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Abstract Decision-making under uncertainty is a major challenge in logistics.
Mathematical optimization has a long tradition in providing powerful methods for
solving logistics problems. While classical optimization models for uncertainty in
the input data do not consider the option to actively query the precise value of
uncertain input elements, this option is in practice often available at a certain cost.
The recent line of research on optimization under explorable uncertainty develops
methods with provable performance guarantees for such scenarios. In this chapter,
we highlight some recent results from the mathematical optimization perspective
and outline the potential power of such model and techniques for solving logistics
problems.

1 Uncertainty in Logistics

Uncertainty is a major challenge in effective decision-making in logistics and supply
chain management (Wilding 1998). Uncertainty may refer to any lack of information
about the supply chain, its environment or conditions, and the unpredictable impact
of decisions (van der Vorst and Beulens 2002). There are numerous sources of
uncertainty and dynamics in the system parameters; for a classification and survey,
we refer to Simangunsong et al. (2012), Sanchez-Rodrigues et al. (2010). As
illustrating examples consider varying transportation times depending on traffic
conditions, weather, or disruptions; variable demand; deteriorating conditions of
delivered goods; changing production capacity or speed due to aging or replacement
of production units, etc.

In addition, digitalization and data-driven applications give permanent access to
large amounts of data that can be used for planning and decision-making purposes.
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However, these data need to be analyzed and processed to provide valuable insights,
and moreover, they increase the level of dynamics and uncertainty significantly.

Mathematical optimization has a tradition in providing powerful methods for
effectively planning logistics processes, such as routing and delivery, replenishment,
and scheduling.

Due to the ubiquity of uncertainty (in fact, in all kinds of real-world appli-
cations), a plethora of research articles is devoted to decision-making under data
uncertainty and optimization methods that are capable of handling large amounts of
dynamically changing data. From the mathematical optimization perspective, there
are three major frameworks for modeling uncertainty in the input data: stochastic
optimization, online optimization, and robust optimization. Below, we sketch their
general characteristics without reviewing the numerous individual settings and the
respective literature.

Stochastic optimization generally refers to settings in which there is some
randomness in the data. Typically, parts of the input data are modeled as random
variables that follow a given probability distribution. Such probabilistic information
may stem from statistical information, such as, travel time distributions from
traffic surveillance or customer statistics. The goal is to find a solution that is
(approximately) optimal in expectation. Different models define how adaptively an
algorithm may proceed in making decisions and in what manner the true realization
of uncertain data is revealed. Typically, we distinguish single-stage and multi-stage
problems, but there are more dynamic models; see, e.g., the textbook by Birge and
Louveaux (2011).

Online optimization refers to settings in which parts of the input are completely
unknown a priori. The data is revealed incrementally one by one or over time,
and an algorithm must make irrevocable decisions given only partial information;
see, e.g., the book by Borodin and El-Yaniv (1998). As an example, consider the
(often) unpredictable arrival of maintenance requests and a service provider who
must immediately allocate and coordinate resources for maintenance and possibly
replacement. It is typically impossible to give an algorithm that finds an optimal
solution for all possible online inputs. Therefore, we evaluate the performance of
algorithms by competitive analysis, a worst-case analysis that compares (implicitly),
for any possible input instance, the cost of an algorithm’s solution with the optimal
cost.

Robust optimization is a framework in which, again, there are no probabilistic
assumptions made. Typically, a set of possible input scenarios is given either
explicitly or implicitly, e.g., by giving uncertainty intervals in which the true value
of some unknown data lies. In the classical setting, we ask for a single solution
that performs well in any possible input scenario. Hence, algorithms are absolutely
non-adaptive and make decisions without any chance of adjusting them later. More
recently, models have been proposed that allow some recovery actions once the
scenario has been realized; see, e.g., the book by Ben-Tal et al. (2009).

In all these traditional frameworks for data uncertainty, optimization methods
have to accept the incompleteness of input data. They can rely only on algorithmic
intelligence to cope with it since there is no way to explicitly query for precise
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data without committing to a partial solution. Clearly, more information or even
knowing the exact data would allow for significantly better solutions. The possibility
of querying is a reasonable modeling assumption as many real-world applications
provide the possibility to obtain exact data at a certain exploration cost such as extra
time, money, bandwidth, etc.

The framework of explorable uncertainty captures problem settings in which,
for any uncertain input element, a query can be used to obtain the exact value of that
element. Queries are costly, and hence the goal is to make as few queries as possible
until sufficient information has been obtained to solve the given problem. The major
challenge is to balance the resulting exploration—exploitation trade-off.

Outline of the Chapter

The goal of this chapter is to highlight some recent results on explorable uncertainty
from the mathematical optimization perspective and to outline the potential power
of such framework and techniques for solving logistics problems. In the following
sections, we introduce three models within this framework.

1. An online model, in which an uncertain input element can attain any value within
a given interval.

2. A learning-based model, in which an algorithm has access to a prediction,
possibly machine-learned, on the exact value of an uncertain element but without
any guarantee on its accuracy.

3. A stochastic model, in which there is given probabilistic information about the
exact value.

We give intuitive insights, state mathematical results, and outline methods
to tackle problems under explorable uncertainty. To illustrate these insights, we
consider the example problems of selecting a minimum element within a set of
uncertain values by querying a minimal number of elements (minimum problem)
as well as a query-based variant of the minimum spanning tree (MST) problem,
a most fundamental network design problem that asks for the minimum cost
network (a cycle-free connected graph). These are important problems that appear
as subproblems in many applications, also in logistics, and they have been studied
extensively in the framework of explorable uncertainty, offering positive results in
all three models.

2 Power of Exploring Uncertain Data in Logistics

We showcase different logistics scenarios in which methods building on explorable
uncertainty promise a substantial improvement of the current state of the art.
Consider the task of designing an effective complex supply chain (or certain
parts of it) for a company with various production facilities, sub-contractors, storage
facilities, and customers. At several places in the decision-making process, the
management has to decide for a best choice out of a number of choices where some
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parameters might be uncertain. Such choices could be possible sub-contractors,
facility locations, transportation means, etc. Which is the “best” may depend on
parameters such as cost, quality, reliability, or customer satisfaction and might not be
known, but there is the possibility to query those parameters by, e.g., measurements,
lab tests, customer interviews, etc. This is typically costly and shall be used only
if the effect on the performance of supply chain processes is worth it. Powerful
and well-thought exploration methods may give a substantial improvement over
decision-making under uncertainty.

The next example falls into the area of transport logistics of perishable goods,
that is, goods with a decay time in the same order of magnitude as the transport
time, e.g., fruits, vegetables, meat, or cheese in sea and land transportation. A major
challenge in the transportation of perishable goods is the uncertainty in the state of
the goods and their environment, e.g., in a container. The ripeness degree and shelf
life of fresh fruit are hard to predict as they may change drastically and very fast.
During a typical transport, e.g., maritime container transport or transportation via
truck or train, there is no feedback on the current state of the goods and no timely
action to avoid food loss can be taken. With an intelligent container (a keyword
coined by Lang and Jedermann (2016)), i.e., a container equipped with sensors and
infrastructure for monitoring, communication, and possibly even further actions,
such an early feedback and even active queries for more precise information are
possible and could be integrated into an adaptive logistics planning framework.

More concretely, consider a truck routing problem for delivering fresh food to
several possibly widespread destinations, e.g., raspberries from Turkey delivered by
truck to several destinations in Germany. Clearly, frequent sensor measurement and
resulting updates on the remaining shelf time cost energy and decrease the life time
of a battery. Replacing and disposing batteries costs time, money, and it requires the
expertise (of the truck driver) to do so. This may not be relevant for a single 3-day
trip, but it might play a significant role as trucks drive tours repeatedly. Dynamic
routing algorithms that incorporate data exploration may minimize the food loss
while not exceeding a given budget of exploration cost measured, e.g., in energy.

Another serious problem in container transport is pest insects and dangerous
gases, which are detected only when unloading at a port where ad hoc protective
measures are costly and inefficient. Consider the scheduling and resource allo-
cation for handling containers that require special treatment. The operations for
opening dangerous containers in a secure area (chemicals and gas) or rerouting
a container (pest insects) are time- and resource-expensive. Suppose sensor mea-
surements can be inquired, and the relevant information can be made available
on time for efficiently planning the necessary port operations. It might be more
efficient to open several dangerous containers in a secure area at the same time than
blocking resources any time a single such container arrives. This is only possible
if the information is queried at the right point in time while avoiding unnecessary
query cost, e.g., energy.

Besides the technical possibility to query uncertain data, it is a major challenge
to algorithmically balance the cost for data exploration (e.g., extensive tests in a lab,
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energy consumption for queries to the intelligent container) with the benefit for the
quality of a solution (e.g., cost for establishing a network, amount of food loss).

3 Optimization Under Explorable Uncertainty

In explorable uncertainty, we are given, instead of precise data points, only rough
information in form of uncertainty intervals. Precise data points can be revealed
by using queries. Since querying data points comes at a cost, the goal is to extract
sufficient information to solve the problem while minimizing the total query cost.
In the following, we formally introduce the model of explorable uncertainty and
highlight important concepts for solving problems under explorable uncertainty.

3.1 The Model

We are given a ground set 7 of uncertainty intervals. Each interval I; € I is
associated with a precise value w; € I; that is initially unknown. The precise value
of an uncertainty interval I; can be extracted by using a query. Intuitively, querying
the interval I; = (L;, U;) replaces the open interval (L;, U;) with the singleton
[w;]. We call L; and U; the lower and upper limits of /;. How to obtain the upper
and lower limits of the uncertainty intervals is problem specific and depends on the
application. As an example consider the distances between mobile agents. While
the agents change their positions and the precise distance between two agents might
not always be known, last known locations as well as maximum movement speeds
can be used to compute an uncertainty interval that is guaranteed to contain the
precise distance. In the following, we abstract from the process of obtaining the
uncertainty intervals and assume they are part of the input. If I; = [w;], we define
L; = U; = w;. A query to an interval I; comes with a query cost of c;. For the
remainder of this chapter, we only consider uniform query costs, i.e., ¢; = 1 for all
I; e 1.

We can define various optimization problems based on the ground set of
uncertainty intervals. For each problem, the goal is to extract sufficient information
to solve the problem for a fixed but initially unknown realization of precise values,
while minimizing the total query costs. In the case of uniform query costs, the
total cost is just the number of queried intervals. A query set Q C I is feasible if
querying Q extracts sufficient information to optimally solve the problem at hand.
Thus, a query set Q is only feasible if querying Q allows us to compute a solution
for the underlying optimization problem that is guaranteed to be optimal for all
possible precise values of intervals in 7 \ Q. We further discuss this assumption
at the end of the chapter. We analyze the performance of algorithms in terms of
their competitive ratio. Let J denote the set of all instances for a problem under
explorable uncertainty, let ALG(J) for J € J denote the query cost needed by an
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algorithm ALG to solve instance J, and let OPT(J) denote the optimal query cost for
solving J. That is, for a fixed instance J with fixed precise values, OPT(J) denotes
the minimum query cost necessary to solve J. Then, the competitive ratio of ALG is
defined as

ALG(J)
max .
Jeg OPT(J)

In the following, we introduce two example problems under explorable uncertainty.

3.1.1 Example: Minimum and Selection Problems

In the minimum problem, the goal is to determine, for a given set of uncertainty
intervals 7, an interval /; € 7 with minimum precise value, i.e., I; = argming,cr w;.
Note that this problem does not necessarily involve computing the actual precise
value of that interval.

As an example recall the scenario given in Sect. 2, where a company has to select
the “best” out of a pool of possible sub-contractors, facility locations, transportation
means, etc. without having all the information to determine it. This scenario can be
modeled as a minimum problem: the possible choices can be modeled by the index
set {1, ..., n}. For each possible choicei € {1, ..., n}, we have an initial estimation
of its quality (based, e.g., on publicly available information, past experiences, and
already known basic conditions) that can be modeled by the uncertainty interval /;.
A precise estimation for a possible choice can be obtained, e.g., by executing
measurements, lab tests, or customer interviews. Then, the process of obtaining a
precise estimation for a possible choice can be modeled by a query. As the described
operations come typically at a high cost, the goal is to make the best possible choice
while minimizing this extra cost. This corresponds to the minimum problem.

Since the precise values are initially unknown, it might not be possible to find
the interval of minimum precise value without executing queries. For example, in
Fig. 1, we are given a set of two uncertainty intervals with the task to determine the
interval with minimum precise value. Since those intervals overlap, both of them
could possibly be of minimum precise value. To solve the problem, an algorithm
has to execute at least one query.

The example of Fig. 1 also shows that no algorithm is better than 2-competitive
for the minimum problem, as Kahan (1991) observed already in his seminal paper.
By definition, for an algorithm to be better than 2-competitive, the ratio between
ALG(J) and OPT(J) has to be strictly smaller than 2 for every instance J. In
the example, we consider two instances with the same intervals that differ only

Fig. 1 Lower bound example Lt © /
for the minimum problem in a
single set It

()
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in the precise values (crosses vs. circles). Since an algorithm has no knowledge
of the precise values, both instances look the same to the algorithm, and thus, a
deterministic algorithm will make the same first query for both instances. We argue
that each possible first query will lead to a ratio of 2 for at least one of the instances,
which implies that no deterministic algorithm is better than 2-competitive. In such
a worst-case analysis, we may assume that different precise values are revealed for
different algorithms. (In general, the precise values are independent of the query
order.) If an algorithm queries /; first, then, in the worst case, the green circle is
revealed as the precise value of ;. After querying [, it is still unknown which
interval has minimum value, which forces the algorithm to also query I». If the
query to I, again reveals the green circle as the precise value of I, an optimal query
set could determine that /; has minimum precise value by only querying /. Thus,
the cost of the algorithm is twice the cost of the optimal query set. Vice versa, if
an algorithm queries I, first, then, in the worst case, the red crosses are revealed
as precise values, and the algorithm queries {/1, Io}, while the optimal query set
queries only /7. Hence, for any algorithm’s choice on this instance (either query /;
first or ), there is a realization of precise values on which the algorithm requires
two queries, whereas an optimal query set with one query exists. This implies that
no deterministic algorithm (an algorithm that makes the same decisions when given
the same input) can be better than 2-competitive.

In a more general variant of the minimum problem, we are given a family S
of (possibly non-disjoint) subsets of 7, and the goal is to determine the member
of minimum precise value for each subset S; € S. Consider the example given
in Bampis et al. (2021) concerning a multi-national medical company. The company
relies on certain products for its operation in each country, e.g., a chemical
ingredient or a medicine. However, due to different approval mechanisms, the
concrete products that are accessible differ for each country. The task is to find the
best approved product for each country. The product quality can be determined by
extensive tests in a lab (queries) and, since the quality is independent of the country,
each product has to be tested at most once. The set of products available in one
country corresponds to a set in S, and the problem of identifying the best product in
each country is the minimum problem in multiple sets.

In a similar way, we can model other selection problems, e.g., finding the kth
smallest element and sorting.

3.1.2 Example: Minimum Spanning Tree Problem

In the minimum spanning tree (MST) problem, we are given a weighted, undirected,
connected graph G = (V, E), with nodes V and edges E, where each edge
e € E has associated a weight w, > 0. The task is to find a spanning tree of
minimum total weight. A spanning tree is a connected acyclic graph whose edges
span all the vertices. See Fig. 2 for an example graph. The MST problem has various
applications, e.g., in the design of distribution networks: nodes can be used to model
storage facilities, manufacturers, and transportation systems, while the edges and
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16

Fig. 2 Graph without uncertainty in the edge weights (left) and the corresponding minimum
spanning tree (right)

their weights can model the cost of establishing a direct connection between two
such points of interest, where a direct connection could, for example, be a road, a
pipeline, or an Ethernet connection. To establish connections between all points of
interest in a cost-minimal way, we have to compute a minimum spanning tree.

In the MST problem with uncertainty, the precise edge weights w, are unknown.
Each edge e € FE is associated with an uncertainty interval I, € 7, and w,
is guaranteed to be in the given interval I,. The task is to find an MST in the
uncertainty graph G for an a priori unknown realization of edge weights. Note
that this problem does not necessarily involve computing the actual MST weight.
In the application given above, uncertainty could arise from an unknown existing
infrastructure or unclear environmental and political factors. For example, the exact
existing underground infrastructure might be unknown and potentially decrease the
cost of building a connection, and the building of a pipeline could lead to conflicts
with environmental protection groups or nearby residents that might increase the
cost. These dynamic changes in the cost can be modeled by uncertainty intervals.
Such uncertainties can then be resolved by inspecting the existing infrastructure or
surveying residents and other potential stakeholder; both actions can be modeled by
queries. Since the described actions to resolve the uncertainty can be cost extensive,
the goal is to find an MST while minimizing the query cost.

It is well known that edges that have unique minimum weight in a cut of the
graph are part of any MST. Furthermore, edges that have unique maximum weight
on a cycle are part of no MST. Thus, to solve the MST problem under explorable
uncertainty, we have to analyze the behavior of intervals and queries in terms of their
interplay on cycles and in cuts. A simple cycle with three edges (triangle) already
gives both lower bound examples and insights about the structure of a feasible query
set. Consider the example of Fig. 3. It is clear that edge 4 is part of every MST, but
we cannot decide which of the two edges f and g is in the MST without querying
at least one of them. Similar to the lower bound example for the minimum problem,
querying f first, in the worst case, reveals the green circles as precise weights, while
querying g first reveals the red crosses. This forces any deterministic algorithm to
query two elements, while the optimal query set contains just one. Thus, as was
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Fig. 3 Lower bound example for the minimum spanning tree problem

observed in Erlebach et al. (2008), no such algorithm can achieve a competitive
ratio smaller than 2.

3.2 Mandatory Queries

A key aspect of several algorithms for problems under explorable uncertainty is
the identification of mandatory queries. An interval I; € I is mandatory for
the problem instance if each feasible query set has to query I, i.e.,, I; € Q for
all feasible query sets Q. The identification of mandatory queries is important
since an algorithm can query such intervals without ever worsening its competitive
ratio. In a sense, mandatory queries allow an algorithm to extract new information
“for free.” The revealed precise values might in turn allow the identification
of further mandatory queries and, thus, lead to chains of mandatory queries.
While it is possible to achieve theoretical worst-case guarantees without exploiting
mandatory elements, empirical results indicate that the performance of algorithms
significantly improves when the algorithm prioritizes the identification and querying
of mandatory intervals (Erlebach et al. 2020; Focke et al. 2020).

When characterizing mandatory queries, we distinguish between characteriza-
tions based on the unknown precise values and characterizations that are only based
on the uncertainty intervals. While the latter only uses information that can be
accessed by an algorithm and, therefore, can actually be used to identify mandatory
queries, the former is still helpful to analyze algorithms and will be useful in the
following sections. We continue by characterizing mandatory queries for the two
example problems.

3.2.1 Identifying Mandatory Queries for the Minimum Problem

Consider the minimum problem in multiple sets as introduced in the previous
section. For a set § € S, we call an interval I; € S the precise minimum of S if
I; has minimum precise value over all elements of S. The following lemma allows
us to identify mandatory queries based on the precise values of the intervals.
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Lemma 1 (Erlebach et al. (2020)) An interval I; is mandatory for the minimum
problem if and only if (a) 1; is a precise minimum of a set S and contains w; of
another interval I; € S\ {I;} (in particular, if I; C 1;), or (b) I; is not a precise
minimum of a set S with I; € S but contains the value of the precise minimum of S.

A common proof technique to show that an interval /; is mandatory is to consider
the query set 7 \ {/;}. Showing that querying every element except /; does not solve
the problem implies that /; is mandatory. Vice versa, if querying 7 \ {/;} solves the
problem, then /; is not mandatory. The following proof, which was given in Erlebach
et al. (2020), uses this proof technique to show Lemma 1.

Proof If I; is the precise minimum of S and contains w; of another interval /; € S,
then S cannot be solved even if we query all intervals in S \ {/;}, as we cannot
prove w; < w; or w; < w;.If I; is not a precise minimum of set § with /; € § and
contains the precise minimum value w*, then S cannot be solved even if we query
all intervals in S \ {/;}, as we cannot prove that w* < w;.

If I; is the precise minimum of a set S, but w; ¢ I; for every I; € S\ {/;},
then S \ {/;} is a feasible query set for S. If [; is not a precise minimum of a set S
and does not contain the precise minimum value of S, then again S\ {/;} is a feasible
query set for S. If every set S that contains /; falls into one of these two cases, then
querying all intervals except /; is a feasible query set for the whole instance. O

Explicitly, Lemma 1 only enables us to identify mandatory intervals given full
knowledge of the precise values, but it also implies criteria to identify known
mandatory intervals, i.e., intervals that are known to be mandatory given only
the intervals, and precise values revealed by previous queries. We call an interval
leftmost in a set § if it is an interval with minimum lower limit in S. The following
corollary follows from Lemma 1 and gives a characterization of known mandatory
intervals.

Corollary 1 (Erlebach et al. (2020)) If the leftmost interval I; in a set S contains
the precise value of another interval in S, then I; is mandatory. In particular, if I; is
leftmost in § and I; C I for some I € S\ {1}, then I; is mandatory.

3.2.2 Identifying Mandatory Queries for the Minimum Spanning Tree
Problem

Mandatory queries for the MST problem can be characterized by using a structural
property given by Megow et al. (2017). Let the lower limit tree T, € E be an MST
for values wl with wt = L, + € for an infinitesimally small € > 0. Similarly, let
the upper limit tree Ty be an MST for values wY with wY = U, — €. Using the
lower and upper limit trees, the following lemma allows us to identify mandatory
queries based only on the intervals.

Lemma 2 (Megow et al. (2017)) Any edge in Ty, \ Ty is mandatory.
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Thus, we may repeatedly query edges in 77 \ Ty until 7; = Ty, and this will not
worsen the competitive ratio. By this preprocessing, we may assume 7; = Ty. A
characterization of the mandatory queries based on the full knowledge of the precise
values is given by Erlebach and Hoffmann (2014).

3.3 Methods and Results

While the identification and querying of mandatory elements improve the perfor-
mance of algorithms empirically and will be a key ingredient in the following
sections, it is not sufficient to solve our two example problems. Therefore, we
consider the witness set algorithm, one of the most important frameworks in
explorable uncertainty. The witness set algorithm was introduced by Bruce et al.
(2005) and relies on the identification of witness sets. A set W C I is a witness
set if each feasible query set has to query at least one member of W, i.e., if
W N Q # @ for all feasible query sets Q. Note that witness sets W with |W| = 1 are
exactly the mandatory queries. Algorithm 1 formulates the witness set algorithm in
a problem independent way. The algorithm essentially just queries witness sets until
the problem is solved. Similar to mandatory queries, we distinguish between witness
sets that can be identified based on the uncertainty intervals alone and witness sets
that can only be identified based on knowledge of the precise values. The algorithm
can only use the former kind.

Algorithm 1: Abstract formulation of the witness set algorithm

Input: Problem under explorable uncertainty with uncertainty intervals 7
1 while The problem is not solved yet do
2 Query all elements of a witness set W.

The competitive ratio of the witness set algorithm depends on the size of the
queried witness sets as formulated in the following lemma.

Lemma 3 (Bruce et al. (2005)) If |W| < p holds for all witness sets W that are
queried by the witness set algorithm, then the algorithm is p-competitive.

Proof Since querying elements multiple times does not reveal additional infor-
mation, we can assume that all queried witness sets are pairwise disjoint. Let
Wi, ..., Wi denote those witness sets. Then, by definition of witness sets and since
the sets are pairwise disjoints, the optimal query set contains at least k elements. By
assumption, |W;| < p holds for all j € {1, ..., k}. Thus, the algorithm queries at

most p - k elements, and the competitive ratio is at most * ,;k = p. |

In order to apply (and analyze) the witness set algorithm to a concrete problem,
one has to characterize witness sets, bound the size of the witness sets, and show



46 N. Megow and J. Schléter

that the problem is solved once the characterization does not admit any more witness
sets. In the following, we apply the algorithm to the two example problems.

3.3.1 Witness Set Algorithm for the Minimum Problem

For the minimum problem, we can identify witness sets of size one, i.e., mandatory
queries, by using Corollary 1. Furthermore, we can identify witness sets of size two
using the following lemma that was first (implicitly) shown by Kahan (1991).

Lemma 4 (Kahan (1991)) A set {1;,1;} C I is a witness set if there exists an
SeSwith{l;,1;} €S, I; N 1; #0, and either 1; or I leftmost in S.

Similar to the proof of the mandatory characterization, the lemma can be shown
by considering the query set Q = I\ {/;, I;}. After querying Q, both I; and /; still
could be of minimum precise value in S. Thus, the problem is not solved yet, and
at least one of I; and /; needs to be queried. This is a common proof strategy for
showing that a subset of 7 is a witness set.

The witness set algorithm for the minimum problem repeatedly identifies and
queries witness sets of size at most two by applying Corollary 1 and Lemma 4
until they cannot be applied anymore. If Lemma 4 cannot be applied anymore, then
the leftmost interval /; of each set S is not overlapped by any I; € §\ {/;}. This
implies that the leftmost intervals are the precise minima of the sets. Consequently,
the problem then is solved, which implies the following theorem. The theorem was
first (implicitly) shown by Kahan (1991) for a single set and translates to multiple
sets.

Theorem 1 (Kahan (1991)) The witness set algorithm is 2-competitive for the min-
imum problem. This competitive ratio is best possible for deterministic algorithms.

3.3.2 Witness Set Algorithm for the Minimum Spanning Tree Problem

For the minimum spanning tree problem, we can identify witness sets of size one by
using Lemma 2. Furthermore, we can identify witness sets of size two by using the
following lemma that was shown in Erlebach et al. (2008), Megow et al. (2017).
Recall that 7; and Ty are the lower and upper limit trees of the instance. Let
f1, ..., fi denote the edges in E \ T ordered by non-decreasing lower limit, and
let C; be the unique cycle in T U { f;}.

Lemma 5 (Erlebach et al. (2008)) Leti € {1,...,1} be the smallest index such
that Iy, N 1, # @ holds for some e € C; \ { fi}. Then, { f;, e} is a witness set.

The witness set algorithm for the MST problem repeatedly identifies and queries
witness sets of size at most two by applying Lemmas 2 and 5 until they cannot be
applied anymore. If Lemma 5 cannot be applied anymore, then each f; does not
overlap with any e € C; \ {fi}. This implies that each f; is maximal in C; and
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therefore not part of any MST. Thus, 77 is known to be an MST and the problem is
solved. This implies the following theorem.

Theorem 2 (Erlebach et al. (2008)) The witness set algorithm is 2-competitive
for the MST problem. This competitive ratio is best possible for deterministic
algorithms.

4 Explorable Uncertainty Beyond Worst-Case Analysis

In the previous section, we saw that, for both example problems, there is a 2-
competitive algorithm with a matching lower bound. A natural question asks for
ways to circumvent those lower bounds. There are different strategies for adjusting
the model and performance guarantees beyond worst-case analysis. One common
strategy is to allow an algorithm to make decisions randomly and measure the worst-
case performance in expectation. The randomized algorithm given by Megow et al.
(2017) shows that randomization is indeed powerful and admits improved results
for the MST problem.

However, in this section, we follow a different approach and assume access to
additional information on the problem instance. We present a learning-augmented
and a stochastic variant of explorable uncertainty, where we are given predictions
without any guarantee and probabilistic information, respectively. We outline how
to design algorithms that can exploit this extra information by obtaining provable
performance guarantees.

4.1 Exploiting Untrusted Predictions

In this section, we review the learning-augmented methods for explorable uncer-
tainty that were introduced very recently by Erlebach et al. (2020). In the learning-
augmented setting, we assume that we are given additional information on the
problem instance in the form of predictions for the precise values of the uncertainty
intervals. Those predictions could, for example, be derived by using machine
learning (ML) methods. Based on the tremendous progress in artificial intelligence
and machine learning, assuming access to such predictions of good accuracy seems
reasonable. However, there is no guarantee on the accuracy and the predictions
might be arbitrarily wrong. The learnability of predictions for the example problems
is discussed in Erlebach et al. (2020).

Formally, we assume that we are given a predicted value w; for each I; € 7. The
predicted values are available before we query any elements and predict the results
of the queries. Since we do not have any accuracy guarantee on the predictions, we
call them untrusted to emphasize that the difference between w; and w; might be
arbitrarily large. To compensate for the missing guarantee on the prediction quality,



48 N. Megow and J. Schléter

we aim at designing algorithms that achieve an improved performance for accurate
predictions while being robust against arbitrarily bad predictions.

We refine competitive analysis to formulate those two objectives by adding a
prediction awareness and adopt the notions of ¢-consistency and S-robustness (Lyk-
ouris and Vassilvitskii 2018; Purohit et al. 2018). An algorithm is «-consistent if it is
a-competitive when the predictions are correct, i.e., w; = w; forall I; € 7, and it is
B-robust if it is S-competitive for arbitrarily wrong predictions. While consistency
and robustness only formulate the extreme cases for the prediction quality, we
are also interested in guarantees with a smooth transition between consistency
and robustness. We aim for performance guarantees that linearly degrade for an
increased prediction error. This motivates interesting questions regarding suitable
ways of measuring these errors.

4.1.1 Error Measures and Learnability

In the following, we consider the error measures introduced by Erlebach et al.
(2020). A first simple and natural prediction error is the number of inaccurate
predictions k¢ = |{[; € I |w; # w;}|. However, for the two example problems,
a performance guarantee that, in terms of consistency, improves upon the lower
bound of two and linearly degrades depending on ks is not possible (Erlebach
et al. 2020). The reason is that ky completely ignores the structure of the intervals.
(Similarly, using an error metric that depends on the distances between w; and w;,
e.g., . el |w; — w;|, would not be meaningful because only the order of the values
and the interval end points matters for our problems.) To address this weakness,
Erlebach et al. (2020) introduced two refined measures for the prediction quality.

Hop distance. Intuitively, for each interval I; € I with w; # w;, this error
measure counts the number 4; of lower and upper limits in 7 \ {/;} that lie in the
intervals [w;, w;) or (w;, w;]. The hop distance of a given instance is then k;, =
>, hi; see also the left part of Fig. 4. Note that the hop distance value &; for a
single interval I; only depends on the number of interval borders that lie between
w; and w; and, apart from that, is independent of the distance between w; and w;.
While the hop distance captures how the relations of the precise values to other
intervals change compared to the predicted values, not every such change affects a
feasible query set.

Mandatory query distance. To compensate for this fact, Erlebach et al. (2020)
introduce another error measure based on the set 7 g of mandatory intervals and the
set 7 p of prediction mandatory intervals, i.e., intervals that are mandatory under the
assumption that all predictions are correct. The mandatory query distance is the size
of the symmetric difference of 7 p and I, i.e., kyy = |[TpAIR| =|TpUIR)\
IpNIR)|=|Tp\IR)U TR\ Ip)|. Theright part of Fig.4 shows an example
for the mandatory query distance with kj; = 1. With respect to the precise values,
both {I} and {12, I3, I4} are feasible query sets, and therefore, no interval is part
of every feasible query set. This implies Zr = . Under the assumption that the
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Fig. 4 Examples for the minimum problem with a single set S = {Iy, I», I3, I4} as given
in Erlebach et al. (2020). Circles and crosses illustrate precise values and predictions, respectively.
Left: predictions and true values with a total hop distance of k;, = 5. Right: instance with a
mandatory query distance of ky = 1

I, —o———

L&
L —&®
I —o——<—

Fig. 5 Example for the minimum problem in a single set as given in Erlebach et al. (2020). The
crosses and circles denote the predicted and precise values, respectively

predicted values are correct, Lemma 1 implies that I; is part of every feasible query
set, and therefore, 7 p = {I}. It follows kyy = | T pATR| = 1.

In Erlebach et al. (2020), it is shown that, for both example problems, it is indeed
possible to learn predictions with respect to k, and kjy.

4.1.2 Methods and Results

A key aspect in the design of learning-augmented algorithms for explorable
uncertainty is the identification of prediction mandatory intervals, i.e., intervals that
are mandatory under the assumption that the predicted values are correct. For the
two example problems, we can apply the characterizations of mandatory queries
(cf. Lemma 1 and Erlebach and Hoffmann (2014)) that are based on the precise
values under the assumption that the predicted values match the precise values.
This allows us to identify all prediction mandatory queries. If we completely trust
the predictions, we should just query all prediction mandatory elements. However,
the example in Fig. 5 shows that completely trusting the predictions can lead to an
arbitrarily bad robustness. In the example, the intervals {/I», ..., I,} are prediction
mandatory, but, if the predicted value of I; is wrong, it may be the case that the
optimal query set contains only /.

This example implies that algorithms should balance the querying of prediction
mandatory intervals with additional queries. In fact, Erlebach et al. (2020) show the
following lower bound on the optimal trade-off between consistency and robustness
for the two example problems.
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Theorem 3 (Erlebach et al. (2020)) Let B > 2 be a fixed integer. For the minimum
and MST problems under explorable uncertainty, there is no deterministic B-robust
algorithm that is o-consistent for o < 1 + é And vice versa, no deterministic

a-consistent algorithm, with @ > 1, is B-robust for B < max{all, 2}

As a consequence of Theorem 3, no 2-robust algorithm can be better than 1.5-
consistent. Thus, if we want to match the lower bound of 2 in terms of robustness,
we should aim for 1.5-consistency. To achieve a good trade-off between consistency
and robustness for the two example problems, we can use the two-phase framework
as presented in Erlebach et al. (2020). Here, we describe on a high level the
framework that can be used to achieve 1.5-consistency and 2-robustness for the two
problems. The framework starts by querying all prediction mandatory elements. In
a second stage, when no elements are prediction mandatory anymore, the algorithm
has to decide which non-prediction mandatory elements to query. For the example
problems, the algorithm has to decide which element of each witness pair it queries.

During the first phase, it is not sufficient to just query prediction mandatory
elements since we already saw that this can lead to an arbitrarily bad robustness.
Thus, each query to a prediction mandatory element is complemented with queries
to further elements in such a way that they form witness sets. As the framework aims
at breaking the lower bound of 2 in terms of consistency, it is not enough to form
and query a size-2 witness set. To guarantee a consistency of 1.5, the framework
instead identifies and queries sets of three elements for which we can guarantee
that at least 2 of them must be contained in any feasible query set. Finding such
elements based on the interval structure alone is not always possible as this would
imply a 1.5-competitive algorithm for the non-learning augmented setting, which
would contradict the lower bounds for the two example problems. Therefore, the
framework identifies such sets under the assumption that the predictions are correct.
After identifying such a set, its elements have to be queried adaptively, and, in
case of wrong predictions, the algorithm has to compensate for the error by not
querying all three elements. Querying all three elements in parallel might, in the case
of wrong predictions, lead to a violation of the 2-robustness. The first framework
phase repeatedly identifies such elements and queries them in a careful order while
adjusting for potential errors, until no prediction mandatory elements remain. The
characterization and identification of sets that satisfy the mentioned guarantee is
problem specific and a challenging key aspect when applying this strategy to the
concrete problems.

In the second phase of the framework, there are no more prediction mandatory
elements, and the algorithm cannot identify any more “safe” queries. For the two
example problems, this means that the algorithm has to decide, for each witness
pair as characterized by Lemmas 4 and 5, which of the two elements to query.
These decisions come down to finding a minimum vertex cover in an auxiliary
graph representing the structure of the witness sets. In particular, the second phase
for the minimum problem consists of finding and querying a minimum vertex
cover. If the predictions are correct, querying the vertex cover solves the remaining
problem. Otherwise, additional queries might be necessary, but those queries can
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be shown to be mandatory. Since both the size of the minimum vertex cover and
the number of queried mandatory elements are lower bounds on the optimal query
cost, the second framework phase is even 1-consistent and 2-robust. In the MST
problem, wrong predictions can change the witness sets dynamically. Therefore, the
second framework phase must be executed in a more adaptive and very careful way,
requiring substantial additional work.

By applying (a generalized version of) the described framework, the following
results for the two example problems can be achieved. In both theorems, OPT
denotes the cost of an optimal query set, and the parameter y can be used to
configure the degree to which we trust the predictions. For increasing y, the
consistency improves but the robustness gets worse. To model smooth transi-
tions between consistency and robustness, the theorems state the performance
guarantees as the minimum of the error-dependent consistency and the robust-
ness.

Theorem 4 (Erlebach et al. (2020)) There is an algorithm for the minimum
problem under uncertainty that, given an integer parameter y > 2, achieves
a competitive ratio of min{(1 + ;)(1 + é‘lﬁT), v} If y = 2, the algorithm is
1.5-consistent and 2-robust. Furthermore, there is an algorithm for the minimum
problem under uncertainty that, given an integer parameter y > 2, achieves a
competitive ratio of min{(1 + Vl_l) (1 + g}‘fT), vy}

Theorem 5 (Erlebach et al. (2020)) There is a 1.5-consistent and 2-robust algo-

rithm for the MST problem under uncertainty. Furthermore, there is an algorithm

with competitive ratio min{l + )l, + (5 + ;) : (;CI'JT, max{3,y + O;,T}}, for any

)/ € Zzz.

These results show that learning augmentation can be successfully applied to
problems under explorable uncertainty and circumvents known lower bounds for
good predictions, while at the same time providing strong bounds on the worst-
case performance even when the predictions are completely wrong. This eases the
integration of machine learning into a system since it allows improved results while
protecting users from occasional failures of the ML algorithms.

4.2 Exploiting Stochastic Information

Recently, the setting of stochastic explorable uncertainty has received some atten-
tion in the context of sorting (Chaplick et al. 2020) and the minimum prob-
lem (Bampis et al. 2021), which Bampis et al. (2021) phrases as a (hyper-)graph
orientation problem.

In the stochastic setting, we are given a continuous probability distribution d;
over the interval I; = (L;, U;) for each I; € I. The precise value w; of an interval [;
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is drawn independently from d;. Bampis et al. (2021) again analyze an algorithm
ALG in terms of its competitive ratio

E[ALG(J)]
max s
Jeg E[oPT(J)]

where E[ALG(J)] denotes the expected query cost of ALG when solving instance J,
E[oPT(J)] denotes the expected optimal query cost for J, and 7 is the set of all
instances. As a main result, Bampis et al. (2021) give the following theorem.

Theorem 6 (Bampis et al. (2021)) For any € > 0, there exists a f (a)-competitive
algorithm for the minimum problem in multiple sets, where f(a) € [1.618 + €, 2]
depends on the approximation ratio o for solving a vertex cover problem in an
auxiliary graph.

The algorithm relies on computing the probability that an interval is mandatory
using the characterization of Lemma 1. It queries all vertices that have a mandatory
probability exceeding a certain threshold. Afterward, the algorithm solves a vertex
cover problem on an auxiliary graph by first preprocessing the instance via a clas-
sical linear programming relaxation and, afterward, executing the «-approximation.
The algorithm queries the computed vertex cover and, thereafter, only mandatory
intervals that remain. In addition to this general algorithm, Bampis et al. (2021) give
several lower bounds and improved algorithms for special cases that also prioritize
queries to intervals with a high probability to be mandatory.

5 Concluding Remarks

This chapter discusses the model of explorable uncertainty and its potential use for
decision-making under uncertainty in logistics. We illustrate classical techniques
to design algorithms with worst-case guarantees using the two example problems
of finding the minima of multiple sets and determining a minimum spanning tree.
With the learning-augmented and stochastic setting, we also present models and
techniques for algorithm design with guarantees beyond the worst case and show
that known limitations of worst-case analysis can be circumvented by such settings.

In this chapter, we require algorithms to determine an optimal solution for the
underlying optimization problem. One could relax this restriction and ask for an «-
approximation. Unfortunately, for the example problems, the lower bounds translate
to this relaxed setting (Megow et al. 2017, Section 10). Another interesting variation
of the model refers to the objective function. While we consider settings in which
the query cost is significant, optimization with explorable uncertainty seems relevant
also in settings where query cost and objective value of the underlying problem are
comparable. In this case, it would be interesting to consider a combined objective,
e.g., to minimize the (weighted) sum of both values.
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We illustrated techniques using two example problems, a selection and a network
design problem. These appear as sub-problems in classical logistics questions and
our techniques would be directly applicable. Admittedly, a rigorous worst-case
guarantee such as the competitive ratio may be relevant only in rare applications;
otherwise, a good empirical performance on practical input instances is sufficient.
In more complex problem settings, e.g., involving additionally routing, packing,
and scheduling aspects, we may not be able to prove worst-case guarantees on the
performance of our algorithms and they may not even exist. Here, performance
measures beyond the worst case are particularly relevant. Overall, we expect that
the model and techniques presented here give insights on the power, tractability,
and applicability of explorable uncertainty, and we hope that they can serve as a
first step toward tackling more complex logistics problems.

6 Bibliographical Notes

We conclude with further pointers to previous work on optimization with explorable
uncertainty.

The line of research on explorable uncertainty has been initiated by Kahan
(1991) in the context of selection problems. Subsequent work addressed caching
problems (Olston and Widom 2000), problems such as computing a function
value (Khanna and Tan 2001), finding the kth smallest value in a set of uncertainty
intervals (Feder et al. 2003; Gupta et al. 2016), also with non-uniform query
cost (Feder et al. 2003), and sorting (Halldérsson and de Lima 2019).

Interestingly, the sorting problem is a special case of the minimum problem for
multiple sets. Given an instance of the sorting problem, we can create a set for
each pair of elements that are in the same set of the sorting instance and obtain
a minimum problem whose feasible query sets also solve the sorting problem.
Halldérsson and de Lima (2019) showed directly that the witness set algorithm
for sorting a single set is 2-competitive and is best possible. They also show that
the competitive ratio can be improved to 1.5 using randomization. Furthermore,
Chaplick et al. (2020) introduce an algorithm for sorting a single set of elements
under stochastic uncertainty that is optimal in terms of the expected cost E[ALG(J)].
The competitive ratio of this algorithm is unknown.

Only more recently also optimization problems have been studied. A key
role plays the fundamental MST problem with uncertainty. The 2-competitive
deterministic witness set algorithm was presented and shown to be best possible
by Erlebach et al. (2008). The randomized algorithm by Megow et al. (2017)
has an improved competitive ratio of 1.707. Both a deterministic 2-competitive
algorithm and a randomized 1.707-competitive algorithm are known for the more
general problem of finding the minimum base in a matroid (Erlebach et al. 2016;
Megow et al. 2017), even for the case with non-uniform query costs (Megow et al.
2017). Other works on the MST problem (and matroids) study a non-adaptive
variant (Merino and Soto 2019) and the offline verification problem (Erlebach and
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Hoffmann 2014; Megow et al. 2017) and conduct an experimental study (Focke
et al. 2020).

Other optimization problems studied in the context of explorable uncertainty
include the shortest path problem (Feder et al. 2007), the knapsack prob-
lem (Goerigk et al. 2015), and scheduling problems (Albers and Eckl 2020; Arantes
et al. 2018; Diirr et al. 2020).

The growth of data-driven applications and machine learning methods in the past
years gave rise to a model for learning-augmented online algorithms. The model
has been proposed by Medina and Vassilvitskii (2017) in the context of revenue
optimization followed by work on online caching by Lykouris and Vassilvitskii
(2018). Purohit et al. (2018) studied online scheduling and rent-or-buy problems
with respect to consistency and robustness, and they obtained performance guaran-
tees as a function of the prediction error. This work initiated a vast growing line
of research, which makes ML predictions without any accuracy guarantee useful
in the design of algorithms with hard performance guarantees. Overall, learning-
augmented online optimization is a highly topical concept with high potential also
for applications in logistics problems.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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indicate if changes were made.
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