/p], as illustrated in Fig. 2.

3. Output construction which consists in assembling the output from the struc-
tured collection of r.h.s. The inclusions take here their full meaning as they
are used to align the r.h.s. and drive the merge. See arrow (3) in Fig.2 for
an illustration. The resulting presheaf is formally the apex of a cocone from
the diagram defined in the previous step which we used to obtain by col-
imit [8,14]. Since colimits are only guaranteed in (i we consider the following
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Fig. 3. Some rule-systems. Note that all of them remove self-loops. (Color figure online)

functor T : CM - C:
T(—) = Colim(Dz(—)) with Dr(=) =UoRypoProjlLy/—] (1)
using the forgetful functor U, T'(p) being the result of the application.

Remark 1. Notice that T is a complete functor also acting on morphisms. Con-
sider a monomorphism h : p < p’. By definition of colimits, T'(p) is the univer-
sal cocone with components T(p) .y : Dr(p)({7, f)) — T(p) for each instance
(v, f) € Ly/p. We have a similar construction for T(p’) which gives rise to a
cocone C as the restriction of T(p') on the diagram of T(p). Formally, C is
defined with apex C' = T(p') and components Clypy = T(p/)@,hof)- The image

T(h) is the mediating morphism from colimit T'(p) to C.

We focus on those rule systems where the results stay inside C o, i.e., such
that all previous mediating morphisms are monomorphisms. This leads to the
following definition of global transformation for C .

Definition 2. A global transformation 7' is a rule system such that T factors
through the forgetful functor U : Cyp — C. In this case, we denote T : Cp —
C the functor such that UoT =T.

The Sierpenski rule system of Fig. 1 is a global transformation. Its behavior
is to split all edges and add some edges for acylic triangles. Thus, adding vertices
and edges to an input only adds vertices and edges to the output. The induced
functor maps monomorphisms to monomorphisms, so factors through U.

Figure 3 introduces four additional examples of rule systems that illustrate
the various properties that we consider exhaustively. Let us see which of them
are global transformations as a preparation for later considerations.

Ezample 1. The removal of isolated vertices (Fig. 3c) is a global transformation
since removal is definitely a functorial behavior from Caq to C .
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Ezxample 2. Simplification of multi-edges (Fig.3d) is also a global transforma-
tion. For any two vertices a and b with at least an edge from a to b, it merges
all edges from a to b into a single edge.

Ezample 3. On the contrary, the dualization of vertices and edges (Fig.3a) is
not a global transformation. Indeed, consider a monomorphism i : ps < c¢3 from
the path of length 2 py to the cycle of length 3 c3. In this case T(p2) = ps,
T(c3) = c3, and there is no monomorphism sending the four vertices of ps to the
three vertices of cs.

Ezample 4. Contraction of components (Fig. 3b) is not a global transformation.
Consider the monomorphism i : do < p; from the graph do with only vertices
to the path p; of length 1. In this case, T'(d2) = dy and T(p;) = d; and there is
no monomorphism sending the two vertices of dy to the single vertex of d;.

3 Accretion and Incrementality

We are interested in having an online algorithm computing Eq. (1) where the
output T'(p), for any p, is built while the comma category Lt /p is discovered by
pattern matching. Informally, starting from a seed corresponding to the r.h.s. of
some initial instance, Lp/p is visited from neighbor to neighbor, each instance
providing a new piece of material to accumulate to the current intermediate
result. We first give the formal features to be able to speak about intermediate
results, leading to the notion of accretive rule system. Then we give a criterion,
called incrementality, for a rule system to be an accretive global transformation.

In this algorithmic perspective, we restrict our discussion to finite presheaves
and finite rule systems so that Ly /p is finite as well. Moreover we assume that
Lz /p is connected; disconnected components can be processed independently.
Finally, we fix a given finite rule system 7' = (I',L,R) and a finite presheaf p.
All omitted proofs are available in [9].

3.1 Accretive Rule Systems and Global Transformations

Informally an intermediate result consists in the application of T on an incom-
plete knowledge of L /p, i.e., on a partial decomposition of the input. Our study of
partial decompositions starts with some remarks. To begin, the comma category
L/p is a preordered set.

Proposition 1. For any category 1, any full embedding F': 1 — Cm, and any
presheaf p € Cpq, the comma category F/p is thin, i.e., there is at most one
morphism between any two objects.

Therefore thinking in terms of maximal, non-maximal and minimal instances,
sub- and super-instances actually makes sense for any comma category L/p.
Moreover, L/p being a preorder makes the colimit T(p) of the diagram
Dr(p) : L/p — C special. Informally, only maximal instances matter, sub-
instances being used to specify how to amalgamate the r.h.s. of maximal
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instances. Formally, whenever we have a morphism (e, f’) : (v, f' o L(e)) —
(', f) € L/p, the r.h.s. of v/ contains the r.h.s. of v through e : v — /. With
f = f'oL(e), this means that (v, f) does not contribute more data to the output.
The role of the non-maximal (v, f) is to specify how the r.h.s. of some 4" should
be aligned with the r.h.s. of 7/ in the resulting presheaf when there is a second
morphism (v, f) — (7", f”) to another maximal instance (y", f).

As an example, consider the diagram depicted on bottom right of Fig.2 and
its colimit on the top right. All the elements of the colimit are given in the r.h.s.
of the maximal instances (the 3 triangles). The minimal instances (the 6 one-
vertex graphs) are used to specify how the 9 vertices of the 3 refined triangles
should be merged to get the colimit.

Computing T Online. Given a presheaf p € C, we call a partial decomposition of
p with respect to L a subset M of maximal instances of L/p such that the restric-
tion M of L/p to M and morphisms into M remains connected. We write Ij/vp
i})\r/ the category of partial decompositions of p with set inclusions as morphisms.
L/p represents the different ways L/p can be visited from maximal instance to
maximal instance by the use of non-maximal instances to guide the merge. We
extend the action of T on p into a function fp :L/p — C as follows:

T,(M) = Colim(Dr(p) | M). (2)

The definition Tvp is in fact a complete functor also acting on any morphism

M C M’ of L/p using the exact same construction as given in Remark 1 for 7.

In the case of Fig.2, the maximal instances being the three triangles, the
partial decompositions consist of subsets having 0, 1, 2 or 3 of these triangles.
As an example, choose arbitrarily two of these triangles, say ¢; and t,. The
intermediate result T),({t1,¢2}) is the graph consisting of the two refinements of
t1 and 5 glued by their common vertex.

The online computation of T(p) consists in iterating a simple step that
builds T,(M U {m}) from T,(M) as soon as a new maximal instance m has
been discovered. This step is the local amalgamation of Dr(p)(m) with Tp(M )
considering all the non-maximal sub-instances, say {ni,...,nx}, shared by the
elements of M and m. Indeed each such sub-instance n; gives rise to a span
T,(M) < Dr(p)(n;) — Dr(p)(m). Gathering all these spans leads to the suture
diagram Sy, defined as follows:

D(ni) -+ D(m)

where D stands for Dy (p) for simplicity, notation that we will use from now on.
The colimit of a single span being called a pushout, we call the colimit of this
collection of spans a generalized pushout. The fact that this generalized pushout
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Colim(Sas,m) and the desired colimit fp(M U{m}) as given in Eq. (2) do coincide
is formalized by the following proposition.

Proposition 2. Let M/ = M U {m} € I% As a cocone, TP(M’) has the same
apez as Colim(Sas.m) and has components

= Colim(Sarm)z, (ar) © Tp(M)n if n € M,
Colim(Saz,m) p(m) © D(e) for any e :mn — m,

where Sypm is diagram (3).

As an illustration, for computing fp({tl, ta,t3}) (which is in fact the output
in Fig. 2), it is enough to amalgamate T,({t1,t2}) (already considered) with the
refinement D(t3) of the last triangle t3, using as suture the two vertices of ¢3
shared with ¢; and ts playing the role of ny and nj in diagram (3).

Remark 2. To summarize, computing T(p) online is a matter of collecting the
finite set of all maximal instances {m1, ma, ..., my} of L/p in any order satisfying
that m;y; is connected to ]\Z where M; = {m1,...,m;}. This allows to replace
the single colimit computation of the whole diagram, as in Eq (1), by a sequence
of smaller colimit computations using the induction relation:

D(ml) ifi=1
Colim(Sp, 4 ,m;) otherwise.

o= { @
The base case is obtained from Eq. 2 for a singleton set of maximal instance, and
the inductive one is established by Proposition 2, Sas, ,,m, being a generalized
pushout diagram linking 7, (M _1) and D(m;). The final value 7T, »(My) of this
sequence is the colimit of M, k- M, & is exactly the diagram D without the arrows
between the non-maximal instances. But the colimit T},(Mj,) of M, is necessarily
the same as the colimit T'(p) of D by the following proposition.

Proposition 3. The subcategory M; of L/p given by all instances but only mor-
phisms to mazimal instances is final in L/p, in the sense of final functor.

Accretive Rule Systems. We are interested in those rule systems where the inter-
mediate results stay inside C 4, ¢.e., such that T),(M C M’) are monomorphisms
for any p and any M C M’ € L/p. This leads to the following definition of accre-
tive rule systems.

Definition 3. An accretive rule system T' is a rule system such that for any
peC, T factors through the forgetful functor U : Cy — C.

Ezample 5. The rule system of Fig. 3b is accretive. Focusing on connected L/p,
its Lh.s. implies that p is a connected graph. Any M € L/p corresponds to a
connected sub-graph of p and is sent to the single vertex graph if it is not empty,
or to the empty graph otherwise. So for any relation M C M’, T,,(M C M’) is
the empty morphism or the identity morphism, and both are monomorphisms.
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Ezample 6. The rule system of Fig. 3d is also accretive. Again, p is a connected
graph and any M € L/p corresponds to a connected sub-graph of p. Here M
is sent to the same graph with parallel edges simplified into single edge. So for
any relation M C M’, M’ is sent either to the same thing as M when M’ only
adds more parallel edges, or to a strictly greater graph otherwise. In both case
T,(M C M’) is a monomorphism.

Ezample 7. On the contrary, the rule system of Fig. 3a is not accretive. Consider
the cycle c3 of length 3, and the associated L/cs. The latter contains 3 instances
of rule ; and 3 maximal instances of the rule 5. Consider the relation M € M’
where M’ contains all three maximal instances and M only two of them. We
have T,,(M) = p3 and T,(M’) = c3, but there is no monomorphisms between
these two graphs.

Example 8. By the exact same reasoning, the rule system of Fig. 3c is also not
accretive, disproving that being a global transformation implies being accretive.

3.2 Incremental Rule Systems and Global Transformations

We are interested in giving sufficient conditions for rule systems to be global
transformations. These conditions also imply accretiveness.

Our strategy consists in preventing any super-rule to merge by itself the r.h.s.
of its sub-rules. In other words, the rule only adds new elements to the r.h.s. of
its sub-rules in an incremental way. A positive expression of this constraint is
as follows: if the r.h.s. of two rules overlap in the r.h.s. of a common super-rule,
this overlap must have been required by some common sub-rules.

Definition 4. Given a rule system T = (I',L,R), we say that a rule v € T
is incremental if for any two sub-rules y1 — v <= 79 in T', any representable
presheaf ye, and any R(71) & ye 33 R(7y2) such that R(i1)ox; = R(iz)oxs, there
are some 1 <= v 3 4y and x : yc — R(Y') such that the following diagrams
commute.

7 ' R(iz)
21/ r\lz 2
Mo G2 R(72)
Tyt " R(m)
T2

A rule system T is said incremental if every v € T' is incremental.

The Sierpinski gasket rule system (Fig. 1) is incremental. The only non-trivial
case is when the sub-rules v; and o of Definition 4 are set to the edge rule of
Fig.1 and v to be the triangle rule, such that the r.h.s. of 47 and 5 overlap on
a common vertex in R() (morphisms 7 and x5 of Definition4). This vertex is
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nothing but the image of the vertex of L(v) common to the inclusions of L(~;)
and L(vy2) in L(v). This invites us to set 7’ to the vertex rule of Fig.1 and
complete the requirements of Definition 4 to get incrementality.

The main constraint enforced by the incrementality criterion is that any
merge is always required by sub-rules as stated by the following lemma.

Lemma 1. Consider an incremental rule system T = (T',L,R), an integer k >
0, a sequence of k rules (y1,...,v) in I, a sequence of k — 1 rule inclusions
(i1, ,ig—1) T with i; : vj — Yj41 0T 45 : vjp1 — v for 1 < j <k, a
representable presheaf yc and a cone (z; : yc — R(v;))1<j<k that commutes
with each R(i;). There are a rule v' in T, two rule inclusions m : v — y1 and
w2 Y — Yk, and a morphism x : yc — R(Y') such that the following diagram
on the right commutes.

R(41) R(tk-1) R(m1) , R(m2)
R(11) S R(v) R(y1) «—— R(Y") =—— R(mw)

Consider any monomorphism h : p < p’ of presheaves such that some merge
is required by the computation of T'(p’) between some elements of r.h.s. instances
also involved by T'(p). Lemma 1 ensures that it is required by a sub-rule which
must also be instantiated by T(p) so that the merge is also required by the
computation of T(p). In other words, T'(h) is a monomorphism as established

by the following theorem.
Theorem 1. Any incremental rule system is a global transformation.

The previous remark also applies for intermediate results leading to the fol-
lowing theorem concerning accretiveness.

Theorem 2. Any incremental rule system is accretive.

However, the converses of these theorems do not hold so incrementality is
sufficient but not necessary as illustrated by the following examples.

Example 9. The rule system of Fig. 3c is a global transformation as explained in
Example 1, but not incremental. Consider ej : 7y — -2 be the plain arrow into
Y2 and es : 1 — 72 the dashed arrow into 5. The cospan v, < 72 <= 71 is such
that hy : di — R(v1) and hg : di — R(71) such that R(e1) o hy = R(ez) o hy but

there is no rule 4’ to ensure the incrementality condition.

Example 10. Similarly, the rule system of Fig.3d is a global transformation
(Example 2) but is not incremental. Consider e; : v2 — 73 be the plain arrow
into 3 and es : 72 — 73 the dashed arrow into v3. The cospan 5 < v3 <= 79 is
such that hy : l; < R(7y2) and hs : I3 — R(72) such that R(e1) o h; = R(ez) o ho
but there is no rule v/ to ensure the incrementality condition.
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Ezample 11. The rule system of Fig.3b is accretive (Example5) but non-
incremental. Consider e; : 71 — 2 the plain arrow into 3 and ez : 1 — 72
the dashed arrow into 3. Observe that for the cospan v; < 72 <= y1 we have
hi i di — R(y2) and hs : di — R(72) such that R(e1) o h1 = R(ez) o he but

there is no rule v/ to ensure the incremental condition.

Ezample 12. Similarly, the rule system of Fig.3d is accretive (Example 6) but
non-incremental.

Summarizing the properties collected with the four examples of Fig.3 and
with the one of Fig.1 in a table, we can see that being a global transformation
and being accretive are orthogonal properties, but incrementality forces the two.

Non-incr. Incr.
Non-G.T. | G.T. Non-G.T. G.T.

Non-accretive | ex. Fig. 3a | ex. Fig. 3c | None, Theorem 1/2 | None, Theorem 2

Accretive ex. Fig.3b | ex. Fig. 3d | None, Theorem 1 Sierpenski

4 Computing Accretive Global Transformations

This section is devoted to the description of an effective implementation of the
online procedure considered in Sect. 3.1. In this context, we focus on incremental
global transformations. We first explain how the categorical concepts of Sect.3
are represented computationally (Sect.4.1). This is followed by a detailed pre-
sentation of the algorithm (Sect. 4.2).

4.1 Categorical Constructions Computationally

Up to now, we exposed everything formally using categorical concepts: the cat-
egory of presheaves C 4, finite incremental rule systems 7' = (T,L,R), and the
comma category L/p for some finite presheaf p. We now describe their computa-
tional counterparts. First, let us introduce some notations used in the algorithm:

— X* stands for the set of finite words on the alphabet X; the empty word is
denoted by ¢ and the concatenation by u - v for any two words u,v € X*.
~ Jl,ea Bla) is the set of pairs (a,b) where a € A and b € B(a).
wca B(a) is the set of functions f : A — |J, 4 B(a) such that for any a € A,
f(a) € B(a). Such functions are also manipulated as sets of pairs. Those pairs
are written a — f(a).

The Category of Presheaves with Monomorphisms. The category C M is the for-
mal abstraction for a library providing a data structure suitably captured by
presheaves (like sets, graphs, Petri nets, etc.) and how an instance of that data
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structure (presheaves) is part of another one (monomorphisms). Two functions
— o — and — = — need to be provided to compute composition and equal-
ity test of sub-parts. The library also needs to come with a pattern matching
procedure taking as input two finite presheaves p and p’ and returning the set
Homg (p,p’) of occurrences of p in p’. Finally, the library is assumed to pro-
vide a particular construction operation called generalizedPushout(py,ps,S)
computing the generalized pushout, i.e., the colimit of the collection of spans .5,
each span being represented as a triplet (p € CM,fl ip = p1,fa i p = pa).
The resulting colimit is returned as a triplet (¢ € CM, g1:P1 < C, g2 P2 < C)
where c is the apex and g1, g the corresponding component morphisms.

Finite Incremental Rule System. A finite rule system is described as a finite
graph whose vertices are rules | = r as pairs of presheaves and edges are pairs
of monomorphisms (i; : Iy < la,i, : 11 < 72). Functors L and R return the first
and second components of these pairs respectively. At the semantic level, T' is
the category generated from this graph. Finally, incrementality as presented in
Definition 4 is clearly decidable on finite rule systems, giving rise to an accretive
global transformation by Theorems1 and 2.

The Category of Instances. By Proposition 1, L/p is a preordered set, but in our
implementation, any time an instance is matched, all of its isomorphic instances
are taken care of at the same time. This corresponds informally to taking the
poset of equivalence classes of the preordered set. Also, by Proposition 3, mor-
phisms between non-maximal instances can be ignored. All in all, L/p is ade-
quately thought of as an abstract undirected bipartite graph that we call the
network.

Finally, the L/p is never entirely represented in memory (neither is the cocone
associated to the resulting colimit). A first instance is constructed, and the others
are built from neighbor to neighbor through the operation [[, Homy,,(n,m)
and [T, Homy,,(n,m). The former lists the sub-instances of m and the latter
lists the super-instances of n. For the “incoming neighbors” or sub-instances
LI, Homy,/p(n, (7', f')), they are specified as

{({(v. foL(e)), (e, ) le: v — 7'}

This corresponds simply to the composition — o — in C discussed earlier. On
the contrary, “outgoing neighbors” or super-instances [[,, Homy,/,((v', f'), m)
correspond to extensions and are obtained by pattern matching.

) = )
e 1y =" f" € Homg (L(Y"),p) st. f' = f" o L(e)}.

Notice that these two specifications are obtained by simply unfolding the defi-
nition of the morphisms of the comma category. Also, the set of incoming mor-
phisms e : v — 7/ and outgoing morphisms ¢’ : v/ — +” in T are directly
available in the graph representation of the rule system T as said earlier. These
operations are used to implement a breadth-first algorithm, earlier instances
being dropped away as soon as their maximal super-instances have been found.
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Algorithm 1:

Input: T : rule system on Cum

Input: p: Cm

Variable: P : C

Variable: N : (L/p)*

Variable: E C [[, . [1,, Homy/,(n, m)
Variable: C': [[,, .y Homg, (D(n), P)

1 let n = findAnyMinimal(7),g), i.e., any minimal element in L/p
2let E=0,C={n—idpm)}, N=n, P=D(n)
3 while N # ¢ do
4 let n = head(N), i.e., the first instance in the queue without modifying N
5 let M’ =1], Homy,,(n,m)
6 for (m,e) € M’ s.t. (n,m,e) € E and m is mazimal do
7 let ' =],,,, Homr,/,(n’,m)
8 let S={(n/,C(n'),D(€)) | (n,e') € E',n" € N}
9 let (P',t,c) = generalizedPushout(P, D(m), S)
10 E:=FEU{(n',m,e)|(n, ) e E}
11 C:=CU{n’ —coD()|(n,e) e E',n' ¢ N}
12 N:=N-{n|(n,e)eE n ¢gN)
13 pP.=P
14 E:={(n,m,e') e E|n #n}
15 C:={n"—Cn)eC|n #n}
16 N := tail(N), i.e., removes the first instance n from the queue

17 return P

4.2 The Global Transformation Algorithm

Algorithm 1 gives a complete description of a procedure to compute T'(p) online.
The algorithm manages four variables P, N, F and C. Variable P contains
intermediate results and finally the output presheaf. The part of the network
that is kept in memory is represented by variables N and E: N is a queue
containing, in order of discovery, the non-maximal instances that might still have
a role to play. E associates each instance in N to the set of its maximal super-
instances that have already been processed. For simplicity, F is not represented
as a function from N to sets but as a relation. The r.h.s. D(n) of each instance
n € N is already in the current result P through the morphism kept as C'(n).
Figure4 illustrates the first steps of Algorithm 1 representing maximal
instances as black dots, and non-maximal instances as white squares. The ini-
tialization step is to find a first instance (line 1). For that, we try each mini-
mal pattern, and start with the first founded minimal instance, say n,. At this
point, the first intermediate result Py is simply the r.h.s. D(n1); we memorize
the (identity) relationship between D(n;) and Py, call it C'(ny) : D(n1) — P,
and enqueue ny (line 2). Enqueued non-maximals are treated one after the other
(lines 3, 4, 16). For each, we consider all maximal super-instances of n; (lines
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C(n1) c1 D(n4)

e
D(?’L1) tl Pl

Fig. 4. Evolution of the data during the four firsts steps of the algorithm. From left to
right: we start with a non-maximal instance, process its associated maximal instances
successively, and finally drop the non-maximal. At each stage, the output is updated
by generalized pushout.

5, 6). In Fig. 4, we assume three such super-instances mi, mg and mg. They are
processed one after the other (line 6).

The first iteration processes m; by taking all its sub-instances ny, ..., n4 (line
7). The suture S is computed (line 8) by considering all already computed non-
maximals (i.e., in N) among these sub-instances. Here, only n; is already known
and serves to define a one-span suture with morphisms C(ny) : D(ni) — Py
and D(¢') : D(ny) — D(m;), where € is the morphism from n; to mj. The
generalized pushout of Py and the r.h.s. D(mq) is therefore computed and gives
the new intermediate result P; (lines 9, 13). Since P; includes the r.h.s. of all
discovered non-maximals N = {nq,...,n4}, we memorize as C(n) : D(n) — P,
for n € N the locations of these r.h.s. in P; (line 11). The newly discovered
non-maximal instances ng, ng and n4 are enqueued (line 12).

The second iteration processes mo similarly and all its sub-instances ni, n4,
ns, and ng are computed. This time, n; and ny are used for computing the new
intermediate result Py by generalized pushout using the two spans (ny,C(ny) :
D(n1) — P1,D(j) : D(n1) — D(ma)) and (n4,C(ng) : D(ng) — P1,D(k) :
D(ny4) — D(mg)) as suture. The set N of discovered non-maximals is updated
by adding ns and ng as well as the locations C' of their r.h.s. in Ps.

The processing of mg is similar and shows no novelty. At this point non-
maximal n; does not have any further role to play: the r.h.s. of all its associated
maximals are already amalgamated to the current intermediate result. ny is
dropped together with all data associated to it (lines 14-16), as shown in the
last step of Fig.4. Non-maximal instances being processed in the order of first
discovery, the next one is no in the example.

During these processings, other non-maximal instances see some of their asso-
ciated maximals being processed. We have to keep track of this to avoid double
processing of maximals which would cause infinite loops (condition at line 6).
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This is the role of F to maintain this information. Clearly E contains only the
useful part of the network: edges from maximals to their sub-instances are reg-
istered when discovered (line 10) but cleared up as soon as a non-maximal is
dropped (line 14). Considering that non-maximal instances are treated in order
of appearance, the algorithm will process the maximals at distance 1 from n,
first, then those at distance 2, and so on, until the complete connected compo-
nent of the network is processed. In memory, there are never stored more than
four “radius” of instances d, d + 1, d 4+ 2 and d + 3 from n;.

Theorem 3. Algorithm 1 is correct, i.e., the final value of P is T(p).

Proof. We ignore the case when L/p is composed of a single instance, since the
algorithm behaves trivially in that case.

Ignoring lines 8, 9, 11, 13, and 15, variables P and C', and looking only at non-
maximal instances (variable n), the algorithm behaves like a usual breadth-first
search. Indeed, the search begins by enqueueing a first non-maximal instance at
line 2. Each iteration of the while loop (line 3) processes the next non-maximal
instance n in the queue (line 4), lists all its “neighbors via a maximal instance”
(lines 5-7) and enqueues those that have not yet been visited (lines 10, 12)
before popping n out of the queue (line 16). Variables E and N serve as the set
of visited non-maximal instances. The reason line 14 can remove all occurrences
of n in the set E without creating an infinite loop is that F memorizes the
maximal instances m’ from which each enqueued non-maximal instance n’ has
been reached (line 10). The constraint (n,m,e) € E of the for loop (line 6)
prevents this path to be taken in the other direction.

Since all non-maximal instances are assigned to n at line 4, and each maximal
instance is a super-instance of some non-maximal instance, we have that m goes
through all maximal instances as well (line 6). Let us call mq, ..., my, the
successive values taken by m and define the sequence of set of maximal instances
M; = {mq,...,m;} for i € {1,...,k}. The breath-first traversal ensures that
each newly considered m;,; is connected to some maximal instance in M; by
some non-maximal sub-instances. Let us show now that the successive values
taken by P at line 13, numbered Py, P, ..., Py, are such that P; = T,,(M;). Using
Remark 1, it is enough to show that P, = D(m1) and P 1 = Colim(Saz, m,,,)-

For Py, consider the first steps of the algorithm before the first execution of
line 13. Call n; the value of n at line 1 and note that P is assigned to D(nq) at
line 2 and C(n1) to idp(n,) : D(n1) — D(n1). At lines 4, 5 and 6, n is assigned
to n1, m to my and e to the corresponding morphism from n; to m;. Lines 7
and 8 lead S to be {(n1,idp(n,) : D(n1) — D(n1), D(e) : D(n1) — D(m1))}. So
the first execution of line 9 computes this simple pushout and sets (P’,t,¢) to
(D(m1), D(€),idpm,))s s0 P = D(my) = T,(M;) at line 13.

To establish that Pj;; = Colim(Sys, m,,,) in the (i + 1)-th execution of line
13, we need to show that the parameters (P, D(m),S) provided in (i 4+ 1)-th
execution of line 9 correspond to the diagram Saz, m,., given in (3). Firstly,
by induction hypothesis, we have that P = P; = Tp(Mi) and m = m;y1. The
collection of spans S computed at line 8 is correct because E’ is the set of
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sub-instances of m (line 7), and N contains all sub-instances of the maximal
instances in M; that could have a morphism to m;;;. Indeed, a non-maximal
instance is discarded from N, E and C (lines 14-16) only after that all of its
maximal super-instances have been processed (for loop at lines 5 to 13). Line 11
and 15 ensure that C' always contain the correct morphism D(n) — P for all
non-maximal instances n contained in N.

Finally, line 11 modifies C' without updating the cocone compounds already
stored in C, resulting in mixing morphisms with codomain P and P’. It is cor-
rect considering the following fact. For accretive global transformations, ¢ (line
9) is always a monomorphism and can be designed for ¢ to be a trivial inclusion.
In that case, any morphism to P is also a morphism to P’, the latter materi-
ally including P. In other words, everything is implemented to ensure that the
modification on intermediate results are realized in place. a

5 Conclusion

In this paper, we have presented an online algorithm for computing the applica-
tion of global transformations on presheaves. Note that this work was originally
restricted to global transformations of graphs but the extension to any cate-
gory of presheaves appears to be straightforward. It is natural to expect the
extensions to other well-known classes of categories, in particular for the class
of (M-)adhesive categories [5,12].

At the algorithmic level, there remain many interesting considerations that
need to be settled. One of them is that the way this algorithm goes from maxi-
mal instances to maximal instances using common sub-instances reminds of the
strategy of the famous Knuth-Morris-Pratt algorithm [11]: in both cases the
content of one match is used to guide following subsequent pattern matching.
This link is reinforced by the work of [15] that extend the Knuth-Morris-Pratt
algorithm to sheaves. In Algorithm 1, we used pattern matching as a black-box
but opening it should allow to mix the outer maximal-to-maximal strategy with
the Knuth-Morris-Pratt considerations inside the pattern matching algorithm
of [15]. Another important aspect is the complexity of this online approach and
its natural extensions. Indeed, we described how a full input is decomposed in
an online fashion, and the parts also treated online. The full picture includes the
input itself being received by part, or even treated in a distributed way. Each of
these versions deserve a careful study of their online complexity, i.e., the com-
plexity of the computation happening between each outputted data. We are also
interested in the detailed study of the problem consisting of deciding, given a
rule system, if it is a global transformation or not. Incremental rule systems form
a particularly easy sub-class for this problem but we are talking here about the
complete class of all rule systems.

The incremental criterion can be studied for itself. An alternative equivalent
expression of Definition 4 is stated as follows: given a super-rule, its r.h.s. contains
the r.h.s. of its sub-rules as if they were considered independently. Intuitively, this
prevents from non-local behavior like collapsing non-empty graphs to a single
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vertex since the empty graph remains empty for example as in Fig. 3b. From that
point of view, incremental global transformations follow the research direction
of causal graph dynamics [1]. In this work any produced element in the output
is attached to an element of the input graph and a particular attention is put
on preventing two rule instances to produce a common element.

References

10.

11.

12.

13.

14.

15.

Arrighi, P., Martiel, S., Nesme, V.: Cellular automata over generalized Cayley
graphs. Math. Struct. Comput. Sci. 18, 340-383 (2018)

Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. J. Comput. Syst. Sci. 34(2-3), 377-408 (1987)
Corradini, A., Heindel, T., Hermann, F., Konig, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30—-45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883_4

Ehrig, H., Ehrig, K., Golas, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation, vol. XIV. Springer, Heidelberg (2006). https://doi.org/10.1007/
3-540-31188-2

Ehrig, H., Golas, U., Hermann, F., et al.: Categorical frameworks for graph trans-
formation and HLR systems based on the DPO approach. Bull. EATCS 102, 111-
121 (2010)

Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory (SWAT 1973),
pp. 167-180. IEEE (1973)

Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations.
Theor. Comput. Sci. 11(3), 247-275 (1980)

Fernandez, A., Maignan, L., Spicher, A.: Lindenmayer systems and global trans-
formations. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp.
65-78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9_7
Fernandez, A., Maignan, L., Spicher, A.: Accretive computation of global transfor-
mations - extended version. arXiv preprint arXiv:2103.09636 (2021)

Fernandez, A., Maignan, L., Spicher, A.: Cellular automata and Kan extensions.
In: 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete
Complex Systems, AUTOMATA 2021, Aix-Marseille University, France. OASIcs,
12-14 July 2021, vol. 90, pp. 7:1-7:12. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik (2021). https://doi.org/10.4230/OASIcs. AUTOMATA.2021.7

Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. STAM
J. Comput. 6(2), 323-350 (1977)

Lack, S., Sobociniski, P.: Adhesive and quasiadhesive categories. RATIRO Theor.
Inform. Appl. 39(3), 511-545 (2005)

Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, New
York (2013)

Maignan, L., Spicher, A.: Global graph transformations. In: GCM@ ICGT, pp.
34-49 (2015)

Srinivas, Y.V.: A sheaf-theoretic approach to pattern matching and related prob-
lems. Theor. Comput. Sci. 112(1), 53-97 (1993)


https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-030-19311-9_7
http://arxiv.org/abs/2103.09636
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.7

l‘)

Check for
updates

Some Modal and Temporal Translations
of Generalized Basic Logic

Wesley Fussner!®) and William Zuluaga Botero!-2

! Laboratoire J.A. Dieudonné, CNRS, and Université Cote d’Azur, Nice, France
wfussner@unice.fr, william.zuluagaQuniv-cotedazur.fr
2 Departamento de Matemética, Facultad de Ciencias Exactas,
Universidad Nacional del Centro, Tandil, Argentina

Abstract. We introduce a family of modal expansions of Lukasiewicz
logic that are designed to accommodate modal translations of general-
ized basic logic (as formulated with exchange, weakening, and falsum).
We further exhibit algebraic semantics for each logic in this family, in
particular showing that all of them are algebraizable in the sense of Blok
and Pigozzi. Using this algebraization result and an analysis of congru-
ences in the pertinent varieties, we establish that each of the introduced
modal Lukasiewicz logics has a local deduction-detachment theorem. By
applying Jipsen and Montagna’s poset product construction, we give
two translations of generalized basic logic with exchange, weakening,
and falsum in the style of the celebrated Godel-McKinsey-Tarski trans-
lation. The first of these interprets generalized basic logic in a modal
Lukasiewicz logic in the spirit of the classical modal logic S4, whereas
the second interprets generalized basic logic in a temporal variant of the
latter.

Keywords: GBL-algebras - Modal logic - Modal translations

1 Introduction

Substructural logics make up a widely studied family of nonclassical logics orig-
inating in proof theory, and have found an array of applications in theoretical
computer science (e.g., in the management of computational resources [22]).
Generalized basic logic (see, e.g., [5,18]) is a prominent substructural logic that
has been highly influential in the development of residuated lattices [14], which
provide the algebraic semantics of substructural logics. Generalized basic logic is
a common fragment of intuitionistic propositional logic and Héjek’s basic fuzzy
logic [16], and its algebraic models (viz. GBL-algebras) provide a natural com-
mon generalization of lattice-ordered groups, Heyting algebras, and continuous
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t-norm based logic algebras (see [13] for a survey). This logic has also been
proposed as a model of flexible resources [5], in keeping with resource-driven
interpretations of substructural logics generally.

When extended by exchange, weakening, and falsum (as we do throughout
the sequel), generalized basic logic may be regarded as an ‘intuitionistic’ variant
of Hajek’s basic fuzzy logic. In this formulation, generalized basic logic is related
to Lukasiewicz logic [8] in much the same way that intuitionistic logic is related
to classical logic. For instance, generalized basic logic admits a Kripke-style rela-
tional semantics [12] in which worlds are valued in MV-algebra chains, mirroring
the well known Kripke semantics for intuitionistic logic (in which worlds are val-
ued in the 2-element MV-algebra/Boolean algebra). It is evident from [12] that
generalized basic logic may be viewed as a fragment of a modal Lukasiewicz
logic, but the details of this modal connection are therein left implicit. On the
other hand, [12] generalizes the temporal flow semantics for basic logic [1], which
is deployed in [2] to obtain a modal translation of Gédel-Dummett logic into an
extension of Prior’s tense logic [23].

Inspired by this work, the present study makes the modal connection from
[12] explicit and offers modal and temporal translations of generalized basic logic
into certain expanded Lukasiewicz logics. The motivations for this study are
threefold. First, due to the astounding diversity of substructural logics, under-
standing relationships among various substructural deductive systems is crucial
to their general theory. The translation results of the present study deepen our
understanding of the connection between generalized basic logic and Lukasiewicz
logic, two of the most salient substructural logics. Second, the translations artic-
ulated in the sequel directly generalize the well known Godel-McKinsey-Tarski
translation of intuitionistic logic into the classical modal logic S4, adding to a
long line of studies that generalize themes from intuitionistic logic to the sub-
structural setting. In addition to clarifying the role of modality in generalized
basic logic, this connects to the broader theory of modal companions of super-
intuitionistic logics. Third, because our translations target modal Lukasiewicz
logics, this work adds to the emerging literature on fuzzy modal logics. Moreover,
we expect that the results of this paper open up the application of tools from
fuzzy modal logic (such as filtration [10]) to the analysis of generalized basic
logic and its extensions.

Our contributions are as follows. First, we introduce in Sect.2 a family of
modal Lukasiewicz logics that serve as targets for our translations. This family
includes both monounary modal systems, analogous to classical S4, as well as
multimodal systems of temporal Lukasiewicz logic. This investigation is rooted
in algebraic logic, and in Sect.3 we provide pertinent information on algebras
related to this study. In Sect. 3.2, we demonstrate that all of the logics intro-
duced in Sect. 2 are algebraizable in the sense of Blok and Pigozzi (see [3]) and
that the algebras introduced in Sect. 3.1 provide their equivalent algebraic seman-
tics. Equipped with this algebra-logic bridge, Sect. 4 puts our algebraization theo-
rem to work and establishes a local deduction detachment-theorem for our modal
Lukasiewicz logics. The work of Sect. 4 is based on an analysis of congruences in
the varieties of algebras introduced in Sect. 3.1, and in particular establishes the
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congruence extension property for each of these varieties. Finally, in Sect.5 we
introduce two translations of generalized basic logic, one into a Lukasiewicz ver-
sion of S4 and the other into a temporal Lukasiewicz logic. These translations both
rely on the poset product construction of Jipsen and Montagna (see, e.g., [20]).

2 Generalized Basic Logic and Fuzzy Modal Logics

This section introduces the logical systems of our inquiry. The logics discussed
in this paper are all defined over supersets of the propositional language £ con-
sisting of the binary connectives A, V, -, — and the constants 0,1. To the basic
language £ we will adjoin a set of box-like unary modal connectives. More specif-
ically, given a set I of unary connective symbols with I N £ = (), we define a
language £(I) = £ U I. We further fix a countably-infinite set Var of proposi-
tional variables, and denote by F'm,p) the set of L£(I)-formulas over Var.! An
L(I)-equation is an ordered pair (p,v) € Fmg (), and we usually denote the
equation (¢,v) by ¢ ~ 9. The set of all L(I)-equations is denoted by Eqr(r).
All of the logics we consider may be defined by Hilbert-style calculi using var-
ious selections from the axiom schemes and deduction rules depicted in Fig. 1.
Observe that in Fig. 1 each of (Kg), (Pg), (Mo), (1g), (0o), (To), (4n), (GP),
(HF), and (O-Nec) gives a family of axiom schemes/rules parameterized by the
unary connectives [0, G, H. Note that we write ¢ < 1 for (¢ — ) A (Y — ¢)
and —y for ¢ — 0 as usual.

From [5], generalized basic logic with exchange, weakening, and falsum is the
logic defined over £ by the calculus with (A1)-(A13) and the modus ponens rule
(MP). We denote this logic by GBL. Additionally including the prelinearity
axiom (A14) yields Héjek’s basic fuzzy logic [16], which we denote by BL. It
follows from [9] that including both (A14) and (A15) gives an axiomatization of
the infinite-valued Lukasiewicz logic L (see, e.g., [8]).

We will consider a number of different modal expansions of L in this study.
For an arbitrary set I of unary connective symbols disjoint from £, we denote
by L(I) the logic with language £(I), axiom schemes (A1)-(A15), (Kg), (Po),
(Mp), (1g), and (0g) (where O ranges over I in all of the preceding axiom
schemes), and rules (MP) and ([J-Nec) (where again O ranges over I). We denote
by S4L(I) the logic resulting from adding to L(I) the axiom schemes (Tg) and
(4p) for all O € I. If I = {} is a singleton, we write S4L for S4L(I). If
I = {G, H}, then the logic defined by adding to S4LE([) the axioms (GP) and
(HF) will be denoted by S4:L.

The logic S4L is a fuzzy analogue of the classical modal logic S4, whereas
S4,L is a temporal variant of S4L inspired by Prior’s tense logic [23]. The
names of the axioms (GP) and (HF) derive from the fact that—as usual in tense

! Recall that formulas are constructed recursively by stipulating that p is a formula
for each p € Var, and further that if w is an n-ary connective symbol and o1, ..., ¢n
are formulas, then so is w(¢1,...,¢n). As usual, we write binary connectives using
infix notation.
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Axiom schemes (A15) =—p < @
(A1) p = (Kg) Ol = ¢) — (He — Uy)
(A2) (¢ =) = (¥ = x) = (¢ = X)) (Po) O(p- ) « Op - Oy
Eﬁ; Ei-%:gﬁw) (MD)DD(SD/\1/))<—>DSD/\D¢
: 1 11
(45) (&~ (% = ) = (- 9) = X)) RRE=T
(A6) ((¢-¥) = x)) = (p = (¥ = X)) (T) Op — ¢
(A8) (pA®) = (¢ (¢ — 1)) U= ’
(A9) (pAe) = (A ) (GP) ¢ = Gl
(A10) @ — (pV ) (HF) ¢ — H=Gyp
(A11) ¥ = (¢ V)
(A12) (=) A(x =) = ((pVX) =) Rules
(A13) 0— ¢ (MP) ¢, = 9
(A14) (¢ =)V (Y = ) (L-Nec) =0

Fig. 1. Axiom schemes and rules for the logics considered.

logic—we define modal diamond connectives P and F as abbreviations for
—H—- and —-G—, respectively. The typical intended interpretations of the modals
G,P,H, F are:

— Gy: “It is always going to be the case that .”

— Py: “It was true at one point in the past that ¢.”

— Hy: “It always has been the case that ¢.”

— Fy: “It will be true at some point in the future that ¢.”

In Sect. 5, we will exhibit translations of GBL into each of S4L and S4¢L. These
translations closely mirror the Goédel-McKinsey-Tarski translation of proposi-
tional intuitionistic logic into S4. Intuitively, S4L is a modal companion of
GBL (see [7]). On the other hand, our translation into S4¢L generalizes the
translation presented in [2] of Gédel-Dummett logic into Prior’s classical tense
logic.

Given a logic L, we denote by Fp, the consequence relation corresponding
to L (see [11] for background on consequence relations). As one may anticipate
from the presence of the axioms (Kg) and [O-necessitation rules, the logics we
have introduced above turn out to be algebraizable in the sense of Blok and
Pigozzi [3] (see Theorem 1).

3 Algebraic Semantics for L(I) and Its Extensions

We now turn to providing algebraic semantics for the logics introduced in Sect. 2.
In Sect. 3.1 we describe the pertinent algebraic structures, and then in Sect. 3.2
we give the algebraization results for the logics we have introduced. We assume
familiarity with the basics of universal algebra [6], residuated lattices [14], and
abstract algebraic logic [11], but where possible we provide specific references to
some key background results that we invoke without full discussion.
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3.1 Residuated Lattices and Their Expansions

An algebra (A4, A,V, -, —,0,1) is called a bounded commutative integral residuated
lattice if (A,A,V,0,1) is a bounded lattice, (4,-,1) is a commutative monoid,
and for all z,y,z € A,

T yY<z <= x<y—z

We usually abbreviate x -y by zy.

By a GBL-algebra we mean a bounded integral commutative residuated lat-
tice that satisfies the divisibility identity z(z — y) ~ x A y.> A BL-algebra is
a GBL-algebra that satisfies (x — y) V (y — z) = 1, and an MV-algebra is a
BL-algebra that satisfies =—x = x. The following definition gives the various
classes of MV-algebra expansions that algebraize the logics of Sect. 2.

Definition 1. Let I be a set of unary function symbols. We say that an algebra
A= (A NV, ,—,0,1,{0}ges) is an MV (I)-algebra provided that:

1. (A, NV, -, —,0,1) is an MV-algebra.
2. For every O e 1,0 is a {A,-,0,1}-endomorphism of (A,A,V,-,—,0,1).

If additionally O is an interior operator for every I € I, then we say that A is
an SAMV (I)-algebra. An S4MV-algebra is an S4MV(I)-algebra where I = {1}
is a singleton. An S4MV(I)-algebra for I = {G, H} is called an S4; MV -algebra
if the map P defined by P(x) = —H(—x) is the lower residual of G, i.e., for
every x,y € A,

r<Gy) < Px)<y.

In each S4 MV-algebra, we also abbreviate ~G(—x) by F(x).

The following summarizes some technical facts regarding S4;MV-algebras.
Its proof is straightforward and we omit it.

Lemma 1. Let A be an S4sMV-algebra and let x,y € A. Then:

P(zVy)=Px)V P(y).

P(0) =0 and P(1) =1.

x < H(y) if and only if F(x) <y.
F(zVy)=F(z)V F(y).

F(1) =1 and F(0) = 0.

x— GP(z) =1 and PG(z) — x = 1.
x— HF(x)=1 and FH(z) - z = 1.
P and F are closure operators.

NS Grds oo =

It is well known that bounded commutative integral residuated lattices form
a variety, and hence so do the classes of GBL-algebras, BL-algebras, and MV-
algebras. We denote these varieties by GBL, BL, and MV, respectively. The proof
of the following lemma is straightforward from the definitions.

2 Most studies refer to these algebras as bounded commutative GBL-algebras or
GBLecywf-algebras. Because we always assume boundedness and commutativity, we
call them GBL-algebras in order to simplify terminology.
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Lemma 2. Let I be a set of unary function symbols with LN T = 0. The class
of MV(I)-algebras forms a variety, and the class of S4MV(I)-algebras is a sub-
variety of the latter. Moreover, the class of S4yMV-algebras forms a subvariety
of the variety of S4MV(G,H)-algebras.

We denote the varieties of MV(I)-algebras, S4MV(I)-algebras, S4MV-
algebras, and S4;MV-algebras by MV(I), S4MV(I), S4MV, and S4MV, respec-
tively.

3.2 Algebraization

We now discuss algebraization of the logics of Sect. 2. Each of the logics GBL,
BL, and L is algebraizable with the sole defining equation ¢ ~ 1 and sole
equivalence formula ¢ < v (see, e.g., [14]). The equivalent variety semantics for
GBL, BL, and L are, respectively, the varieties GBL, BL, and MV. Extending
the algebraizability of L to its modal expansions boils down to showing that
the consequence relation is compatible with the new connectives in the sense
summarized in the following key lemma. We omit its straightforward proof.

Lemma 3. Let I be a set of unary connectives with INL =0, and let L be an
extension of L(I). Then ¢ < ¢ b, Op < Oy for each O € 1.

The following gives our main result on algebraization.
Theorem 1. Let I be a set of unary connectives with LN I = (. Then:

1. L(I) is algebraizable with the sole defining equation ¢ =~ 1 and sole equivalence
formula ¢ < 1, and consequently so are S4L(I), S4L, and S4:L.

2. The equivalent variety semantics for L(I), S4L(I), S4L, and S4:L are,
respectively, MV(I), SAMV(I), S4MV, and S4MV.

Proof. 1. Tt follows from [3, Theorem 4.7] that a logic L expanding L by a set
of connectives {2 is algebraizable if for every n-ary w € {2 we have

0o = 0, Pna1 = Yn_1 FLw(@o, ., Pn-1) < w(Wo, ..., Yn_1).

Moreover, in this case L is algebraizable with sole defining equation ¢ ~ 1 and
sole equivalence formula ¢ < . The result for L(I) is thus immediate from
Lemma 3. The claim for S4L(I), S4L, and S4¢L follows promptly because each
of the latter logics is an axiomatic extension of L(I) for some I.

2. By [3, Theorem 2.17], the quasivariety K algebraizing L(I) is axiomatized
by the following quasiequations: ¢ &~ 1 for all instances ¢ of the axiom schemes
given in the calculus for L(I); z < x ~ 1; ¢, — v implies v; ¢ implies
Op; and * < y ~ 1 implies * = y. It is easy to see from Definition1 and
the fact that MV algebraizes L that all of these quasiequations are valid in
MV(I). Thus MV(I) C K. For the reverse inclusion, it suffices to show that
all the defining equations of MV(I) follow from this list of quasiequations. Let
A € K. That the {A,V,-,—,0,1}-reduct of A is an MV-algebra is immediate



182 W. Fussner and W. Zuluaga Botero

from the fact that MV algebraizes L. On the other hand, for each [J € I the
equations J(z-y) « Oz -Oy = 1,0 Ay) < OOy~ 1,01 - 1~ 1, and
[J0 <~ 0 = 0 appear in the list of quasiequations, and together these imply that
Ois a {A,-,0,1}-homomorphism of A for each O € I. Thus K C MV(l), giving
equality. The result for the axiomatic extensions S4L(T), S4L, and S4;L follows
by applying the formula-to-equation translation ¢ — ¢ = 1 to each formula ¢
axiomatizing the given logic relative to L(I). ]

Recall that if K is a class of similar algebras and © U {e ~ ¢} is a set of
equations in the type of K, then © =k € = § means that for every A € K and
every assignment h of variables into A, if h(«) = h(B) for every a = 3 € O,
then h(e) = h(d). Thanks to the finitarity of L(I), the following is a direct
consequence of Theorem 1 (see [11, Corollary 3.40]).

Corollary 1. Let I be a set of unary connectives with LNI = (). There is a dual
lattice isomorphism between the lattice of finitary extensions of L(I) and the lat-
tice of subquasivarieties of MV(I), which restricts to a dual lattice isomorphism
between the lattice of axiomatic extensions of L(I) and the lattice of subvarieties
of MV(I). Moreover, suppose that L is a finitary extension of L(I), and let K
be the equivalent algebraic semantics of L. Then for any set I' U {o} C F'mg(r)
and any set O U{e~ 0} C Eqppy:

I.Trrp <= {y=1l:yel}tExkp=1.
2.0kkexd — {a—f:axf€O}bre—4.

In particular, this holds if L € {L(I),S4Lk(I),S4L, S4,L}.

4 Characterizing Filters and a Deduction Theorem

If L is an algebraizable logic, there is a well known connection between the the-
ories of L, the deductive filters of algebraic models of L, and the congruence
relations of the equivalent algebraic semantics of L (see, e.g., [11,15]). Armed
with the algebraizability results of Sect.2, we now provide an analysis of con-
gruences in the algebraic semantics given in Sect.3 in terms of certain filters
(see Definition 2 below). We use this description to establish local deduction-
detachment theorems for the modal Lukasiewicz logics we have introduced.

Definition 2. Let A be an MV(I)-algebra. We say that a non-empty subset f of
A is an I-filter provided that § is an up-set,  is closed under -, and f is closed
under each O € I.

Let A € MV(I). We define a term operation * by z*xy = (x — y)(y — x). We
also write Fi(A) for the poset of I-filters of A ordered by inclusion and Con(A)
for the congruence lattice of A.

Lemma 4. Let A be an MV(I)-algebra, § € Fi(A), and 0 € Con(A). Then the
following hold:
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~

fo = 1/0 is an I-filter of A.

2. The set 0; = {(z,y) € A>: zxy € f} = {(z,y) € A>:x & y € f} isa
congruence on A.

3. The maps | +— 05, 8 — fo define mutually-inverse poset isomorphisms between

Con(A) and Fi(A). Consequently, Fi(A) is a lattice and these poset isomor-

phisms are lattice isomorphisms.

Proof. 1. Note that fy is a deductive filter of the MV-algebra reduct of A (see,
e.g., [14, Section 3.6]), so it suffices to show that fy is closed under O for every
O € I. Observe that if (1,z) € 6 then since 6 is a congruence we have (01,0z) €
0. But since 01 = 1, it follows that Uz € fy as desired.

2. Observe first that x xy € § if and only if x < y € f, so the two sets
displayed are equal. Now since f is in particular a deductive filter of the MV-
algebra reduct A, it is immediate that 6; respects all of the operations except for
possibly those belonging to I. To show that 85 respects these as well, it suffices
to show the result for every O € I. Suppose that (z,y) € 0, i.e., z*y € f. Since §
is closed under O, and every [0 € I preserves -, we have O(z — y)-0O(y — z) € f.
Residuation and the fact that OJ preserves - gives J(z — y) < Oz — Oy and
O(y — z) <Oy — Oz, so

Oz +y) = Oz — y)O(y — ) < (Oz — Oy)(Oy — D).

Since f is an up-set, we get Oz * Oy € f. Hence (Oxz,0y) € 6; as required.

3. Direct computation shows f = fg, and 65, = 6 for every Ifilter § and
congruence . Moreover, the given maps are clearly monotone. It follows that
Con(A) and Fi(A) are isomorphic as posets. Because Fi(A) is isomorphic to the
lattice Con(A), we get that Fi(A) is a lattice that is isomorphic to Con(A). W

The following gives a description of congruence generation in MV(T). Recall
that if (P, <) is a partially ordered set and X C P, then the smallest up-set
containing X is the set X ={y € P: z <y for some z € X}.

Definition 3. Let A be an MV(I)-algebra and let X C A.

1. An I-block is a nonempty word in the alphabet I. We denote the set of I-blocks
by B[.
2. Fg™(X) = {{Mi(z1) - ... My(xn): 1,..., 0 € X and My,..., M, € Br}.

Lemma 5. The set Fg™(X) is the least I-filter of A containing X .

Proof. 1t is clear that FgA(X) is an up-set. Note that if y,vy’ € FgA(X) then
there exist My,...,M,,M{,...,M; € By and z1,...,z,,2},...,2) € X with
Mi(z1) - ...  My(z,) <y and M{(z})-... - Mj(z}) <y, whence we obtain
Mi(z1) - ... - My(zy) - Mi(x}) - ... - M](x}) < y -y since - preserve the order
in each coordinate. It follows that y -y’ € Fg®(X). To see that Fg*(X) is
closed under every OO € I, observe that if M;(x;1) - ... My(z,) < y then by
the isotonicity of O we have OM;(x1) - ... - OM,(z,) < Oy. As each O0M; is an
I-block, it follows that O(y) € Fg(X).
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It remains to check that Fg® (X) is the least among the I-filters containing
X. Suppose that f is an I-filter and that X C §. If y € Fg®(X), then there exist
My,...,M, € By and z1,...,x, € X such that M;(z1)-... - M,(x,) < y. Note
that z1,...,x, € f, and since f is closed under O for every ] € I, we have that
M(z) € f for every M € By and every z € f. In particular, this implies that
M (z1), ..., My(z,) € f. Thus y € § since 1§ = §, so Fg*(X) C | as claimed. M

We abbreviate Fg®({z1, ..., 2, }) by Fg® (1, ..., ). Also, for an algebra A
and z,y € A, we denote by Cg®(z,7) the congruence of A generated by (z,y).

Lemma 6. Let A € MV(]), let x,y € A, let Y C A, and consider the set
X ={(l,y):y€Y}. Then:

1. ngA(z,y) = FgA(x * y) = FgA('/E A y)
2. fega(x) = Fg™ (V).

Proof. 1. Note that Cg®(x,y) = {0 € Con(A): (x,y) € 6}, and observe that
for each § € Con(A) we have (z,y) € 0 if and only if x x y € fg. Hence from the
isomorphism given by Lemma4(3) we obtain:

ngA(x,y) = m{f € F'(A> THYE f} = FgA(‘r * y) = FgA(aj - y)

This proves 1.

2. Since Cg?(X) = Vyey Cg™(1,y), Lemma4(3) and item 1 imply

fegrxry = V fegay = V Fe*y) = Fe* (| {v}) = Fe* ().

yey yey yey
This proves 2. |

Recall that an algebra B has the congruence extension property (or CEP) if
for every subalgebra A of B and for any § € Con(A), there exists £ € Con(B)
such that € N A2 = 6. A variety V is said to have the congruence extension
property if each B € V does.

Theorem 2. MV(I) has the congruence extension property.

Proof. Let A,B be MV(I)-algebras, and assume that A is a subalgebra of B.
From Lemmad4, it follows that proving the congruence extension property for
MV(I) is equivalent to showing that every I-filter of A can be extended by an I-
filter of B. For this, let f € Fi(A) and set g = Fg® (). In order to prove f = gN A,
let y € gN A. Then since y € g there exist My,..., M, € By and z1,...,z, € f
such that My (z1)-...-My(z,) < y. Since f is an I-filter of A, we have M;(z;) € §
for every 1 < j <n. As y € A, it follows that y € f and gN A C §. The reverse
inclusion is obvious, and the result follows. |
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Of course, the CEP persists in subvarieties of a variety with the CEP. Thus:
Corollary 2. Fach of SAMV(I), SAMV, and S4MV has the CEP.

The CEP has far-reaching logical consequences. Recall that a logic L has
the local deduction-detachment theorem (or LDDT) if there exists a family
{d;(p,q): j € J} of sets d;(p,q) of formulas in at most two variables such that
for every set I' U {¢, 9} of formulas in the language of L:

I'otL Y < Tty d;(p, ) for some j € J.

As a consequence of [4, Corollary 5.3], if L is an algebraizable logic with equiv-
alent variety semantics V, then L has the LDDT if and only if V has the CEP.
Therefore from Theorem 1, Theorem 2, and Corollary 2 we obtain:

Corollary 3. Fach of L(I), S4L(I), S4L, and S4¢L has the LDDT.

From our analysis of congruences in MV(I), we may give a more explicit
rendering of this result. If V is a variety, we denote by Fy(X) the V-free algebra
over X. Further, if ¢ is a formula, denote by @ the image of ¢ under the natural
map Fm(X) — Fy(X) from the term algebra Fm(X) over X onto Fy(X). If
I is a set of formulas, also denote by I' = {¢ : ¢ € I'}. The following lemma
restates [21, Lemma 2].

Lemma 7. Let © U {p =~ v} be a set of equations in the language of V, and
take X to be the set of variables appearing in O U {p =~ }. Then the following
are equivalent:

1. O v =1 .
2. ($.9) € Venseo 87V (€,0).

Theorem 3. Let I be a set of unary connectives with I N L = (), and suppose
that L is an axiomatic extension of L(I) that is algebraized by the subvariety V
of MV(I). Further, let I' U AU{¢} C Fmgy. Then I A Fr o) if and only if
for some n > 0 there exist I-blocks My, ..., M, and ¥1,...,%, € A such that
g [T M) — o

Proof. We give the proof of the left-to-right direction; the proof of the converse
is similar. From Corollary 1(1) and Lemmas7 and 4 we obtain:

= (¢, ) € \/aeFuA Cg" X)(oz 1)
— 1 € Fg™VEX)(Iu A),

where X is the set of variables appearing in I"'UAU{«}. By Lemma5 there exist
[ >0, I-blocks My, ..., M;, and X1,..., X1 € TUA with My(x1)-...-Mi(xp) <.
Let D = {j € {1,...,l} :Xj € A}, and set C = D\{l,...,l}. Then by the

commutativity of - we have

I M%) - TT Me(xw) = Ma(xa) - - - Mi(x) < 9,

jec keD
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whence by residuation [ [, M;(X;) < [Irep Mr(Xx) — 1. Applying Lemma 5
again gives [[,cp Mi(Xx) — ¥ € Fg"™v(™)(I"). Hence by Lemmas4 and 7 and
Corollary 1(1) we obtain I' by, [[,cp Mir(xx) — . [ ]

Notice that the form of the local deduction-detachment theorem announced
in Corollary 3 may be recovered from Theorem 3 by taking A = {¢} and taking
dy(p,q) = Mp — ¢ for M € By.

In the monomodal logic S4L, I-blocks take an especially simple form. Because
I = {0} in this setting, each I-block M is a finite, nonempty string of occurrences
of 0. Since O is idempotent in S4MV, for each {{0}-block M we have that
Mz ~ Oz is satisfied in S4MV. Due to this consideration and the fact that O
preserves -, we may read off the following simplified form the LDDT for S4L:

Corollary 4. Let I'UAU{¢} C Fmgny. Then I', A bgap, 2 if and only if for
some n > 0 there exist Y¥1,...,%, € A such that I' Fgag, D(H?Zl ;) — .

If 7 = {0O,...,0,} is finite, then particular forms of the LDDT can
be achieved for S4L(I) and its extensions by defining an operator A(z) =
[T, O;(z). Powers of A are defined recursively by \°(z) = x and A™*!(z) =
A(A™(z)) for m > 0. Ifilters of S4AMV (I)-algebras may be characterized with
powers of A instead of I-blocks. A full discussion of this alternative approach will
appear in future work.

5 Two Translations

We now arrive at our main translation results. After discussing some necessary
technical background regarding the Jipsen-Montagna poset product construc-
tion, we exhibit two translations. The first of these embeds GBL into S4L, and
is conceptually in the spirit of the classical Gédel-McKinsey-Tarski translation
of intuitionistic logic into S4. The second translation embeds GBL in S4¢L.

5.1 Poset Products

The translation results of this paper rely heavily on the poset product construc-
tion of Jipsen and Montagna (see [19,20]), which we now sketch. Our discussion
of poset products is drawn mainly from [12], to which we refer the reader for a
more detailed summary.

Let A be a bounded commutative integral residuated lattice. A conucleus on
A is an interior operator 7 on the lattice reduct of A such that v(z)v(y) < v(zy)
and y(z)v(1) = v(1)y(z) = ~(z) for all x,y € A. Given a conucleus vy on A,
the v-image A, = (4,,A,,V,,—,,0,7(1)) is a bounded commutative integral
residuated lattice, where A, = y[A] and =, y = y(z x y) for x € {A, —}.

Now let (X, <) be a poset, let {A, : x € X} be an indexed collection of
bounded commutative integral residuated lattices with a common least element
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0 and a common greatest element 1, and let B = [] .y A;. From [20, Lemma
9.4], one may define a conucleus o on B by

flx) i flyy=1lforally>zx
0 if there exists y > = with f(y) # 1.

The algebra B, is called the poset product of {A, : x € X}, and is denoted
H(X,g) A.. An element f € B, is called an antichain labeling or ac-labeling, and
satisfies the condition that if z,y € X with < y then f(z) = 0 or f(y) = 1.
The following is a direct consequence of [20, Corollary 5.4(i)] and its proof.

Lemma 8. Let A be a GBL-algebra. Then there exists a poset (X, <) and an
indezxed family { A, : x € X} of totally ordered MV-algebras such that A embeds
in the poset product B,, where B =], .y Az.

Following [17], for a poset (X, <) and indexed family {A, : € X} we introduce

amap d on B=T[ . A, by
flx) if f(y) =0forally <z
5Py = {1 W =0 )
1 if there exists y < z with f(y) # 0.

The following lemma illustrates that ¢ and § provide algebraic interpretations
of modals, which is crucial in obtaining our translation results.

Lemma 9. Let (X, <) be poset, let {A, : © € X} be an indexed family of
bounded commutative integral residuated lattices, and set B = [] A, as
above. Then:

rzeX

1. o and —6— are {A,-,0,1}-endomorphisms of B.

2. Forall fige B, f <o(g) if and only if 6(f) < g.

8. =6 is an interior operator.

4. If additionally A, is an MV-algebra for oll x € X, then (B, o) is an S4MV-
algebra and (B, o,—0-) is S4tMV-algebra.

Proof. 1. Tt is obvious that o(0) = 0 and o(1) = 1. Let x € {A,-}, z € X,
and f,g € B, and observe that if y > x then (f x ¢g)(y) = 1 if and only if
fly) = gly) = 1. It follows that if (f x g)(y) = 1 for all y > x, then o(f
g)(x) = (fxg)(x) = f(z) xg(z) = o(f)(x) x o(g)(x), and if otherwise then
o(f*xg)(x) =0=0(f)(x)*o(g)(x). Thus o(f * g) = o(f) *o(g).

To prove that —=d— is a {A, -, 0, 1 }-endomorphism, again let x € {A, -}, z € X,
and f,g € B. Note that for all y < x we have —=(f x g)(y) = 0 if and only
if (fxg)(y) = 1, and as before this occurs if and only if f(y) = g(y) = 1.
Thus we have =(f x g)(y) = 0 for all y < z if and only if —f(y) = 0 for all
y < z and —g(y) = 0 for all y < x. Hence if =(f x g)(y) = 0 for all y < =z,
then we have ~6-(/ % )(2) = ~~(f * 6)(x) = /(&) % g(z) = == (&) % ~g(x) =
—0—f(z)*x—d—g(x). On the other hand, if there exists y <  with =(f*g)(y) # 0,
then —6—(f * g)(x) = =1 = 0, and —d—f(x) x ~d—g(x) = 0 since one of d—f(y)
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or d—g(y) must be 1. Since =6—0 = 0 and ~d—1 = 1 by direct calculation, item
1 follows.

2. Suppose f < o(g) and let € X. Since o is an interior operator, f(z) <
o(g)(z) < g(x). It 6(f)(x) = f(z), then 6(f)(z) < g(x) is immediate. On the
other hand, if 6(f)(z) # f(z) then there exists y < x such that f(y) # 0. From
f < o(g) we infer that o(g)(y) # 0, so o(g)(z) = 1 since o(g) is an ac-labeling.
Thus §(f)(z) < 1 = o(g)(x) = g(z). It follows that §(f) < g. The proof that
0(f) < g implies f < o(g) is similar.

3. It is easy to see that ¢ is a closure operator. From this and the fact that
— is an antitone involution, it is a straightforward calculation to show that —d—
is an interior operator.

4. Under the hypothesis, B is a product of MV-algebras and is hence an MV-
algebra. That (B, o) is an S4MV-algebra follows promptly from item 1 and the
fact that o is an interior operator. That (B, o, —0—) is a S4;MV-algebra follows
from items 1, 2, and 3. |

Lemma 10. Suppose that (A,0) is an S4MV-algebra and (B,G,H) is a
S4 MV-algebra. Then both 0 and G are conuclei, and each of Ag and Bg is a
GBL-algebra.

Proof. Each of 0 and G is a conucleus by definition. For each claim, it suffices to
show that if M is an MV-algebra and ~y is a conucleus on M preserving - and A,
then M., is a GBL-algebra. For this, it is enough to show that M., satisfies the
divisibility identity z-(x — y) = zAy. Let x,y € M,,. Since M is an MV-algebra,
we have that o -M (z =M y) = 2 AM y. Using the fact that ~ preserves - and A,
and that =,y are ~-fixed, we have:

MW( M

2 M (g Mo y) = o Moy(e M y)

This proves the claim. |

5.2 The Translations
We define a pair of translations M and 7" from the language £ into the languages
£(0) and L(G, H), respectively. We set M (p) = Op for each p € Var, M(0) = 0,
M(1) =1, and we extend M recursively by

M(p %) = M()  M(8), for € {A, V,}, and

M(p — ) =0O(M(p) — M(1))).
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Further, if I" is a set of formulas of £ then we define
M(I") ={M(p) : p € I'}.

The translation T differs from M only by replacing [0 by G and considering its
codomain to be formulas of £(G, H) rather than those of £(OJ).

Lemma 11. Let (A,0) be an S/MV-algebra, and let (B,G,H) be a S4tMV-
algebra.

1. Suppose that h: Var — (A,0) is an assignment, and define h: Var — Aq by
h(p) = O(h(p)). If ¢ € Fmy, then h(p) = h(M(p)).

2. If p € Fmy, then o ~ 1 is valid Ap if and only if M(p) ~ 1 is valid in A.

3. Suppose that h: Var — (B, G, H) is an assignment, and define h: Var — Bg
by h(p) = G(h(p)). If ¢ € Fmg, then h(p) = h(T(p)).

4. If o € Fmy, then ¢ = 1 is valid Bg if and only if T(p) =~ 1 is valid in B.

Proof. We will prove items 1 and 2. Item 3 follows by a proof identical to that of
item 1 by replacing O by G, M by T, and (A,0) by (B, G, H). Similarly, item
4 follows from the same proof given for item 2.

1. We argue by induction on the height of ¢. If ¢ is a constant or ¢ € Var,
then the statement is true by assumption. Now suppose that for all formulas
¢’ of height strictly less than the height of ¢ we have that h(y') = h(M(¢')).
If o = ¢ *x for x € {:,A,V}, then by definition h(M(p)) = h(M () x x)) =
h(M () * M(x)) = h(M(¢)) x h(M(x)). By the inductive hypothesis, the latter
is precisely k(1) x h(x) = h(¢ % x) = h(p) as desired. On the other hand, if
¢ =1 — x then we have that h(M(p)) = H(M (¢ — x)) = H(OM () —
M(x))) = Oh(M () — h(M(x))). By the inductive hypothesis, this term is
equal to O(h(p) — h(x)) = h(v)) =20 h(x) = h(x) — x) = h(p). The result
follows by induction.

2. Suppose first that ¢ ~ 1 is valid in Ag, and let hA: Var — (A,0) be
an assignment. By item 1, h: Var — AQ is an assignment in Ag and h(z) =
h(M(3)) for all ¢» € Fm,. In particular, this shows that h(M(p)) = h(yp) =
since ¢ &~ 1 is valid in A, so as h is arbitrary we have M (p) = 1 is valid in A.

For the converse, suppose that M (¢) ~ 1 is valid in A and let h: Var — A
be an assignment. Because A C A, we may define a new assignment k: Var —
(A,0) by k(p) = h(p) for all p € Var. Since M(p) ~ 1 is valid in A, we have
k(M (¢)) = 1. By item 1, we have that k(M(p)) = k(p), where k: Var — Ag is
defined by k(p) = O(k(p)). Notice that since k has its image among the C-fixed
elements of A, we have for all p € Var that /%(p) = 0(k(p)) = k(p) = h(p), and
thus k = h. Thus h(p) = k(p) = k(M(¢)) =1, so ¢ ~ 1 is valid in Ap. ]

The following gives the main translation results of this paper.
Theorem 4. Let I' U {p} C Fmg. Then:

1. {wk’l:?pEF}':GBchQﬂl < {M(i/))%l:i/)GF}ﬁszmﬂvM((p)Qﬂl
2. I'FgBL ¢ — M(F) Fsax, M(SO)



190 W. Fussner and W. Zuluaga Botero

3. {wwliwep}':GBLgO%l <~ {T(¢)%12¢€F}'254tMvT((p)%1.

4, I'FeBL p < T(F) |_54t}_, T((p)

Proof. We first prove item 1. Suppose that {¢) =~ 1: ¢ € I'} FgprL ¢ ~ 1, let
(A,0) be an S4MV-algebra, and let h: Var — (A, ) be an assignment. We aim
to show {M(¢) = 1:9 € I'} Fsamv M (¢) ~ 1, so suppose that for all ¢ € I" we
have h(M (1)) = 1. By Lemma 11(2) we have that 1 = h(M (1)) = h(2). Since h
is an assignment in A (which is a GBL-algebra by Lemma 10), by hypothesis
we have h(p) = 1. Applying Lemma 11(2) again yields h(M(p)) = 1, showing
that {M () =1:9 € I'} Fsamv M (p) = 1.

For the converse, suppose that {M(¢¥) = 1:9 € I'} Fsamv M(p) ~ 1. Let A
be a GBL-algebra, let h: Var — A be an assignment, and suppose that h(¢)) =1
for all ¢ € I'. Tt is enough to show that h(¢) = 1. By Lemmas8 and 9, there
exists an S4MV-algebra (B, ) such that A embeds in B, and without loss of
generality we may assume that this embedding is an inclusion. Using the fact
that A C Bg C B, we define a new assignment k: Var — B by k(p) = h(p) for
all p € Var. Notice that for all p € Var we have k(p) = Ok(p) = Oh(p) = h(p)
since the image of h consists of [-fixed elements, so by Lemma 11(2) we have
h(x) = k(M(x)) for all x. In particular, k(M (¢))) = 1 for all ¢y € I', and by the
hypothesis we have k(M (¢)) = 1. But this implies h(¢) = 1, proving the result.

Note that item 2 follows from Corollary 1 since we have:

I'tgeLy < {Y=1:9pel}EgLer~1
= {M())=1:9 €'} Fsamv M(p) =~ 1
< M(I') Fsar M(p).
Items 3 and 4 follow analogously to items 1 and 2, respectively. |

As a final remark, we note that the temporal translation of Theorem 4(3, 4)
generalizes the translation offered in [2]. Godel-Dummett logic is the extension
of propositional intuitionistic logic by the axiom scheme (¢ — )V (¥ — ),
and is algebraized by the variety of Godel algebras (i.e., BL-algebras satisfying
2% ~ x). In [2], the authors deploy the temporal flow semantics (see [1]) based
on so-called bit sequences to exhibit a translation of Godel-Dummett logic into
an axiomatic extension of Prior’s classical tense logic. This study was inspired
by [12], which offers a relational semantics based on poset products that, among
other things, generalizes the temporal flow semantics (see [12, Section4.2]). Our
development of the translations above can hence be thought of as extending
the work of [2] along the generalization offered in [12]. Poset products give a
powerful, unifying framework for inquiries of this kind, and we anticipate that
they will find far-reaching application to translations. A thorough investigation
of modal translations and modal companions for GBL remains to be conducted,
but we expect the work in this paper to be an important preliminary step.
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Abstract. This paper investigates the interplay between isolated sub-
lattices and closure operators. Isolated sublattices are a special kind of
sublattices which can serve to diminish the number of elements of a lat-
tice by means of a quotient. At the same time, there are simple formulae
for the relationship between the number of closure operators in the orig-
inal lattice and the quotient lattice induced by isolated sublattices. This
connection can be used to derive an algorithm for counting closure oper-
ators, provided the lattice contains suitable isolated sublattices.

1 Introduction

Closure or hull operators, i.e., idempotent, isotone and extensive endofunctions
on some carrier set, are a common and widespread concept in mathematics
and computer science. Some of the most prominent examples are the (reflexive)
transitive closure of a relation or a graph, the Kleene closure in language theory
or the topological closure in traditional analysis. More sophisticated applications
concern automated reasoning as in [11], database theory as in [10] or the algebraic
description of connected components as in [12]. However, most of the work uses
closures as a tool for specific purposes rather than investigating their general
properties.

The biggest part of the work concerning closure properties deals with closure
functions operating on the power set of some carrier set, here also under the term
Moore family (see e.g. [7] for a survey and [6] for recent results). Other work
deals mostly with properties of closure functions on lattices albeit the definition
of a closure operator requires only a simple ordered set.

Counting structures of interest has become a rising theme of investigation in
lattice theory and related areas of research. For example, [1] counts various kinds
of doubly idempotent semirings, [16] deals with join-endomorphisms in lattices,
the subject of [3] are topological spaces and [5] generates and counts a certain
kind of bisemilattices. However, there is no work concerning the number of clo-
sure operators in general lattices or orders. The only results we are aware of con-
cern the power set lattice (P(S), C). There, the exact number of closure operators
is known only up to |S| = 7 (for curiosity, there are 14.087.648.235.707.352.472
of them, as shown in [8] only in 2010).
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In this paper, we introduce a heuristic method for structuring lattices in a
way that eases under certain circumstances the computation of the number of
closure operators. It is based on so called isolated sublattices which are intuitively
speaking sublattices which have contact with the rest of the lattice only via their
top and bottom element. By means of quotient lattices we can reduce the number
of elements of the lattice under consideration and maybe reach a lattice with a
certain structure for which there are closed formulae for the number of closure
operators.

The remainder of the paper is organized as follows: Sect. 2 gives an overview
over the notation used in this paper and recalls some facts from lattice theory
important for the further course. Section 3 introduces isolated sublattices and
investigates their properties and relationships with closure operators. In Sect. 4
we first introduce closed formulas for the number of closure operators on partic-
ular lattices and then develop an algorithm for computing the number of closure
operators using the previous results. As usual, we give an outlook to future work
in the finishing Sect. 5.

2 Notations and Basic Properties

We assume that the reader is familiar with the basics of order and lattice theory
and refer e.g. to [9,14,17] for more basic and to [4,15] for more advanced top-
ics. However, we recapitulate some less used concepts and their properties and
introduce the notation we will use in the sequel.

To denote orders, we use < and indexed variants where appropriate. The
relation £ is defined by 2 £ y < gcr =(x < y). The signs <, > and > denote the
associated strict order, reverse order and strict reverse order, resp. In a lattice,
we use [ and U for the binary infimum and supremum, resp., and index them if
necessary. As usual, T and L and variants thereof denote the greatest and least
element, resp., if they exist. Given an ordered set (S, <) we may refer slightly
inaccurately also by S to the structure (S, <). We say that x majorizes y if
x > y holds and use the notation maj(x,S") =4er {y € S'|y > x}. We call
two elements = and y comparable, in signs x < y, if v < y or y < z holds. x
and y are called incomparable, denoted by = £ y, if they are not comparable.
A chain is a set S such that every pair of elements of S is comparable. Given
an ordered set (S, <) we call a subset S’ C S convex if for all z,y € S” and all
z € S the implication z < 2 < y = z € S’ holds. We use the familiar notations
[a,0] =ges {x|a <z Az <b} and |a,b] =4 [a,b]\{a} for intervals.

The equivalence class of z under an equivalence relation ~ will be denoted by

[x]~. For a set of sets C' we use the abbreviation | C instead of |J ¢. Conversely,
ceC

C{} denotes the system of singleton sets {{c}|c € C}.
An equivalence relation ~ on a lattice S is called a congruence if for all
o, T1,Y0, Y1 € S the following implications hold:

Lozog~yoAx1~y1=xoMx1 ~ YoMy
2. xg~y ANz ~y1 = oz ~yo Uy



194 R. Gliick

In this case, the quotient lattice S/ ~ is a homomorphic image of S. In
particular, if |[z]~]| = [[y]~] = |[z]~]| = 1, then x My = z is equivalent to {x} M.
{y} = {z} (where M. denotes the infimum operation on S/ ~; the respective
orders, strict orders and their reverses are notated analogously). The analogous
property holds for binary suprema. If [z]. and [y]. are disjoint the equivalence
z <y< [z]. <o [y]~ holds.

As already mentioned in Sect. 1, closures are widely known and used. There
are two ways of characterizing closures. The first one gives a functional charac-
terization:

Definition 2.1. Given an ordered set S an endofunction ¢ on S is called a
closure operator if it fulfills the following properties for all xz,y € S:

1. z < c(x) (extensitivity)
2.z <y=c(z) <cy) (isotony)
3. c(e(x)) = c(x) (idempotence)

The second one uses subsets of the carrier set of a lattice:

Definition 2.2. Given a lattice (S, <) a subset S C S is called a closure system
if it fulfills the following properties:

1. z,ye S =axNye s
2. for every s € S there is a smallest x € S" such that s < x holds.

The set of all closure systems of S is denoted by C(S).

In a finite lattice, the second condition of Definition 2.2 is equivalent to
T € 5. On a lattice, closure operators and closure systems are cryptomorphic
structures since there is a one-to-one correspondence between them: the set of
fixpoints of a closure operator is always a closure system. Conversely, each closure
system C' determines a unique closure operator ¢ with fix(¢) = C (where fix(c)
denotes the set of fixpoints of ¢). This correspondence makes only sense in the
context of lattices; on general orders, we lack an infimum operation as used in
Definition 2.2.

Remark: Definition 2.2 is taken from [14]. However, as one reviewer pointed
out, this definition is redundant:

Lemma 2.3. In Definition 2.2, the second condition implies the first one.

Proof: Denote by c¢(z) the function which maps x to the smallest element from
S’ majorizing z (this is well-defined due to the uniqueness of smallest elements)
and consider arbitrary y, z € S’. Clearly, ¢ is extensive, so we have yMz < ¢(yMz).
Due toy € S’ and yMz < y we have ¢(yMz) < y and symmetrically c(yMz) < z
from where ¢(y M z) < y Mz follows. Alltogether, we have ¢(y M z) = y Mz and
hence y Mz € S’ because of c(yMz) € 5. |

So we will use only the second condition of Definition 2.2 when reasoning
about general, possibly infinite lattices. However, in the context of finite lattices,
we will rather use the characterization given immediately after Definition 2.2.00
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3 Closure Systems and Isolated Sublattices

This section introduces and investigates isolated sublattices. It contains a lot of
results of rather technical nature so we give a short overview as a guideline to
the reader.

Isolated sublattices induce congruence relations so they can be used to con-
struct a quotient lattice. We will define and consider two different kinds of iso-
lated sublattices: those including the top element of a lattice and isolated sub-
lattices with bottleneck. In the algorithm we will introduce in Sect.4 we use
possibly series of quotient constructions. A crucial point to make the algorithm
work is that all the isolated sublattices inducing the quotients in such a series
are disjoint. This is ensured by Lemmata 3.11 and 3.12; the other results up to
this point serve for the preparation of these lemmata.

The second part of this section, starting at Subsection 3.2, investigates the
interplay between isolated sublattices and closures. Given a lattice S and an
isolated sublattice S’ of S, we establish connections between closures of S con-
taining possibly an element of S’ and closures on the quotient induced by S’
containing S’. On the other hand, we show a relation between closures on S
without an element in S’ and closures on the quotient not containing S’. The
main results of this part are the Theorems 3.20 and 3.21.

3.1 Isolated Sublattices

Definition 3.1. Let (S, <) be a lattice. A subset 8" C S is called an isolated
sublattice if it fulfills the following properties:

1. S’ is a sublattice with greatest element Tg and least element Lg .
2. Ve g Sy €Sy <zx=Tg <z
3 Vg Sy eSS :x<y =<1y

Intuitively, this means that S’ can be entered from below only via 1 g and
exited upwards only via Tg/. We call an isolated sublattice S’ a summit isolated
sublattice if Tgr = Tg holds. An isolated sublattice S’ is called nontrivial if
S" # S, and useful if |[S| > 1 holds.

The next definition captures situations where intuitively speaking an order
does not “branch upwards” at an element x:

Definition 3.2. Given an ordered set (S, <) we call an element b € S a bottle-
neck of an element © € S if the following conditions are fulfilled:

1. b> =z,
2. [x,b] is a chain, and
3. y>x=(y€lzr,b]Vy >Db) holds for ally € S.

Remark: This definition os equivalent to the stipulation that x is meet-
irreducible. However, we keep this definition because later proofs rely heavily
on the properties from Definition 3.2. |
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It is straightforward to see that if b is a bottleneck of x then every element
in Jx,b] is also a bottleneck of x. An isolated sublattice S’ is called an isolated
sublattice with bottleneck b if b is a bottleneck of T gr. The purpose of a bottleneck
of an isolated sublattice will be explained in the remark after Lemma 3.17.
Figure 1 gives examples for different kinds of isolated sublattices.

Fig. 1. An isolated sublattice (without bottleneck, left), an isolated sublattice with
bottleneck (right) and a summit isolated sublattice (top)

Given a lattice (S, <) and an isolated sublattice S’ we define a relation ~g/
by  ~g y Sger x =yV(z € S'Ay € §'). Clearly, ~g is an equivalence relation
with S’ as an equivalence class whereas all other equivalence classes consist of
exactly one element in S\\S’. Moreover, ~g is even a congruence:

Lemma 3.3. Let S’ be an isolated sublattice of a lattice (S,<). Then ~g/ is a
congruence relation on (S, <).

Proof: Let us pick arbitrary zg, 21,49, y1 € S and assume that both zg ~g/ 21
and yo ~g y1 hold. We distinguish the following cases:

1. 29 ¢ S"Ayo ¢ S’: Here we have xp = 21 and yo = y1 by definition of ~g, and
hence zo Uyg = 21 Uy
2. xg € S’ Ayg € S": Then we have also x1; € S’ and y; € S’ by definition of ~g.

Because S’ is a sublattice this implies both z¢ Llyg € S’ and z; Ly, € S".

3. 20 € 8" Nyg ¢ S": Here 21 € S’ and yp = y1 hold and we distinguish three
cases:

a) yo < zo: By definition of an isolated sublattice this implies yg < Lg.
Consequently, we have also 1y < x1 due to xg € S” and zg ~g 1. So we
have o Uyy = xg and =1 Uy; = x1 Uy = x1, hence zg Uy € S’ and
Ty Uy € S’

b) zo < yo: By definition of an isolated sublattice this implies T g < yo and
hence also x1 < yp. From this in turn follows xo Uy = yg = =1 Uy =
x1 Uy,



Isolated Sublattices and Their Application to Counting Closure Operators 197

c) zo £ yo: We claim that here zg Uyo = Tg Uy holds. Due to zp € S’
and hence zo < Tg/, Tg LU yg is an upper bound of both zy and yy so
assume there is a 2z < Tg Uy with g < z and yg < z. Then z can not
be an element of S’: in this case we would have 1y < Lg due to yy < z,
yo ¢ S’ and definition of an isolated sublattice. Now zg < z and z ¢ S’
imply Tg < z, hence z is an upper bound of both yg and T g/ strictly less
than T g Uy which is a clear contradiction. An analogous argumentation
shows 1 Uyo = yo U Tg and hence (due to yg = y1) o Uyo = 1 Uy

In all three cases we have xgllyg ~g/ x1Uy;. This holds also by commutativity
of the supremum operator for the case g ¢ S" Ayp € S’, and a symmetrical
argumentation shows the analogous claim for the infimum operator. Hence, ~g-
is indeed a congruence relation. |

Remark: Note that not every equivalence class of a congruence is an isolated
sublattice: consider for example the congruence on (7, <), defined by « y < qey
(x>0Ay>0)V(z<0Ay <0). Both equivalence classes lack either a greatest
or a least element, hence they do not fulfill the first point of Definition 3.1.
However, under certain circumstances, congruences induce isolated sublattices:

Lemma 3.4. Let be a congruence such that is at most one x with |[z]~] > 1
and assume that Ty, and L) ewist. Then [z]~ is an isolated sublattice.

Proof: Lemma 10 in [14] shows that [z]. is a sublattice so we pick arbitrary
z' € [z]~ and y ¢ [z]. with z < y. By homomorphism we have [z]. <. [y]~
and hence T, <y because [r]. and [y] are disjoint and due to [y] = {y}. The
case x > y can be treated symmetrically. |

In particular, the existence of Tz]. and L;z]. is ensured if the lattice under
consideration is finite. d

Note that this means in particular that an isolated sublattice S’ is convex
because it is an equivalence class of a congruence (see e.g. [14]). This means
that S’ equals the interval [Lg/, T s/]. However, not every interval is an isolated
sublattice; consider e.g. the interval [}, {1}] in the lattice (P({1,2}),C) as a
counterexample (here, ) C {2} holds but not {1} C {2}, contradicting point 2.
of Definition 3.1).

Lemma 3.5. Let S1 and Sy be two isolated sublattices with S1 N Sa # 0. Then
{Lls,,Ls,, Tsy, Tso} is a chain.

Proof: Consider an arbitrary s12 € S1 NS, If Tg, € S5 holds then Tg, < Tg,
is obvious. In the case Tg, ¢ Sy we have Tg, < Tg, due to s12 € S2, $12 < Tg,
and the definition of an isolated sublattice. A symmetric argumentation shows
lg, < Llg,. The rest follows from lg,, Llg, <512 < Tg, Ts,- |

Lemma 3.6. Let S and So be two isolated sublattices with S1 N So # (. Then
S12 =des S1 U Sz is an isolated sublattice, too.
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Proof: By Lemma 3.5 we know that {lg,,ls,, Ts,, Ts,} is a chain so let
us assume w.lo.g. that Lg, < Lg, holds. In the case Tg, < Tg, we have
[Ls,, Ts,] € [Ls,, Ts,] and the claim follows immediately since isolated sub-
lattices are intervals. The case Tg, < Lg, is ruled out by S; N Sy # () so the
remaining case is Lg, < 1lg, < Tg < Tg,.

To show that in this case Sis is a lattice we pick two arbitrary z,y € Sia. If
z,y € S or z,y € S holds we are done due to the properties of a sublattice so
the crucial case is w.l.o.g. € S2\S1 Ay € S1\S2. By y € S; we get y < T, and
by Tg, € Sz (this follows from g, < Tg, < Tg, and convexity of S3) we obtain
y € SaVy < Lg,. However, the case y € Sy is impossible due to y € S1\S2 so
y < Lg, has to hold which implies y < z. Hence we have x My = y € Si5. For
the supremum the argumentation is dual. Clearly, 1g,, = Lg, and Tg, = Tg,
hold.

Consider now arbitrary s1o € S12 and x ¢ S12 with s12 < z. If 519 € S holds
we obtain x > Tg, = Tg,, because Sy is an isolated sublattice so we assume
now that s is an element of S;. Then we have x > Tg, due to properties of
Si. But now we conclude x > Tg, from Tg, € Sy and = ¢ So. Again, the case
z < s12 can be treated symmetrically. |

After this it is easy to see that S;US5 is an isolated sublattice with bottleneck
if S7 and S, are isolated sublattices with bottlenecks, and that S; U Ss is a
nontrivial summit isolated sublattice if S and S are nontrivial summit isolated
sublattices. Since summit isolated sublattices share T as a common element we
obtain the following theorem with the help of Lemma 3.6:

Theorem 3.7. Let (S, <) be a lattice.

1. Two different inclusion-mazimal sublattices with bottleneck of (S, <) are dis-
joint.

2. (S,<) has at most one nontrivial inclusion-mazimal summit isolated sublat-
tice.

The intuitive statement of the next lemma is that isolated sublattices in a
quotient lattice induced by an isolated sublattice correspond to isolated sublat-
tices in the original lattice:

Lemma 3.8. Let S’ be an isolated sublattice of (S, <) and let Sg be an isolated
sublattice of S/~g:. Then S" =qcy |JSs/ is an isolated sublattice of S.

Proof: First we show that S” is indeed a sublattice of S, and therefore we pick
two arbitrary z,y € S”. If 2,y € S’ holds then we have x My € S’ because S’
is a sublattice of (S, <) and hence x My € S”. In the case x,y ¢ S’ we have
{x} N, {y} € Ss: (note that in this case both [z]., and [y]., are singleton
sets) and hence zMy € S”. W.l.o.g. the remaining case is x € S’ Ay ¢ S’. If here
S' M~y {y} = 8" holds we conclude 2 < y and hence My = z € §”. Otherwise
we have S’ M., {y} = {z} for some {z} € Sg with {2} # S’ and claim that
x My = z holds. By homomorphism, z is a lower bound of z and y so assume
that there is a lower bound 2z’ of x and y with z < z’. Again by homomorphism,
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[#']~g, is a lower bound of {x} and {y}, and due to infimum properties we have
[#']~s <5 {z}. By assumption we have [2']._, # S’ which implies [2']._, = {z}
and by infimum properties also {2’} <., {z}. This in turn means 2z’ < z and
hence z = 2’. A symmetric argumentation can be carried out for the supremum.
Obviously, we have Lg» = Lo/ if Lg, =5 and Lgr =z if Lg,, = {x} and a
dual relationship for Tg.

Now we choose arbitrary s € S” and x ¢ S” with s < z. By construction
of 8" we have [s].,, € Ss and [z].,, ¢ Ss/, and by homomorphism we get
(8]~ <~g [7]~g from where we conclude Tg,, <. [z]~, because Sg is
an isolated sublattice. Next we observe that [z]. o and Tg,, are disjoint and
consider first the case that Tg,, is a singleton set. Then we have Tg_, = {Tsr}
and hence Tg» < x. If Tg,, contains more than one element we have Tg,, = S’
and hence Tgr = Tgs. Also in this case T g < x holds by homomorphism and
disjointness of [r]~,, and Tg_,. The case s > x can be treated symmetrically, so
S" satisfies indeed Definition 3.1. [ |

This claim holds even for isolated sublattices with bottleneck:

Lemma 3.9. Let S’ be an isolated sublattice of (S, <) and let Sg/ be an isolated
sublattice with bottleneck of S/~gr. Then S"” =g4c¢ |J Ss is an isolated sublattice
with bottleneck of S.

Proof: From Lemma 3.8 we know already that S” is an isolated sublattice so
we pick an arbitrary bottleneck B € S/~g: of Sg/. We now distinguish several
cases:

1. Ts,, = S Here we have Tg» = Tg. Moreover, B = {b} holds for some b € S,
so b fulfills requirements of Definition 3.2 due to homomorphism properties
(note that all elements of ]S’, B] are singleton sets).

2. B = S": Here we have Tg_, = {T s~} and we claim that Lg is a bottleneck of
S”. Because [{Tg~},S'] is a chain in S/~g/, [Tgr, Lg/] is a chain in S (note
that S/~gs consists only of singleton sets except possibly S’). The remaining
properties of Definition 3.2 are now easy to check.

3. Tsy #S'"NB # 8 1f 8" € [Ts,,,B] holds then B is also a bottleneck
of Sg: and we can proceed as in the previous case. Otherwise, all elements
from S/~g under consideration are singleton sets, and Definition 3.2 is easily
verified by means of homomorphism. |

Also for summit isolated sublattices we have an analogous lemma:

Lemma 3.10. Let S’ be an isolated sublattice of (S, <) and let Sg/ be a summit
isolated sublattice of S/~g/. Then 8" =gy |JSs: is a summit isolated sublattice
of S.

Proof: This is obvious due to T~ _, € Ss/, Lemma 3.8, homomorphism proper-
ties and construction of S”. |
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In our algorithm we will be confronted with the iterative construction of
quotients, so we investigate some properties thereof. We call a (finite or infinite)
sequence Sy, S1, 92, ... of lattices a quotient sequence if for all i the relationship
Siy1 = Si/ws; holds for some isolated sublattice S} of S;.

The next lemma states intuitively that we can factor out an inclusion-
maximal useful summit isolated sublattice at most once:

Lemma 3.11. Let Sy, S1,S52,... be a quotient sequence such that S = SO/NS(]
holds for an inclusion-mazimal useful summit isolated sublattice Sj,. Then no S;
with © > 0 contains a useful summit isolated lattice.

Proof: Assume that some S; with ¢ > 0 contains a useful summit isolated
lattice S}. Then we could construct an inclusion-maximal summit isolated sub-
lattice S{ D of Sy from S! backwards along the lines of Lemmata 3.8 and 3.10,
contradicting the inclusion-maximality of S} |

The statement of the next lemma is that - disregarding the operation -} - an
element can be part of an inclusion-maximal isolated sublattice at most once in
a quotient sequence (the notation (J" C is defined inductively by |J° C =405 C
and J" C =4 U(U" O); intuitively speaking, [J" C' strips n set braces from
the elements of C):

Lemma 3.12. Let Sy, S51,S52,... be a quotient sequence such that S;11 =
Si/NSl{ holds for an inclusion-mazimal useful isolated sublattice with bottleneck

S for all i > 0. Then S, and Ujfi S% are disjoint for all i, j with j > i.

Proof: Clearly, S; and (JS;,, are disjoint due to the first part of Theorem 3.7
and Lemma 3.9. The rest is simple induction. ]

3.2 Isolated Sublattices and Closure Systems

Now we will examine the interplay between isolated sublattices and closure sys-
tems. As a first observation, we note that by Lemma 3.3 S/~g is a homomorphic
image of (S, <) if S’ is an isolated sublattice of (S, <). Hence it is easy to see that
the two conditions from Definition 2.2 can be transferred from a closure system
of S to a corresponding system in S/~g:. This shows essentially the following
lemma:

Lemma 3.13. Let (S, <) be a lattice, S' an isolated sublattice of (S,<) and
consider a closure system C of (S, <).

1. IfCNS" =0 then CY is a closure system of S/~g:.
2. IfCNS" #0 then (C\S) U{S'} is a closure system of S/~g:.

The reverse direction, i.e., reasoning about closure systems in S starting
from closure systems in S/~g, is a little bit more elaborate. We start with the
following definition:
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Definition 3.14. Let (S, <) be a lattice with greatest element T. A subset C C S
is called a preclosure system of (S, <) if CU{T} is a closure system of (S, <).
The set of all preclosure systems of (S, <) is denoted by PC(S).

Note that every closure system is also a preclosure system and that the empty
set is a closure system, too. Moreover, if C(S) is finite then |PC(S)| =2 - |C(S)]
holds. Clearly, a preclosure system is closed under M. Moreover, in a nonempty
preclosure system we find a least element majorizing | (which is also a least
element of the preclosure system):

Lemma 3.15. Let C be a nonempty preclosure system of a lattice (S, <) with
least element Lg and greatest element Tg. Then there is a least element c € C
magorizing 1Lg.

Proof: If Tg € C holds then C is even a closure system and the claim follows
immediately from Definition 2.2. Otherwise, C" =40y CU{T g} is a closure system
hence there is a least ¢/ € C’ with Lg < ¢/. However, ¢’ can not equal T g because
C’ contains at least one other element except Tg; hence we get ¢ € C. [ |

By means of preclosure systems we can characterize the structure of the
intersection of a closure system and an isolated sublattice:

Lemma 3.16. Let C be a closure system on a lattice S with greatest element
T, and let S’ be an isolated sublattice of S with greatest element Tg and least
element Lg. Then C' =gy C NS is a preclosure system of S’. Moreover, if S’
is a summit isolated sublattice then C' is a closure system of S’.

Proof: First we show that Cfrsl =ges C'U{T g} is closed under binary infimum.
Therefore we pick two arbitrary 2,1y’ € Ct_,. If one of them equals T g/ we have
Ny e {d,y} C C/Ts/ and we are done; otherwise we have z’,y’ € C’. By
definition of a sublattice, we have 1 g < x’,3y’ < Tg and hence 1g < 2/ My <
Ts/. By convexity of S’ this implies 2’ My’ € 5.

For the second criterion of Definition 2.2 we consider an arbitrary s’ € S’.
Then there is a smallest € C with s’ < z. If z is an element of S’ then it is
by definition also an element of C/Ts/ so assume that ¢ S’ holds. Then, by
definition of an isolated sublattice, we have T g/ < x so it is easy to see that T g
is a smallest element of C’irsl majorizing s’. |

Now we can formulate the “verse” lemma of Lemma 3.13 in the case of
isolated sublattices with bottleneck:

Lemma 3.17. Let (S, <) be a lattice and S’ an isolated sublattice of S such that
Ts has a least bottleneck b. Assume that Cs/ is a preclosure system of S' and let
C" be a closure system of S/~g with S" € C'. Then C =4.5 J(C'\{5"}) U Cs/
is a closure system of (S, <).

Proof: According to Lemma 2.3 it suffices to show that for every z € S there
is a least ¢ € C with < ¢. Hence we distinguish the following cases:
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1. x ¢ S’: Then there is a least ¢’ € C' with {z} <._, ¢. Again, there are two
cases:

a) ¢ # 5" Then ¢ has the form {¢’} for some ¢’ € C. Clearly, z < ¢’
holds by homomorphism properties and let us assume there is a ¢’ € C
with ¢/ £ ¢” and © < ¢”. If ¢ ¢ Cg then we have {z} <. {¢"},
contradicting the fact that ¢ is the least element majorizing {z}. In the
case ¢ € S" we have {z} <g contradicting the fact ¢’ # S’ because {c¢"}
was supposed to be the least element majorizing {z}.

b) ¢’ = 5’: Here we have again two cases:

i. Cgs # : Because Sgs is nonempty there is by Lemma 3.15 a least
element ¢’ € Cs» majorizing Lg. Clearly, z < ¢” holds ({z} <., S’
implies z < Lg/) so let us assume there is a ¢’/ with ¢/ £ ¢” and
x < . " can not be an element of Cgs (then it would be an element
different from ¢’ majorizing Lg) and hence no element from S’ so
[¢"]~, = {c""} has to hold. But then {¢”’} would majorize {x} with
S" £~y {c”"}, contradicting the choice of ¢

ii. Cs» = 0: By homomorphism, {b} is the least bottleneck of S’ in
S/~g:. In particular, this means {y} >~ , S’ & {y} >, {b}. Hence,
maj({z},C") can be partitioned as maj({z},C") = {S'}Umaj({b}, C").
Because C’ is a closure system there is a least element {c¢”’} of
maj({b},C"). On the other hand, we have also maj(z, C) = maj(b, C)
by an analogous argument as above (note that C' NS = @ holds).
By homomorphism, ¢” is the least element of maj(b, C') and hence the
least element of C' majorizing x.

2. x € S’ Because Cg is a preclosure on S’ there is a least element ¢ of
maj(x, S’ U Tg ). Again, we have two cases:

a) ¢ € Cgs: By definition of on isolated sublattice, all elements in S\S’ are
strictly less than L g/ (and can hence not majorize x) or strictly greater
than Tg (and can hence not be a minimal element majorizing z). So ¢ is
the least element of maj(z, C).

b) ¢ ¢ Cg:: In this case, we have ¢ = Tg/. An argumentation analogous to
case 1.a)ii. shows that ¢’ is the least element of C' majorizing x where {c}
is the least element of maj({b},C"). ]

Remark: The requirement that Tg has a bottleneck element is necessary for
the correctness of Lemma 3.17. To see this, take a look at Fig.2. At the left,
a preclosure system, indicated by encircled elements, on an isolated sublattice
without bottleneck of its top element, indicated by an ellipse, is shown. The
middle picture shows a closure system on the associated quotient lattice, indi-
cated by circles. However, the construction from Lemma 3.17 leads to the set of
encircled elements in the right picture which is not closed under binary infimum
and hence is no closure system. This shows one effect of a bottleneck: it prevents
the necessity that the top element of an isolated sublattice is the infimum of two
elements above it. Moreover, the requirement that T g has even a least bottle-
neck is necessary: consider the lattice S = ([0, 1], <) (where < denotes the usual
order on the reals) and the sublattice S’ = ({0}, <). We choose the empty set
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as preclosure C'g: of S’ and [0, 1]{} as closure system C’. Then the construction
yields for C' the set |0, 1] which is no closure system since it contains no least
element majorizing 0. (]

In a summit isolated sublattice S’, the top element T g obviously can not
have a bottleneck, so Lemma 3.17 is not applicable in this situation. However,
there is a slight variant of it:

Lemma 3.18. Let (S, <) be a lattice and S’ a summit isolated sublattice of S.
Assume that Cs: is a closure system of S’ on (S,<) and let C' be a closure
system of S/~gi. Then C =g4.; |JC'\S"UCs is a closure system of (S, <).

The proof is very similar to the one of Lemma 3.17 so we omit it here. Note
that for every closure system Cg/ of S’ we have T € Cs and hence also S" € C'.
Finally, we consider the case of a closure system C’ on S/~g with S’ ¢ C":

Lemma 3.19. Let S be a lattice and S’ an isolated sublattice with bottleneck of
S and assume that C' is a closure system on S/~g with S’ ¢ C'. Then |JC’ is
a closure system on S.

Fig.2. A preclosure system on an isolated sublattice (left), a closure system on a
quotient (middle) and no closure system on the original lattice (right)

The proof of this lemma is also very similar to the one of Lemma 3.17 so we
leave it to the reader.
Using Lemmata 3.13, 3.16, 3.17 and 3.19 we obtain the following theorem:

Theorem 3.20. Let S’ be an isolated sublattice with bottleneck of a lattice
(S,<), and consider a set C C S.

1. Assume that C" =45 C'NS" # 0 holds. Then C' is a closure system of S iff
C' is a nonempty preclosure system of S’ and (C\S")1} U {S'} is a closure
system of S/~g:.

2. Assume that C NS’ = 0 holds. Then C is a closure system of S iff Ct} is a
closure system of S/~g .
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Analogously, Lemmata 3.13, 3.16 and 3.18 imply the following theorem:

Theorem 3.21. Let S’ be a summit isolated sublattice of a lattice (S,<), and
consider a set C C S. Then C is a closure system of S iff C NS’ is a closure
system of S' and (C\S")B U{S"} is a closure system of S/~g:.

4 Counting Closure Operators

4.1 Closed Formulae for Special Cases

Since we are interested in counting the number of closure operators we assume
from now on that every lattice under consideration is finite.

In the algorithm we will introduce in subsection 4.2 the recursive calls will
have to compute closure system containing already processed elements. So for
a subset T' C S of a lattice S we introduce the notations C(S)r =qcf {C €
C(S)|T € C} and C(S)—ar =4 {C € C(S)r|z ¢ C} for T C S and
x € 8. Trivially, C(S) = C(S)y (the empty set imposes no constraints) and
C(S)r = C(S)r\(1s3 = C(S)ru(Tsy (every closure system has to contain Tg)
hold. Moreover, C(S)r is the disjoint union of C(S)py(zy and C(S)_, 1 so we
have the equality |C(S)r| = [C(S)ruiz}| + IC(S)—z,7]-

Before we introduce a general divide-and-conquer algorithm for counting clo-
sures we examine some special cases which can serve as terminal cases for this
algorithm. The first one concerns chains:

Lemma 4.1. Let (S, <) be a chain with n elements and consider an arbitrary
T C S. Then we have |C(S)p| = 21 -IT\{TsH,

Proof: It is straightforward to see that for a finite chain (S, <) aset C C Sisa
closure system according to Definition 2.2 iff it contains Tg. The claim follows
now from the formula for the cardinality of power sets. ]

Next, we consider lattices with only one layer of elements between the bottom
and top element:

Definition 4.2. A lattice (S, <) is called a diamond lattice of width n if its car-
rier set S ={Llg, Tg,b1,...,b,} consists of n+2 pairwise different elements and
b; £ b; holds for all i # j. The elements (b;)i1<i<n are called the belt elements
of (8,<).

Lemma 4.3. Let S be a diamond lattice of width n and let B be the set of its
belt elements. Then the following holds:

1. Lg €T = [C(9)p| = 2n~ T\ TsH

2. Ll ¢ TAITNB|>1=|C(S)r|=2nIT\HTH
3. Lls @ TATNB={b}=|C(S)r|=2""1+1
4. Ls ¢ TATNB=0=1[C(S)r|=2"+n+1
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Proof: 1. In this case, the elements of C(S)r have the form {1g, Ts}UT U B.
The elements of T" occupy already |T\{Ts}| — 1 places in B so the claim follows
again from the cardinality formula for power sets.

2. Since closures systems are closed under infimum the condition |TNB| > 1
implies L € C for every C € C(S)r which reduces this case to the previous one.

3. Consider a closures system C' € C(S)r. If L ¢ C holds then b; ¢ C has to
hold for all b; # b; € B because C' is closed under infimum so the only possibility
in this case is C' = {Lg,b;, Tg}. The case L € C can be treated analogously to
the first case and the result follows from summing up.

4. We have 2" closure systems of the form {lg, Ts} U B’ with B’ C B, n of
the form {b;, Ts} and the trivial closure system {Tg}. |

4.2 Simplifying Counting Closures Using Isolated Sublattices

Let us consider an isolated sublattice with bottleneck S’ of a lattice (S, <) and
a subset T C S with TN S" = (). The set C(S)r can be partitioned into two

disjoint sets C(S)5 and C(S );Sl, the first one of them consisting of all elements
from C(S)r containing an element from S’ and the second one consisting of
all elements from C(S)r containing no element from S’. By the first part of
Theorem 3.20 we obtain the equation (the term —1 serves for discarding the
empty preclosure of S’)

IC($)F] = C(S/~s)rtrup1sy3] - (IPC(S)] = 1). (1)

Analogously, the second part of Theorem 3.20 gives rise to the equation

CS)r™ | = 1C(8/~s)—qsy.70 | (2)

Now the relationships |C(S/ ~s/)ri| = |C(S/ ~s)rougsyl + [C(S/ ~s

)_qsry,rir| and [PC(S)| = 2 - |C(5")], together with [C(S)r| = IC(S)5 | +
|C(S);S/| lead to

IC(S)r| = [C(S/~s)rtruggsy] - 2(1C(S) — 1) + [C(S/~s) 10| (3)

If we do analogous considerations for a summit isolated sublattice S’ using
Theorem 3.21 we obtain the much simpler formula

IC(S)r| = |C(S/~s)ra|-C(S) (4)

Clearly, |C(S)| = |C(S)p| holds, so the relationships given in Egs. (3) and (4)
can be used for a recursive algorithm if the lattice under consideration contains
a useful nontrivial summit isolated sublattice or a useful isolated sublattice with
bottleneck. However, this is only feasible if the isolated sublattice S’ and the
set T are disjoint. Luckily, we can ensure this due to Lemmata 3.11 and 3.12 by
choosing in the first step - if possible - an inclusion-maximal nontrivial sublattice
followed by the choice of inclusion maximal isolated sublattices with bottleneck.
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The details are given in Algorithm 1. Of course we have to resort to other
methods if the lattice does not contain suitable isolated sublattices or is not of
a special structure for which a closed formula is known.

Algorithm 1. Counting Closure Operators

function #cLOSURES(lattice S, set T')
if Lemma 4.1 or Lemma 4.3 are applicable then
return the respective number
end if
if S has a nontrivial useful summit isolated sublattice then
S’ « the inclusion maximal summit sublattice
return #CLOSURES(S/~g,T1)-#:CLOSURES(S’, 0)
end if
if S has a useful isolated sublattice with bottleneck then
S’ « an inclusion maximal useful isolated sublattice with bottleneck
return #CLOSURES(S/ ~g, TU U {S'U})2(#cLosures(S, 0)-
1)+#CLOSURES(S/~ g/, T)
end if
compute and return |C(S)r| by some brute force algorithm
end function

Let us now briefly analyze this algorithm. In every recursive call of #CLOSURES
the cardinality of the lattices in the first arguments is strictly smaller than
the cardinality of the passed lattice: first, every isolated lattice with bottleneck
or every nontrivial summit isolated lattice S’ is a strict subset of S. Second,
because we consider only useful isolated sublattices S’, S/~g/ contains strictly
less element than S. This ensures termination in the sense that either a lattice
is obtained for which a closed formula for the number of closures is known, or
some other brute force algorithm is called.

For a short analysis of a possible speed-up we show first that isolated sub-
lattices can be found in polynomial time Therefore we assume that the lattice
(S, <) is represented by its Hasse diagram. In a precomputation step, we deter-
mine for each s € S the sets s < and s >, i.e., the elements greater (smaller)
than or equal to s. This can be done by BFS or DFS in polynomial time. To
compute the isolated sublattices of S, we loop over all tuples (z,y) € S x S
and determine the interval [z,y] by intersecting < and y >. By Lemma 3.3,
every sublattice is of the form [z,y] so we test for each interval whether it is
an isolated sublattice. To this end, test all elements z € [z, y]\{z,y} if there is
a direct predecessor or successor z’ of z with 2z’ ¢ [z,y]. If such an 2’ exists,
we discard [z,y] as an isolated sublattice, otherwise we have found an isolated
sublattice. Since there are quadratic many elements in S x S, and we test at
most | S| elements as z’ this can be executed in polynomial time.

Let us now assume that a brute force algorithm takes ¢!l time for some
¢ > 1. Furthermore, we consider a family of 1at‘ti‘ces which have a nontrivial

s

useful summit isolated sublattice of cardinality “5'. Then Algorithm 1 makes
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two recursive calls with instances of size @ and @ + 1. In the worst case, these
two instances have to be handled using a brute force algorithm. Then, using p
as a polynomial caused by the computation of the isolated sublattice, the overall
running time is p(|S]) + e O(c%‘*l) which is clearly dominated by
¢3!, resulting from the immediate application of a brute force algorithm.

5 Conclusion and Further Work

We have shown that isolated sublattices can be used to simplify the computation
of the number of closure operators. However, there is a lot of future work left.
First, it seems realistic that more general structures than isolated sublattices
can be used in a similar manner by means of quotient lattices. A possible class
of candidates may be autobisimulations whose equivalence classes were already
used for reducing the number of nodes by means of a quotient in many algo-
rithmic contexts as e.g. model checking as in [2] or model refinement as in [13].
Second, the presented algorithm should be implemented and evaluated; also, a
thorough analysis of its running time should be subject of further investigations.
Third, special lattices other than chains and diamond lattices should be investi-
gated in order to obtain analogous results as in Lemmata 4.1 and 4.3. Moreover,
similar results could be obtained for general orders instead of lattices. Maybe
similar ideas could be used for counting monads on categories since monads on
categories are a generalization of closure operators on lattices.

Acknowledgments. The author is grateful to every anonymous (especially the first)
reviewer and to Bernhard Moéller for valuable hints and remarks.
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Abstract. We study second-order formalisations of graph properties
expressed as first-order formulas in relation algebras extended with a
Kleene star. The formulas quantify over relations while still avoiding
quantification over elements of the base set. We formalise the property
of undirected graphs being acyclic this way. This involves a study of var-
ious kinds of orientation of graphs. We also verify basic algorithms to
constructively prove several second-order properties.

1 Introduction

Binary relations and relational operations provide convenient abstractions for
expressing various kinds of logical specification in concise ways as the following
examples demonstrate:

— Relation R is transitive if RR C R (using relational composition), which is
logically equivalent to Va : Vy : Vz: (z,y) € RA(y,z2) € R= (x,2) € R.

— Point @ is reachable from point P in graph R if P C R*Q (using reflexive-
transitive closure *), which is equivalent to: there is a number n and a sequence

of vertices xo, ..., x, with Vi : 0 < i <n = (x;,x;4+1) € R, where x¢ and z,
correspond to P and @, respectively. See Sect. 2 for the relational specification
of points.

— Directed graph R is acyclic if Rt C | (using transitive closure * and the com-
plement of the identity relation I), which is equivalent to: there is no number
n and sequence of vertices g, ..., z, with Vi : 0 < i < n = (z;,2;41) € R
and (z,, o) € R.

In these examples, conciseness is gained by eliminating quantifiers from logical
specifications. The resulting expressions facilitate equational reasoning about
entire relations rather than point-wise arguments involving elements of the base
set.

The above logical formulas quantify over elements of the base set of the
relation. Sometimes quantification over relations is used:

— A relation algebra is pair-dense if
VR:0#RCI=3Q:0£4£Q CRAQIQIQ CI

(using the empty relation O) [19].
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— The intermediate point theorem states
PCRSQ&3dX:Xisapoint APCRXAX CSQ

for any relations R and S and any points P and @ [30].
— Two characterisations of difunctional relations are

R=RR'R=3P:3Q:P"PCICPP"AQQCICQQR"AR=PQ"

(using relational converse '). The formula specifies that P and @ are map-
pings, that is, univalent and total relations; see Sect. 2. The above equivalence
is from [28] which also characterises various types of orders by quantifying
over relations.

— A form of the axiom of choice can be expressed as

VR:ICRRT=3Q:QCRAQTQCICQQT

This considers the set of R-image sets of each element of the base set, and
selects one element from each according to choice function @. The formula
specifies that R is total and @ is a mapping.

Of course, already the axioms of relation algebras universally quantify over rela-
tions, but the above properties also use existential quantification. We call prop-
erties that quantify over relations ‘second-order’ to distinguish them from logical
formulas that quantify over elements of the base set. We express these properties
in the language of relation algebras extended with a Kleene star, which abstracts
from elements of the base set. Hence, in this language, we can use first-order for-
mulas with variables ranging over the elements of a relation algebra.

In this paper we study second-order properties that are useful for the appli-
cation area of graphs. One of the motivations for this work is that while Rt C |
concisely states that directed graph R is acyclic, no similarly compact formal-
isation of acyclicity is known for undirected graphs represented by symmetric
relations. This complicates the formalisation of graph algorithms and their ver-
ification [13,14]. The focus of this paper is to present a number of second-order
properties and study their relationships; future work will use these properties to
simplify relational correctness proofs of graph algorithms.

Relation algebras are frequently associated with the aim of eliminating logi-
cal quantifiers and thereby enabling point-free equational reasoning at a higher
abstraction level. The present work does not contradict this aim by reintroduc-
ing quantifiers. The quantifiers in our formulas are second-order, that is, they
quantify over relations not elements of the base set. For comparison, consider
the map-fusion law for lists in functional programming [4]. Its point-wise form
uses functions f and g and a list zs:

map f (map g 2s) = map (f o g) as
Its point-free form eliminates the list argument zs:

map f omap g =map (f og)
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It still involves implicit quantification over functions f and g, but the law can
now be understood as talking about functions rather than lists. The variables f
and g are ‘higher-order points’ and not usually eliminated from this law, though
they could be removed in formalisms like combinatory logic [7,31].

The contributions of this paper are:

— We study and compare various notions of orientability of undirected graphs
in Sect. 3. They serve as a basis for formalising more specific properties.

— We introduce several second-order formalisations of the property that an undi-
rected graph is acyclic in Sect. 4. We prove a number of relationships between
these formulas and give counterexamples in cases where formulas are not
equivalent in relation algebras extended with a Kleene star.

— We give several equivalent formalisations of general and specific transitively
orientable graphs in Sect. 5. We also formalise the property that an undirected
graph contains only simple paths.

— We verify the correctness of several basic algorithms in Sect.6 to construc-
tively prove a number of axioms used throughout this paper.

Moreover, all results in this paper except the counterexamples have been formally
verified in Isabelle/HOL [25]. The corresponding proofs are omitted and can be
found in the Archive of Formal Proofs [15].

2 Relational and Algebraic Basics

This section recalls algebras we will use for reasoning about properties of directed
and undirected graphs in the remainder of the paper. In particular we discuss
Boolean algebras, relation algebras and Kleene relation algebras. We also recall
basic relational definitions and give a number of general results.

A Boolean algebra [9] is a structure (S,1,M,, L, T) such that

zU(yUz)=(xUy)Uz xMN(yNz)=(xNy)Nz
rUy=yUx rMy=yllx
rUr=ux xMr=x
rUl=x zNT=x
zUT =T zNl=1
zU(xzNy) == zMN(zUy) =2
xU(yNz)=(zUy)N(zU2) xM(yUz)=(zNy)U(xMz)
zUz =T Nz =1

for each x,y,z € S. The axioms specify that the operations U and M are asso-
ciative, commutative and idempotent, have units L and T, have zeros T and L,
absorb each other, distribute over each other and are complementary.

The lattice order is obtained by  C y < x Uy = y or the equivalent
zCy< xMy=x. The join x Ly is the C-least upper bound of x and y; their
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meet or C-greatest lower bound is xMy. The C-least element is L ; the C-greatest
element is T. The element T is the complement of x.

A relation algebra [33] is a structure (S,U,M,-,~, T, 1, T,1) such that the
reduct (S,U,M,7, L, T) is a Boolean algebra and

v (y-z)=(z-y) 2 (-y) =y -z
z-l=x (J:T)T:x
(@Uy)-2=(z-2)U(y-2) wUy) =" Uy’

T Ty Ly

for each x,y,z € S. It follows that composition - is a monoid with identity 1 and
distributes over join, transpose | is involutive, antidistributes over composition
and distributes over join and meet, and De Morgan’s Theorem K holds. We
abbreviate x - y by xy.

An element x of a relation algebra is reflexive if 1 C z, irreflexive if x C 1,
symmetric if 27 = z, asymmetric if z M2’ = L1, antisymmetric if  Nz" C 1,
transitive if zx C =z, a partial order if x is reflexive and antisymmetric and
transitive, a strict order if z is irreflexive and transitive, a total order if zLizT = T
and z is a partial order, a strict total order if z U2 T =1 and « is a strict order,
univalent if 7z C 1, injective if zz" C 1, total if 1 C zaT, surjective if 1 C 2"z,
bijective if x is injective and surjective, a vector if T = x, a point if x is a
bijective vector, and an arc if T and ' T are points. The symmetric closure of
xis zUxT. See [30] for further details about these properties.

A Kleene relation algebra is a structure (S,L,M,-,~,T,* 1, T,1) such that
the reduct (S,L,,-,7, T, L, T,1) is a relation algebra and

1Uzx* Ca* yCy=a'yCy
lUz*z C z* yrCy=yx*Cy

for each x,y € S. It follows that z*y is the C-least fixpoint of Az.zz Uy and
yx’™ is the C-least fixpoint of Az.zx LUy. The above unfold and induction axioms
for the Kleene star * are from [17]. The transitive closure of x is z7 = zz* and
z* models the reflexive-transitive closure of relations. Relation algebras with
transitive closure have been studied in [22].

An element x of a Kleene relation algebra is acyclic if 2™ is irreflexive, and
a forest if x is injective and acyclic.

The following theorem states a number of general results in (Kleene) relation
algebras. Theorems 1.2 and 1.3 appear in [28,30].

Theorem 1. Let S be a Kleene relation algebra and let x,y € S. Then

1. Every acyclic element is asymmetric.

2. Bvery asymmetric element is irreflexive.

3. Acyclic, asymmetric and irreflerive are equivalent for transitive elements.
4. x is asymmetric if and only if xx is irreflexive.

5. x is a strict order if and only if x is transitive and acyclic.
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6. x is a strict total order if and only if x is transitive and x Uz’ = 1.
7. x is acyclic if and only if x is irreflexive and x* is antisymmetric.
8. w is acyclic if and only if x+ is asymmetric.
9. (zUy)t =zt UyTzTUyT ifay = L.

10. T(xNy)NT(zNy) = L if x is injective.

3 Orientations

In the remainder of this paper we model graphs using Kleene relation algebras.
A (directed) graph is just an element of (the carrier set of) such an algebra.
Graph z is undirected if z is symmetric: 27 = 2.

An orientation of undirected graph x is a directed graph y obtained by

assigning a direction to each edge of x [8]. Algebraically this is formalised by
y is an orientation of z <ger y M yT =1lAyU yT =x

expressing that y is asymmetric and its symmetric closure is x. Asymmetric
requires that y has at most one directed edge between any two vertices; the
second equation ensures y contains at least one directed edge between any two
vertices connected by an edge in x. Graph x is orientable if it has an orientation y:

x is orientable g Jy:yMy' = LAyUy ==

It follows from this formalisation that every orientable graph is symmetric and
irreflexive. We now consider the converse, namely, that every symmetric irreflex-
ive element is orientable:

Ve:z=x'AzCI1=3Jy:yNy' = LAyUy == (0)

The structure of this formula is similar to that of the axiom of choice given in
Sect. 1; essentially a direction is chosen for each edge.

Formula (0) is independent of the axioms of Kleene relation algebras as wit-
nessed by the following counterexample found by Nitpick [6]. The set {1,1,1, T}
of relations over a two-element base set forms a Kleene relation algebra which is
a subalgebra of the full algebra of relations. In this subalgebra, 1 is symmetric
and irreflexive but not orientable.

We study two variants of orientations: one that admits loops and one that
admits additional edges with an assigned direction.

—yNy" C 1AyUy" = z replaces asymmetric with antisymmetric in the
definition of an orientation. This allows loops in z, which then must also
occur in the orientation y. We call this a loop-orientation.

—yNy" = L AyUy" I requires the symmetric closure to contain x rather
than to equal . So y can contain extra edges, but at most one direction of
each. We call this a super-orientation.

—yNy" T 1AyUy" I 2 combines the two variants to obtain loop-super-
orientations.
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Definitions of loop-orientable, super-orientable and loop-super-orientable are
derived for these variants similarly to orientable. Using these notions, we obtain
several formulas equivalent to formula (0) as the following result shows.

Theorem 2. The following eight properties are equivalent:

Every symmetric irreflexive element is orientable, that is, formula (0) holds.
Every symmetric element is loop-orientable.

Every irreflexive element is super-orientable.

FEvery element is loop-super-orientable.

Ve:x=2"=Jy:yNy' =2NlAyUy' =uzx.

Ve:z=z"=3Jy:yNy' CaeNlAyUy’ =x.

Ve:Jy:yNy' =2znlAyUy’ I

Ve:Jy:yNy' CanNlAyUy" 3.

0N D G oo~

Theorems 2.2-2.4 show how the notions of loop-/super-orientation allow the
assumptions of irreflexive/symmetric to be removed from formula (0).
The definition of an orientation generalises to the following useful ternary
predicate:
S(x,y,2) Saer yNy =xAyUy’ =z

In words, the meet of y and y7 is = and their join is z. Both x and z need to be
symmetric for S(z,y, z) to hold, and = C y C z follows, too. Hence, the intuitive
meaning for undirected graphs x and z is:

— If an edge is in = and in z, it is also in y.
— If an edge is not in z and not in z, it is also not in y.
— If an edge is not in x but in z, exactly one direction of it is in y.

The following result gives consequences of this definition.
Theorem 3

S(L,y,x) if and only if y is an orientation of x.

S(1,y,x) implies that y is a loop-orientation of x.
S(xN1,y,x) if and only if y is a loop-orientation of x.
S(yM1,y,x) if and only if y is a loop-orientation of x.
S(x,y,2) if and only if yMy" =2 C2zA(yNg)U(yNy"

SANRINCIE T

)T =2zMNT.

Theorem 3.5 gives an alternative way to specify the ternary predicate. It
requires = C z, that z is the symmetric part of y, and that the difference z M=x
is the symmetric closure of the asymmetric part of y; see [21] for a study of the
symmetric and asymmetric parts of a relation.

A special case of Theorem 3.1 is that S(1,y,1) if and only if y is an ori-
entation of 1. An orientation of the complete graph (without loops) 1 is also
known as a tournament [8]. The existence of a tournament is equivalent to the
conditions in Theorem 2 as the following result shows.



Second-Order Properties of Undirected Graphs 215

Theorem 4. The following three properties are equivalent:

1. Formula (0) holds.
2. Jy:S(L,y,1).
3. Jy:S(lLy,T).

There are various ways of strengthening orientability. One is to require the
orientation to be injective:

x is injectively orientable <qr Jy:yMy' = LAyUy =z Ayy' C1

Injectively orientable graphs correspond to graphs in which every component
has at most one cycle, also known as pseudoforests [11,27]. They will be used in
Sect. 4. A different strengthening requires orientations to be transitive [28]:

x is transitively orientable <ge¢ Jy:yMy' = LAyUy' =z AyyCy

Transitively orientable graphs, also known as comparability graphs, are the sym-
metric closures of strict orders. They will be used in Sect. 5.

4 Acyclicity of Undirected Graphs

In this section we discuss various ways to specify that an undirected graph =z is
acyclic. When justifying specifications informally, we implicitly assume that z is
symmetric and irreflexive; we explicitly state such assumptions in theorems.
We present the specifications in order of increasing strength, give equivalent
characterisations for most of them and study their relationships.

4.1. Our first specification requires that every orientation of x is acyclic (in the
sense of directed graphs):

Vy:yMNy' = LAayUy' =z=yTC1 (1)

Intuitively, if z contained an undirected cycle then this cycle could be oriented
and extended to an orientation of x that would not be acyclic. Conversely, if
some orientation of x contained a cycle then the symmetric closure of this cycle
would be an undirected cycle in x.

The following result shows an equivalent formulation of (1). It replaces y™ C 1
with y* My"™ = 1, which is equivalent for irreflexive 7.

Theorem 5. The following two properties are equivalent for any x:

1. z satisfies formula (1).
2. Vy:yNy' = LAyUy' =z =y *Ny™* =1.
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4.2. Our second specification weakens the antecedent of formula (1) to asym-
metric subsets of x:

Vy:yNy'=1lAyCae=ytCT (2)

Every orientation of x clearly satisfies y C «, so formula (2) implies formula (1).
The converse implication holds for orientable elements according to the following
result. It also gives equivalent formulations of (2).

Theorem 6. The following three properties are equivalent for any symmetric x:

1. z satisfies formula (2). 3
2. Vy:yNy' = LAyUy' Cox=yt C1.
3 Vy:yNy' =L AyUy' Cax=y My’ * =1.

The last two of the above properties are equivalent for any x. Moreover,

4. Formula (2) implies formula (1) for any x.
5. Formulas (2) and (1) are equivalent for any orientable x.

A counterexample shows that formula (1) does not imply formula (2) for
all symmetric irreflexive elements. The complex algebra Cm(G) of any group
G is a relation algebra; see [12,19] for construction details. Moreover, Cm(G)
is a Kleene relation algebra using * = (J;c #*. Consider Cm(Z4) where Z, =
{0, 1,2, 3} is the cyclic group of order 4. In Cm(Z,4) the complex x = 1 = {1,2,3}
satisfies formula (1) since = has no orientation as it is above symmetric atom
{2}. But x is also above non-symmetric atom y = {1} with " = {3} and
y*t =T = Z4, whence 2 does not satisfy formula (2).

4.3. Our third specification avoids the reference to acyclic subgraphs. It requires
that there is a unique way to sandwich x between a graph and its reflexive-
transitive closure:

Vy:yCaoCy'=>y==x (3)

Intuitively, if x contained an undirected cycle then one edge of this cycle could be
removed without affecting reachability in the graph, so an element strictly below
x would satisfy the antecedent. Conversely, if there was a y with y C = C y*
then there would be an edge e in x that is not in y but in y*, so there would be
a path in y from the start vertex of e to its end vertex which together with e
would form a cycle. The following result shows equivalent formulations of (3).

Theorem 7. The following two properties are equivalent for any x:

1. x satisfies formula (3).
2. Vy:yCaxAy' ' =2*=>y=rc.

The following two properties are equivalent for any x:

3 Vy:yCaClyT =y=ux.
4. Yy yCaAyT =zt =>y=ux.

All four of the above properties are equivalent for any irreflexive x.
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4.4. Our fourth specification expresses the justification underlying formula (3)
more directly:

Vy:yCax=aNy Cy (4)

Intuitively, any edge e contained in both z and y* must already be in y, otherwise
the path obtained from y* together with e would form a cycle. The following
result shows that formulas (4) and (3) are equivalent and stronger than for-
mula (2). It also gives further equivalent formulations of (4).

Theorem 8. The following three properties are equivalent for any x:

1. x satisfies formula (4).

2. Vy:yCox=zxNy* =y.

3 Vy:yCaox=yN(zNy)* = L.
4. x satisfies formula (3).

Moreover,

5. Formula (4) implies formula (2) for any symmetric x.
6. Formulas (4) and (2) are equivalent for any symmetric irreflexive x if the
following two azxioms hold:

Vu:u#L=Fv:visan arcANvCu

Yu:Yv:iuisan areAuC o' = Jw:wCoAwnw' = L AuC w

The first of these axioms specifies that every non-empty graph contains an edge,
which is similar to the point axiom [19,29]. The second of these axioms states
that if the end vertex of an edge u is reachable from its start vertex using
(directed) edges in v, then the same holds already in an asymmetric subset w of
v. Intuitively, the asymmetric subset w is formed by the edges on the (directed)
path from the start vertex of u to its end vertex.

A counterexample found by Nitpick shows that formula (2) does not imply
formula (4) for all symmetric irreflexive elements. The set of symmetric com-
plexes SCm(G) = {r € Cm(G) | * = 2"} of a commutative group G forms a
relation algebra which is a subalgebra of Cm(G) [12,16]. Since SCm(G) is closed
under Kleene star, it also forms a Kleene relation algebra. In SCm(Z,) the com-
plex z =1 = {1, 2, 3} satisfies formula (2) because the only asymmetric complex
is L = ). But z also contains atom y = {1,3} with y* = T = Z,, whence x does
not satisfy formula (4).

4.5. Our fifth specification generalises the formulation given in Theorem 8.3.
According to the latter formulation there cannot be an edge e in y such that
there is a path from the source of e to its target using edges of x that are not in
y. We now allow the edge e to be in y*:

VYy:yCax=y NNy =1 (5)
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Intuitively, if there is a path in y, there cannot be a path from its start vertex to
its end vertex using edges of z that are not in y, except if the start and end ver-
tices coincide. Namely, if the start and end vertices were different, the two disjoint
paths together would form a cycle. The following result shows that formula (5) is
stronger than formula (4). It also gives equivalent formulations of (5).

Theorem 9. The following six properties are equivalent for any x:

1. z satisfies formula (5).

2. Vy:yCaxz=y* NNyt C1.

3. Vy:yCax=yTn(zNy)*C1.

4. Vy:yCao=yTN(zny)T C1.

S5 Vy:Vz:yNz=1lAyUzCzx=y" Mz =1.
6. Vy:Vz:yMNz=_1lAyUz=x=y " MNz"=1.

Moreover,
7. Formula (5) implies formula (4) for any irreflexive x.

The formulation in Theorem 9.6 is particularly conspicuous. If x is partitioned
into y and z, then there cannot be a path from the same start vertex to the
same end vertex in both partitions, except for the empty path if the start and
end vertices coincide. The formulations in Theorems 9.5 and 9.6 generalise the
formulations in Theorems 6.3 and 5.2, respectively, by replacing y" with a new
variable z.

A counterexample shows that formula (4) does not imply formula (5) for all
symmetric irreflexive elements. Consider Z12 = {0, 1,...,10, 11}, the cyclic group
of order 12. In SCm(Z15), complex = = {2,3,9,10} C 1 satisfies formula (4) since
only complexes L, y; = {2,10}, y2 = {3,9} and x are below x and

rMN1l*=zN1C1Nl=1
xMy; =xM{0,2,4,6,8,10} = 41
xMyy =xM{0,3,6,9} =y

xMNa* =z
But = does not satisfy formula (5) since
yi N (@ny)" =y Ny; ={0,2,4,6,8,10}11{0,3,6,9} = {0,6} # {0} = 1
4.6. Our sixth specification asserts the existence of an orientation that is a

forest. To this end, we strengthen the property of being injectively orientable,
introduced at the end of Sect. 3, by replacing asymmetric with acyclic:

Jy:yUy =azAyT CIAyy C1 (6)

Note that y* C 1 implies that y is asymmetric. With y L y" = z it follows
that y is an orientation of x. The properties acyclic and injective together are
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frequently used to specify forests with edges directed away from the roots of the
component trees. Overall, the above property requires that there is a (directed)
forest whose symmetric closure is x.

Whereas the previous specifications of acyclic graphs were universally quan-
tified, formulation (6) is existentially quantified. The following result relates
formula 6) to both the strongest and the weakest of the previous specifications,
namely, formulas (5) and (1).

Theorem 10. The following two properties are equivalent for any x:

1. z satisfies formula (6).
2. x is injectively orientable and satisfies formula (1).

Moreover,
3. Formula (6) implies formulas (1)—(5) for any x.

The counterexample showing independence of formula (0) given in Sect. 3 also
shows that formula (5) does not imply formula (6) for all symmetric irreflexive
elements. In that algebra, x = 1 is an atom and satisfies the formulation in
Theorem 9.6 since either y = | or z = L for any partition of x. But since x is
not orientable, it does not satisfy formula (6) by Theorem 10.

We furthermore consider the following weakening of formula (6), which
replaces the condition y Ly = x with two of its consequences y T x and

xC(yUyh)™
x is spannable ©qr Jy:yCaC (yUy ) Ay T CTAyy' C1

This means that y no longer needs to contain a direction of every edge of x, but
some edges can be entirely omitted provided their end vertices are still weakly
connected in y. In other words, y is a spanning forest of x. A similar formalisation
of spanning forests has been used in [14] for verifying the correctness of Kruskal’s
minimum spanning forest algorithm. The significance of being spannable for the
present work is captured in the following result.

Theorem 11. The following two properties are equivalent for any x:

1. z satisfies formula (6).
2. x is symmetric and spannable and satisfies formula (3).

Moreover,

3. 1 is spannable if a point exists.

5 Transitive Orientations and Simple Paths

In Sect.3 we have studied the existence of tournaments, that is, orientations
of the complete graph without loops 1. In this section we additionally require
orientations to be transitive.
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Every orientation is asymmetric, and transitive asymmetric relations corre-
spond to strict orders. Hence, the transitively orientable graphs are precisely the
graphs of strict orders after ignoring edge directions. Applied to the complete
graph without loops 1 this amounts to the existence of a strict total order.

Theorem 12. The following two properties are equivalent for any x:

1. x is transitively orientable.
2. x is irreflevive and Iy : yUy" =z Ayy C y.

In particular, the following two properties are equivalent:

3. 1is transitively orientable.
4-Jy:yuy" =TAyyCy.

Moreover, each of the last two properties implies formula (0).
The following result gives additional equivalent properties.
Theorem 13. The following five properties are equivalent:

1. 1 is transitively orientable.

2. Jy:yNy' ClAyUy =T Ayy Cy.
3 Jy:ytCIAy Uy T =T.

4. Fy:S(LyT,1).

5. Jy:S,y*,T).

Theorem 13.2 is a translation of Theorem 12.4 to partial orders. The prop-
erty in Theorem 13.3 requires that y is acyclic and unilaterally connected, in
other words, between any two vertices there is exactly one (directed) path in y.
Theorems 13.4 and 13.5 express this using the ternary predicate of Sect. 3.

We finally consider a special case of undirected acyclic graphs, namely those
whose maximum degree is at most 2, that is, at most two edges are incident to
each vertex. Every component of such a graph is a simple path [2]. To specify
this we strengthen formula (6) by additionally requiring y to be univalent:

Jy:yUy' =zAy  CIAyy ClAay'yCl (7)

Intuitively, if the maximum degree of an acyclic undirected graph is at most 2,
it can be oriented by choosing a directed simple path for each of its components.
Conversely, if there is a vertex with at least 3 incident edges, any orientation
will have at least two incoming or two outgoing edges at that vertex, making the
orientation not injective or not univalent. Graphs with maximum degree 2 are
not transitively orientable in general, but according to the following result their
transitive closure (without loops) is transitively orientable.

Theorem 14

1. Formula (7) implies formula (6) for any x.
2. T N1 is transitively orientable if x satisfies formula (7).
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6 Axioms and Algorithmic Proofs

In previous sections we have encountered two kinds of property. Properties such
as being injectively/transitively orientable or being acyclic hold for some graphs
but not for others. In contrast, properties such as formula (0), the two axioms
in Theorem 8.6, and 1 being transitively orientable do not have free variables.
Hence, they can serve as axioms that may or may not be assumed to hold
in an algebraic setting. In this section we prove that these axioms hold under
certain conditions. The conditions are somewhat restrictive from an algebraic
perspective but nevertheless satisfied for many practical applications. Our focus
is on the proof method which uses constructive algorithms.

For this section we assume that the given Kleene relation algebra is finite
and the arc axiom holds, that is, every element except L contains an arc:

Ve:x#1l=dy:yisanarcAyLCx

Finiteness is used to prove that algorithms terminate.

We first show that 1 is transitively orientable. To this end we use Szpilrajn’s
algorithm [32]. It constructs a total order that extends a given partial order.
By applying this algorithm to the discrete partial order 1 we obtain the desired
total order on the base set.

Partial correctness of Szpilrajn’s algorithm has been proved in [3] using the
automated theorem prover Prover9 [20]. We have transcribed the algorithm to
Isabelle/HOL and proved its correctness using a Hoare-logic library [23,24],
which we have extended to total correctness in previous work [14]. From the
total-correctness proof we can extract the following result [28].

Theorem 15. For every partial order p there is a total order t with p C t.

In particular, by setting p = 1 there exists a total order ¢, which is the
condition in Theorem 13.2. Hence, 1 is transitively orientable by Theorem 13.
Moreover, formula (0) holds by Theorem 12.

We next show that every symmetric element is spannable. To this end we use
Kruskal’s algorithm, which constructs a minimum spanning forest of an undi-
rected graph [18]. We modify the algorithm so as to ignore edge weights, in which
case it constructs a spanning forest. We have reused an existing specification and
correctuess proof of this algorithm from previous work [14]. The postcondition of
the algorithm implies that the graph is spannable as per the definition in Sect. 4.
The following result is a consequence of this.

Theorem 16. Every symmetric element is spannable.
We finally establish the second axiom given in Theorem 8.6.

Theorem 17. Let x be an arc and let y be such that x C y*. Then there is an
asymmetric z with z Cy and x C z*.
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To construct the desired element z, we augment a standard breadth-first
search algorithm [1] with a variable ¢:

1 inputr,s r = directed graph, s = start vertex
2 t— 1 t = constructed asymmetric element
3 g+ s q = vertices reached so far
4 p«—3snr's p = new vertices reached in the next step
5 while p# 1 do any new vertices?
6 t—tU(rngp") include all edges from current to new vertices
7 q—qlUp add new vertices to current set
8 p—gqgnrip take another step
9 end
10 output q,t

As precondition we require that s is a vector. The loop invariant states that ¢ is
a vector, t is asymmetric, t C r and t C g = t'*s and p = g r'q. This allows
us to prove the postcondition that ¢ is asymmetric, t T r and ¢ = t'*s = r' *s.
Termination of the algorithm follows using the number of elements below grir' *s
as bound function. This reflects vertices that are reachable from s in r but have
not been reached so far. From this total-correctness proof we can extract the
following result.

Theorem 18. For every element r and every vector s there is an asymmetric
t witht CTr and t™ s =1rT*s.

We can now show Theorem 17. Given an arc z and an element y with = C y*,
we apply Theorem 18 using r = y and vector s = xT, obtaining an element ¢
with the stated properties. The desired z is obtained as z = ¢t My. It is clearly
below y and asymmetric as it is below the asymmetric ¢; moreover  C z* follows
from the assumptions and ¢"*2T = yT*zT.

7 Conclusion

In this paper we have used second-order properties expressed in relation algebras
extended with a Kleene star to formalise that an undirected graph is acyclic in
various ways. The formalisations are based on the concept of orientability, which
we have therefore studied. We have also verified the correctness of constructive
algorithms to validate several of the axioms.

The quantifiers used in second-order properties cause no issues for formal
reasoning in Isabelle/HOL whose logic directly supports them as first-order for-
mulas in relation algebras. Sledgehammer [5,26] can also be applied to such
formulas and its integrated provers automatically find proofs in some cases. We
should note that the formulas considered in this paper do not have complex
nestings of quantifiers. In cases where steps are too big for automated provers,
the quantifiers are easy to handle manually as most of them are at the outermost
level. The integration with equational reasoning in the proof language Isar [34] is
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seamless; it might be further improved by automatically generating bits of boil-
erplate code to break down quantifiers depending on the structure of a formula.
Isabelle/HOL would also support formalising the properties using second-order
quantification over concrete relations, but we prefer working in relation algebras.

For simplicity we have presented all results in the framework of Kleene rela-
tion algebras. Our Isabelle/HOL theory shows that most results hold in more
general structures, such as single-object bounded distributive allegories [10],
Stone relation algebras and Stone-Kleene relation algebras [13,14]. A possible
exception is the result that formula (3) implies formula (4), which we were able
to prove only in Kleene relation algebras. The more general structures are use-
ful for modelling weighted graphs. We will therefore apply the specifications of
acyclic undirected graphs introduced in Sect. 4 to the verification of graph algo-
rithms involving edge weights. Future work will consider the formalisation of
further properties of graphs using higher-order formulas.

Acknowledgement. I thank Nicolas Robinson-O’Brien and the anonymous referees
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Abstract. Previous work introduced a relation-algebraic framework for
reasoning about weighted-graph algorithms. We use this framework to
prove partial correctness of a sequential version of Boruvka’s minimum
spanning tree algorithm. This is the first formal proof of correctness for
this algorithm. We also discuss new abstractions that make it easier to
reason about weighted graphs.
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1 Introduction

The Minimum Spanning Tree (MST) problem is to find a subset of the edges
of a graph that form a tree, connecting the graph’s vertices, where the sum of
the weights of the edges is minimal [32]. In 1926, Otakar Boruvka described the
MST problem and gave an algorithm to solve it [6]. He was perhaps the first
person to do so [12]. Boruvka’s original paper is written in Czech; a translation
can be found in [24]. Boruvka’s MST algorithm was independently discovered
by Choquet [8], Florek et al. [10], and Sollin [2]. Many textbooks do not treat
Bortuvka’s MST algorithm with the same exposure as the algorithms of Prim [29]
and Kruskal [21]; nevertheless, it is significant for its influence on running-time
complexity improvements for MST algorithms [7,18,34].

Boruvka’s MST algorithm computes a minimum spanning tree of a weighted,
connected, undirected graph whose edge weights are distinct. The algorithm
begins by initialising a forest with n trees, each containing a single vertex, where
n is the number of vertices in the graph. While there is more than one tree in
that forest, the following step is repeated. For each tree in the forest, find the
edge in the graph with the smallest weight among all edges that leave the tree;
all edges found in this way are added to the forest in this step.

A relation-algebraic framework for MST problems was introduced in [13] and
has been used to formally verify Prim’s [14] and Kruskal’s [15] MST algorithms.
In the present paper, we use this framework to formally verify a sequential version
of Boruvka’s MST algorithm. Its contributions are
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— In Sect. 3 we define components of a graph in terms of a vector, representing
a subset of vertices, and an equivalence, representing connectivity. We also
introduce an operation, k, to select an arbitrary component of a graph. We
show that this operation can be expressed in m-Kleene algebras.

— In Sect. 4 we present axioms for forests modulo an equivalence, a new abstrac-
tion that can represent a forest-like structure where clusters of vertices are
conceptually collapsed to points forming a forest with the edges that connect
them. A number of properties of this abstraction are also given. Addition-
ally, we study paths between vertices in a forest modulo an equivalence and
present a theorem for splitting such a path on one of its edges.

— In Sect.5 we formalise Boruvka’s MST algorithm in m-k-Stone-Kleene rela-
tion algebras. The formalisation uses the k operation.

— In Sect. 6 we discuss key invariants of our correctness proof of Boruvka’s MST
algorithm and highlight how we have used the abstractions introduced in
previous sections. This is the first formal correctness proof of this algorithm.

Additionally, we have used Isabelle/HOL [27] to formally verify all results
in this paper. The corresponding theories are available in the Archive of Formal
Proofs [16] and proofs are omitted from this paper. The PDF version of this
paper includes links to the relevant theorems and definitions, hosted online. Our
proof of Boruvka’s MST algorithm uses a Hoare-logic library and verification
conditions are generated using a tactic of that library [25,26]. Further details of
the correctness proof are described in [30].

There are other recent works verifying MST algorithms in Isabelle/HOL.
For example, a functional version of Prim’s algorithm was verified in [22] and an
imperative version of Kruskal’s algorithm was verified in [17]. These verifications
use different frameworks than our work. For more examples and further related
work see the survey [28] and [30].

2 Basic Definitions

In this section, we define the algebras that will be used in this paper. We are
interested in algebras for reasoning about weighted graphs. Unweighted graphs
have a straightforward representation as Boolean adjacency matrices so it makes
sense that relation algebras, binary relations in particular, have been used to rea-
son about graph algorithms [3,4,11,19,31]. Relation algebras can be generalised
to Stone relation algebras to handle edge weights [13]. This is convenient since it
does not involve additional structures to represent edge weights. Edge weights are
typically numbered and lattices [1] provide a basis for comparing those weights.

Definition 1. A bounded distributive lattice, (S,U,M,L,T), is a partial
order, S, where for all x,y,z € S both a join, x Uy, and a meet, x My exist and
wherexM 1L =1 and zUT =T, and finally where

xU(yNz)=(zUy) N(xzU2) zM(yUz)=(zNy)U(xMz)
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Unfortunately, Boolean algebras cannot be used to represent edge weights
as there is no suitable way to define a complement operation. The pseudo-
complement operation of Stone algebras [5] weakens the complement axioms
just enough to permit the inclusion of elements representing edge weights.

Definition 2. A Stone algebra, (S,U,M,”, L, T), is a bounded distributive
lattice, (S,U,M, L, T), with a pseudo-complement operation, —, where for all
T,y €S

TUZ =T zNy=1l&z<y

The pseudo-complement ¥ is the greatest element whose meet with y is L. If
2z = T then x is said to be regular. If a Stone algebra has only regular elements
then it is a Boolean algebra.

Stone relation algebras [13] include much of the structure we require from
relation algebras [23,33] but without the restrictions of the complement opera-
tion of Boolean algebras.

Definition 3. A Stone relation algebra, (S,U,M,-,—, 7, L T 1), is a Stone
algebra with operations composition, -, and transpose, T, and a constant, 1, where
forallx,y,z€ S

(zy)z = z(yz) le=x
(zUy)z=zzUyz le=1

@) =2 W =37

(zy)" =ya’ 1=1
(xUy)" =z Uy’ xyMNz <z(yMaTz)

Unless overridden with brackets, the operations have the precedence, from high-
est to lowest: 7, 7, -, M, U. Composition, x - y, is often abbreviated to xy.

An element z € S is called reflezive if 1 < x, transitive if zax < x, symmetric
if x = 27, an equivalence if x is reflexive, transitive, and symmetric, a vector
if xT = z, univalent if z7x < 1, injective if xx™ < 1, surjective if 1 < z'x,
bijective if x is injective and surjective, a point if x is a bijective vector and an
arc if both T and =™ T are bijective.

For graphs, vectors are used to represent sets of vertices, points to represent
a single vertex, and arcs to represent edges.

Stone-Kleene relation algebras combine Stone relation algebras with Kleene
algebras to allow reasoning about reachability [13]. The unfold and induction
axioms of the Kleene star are taken from [20].

Definition 4. A Stone-Kleene relation algebra, (S,U,M,-, 7,7 * 1 T 1), is
a Stone relation algebra, (S,U,M,-, 7,7, L T 1), with an operation, *, where
for all x,y,z € S the unfold and induction axioms hold

1Uzz® < 2* Uy <z =z2y" <ux
l1Uz*z < z* zUyr<zx=y"'z<cz

and additionally, (T)* = z*.
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We abbreviate zz* as 7. Furthermore, we call any = € S acyclic if z+ < 1, and
a forest if z is injective and acyclic.

Structure for reasoning about minimisation and aggregation is provided by
m-Kleene algebras [14].

Definition 5. An m-Kleene algebra, (S,U,M,-,+,7,",*,s,m, L, T, 1), is
a Stone-Kleene relation algebra, (S,U,M,-,—,",*, L, T,1), with operations
addition, +, summation, s, and minimum selection, m, where for all z,y,z € S,
the summation properties are satisfied

the linear property is satisfied

s(z) < s(y) Vs(y) < s(x)
the minimum-selection properties are satisfied

m(z) <T
x # L =m(z) is an arc
yisan arcANyNe # L = s(m(z)Nz) <s(yMx)

and S contains only finitely many reqular elements.

For reasoning about weighted graphs, we are interested in an instance of these
algebras where the carrier set is comprised of square matrices whose entries are
taken from the set of real numbers extended by L and T, the least and greatest
elements respectively. This may be denoted as R’4*4 where A is the index set
of a square matrix and R" =R U {L, T}.

In this model, an entry T in a matrix denotes an arc with unknown weight, 1
the non-existence of an arc, and the real numbers arcs with weights corresponding
to their values. Therefore, the regular elements (matrices over L, T) describe the
structure of graphs without weight information. The constant matrices 1, T and
1 are defined as follows: 1;; = 1L forall4,j € A, T;; =T and

T ifi=j,
1 = .
1 otherwise

The operations M and U are the componentwise minimum and maximum,
respectively. The binary + operation on R’ is the standard addition for real
numbers and the maximum otherwise; for example, 1. + T = T. This operation
is lifted to matrices, componentwise. The composition operation is defined as
(M-N);; = maxge 4 min{ M, Ni;}. The pseudo-complement on R’ yields T = L
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for all z # 1L and L = T. It is lifted componentwise to matrices. The T operation
is the usual transpose of matrices. The * operation describes reachability in a
graph and is defined recursively using Conway’s construction [9]:

ab *_ e* a*bf* b e\ (aUbd'c
cd) — \d*ce* f* where f] \dUca*b

The s-operation computes the sum of all weights in a matrix and is given by
applying + to all entries and storing the result in a fixed position of the returned
matrix. The remaining entries in the resulting matrix are set to L. In this
model, s(1) = L and L is the unit of +, however, there are models where
neither holds [14]. The m-operation may be used for selecting an arc with min-
imum weight. When the input matrix contains at least one non-1 entry, the
m~operation returns a matrix with T stored in the position corresponding to
that of a minimum-weight arc and L everywhere else. The result of m(L) is L.
This model is an m-Kleene algebra [13-15].

3 Component Selection

In graph theory there are notions of strongly-connected or weakly-connected
components in a directed graph. We axiomatise an operation to select an arbi-
trary connected component. A component of a graph may be represented by a
set of vertices as a vector.

Definition 6. Let S be a Stone relation algebra and let x ,v € S. Then v repre-
sents vector-classes of x if x and v are regular, x is an equivalence, v is a vector,
zv < v, and v # L. If v represents vector-classes of x and additionally, vo™ < x
then v represents a unique-vector-class of x.

A vector-class corresponds to one or more equivalence classes of x. The con-
dition xv < v ensures that v contains either all elements or no elements of
each class. A unique-vector-class corresponds to one equivalence class. This can
be used to represent the set of vertices of a particular component of a graph
whose components are specified by an equivalence. The equivalence yielding the
weakly-connected components of a graph, g, is obtained by taking the symmetric
reflexive transitive closure, = (¢ U ¢g")*. For another example, the strongly-
connected components of g are given by the equivalence g* Mg™*.

Definition 7. A k-Stone relation algebra, (S,U,M,-, 7,7 k, L ,T,1), is a

Stone relation algebra, (S,U,MN,-,~, ", L, T,1), with a binary operation k,
where for all z,v € S the element k(x,v) is a regular vector and

k(z,v) <7 (1)

k(w,v) - k(a,0)" <@ (2)

J?'k'(]?,’U) S/{J(J?,U) (3)

and, if v represents vector-classes of x then

k(r,v) # L (4)
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If v represents vector-classes of x the element k(xz,v) is a vector representing
an arbitrary component that is connected according to x and contained in v.
Axiom (1) expresses that the result of k is contained in the set of vertices we
are selecting from, ignoring the weights. Axiom (2) makes any two vertices from
the result of k connected in z. Axiom (3) expresses that the result of & is closed
under being connected in x. This means that either all vertices of a component of
x are included in the output of &, or none are. Axiom (4) requires that k returns
a non-empty component if v represents vector-classes of x. If this is the case, the
output of k represents a unique-vector-class.

Theorem 1. Let S be an m-Kleene algebra with a function k defined as

k(. v) x-m(v)T if v represents vector-classes of x,
xT,v) =
’ L otherwise

Then S is a k-Stone relation algebra.

This particular implementation of k does not select an arbitrary component but
rather a component containing a minimum-weight arc in v.

Definition 8. An m-k-Stone-Kleene relation algebra, (S,U,M,-,4+,7,7,*,
s,m,k,L,T,1), is an m-Kleene algebra, (S,U,M,-,+,7,7 ,* s,m,L T,
1), with a component selection operation, k, such that the reduct, (S,U,M,-,
=, Tk, L, T,1), is a k-Stone relation algebra.

Previous work shows that matrices over R’ form a model of m-Kleene algebras
[13-15]. Every m-Kleene algebra is an m-k-Stone-Kleene relation algebra by
Theorem 1. The correctness of Boruvka’s MST algorithm will be proved in m-
k-Stone-Kleene relation algebras, hence it holds in the weighted-graph model
described in Sect. 2 and in many other models [14].

4 Forests Modulo an Equivalence

We generalise forests by giving axioms to treat a graph, d, as a forest modulo an
equivalence, . The arcs in d form a forest-like structure where each equivalence
class of z forms a strongly-connected component. The intent of this abstraction
is to provide an algebraic basis for reasoning about connectivity while forgetting
about some of the structure of a graph.

4.1 Axioms and Properties

First, we define forests modulo an equivalence and give a number of properties
for such structures.

Definition 9. Let S be a Stone-Kleene relation algebra and let x ,d € S. Then,
d 1s a forest modulo z, if x is an equivalence, xd is univalent, and

xMNdd" <1 rM(zd)t < L
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dy ds
Fig. 1. An example of a forest modulo an equivalence (left) and a view of the quotient

set of components (right). The equivalence classes are enclosed in circles and labelled
v1 to vs. The arcs in d, labelled di to ds, form a forest modulo that equivalence.
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These axioms describe a forest-like structure where the arcs in d are directed
towards their respective root component(s). For example, the forest modulo an
equivalence in Fig. 1 has two root components: v4 and vs. The special case of a
forest modulo 1 is the transpose of a forest, that is, univalent and acyclic.

Theorem 2. Let S be a Stone-Kleene relation algebra and let d,z € S and let
d be a forest modulo z. Then d is acyclic and univalent and

2.1 dUud™ <z 2.6 (zd)*M(zd)" =L

22 deUzd<T 2.7 d"xd <1

23 z(dUdNx <=ZT 2.8 (zd")txdxd” < (zd")T

24 (de)t <= 2.9 (d7z)*(zd)* = (d"z)* U (zd)*
2.5 (zd)t <=

Furthermore, let @ € S be an arc and let a < d, then

210 (dna)’ (zaT) < L
211 (2(dna)zaT = (z((dNa@)U(dNa)T)) zaT

Theorems 2.1 to 2.5 describe how d separates equivalence classes of z. For
example, Theorem 2.4 states that taking steps (dxz)* that involve one or more
d-arcs leads to a different component. Theorem 2.6 follows from the acyclic-like
structure of the forest modulo x. Theorem 2.7 is derivable from xd being univa-
lent. Theorem 2.9 follows from x being an equivalence and xd being univalent.
This theorem states that taking any number of steps backwards in the forest
modulo z (away from the roots) followed by any number of steps forwards in the
forest modulo x (towards the roots) is the same as going either forwards or back-
wards. Consider the situation if we take a step backwards between components
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of a forest modulo x without using an arc a, which is in d. Then, Theorem 2.10
states there is no sequence of steps we can take in the component we find our-
selves in to next take a step along arc a.

4.2 Paths in Forests Modulo an Equivalence

Next, we define a general expression for the existence of a path between two
vertices in a forest modulo an equivalence.

Definition 10. Let S be an m-k-Stone-Kleene relation algebra and let a ,b,d,
x € S. Then, a~2b holds if a and b are arcs, x is an equivalence, and

a'T < (zd)*xbT (5)

Property (5) states that there is a path from the target of a, represented by
the point a™ T, to the source of b, represented by the point bT, in the forest d
modulo x.

The following result states that for an arc e there is a path in d U e between
a and b if and only if there is either a path in d from a to b, or a path in d from
a to e and one from e to b.

Theorem 3. Let S be an m-k-Stone-Kleene relation algebra where a,b,e,d,
x € S are regular and let e be an arc and = be an equivalence. Then

a~deh o amdhy (awze/\ewgb)

Theorem 3 allows us to split a path. An example use of this is given in
Sect. 6.1.

5 Relational Formalisation of Bortivka’s MST Algorithm

In this section, we formalise Boruvka’s MST algorithm as a while-program,
shown in Fig.2. The variables of the program are elements of an m-k-Stone-
Kleene relation algebra.

The input to the program is an undirected graph, g, modelled by a symmetric
matrix. With the exception of g, all variables are regular elements. Graph g
does not need to be connected. The algorithm constructs a directed minimum
spanning forest f (of g) that is initialised as empty (line 2).

The outer while-loop executes until there are no arcs in g that could connect
components of f (line 3). On lines 4 to 6, variables used by the inner while-
loop are initialised. The forest h maintains a stable representation of f in each
iteration of the inner while-loop. The vector j tracks the components still to be
considered by the inner while-loop. The variable d tracks the arcs that have been
added to f in each iteration of the inner while-loop. This variable is not required
by the algorithm but is used in the correctness proof.

The inner while-loop exits when all components have been processed (line 7).
As discussed in Sect. 7.1 of [15], for a directed graph, x, the weakly-connected
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1 input g

2 f+ L

3 while fT*f*Mg# 1 do
4 d+ L

5 h+<f

6 jT

7 while j # 1 do

8 v < k(c(h), j)

9 e« m(vo' MNg)
10 if e < f7*f* then
11 f+ fne’

12 Fe(NTefTHU(fNTef ™ Ue
13 d+dUe

14 end

15 j+<jnNv

16 end

17 end
18 output f

Fig. 2. A relational formalisation of Borivka’s MST algorithm.

components are given by (x U z")*. Furthermore, if x is a forest, this can be
simplified to ¢(xz) = " *a*. This is because, ignoring arc direction, two vertices
are connected in a forest if there is a path from one vertex backwards in =z,
towards a root, and then forwards in x to the other vertex. An arbitrary com-
ponent, v = k(c(h), j), is selected from those that have not yet been considered
(line 8). The k operation introduced in Definition 7 is used. The vector j repre-
sents the components not yet processed by the inner while-loop and the forest,
h, represents f as it was when the current iteration of the outer loop started.
The equivalence c(h) describes the weakly-connected components of f, as they
were at the start of the current iteration of the outer while-loop. The component
v is then weakly connected in h and among those still to be processed by the
inner while-loop. Since j is reduced by v at the end of each iteration of the inner
while-loop and it continues until j is empty, every component of f is processed
exactly once in each iteration of the outer while-loop.

A minimum-weighted arc, e, is selected from among the arcs whose source is
in v and whose target is outside v (line 9). If e is not contained in a component
of f (line 10) then f is updated (lines 11 and 12), otherwise, it is not. Before e is
added to f, the algorithm ensures that any transpose of e, which may have been
added in a previous iteration of the inner while-loop, is removed from f (line
11). The update on line 12 adds e to f and at the same time reverses certain
arcs of f to maintain that f is a forest. These two updates give a new value for
f, [/, that is:

f = (f|—|éT I_ITe(fITET)T*) L (fﬂéT |—|Te(f|‘|éT)T*)T e  (6)
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The variable d is updated to track the arcs that have been added to f in this
iteration of the inner while-loop (line 13). The processed component is removed
from j so that it is not considered in subsequent iterations of the inner while-loop
(line 15). When the outer while-loop exits the algorithm terminates returning f
(line 18) which contains the structure of a minimum spanning forest of g without
weight information. The weighted version of the output may be obtained by
taking the meet with ¢g. The undirected version of the output can be obtained
by taking the symmetric closure.

Boruvka’s MST algorithm requires the input graph’s arc weights to be dis-
tinct. Because our formalisation does not require this, we have added a check
in the inner loop to ensure that no cycle is created (line 10). This check is
also performed in the relational version of Kruskal’s algorithm before adding
an arc with minimal weight to the forest variable [15]. The relational version of
Kruskal’s algorithm iterates over the arcs of the graph while the inner while-loop
of the algorithm we present iterates over component trees. This means that here
we are often working with the properties of vectors. Both approaches keep track
of the desired output by growing a minimum spanning forest, represented as a
directed graph whose components are rooted directed trees. This structure is
useful for maintaining that the output is injective and acyclic, properties used
to conclude that the result is a forest. We select a minimum-weight arc whose
source is in component v and whose target is outside v with m(vv"™ M g). This
expression was used in [14] in a relational version of Prim’s MST algorithm to
select an arc with minimum weight that leaves a set of visited vertices.

The complexity of Eq. (6) results from representing f as a directed forest,
which is also the approach taken in [15]. The advantage of this approach is that
it is more simple to give a specification for being acyclic than if f was undirected.

6 Correctness Proof

In this section, we discuss the partial-correctness proof of the formalisation pre-
sented in Sect.5. We work in, and our proof holds for any instance of, m-k-
Stone-Kleene relation algebras. In particular, it holds for weighted matrices,
S = R/AXA.

We reuse the specification from [15] that was used to verify Kruskal’s MST
algorithm.

Definition 11. Let S be an m-Kleene algebra where f,g € S. Then, f is a
spanning forest of g if f is a reqular forest and

f<39

g <c(f)

The spanning forest, f, is a minimum spanning forest of g if for all uw € S where
u is a spanning forest of g, the following holds:

s(frg) <s(uMg)



Relation-Algebraic Verification of Bortuvka’s Algorithm 235

Intuitively, a spanning forest is a maximal acyclic subset of arcs of a graph,
that is, composed of spanning trees, one for each component of the graph. A
minimum spanning forest is one where the sum of arc weights is minimal among
all possible spanning forests of a graph.

Our correctness proof assumes that both while-loops terminate. In future
work, we may eliminate this assumption by taking a similar approach as in [15].
Presently, under the assumption that both while-loops terminate, the following
theorem gives the preconditions and invariants we use to establish the postcon-
dition of the outer while-loop that f is a minimum spanning forest of g.

Theorem 4. Let S be an m-k-Stone-Kleene relation algebra and let g € S
be symmetric. Then, the following invariant holds throughout Boruvka’s MST
algorithm:

4.1 g is symmetric;

4.2 f is a regular forest;

4.3 f <7, meaning that f is contained in g, ignoring arc weights;

4.4 there is a minimum spanning forest, w, of g, such that f <wUwT.

Establishing Theorems 4.1 to 4.3 at the start of the algorithm is easy. The
variable g is symmetric as a result of the precondition; f is a regular forest since
1 is regular, injective and acyclic; and f < g since L is the least element. We
reuse the proof from [15] to establish Theorem 4.4.

In contrast to Prim’s and Kruskal’s algorithms, Bortuvka’s MST algorithm
has a second while-loop that we must establish and maintain an invariant for.

Theorem 5. Let S be an m-k-Stone-Kleene relation algebra and let j € S.
Then, the following invariant holds throughout the inner while-loop of Boruvka’s
MST algorithm:

5.1 g # 1, meaning that the graph has at least one arc;

5.2 d is regular;

5.3 j is a regular vector;

5.4 h is a regular forest;

5.5 ¢(h)j = j, meaning that j contains each component of h entirely or not at
all;

5.6 d is a forest modulo c(h);

5.7 dT < j, meaning that the sources of the arcs in d are not in the set of
vertices still to be processed;

5.8 fUfT =hUhTUdUdT, meaning that, ignoring direction, f can be obtained
by taking the join of h and d;

5.9 Va,b: awg(h) bAa<c(h)MgAb<d= s(bMg) < s(alg), meaning that,
for any arcs a and b, if there is a path from a to b in forest d modulo ¢(h) and
a is in the graph (ignoring weight) and is not contained in the components
of h and b is contained in d then the weight of b is less than or equal to the
weight of a.
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The requirements of the invariant for the inner while-loop are also easy to
establish owing to the values that the variables are initialised to.

Most of the work to maintain the invariants is to maintain the inner while-
loop invariant since, aside from variable initialisation, the logic of the inner
while-loop makes up the entirety of the outer while-loop.

The following result states the correctness of the algorithm.

Theorem 6. Let S be an m-k-Stone-Kleene relation algebra and let g € S be
symmetric. Then, the following postcondition is established for Bortuvka’s MST
algorithm: f is a minimum spanning forest of g.

In the remainder of this section we give two examples of how the invariant
is maintained.

6.1 Maintaining Arc Weight Comparison in a Forest Modulo c(h)

To show that invariant 5.9 of Theorem 5 is maintained we must show that

awf‘(-'he)b/\aSc(h)l‘lﬁ/\bgdl_leés(bﬂg)Ss(al‘lg) (7)

for any arcs a, b. To this end, we assume that invariant 5.9 holds (for the previous
iteration of the inner while-loop) and that the antecedent of (7) is true.

Our proof is by case distinctions but within each case reasoning is algebraic.
There are six cases to consider and we discuss one of these in more detail. We
first make a case distinction where b # e and e £ d. Next, we use Theorem 3 to
further split into two cases. The first is a wf( h) b, that is, there is a path from a to
b in d modulo ¢(h), in which case we can conclude s(bMg) < s(aMg) immediately
from invariant 5.9 of Theorem 5. The second is an(h) e and ewg(h) b, that is,
there is a path in d modulo ¢(h) from a to e and one from e to b.

We first treat the path from e to b. We have e < ¢(h) Mg, since e is contained
in the graph and not contained in the components of h. Additionally, b < d,
since e and b are arcs and b # e and e £ d and b < dUe. Together with e wg(h) b,
it follows from invariant 5.9 of Theorem 5 that s(bMg) < s(e M g).

Next, we treat the path from a to e. Either, the target of a is in the same
component as the source of e or not. If it is then we have a™ T < ¢(h)eT and
apply the following theorem.

Theorem 7. Let S be an m-k-Stone-Kleene relation algebra and let a,e,g,
v,x € S where g is symmetric, v represents a unique-vector-class of x, e =
m(vo' Mg), ais an arc, a <TMg, and a" T < xeT. Then, s(elg) < s(allg).

This result allows us to show that the selected arc, e, that is outgoing from a
component, v, must have a weight less than or equal to any other arc incoming to
that component in d with respect to the forest modulo x. This is a consequence
of m selecting a minimum-weighted arc.

To apply Theorem 7, we set z = ¢(h) and e = m(vv ' Mg) where v = k(c(h), ).
Then, we have that ¢ is symmetric and a is an arc from the invariant, and c(h)
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is an equivalence. From the axioms of the k£ operation and since j # L, we know
that v represents a unique-vector-class of c¢(h). From the antecedent we have
a < ¢(h) Mg. Hence, in this case, s(eg) < s(allg).

If the target of a is not in the same component of c¢(h) as the source of e
then we describe an arc, y, that is on the path from a to e in d modulo ¢(h) and
whose target is in the same component of ¢(h) as the source of e. The arc y is
defined as

y=dnTe ¢(h)N (c(h)dT)*c(h)aTT

The meet with d ensures that y is an arc between components of ¢(h). The
second part of this expression, Te'c(h), ensures that the target of y is in the
same component of ¢(h) as the source of e. The last part of this expression,
(c(h)dT)*c(h)aTT, ensures that the source of y is reachable from the target of
a by taking any number of steps in the forest d modulo c(h). We can show
that s(yMg) < s(aMg) using invariant 5.9 of Theorem 5 in a similar manner as
described above. Then, since we can apply Theorem 7 to show s(efg) < s(yMg),
it follows that s(eMg) < s(aMg).

Finally, the result for the path from a to e and the result for the path from
e to b are combined to conclude that s(bMg) < s(eMg) < s(aMg).

6.2 Extending f to a Minimum Spanning Forest

The key property of the invariant of the outer loop that must be maintained is
that the forest, f, can be extended to a minimum spanning forest of the graph, g,
ignoring arc direction, that is, there exists a minimum spanning forest, w, such
that f < wUw'. We were able to reuse work from [15] in the maintenance of
this invariant except the arc selected for replacement is changed.

If the arc added to f is not also in w then the added arc must replace an arc
in w to ensure that w remains acyclic. In [15] the arc selected for replacement
was the arc whose source was in the same component of f as the target of e.
This arc does not suit our purposes because we do not have a convenient way to
compare its weight with the weight of e. However, there is an easy comparison
to be made between e and the arc, ¢, shown in Fig. 3, whose target is in the same
component of f as the source of e. Namely, the weight of e is at least as small
as the weight of ¢, since ¢ is among those arcs that the algorithm chose e from
with the minimum selection m(vv" M g).

Let ¢ = w M Tew™ ", that is, the path from the root of w to the target of e and
let r = (wMgq) U q", that is, w with the path g reversed. Then, the desired forest,
w’, that extends f’ is 7, with 7 removed and e added. That is, w’ = (r M) Ue.
The arc i is defined as

i=rNe(fleT N Te e(f)

The meet with r limits ¢ to only those arcs in the rooted directed forest w with

the path ¢ reversed. The second part of this expression, ¢(f)eT, specifies that
the source of ¢ cannot be in the same component of f as the source of e. Finally,
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w w/
Fig. 3. Maintaining the invariant that f can be extended to a minimum spanning
forest, w, before (left) and after (right) adding arc, e. The path, g, to the root of the
rooted directed forest is reversed to maintain injectivity. The arc, ¢, whose target is in
the same component of f as the source of e, is removed to maintain that w’ is acyclic.
The vertices enclosed in a circle denote a component, in f. The root of the rooted
directed forest is highlighted grey.

the last part of the expression, Te'c(f), requires that the target of i is in the
same component of f as the source of e.

We prove that these requirements uniquely identify an arc, i¢. After the
update, the target of 7 becomes the root of w’ in the component that e is in.
Furthermore, we show that s(e Mg) < s(i M g) using Theorem 7.

7 Conclusion

We have formalised Boruvka’s MST algorithm and proved its correctness. While
we have benefited from the relation-algebraic framework introduced in [13] and
the theorems subsequently developed in that framework, substantial additional
proof work was required to complete our verification. To better structure the rea-
soning, we have axiomatised an operation, k, to select an arbitrary component.
This axiomatisation uses a new definition for a component of a graph in terms
of an equivalence, describing connectivity, and a vector, describing the subset
of vertices we are selecting from. An implementation of k is given in m-Kleene
algebras.

We have introduced a new abstraction, forests modulo an equivalence, that
helps us to reason about forest-like structures of graphs by ignoring some arcs
in a graph and focusing on others. The proof of our formalisation of Borivka’s
MST algorithm applies this abstraction by considering the arcs connecting the
components that are constructed by the inner while-loop of the algorithm as a
forest modulo the components.
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Much of our proof of Boruvka’s MST algorithm used only the axioms of

Stone-Kleene relation algebras and our proof holds for instances other than the
weighted-graph model described in this paper. Different instances of m-Kleene
algebras give rise to formalisations of various other algorithms, for example, the
minimum bottleneck spanning tree problem [14]. Our proof holds for any instance
that satisfies the axioms the proof is conducted in. This means Boruvka’s MST
algorithm is correct for various related MST problems.

Acknowledgement. We thank the anonymous referees for helpful comments.
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Abstract. We prove that, similarly to known PSPACE-completeness of
recognising FO(<)-definability of the language L(2() of a DFA 2, deciding
both FO(<,=)- and FO(<, MOD)-definability (corresponding to circuit
complexity in AC® and ACC®) are PSPACE-complete. We obtain these
results by first showing that known algebraic characterisations of FO-
definability of L(2) can be captured by ‘localisable’ properties of the
transition monoid of 2. Using our criterion, we then generalise the known
proof of PSPACE-hardness of FO(<)-definability, and establish the upper
bounds not only for arbitrary DFAs but also for 2NFAs.

1 Introduction

This paper gives answers to some open questions related to finite automata, logic
and circuit complexity. Research in this area goes back (at least) to the early1960s
when Biichi [8], Elgot [12] and Trakhtenbrot [28] showed that MSO(<) (monadic
second-order) sentences over finite strict linear orders define exactly the class of
regular languages.

FO(<)-definable regular languages were proven to be the same as star-free
languages [19], and their algebraic characterisation as languages with aperi-
odic syntactic monoids was obtained in [23]. Algebraic characterisations of FO-
definability in other signatures, and circuit and descriptive complexity of regular
languages were investigated in [3,4,26], which established an AC’/ACC®/NC!
trichotomy. In particular, the regular languages decidable in AC? are definable
by FO(<,=)-sentences with unary predicates 2 = 0 (mod n); those in ACC® are
definable by FO(<, MOD)-sentences with quantifiers 3”2 ¢(x) checking whether
the number of positions satisfying v is divisible by n; and all regular languages
are definable in FO(RPR) with relational primitive recursion [11]; see Table 1.

The problem of deciding whether the language of a given DFA 2 is FO(<)-
definable is known to be PSPACE-complete [7,10,25] (which is also a special
case of general results on finite monoids [5,13]). As shown in [4], the algebraic
criteria of Table 1 yield algorithms deciding whether a given regular language is in
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Table 1. Definability, algebraic characterisations and circuit complexity of a regular
language L, where M (L) is the syntactic monoid and nr the syntactic morphism of L.

Definability of L Algebraic characterisation of L Circuit complexity
FO(<) M (L) is aperiodic in AC?

FO(<, =) N is quasi-aperiodic

FO(<,MOD) All groups in M (L) are solvable in ACC®

FO(RPR) Arbitrary M (L) in NC!

Not in FO(<,MOD) M (L) contains an unsolvable group | NC'-hard

AC? and FO(<,=)-definable, or in ACC® and FO(<, MOD)-definable, or NC*-
complete and is not FO(<,MOD)-definable (unless ACC° = NC'). However,
these ‘brute force’ algorithms are not optimal, requiring the generation of the
whole transition monoid of 2[, which can be of exponential size [14]. As far as
we know, the precise complexity of these decision problems has remained open.

Our interest in the exact complexity of these problems is motivated by recent
advances in ontology-based data access (OBDA) with linear time temporal logic
LTL [1,2]. The classical (atemporal) OBDA paradigm [20,30] relies on a reduc-
tion of answering a query mediated by an ontology under the open-world seman-
tics to evaluating a database query in a standard language such as SQL or its
extension—that is, essentially, an extension of first-order logic—under the closed-
world semantic. In the context of temporal OBDA, answering LTL ontology-
mediated queries is equivalent to deciding certain regular languages given by
an NFA or 2NFA of (possibly) exponential size, which gives rise to the circuit
complexity and FO-definability problems for those languages. For further details
the reader is referred to [22], which relies on the results we obtain below.

Our contribution in this paper is as follows. Let £ be one of the languages
FO(<,=) or FO(<,MOD). First, using the algebraic characterisation results of
[3,4,26], we obtain criteria for the L-definability of the language L(2l) of any
given DFA 2l in terms of a limited part of the transition monoid of 2 (Theorem 1).
Then, by using our criteria and generalising the construction of [10], we show
that deciding L£-definability of L(2) for any minimal DFA 2 is PSPACE-hard
(Theorem 2). Finally, we apply our criteria to give a PSPACE-algorithm deciding
L-definability of L(2) for not only any DFA but any 2NFA 2 (Theorem 3).

2 Preliminaries

We begin by briefly reminding the reader of the basic algebraic and automata-
theoretic notions required in the remainder of the paper.

2.1 Monoids and Groups

A semigroup is a structure & = (5, ) where - is an associative binary operation.
Given s,s’ € S and n > 0, we write s™ for s ... -s n-times, and often write ss’
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for s-s'. An element s in a semigroup & is idempotent if s> = s. An element e
in G is an identity if e-x = x-e =z for all x € S. (It is easy to see that such
an e is unique, if exists.) The identity element is clearly idempotent. A monoid
is a semigroup with an identity element. For any element s in a monoid, we set
s = e. A monoid & = (S,-) is a group if, for any x € S, there is x~ € S—the
inverse of x—such that x -2~ = a2~ - & = e (every element of a group has a
unique inverse). A group is trivial if it has one element, and nontrivial otherwise.
Given two groups ® = (G,-) and &’ = (G’,”), amap h: G — G’ is a group
homomorphism from & to & if h(gy - g2) = h(g1) ' h(gz) for all g1, 9> € G. (It is
easy to see that any group homomorphism maps the identity of & to the identity
of &’ and preserves the inverses. The set {h(g) | ¢ € G} is closed under -, and
so is a group, the image of & under h.) & is a subgroup of &' if G C G’ and the
identity map idg is a group homomorphism. Given X C G, the subgroup of &
generated by X is the smallest subgroup of & containing X. The order og(g) of
an element g in & is the smallest positive number n with g = e, which always
exists. Clearly, os(9) = 0 (97) and, if g¥ = e then og(g) divides k. Also,

if ¢ is a nonidentity element in a group &, then ¢* # ¢**! for any k. (1)

A semigroup &' = (57,) is a subsemigroup of a semigroup & = (S5,-) if S’ C §
and -/ is the restriction of - to S’. Given a monoid M = (M, -) and a set S C M,
we say that S contains the group & = (G,), if G C S and & is a subsemigroup
of M. Note that we do not require the identity of M to be in &, even if it is in
S. If S = M, we also say that M contains the group &, or & is in M. We call
a monoid M aperiodic if it does not contain any nontrivial groups.

Let & = (S, ) be a finite semigroup and s € S. By the pigeonhole principle,
there exist i, 7 > 1 such that i+j < |S|+1 and s° = s**7. Take the minimal such
numbers, that is, let iy, js > 1 be such that is + js < |S]| + 1 and s% = sistJ:
but sbs,ststl . slsFIs~1 are all different. Then clearly &, = (Gj,-), where
Gy = {s%, 5T . glsTis711 {5 a subsemigroup of &. It is easy to see that
there is m > 1 with iy < m - js < is+js, < [S]+1, and so s+ is idempotent.
Thus, for every element s in a semigroup &, we have the following:

there is n > 1 such that s™ is idempotent; (2)
&, is a group in & (isomorphic to the cyclic group Z;, ); (3)
®, is nontrivial iff s" # s"*! for any n. (4)

Let §: Q — @ be a function on a finite set Q # (). For any p € @, the subset
{6%(p) | k < w} with the obvious multiplication is a semigroup, and so we have:
for every p € Q, there is n, > 1 such that §"» (6" (p)) = 6" (p); (5)
there exist ¢ € @ and n > 1 such that ¢ = 6" (q); (6)

for every q € Q, if ¢ = 6%(q) for some k > 1,
then there is n, 1 <n <|Q|, with ¢ =46"(q). (7)

For a definition of solvable and unsolvable groups the reader is referred to [21].
Here, we only need the fact that any homomorphic image of a solvable group
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is solvable and the Kaplan-Levy criterion [16] (generalising Thompson’s [27,
Cor.3]) according to which a finite group & is unsolvable iff it contains three
elements a, b, ¢, such that og(a) = 2, 0s(b) is an odd prime, og(c) > 1 and
coprime to both 2 and og(b), and abc is the identity element of &.

A one-to-one and onto function on a finite set S is called a permutation on
S. The order of a permutation ¢ is its order in the group of all permutations
on S (whose operation is composition, and its identity element is the identity
permutation idg). We use the standard cycle notation for permutations.

Suppose & is a monoid of @ — @ functions, for some finite set Q # (). Let
S={q€Q]|es(q) =q}, where eg the identity element in &. For every function
0 in &, let §[¢ denote the restriction of  to S. Then we have the following:

& is a group iff [g is a permutation on S, for every § in &; (8)
if & is a group and 0 is a nonindentity element in it, then §[¢7# idg and
the order of the permutation §[s divides og(0). (9)

2.2 Automata: DFAs, NFAs, 2NFAs

A two-way nondeterministic finite automaton is a quintuple 2 = (Q, X, 6, Qo, F)
that consists of an alphabet X, a finite set Q of states with a subset Qg #
of initial states and a subset F' of accepting states, and a transition function
§: Q x ¥ — 2@x{-1.0.1} indicating the next state and whether the head should
move left (—1), right (1), or stay put. If Qo = {qo} and |6(¢g,a)| = 1, for all g € Q
and a € X, then 2 is deterministic, in which case we write A = (Q, X, 9, qo, F'). If
d(g,a) CQx {1}, for all ¢ € @ and a € X, then A is a one-way automaton, and
we write §: Q x ¥ — 29. As usual, DFA and NFA refer to one-way deterministic
and non-deterministic finite automata, respectively, while 2DFA and 2NFA to
the corresponding two-way automata. Given a 2NFA 2, we write ¢ —4.q4 ¢ if
(¢',d) € 6(q,a); given an NFA 2, we write ¢ —, ¢' if ¢ € d(g,a). A run of a
2NFA 2 is a word in (Q xN)*. A run (qo, %), - - -, (¢m, tm) is a run of A on a word
w=ag...a, € X*if qo € Qop, ip = 0 and there exist do,...,dn—1 € {—1,0,1}
such that q; —q;.4; ¢j+1 and i;11 = i; + dj; for all j, 0 < 7 < m. The run is
accepting if ¢ € F, im = n+ 1. A accepts w € X* if there is an accepting run
of 2 on w; the language L(2L) of A is the set of all words accepted by 2.

Given an NFA 2, states ¢,¢' € Q, and w = ag ...a, € X*, we write ¢ —, ¢’
if either w = € and ¢’ = ¢ or there is a run of 2 on w that starts with (go,0)
and ends with (¢/,n + 1). We say that a state ¢ € Q is reachable if ¢ —,, ¢, for
some ¢’ € Qo and w € X*.

Given a DFA 2 = (Q, X, 0,90, F) and a word w € X*, we define a function
dw: @ — Q by taking d,,(¢) = ¢ iff ¢ — ¢'. We also define an equivalence
relation ~ on the set Q" C @ of reachable states by taking q ~ ¢’ iff, for every
w € X*, we have d,,(q) € F just in case §,,(¢') € F. We denote the ~-class of ¢ by
q/~,and let X/ ={q/~ | g € X} for any X C Q". Define b Q"/~ — Q"/. by
taking 0, (q/~) = 0w (q)/~. Then (Q/~, 2,8,q0/~, (FN Q")/~) is the minimal
DFA whose language coincides with the language of 2. Given a regular language
L, we denote by 2z, the minimal DFA whose language is L.
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The transition monoid of a DFA 2 is M(2A) = ({0, | w € X*},-) with
Oy * Oy = Oyu, for any v, w. The syntactic monoid M (L) of L is the transition
monoid M () of Ar. The syntactic morphism of L is the map nr from X*
to the domain of M (L) defined by 7z (w) = d,,. We call iy, quasi-aperiodic if
nr(X) is aperiodic for every t < w.

Suppose L € {FO(<),FO(<,=),FO(<,MOD)}. A language L over an alpha-
bet X is L-definable if there is an L-sentence ¢ in the signature X', whose
symbols are treated as unary predicates, such that, for any w € X*, we have
w = ay...a, € L iff &, E ¢, where &,, is an FO-structure with domain
{0,...,n} ordered by <, in which &,, = a(i) iff a = a;, for 0 <i < n.

Table 1 summarises the known results that connect definability of a regular
language L with properties of the syntactic monoid M (L) and syntactic mor-
phism 7y, (see [4] for details) and with its circuit complexity under a reasonable
binary encoding of L’s alphabet (see, e.g., [7, Lemma 2.1]) and the assump-
tion that ACC® % NC'. We also remind the reader that a regular language is
FO(<)-definable iff it is star-free [26], and that AC® S ACC C NC! [15,26].

3 Criteria of L£-definability

In this section, we show that the algebraic characterisations of FO-definability of
L(2) given in Table 1 can be captured by ‘localisable’ properties of the transition
monoid of 2, for any given DFA 2l. Note that Theorem 1 (i) was already observed
in [25] and used in proving that FO(<)-definability of L(2) is PSPACE-complete
[7,10,25]; while criteria (i3) and (ii7) seem to be new.

Theorem 1. For any DFA 2 = (Q, X, 0,qo, F), the following criteria hold:

(i) L(2) is not FO(<)-definable iff A contains a nontrivial cycle, that is, there
exist a word uw € X*, a state ¢ € Q, and a number k < |Q| such that
q 7 u(q) and g = 0,x(q);

(i) L(2) is not FO(<, =)-definable iff there are words u,v € X*, a state ¢ € Q",
and a number k < |Q| such that q 7% 6,(q), g = d.x(q), |v| = |u|, and
0ui (q) = Oyiv(q), for every i < k;

(iti) L(2A) is not FO(<, MOD)-definable iff there exist words u,v € X*, a state
q € Q" and numbers k,l < |Q| such that k is an odd prime, | > 1 and
coprime to both 2 and k, q # 64.(q), g # 6,(q), ¢ #* duv(q) and, for all
x € {u,v}*, we have 65(q) ~ 02u2(q) ~ Ozuk (@) ~ Og(uoyr (q)-

Proof. Throughout, we use the algebraic criteria of Table1 for L = L(21). Thus,
M(L) is the transition monoid of the minimal DFA 2(f(g), whose transition
function we denote by 4.

() (=) Suppose & is a nontrivial group in M (A g). Let u € X* be such
that &, is a nonidentity element in &. We claim that there is p € Q" such that
un (p/~) # Oynti (p/~) for any n > 0. Indeed, otherwise for every p € Q" there
is n, > 0 with dunp (p/~) = dynpi1(p/~). Let n = max{n, | p € Q"}. Then

Oyn = Oyn+1, contrary to (1).
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By (5), there is m > 1 with buzm (/) = Oum(p/~). Let s/ = buym(p/).
Then s/ = 0ym(s/~), and so the restriction of d,m= to the subset s/. of Q"
is an s/. — s/. function. By (6), there exist ¢ € s/. and n > 1 such that
(6um)™(q) = q. Thus, d,mn(q) = g, and so by (7), there is k < |Q] with d,x(q) = ¢.
As 5/ # 64(5/~), we also have ¢ o 0,(q), as required.

(i) (<) Suppose the condition holds for 2. Then there are u € X*, ¢ € Q"/~,
and k < w such that ¢ # 0, (¢q) and ¢ = 0,x(q). Then §yn # dyn+1 for any n > 0.
Indeed, otherwise we would have some n > 0 with d,» (q) = Synt1 (). Let 4,4 be
such that n =¢-k+ 7 and j < k. Then

q= Su’c (q) = gu(“'l)’“(Q) = gu"uk_j (Q) = Su"+1uk_-7 (q) = Su(“'l)ku(Q) = Su(q)

So, by (3) and (4), &; is a nontrivial group in M (g (a))-

(i1) (=) Let & be a nontrivial group in n (X*), for some ¢t < w, and let u € X*
be such that 8, is a nonidentity element in . As shown in the proof of (i) (=),
there exist s € Q" and m > 1 such that s/ # 0,(s/~) and s/ = dym(s/).
Now let v € X' be such that 4, is the identity element in &, and consider §,.
By (2), there is ¢ > 1 such that J,c is idempotent. Then d,2e-1,2¢ = Jp2e-1.
Thus, if we let @ = w2~ and © = v%, then |a| = |0| and §z: = J5:5 for any
i < w. Also, &,; = 04 for every i > 1, and so the restriction of dzm to 8/~
is an s/ — s/ function. By (6), there exist ¢ € s/. and n > 1 such that
(6gm)™(q) = gq. Thus, dzmn(q) = ¢, and so by (7), there is some k < |@Q| with
6ar(q) = q. As s/ # 0u(s/~) = 6a(s/~), we also have q % 65(q), as required.

(#4) («=) If the condition holds for 2, then there exist u,v € X*, g € Q"/, and
k < w such that g # 0,(q), ¢ = 04k (q), |v| = |u|, and 8,:(q) = 8yi,(q), for every
i < k. As M (2 (q)) is finite, it has finitely many subsets. So there exist 4,7 > 1
such that g (X)) = g (D0 Let 2 be a multiple of j with i < 2z < i+ j.
Then 5, (2211 = 5 (2E14D*), and so n (27141 is closed under the composition
of functions (that is, the semigroup operation of M (% q))). Let w = wv*~ 1 and
consider the group ®; = (defined above (2)-(4)). Then Gj C np (Z714). We
claim that &; is nontrivial. Indeed, we have b (9) = I (¢9) = Su(q) # q. On
the other hand, d,,»(q) = d,+(¢) = ¢. By the proof of (i) (<), ®; is nontrivial.

(¢7i) (=) Suppose & is an unsolvable group in M (2 qy)). By the Kaplan—
Levy criterion, & contains three functions a, b, ¢ such that og(a) = 2, 0g(b) is
an odd prime, og(c) > 1 and coprime to both 2 and o0g(b), and coboa = eg
for the identity element ey of &. Let u,v € X* be such that a = (5u, b= (5
and ¢ = (04) ", and let k = 06 (d,) and r = og(c ) = 06 (duy). Then 7 > 1 and
coprime to both 2 and k. Let S = {p €EQ/~|es(p p} As b, is & for every

x € {u,v}*, we have eg 0 6, = d,. Thus,

5wz(q) = 0,2 (Sm(q)) = eg ((L(q)) = (es 04
5901;’“ (Q) = Svk (Sm(Q)) = €3 (590((])) = (66 04

Then, by (8), each of buls, Oy ls and duvls is a permutation on S. By (9), the
order of §,[g is 2, the order of §,[g is k, and the order [ of ,,[s is a > 1 divisor

2)(q) = 6.(g), and
2)(q) = Sz(q), for every q € S.
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of 7, and so it is coprime to both 2 and k. Also, we have k,1 < |S| < |Q|. Further,
for every z, if ¢ is in S then §,(q) € S as well. So we have

gz(uv)l(Q) = S(uv)l (Sz(q)) = (Suv [S)Z(Sz(q)) = 'dS(Sm(Q)) = SI(Q)? for all qe S.

It remains to show that there is ¢ € S with ¢ # 64(q), ¢ # 6u(q), and q # b4y (q).
Recall that the length of any cycle in a permutation divides its order. First, we
show there is ¢ € S with ¢ # &, (¢) and q # b (q). Indeed, as buls# idg, there
{squsuchtpatgu( )—q # q. As the order of 0, is 2, 0,(¢') = ¢. If both
0,(q) = ¢ and 6,(¢') = ¢ were the case, then d,,(¢q) = ¢’ and d,,(¢’) = ¢ would
hold, and so (¢¢’) would be a cycle in 6u,,[5, contrary to [ being coprime to 2. So
take some ¢ € S with d,(¢) = ¢ #qandé (q) # q. If 8, ( )#qthen&w( ) # q,
and so ¢ is a good choice. Suppose 8,(¢') = ¢, and let ¢” = 6,(q). Then ¢" # ¢/,
as k is odd. Thus, 0y,(¢') # ¢, and so ¢’ is a good choice.

(#4i) (<) Suppose u,v € X* ¢ € Q", and k,l < w are satisfying the con-
ditions. For every T € {u v}*, we define an equivalence relation ~, on Q"/.
by taking p ~, p iff é, (p) = b (p"). Then we clearly have that ~,Cr,,, for
all z,y € {u,v}*. As @ is finite, there is z € {u,v}* such that ~,=~, for all
y € {u,v}*. Take such a z. By (2), 6" is idempotent for some n > 1. We let
w = z". Then §,, is idempotent and we also have that

w="Ryy forallye{u,v}". (10)

Let Gy = {&mw | z € {u, v}*} Then Gy, is closed under composition. Let
B (w0} be the subsemigroup of M (A o)) with universe G, 1. Then b = Owew
is an identity element in &y, 1. Let S = {p € Q"/~ | bw(p) = p}. We show that

for every 4 in B uw}s 5l is a permutation on 3, (11)

and 50 &y} is a group by (8). Indeed, take some z € {u,v}*. As &y, (Swmw (p)) =

5wxww(p) = 5wxw( ) for any p € Q"/~, dwzwls is an S — S function. Also, if
p,p’ € 5 and dugw(p) = dwew(p') then p gy p'. Thus, by (10), p &, p', that

is, p = 0w (p) = 0w (p’) = p/, proving (11).
We show that &y, .} is unsolvable by finding an unsolvable homomorphic

image of it. Let R = {p € Q"/~ | p = 62(q) for some z € {u,v}*}. We claim
that, for every 6 in Q5{u o} 61R is a permutation on R, and so the function h

mapping every dtodpisa group homomorphism from &y, ,} to the group of
all permutations on R. Indeed, by (11), it is enough to show that R C S. Let
W= Zy...21, where w = 21 ...z, for some z; € {u,v}, @ = u and 7 = vF~ L
Since 6, (q) = Sm(u)z(q) = Sx(v)k (q) for all € {u,v}*, we obtain that

5ywﬁ(‘1) = 0z, 1.7 (5yzl...zmzm (Q)) =0z, 1.7 (Syzl...zm_l(Q)) =...
=03, (51121 (q)) = Opzz, (q) = 0,(q), for all y € {u,v}*.(12)
Now suppose p € R, that is, p = Sz(q) for some x € {u,v}*. Then, by (12),
3w (P) = 6w (62(9)) = 02w (@) = Sewur(@) = Suww(q) = 3u(a) = p,

and so p € S, as required.



248 A. Kurucz et al.

Now let & be the image of &y, ,) under h. We prove that & is unsolvable
by finding three elements a, b, ¢ in it such that og(a) = 2, os(b) = k, og(c) is
coprime to both 2 and og(b), and co boa = idg (the identity element of &).
So let a = h(d wuw) b= h(Sww) and ¢ = h(gwm,w) Observe that, for every
z € {u,v}*, h(Owew) = 2R, and so coboa = idg. Also, for any 0, ( ) € R,
aQ(JI(q)) = (0ulR )2(6 (¢ )) = (5m2( ) = Oy (q) by our assumption, so a? = idg.
On the other hand, ¢ € R as 55( ) =gq, and idr(q) = ¢ # 5u(q) by assumption,
so a # idg. As og(a) divides 2, og(a) = 2 follows. Similarly, we can show that
oe(b) = k (using that 6,,x(q) = d(q) for every x € {u,v}*, and u # d,(q)).
Finally (using that d,(,,)(¢) = dz(q) for every = € {u,v}*, and u # duu(q)),
we obtain that h(gwuvw)l = idp and h(gwm,w) # idg. Therefore, it follows that
os(c) = os (h(gwww)_) = 0 (h(gwuvw)) > 1 and divides [, and so coprime to
both 2 and k, as required.

4 Deciding FO-definability: PSPACE-hardness

Kozen [18] showed that deciding whether the intersection of the languages recog-
nised by a set of given deterministic DFAs is non-empty is PSPACE-complete. By
carefully analysing Kozen’s lower bound proof and using the criterion of Theo-
rem 1 (¢), Cho and Huynh [10] established that deciding FO(<)-definability of
L(2) is PSpACE-hard, for any given minimal DFA 2. We generalise their con-
struction and use the criteria in Theorem 1 (ii)—(4i7) to cover FO(<,=)- and
FO(<,MOD)-definability as well.

Theorem 2. For any L € {FO(<),FO(<,=),FO(<,MOD)}, deciding L-defina-
bility of the language L(2l) of a given minimal DFA 2 is PSPACE-hard.

Proof. Let M be a deterministic Turing machine that decides a language using
at most N = Py (n) tape cells on any input of size n, for some polynomial Py .
Given such an M and an input «, our aim is to define three minimal DFAs whose
languages are, respectively, FO(<)-, FO(<, =)-, and FO(<, MOD)-definable iff M
rejects &, and whose sizes are polynomial in N and the size | M| of M.
Suppose M = (Q,I,7,b,qo,gacc) With a set @ of states, tape alphabet I
with b for blank, transition function <, initial state ¢y and accepting state qqcc.
Without loss of generality we assume that M erases the tape before accepting,
its head is at the left-most cell in an accepting configuration, and if M does
not accept the input, it runs forever. Given an input word ® = xy...x, over
I', we represent configurations ¢ of the computation of M on x by the N-long
word written on the tape (with sufficiently many blanks at the end) in which the
symbol y in the active cell is replaced by the pair (g, y) for the current state q. The
accepting computation of M on x is encoded by a word fci feofl ... fep_18cib
over the alphabet X' = I'U(Qx I")U{t, b}, with ¢y, ¢a,. .., ¢; being the subsequent
configurations. In particular, ¢; is the initial configuration on x (so it is of the
form (qo,z1)x2 ... x,b...b), and ¢k is the accepting configuration (so it is of the
form (qaec, b)b...b). As usual for this representation of computations, we may
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regard 7 as a partial function from (I'U (Q x F) U {h}) to I'U (@ x I') with
Y(ol_y,0l,00,) = ol for each j < k, where o7 is the ith symbol of ¢/.

Let par.o = p be the first prime such that p 2 N +2 and p # £1 (mod 10).
By [6, Corollary 1.6], p is polynomial in N. Our first aim is to construct a p+ 1-
long sequence 2; of disjoint minimal DFAs over Y. Each 2(; has size polynomial
in N and |M|, and it checks certain properties of an accepting computation on
@ such that M accepts x iff the intersection of the L(%;) is not empty and
consists of the single word encoding the accepting computation on x.

We define each 2; as an NFA, and assume that it can be turned to a DFA
by adding a ‘trash state’ tr; looping on itself with every o € X', and adding the
missing transitions leading to tr;. The DFA 2(y checks that an input starts with
the initial configuration on x and ends with the accepting configuration:

y#Lb

b g VTS UL,
N
Y # (dace; b), 8,0

When 1 < i < N, the DFA 2; checks, for all j < k, whether the ith symbol of ¢/
changes ‘according to 4’ in passing to ¢/*!. The non-trash part of its transition
function 6° is as follows, for 1 <i < N. (For i = 1 and i = N some adjustments
are needed.) For all u, v/, v,w,w’,y,z € I'U(Q x I),

6é(ti) =¢°, 0u(¢)) =g for j=0,.i =3, 8,(¢" ) = 71w 6,(ru) = Tuw,

Oi(Puv) = Qupwys  Oy(al) =™, for j=0,..,N =3, j#N —i—1,

6;1( N—iz 1) = in Za 51( N=iz 1) = fi) ) ’(q 2) Pu’z, 6;(pu’z) =Tu'zy
!

see below, where z = y(u, v, w) and 2’ = (v, z,w’) :

1
u

Finally, if N +1 < i < p then 2; accepts all words over X' with a single occur-
rence of b, which is the input’s last character:
o#b

O
start
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Note that 2,1 =2, as p > N + 2. It is not hard to check that each of the 2; is
a minimal DFA that does not contain nontrivial cycles and the following holds:

Lemma 1. M accepts @ iff (\i_y L(2;) # 0, in which case this language con-
sists of a single word that encodes the accepting computation of M on x.

Next, we require three sequences of DFAs B% , BZ and B{,op, where p > 5
is a prime number with p #Z +1 (mod 10); see the picture below for p = 7.

In general, the first sequence is B2 = ({s; | i < p},{a}, 6%, s0,{s0}), where

5(1% (si) =s;ifi,j <pand j =i+1 (mod p). Then L(BY) comprises all words

of the form (a?)*, BL is the minimal DFA for L(B%), and the syntactic monoid
M (BZ) is the cyclic group of order p (generated by the permutation Su< ).
The second sequence is B = ({s; | i < p},{a,0},0%%, s0,{s0}), where
5?2(81) = s; and 6y (sz) =s;if4,j <pand j =i+ 1 (mod p). One can
check that L(BZ) comprises all words of a’s and §’s where the number of a’s is
divisible by p, BE is the minimal DFA for this language, and M(BL) is also the

cyclic group of order p (generated by the permutation (5 *)
The third sequence is BYop = ({sl | <p} {a,b}, §%Bwmoo ., s, {30}), where
- (5:131“;'0'3(510) and 5y MOD( ;) = sj whenever 4, j < p and j =4+ 1 (mod p);
- 6;3“"0'3(50) = Sp, 5h ""OD(sp) = 5o, and 6?“"0'3(51-) = s; whenever 1 < 4,5 <p
and i-j =p—1 (mod p), that is, j = —1/¢ in the finite field F,.

One can check that B}, is the minimal DFA for its language, and the syntactic

P P
monoid M (B}op) is the permutation group generated by 5:;8“"0'3 and 5?”‘”.

Lemma 2. For any prime p > 5 with p # £1 (mod 10), the group M (Byop)
18 unsolvable, but all of its proper subgroups are solvable.

P P
Proof. One can check that the order of the permutation 5%“"0” is 2, that of 5%“"0"

P
MOD MOD

is p, while the order of the inverse of 5?; is the same as the order of (5
which is 3. So M (B%,op) is unsolvable, for any prime p, by the Kaplan— Levy
criterion. To prove that all proper subgroups of M (B},5p) are solvable, we show
that M (B}op) is a subgroup of the projective special linear group PSLa(p). If p
is a prime with p > 5 and p Z £1 (mod 10), then all proper subgroups of PSLy(p)
are solvable; see, e.g., [17, Theorem 2.1]. (So M (B},op) is in fact isomorphic to
the unsolvable group PSLa(p).) Consider the set P = {0,1,...,p — 1,00} of all

points of the projective line over the field F,. By identifying s; with i for ¢ < p,
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and s, with oo, we may regard the elements of M (B%,,5) as P — P functions.
The group PSLa(p) consists of all P — P functions of the form i — Z’ZIZ"E,
where w - z — x - y = 1, with the field arithmetic of F,, extended by i + oo = oo
for any i € P,0-00 =1 and ¢ - 0o = oo for ¢ # 0. One can check that the two

generators of M(Bpop) are in PSLy(p): take w = 1, 2 = 1, y = 0, z = 1 for

P P
5?M°D,andw207m:1,y:p—1,z:Oforéh%MOD.

Finally, we define three automata A, A=, Apmop over the same tape alphabet
Y, = Y U{ai,as,}, where aj,ay are fresh symbols. We take, respectively, B2,
BL, B o and replace each transition s; —, s; in them by a fresh copy of U;,

for i < p, as shown in the picture below.

-

We make A, A=, Anmop deterministic by adding a trash state ¢r looping on itself
with every y € X, and adding the missing transitions leading to tr. It follows
that A, A=, and Apmop are minimal DFAs of size polynomial in N, |M].

Lemma 3. (i) L(A.) is FO(<)-definable iff (\;_, L(2;) = 0.
(i) L(A=) is FO(<,=)-definable iff (_, L(2;) = 0.
(iii) L(Amop) is FO(<, MOD)-definable iff (i_, L(2;) = 0.

Proof. As 2. ,=,2vop are minimal, we can replace ~ by = in the conditions
of Theorem 1. For the (=) directions, given some w € (/_, L(2;), in each
case we show how to satisfy the corresponding condition of Theorem 1: (i) take
u = ajway, ¢ = s, and k = p; (i) take u = aywas, v = 4", ¢ = s, and k = p;
(#it) take u =, v = aqwas, ¢ = s, k =p and [ = 3.

(<) We show that the corresponding condition of Theorem 1 implies non-
emptiness of (7_, L(2;). To this end, we define a ¥4 — {a, }* homomorphism
by taking h(h) =1t, h(a1) = a, and h(b) = ¢ for all other b € X.

(¢) and (ii): Let o € {<,=} and suppose ¢ is a state in 2% and v’ € X% such
that ¢ # 535((]) and ¢ = (5?5),6((1) for some k. Let S = {so,51,...,8p—1}. We
claim that there exist s € S and u € X} such that

s # 00 (s), (13)
52 (s) €S, forevery x € {u}”. (14)

Indeed, observe that none of the states along the cyclic ¢ —,yx ¢ path II in
AP is tr. So there is some state along IT that is in S, as otherwise one of the 2,
would contain a nontrivial cycle. Therefore, v’ must be of the form wi™a;w’ for

some w € X*, n < w and w’ € X% It is easy to see that s = (5(25)k_1w(q) and
u = f"ayw'w is as required in (13) and (14).
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As M (%) is a finite group, the set {522) | € {u}*} forms a subgroup &
in it (the subgroup generated by 5,?(2)). We show that & is nontrivial by finding
a nontrivial homomorphic image of it To this end, (14) implies that, for every
x € {u}*, the restriction 5 'sr of 6o ° to the set S = {6 s) |y € {u}*}is an
S’ — S’ function and 625[ = (5h(w) lsr. As M(B%) is a group of permutations
on a set containing S’, 5;?(2) ls/ is a permutation of S’, for every x € {u}*. Thus,
{(5§2) 's/| # € {u}*} is a homomorphic image of & that is nontrivial by (13).

As & is a nontrivial subgroup of the cyclic group M (B%) of order p and p is
a prime, & = M (B%). Then there is z € {u}* with (5;’?(‘;_) = 52 (a permutation
containing the p-cycle (sos1...sp—1) ‘around’ all elements of S), and so S' =S
and z = f"ajwazw’ for some n < w, w € X¥*, and w’ € X% . Asn = 0 when o =<
and 5?%(3) for every s € S, S’ = S implies that w € ﬂg’:—ol L) =g L(2,).

(ii1) Suppose ¢ is a state in A}op and v/ v € Xy such that g # 53,“"0'3 (q),
a7 0, (q). q # 0,15 (q). and 674 () = 8798, (q) = 8709, (q) = 3,8, 1(0)
for some odd prime k and number [ that is coprime to both 2 and k. Take
S ={s0,51,...,5p}. We claim that there exist s € S and u,v € X% such that

s # 53‘500(5)’ s # 5?)[5100 (s), s# 53‘5}00(5)7 (15)
5‘%&0D(5) €S, forevery x € {u,v}", (16)
9500 (5) = 6.3 (5) = 0710 () = 038, (5), for every & € {u, 0} (17)

Indeed, by an argument similar to the one in the proof of (7) and (i) above, we
must have v’ = w,f"a1w], and v/ = w,f"aw), for some w,,w, € X*, n,m < w
p p
and w),,w, € X7 . For every x € {u,v}*, as both 5%&"3" (¢) and 5%&",‘3" (q) arein S,
P

they must be the same state. Using this it is not hard to see that s = 53,“{'5’“’ (q),
u = f"ayw,w, and v = " a;w,w, are as required in (15)—(17).

As M(Bop) is a finite group, the set {5 MOD | z € {u,v}*} forms a sub-

group & in it (the subgroup generated by (5h(M°D and (5h(M°D) We show that & is
unsolvable by finding an unsolvable homomorphic image of it. To this end, we
let S’ = {(SELMOD(S) | y € {u,v}*}. Then (16) implies that S’ C S and

6223"’(3') = 53“"0'3( "Ye s, foralls €S andxe {uv}* (18)

P P
and so the restriction d.Mo° lg of Somod to G’ i an S’ — S’ function and
p p
6%'0[’ [sr= 6;%’5’ ls. As M (B}0p) is a group of permutations on a set containing

S’ 5h(2’c“)m ls+ is a permutation of S’ for any = € {u,v}*. So {(5,1(%’0 ls/| x €

{u,v}*} is a homomorphic image of @ that is unsolvable by the Kaplan—Levy
criterion: By (15), (17), and 2 and k being primes, the order of the permutation

(5}?(“"‘)"3 [s: is 2, the order of (5 M°D [s: is k, and the order of (5 MOD[ + (which is the
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same as the order of its inverse) is a > 1 divisor of I, and so coprime to both 2
and k.

As & is an unsolvable subgroup of M (‘B,{’AOD), it follows from Lemma 2
that & = M(Byop): and so {u,v}* Z f We Claim that S’ = S also fol-

lows. Indeed, let z € {u,v}* be such that 5h(M‘)’D = b0 Moo A |S’| > 2 by (15),

s € {soy...,Sp—1} must hold and so {sg,...,sp—1} C S’ follows by (18). As

there is y € {u,v}* with (5h(“"‘)’° 5;3'5'0'3, sp € 5" also follows by (18). Finally, as

{u,v}* Z b*, there is & € {u, v}* of the form §"aqwasw’, for some n < w, w € X
and w' € X7 . As 8" =S, (5?“"0[’(51-) € S for every i < p, and so w € (i_, L(2;).

Theorem 2 clearly follows from Lemmas 1 and 3.

5 Deciding L-definability of 2NFAs in PSPACE

Using the criterion Theorem 1 (i), Stern [25] showed that deciding whether
the language of any given DFA is FO(<)-definable can be done in PSPACE.
In this section, we also use the criteria of Theorem 1 to provide PSPACE-
algorithms deciding whether the language of any given 2NFA is L-definable,
whenever £ € {FO(<),FO(<,=),FO(<,MOD)}. Let & = (@, X, 4, Qq, F) be a
2NFA. Following [9], we first construct a(n exponential size) DFA ' such that
L(A) = L(A). To this end, for any w € X*, we introduce four binary relations
by (w), by (w), byr(w), and by (w) on @ describing the left-to-right, right-to-left,
right-to-right, and left-to-left behaviour of A on w. Namely,

— (¢,¢') € by (w) if there is a run of A on w from (g, 0) to (¢, |wl|);

— (¢,¢) € byr(w) if there is a run of A on w from (g, |w| — 1) to (¢, |wl);

- (q,q") € byy(w) if, for some a € X, there is a run on aw from (g, |aw| — 1) to

(¢’,0) such that no (¢”,0) occurs in it before (¢’,0);

— (q,¢') € by(w) if, for some a € ¥, there is a run on aw from (g,1) to (¢’,0)

such that no (¢”’,0) occurs in it before (¢’,0).

For w = ¢ (the empty word), we define the b;;(w) as the identity relation on Q.

Let b = (bsy, byi, byr, byy), where the b;; are the behaviours of 2 on some w € X*,

in which case we can also write b(w), and let b’ = b(w’), for some w’ € X*. We

define the composition b - b’ = b” with components b}, as follows. Let X and Y

be the transitive closure of b}, o b, and b, o bj;, respectively. Then we set:

lr = by 0 b}, Uby 0 X o by, v =by oby Uby oY oby,
b:n’T:b’ Ub’loYobMoblr, ;;:b”UblroXob;lobrl.

One can check that b” = b(ww’). Define a DFA ' = (Q', X, ', ¢{,, F’) by taking
Q/ = {(BlraBrT) | Bl'r g QO X Q7 BTT g Q X Q}a Q6 = ({(Qaq) I qc QO}vw)a
F' = {(Bi, Brr) | (90, 9) € By, for some qo € Qo and ¢ € F'},
¢, ((Biy, Br)) = (By,, By.,), with B, = By, o X(a) o b;.(a),

B!, = B, Ub,(a)oY(a)oby(a),
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where X (a) and Y (a) are the reflexive and transitive closures of by (a) o B, and
B, o byj(a), respectively. It is not hard to see that, for any w € X*,

8., ((Bir, Byy)) = (By,., Bl,) iff Bj, = By, o X(w) o by, (w) and
B!, = By, Uby(w) o Y(w) o by.(w), (19)

where X (w) and Y (w) are the reflexive and transitive closures of by (w) o B,
and B, oby(w), respectively. Also, one can show in a way similar to [24,29] that

L) = L) (20)

Next, we show that, even if the size of 2’ is exponential in 2, we can still use
Theorem 1 to decide £-definability of L(2) in PSPACE:

Theorem 3. For L € {FO(<),FO(<,=),FO(<,MOD)}, deciding L-definability
of L), for any 2NFA 2, is in PSPACE.

Proof. Let 2" be the DFA defined above for the given 2NFA 2(. By Theorem 1 (%)
and (20), L(2A) is not FO(<)-definable iff there exist a word u € X*, a reachable
state ¢ € @', and anumber k < [Q’| such that g % &;,(q) and ¢ = 9/ (¢). We guess
the required k in binary, ¢ and a quadruple b(u) of binary relations on Q. Clearly,
they all can be stored in polynomial space in |2(|. To check that our guesses are
correct, we first check that b(u) indeed corresponds to some u € X*. This is
done by guessing a sequence by, ..., b, of distinct quadruples of binary relations
on @ such that by = b(ug) and b;11 = b; - b(u;41), for some ug,...,u, € X.
(Any sequence with a subsequence starting after b, and ending with b;,,, for
some ¢ and m such that b, = b;;,,, is equivalent, in the context of this proof,
to the sequence with such a subsequence removed.) Thus, we can assume that
n < 290D "and so n can be guessed in binary and stored in PSPACE. So, the
stage of our algorithm checking that b(u) corresponds to some u € X* makes
n iterations and continues to the next stage if b,, = b(u) or terminates with an
answer no otherwise. Now, using b(u), we compute b(u*) by means of a sequence
b, ..., bk, where by = b(u) and b;1; = b; - b(u). With b(u) (b(u¥)), we compute
0, (q) (vespectively, 0!, (q)) in PSPACE using (19). If 0/ . (¢) # g, the algorithm
terminates with an answer no. Otherwise, in the final stage of the algorithm, we
check that 0/,(¢) 7 ¢. This is done by guessing v € X* such that ¢, (q) = qu,
8,(8.,(q)) = q2, and ¢, € F' iff g1 ¢ F'. We guess such a v (if exists) in the form
of b(v) using an algorithm analogous to that for guessing u above.

By Theorem 1 (i7) and (20), L(2) is not FO(<, =)-definable iff there there
exist words u, v € X*, a reachable state ¢ € @', and a number k < |Q’| such that
q 7% 6,(q), ¢ =0.:(q), |v| = |ul, and ¢, ;(q) = 6/, (q), for all i < k. We outline
how to modify the algorithm for FO(<) above to check FO(<,=)-definability.
First, we need to guess and check v in the form of b(v) in parallel with guessing
and checking u in the form of b(u), making sure that |v| = |u|. For that, we guess
a sequence of distinct pairs (bg, by), . .., (bp,bl,) such that the b; are as above,

0 = b(vp) and bj; = b} - b(v;41), for some vy, ..., v, € X. (Any such sequence
with a subsequence starting after (b;, bj) and ending with (b; 4, bj,,,), for some
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i and m such that (b;, bj) = (bjm, b}, ,,), is equivalent to the sequence with that
subsequence removed.) So n < 20(QD | For each i < k, we can then compute
d!:(q) and 0!, (q), using (19), and check whether whether they are equal.

Finally, by Theorem 1 (¢i¢) and (20), L(2) is not FO(<, MOD)-definable iff
there exist u,v € X*, a reachable state ¢ € Q' and k,l < |Q’| such that k is an
odd prime, [ > 1 and coprime to both 2 and k, ¢ ¢ 8.,(q), g 7 5.(q), q # 8.,,(q),
and 6,(q) ~ 0. 2(q) ~ 9 (q) ~ 5;(UU)L(q), for all z € {u,v}*. We start by
guessing u,v € X* in the form of b(u) and b(u), respectively. Also, we guess
k and ! in binary and check that k is an odd prime and [ is coprime to both
2 and k. By (19), 0., is determined by b(z), for any = € {u,v}*. Thus, we can
proceed as follows to verify that u, v, k and [ are as required. We perform the
following steps, for each quadruple b of binary relations on Q. First, we check
whether b = b(x), for some x € {u,v}* (we discuss the algorithm for this below).
If this is not the case, we construct the next quadruple b’ and process it as this
b. If it is the case, we compute all the states d7,(q), 0,,,2(q), d.,.(q), 5;(w)l(q),
0:.(q), 9.,(q), 0.,,(q), and check their required (non)equivalences w.r.t. ~, using
the same method as for checking 6!, (q) # ¢ above. If they do not hold as required,
our algorithm terminates with an answer no. Otherwise, we construct the next
quadruple b’ and process it as this b. When all possible quadruples b of binary
relations of () have been processed, the algorithm terminates with an answer yes.

Now, to check that a given quadruple b is equal to b(x), for some x € {u,v}*,
we simply guess a sequence by, ..., b, of quadruples of binary relations on () such
that bg = b(wg), b, = b and b;41 = b; - b(w;+1), where w; € {u,v}. It follows
from the argument above that it is enough to consider n < 20(1QD,

6 Further Research

The results obtained in this paper have been used for deciding the rewritabil-
ity type of ontology-mediated queries (OMQs) given in linear temporal logic
LTL [22]. As mentioned in the introduction, LTL OMQs can be simulated by
automata. In the worst case, the automata are of exponential size, and decid-
ing FO-rewritability of some OMQs may become EXPSPACE-complete. On the
other hand, there are natural and practically important fragments of LTL with
automata of special forms whose FO-rewritability can be decided in PSPACE, IT}
or CONP. However, it remains to be seen whether the corresponding algorithms,
even in the simplest case of FO(<)-definability, are efficient enough for applica-
tions in temporal OBDA. Note that the problems considered in this paper are
also relevant to the optimisation problem for recursive SQL queries.
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Abstract. We consider the Lambek calculus extended with intersection
(meet) operation. For its variant which does not allow empty antecedents,
Andréka and Mikulds (1994) prove strong completeness w.r.t. relational
models (R-models). Without the antecedent non-emptiness restriction,
however, only weak completeness w.r.t. R-models (so-called square ones)
holds (Mikulds 2015). Our goals are as follows. First, we extend the
calculus with the unit constant, introduce a class of non-standard R-
models for it, and prove completeness. This gives a simpler proof of
Mikulds’ result. Second, we prove that strong completeness does not
hold. Third, we extend our weak completeness proof to the infinitary
setting, to so-called iterative divisions (Kleene star under division).

Keywords: Lambek calculus - Relational semantics - Completeness

1 Introduction

We start with the Lambek calculus [10], formulated in a Gentzen-style sequent
format. Lambek formulae are built from variables (p, ¢, r,...) using three binary
connectives: - (multiplication), \ (left division), and / (right division). The set
of all formulae is denoted by Fm. Formulae are denoted by capital Latin letters.
Capital Greek letters denote sequences of formulae; A stands for the empty
sequence. Sequents are expressions of the form II — B. (Due to the non-
commutative nature of the Lambek calculus, order in II matters.) Here IT is
called the antecedent and B the succedent of the sequent.

The axioms and inference rules of the original Lambek calculus [10], denoted
by L, are as follows:

I—A I'NAA—-C

A4 ld TASC ut
II— A F,B,A—>C\L A Il - B \R I''A,B,A—C
[ I,A\B,A—C 11— A\B TABA=C L
nmn—-A IN'B,A-C I1,A— B I—A A—B
/L —/——— /R R
I'B/AII,A—C IIT—-B/A nmA—A-B
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A distinctive feature of L is the I # A condition on rules \ R and /R,
the so-called Lambek’s non-emptiness restriction. This condition ensures that
antecedents of all sequents in L derivations are non-empty (\ R and / R are the
only two rules which could possibly produce an empty antecedent).

Lambek’s restriction is motivated by linguistic applications of the Lambek
calculus [15, §2.5]. From the logical point of view, however, it is also natural to
consider a variant of L without this restriction [11]: in \ R and / R now IT can be
empty. This variant is called the Lambek calculus allowing empty antecedents and
is usually denoted by L*. Throughout this paper, however, we use alternative
notation, I/, in order to avoid conflict with Kleene star in Sect. 5.

It is important to keep in mind that L is not a conservative fragment of L.
Even if the sequent has a non-empty antecedent, empty antecedents could be
necessary inside its derivation. An example is (p\ p) \ ¢ — ¢, which is derivable
in I/, but not in L. Therefore, there is no easy way of translating results between
L and I/, and certain properties of these systems differ, as we shall see below.

In this paper, we focus on relational semantics of the Lambek calculus.

Definition 1. A relational model (R-model) is a triple M = (W,U,v), where
W is a non-empty set, U C W x W 1is a transitive relation on W called the
universal one, and v: Fm — P(U) is a valuation function mapping formulae to
subrelations of U. The valuation function should obey the following conditions:

v(A-B)=v(A)ov(B) ={(z,2) | Jy € W (z,y) € v(A) and (y,z) € v(B)};
v(A\B) = v(A)\vv(B) = {(y,2) €U [Vz e W (z,y) € v(4) = (2,2) € v(B)};
v(B/A)=v(B)/vv(A) ={(z,y) €U |Vze W (y,2) € v(A) = (z,2) € v(B)}.

Definition 2. An R-model M = (W,U,v) is a square one, if U =W x W.

Arbitrary R-models and square R-models form natural classes of models for
L and I respectively. Let us define the truth condition of sequents in R-models.

Definition 3. A sequent of the form Ay,...,A, — B is true in model M =
(W,U,v), if v(A1) o...0ov(A,) C v(B). For sequents with empty antecedents,
truth is defined only in square R-models: A — B is true in M = (W, W x W,v),
if 0 ={(x,x) | x € W} Cu(B).

Let us also recall the general notion of strong soundness and completeness of
a logic £ (formulated as a sequent calculus) w.r.t. a class of models K.

Definition 4. Let II — B and 'H be, respectively, a sequent and a set of sequents
in the language of L. The sequent II — B semantically follows from H on the
class of models K, if for any model from K in which all sequents from H are true
the sequent II — B is also true. This is denoted by H Fx II — B.

Definition 5. In the notations of the previous definition, II — B syntactically
follows from H in the logic L, if Il — B is derivable in the calculus for L extended
with sequents from H as extra axioms. This is denoted by H b, Il — B.
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Definition 6. The logic L is strongly sound w.r.t. the class of models K, if
HbFp II — B entails HEx II — B for any Il — B and 'H.

Definition 7. The logic L is strongly complete w.r.t. the class of models K, if
HEx II — B entails HtF¢ I — B for any II — B and 'H.

Notice that for substructural systems, like the Lambek calculus, strong
soundness and completeness are significantly different from their more usual
weak counterparts (that derivability of a sequent without any extra axioms yields
its truth in all models from the given class, and the other way round). This is
due to the fact that there is no deduction theorem available in these logics,
and therefore formulae from H (even if H is finite) cannot be internalised into
I — B.

One can easily check that the calculi L and I/ are strongly sound w.r.t.
the corresponding classes of R-models: namely, all R-models for L and square
R-models for I/, Strong completeness is non-trivial, and it was proved, for both
calculi, by Andréka and Mikulds [1]:

Theorem 1 (Andréka, Mikulds 1994). The calculus L is strongly complete
w.r.t. the class of all R-models.

Theorem 2 (Andréka, Mikulds 1994). The calculus 1" is strongly complete
w.r.t. the class of square R-models.

The arguments used in [1] for proving Theorem 1 and Theorem 2, being
similar, are yet not completely identical. The essential difference of the situations
with and without Lambek’s restriction gets revealed when one adds one more
operation: intersection, or meet.

Remark 1. Adding the dual operation, join (union), immediately yields incom-
pleteness [1,7], even in the weak sense, so we do not consider it. Indeed, in the
presence of both meet and join, we get the distributivity law, which is not deriv-
able in substructural logics like the Lambek calculus [16]. Moreover, unlike meet,
with join alone, using Lambek divisions, one can formulate non-trivial corollaries
of distributivity [7].

Intersection is axiomatized by the following rules:

IANB,A—C "' T, ANB,A—C "2 II - AANB

AR

In R-models, it is interpreted set-theoretically:
v(AAB)=v(A)Nov(B) ={(z,y) | (x,y) € v(4) and (z,y) € v(B)}.

The corresponding calculi will be denoted by LA and IAA, depending on whether
Lambek’s restriction is imposed. One can easily check that such interpretation
yields strong soundness for both systems.

As for completeness, in the presence of meet Lambek’s restriction makes a
significant difference. For LA, the argument of Andréka and Mikulds (Theorem 1)
also works, as shown in the same article [1]:
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Theorem 3 (Andréka, Mikulds 1994). The calculus LA is strongly complete
w.r.t. the class of all R-models.

For I/A, in contrast, the reasoning of Andréka and Mikulds (Theorem 2)
could not be easily extended. Later on, however, Mikulds [13,14] managed to
modify the proof of Theorem 2 for LAA—but this modification establishes only
weak completeness (without hypotheses):

Theorem 4 (Mikulads 2015).! If a sequent in the language of -,\, /, A is true
in all square R-models, then it is derivable in LAN.

The results of the present paper are as follows.

1. We extend IAA with the explicit unit constant 1, introduce non-standard
relational semantics for it (Sect.2), and prove weak completeness (Sect.3).
Notice that the standard interpretation of the unit, v(1) = d, does not give
completeness. The reducts of our non-standard models to the language with-
out 1, however, are standard R-models. Thus, we obtain a new, simpler proof
of Mikulds’ Theorem 4.

2. Mikulés [14, Remark 5.3] presents a series of potential counterexamples to
strong completeness of IAA w.r.t. square R-models, but does not prove that
they are indeed counterexamples. We prove (Sect. 4) that already the smallest
non-trivial one of these examples indeed establishes failure of strong complete-
ness.

3. We show that our proof of Theorem 4, unlike Mikulds’ approaches, can be eas-
ily extended to infinite conjunctions. We consider (Sect. 5) a concrete interest-
ing example of such conjunction, namely, so-called iterated divisions (Kleene
star in the denominator of a division), and prove weak completeness w.r.t.
square R-models.

2 Non-standard Models for Unit

Let us further extend IAA with the multiplicative unit constant 1, that is, an
explicit constant for the neutral element of multiplication. The axiom and rule
for 1, reflecting its neutrality, are as follows (see [12]), and the resulting calculus
is denoted by LAAL.

rA—-C

riLAasc il Ja-q1F

Notice that these rules exactly reflect neutrality of 1. Indeed, A-1 — A is
derived using 1L (with -L) and A — A -1 is derived using 1R via -R. The rules
for 1 are good sequent calculus rules in the sense of cut elimination, see [12].

! Here “Mikulds 2015” refers both to [13] and [14], which feature different proofs of
Theorem 4.
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This suggests interpreting 1 in square R-models as the diagonal relation:
v(1) =0 ={(z,x) |z € W}

We shall call this the standard interpretation of the unit.

Unfortunately, for the standard interpretation of the unit IAA1 does not
enjoy completeness, even in the weak sense. A notable example of a sequent
true in all standard square R-models, but not derivable in IAAL, is 1 A F A
G — (LAF)-(1AG), given by Andréka and Mikulds [2]. For F' = @G, this
is the contraction (“doubling”) principle for formulae of the form 1 A G, that
is, LANG — (L AG)- (1 AG). In the presence of contraction, even restricted
to formulae of this specific form, the situation becomes quite complicated. In
the view of the results of Chvalovsky and Horcik [5] and Kanovich et al. [7] for
closely related systems including such contraction principles, we conjecture that
the complete system for standard square R-models (that is, the set of sequents
true in all models of this