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Preface

Bayesian frameworks and methods have been successfully applied to solve practical
problems in reliability and survival analysis, which have a wide range of real-world
applications in medical and biological sciences, social and economic sciences, and
engineering. Bayesian analysis is one of the important tools for statistical modeling
and inference. Because of the complexity of the Bayesian framework, numerous
Bayesian computation techniques have been developed in the past decades. This
book focuses on the recent development of Bayesian computation technologies with
emphasis on the applications to reliability and survival modeling.

Our aim in creating this book is to bring together experts engaged in the research
on Bayesian computation with applications in reliability and survival analysis to
present and discuss issues of important recent advances in the area. The topics
covered in the book are timely and have a high potential to impact and influence
biostatistics, engineering, medical sciences, statistics, and other related areas.

Outline of This Book Volume

This book volume brings together 16 chapters that are categorized as follows:
Reliability Data Analysis (Part I), Stochastic Processes in Reliability Analysis (Part
II), and Biomedical Data Analysis (Part III). All the chapters have undergone a
thorough review process.

Part I of this book includes the following four chapters:

The chapter “A Bayesian Approach for Step-Stress-Accelerated Life Tests for One-
Shot Devices Under Exponential Distributions” introduces the procedure to collect
failures for the one-shot device under the step stress accelerated life test with
multiple stress levels. Under exponential distributions with cumulative exposure
models, Ling and Hu present the likelihood function for the observed failures
collected from step-stress accelerated life test with multiple stress levels for one-
shot devices and use two priors, normal prior, and Jeffry prior to address Bayesian
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vi Preface

inference through the Markov-Chain Monte-Carlo method via Metropolis-Hastings
algorithm.

The chapter “Bayesian Estimation of Stress-Strength Parameter for Moran-
Downton Bivariate Exponential Distribution Under Progressive Type II Censoring”
introduces many useful simulation procedures for the Bayesian estimations of
the stress-strength quantity δ = Pr (X < Y) by utilizing correlated progressively
type-II censored sample collected from Moran-Downton bivariate exponential
distribution. An easy way to generate the progressively type-II censored sample
from Moran-Downton bivariate exponential distribution and Markov-Chain Monte-
Carlo procedure via Metropolis-Hastings algorithm is also introduced for Bayesian
estimation.

The chapter “Bayesian Computation in a Birnbaum-Saunders Reliability Model
with Applications to Fatigue Data” introduces a Bayesian methodology to compare
two treatments and evaluate reliability based on the Birnbaum-Saunders distribution
by utilizing inverse gamma and gamma distributions as priors. The strengths of
6061-T6 aluminum pieces, in terms of fatigue life and under two stress levels, are
used for application purposes. Some open problems are also addressed.

The chapter “A Competing Risk Model Based on a Two-Parameter Exponential
Family Distribution Under Progressive Type II Censoring” introduces a competing
risks model with two dependent failure causes whose latent failure times follow
Marshall-Olkin bivariate exponential family distribution. Maximum likelihood
estimation (MLE) and Bayesian estimation methods for the model parameters are
discussed under the progressive type-II censoring scheme. Some regular conditions
are provided for the existence and uniqueness of MLE. A Markov-Chain Monte
Carlo process is proposed for Bayesian estimation method. Since the possible
flaw of MLE method, a simulation study for the Bayesian estimations of model
parameters as well as lifetime percentiles under two loss functions is conducted. A
dataset regarding the effect of laser treatment to delay the onset of blindness from
the patient under the diabetic retinopathy study was used for application illustration.

Part II of this book includes the following four chapters:

The chapter “Bayesian Computations for Reliability Analysis in Dynamic Envi-
ronments” discusses different modeling strategies for the evolution of the dynamic
environment and develops Bayesian analysis of the models using Markov chain
Monte Carlo methods and data augmentation techniques. The developed methods
are illustrated using data from software testing, railroad track maintenance, and
power outages from a repairable system for illustrations.

The chapter “Bayesian Analysis of Stochastic Processes in Reliability” provides
an overview of the Bayesian modeling of some stochastic processes used in the
context of reliability. The author starts with a survey of various forms of intensity
functions and then reviews the applications of the Bayesian techniques for the
inference of various types of stochastic processes.

The chapter “Bayesian Analysis of a New Bivariate Wiener Degradation Pro-
cess” proposes a new bivariate Wiener degradation model to describe the unit-to-unit
variation and dependence simultaneously and derives the closed forms for the
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Preface vii

reliability functions of the system and residual lifetime. Then the statistical inference
is conducted by data augmentation and Bayesian methods.

The chapter “Bayesian Estimation for Bivariate Gamma Processes with Copula”
discusses the bivariate gamma processes that have been proposed to model two-
degradation paths observed from ADT under the independent assumption and also
extends the processes by utilizing Clayton, Frank and Gumbel copulas to describe
the possible dependence characteristics. Bayesian analysis using Markov-Chain
Monte-Carlo method has been proposed to deal with high dimensional parameter
estimation and model comparison. The related software is also included.

Part III of this book includes the following eight chapters:

The chapter “Review of Statistical Treatment for Oncology Dose-Escalation Trial
with Prolonged EvaluationWindow or Fast Enrollment” starts with the review
of three classes of methodologies for oncology dose-escalation trial design. The
chapter also gives a comprehensive outline of the various statistical extensions of
these methods to address the statistical challenges caused by the prolonged safety
evaluation window or, equivalently, the fast enrollment rate. The methods under
discussion can play a valuable role in improving the accuracy of optimal dose
identification without sacrificing patient safety or significantly prolonging the trial
duration

The chapter “A Bayesian Approach for the Analysis of Tumorigenicity Data
from Sacrificial Experiments Under Weibull Lifetimes” describes a Bayesian
inference on the onset time of tumors based on tumorigenicity data from sacrificial
experiments. Authors set up tumorigenicity experiments with serial sacrifice.
Assuming the tumor onset time has a Weibull distribution with log-linear link
functions of covariates as scale and shape parameters, the Bayesian estimation
procedure has been established by utilizing three priors, which include Laplace
distribution, normal distribution with non-informative prior for the variance and beta
distribution, as well as two prior beliefs.

The chapter “Bayesian Sensitivity Analysis in Survival and Longitudinal Trials
with Missing Data” reviews sensitivity analysis methods and strategies for handling
missing data for survival analysis and longitudinal trials by using control-based
imputation and delta-adjusted strategies under informative censoring or missing-
not-at-random from a Bayesian perspective. Applications to clinical trials are
presented for illustration and future potential approach is also introduced.

The chapter “Bayesian Analysis for Clustered Data under a Semi-Competing
Risks Framework” utilizes an illness-death model under a semi-competing risks
framework that can characterize some nonterminal events such as relapse and a
terminal event such as death. A full Bayesian approach is used to analyze diverse
survival data including clustered data to account for patients’ transitions within
a time of interest. Metropolis-Hastings algorithm within Gibbs chains is used to
obtain the estimates for regression coefficients in which R packages are employed
for implementation.

The chapter “Survival Analysis for the Inverse Gaussian Distribution: Natural
Conjugate and Jeffrey’s Priors” focuses on the use of the Bayesian method to
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analyze survival data that follow inverse Gaussian distribution by utilizing the
natural conjugate and Jeffrey’s priors to estimate both unknown inverse Gaussian
parameters as well as the average remaining time of the censored units. Because the
closed-form of posteriors is not tractable due to censored data, the Gibbs sampling
procedure is used. An extensive simulation study is conducted to assess the effects
of natural conjugate hyperparameter settings at different levels of skewness as well
as compare the behavior of the two priors.

The chapter “Bayesian Inferences for Panel Count Data and Interval-Censored
Data with Nonparametric Modeling of the Baseline Functions” discusses a novel
unified Bayesian approach to analyze the real-life applications where both panel
count data and interval-censored data are generated for study subjects under periodic
follow-ups. Interval-censored data are studied when the exact times of the events are
of interest, and these exact times are not directly observed but are only known to fall
within some intervals formed by the observation times. Panel count data are under
investigation when the exact times of the recurrent events are not of interest but the
counts of the recurrent events occurring within the time intervals are available and
of interest. Specifically, this unified Bayesian approach is developed for analyzing
panel count data under the gamma frailty Poisson process model and interval-
censored data under Cox’s proportional hazards model and the proportional odds
model. The baseline functions in these models share the same property of being
nondecreasing positive functions and are modeled nonparametrically by assigning
a Gamma process prior. Efficient Gibbs samplers are developed for the posterior
computation under these three models for the two types of data. The proposed
methods are evaluated in a simulation study and illustrated by three real-life data
applications.

The chapter “Bayesian Approach for Interval-Censored Survival Data with
Time-Varying Coefficients” discusses a Bayesian approach to analyze the interval-
censored failure time data, which are commonly obtained in medical and epi-
demiological studies. In this chapter, the authors present a Bayesian approach
for correlated interval-censored data under a dynamic Cox regression model with
piecewise constant coefficients. The dimensions of coefficients are automatically
determined by the reversible jump Markov chain Monte Carlo algorithm. Two real
datasets are used to demonstrate the applicability of these methods.

The chapter “Bayesian Approach for Joint Modeling Longitudinal Data and Sur-
vival Data Simultaneously in Public Health Studies” overviews the joint modeling
through the harmonization of longitudinal data and time-to-event data by using
Bayesian approach. Using a dataset from an HIV/AIDS study, which contains time-
to-death due to AIDS and longitudinal CD4 measurements and was collected by a
randomized clinical trial to compare the efficacy and the safety of two antiretroviral
drugs given to patients who had failed or were intolerant of zidovudine therapy, this
chapter demonstrates the merits of the joint-modeling of longitudinal continuous
data and time-to-event data simultaneously over the separated linear mixed-effects
modeling for longitudinal data and survival analysis for time-to-event data.
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Part I
Reliability Data Analysis



A Bayesian Approach
for Step-Stress-Accelerated Life Tests
for One-Shot Devices Under Exponential
Distributions

Man Ho Ling and Xuwen Hu

Abstract In practice, accelerated life tests are commonly used to collect failure
time data within a short period of time by elevating stress levels. In this chapter,
step-stress-accelerated life tests with multiple stress levels are considered for one-
shot devices that can be used only once. As the exact failure times of one-shot
devices cannot be observed from accelerated life tests, a Bayesian approach incor-
porating with prior information provides some useful inference on the reliability. To
extrapolate the reliability under normal operating conditions from elevated stress
levels, cumulative exposure models with exponential distributions are adopted.
The Markov Chain Monte Carlo method via Metropolis–Hastings algorithm is
performed to estimate the model parameters, the reliability, and the mean lifetime.
Finally, comprehensive simulation studies for normal (subjective) and Jeffreys
(objective) priors are carried out to evaluate the performance of the Bayesian
estimation in terms of bias and root mean square error. A real data on samples of
grease-based magnetorheological fluids is analyzed for illustration of the Bayesian
estimation.

1 Introduction

Units that can be used once only are called one-shot devices, for instance airbags
of vehicles, rockets, and missiles. One-shot devices cannot be used again after
their intended functions perform. Researchers can only observe whether a device

M. Ho Ling (�)
Department of Mathematics and Information Technology, The Education University of Hong
Kong, Hong Kong, China
e-mail: amhling@eduhk.hk

X. Hu
Department of Statistics, Seoul National University, Seoul, South Korea

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Lio et al. (eds.), Bayesian Inference and Computation in Reliability and Survival
Analysis, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-88658-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88658-5_1&domain=pdf
mailto:amhling@eduhk.hk
https://doi.org/10.1007/978-3-030-88658-5_1


4 M. Ho Ling and X. Hu

functions at the inspection time in a life test, instead of its actual lifetime. Many
researchers have recently studied one-shot devices/systems [8–10, 25, 28, 30, 32–
34]. For a book length account of methods and analysis of one-shot device testing
data, interested readers may refer to the recent book by Balakrishnan, Ling, and
So [4].

With the rapid change of technology, high-reliable products with long lifetimes
are in high demand and accelerated life tests (ALTs) have received much attention
in reliability studies. ALTs are usually run under higher-than-normal stress levels to
shorten the lifetimes of devices. The accelerating factors include humidity, voltage,
current, and temperature. Under ALTs, the experimental time and the cost of
conducting experiments can be reduced. Meeker et al. [23] considered accelerated
degradation models to predict the lifetime of products at normal temperature. Step-
stress ALTs (SSALTs) are one of the most popular ALTs in practice; see, for
example [26, 27]. Zheng et al. [35] considered SSALTs with four elevated levels of
temperature (333K, 339K, 345K, 351K) to collect grease-based magnetorheological
fluid (G-MRF) samples for predicting the lifetime of G-MRF at the normal operating
temperature of 293K. In SSALTs, each unit is initially placed at a higher-than-
normal stress level with a pre-specified inspection time. Subsequently, some of
the units are randomly selected and tested and the stress level will immediately
increase. The remaining units are subject to the elevated stress levels for another
pre-specified period of time. If the stress levels are more than two, the process
of selecting units and increasing stress levels will be repeated for the remaining
units. SSALTs with only one increase in the stress level are called simple SSALTs.
For SSALTs, there are three fundamental models for the effect of increased stress
levels on the lifetime distribution: The tampered random variable model [12], the
cumulative exposure model [26, 27], and the tampered failure rate model [6].
Ling [19] considered exponential distributions with the cumulative exposure models
and developed the expectation–maximization algorithm for finding the maximum
likelihood estimates of the model parameters as well as optimal designs of simple
SSALTs for one-shot devices. In this chapter, a Bayesian approach is presented
for analyzing one-shot device testing data collected from SSALTs with multiple
stress levels. In line with [19], the exponential distributions with the cumulative
exposure models are considered. Moreover, the performance of the Bayesian
estimation with different priors, namely normal and Jeffreys priors, is compared
with the maximum likelihood estimation in terms of bias and root mean square
error.

The Bayesian approach is one of the most popular statistical techniques for
estimation when the likelihood function is complicated. This method is especially
useful and efficient for estimation when we have limited information on lifetime.
Also, Bayesian estimation incorporating prior information can provide us with
more useful inference. Therefore, the Bayesian approach becomes a mainstream
estimation method in reliability studies over the past several decades. Marta and
Wailera [21] analyzed the reliability for complex systems in a Bayesian framework.
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Coolen and Newby [11] discussed Bayesian reliability analysis when a range of
possible probabilities from an expert for events of interest were considered. Yates
and Mosleh [31] estimated the reliability of aerospace systems by using Bayesian
estimation method. Fan et al. [14] described a Bayesian framework to analyze the
reliability of electro-explosive devices with several priors. LeSage [17] presented
the process of estimating the dependent variable in spatial autoregressive models
through Bayesian estimation method. Ling et al. [18] presented remaining useful
life estimation under degradation data for prognostic and system health management
in a Bayesian framework. Hamada et al. [15] provide concrete concepts of the
Bayesian approach and numerous methods and techniques for analyzing reliability
data from a Bayesian perspective.

The rest of this chapter is organized as follows. Section 2 presents the one-
shot devices testing data under exponential distributions with cumulative exposure
models. The maximum likelihood estimation method and a Bayesian framework
will be described in Sects. 3 and 4. Two priors for the Bayesian estimation
are also presented. In Sect. 5, comprehensive simulation studies are conducted
to evaluate the performance of the Bayesian estimation method with those two
priors in terms of bias and root mean square error (RMSE). In Sect. 6, a real
data on samples of grease-based magnetorheological fluids is analyzed for illus-
tration of the Bayesian estimation. Finally, some concluding remarks are made
in Sect. 7.

2 Model Description

Consider SSALTs with I ≥ 2 stress levels, x1, x2, . . . , xI , for one-shot devices. K
devices are exposed to stress level x1, K1 devices are tested at inspection time τ1,
and the number of failures is recorded as n1.Meanwhile, the remaining devicesK−
K1 are subject to an increased stress level x2 andK2 devices are tested at inspection
time τ2. The number of failures, n2, is recorded. Similarly, for i = 3, 4, . . . , I,
in the i-th cycle, the remaining devices K −∑i−1

m=1Km are subject to an increased
stress level xi ,Ki devices are tested at inspection time τi , and the number of failures,
ni, is recorded. It is noting that K = ∑I

m=1Km. Finally, one-shot devices testing
data under SSALTs with I stress levels are denoted as z = {τi,Ki, ni, xi, i =
1, 2, . . . , I }.

Suppose the lifetimes of the devices follow exponential distributions. Let τ0 = 0.
The corresponding cumulative hazard function under cumulative exposure models
is derived as

H(t) =
i−1∑

m=1

αm(τm − τm−1)+ αi(t − τi−1), τi−1 < t ≤ τi, (1)
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where αi is the rate parameter under the tests. Hence, the associated reliability at
inspection time τi is therefore

pi = exp(−H(τi)) = exp

(

−
i∑

m=1

αm(τm − τm−1)

)

. (2)

Furthermore, it is assumed that the rate parameter is related to the stress levels in a
log-linear from [29], i.e.,

αi = exp(a0 + a1xi). (3)

For notational convenience, we let θ = (a0, a1) as the model parameters to
be estimated. Since the lifetimes of devices are independent, the joint likelihood
function of θ = (a0, a1) is then given by

L(θ) =
I∏

i=1

(1 − pi)nipKi−nii . (4)

3 Maximum Likelihood Estimation

Maximum likelihood estimation method is one of the popular methods for the
estimation of model parameters, and it relies on the maximization of likelihood
function of an assumed model based on observed data. Likelihood inference on one-
shot device testing data has been discussed extensively for many prominent lifetime
distributions; see [1–3, 19]. In our settings, we first consider the log-likelihood
function

�(θ) = ln(L(θ)) =
I∑

i=1

ni ln(1 − pi)+ (Ki − ni) ln(pi). (5)

The likelihood function and the log-likelihood function get maximized when the
following equations simultaneously hold:

∂�(θ)

∂a0
=

I∑

i=1

(
ni

1 − pi − Ki − ni
pi

)

piH(τi) = 0, (6)

∂�(θ)

∂a1
=

I∑

i=1

(
ni

1 − pi − Ki − ni
pi

)

piH(τi)xi = 0. (7)
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However, a closed-form solution is not available, and in such a case, optimization
methods, for example, Newton–Raphson method, can be employed for obtaining the
maximum likelihood estimates. In one-shot device testing, all the failure times are
either left- or right-censored. An expectation–maximization (EM) algorithm [22]
that is known to be a convenient and efficient method for estimating model
parameters in the presence of censoring can also be applied for the estimation.
The EM algorithm involves two steps in each iteration of the numerical method of
maximizing the likelihood function: expectation-step (E-step) in which the censored
data are approximated by their expected values, and maximization-step (M-step) in
which the likelihood function, with imputed values replacing the censored data, gets
maximized. Interested readers may refer to [19] for SSALTs with I = 2 in detail.

4 Bayesian Approach

The maximum likelihood estimation provides accurate estimation only when the
sample size is sufficiently large. On the other hand, for life tests with small sample
sizes, Bayesian approaches are alternative for estimation [5]. Here, we intend to
estimate the model parameters θ = {a0, a1} from the Bayesian perspective.

Let π(θ) be the joint prior density of θ . Given the observed data z, the joint
posterior density is given by

π(θ |z) = L(θ)π(θ)
∫
L(θ)π(θ)dθ

= q(θ)
∫
q(θ)dθ

. (8)

It is observed that the denominator is not in a closed form and thus the posterior
distribution cannot be analyzed numerically. The posterior distribution of the model
parameters θ can then be approximated by using Markov Chain Monte Carlo
(MCMC) methods via Metropolis–Hastings algorithm [16, 24]. The Metropolis–
Hastings algorithm proceeds as follows: In the m-th step of the iterative procedure:

Step 1: Generate θ∗ from a proposal distribution based on θ(m) =
(
a
(m)
0 , a

(m)
1

)
.

Step 2: Compute the acceptance probability p = min
(
1, q(θ∗)/q(θ(m))

)
.

Step 3: Set θ(m+1) =
{
θ∗ with probability p,
θ(m) with probability 1 − p.

SupposeM ≥ 100,000 iterated samples of θ are obtained, {θ(m),m = 1, 2, . . . ,M},
by using the above procedure. We then usually discard the first D = 1000 (say)
samples as burn-in and sample one value in every B = 100 (say) iterations after
the burn-in to reduce autocorrelation between the iterated samples in the MCMC
sample. This way, we will end up with R = �(M −D)/B� samples to approximate
the posterior distribution, where �a� denotes the floor function of a. Now, there is
a sequence of posterior samples of θ, say θ(r), r = 1, 2, . . . , R, generated from
Metropolis–Hastings algorithm. Subsequently, based on the posterior samples, the
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Bayesian estimates of the model parameters, the reliability, and the mean lifetime
under normal operating condition x0 are given by

â0 = 1

R

R∑

r=1

a
(r)
0 (9)

â1 = 1

R

R∑

r=1

a
(r)
1 (10)

p̂(t) = 1

R

R∑

r=1

exp
(
−α(r)0 t

)
(11)

μ̂ = 1

R

R∑

r=1

1

α
(r)
0

, (12)

where α(r)0 = exp
(
a
(r)
0 + a(r)1 x0

)
.

In the Bayesian framework, the prior information, π(θ), plays an important role
in getting the posterior distribution, especially when lifetime information is limited.
Here, we consider two different priors, including normal (subjective) prior and
Jeffreys (objective) prior. It is noting that subjective priors are usually suggested
by experts or past experiments.

4.1 Normal Prior

Fan et al. [14] compared three different subjective priors, namely exponential,
normal, and beta priors, for Bayesian estimation for one-shot device testing data
collected from constant-stress ALTs through extensive simulation studies and real-
ized that normal prior is the best among those priors for the estimation. Therefore,
it is natural to consider normal prior for one-shot device testing data collected from
SSALTs. The normal prior assumes that there are errors between actual values of the
parameters and the belief priors. Here, the error is denoted as εi , and it is assumed
that

p̂i = pi + εi, i = 1, 2, . . . , I, (13)

and εi are i.i.d. normal random variables with a mean of 0 and a variance of σ 2,

say N(0, σ 2). Let p̂ = {p̂i , i = 1, 2, . . . , I }. Given σ 2, the conditional likelihood
function of θ is
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π(θ |z, p̂, σ 2) ∝
I∏

i=1

1√
σ 2

exp

(

− (pi − p̂i)
2

2σ 2

)

(14)

=
(
σ 2
)− I

2
exp

(

−
∑I
i=1(pi − p̂i)2

2σ 2

)

. (15)

Because the σ 2 is unknown, we adopt the most common prior,

π(σ 2) ∝ 1

σ 2 , σ 2 > 0. (16)

Therefore, the joint prior density of θ is given by

πN(θ |z, p̂) ∝
∫ ∞

0
π(θ |z, p̂, σ 2)π(σ 2)dσ 2 (17)

∝
∫ ∞

0
(σ 2)−

I+2
2 exp

(

− 1

2σ 2

I∑

i=1

(pi − p̂i)2
)

dσ 2 (18)

∝
(
I∑

i=1

(pi − p̂i)2
)−I/2

. (19)

Consequently, the posterior density of θ becomes

π(θ |z, p̂) =
I∏

i=1

(1 − pi)nipKi−nii

(
I∑

i=1

(pi − p̂i)2
)−I/2

. (20)

Instead of being suggested by experts for p̂i’s, from Eqs. (2) and (3), we can obtain
p̂i’s from the observed data z as follows:

ln(− ln(pi)+ ln(pi−1))− ln(τi − τi−1) = a0 + a1xi, i = 1, 2, . . . , I. (21)

We can further obtain the least-square estimates of θ = (a0, a1) by setting

yi = ln

(

− ln

(

1 − ni

Ki

)

+ ln

(

1 − ni−1

Ki−1

))

− ln(τi − τi−1) (22)

for i = 1, 2, . . . , I, and solving the system of equations

⎡

⎢
⎢
⎢
⎣

y1

y2
...

yI

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 x1

1 x2
...
...

1 xI

⎤

⎥
⎥
⎥
⎦

[
a0

a1

]

. (23)
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Let âLSE0 and âLSE1 be the respective least-square estimates. Finally, p̂i’s can also
be obtained from âLSE0 and âLSE1 , i.e.,

p̂i = exp

⎛

⎝−
i∑

j=1

exp
(
âLSE0 + âLSE1 xj

)
(τj − τj−1)

⎞

⎠ . (24)

4.2 Jeffreys Prior

Jeffreys prior is an objective prior that comes from the Fisher information matrix.
This prior is also useful and commonly used in Bayesian approaches when we have
no information about the model parameters. Jeffreys prior is the square root of the
determinant of the Fisher information matrix. In one-shot device testing data under
SSALTs, the Fisher information is given by

I = −E
[
∂2�(θ)

∂ap∂aq

]

(25)

=
I∑

i=1

(
∂pi

∂ap

)(
∂pi

∂aq

)(
Ki

pi
+ Ki

1 − pi
)

, p = 0, 1, q = 0, 1, (26)

and Jeffreys prior is therefore

πJ (θ) = √Det(I) ∝
I∏

i=1

αi√
1 − pi . (27)

It turns out that the joint posterior density of (a0, a1) is given by

π(θ |z, p̂) =
I∏

i=1

(1 − pi)ni−1/2p
Ki−ni
i αi . (28)

5 Simulation Study

In this section, we conduct simulation studies to compare the maximum likelihood
estimates and the Bayesian estimates incorporating with normal and Jeffreys
priors for SSALTs with I = {2, 3} stress levels for various sample sizes K =
{50, 100, 200}. The pair of values of the unknown parameters is set to be (a0, a1) =
(−5.5, 0.05). First we consider simple SSALTs with two stress levels x = {35, 55}
and inspection times τ = {15, 30}. In simple SSALTs for one-shot devices [19],



Bayesian for SSALTs for One-Shot Devices Under Exponential Distributions 11

it is assumed that 80% of the devices are tested at the first inspection time. Then
the stress level is increased immediately, and the remaining devices are tested at the
second inspection time. Afterward, SSALTs with three stress levels x = {35, 45, 55}
and inspection times τ = {10, 20, 30} are considered. In this setup, the allocations
of devices tested at the first, second, and last inspections are 75%, 20%, and 5%,
respectively.

Here, the MCMC method is used to approximate the posterior distribution of the
model parameters θ = (a0, a1). Metropolis–Hastings algorithm [16] incorporating
normal distributions for the model parameters is employed to simulate M =
100,000 random samples iteratively. Then, the first D = 1000 iterative samples
are discarded, and one sample in every B = 100 iterative sample is randomly
selected to reduce the autocorrelation among the posterior samples. Consequently,
we obtain R = 990 posterior samples to approximate the joint posterior distribution
of the model parameters θ = (a0, a1). Furthermore, the reliability under the normal
operating condition x0 = 25 at a mission time can be estimated.

Table 1 presents bias and RMSE of the estimates of a0 and a1. Generally
speaking, bias and RMSE decrease when the sample size increases. It is observed
that the maximum likelihood estimation method works well only when the sample
sizes are sufficiently large. In addition, when the sample size is large enough, p̂i’s
are close to the respective reliability pi , and thus p̂i’s provide important information
on the reliability. It is therefore realized that normal prior generally outperforms
Jeffreys prior in terms of bias and RMSE. It is surprising that, under the exponential
distributions, we observe that the bias and RMSE for I = 3 are greater than those
for I = 2 when the sample sizeK is fixed. It indicates that SSALTs with more stress
levels have less statistical efficiency of the estimation of the model parameters.

Moreover, it is of great interest in evaluating the performance of the estimation of
the reliability and the mean lifetime under the normal operating condition. Tables 2
and 3 present bias and RMSE of the estimates of the reliability at different mission

Table 1 Bias and RMSE of the estimates of the model parameters for different methods with
various sample sizes for SSALTs with I = {2, 3} stress levels

I = 2 I = 3

a0 = −5.5 a1 = 0.05 a0 = −5.5 a1 = 0.05

K Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 MLE −0.1059 2.2558 0.0027 0.0625 1.0884 8.9315 −0.0329 0.2516

πN −0.0294 1.4961 0.0000 0.0374 0.4422 1.5815 −0.0110 0.0357

πJ −0.3229 2.1024 0.0085 0.0565 −2.0100 3.2855 0.0531 0.0847

100 MLE −0.0337 0.9429 0.0004 0.0250 0.0413 2.7551 −0.0024 0.0750

πN 0.0188 0.9776 −0.0011 0.0238 0.0150 1.2587 0.0012 0.0302

πJ −0.0704 1.0809 0.0015 0.0272 −0.8696 1.8782 0.0231 0.0490

200 MLE −0.0036 0.6232 0.0001 0.0161 −0.0085 1.2609 −0.0001 0.0329

πN 0.0403 0.6279 −0.0013 0.0148 −0.0540 0.9047 0.0032 0.0223

πJ −0.0198 0.7400 0.0005 0.0184 −0.3252 1.1444 0.0086 0.0298
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Table 2 Bias and RMSE of the estimates of the reliability at different mission times and the mean
lifetime under the normal operating condition for different methods with various sample sizes for
SSALTs with I = 2 stress levels

I = 2 p(10) = 0.8671 p(20) = 0.7518 p(30) = 0.6519 μ = 70.1054

K Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 MLE −0.0123 0.0894 −0.0134 0.1254 −0.0101 0.1487 17.3643 68.5893

πN −0.0159 0.0823 −0.0189 0.1229 −0.0161 0.1479 24.5436 160.0178

πJ −0.0246 0.0910 −0.0265 0.1328 −0.0188 0.1558 68.6334 271.1758

100 MLE −0.0050 0.0451 −0.0067 0.0742 −0.0062 0.0930 5.0178 30.8023

πN −0.0084 0.0583 −0.0103 0.0879 −0.0093 0.1074 7.4580 33.5800

πJ −0.0135 0.0598 −0.0163 0.0930 −0.0134 0.1123 16.1128 46.3670

200 MLE −0.0025 0.0278 −0.0036 0.0476 −0.0037 0.0611 1.6924 15.9847

πN −0.0054 0.0358 −0.0080 0.0605 −0.0085 0.0769 2.4602 20.3021

πJ −0.0079 0.0408 −0.0106 0.0670 −0.0100 0.0834 6.6181 23.8042

Table 3 Bias and RMSE of the estimates of the reliability at different mission times and the mean
lifetime under the normal operating condition for different methods with various sample sizes for
SSALTs with I = 3 stress levels

I = 3 p(10) = 0.8671 p(20) = 0.7518 p(30) = 0.6519 μ = 70.1054

K Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 MLE −0.0543 0.2226 −0.0447 0.2471 −0.0267 0.2601 78.4813 328.9704

πN −0.0513 0.1236 −0.0725 0.1807 −0.0777 0.2065 7.3117 68.6431

πJ 0.0170 0.0864 0.0443 0.1383 0.0734 0.1767 733.5855 10347

100 MLE −0.0240 0.1253 −0.0259 0.1664 −0.0202 0.1886 24.7547 109.6319

πN −0.0213 0.0798 −0.0302 0.1252 −0.0318 0.1508 6.9939 42.3457

πJ 0.0037 0.0685 0.0161 0.1094 0.0316 0.1372 65.9641 136.7232

200 MLE −0.0068 0.0616 −0.0080 0.1009 −0.0059 0.1255 9.9092 37.8818

πN −0.0106 0.0503 −0.0157 0.0829 −0.0172 0.1036 3.1028 28.1661

πJ −0.0025 0.0507 0.0012 0.0821 0.0079 0.1023 21.7381 45.8657

times t = {10, 20, 30} and the mean lifetime under normal operating condition
x0 = 25. It is realized that the maximum likelihood estimation method outperforms
the Bayesian approach with normal and Jeffreys priors for the estimation of the
reliability and the mean lifetime under SSALTs with I = 2. However, for SSALTs
with three stress levels, Jeffreys prior generally yields less bias and RMSE of
the estimates of the reliability. In general, under the exponential distributions,
introducing more stress levels does not improve the statistical efficiency of the
estimation of the reliability and the mean lifetime, except for normal prior for
the estimation of the mean lifetime when sample size K = 50. It may indicate
that SSALTs with more stress levels are recommended for the estimation of the
mean lifetime only when the sample size is not sufficiently large. Otherwise, simple
SSALTs with two stress levels are highly recommended.



Bayesian for SSALTs for One-Shot Devices Under Exponential Distributions 13

6 Data Analysis

In this section, we present an application of the Bayesian estimation for samples
of grease-based magnetorheological fluids (G-MRFs) presented in [35]. Twenty G-
MRF samples were collected from a SSALT with four higher-than-normal stress
levels. In this test, the failure of each G-MRF sample is defined as its viscosity
or shear stress has decreased by more than 10%. However, the exact failure times
cannot be observed. We can only observe whether the viscosity and shear stress
cross the thresholds at the inspection time. This results in one-shot device testing
data. The data on 20 G-MRFs samples are presented in Table 4. As the inverse
power law [13] is commonly used to develop a relationship between the temperature
and the lifetime distribution, we consider x0 = −1/293, x1 = −1/333, x2 =
−1/339, x3 = −1/345, x4 = −1/351. For the Bayesian estimation, we set
M = 1,000,000,D = 10,000, B = 100 to obtain R = 99,900 posterior samples
to approximate the joint posterior distribution of the model parameters. Trace
plots and histograms of posterior samples of the parameters of interest generated
from Metropolis–Hastings algorithm for normal and Jeffreys priors are presented
in Figs. 1 and 2. The maximum likelihood estimates and the Bayesian estimates
of the model parameters, the reliability at mission time t = 20,000 h, and the
mean lifetime under normal operating condition of x0 = 293K are presented

Table 4 Data on G-MRF samples under SSALTs with four stress levels

Temperature (K) Inspection time (h) No. of samples No. of failures

333 864 5 1

339 1512 5 1

345 1944 5 2

351 2160 5 2

Fig. 1 Trace plots (left) and histograms (right) of posterior samples of a0, a1, R(t), and μ
generated from Metropolis–Hastings algorithm for normal prior
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Fig. 2 Trace plots (left) and histograms (right) of posterior samples of a0, a1, R(t) and μ
generated from Metropolis–Hastings algorithm for Jeffreys prior

Table 5 Estimates of the model parameters (â0, â1), the reliability at mission time t = 20,000 h,
p̂(t), and the mean lifetime, μ̂, under the normal operating condition of x0 = 293K for data
presented in Table 4

Method â0 â1 p̂(t) μ̂

MLE −0.3832 2703 0.2612 14897

πN −2.2562 1938 0.0666 7304

πJ −2.0807 1999 0.0723 7546

in Table 5. In addition, the potential scale reduction factor (PSRF) proposed by
Brooks and Gelman [7] is useful to measure the convergence of posterior samples.
In general, values of the factor below 1.1 are acceptable. The values of the factor
for the posterior samples of θ = (a0, a1) under normal and Jeffreys priors
are (1.001, 1.090) and (1.002, 1.005), respectively. Moreover, as the number of
samples is small, the maximum likelihood estimates and the Bayesian estimates
of the parameters of interest are not similar.

7 Concluding Remarks

In this chapter, we have studied SSALTs for one-shot devices in a Bayesian
framework with normal (subjective) and Jeffreys (objective) priors. The exponential
distributions with cumulative exposure models are considered in this chapter. The
Metropolis–Hastings algorithm is employed to approximate the joint posterior
density of the model parameters θ = (a0, a1). Simulation studies were carried out
to evaluate the performance of the Bayesian estimation of the model parameters,
the reliability, and the mean lifetime under the normal operating condition in terms
of bias and RMSE. The numerical results suggest normal prior for the estimation
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of the parameters of interest. Besides, simple SSALTs with two stress levels are
recommended for exponential distributions as SSALTs with more stress levels may
not possess a higher statistical efficiency of the estimation.

Moreover, it is of great interest to extend the exponential distributions to more
general and flexible distributions with scale and shape parameters, namely Weibull,
gamma, log-normal distributions for SSALTs with I ≥ 2 stress levels. These
distributions are also widely used in reliability studies. However, if both scale and
shape parameters are related to the stress levels, there are 4 model parameters in the
joint posterior density to be estimated. Jeffreys prior involves the determinant of a
4-by-4 matrix, and thus it might not be easy to derive. Instead, normal prior is easier
to be implemented for those flexible distributions.

Besides, the development of optimal designs of SSALTs is another important
topic in reliability studies. The simulation results show that simple SSALTs with
two stress levels have a higher statistical efficiency of the estimation than SSALTs
with three stress levels in the considered situations. However, decision variables,
including the number of stress levels (I ), stress levels (xi), inspection times (τi),
and allocation of the devices (Ki), can greatly affect the statistical efficiency of the
estimation. In line with [20], it is therefore important to develop optimal designs of
SSALTs with more than two stress levels for one-shot devices.
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Bayesian Estimation of Stress–Strength
Parameter for Moran–Downton Bivariate
Exponential Distribution Under
Progressive Type II Censoring

Yu-Jau Lin, Yuhlong Lio, Hon Keung Tony Ng, and Liang Wang

Abstract In the stress–strength model, the estimation of the probability δ =
Pr(X < Y) is one of the important issues. In this chapter, Bayesian estimation
of δ under correlated progressively type II censored sample from the Moran–
Downton bivariate exponential (DBVE) distribution is investigated. The Markov-
Chain Monte Carlo (MCMC) method is applied to find the Bayesian estimate of δ.
An extensive simulation study is conducted to demonstrate the performance of the
developed methods. Finally, the proposed approach is applied to a bivariate data set
for illustration.

1 Introduction

In the context of reliability and medical studies, stress–strength models have
received much attention for many years. The stress–strength models can also be
applied to different fields such as engineering, medicine, quality control, and so
on. Among them, the quantity δ = Pr(X < Y) is of interest, where X and Y
are random variables that represent lifetimes. For example, in biometry, let X and
Y represent the remaining lifetimes when patients are treated with drug A and
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drug B, respectively. Then, the question about the probability δ ≥ 1/2 is crucial
because it can be used to choose the treatment for a patient in between drug A
and drug B. In engineering and reliability studies, δ may represent the probability
that the strength of a component Y exceeds the stress X for external factors.
When X and Y are independent [8] provided an interesting connection between
δ and the classical Mann–Whitney statistic. Since then, the estimation of δ has
received considerable attention in the statistical literature and has been investigated
under various distributions and life test settings, for example [1, 3, 12, 14, 20, 22–
24, 30, 31, 33, 35–37] under complete random samples. The monograph presented
by Kotz et al. [21] provided an excellent review of the development of the estimation
of δ = Pr(X < Y) up to the year 2003. Because the subject could be lost or have
a long lifetime due to the technology advancement, collecting a random sample of
lifetimes from the life test experiment could be difficult. Recently, more research
work has adopted many different methodologies to accommodate this drawback.
For example [18] studied the statistical inference of δ under truncated exponentially
distributed data. Saracoglu and Kuş [32] investigated statistical inference for δ based
on progressively censored data. Lio and Tsai [26] discussed estimates of δ for Burr-
XII distribution based on progressively first failure-censored samples. Saracoglu et
al. [34] studied the estimation problem of δ based on progressively type II censored
samples from two independent exponential distributions. Genç [14] also studied the
estimation of δ based on left-censored sample from Topp–Leone distributions. Note
that all these aforementioned papers assumed X and Y are independent.

To shorten the time needed and/or to save the cost of a life testing experiment,
censoring is one of the commonly used techniques, and a progressive type II
censoring scheme with a fixed number of observed failures can be considered.
The progressive type II censoring can be implemented as follows. Suppose n
items are placed on the life test at the same initial time, and a prefixed value
m < n is the number of observed failures. Then, at the time of the j th failure, Rj
surviving items are randomly removed from the experiment for j = 1, 2, · · · ,m,
where Rj , j = 1, 2, · · · ,m are pre-specified values with

∑m
j=1 Rj = n − m.

Statistical inference and reliability analysis based on progressively type II censored
samples have long been studied. For comprehensive reviews of the theory and
applications of progressive censoring, the readers may refer to the review papers
by Balakrishnan [4], the articles by Cramer [9] and Ng [29], and the two books
on progressive censoring by Balakrishnan and Aggarwala [5] and Balakrishnan and
Cramer [3].

If the random vector (X, Y ) follows the three-parameter Moran–Downton bivari-
ate exponential (DBVE) distribution with parameters μ1, μ2, and ρ, denoted as
DBVE(μ1, μ2, ρ), the joint probability density function (PDF) is given by

f (x, y) = μ1μ2

1 − ρ exp

{

−μ1x + μ2y

1 − ρ
}

I0

{
2(μ1xμ2yρ)

1/2

1 − ρ
}

, (1)

where μ1 > 0, μ2 > 0, 0 ≤ ρ < 1, and I0(z) =∑∞
r=0(z/2)

2r/(r!)2 is the modified
Bessel function of the first kind of order zero. In the DBVE distribution, 1/μ1 and



Bayesian Estimation of Stress–Strength Parameter for Moran–Downton. . . 19

1/μ2 are the marginal means of X and Y , respectively, and ρ is the correlation
coefficient of X and Y . The DBVE distribution is useful in reliability theory for
modeling the lifetimes of two dependent components. More details of the DBVE
distribution will be discussed in Sect. 2. Based on the PDF of the DBVE distribution
in Eq. (1), the stress–strength, δ = Pr(X < Y), involves a double integral that
consists of a Bessel function of first kind that can be represented as an infinite series.
In this chapter, we study the statistical inference of δ based on progressively type II
censored samples from the DBVE model.

The rest of this chapter is organized as follows. More details of the DBVE model
and the likelihood function based on a progressively type II censored sample from
the DBVE distribution are presented in Sect. 2. The Bayesian estimation of δ will be
discussed in Sect. 3. A Monte Carlo simulation study to evaluate the performance
of the estimation method is provided in Sect. 4. In Sect. 5, a numerical example
generated from a real-world example is used to illustrate the methodology discussed
in this chapter. Finally, concluding remarks are given in Sect. 6.

2 Model and Notations

Let (Xi, Yi), i = 1, 2, · · · , n, be independent and identically distributed random
vectors that follow the DBVE(μ1, μ2, ρ) distribution with joint PDF in Eq. (1). The
joint PDF of the DBVE(μ1, μ2, ρ) distribution was originally derived in a different
form by Moran [28], and the form in Eq. (1) was derived by Downton [11] in a
reliability context. Hence, this distribution is commonly called the Moran–Downton
bivariate exponential distribution. The DBVE distribution can be considered as
a special case of the bivariate gamma distribution proposed by Kibble [19]. It
can be shown that X has a marginal exponential distribution with mean 1/μ1, Y
has a marginal exponential distribution with mean 1/μ2, and ρ is the correlation
coefficient between X and Y . The estimation of the parameter ρ has been studied
by many authors. For example [2] derived the method of moment estimator for
ρ through equating a population of mixed moments and sample mixed moments
and suggested a modified method of moment estimator through a standard bias
reduction method. They also suggested a bias-reduced estimator based on the
sample correlation coefficient. Balakrishnan and Ng [7] modified the estimation
procedures of [2] and derived an improved method of moment estimator by
using the standard bias reduction method as well as the Jackknife method. These
aforementioned estimation procedures for ρ were based on a complete sample.

An alternative way to express the joint PDF of the DBVE(μ1, μ2, ρ) distribution
can be obtained by expanding the series I0(z) as

f (x, y) =
∞∑

k=0

π(k, ρ)gk+1(x;μ1/(1 − ρ))gk+1(y;μ2/(1 − ρ)), (2)
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where gk+1(x; b) is the PDF of a gamma random variable with a rate parameter b
and a shape parameter k + 1, denoted as Gamma(k + 1, b), i.e.,

gk+1(x; b) = bk+1

Γ (k + 1)
xke−bx, x > 0,

where Γ (z) = ∫∞
0 xz−1e−xdx is the complete gamma function, and π(k, ρ) =

(1 − ρ)(ρ)k, k = 0, 1, 2, . . . is the probability mass function of a geometric random
variable. LetK be the random variable that has a probability mass function π(k, ρ).
Then, conditional onK = k,X and Y are independent gamma random variates with
the common shape parameter k+1 and rate parameters μ1/(1−ρ) and μ2/(1−ρ),
respectively. This property has been used in the computer algorithm for generating
random variates from the DBVE(μ1, μ2, ρ) distribution (see, for example [11]).

Based on the PDF in Eq. (2), the stress–strength parameter δ = Pr(X < Y) can
be derived as

δ =
∫ ∞

0

∫ ∞

x

∞∑

k=0

(1.0 − ρ)ρkgk+1

(

x,
μ1

1.0 − ρ
)

gk+1

(

y,
μ2

1.0 − ρ
)

dydx

=
∞∑

k=0

(1.0 − ρ)ρk
∫ ∞

0

∫ ∞

x

bk+1
1

Γ (k + 1)
xke−b1x

bk+1
2

Γ (k + 1)
yke−b2ydydx

=
∞∑

k=0

(1.0 − ρ)ρk
∫ ∞

0

bk+1
1

Γ (k + 1)
xke−b1x

∫ ∞

x

bk+1
2

Γ (k + 1)
yke−b2ydydx

=
∞∑

k=0

(1.0 − ρ)ρk
∫ ∞

0

bk+1
1

Γ (k + 1)
xke−b1xe−b2x

k∑

i=0

bi2x
i

Γ (i + 1)
dx

=
∞∑

k=0

(1.0 − ρ)ρk bk+1
1

Γ (k + 1)

k∑

i=0

bi2

Γ (i + 1)

∫ ∞

0
xk+ie−(b1+b2)ydx

=
∞∑

k=0

(1.0 − ρ)ρk bk+1
1

Γ (k + 1)

k∑

i=0

bi2

Γ (i + 1)

Γ (i + k + 1)

(b1 + b2)i+k+1

=
∞∑

k=0

(1.0 − ρ)ρk
Γ (k + 1)

bk+1
1

(b1 + b2)k+1

k∑

i=0

Γ (i + k + 1)

Γ (i + 1)

bi2

(b1 + b2)i

= (1.0 − ρ)b1

b1 + b2

∞∑

k=0

ρkbk1

Γ (k + 1)(b1 + b2)k

k∑

i=0

Γ (i + k + 1)

Γ (i + 1)

bi2

(b1 + b2)i

= (1.0 − ρ)μ1

μ1 + μ2

∞∑

k=0

ρkμk1

Γ (k + 1)(μ1 + μ2)k

k∑

i=0

Γ (i + k + 1)

Γ (i + 1)

μi2

(μ1 + μ2)i
,

(3)
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where

b1 = μ1

1.0 − ρ , b2 = μ2

1.0 − ρ , and
b1

b1 + b2
= μ1

μ1 + μ2
.

For a given random sample of size n, (Xi, Yi), i = 1, 2, · · · , n, from the
DBVE(μ1, μ2, ρ), we denote t

¯i:n
= (Xi:n, Y[i:n]), i = 1, 2, . . . , n, where X1:n ≤

X2:n ≤ · · · ≤ Xn:n are the order statistics of the X sample X1, X2, . . . , Xn
and Y[i:n] is the corresponding value of Y associated with Xi:n. Prior to the
experiment, a prefixed number of pairs to be observed (m < n) and the progressive
censoring scheme (R1, R2, · · · , Rm) are provided. Considering the ordering based
on the X sample, at the j th ordered observed pair (Xj :m:n, Y[j :m:n]), Rj > 0
randomly selected pairs from unobserved pairs are removed from the experiment,
where Xj :m:n < Xj+1:m:n for j = 1, 2, · · · ,m − 1. The observed m pairs,
(Xj :m:n, Y[j :m:n]), j = 1, 2, · · · ,m, are called progressively censored samples of
sizem from n systems under a progressively type II censored life test with censoring
scheme (R1, R2, · · · , Rm). Let D = {(Xj :m:n, Y[j :m:n], Rj ), j = 1, 2, · · · ,m}, be
the observed progressively type II censored sample. The likelihood function based
on the progressively type II censored sample D can be expressed as

L(μ1, μ2, ρ;D) ∝
⎧
⎨

⎩

(
μ1μ2

1 − ρ
)m

exp

⎡

⎣−
m∑

j=1

μ1Xj :m:n + μ2Y[j :m:n]
1 − ρ

⎤

⎦
m∏

j=0

I0

×
[

2(μ1Xj :m:nμ2Y[i:m:n])1/2

1 − ρ

]}

×
m∏

j=1

exp(−Rjμ1Xj :m:n).

(4)

When Rj = 0 for j = 1, 2, · · · ,m− 1 and Rm = n−m, the progressively type II
censored sample reduces to the conventional type II right-censored sample. Based
on the conventional type II right-censored sample, He and Nagaraja [16] developed
the method of moment estimators for the correlation parameter ρ by generalizing
the estimators proposed by Al-Saadi and Young [2] and Balakrishnan and Ng [7].
Lin et al. [25] studied the Bayesian estimation of the parameters μ1, μ2, and ρ based
on a type II right-censored sample.

3 Bayesian Framework

Under the Bayesian framework, we consider that the unknown parameters μ1, μ2,
and ρ are independent, μl , l = 1, 2, has a prior gamma distribution with PDF

gl(μl;αl, λl) = 1

Γ (αl)λ
αl
l

μ
αl−1
l exp

(

−μl
λl

)

, μl > 0, (5)
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where αl > 0 and λl > 0 are hyper-parameters, and ρ has a prior beta distribution
with probability density function,

h(ρ;β1, β2) = Γ (β1 + β2)

Γ (β1)Γ (β2)
ρβ1−1(1 − ρ)β2−1, 0 < ρ ≤ 1, (6)

where β1 > 0 and β2 > 0 are hyper-parameters. It should be mentioned that
Iliopoulos et al. [17] and [25] also used the same independent priors for the
population parameters in the DBEV distribution.

Combining Eqs. (4), (5), and (6), the joint posterior PDF of μ1, μ2, and ρ, based
on a progressively type II right-censored sample, can be expressed as

Π(μ1, μ2, ρ|D) ∝
⎧
⎨

⎩

(
μ1μ2

1 − ρ
)m

exp

⎡

⎣−
m∑

j=1

μ1Xj :m:n + μ2Y[j :m:n]
1 − ρ

⎤

⎦
m∏

j=0

I0

×
[

2(μ1Xj :m:nμ2Y[i:m:n])1/2

1 − ρ

]}
m∏

j=1

exp(−Rjμ1Xj :m:n)

× g1(μ1;α1, λ1)g2(μ2;α2, λ2)h(ρ;β1, β2). (7)

Hence, the marginal posterior PDFs of μ1, μ2, and ρ given the progressively type
II right-censored data D are, respectively,

Π1(μ1|D) =
∫ ∫

Π(μ1, μ2, ρ|D)dμ2dρ, (8)

Π2(μ2|D) =
∫ ∫

Π(μ1, μ2, ρ|D)dμ1dρ, (9)

and

Π3(ρ|D) =
∫ ∫

Π(μ1, μ2, ρ|D)dμ1dμ2. (10)

Additionally, the full conditional posterior PDF of μ1, given μ2 and ρ, is

Π1(μ1|μ2, ρ,D) ∝
(
μ1

1 − ρ
)m

exp

(

−
m∑

i=1

μ1Xi:m:n
1 − ρ

)
m∏

i=1

I0

×
{

2(μ1Xi:m:nμ2Y[i:m:n]ρ)1/2

1 − ρ
}

×
m∏

i=1

exp(−Riμ1Xj :m:n)g1(μ1;α1, λ1), (11)
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the full conditional posterior probability density function of μ2, given μ1 and ρ, is

Π2(μ2|μ1, ρ,D) ∝
(
μ2

1 − ρ
)m

exp

(

−
m∑

i=1

μ2Y[i:m:n]
1 − ρ

)
m∏

i=1

I0

×
{

2(μ1Xi:m:nμ2Y[i:m:n]ρ)1/2

1 − ρ
}

× g2(μ2;α2, λ2), (12)

and the full conditional posterior probability density function of ρ, given μ1 and μ2,
is

Π3(ρ|μ1, μ2,D) ∝
(
μ1μ2

1 − ρ
)m

exp

(

−
m∑

i=1

μ1Xi:m:n + μ2Y[i:m:n]
1 − ρ

)
m∏

i=1

I0

×
{

2(μ1Xi:m:nμ2Y[i:m:n]ρ)1/2

1 − ρ
}

× h(ρ;β1, β2). (13)

All these posterior PDFs for the parameters μ1, μ2, and ρ are not in closed
forms, and numerical integration may not be applied to approximate their values
either. Hence, in order to obtain the Bayesian estimates, Markov-Chain Monte
Carlo (MCMC) method through the application of the Metropolis–Hastings (M–H)
algorithm [15, 27]) via the Gibbs scheme [13] can be utilized to draw the samples
of μ1, μ2, and ρ, respectively.

3.1 A Markov-Chain Monte Carlo (MCMC) Process

The Markov chain {θ(�), � = 1, 2, . . .} of a given parameter, θ , can be constructed
by applying the Metropolis–Hastings (M–H) algorithm stated as follows. Let
q(θ(∗)|θ(�−1)) be a proposed conditional transition probability density function for
θ(∗), given θ(�−1). Given the current state value, θ(�−1), of the parameter θ , θ(∗)
is a candidate value of the parameter θ in the next state that can be generated by
q(θ(∗)|θ(�−1)). Then, θ(∗) is accepted as the value of the next state, θ(�), with a

probability of min
{

1, Π(θ
(∗)|D)q(θ(�)|θ(∗))

Π(θ(�)|D)q(θ(∗)|θ(�))
}

. If θ(∗) is rejected as the value of the

next state, then the next state θ(�) = θ(�−1). In this chapter, we let q1(μ
(b)
1 |μ(a)1 ),

q2(μ
(b)
2 |μ(a)2 ), and q3(ρ

(b)|ρ(a)) be the transition probabilities from μ
(a)
1 to μ(b)1 ,

from μ
(a)
2 to μ(b)2 , and from ρ(a) to ρ(b), respectively. The Markov chain for

{μ(�)1 , μ
(�)
2 , ρ

(�)} can be generated through the following iterative process:
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1. Generate μ(∗)1 from q1(μ
(∗)
1 |μ(�)1 ) and generate u1 from uniform distribution over

(0, 1) interval independently, and set

μ
(�+1)
1 =

⎧
⎨

⎩

μ
(∗)
1 if u1 ≤ min

{

1,
Π1(μ

(∗)
1 |D,μ(�)2 ,ρ

(�))q1(μ
(�)
1 |μ(∗)1 )

Π1(μ
(�)
1 |D,μ(�)2 ,ρ

(�))q1(μ
(∗)
1 |μ(�)1 )

}

,

μ
(�)
1 otherwise.

2. Generate μ(∗)2 from q2(μ
(∗)
2 |μ(�)2 ) and generate u2 from uniform distribution over

(0, 1) interval independently, and set

μ
(�+1)
2 =

⎧
⎨

⎩

μ
(∗)
2 if u2 ≤ min

{

1,
Π2(μ

(∗)
2 |D,μ(�+1),

1 ρ(�))q2(μ
(�)
2 |μ(∗)2 )

Π2(μ
(�)
2 |D,μ(�+1),

1 ρ(�))q2(μ
(∗)
2 |μ(�)2 )

}

,

μ
(�)
2 otherwise.

3. Generate ρ(∗) from q3(ρ
(∗)|ρ(�)) and generate u3 from uniform distribution over

(0, 1) interval independently, and set

ρ(�+1) =
⎧
⎨

⎩

ρ(∗) if u3 ≤ min

{

1,
Π3(ρ

(∗)|D,μ(�+1)
1 ,μ

(�)
2 )q3(ρ

(�)|ρ(∗))
Π3(ρ

(�)|D,μ(�+1),
1 μ

(�+1)
2 )q3(ρ

(∗)|ρ(�))

}

,

ρ(�) otherwise.

Starting with initial values, μ(0)1 , μ(0)2 , and ρ(0), the above iterative process
is running through a huge number of periods (says, N ). The empirical
distributions of μ1, μ2, and ρ could be described by the realizations of μ1,
μ2, and ρ after a burn-in period, Nb. The Bayes estimators of μ1, μ2, and

ρ can be approximated based on the values of
{
μ
(�)
1 |� = Nb + 1, . . . , N

}
,

{
μ
(�)
2 |� = Nb + 1, . . . , N

}
, and

{
ρ(�)|j = Nb + 1, . . . , N

}
, respectively. For

instance, if we consider the squared error loss, then the Bayesian estimates of μ1,

μ2, and ρ are the means of
{
μ
(�)
1 |� = Nb + 1, . . . , N

}
,
{
μ
(�)
2 |� = Nb + 1, . . . , N

}
,

and
{
ρ(�)|� = Nb + 1, . . . , N

}
, respectively; and if we consider the absolute value

of error loss, then the Bayesian estimates of μ1, μ2, and ρ are the medians of the

empirical distributions of
{
μ
(�)
1 |� = Nb + 1, . . . , N

}
,
{
μ
(�)
2 |� = Nb + 1, . . . , N

}
,

and
{
ρ(j)|� = Nb + 1, . . . , N

}
, respectively. It should be mentioned that

Π1(μ1|D,μ2, ρ), Π2(μ2|D,μ1, ρ), and Π3(ρ
(∗)|D,μ1, μ2) can be replaced by

Π(μ1, μ2, ρ;D) during the implementation of Metropolis–Hastings algorithm.
When the MCMC process is implemented based on non-informative priors (i.e.,
gl(μl;αl, λl) ∝ C for l = 1, 2 and h(ρ;β1, β2) ∝ C, where C is a constant),
the MCMC process will approach to the maximum likelihood estimates for the
parameters μ1 and μ2 and ρ (see, for example [5]).
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3.2 Plug-In Bayesian Estimate of δ

Under the Gibbs sampling scheme, the parameters, μ1, μ2 and ρ, are alternately
updated by assuming the other parameters are fixed. The latent variable δ can be
approximated by the MCMC samplers as the empirical distribution. Specifically, at
the j -th Gibbs iteration, after μ(j)1 , μ(j)2 , and ρ(j) are generated by the procedure
described in Sect. 3.1, the realization δ(j) of δ can be calculated by plugging the
parameters μ(j)1 , μ(j)2 , and ρ(j) into its closed-form formula in Eq. (3). If the loss
function is the square error loss function, then the Bayesian estimate of δ is the
sample mean of {δ(�)} after the burn-in period Nb, i.e.,

δ̂ ≈ 1

N −Nb
N∑

j=Nb+1

δ(j).

If the loss function is the absolute value of different loss function, then the Bayesian
estimate of δ is the sample median of the empirical distribution of {δ(�)} after the
burn-in period Nb.

3.3 Mean-Value Monte Carlo Method

Instead of using the double sums of infinite series in Eq. (3), the latent parameter δ
can be viewed as an expectation and approximated by the mean-value Monte Carlo
method (as know as crude Monte Carlo method) using the proportion of (Xi < Yi)
in a large random sample of (Xi, Yi) from the DBVE distribution. Specifically,

δ = E(I{X<Y }) =
∫ ∞

0

∫ y

0

μ1μ2

1 − ρ exp

{

−μ1x + μ2y

1 − ρ
}

I0

{
2(μ1xμ2yρ)

1/2

1 − ρ
}

dxdy,

where I{A} is an indicator function defined as

I{A} =
{

1, if A is true;

0, otherwise.

By the weak law of large number, δ can be approximated by using Monte Carlo
simulation method as

1

N1

N1∑

k=1

I{Xk<Yk} −→ δ = E(I{X<Y }) when N1 → ∞. (14)
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Hence, at the j -th Gibbs iteration, the sample point of δ(j) can be approximated
by the mean of I{Xk<Yk}, k = 1, 2, · · · , N1, where (Xk, Yk) are generated from

DBVE(μ(j)1 , μ
(j)

1 , ρ
(j)). The Bayesian estimate of δ is the mean of empirical

distribution from δ(j) after burn-in period Nb if the loss function is the square
error loss function. If the error loss function is an absolute value of error, then the
Bayesian estimate of δ is the median of the empirical distribution from δ(j) after
burn-in period Nb.

3.4 Importance Sampling Estimation

The quantity of interest, δ = Pr(X < Y), can also be estimated by importance
sampling technique, especially when the true value of δ is small (says, < 0.1) or
stable estimates cannot be obtained based on the closed form of δ and the Monte
Carlo method. For important sampling, suppose we can easily generate a bivariate
sample (X∗

i , Y
∗
i ), i = 1, 2, . . . , n, from a distribution with joint PDF g∗(x, y) with

the same support as the DBVE distribution (i.e., x > 0 and y > 0); then δ can be
expressed as

δ = E(I{X<Y }) =
∫ ∞

0

∫ y

0
f (x, y)dxdy

=
∫ ∞

0

∫ y

0

[
f (x, y)

g∗(x, y)

]

g∗(x, y)dxdy

= E

[

I{X∗<Y ∗}
f (X∗, Y ∗)
g∗(X∗, Y ∗)

]

.

Hence, δ can be approximated by

1

N2

N2∑

k=1

I{x∗
k <y

∗
k }
f (x∗

k , y
∗
k )

g∗(x∗
k , y

∗
k )

−→ δ = E
[

I{X∗<Y ∗}
f (X∗, Y ∗)
g∗(X∗, Y ∗)

]

when N2 → ∞. (15)

A possible choice of the distribution g∗(x, y) for the purpose of estimating δ
for the DBVE(μ1, μ2, ρ) distribution is g∗(x, y) = g(x)g(y), where g(x) =
μ1 exp(−μ1x), x > 0, and g(y) = μ2 exp(−μ2y), y > 0.

4 Monte Carlo Simulation Study

In this section, a Monte Carlo simulation study is conducted to investigate the
performance of the proposed estimation procedures for the parameters, μ1, μ2,
ρ, and δ based on progressively type II censored sample D from DBVE(μ1, μ2,



Bayesian Estimation of Stress–Strength Parameter for Moran–Downton. . . 27

ρ) distribution. We generate the progressively type II censored samples from the
DBVE(μ1, μ2, ρ) distribution with different settings of (μ1, μ2, ρ), sample sizes
(n,m) = (20, 5), (30, 15), (50, 20), (50, 30), and different censoring schemes. Two
types of prior distributions that include non-informative and informative priors are
used. The informative priors used for the study have prior distributions to be gamma
distributions for μ1 and μ2 and the prior distribution for ρ to be beta distribution
with parameters not equal to 1. Moreover, informative priors have been selected to
have a mean equal to the corresponding parameters and variance equal to 0.5. The
non-informative prior distributions used for the study have all priors proportional to
constant (Tables 1 and 2).

For given m, μ1, μ2, ρ, and progressive type II censoring scheme
(R1, R2, · · · , Rm), a progressively type II censored sample D can be generated
from the following algorithm:

Step 1. Generate an ordered random sample {(xj :n, y[j :n])}nj=1 from the target
DBVE(μ1, μ2, ρ) distribution through Steps 2 and 3.

Step 2. Generate (xj , y[j ]) by the following steps:

i. Generate k from geometric distribution with probability mass function
π(k, ρ) = (1 − ρ)(ρ)k, k = 0, 1, 2, . . ..

ii. Generate xj from Gamma
(
k + 1, 1−ρ

μ1

)
.

iii. Generate y[j ] Gamma
(
k + 1, 1−ρ

μ2

)
.

Table 1 The observed progressively type II censored sample for the numerical example

X Y X Y X Y X Y X Y X Y

0.75 0.75 0.85 0.85 1.38 1.38 1.65 1.65 2.05 3.98 2.58 2.58

2.98 2.98 3.43 3.43 3.88 6.43 4.22 9.48 5.52 11.27 5.78 25.98

6.42 15.08 6.42 6.42 6.85 34.58 7.05 7.05 7.23 9.68 7.78 7.78

8.98 8.98 9.05 9.05 10.15 10.15 10.35 10.35 10.57 14.28 10.85 38.07

13.8 49.75 14.58 14.58 14.58 20.57 15.53 15.53

Table 2 Posterior means and 95% credible sets of the model parameters and the stress–strength
parameter δ obtained by the plug-in method (SP), the mean-value Monte Carlo method (MC), and
importance sampling (IM)

Parameter Posterior mean 95% credible set

μ1 0.0961 (0.0635, 0.1353)

μ2 0.0594 (0.0386, 0.0847)

ρ 0.8391 (0.7054, 0.9254)

δ̂SP 0.7458 (0.6201, 0.8353)

δ̂MC 0.7603 (0.5900, 0.9000)

δ̂IM 0.7604 (0.5144, 1.0000)
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Step 3. Set j = j + 1, if j ≤ n, and then go to Step 2; otherwise, move to Step 4
to obtain the progressively type II censored sample.

Step 4. Put (xj , y[j ]), j = 1, 2, 3, · · · , n in ascending order according to xj , j =
1, 2, 3, · · · , n. At the j -th failure, xj :m:n, δj (j = 1, 2, · · · ,m) survival
pairs are randomly removed. Then, (xj :m:n, y[j :m:n]), j = 1, 2, · · · ,m, is
the progressively type II censored sample:

Given a simulated progressively type II censored sample, N = 15,000 MCMC for
μ1, μ2, ρ, and δ are generated with burn-in period Nb = 5000. For the mean-
value Monte Carlo method and importance sampling method described in Sects. 3.3
and 3.4, respectively, N1 = N2 = 200 samples are used to obtain an estimate of δ.
The Monte Carlo simulation is run for 1000 times to obtain 1000 Bayesian estimates
forμ1,μ2, ρ, and δ. The mean squared errors (MSE) and biases are calculated of the
1000 Bayesian estimates for μ1, μ2, ρ, and δ are computed. The simulation results
are presented in Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, and
A.12 in Appendix. From Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10,
A.11, and A.12, generally, informative prior could provide more accurate estimates
than non-informative prior for a given simulation setting. However, when ρ is close
to 0 or 1, informative prior does not necessarily provide more accurate estimates
than the non-informative prior for a given simulation setting. When the number of
test items increases, the more accurate the estimates provided by non-informative
and information priors.

5 Numerical Example

In this section, a real data set obtained from the matches of the American Football
League (National Football League) on three consecutive weekends in 1986. The data
set was analyzed by Csorgo and Welsch [10] using the Marshall–Olkin bivariate
exponential model. The sample size is n = 42. In the bivariate data set (X, Y ),
the variable X represents the game time to the first points scored by kicking
the ball between goal posts and Y represents the game time by moving the ball
into the end zone. For illustrative purpose, we obtain a progressively type II
censored sample based on this data set with m = 28 and progressive censoring
scheme (R1, R2, · · · , R28) = (1, 0, 1, 0, 1, 0, · · · , 1, 0). The smallest observation,
x1:28:42 = 0.75, was the first observation. With R1 = 1, an observation was
randomly removed. The smallest observation of the rest test items, x2:28:42 = 0.85,
was observed. With δ2 = 0, no test item was removed. After x3:28:42 = 1.38
was observed, an observation was randomly removed since R3 = 1. The process
continued until the last observation x28:28:42 = 15.53. The value R28 = 0 indicates
no observation was left. The corresponding values y[i:28:42], i = 1, 2, · · · , 28
were collected accordingly. The observed progressively type II censored sample
is presented in Table 1.



Bayesian Estimation of Stress–Strength Parameter for Moran–Downton. . . 29

MCMC of μ1

0.00

0.05

0.10

0.15

0.20

0 2500 5000 7500 10000
number of iterations

m
u1

chain

1

2

3

MCMC of μ2

0.00

0.05

0.10

0.15

0.20

0 2500 5000 7500 10000
number of iterations

m
u2

chain

1

2

3

MCMC of ρ

0.0

0.5

1.0

0 2500 5000 7500 10000
number of iterations

rh
o

chain

1

2

3

Fig. 1 The trace plots of MCMC samplers for the parameters μ1, μ2, and ρ

We use three different sets of initial values of μ1, μ2, and ρ for the Bayesian
computation in order to obtain the MCMC samplers of the three parameters in the
DBVE distribution:

• Chain 1: μ(0)1 = 0.5, μ(0)2 = 0.5, ρ(0) = 0.5.

• Chain 2: μ(0)1 = 0.05, μ(0)2 = 0.05, ρ(0) = 0.15.

• Chain 3: μ(0)1 = 0.15, μ(0)2 = 0.05, ρ(0) = 0.95.

The trace plots of MCMC samplers for the parameters μ1, μ2, and ρ are presented
in Fig. 1. The trace plots in Fig. 1 look stationary after the burn-in period around
2000 iterations.
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Using the proposed MCMC method with non-informative priors: gi(μi;αi, λi) ∝
1, i = 1, 2 and h(ρ;β1, β2) = Beta(1, 1), the estimates and their corresponding
95% credible sets of the model parameters and the stress–strength parameter δ
obtained by the plug-in method (SP), the mean-value Monte Carlo method (MC),
and importance sampling (IM) are summarized in Table 2. A 95% credible set is
constructed by the 2.5% and 97.5% quantiles of the corresponding MCMC samplers
of the parameter after the burn-in period.

6 Concluding Remarks

In this chapter, the Bayesian analysis of the three-parameter Moran–Downton
bivariate exponential distribution under progressive type II censoring is considered.
The estimation of the stress–strength parameter δ = Pr(X < Y) using the
MCMC method is proposed. At each Gibbs sampling iteration, the stress–strength
parameter δ is treated as a latent variable and the Markov-chain samplers are
constructed by the plug-in formula, the mean-value Monte Carlo method, and
importance sampling method. Based on the MCMC samplers, the Bayesian point
estimates and the credible sets of the model parameters and the stress–strength
parameter can be obtained. We have shown by using a Monte Carlo simulation
study that the proposed Bayesian methods are effective and provide reasonable
estimation results. We also illustrate the proposed methods by analyzing a bivariate
data set.
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Table A.2 Estimated MSEs and biases (in parenthesis) of the Bayes estimators for δ with
non-informative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) =
(0.6, 0.6, 0.2) and true δ = 0.5

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0321(0.0551) 0.0353(0.0644) 0.0352(0.0643)

2 (15,0,0,0,0) 0.0253(0.0008) 0.0260(0.0030) 0.0260(0.0030)

3 (3,3,3,3,3) 0.0281(0.0446) 0.0307(0.0540) 0.0307(0.0540)

4 15 (0,. . . ,0,15) 0.0145(0.0488) 0.0151(0.0506) 0.0151(0.0505)

5 (15,0,. . . ,0) 0.0092(0.0067) 0.0092(0.0068) 0.0092(0.0068)

6 (3,0,0,. . . ,3,0,0) 0.0105(0.0158) 0.0105(0.0162) 0.0105(0.0162)

7 20 (0,. . . ,0,30) 0.0146(0.0580) 0.0154(0.0599) 0.0153(0.0598)

8 (30,0,. . . ,0) 0.0071(−0.0012) 0.0071(−0.0012) 0.0071(−0.0012)

9 (3,0,3,0,. . . ,3,0) 0.0092(0.0259) 0.0093(0.0262) 0.0093(0.0262)

10 30 (0,. . . ,0,20) 0.0079(0.0362) 0.0081(0.0367) 0.0081(0.0367)

11 (20,0,. . . ,0) 0.0045(0.0010) 0.0045(0.0010) 0.0045(0.0010)

12 (2,0,0,. . . ,2,0,0) 0.0055(0.0124) 0.0055(0.0124) 0.0055(0.0124)

Table A.3 Estimated MSEs and biases (in parenthesis) for the Bayes estimators for δ with
non-informative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) =
(0.6, 0.6, 0.8) and true δ = 0.5

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0377(−0.1272) 0.0400(−0.1056) 0.0398(−0.1059)

2 (15,0,0,0,0) 0.0168(−0.0325) 0.0188(−0.0110) 0.0188(−0.0111)

3 (3,3,3,3,3) 0.0359(−0.1213) 0.0374(−0.1018) 0.0373(−0.1019)

4 15 (0,. . . ,0,15) 0.0184(−0.0899) 0.01932(−0.0760) 0.01934(−0.0759)

5 (15,0,. . . ,0) 0.0064(−0.0118) 0.0068(0.0005) 0.0068(0.0005)

6 (3,0,0,. . . ,3,0,0) 0.0090(0.0310) 0.0099(−0.0174) 0.0099(−0.0174)

7 20 (0,. . . ,0,30) 0.0229(−0.1134) 0.0238(−0.1018) 0.0238(−0.1018)

8 (30,0,. . . ,0) 0.0055(−0.0136) 0.0058(−0.0035) 0.0058(−0.0034)

9 (3,0,3,0,. . . ,3,0) 0.0102(−0.0480) 0.0111(−0.0357) 0.0111(−0.0357)

10 30 (0,. . . ,0,20) 0.0087(−0.0511) 0.0092(−0.0407) 0.0092(−0.0408)

11 (20,0,. . . ,0) 0.0038(−0.0090) 0.0039(0.0006) 0.0039(0.0005)

12 (2,0,0,. . . ,2,0,0) 0.0042(−0.0160) 0.0046(−0.0056) 0.0046(−0.0056)
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Table A.5 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with
non-informative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) =
(0.6, 0.3, 0.2) and true δ = 0.6838

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0217(0.0225) 0.0242(0.0345) 0.0241(0.0344)

2 (15,0,0,0,0) 0.0194(−0.0078) 0.0200(−0.0040) 0.0200(−0.0040)

3 (3,3,3,3,3) 0.0210(0.0425) 0.0247(0.0589) 0.0247(0.0589)

4 15 (0,. . . ,0,15) 0.0095(0.0425) 0.0103(0.0449) 0.0102(0.0449)

5 (15,0,. . . ,0) 0.0066(0.0063) 0.0067(0.0065) 0.0067(0.0065)

6 (3,0,0,. . . ,3,0,0) 0.0080(0.0203) 0.0082(0.0213) 0.0082(0.0213)

7 20 (0,. . . ,0,30) 0.0093(0.0508) 0.0099(0.0527) 0.0099(0.0526)

8 (30,0,. . . ,0) 0.0050(0.0038) 0.0050(0.0039) 0.0050(0.0039)

9 (3,0,3,0,. . . ,3,0) 0.0070(0.0294) 0.0071(0.0299) 0.0071(0.0299)

10 30 (0,. . . ,0,20) 0.0057(0.0321) 0.0058(0.0325) 0.0058(0.0325)

11 (20,0,0,..,0) 0.0033(0.0016) 0.0033(0.0016) 0.0033(0.00162)

12 (2,0,0,. . . ,2,0,0) 0.0045(0.0144) 0.0045(0.0145) 0.0450(0.0145)

Table A.6 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with
non-informative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) =
(0.6, 0.3, 0.8) and true δ = 0.8101

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.1088(−0.2943) 0.1038(−0.2781) 0.1038(−0.2782)

2 (15,0,0,0,0) 0.0248(−0.1186) 0.0197(−0.0817) 0.0197(−0.0817)

3 (3,3,3,3,3) 0.0718(−0.2262) 0.0622(−0.1849) 0.0622(−0.1853)

4 15 (0,. . . ,0,15) 0.0368(−0.1657) 0.0347(−0.1465) 0.0347(−0.1465)

5 (15,0,. . . ,0) 0.0066(−0.0604) 0.0054(−0.0370) 0.0054(−0.037)

6 (3,0,0,. . . ,3,0,0) 0.0135(−0.0894) 0.0113(−0.0589) 0.0113(−0.0589)

7 20 (0,. . . ,0,30) 0.0509(−0.1986) 0.0488(−0.1813) 0.0488(−0.1813)

8 (30,0,. . . ,0) 0.0047(−0.0497) 0.0039(−0.0255) 0.0039(−0.0255)

9 (3,0,3,0,. . . ,3,0) 0.0144(−0.0935) 0.0127(−0.0656) 0.0127(−0.0656)

10 30 (0,. . . ,0,20) 0.0138(−0.0898) 0.0130(−0.0680) 0.0130(−0.0680)

11 (20,0,. . . ,0) 0.0027(−0.0370) 0.0022(−0.0201) 0.0022(−0.0201)

12 (2,0,0,. . . ,2,0,0) 0.0049(−0.0511) 0.0043(−0.0279) 0.0043(−0.0279)
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Table A.8 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with infor-
mative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) = (0.6, 0.6, 0.2)
and true δ = 0.5

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0172(0.0171) 0.0172(−0.0727) 0.0172(0.0172)

2 (15,0,0,0,0) 0.0165(0.0002) 0.0165(0.0002) 0.0165(0.0002)

3 (3,3,3,3,3) 0.0192(0.0073) 0.0193(0.0074) 0.0193(0.0074)

4 15 (0,. . . ,0,15) 0.0093(−0.0291) 0.0093(−0.0291) 0.0093(−0.0291)

5 (15,0,. . . ,0) 0.0079(−0.0253) 0.0079(−0.0253) 0.0079(−0.0253)

6 (3,0,0,. . . ,3,0,0) 0.0085(0.0031) 0.0085(0.0074) 0.0085(0.0031)

7 20 (0,. . . ,0,30) 0.0361(0.1746) 0.0370(0.1764) 0.0370(0.1765)

8 (30,0,. . . ,0) 0.0126(0.0914) 0.0126(0.0914) 0.0126(0.0914)

9 (3,0,3,0,. . . ,3,0) 0.0206(0.1250) 0.0207(0.1252) 0.0207(0.1252)

10 30 (0,. . . ,0,20) 0.0048(−0.0150) 0.0048(−0.0150) 0.0048(−0.0150)

11 (20,0,0,..,0) 0.0044(−0.0145) 0.0044(−0.0145) 0.0044(−0.0145)

12 (2,0,0,. . . ,2,0,0) 0.0044(−0.0138) 0.0044(−0.0138) 0.0044(−0.0138)

Table A.9 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with infor-
mative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) = (0.6, 0.6, 0.8)
and true δ = 0.5

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0243(−0.0313) 0.0366(0.0462) 0.0361(0.0453)

2 (15,0,0,0,0) 0.0186(−0.0417) 0.0220(0.0008) 0.0219(0.0008)

3 (3,3,3,3,3) 0.0246(−0.0366) 0.0337(0.0269) 0.0335(0.0266)

4 15 (0,. . . ,0,15) 0.0125(−0.0291) 0.0159(0.0009) 0.0159(0.0009)

5 (15,0,. . . ,0) 0.0072(−0.0225) 0.0075(−0.0037) 0.0075(−0.0037)

6 (3,0,0,. . . ,3,0,0) 0.0097(−0.0291) 0.0109(−0.0079) 0.0109(−0.0079)

7 20 (0,. . . ,0,30) 0.0107(−0.0211) 0.0152(0.0107) 0.0152(0.0107)

8 (30,0,. . . ,0) 0.0061(−0.0247) 0.0061(−0.0088) 0.0061(−0.0088)

9 (3,0,3,0,. . . ,3,0) 0.0102(−0.0396) 0.0120(−0.0184) 0.0120(−0.0184)

10 30 (0,. . . ,0,20) 0.0084(−0.0387) 0.0096(−0.0224) 0.0096(−0.0225)

11 (20,0,. . . ,0) 0.0044(−0.0232) 0.0044(−0.0110) 0.0044(−0.0110)

12 (2,0,0,. . . ,2,0,0) 0.0053(−0.0275) 0.0056(−0.0136) 0.0056(−0.0136)
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Table A.11 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with infor-
mative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) = (0.6, 0.3, 0.2)
and true δ = 0.6838

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0381(−0.1347) 0.0381(−0.1347) 0.0381(−0.1347)

2 (15,0,0,0,0) 0.0302(−0.1152) 0.0302(−0.1151) 0.0302(−0.1151)

3 (3,3,3,3,3) 0.0326(−0.1226) 0.0326(−0.1226) 0.0326(−0.1226)

4 15 (0,. . . ,0,15) 0.0064(−0.0038) 0.0064(−0.0038) 0.0064(−0.0038)

5 (15,0,. . . ,0) 0.0057(−0.0128) 0.0057(−0.0127) 0.0057(−0.0127)

6 (3,0,0,. . . ,3,0,0) 0.0060(−0.0044) 0.0060(−0.0044) 0.0060(−0.0043)

7 20 (0,. . . ,0,30) 0.0050(0.0013) 0.0050(0.0014) 0.0050(0.0014)

8 (30,0,. . . ,0) 0.0042(−0.0050) 0.0042(−0.0050) 0.0042(−0.0050)

9 (3,0,3,0,. . . ,3,0) 0.0054(−0.0033) 0.0054(−0.0033) 0.0054(−0.0033)

10 30 (0,. . . ,0,20) 0.0043(−0.0226) 0.0043(−0.0226) 0.0043(−0.0226)

11 (20,0,0,..,0) 0.0036(−0.0212) 0.0036(−0.0212) 0.0036(−0.0212)

12 (2,0,0,. . . ,2,0,0) 0.0045(−0.0234) 0.0045(−0.0234) 0.0045(−0.0234)

Table A.12 Estimated MSEs and biases (in parenthesis) for the Bayes estimators of δ with infor-
mative prior distributions based on Monte Carlo simulation when (μ1, μ2, ρ) = (0.6, 0.3, 0.8)
and true δ = 0.8101

m Scheme
Plug-in Mean-value MC Important sampling

MSE (bias) MSE (bias) MSE (bias)

1 5 (0,0,0,0,15) 0.0436(−0.1602) 0.0260(0.0664) 0.0260(−0.0671)

2 (15,0,0,0,0) 0.0206(−0.1051) 0.0117(−0.0303) 0.0117(−0.0305)

3 (3,3,3,3,3) 0.0350(−0.1389) 0.0226(−0.0445) 0.0225(−0.0528)

4 15 (0,. . . ,0,15) 0.0143(−0.0878) 0.0117(−0.045) 0.0117(−0.0453)

5 (15,0,. . . ,0) 0.0056(−0.0521) 0.0035(−0.0135) 0.0036(−0.0135)

6 (3,0,0,. . . ,3,0,0) 0.0075(−0.0617) 0.0057(−0.0209) 0.0057(−0.0209)

7 20 (0,. . . ,0,30) 0.02357(−0.1262) 0.0201(−0.0917) 0.0201(−0.0917)

8 (30,0,. . . ,0) 0.0047(−0.0498) 0.0032(−0.0170) 0.0032(−0.0170)

9 (3,0,3,0,. . . ,3,0) 0.0107(−0.0800) 0.0088(−0.0480) 0.0088(−0.0480)

10 30 (0,. . . ,0,20) 0.0087(−0.0701) 0.0076(−0.0415) 0.0076(−0.0415)

11 (20,0,. . . ,0) 0.0029(−0.0395) 0.0021(−0.0123) 0.0021(−0.123)

12 (2,0,0,. . . ,2,0,0) 0.0042(−0.0471) 0.0036(−0.0202) 0.0036(−0.0202)
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Bayesian Computation in a
Birnbaum–Saunders Reliability Model
with Applications to Fatigue Data

Víctor Leiva , Fabrizio Ruggeri , and Henry Laniado

Abstract The Birnbaum–Saunders distribution has been widely considered and
applied to reliability studies. This chapter uses such a distribution to analyze
the effect of two treatments and evaluate reliability. Bayesian computation is
considered for inferring on the parameters of the Birnbaum–Saunders reliability
model analyzed in this work. The methodology is applied to real fatigue data with
the aid of the R software.

1 Introduction

Birnbaum and Saunders [9] introduced a distribution that later took their names and
nowadays keeps attracting a lot of interest in many fields; see the recent works in [5,
6, 14, 23] for thorough reviews. The Birnbaum–Saunders distribution is widely used
to model fatigue life. Its origin stems from considering fatigue in materials provoked
by vibrations in commercial aircrafts. In particular, it describes the time spent until
the extension of a crack exceeds a threshold producing the failure of materials. These
materials are exposed to fatigue produced by cumulative damage generated from
cyclical stress and tension; see [24]. The Birnbaum–Saunders distribution has been
largely applied to reliability studies; see [3, 7, 8, 19, 25, 32, 33, 37, 38, 40, 43, 46, 50].
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Many of the previous works have been analysis of reliability with censored
and fatigue data, where other well-known distributions as gamma and Weibull
are also used to model the lifetime of system devices. Note that the comparisons
between coherent systems are useful for deciding what is the optimal configuration
of their components in some stochastic sense. In particular, the analysis of the
reliability of parallel and series systems has great practical interest, since these
kinds of systems are often implemented in industrial processes, manufacturing
and safety. For example, in [22], the authors considered combinations of parallel
and series systems with components and reserves following both different dis-
tributions. The main result of that study was obtaining the best configuration of
new and used components in a combined parallel and series system, in order to
reach an optimal reliability. Later the result was improved in [51] by imposing
a stronger stochastic criterion. However, despite its usefulness, the Birnbaum–
Saunders distribution applied to the coherent system reliability as parallel or series
systems is an aspect that it has not been extensively examined. Nevertheless,
a recent work [2] discussed stochastic comparisons of lifetimes of parallel and
series systems with just two components having generalized Birnbaum–Saunders
distributions.

Although the main applications of the Birnbaum–Saunders distribution lie
naturally in engineering, it has also been successfully applied to several other
fields of knowledge such as agriculture, air contamination, bioengineering, business,
economics, environment, finance, food and textile industries, forestry, human and
tree mortality, informatics, insurance, inventory management, medicine, neurology,
nutrition, pharmacology, psychology, queuing theory, toxicology, water quality, and
wind energy; see details in [23]. For a compendium with diverse tools for statistical
quality control based on the Birnbaum–Saunders distribution, see [27, 29].

The Birnbaum–Saunders distribution possesses interesting properties and is
useful for modeling data that take values greater than zero. It is unimodal, has
asymmetry to the right (positively skewed), and its shape and scale are addressed
by its two parameters. The Birnbaum–Saunders failure rate has an upside-down
bathtub shape, but, depending on the values of its parameters, other shapes can
also be obtained; see [4]. In addition, the Birnbaum–Saunders distribution is closely
related to the normal distribution. Specifically, a Birnbaum–Saunders distributed
random variable is considered as a transformation of a standard normal distributed
random variable; see [20, pp. 651–663] and [23]. The skewed shape of its density
function permits us to state its median as a more appropriate centrality indicator
than its mean. It is worth mentioning that its scale parameter is also the median
of the model, similarly, although in an asymmetrical framework, to the Gaussian
distribution where one of the parameters coincide with its mean and median.
Other standard life distributions often employed in parametric reliability, such as
the gamma, inverse Gaussian, log-normal, and Weibull models, do not share the
relation between one parameter and mean/median, at least in their most used forms.
Furthermore, the correspondence between one parameter and the median will be
exploited in comparing the effects of two treatments through the median in the
present work.
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Bayesian methods for the Birnbaum–Saunders distribution have been considered
by a number of authors. By using Jeffreys and reference priors, Bayesian inference
was performed in [1] for the parameters of the Birnbaum–Saunders distribution. A
similar approach, also relying on Gibbs sampling, was considered in [54]. Markov
Chain Monte Carlo methods were also used in [47] to infer about Birnbaum–
Saunders log-linear models, whereas Birnbaum–Saunders non-linear regressions
were considered in [16]. Birnbaum–Saunders and Weibull-accelerated life models
were compared in [48], whereas Birnbaum–Saunders–Student-t models with cen-
sored data were analyzed in [10]. Some recent works on Bayesian methods for
Birnbaum–Saunders models are due to [26, 36, 45, 52].

The study of the mechanical properties of different types of materials is very
important to assess reliability of devices and structures. Quite a number of works
are available in the literature on this topic. Crack propagation in train wheels, due
to load, was studied in [30, 41], whereas reliability of wood plastic composites
in extrusion processes was analyzed in [13]. Reliability of mortar projectiles and
multi-body mechanisms based on dynamic properties were studied, respectively, in
[12, 53]. Nano-materials have become more and more relevant in many applications
and, simultaneously, there has been an increased interest on their mechanical
performance. As an example, the mechanical properties of a polymeric bone
cement when incorporating different types of mesoporous silica nano-particles
were compared in [26]. Other factors such as creep, fatigue, fracture, and surface,
along with interface, phase, and thermal stabilities, are considered to increase the
reliability of modern materials; see [39]. In most of those applications, the Weibull
distribution has been used, but the Birnbaum–Saunders distribution has proved to
be very effective, as shown in [26].

Stemming from the successful application in [26], we are now considering a
different case study to show the efficacy of the approach therein, based on combining
Bayesian methods and the Birnbaum–Saunders distribution to analysis of reliability.
In the current study, we are going to consider the fatigue life of aluminum pieces
expressed by cycles until the failure occurs. We are in a completely different setup
with respect to the case study in [26]. It is not just the difference in material (bone
cement and aluminum) but also the physical experiment (insertion of nano-particles
and cycles) and the mathematical nature of the quantity of interest (continuous
[hardness] and integer [cycles]). The common aspects are the evaluation of the
effect of two treatments and the Bayesian methods, although elicitation of priors
is different between these two works.

In addition to this introduction, the rest of this chapter is organized as fol-
lows. Section 2 provides background on the Birnbaum–Saunders distribution and
how it arises mathematically; see [23, pp. 1–11] for more details. Then, in
Sect. 3, we briefly present the results in [26] about the Bayesian comparison of
two treatments using the Birnbaum–Saunders distribution. Section 4 applies the
methodology to fatigue data sets under two treatments by using the R software;
see www.R-project.org and [42]. Finally, Sect. 5 gives some discussion, conclu-
sions, and ideas for future work on this topic.

www.R-project.org
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2 The Birnbaum–Saunders Distribution

In this section, we present background on the Birnbaum–Saunders distribution and
properties, features, and main moments.

If a random variable T follows the Birnbaum–Saunders distribution with shape
(α > 0) and scale (β > 0) parameters, then the notation T ∼ BS(α, β) is used. The
density function of T is expressed as

fT (t;α, β) = φ(A(t;α, β))a(t;α, β), t > 0, (1)

where φ is the standard normal density function and a(t;α, β), the derivative of
A(t;α, β), is given by

a(t;α, β) = 1

2αβ

((
β

t

) 1
2 +

(
β

t

) 3
2
)

.

The Birnbaum–Saunders cumulative distribution function can be obtained from the
density function defined in (1) and expressed as

FT (t;α, β) = Φ(A(t;α, β)), t > 0, (2)

where Φ is a standard normal cumulative distribution function and

A(t;α, β) = 1

α

((
t

β

) 1
2 −

(
β

t

) 1
2
)

.

Let T ∼ BS(α, β). Then, we have the following properties, features as well as
the mean, variance, and coefficients of variation (CV), skewness (CS), and kurtosis
(CK):

(A1) k T ∼ BS(α, k β), with k > 0.
(A2) 1/T ∼ BS(α, 1/β).
(A3) V 2 = (T /β + β/T − 2)/α2 ∼ χ2(1).

(A4) E(T ) = β
(

1 + α2

2

)

.

(A5) Var(T ) = β2α2
(

1 + 5α2

4

)

.

(A6) CV(T ) = α
(
5α2 + 4

)1/2

(2 + α2)
.

(A7) CS(T ) = 4α(11α2 + 6)

(5α2 + 4)3/2
.

(A8) CK(T ) = 3 + 6α2(40 + 93α2)

(4 + 5α2)2
.
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(A9) For Z ∼ N(0, 1), we have

T = β
⎛

⎝α Z

2
+
((
α Z

2

)2

+ 1

)1/2
⎞

⎠

2

.

(A10) From the transformation in (A9) and its monotonicity, it follows

Z = 1

α
ξ

(
T

β

)

,

where ξ(y) = y1/2 − y−1/2 = 2 sinh(log(y1/2)), for y > 0.

Remark 2.1 From (A1), note that the Birnbaum–Saunders distribution belongs to
the scale family, which is parametrized by a positive scale parameter. Then, for any
random variable T whose distribution belongs to such a family, the distribution of
kT , with k > 0, also belongs to this family.

Remark 2.2 From (A2), note that the Birnbaum–Saunders distribution belongs to
the closed under reciprocation family. For any random variable T whose distribution
belongs to such a family, the distribution of 1/T also belongs to this family.

Properties (A1)–(A10) are useful for different purposes. From (A9), note that
a random variable with Birnbaum–Saunders distribution is a transformation of
another random variable with N(0, 1) distribution. This property allows us to easily
obtain the quantile function of the Birnbaum–Saunders distribution as

t (q;α, β) = F−1(q;α, β) = β
⎛

⎝α z(q)

2
+
((
α z(q)

2

)2

+ 1

)1/2
⎞

⎠

2

, 0 < q < 1,

(3)
where z(q) is the N(0, 1) quantile function (or q × 100th quantile) and F−1 is the
inverse function of F given in (2). From (3), note that t (0.5) = β, that is, β is also
the median or 50th percentile of the Birnbaum–Saunders distribution.

Maximum likelihood estimators for the Birnbaum–Saunders model parameters
are unique and can be easily obtained, solving numerically the corresponding
estimating equations. For details about this maximum likelihood estimation, see
[8, 23].

3 Bayesian Computation and Reliability Model

In this section, we provide a brief illustration of the Bayesian model presented
in [26], to which we refer for a thorough illustration. The Bayesian approach
performs inference on a parameter of interest, θθθ , through the Bayes theorem. This
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allows us to combine prior opinion (expressed through a prior distribution on θθθ )
and experimental evidence (provided by the likelihood function) to get an updated
opinion (given by the posterior distribution), which can be used to estimate the
parameter, make decisions, and forecast.

In the case of the Birnbaum–Saunders distribution, the parameter of interest is
θθθ = (α, β). Prior distributions are chosen for both parameters. The choice of
a functional form and the elicitation of its parameters based on experts’ opinions
is a complex task, and we prefer to provide just few explanatory details. The
functional form should have properties corresponding to the possible behavior of the
parameter, for example, non-negativity, unimodality, and symmetry. The parameters
should be chosen to match experts’ opinions about, say, mean or median, the
parameter. In the case of the parameter α, an inverse gamma distribution is chosen
in [26] with parameters a and b, denoted by IG(a, b), as the prior distribution of α2.
Observe that although the distribution of α2 is considered, α is used because it is the
Birnbaum–Saunders distribution parameter. Of course, α is the square root of a value
sampled from the distribution of α2. Note that the inverse gamma distribution, like
the gamma, is very flexible besides being defined only for positive values and being
unimodal. The informed choice of the parameters is typically done by finding the
values matching prior opinions on mean, median, and quantiles. Sometimes, diffuse
(or non-informative) priors are chosen in the absence of informed opinions: in this
case the parameters are chosen to have a large variance. A gamma prior distribution
would fit well also for β.

A posteriori, it is not possible to get closed forms for the distributions of α and
β, but it is possible to get a sample from the posterior distribution, applying a Gibbs
sampling method with a Metropolis–Hastings step. This Markov Chain Monte Carlo
method [17] allows us to generate a sample from the posterior distributions of α and
β recursively, actually drawing from the posterior conditional distributions of the
parameters. In fact, at each step, a value is drawn from the distribution of α given
β and the data, as well as one from the distribution of β given α and the data. In
the former case, the simulation is easy since the posterior conditional distribution is
still inverse gamma, whereas the latter conditional posterior distribution is known
apart from a constant. In such case, a value of β is generated at each step from a
proposal distribution and accepted or rejected according to a probability based on
both proposal and conditional posterior distributions. Parameters are then estimated
taking the sample mean of the generated values. It is also possible to construct
100(1−γ )% credible intervals using the range spanned by the values sampled from
the Markov Chain Monte Carlo method, when removing the smallest and largest
(γ /2) × N values. Mathematical details of the procedures described above can be
found in [26].

Given two treatments, T1 and T2, they can be compared considering either

P(T1 > T2) (4)

or their medians. The comparison is quite natural in the latter case when using the
Birnbaum–Saunders distribution. In fact, as mentioned, its parameter β equals the
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median of the distribution and the medians of the two distributions are supposed to
differ by a term δ. The comparison then reduces to checking if δ is zero or not.

The expression defined in (4) is what we name the Birnbaum–Saunders reliability
model with the Bayesian computation carried out as indicated above in the presented
section. Mathematical details on what has been illustrated here can be found in [26].

4 Application to Fatigue Data

We considered two real fatigue life data sets detailed in Table 1 and introduced in [8]
to show the potential applications of the methodology for the Bayesian computation
in a Birnbaum–Saunders reliability model.

The data upon analysis are related to fatigue life (T ) of 6061-T6 aluminum pieces
expressed by cycles (×10−3) until the failure occurs. These pieces were cut parallel
to the direction of rolling and oscillating at 18 cycles per seconds at two maximum
stress levels corresponding to:

(a) X1 = 2.1 psi (×104).
(b) X2 = 3.1 psi (×104).

Table 1 Fatigue life (in cycles ×10−3) of aluminum pieces submitted to the maximum indicated
stress level provided in [8]

2.1 ×104 psi 3.1 ×104 psi

370 706 716 746 785 70 90 96 97 99

797 844 855 858 886 100 103 104 104 105

886 930 960 988 999 107 108 108 108 109

1000 1010 1016 1018 1020 109 112 112 113 114

1055 1085 1102 1102 1108 114 114 116 119 120

1115 1120 1134 1140 1199 120 120 121 121 123

1200 1200 1203 1222 1235 124 124 124 124 124

1238 1252 1258 1262 1269 128 128 129 129 130

1270 1290 1293 1300 1310 130 130 131 131 131

1313 1315 1330 1355 1390 131 131 132 132 132

1416 1419 1420 1420 1450 133 134 134 134 134

1452 1475 1478 1481 1485 134 136 136 137 138

1502 1505 1513 1522 1522 138 138 139 139 141

1530 1540 1560 1567 1578 141 142 142 142 142

1594 1602 1604 1608 1630 142 142 144 144 145

1642 1674 1730 1750 1750 146 148 148 149 151

1763 1768 1781 1782 1792 151 152 155 156 157

1820 1868 1881 1890 1893 157 157 157 158 159

1895 1910 1923 1924 1945 162 163 163 164 166

2023 2100 2130 2215 2268 166 168 170 174 196

2440 212



48 V. Leiva et al.

Remark 4.1 In (a) and (b), the abbreviation “psi” is used for “pound per square
inch,” or, more accurately, pound-force per square inch (symbol: lbf/in2), which
is a unit of pressure or of stress based on avoirdupois units, where “lbf” denotes
“pound of force” or “pound-force” and “in2” denotes “square inch”. Note that “psi”
is the pressure resulting from a force of one pound-force applied to an area of one
square inch. In the International System of Units (SI, abbreviated from the French
Système International d’unitès), which is the modern form of the metric system, 1
psi is approximately equal to 6895 N/m2, where 1 Newton/m2 (N/m2) = 1 Joule/m3

(J/m3) = 1 Pascal (P).

The sample sizes of these two treatments are n1 = 101 and n2 = 101 for stress
levels X1 and X2, respectively. Thus, the total number of observations is N = 202
and the stress levels are k = 2. All pieces were tested until they failed. We wish to
test if the stress level has some effect on the fatigue life.

The methodology to be used in this applications is summarized into the following
steps:
(1) Collect ni data ttt i = (ti1, . . . , tini ) of the random variable of interest for i

treatments.
(2) Carry out an exploratory analysis of the data ttt i collected in Step 1 to identify

distributions to be considered.
(3) Check adequacy of considered distributions in each treatment i in Step 2.
(4) Select the best distribution that describes the data in each treatment i according

to Step 3.
(5) Establish prior distributions for the parameters of the selected distribution in

Step 4.
(6) Estimate the treatment posterior means/medians based on the established

distributions in Step 5.
(7) Compare the effects of two treatments considered in previous steps for the

random variable of interest by:

(i) Constructing 95% credible intervals for δ.
(ii) Estimating P(δ > 0|ttt i ) and P(δ ≤ 0|ttt i ) in each treatment i with the

data ttt i .
(iii) Determining the reliability model P(T1 > T2|ttt1, ttt2) as defined in (4).

Table 2 reports a descriptive summary of the data of both treatments. Note that, as
the stress level increases, the median and mean fatigue life, as well as its variability,
decrease considerably. Thus, we observe that the scale parameter β should decrease
as the stress level increases. We recall that β is the scale parameter and also the
median, but the mean is also in direct relation to it; see property (A4). We should
detect that α, the shape parameter, it is not modified as the stress level increases.

Figure 2 shows histograms and box plots of the fatigue life data. Note that there
are some atypical observations, a certain asymmetry in the distribution of the data,
and that the scale of the distribution decreases as the stress level increases. Notice
that the shape of the distribution is not substantially altered in the different stress
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Table 2 Descriptive statistics of fatigue life (in cycles ×10−3) for the indicated stress level

Stress level Minimum First quartile Median Mean Third quartile Maximum SD ni

2.1×104 psi 370 1115 1416 1400.84 1642 2440 391.01 101

3.1×104 psi 70 120 133 133.73 146 212 22.36 101

Table 3 KS p-values and BIC values of the indicated distributions and stress level for the fatigue
life data

2.1 × 104 psi 3.1 × 104 psi

Distribution KS BIC Distribution KS BIC

Birnbaum–Saunders 0.919 1144.65 Birnbaum–Saunders 0.459 923.77

Inverse Gaussian 0.918 1144.68 Inverse Gaussian 0.457 923.80
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Fig. 1 QQ plots with simulated envelopes based on the Birnbaum–Saunders distribution for
fatigue life data at the stress levels (a) 2.1 × 104 psi and (b) 3.1 × 104 psi

levels, supporting the fact that α, the shape parameter, it is not modified as the stress
level increases.

Two life distributions that have a close connection are the Birnbaum–Saunders
and inverse Gaussian models; see [21]. To analyze the fatigue life T , the
Birnbaum–Saunders and inverse Gaussian distributions are proposed. We apply
the Kolmogorov–Smirnov (KS) test and Bayesian information criterion (BIC) to
decide which of these distributions fit the data better; see Table 3. From this table,
we detect that the Birnbaum–Saunders distribution fits slightly better the data
than the inverse Gaussian distribution. In addition, by Property (A3), we construct
quantile versus quantile (QQ) plots with envelopes, which are shown in Fig. 1. From
this figure, we note a good fit of the Birnbaum–Saunders distribution to the data.
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Table 4 Bayesian estimates and 95% credible interval (CI) of the indicated parameter and
treatment for the fatigue data

α β

Treatment Mean 95% CI Mean 95% CI

2.1 × 104 psi 0.310 (0.267; 0.353) 1336.380 (1256.52; 1416.240)

3.1 × 104 psi 0.170 (0.169; 0.171) 131.819 (127.455; 136.183)

Table 5 Estimate, 95% credible interval (CI), P(δ > 0|ttt),P(T1 > T2|ttt1, ttt2) for the fatigue data

Parameter Mean 95% CI P(δ ≤ 0|ttt) P(δ > 0|ttt) P(T1 > T2|ttt1, ttt2)
δ −0.055 (−0.087; −0.023) 0.995 0.005 0.433

Table 4 reports posterior summaries of the distribution parameters for each
treatment, where SD denotes standard deviation. These results are obtained by
using a Gibbs sampling with a Metropolis–Hastings step for a sample of size equal
to 10,000. The sample autocorrelation is monitored and no thinning is necessary.
We detect that the Markov chain attains stationarity, that is, its desired posterior
distribution is reached, by using graphical tools and tests. The trace plots indicate
that the chains converge to their stationary distributions. The Gelman–Rubin,
Raftery–Lewis, and Heidelberg–Welch tests detect convergence of the Markov chain
for each parameter when comparing both stress levels. Regarding sensitivity, note
that, in general, the estimates are not changing notoriously when different values of
the hyperparameters are used.

We compare the fatigue life of the two treatments related to stress levels of 2.1 ×
104 psi and 3.1×104 psi. Tables 4 and 5 report the posterior summaries from where
we conclude that:

(i) The fatigue life is clearly larger as the stress level decreases, according to both
the estimate of the median β provided by Table 4 and the estimate of δ when
comparing both stress levels in Table 5.

(ii) The estimates of the parameters are very accurate as shown by the very narrow
credible intervals; see Tables 4 and 5.

(iii) In relation to the probability P(δ > 0|ttt), we detect that, as the stress
level increases from 2.1×104 psi to 3.1×104 psi, the fatigue life decreases
significantly, as expected; see Table 5.

(iv) The slightly small value (less than 50%) of the estimate of P(T1 > T2|ttt1, ttt2)
for the treatments support the results above mentioned in item (iii); see Table 5.
These estimates indicate that the fatigue life related to the low stress level is
larger than the fatigue life associated with the high stress level (Fig. 2).
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Fig. 2 Histograms with estimated BS densities and box plots for the fatigue life data at the stress
levels (a) 2.1 × 104 psi and (b) 3.1 × 104 psi

5 Conclusions, Discussion, and Future Research

The present study was based on the following steps:

(i) We have presented a Birnbaum–Saunders reliability model and a literature
review of its practical applications.

(ii) We have considered Bayesian computation for conducting inference on the
introduced Birnbaum–Saunders reliability model.

(iii) The proposed methodology using the Birnbaum–Saunders distribution allows
us to evaluate the effect of two treatments in terms of its reliability.

(iv) An algorithm that summarized the proposed methodology was provided.
(v) The methodology was implemented in the R software and applied to real

data, comparing the Birnbaum–Saunders distribution to its natural competitor,
corresponding to the inverse Gaussian distribution, showing the convenience
of using the Birnbaum–Saunders distribution.

(vi) We have compared the effects of two stress levels on the fatigue life con-
structing credible intervals, estimating the probability of detecting difference
significant statistically, and determining a reliability model.

In summary, we have applied a Birnbaum–Saunders reliability model and estimated
its parameters with Bayesian methods. An empirical study with real fatigue data
was performed to show the good empirical behavior of the estimators and to
illustrate potential applications. Therefore, this investigation may be a knowledge
addition to the tool kit of diverse practitioners, including engineers, statisticians,
and data scientists.

Some open problems that arose from the present investigation are the following:

(i) Parameter estimates of censored distributions are more efficient than when
censorship is not considered. Indeed, if censored cases are present and a
non-censored distribution is used, evidently it is not possible to estimate the
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variance of the censored part. However, if censored distributions are utilized
in this case, such a variance may be estimated from the data; see [15, 35].

(ii) The methodology employed in this study may be implemented in reliability
analysis of engineering structures. For instance, further research may be
carried out in highway designs and planning, specifically a reliability analysis
to manage the time of pavement repairs. In addition, in modern building
material, as concrete modified with nano-particles, reliability models can be
used to determinate the performance of structures subject to different loading
conditions; see [39].

(iii) In bioengineering applications, biomaterials employed in bone tissue regener-
ation are subject to diverse body environmental conditions and physiological
loading conditions. Thus, a reliability study can be suitable to estimate the
variation of mechanical responses.

(iv) A reliability study is also useful in developing smart materials, when sensors
in micro- or nano-scale are embedded to measure static or dynamic mechani-
cal performance. Thus, reliability engineering can be part of the progress and
development of a variety of material applications.

(v) An extension of the present study to the multivariate case is also of practical
relevance [5, 28, 34, 44].

(vi) The derivation of diagnostic techniques to detect potential influential cases is
needed, which is an important tool to be used in all statistical modeling [11,
18, 31].

(vii) Robust estimation methods when outliers are present into the data set can be
applied [49].

(viii) Reliability models that are based on the Birnbaum–Saunders distribution can
be of great interest, due to the encouraging results shown by this distribution
in the present study. For example, it is of interest to extend the results
introduced in [2] to parallel and series system with multiple components and
considering other stronger stochastic orders.

Therefore, the results proposed in this study promote new challenges and offer an
open door to explore other theoretical and numerical issues. Research on these and
other issues is in progress, and their findings will be reported in future articles.
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A Competing Risk Model Based on a
Two-Parameter Exponential Family
Distribution Under Progressive Type II
Censoring

Yu-Jau Lin, Tzong-Ru Tsai, Ding-Geng Chen, and Yuhlong Lio

Abstract This chapter presents a competing risk model with two dependent
failure causes whose latent failure times are Marshall–Olkin bivariate exponential
family distribution that includes Burr XII, Gompertz, and Weibull distributions as
special cases. Maximum likelihood estimation and Bayesian estimation methods
for the model parameters are discussed. The existence and uniqueness of maximum
likelihood estimates are established under some regular conditions for Weibull and
Burr XII base distributions, respectively. A Markov-Chain Monte Carlo process is
proposed for Bayesian estimation method. Due to the possible flaw of maximum
likelihood estimation method, a Monte Carlo simulation study is only conducted
to assess the performance of Bayesian estimations for model parameters, tenth
percentile, median and ninety percentile lifetimes under square error, absolute error,
and LINEX loss functions. A real data set is used for illustration.

1 Introduction

When the subjects under medical survival analysis or industry life testing involve
multiple failure modes competing, the problem is usually refereed as the competitive
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risks model. In the competitive risks model, it is assumed that a failure is associated
with one of the competing failure modes. During the medical survival monitoring,
subject loses happen very often. Therefore, it is common that the collected lifetimes
are not complete random sample but censored sample. Many different censored
samples have been generated in the medical survival analysis; for example, type
I and type II censored samples mentioned by Kundu and Howlader [20] and type
I interval censored data mentioned by Chen and Lio [8] as well as Lin and Lio
[24]. Recent technology advancement prolongs the process of collecting a complete
random sample of lifetimes in industry life test; to shorten the sampling procedure,
different censoring schemes as well as step-stress life test procedures have been
developed to collect lifetime information. Readers may refer to [2, 3] for more
information about life test procedures used for reliability inference.

Among all censoring schemes developed in both medical survival analysis and
industry life testing, the type I and type II censoring schemes have been commonly
used due to their easy implementations. Placing n items on the failure test at the
same initial time, labeled by T0 = 0, the life test continues up to a predetermined
time τ for type I censoring scheme, while the life test under the type II censoring
scheme will be performed until a predetermined number m(< n) of failures
observed at the largest random failure timeXm:m:n. Epstein [14] introduced the type
I hybrid censoring scheme where the life test would be terminated at a random
time τ ∗ = min{Xm:m:n, τ}, and Childs et al. [10] considered the type II hybrid
censoring scheme where the life test would be terminated at the random time
τ ∗∗ = max{Xm:m:n, τ}. The aforementioned censoring schemes do not allow items
to be removed from the life test at any other time before the terminal time. In
order to allow the items removed at other time points before the terminal time
and save the life test time and cost, the progressive censoring schemes have been
applied to the life testing. Balakrishnan and Aggarwala [2] and Balakrishnan and
Cramer [3] provided more information about progressive censoring schemes. The
progressive type II censoring scheme is performed as follows, n items are placed
on failure test at the same time, labeled by T0 = 0, at the ith failure Xi:m:n,
Ri items are randomly removed from the remaining survival items for i from
1, 2, · · · ,m where Ri, i = 1, 2, · · · ,m, and m are predetermined prior to the
life testing such that n = m + ∑m

i=1 Ri . Combining the strategies of type II
progressive censoring scheme with the hybrid type I or hybrid type II censoring
scheme, Kundu and Joarder [21] studied the type I progressive hybrid censoring
scheme that implemented the type II progressive censoring scheme until the random
time τ ∗ = min{Xm:m:n, τ}, Childs et al. [11] discussed the type II progressive
hybrid censoring scheme that implemented the type II progressive censoring scheme
until the random time τ ∗ = max{Xm:m:n, τ}. All survival items will be removed at
the terminated random time when the aforementioned progressive hybrid censoring
schemes are implemented.

Recently, two new censoring schemes named as adaptive type I progressive
hybrid censoring scheme (AT-I PHCS) and adaptive type II progressive hybrid
censoring scheme (AT-II PHCS) have been developed, respectively. The AT-II
PHCS, which was discussed by Ng et al. [29] and Balakrishnan and Kundu
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[5], terminates at Xm:m:n and has no survival items removed when the life test
experiment needs to pass time τ . Lin and Huang [23] introduced the AT-I PHCS,
which was shown to have a higher efficiency in estimations. The AT-I PHCS
implements type II progressive censoring scheme and must terminate at a prefixed
time τ . Let the number of failures just right before the termination time τ be
J . If the mth failure Xm:m:n is obtained before τ , the life time experiment will
continue to observe failures without withdrawing survival items until τ . Hence, at
the termination time τ , all survival items R∗

J = n− J −∑J
i=1 Ri will be removed,

where Rm = Rm+1 = · · · = RJ = 0 when m < J ; otherwise, the AT-I PHCS has
the progressive censoring scheme R1, R2, · · · , RJ .

The competitive risks models assuming independent failure models have been
studied by many scholars, for example, Miyakawa [28] studied the maximum
likelihood estimators and uniformly minimum variance unbiased estimators of the
failure rates for the competing risks model with two failure modes based on random
sample obtained from exponential distribution but the data set possibly having
missing failure cause. Kundu and Basu [19] extended this work to provide the
approximate and asymptotic properties of the parameter estimators, confidence
intervals, and bootstrap confidence bounds. They also extended for the Weibull
distribution case. Kundu et al. [22] provided the maximum likelihood estimators,
uniformly minimum variance unbiased estimators, and the Bayesian estimators
using the inverse Gamma prior and square error loss for the competing risks model
based on progressively type II censored sample from exponential distribution. Park
and Kulasekera [31] established closed-form maximum likelihood estimators for a
competitive risk model that has multi-failure modes in several groups using random
right-censored sample with possible missing failure causes from exponential dis-
tributions. Bunea and Mazzuchi [6] presented a Bayesian framework using gamma
prior and square error loss for the competitive risk model with possible multiple
competitive failure modes based on the accelerated life test data from exponential
distribution. Sarhan [33] provided the maximum likelihood estimators for the
competitive risk model based on type I censored sample with possible missing
failure modes from the generalized exponential distributions. Balakrishnan and Han
[4] derived the maximum likelihood estimators of the unknown mean parameters
for the different failure causes under a cumulative exposure assumption in the
competitive risk model with two failure modes whose lifetimes are exponentially
distributed based on the type II censored sample collected through a simple step-
stress life test. The exact distributions of the maximum likelihood estimators were
obtained by utilizing conditional moment generating functions. They also compared
the performance of confidence intervals using exact distribution, the asymptotic
distribution as well as the parametric bootstrap method through Monte Carlo
simulation. Pareek et al. [30] analyzed the competitive risks data assuming the latent
failure times that are Weibull distributed under the progressive type II censoring.
Cramer and Schmiedt [12] studied the maximum likelihood estimators for two
failure modes competing risks model based on the progressive type II censored data
from Lomax distributions and provided the optimal censoring scheme based on
Fisher information. Xu and Tang [38] discussed the Bayesian inference based on the
competitive risks sample from the accelerated life test in the presence of competing
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failure modes whose latent failure times are Weibull distributed. Under adaptive
type I progressive hybrid censoring scheme, Ashour and Nassar [1] investigated the
maximum likelihood estimation and Bayesian estimation based on squared error
and LINEX loss functions with independent gamma priors for the parameters of
competing risks model with two failure causes whose latent failure times are Weibull
distributed with common shape parameter. Under progressive type II censoring
where the failure mode could be missing and the numbers of withdrawn units at
each stage are subject to a binomial distribution, Qin and Gui [32] established the
maximum likelihood estimators of the parameters in a competing risks model of
two independent failure modes that have Burr-XII distributions sharing with the
common inner shape parameter. They proved the existence and uniqueness of the
maximum likelihood estimators and provided approximated confidence intervals
by using the observed Fisher information matrix and delta method. Moreover, they
provided Bayes estimators and associated credible intervals under square error loss,
LINEX loss, and the general entropy loss functions.

The competitive risks model under dependent failure modes has been considered
through copula structure by scholars. Zheng and Klein [39, 40] treated time to
death and time to censoring as the two dependent failure modes in a competing
risks model and investigated the marginal distribution of two competitive failure
causes under the dependence structure of a given copula. They presented an
estimator of the marginal distribution based on a given copula and showed that
the estimator is consistent and reduces to the Kaplan–Meier estimator under the
independent copula. Escarela and Carriere [15] proposed a fully parametric copula
model, called Frank’s family of copulas that allows to adjust for concomitant
variables and dependence parameter to assess the effects on each marginal survival
model and the relationship between the causes of death, to fit and analyze the
cause-specific survival times collected from a competing risks model. They also
studied the identification problem, dependence structures, and flexibility in selecting
marginal survival functions. Shih and Emura [34] used the generalized Farlie–
Gumbel–Morgenstern copula with the Burr III marginal distribution to address the
dependence of two failure modes in the competing risks model. They developed
a likelihood-based inference method and asymptotic theory goodness-of-fit tests
based on the closed form of sub-distribution function.

Let U0, U1, and U2 be independent exponential distributions with rate param-
eters, λ0, λ1, and λ3, respectively. Let X = min{U0, U1} and Y = min{U0, U2}.
Marshall and Olkin [26] established a dependent bivariate exponential distribution
forX and Y that has marginal exponential distributions with rate parameters, λ0+λ1
and λ0 + λ2, respectively. When λ0 = 0, X and Y are independent exponential
distributions. Therefore, λ0 can be associated as dependent factor between X
and Y . Hereafter, this type of dependent bivariate distribution will be referred as
MOB distribution. Since then, Feizjavadian and Hashemi [16] considered dependent
competing risks model with two causes that have a MOB Weibull distribution
via utilizing three independent Weibull distributions sharing a common shape
parameter. They developed maximum likelihood and an approximated maximum
likelihood estimators and constructed approximate confidence intervals using the
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observed Fisher information matrix and asymptotic distribution of the maximum
likelihood estimators under type II progressively hybrid censoring. Shi and Wu
[35] studied the maximum likelihood estimation for dependent competing risks
models with two failure causes that have MOB type Gompertz distributions
under type I progressively hybrid censoring scheme. Cai et al. [7] established the
maximum likelihood estimators based on the expectation–maximum algorithm and
Bayesian estimators incorporating with auxiliary variables for the parameters of the
competing risks model that has the failure causes of the MOB Weibull distributions
sharing common shape parameter. They also used the missing information principle
to obtain the observed information matrix and Monte Carlo method to construct the
highest posterior density credible intervals.

In this chapter, we consider the competing risks model with dependent causes
that have a two-parameter exponential family distribution sharing with a common
parameter under progressive type II censoring scheme. The two-parameter expo-
nential family distribution includes Burr XII, Gompertz, and Weibull distributions
as special cases. The rest of chapter is organized as follows. The competing risks
models are presented in Sect. 2. Section 3 addresses the maximum likelihood
estimation method. Section 4 presents Bayesian estimation method. An intensive
simulation study is conducted for MOB Burr XII and MOB Weibull distributions
in Sect. 5 and the application of a real example given in Sect. 6. Conclusions are
addressed in Sect. 7.

2 Competitive Risk Models

A two-parameter exponential family distribution of lifetime random variable has
the probability density function (PDF), cumulative distribution function (CDF), and
hazard rate function that are, respectively, given as follows:

f (x|β, λ) = βg′(x; λ) exp(−βg(x; λ)), x ≥ 0, β ≥ 0, λ ≥ 0, (1)

F(x|β, λ) = 1.0 − exp(−βg(x; λ)), x ≥ 0, β ≥ 0, λ ≥ 0, (2)

and

h(x|β, λ) = βg′(x; λ), x ≥ 0, λ > 0, β ≥ 0, λ ≥ 0, (3)

where g(x; λ) is an increase function of x with g(0; λ) = 0 and limx−>∞ g(x; λ) =
∞, g′(x; λ) is the derivative of g(x; λ) with respective to x, and β > 0 and λ > 0
are distribution parameters. For example, if g(x; λ) = ln(1+xλ), then it is Burr XII
distribution; if g(x; λ) = λ−1(exp(λx)− 1.0), then it is Gompertz distribution; and
if g(x; λ) = xλ, then it is Weibull distribution.

Let the survival function of the two-parameter exponential family distribution
be denoted by S(x|β, λ) = exp(−βg(x; λ)) and X0, X1, X2 be independent
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random variables that have survival functions S(x|β0, λ), S(x|β1, λ) and S(x|β2, λ),
respectively, where x ≥ 0, λ > 0, β0 > 0, β1 > 0, and β2 > 0. Define
T1 = min{X0, X1} and T2 = min{X0, X2}; then it can be shown that T1 and T2
have the following joint survival functions,

ST1,T2(t1, t2) = P(T1 > t1, T2 > t2) (4)

= P(X1 > t1, X2 > t2, X0 > max{t1, t2})
= P(X1 > t1)P (X2 > t2)P (X0 > max{t1, t2})
= exp(−β1g(t1; λ)) exp(−β2g(t2; λ)) exp(−β0g(max{t1, t2}; λ)),

which is called the joint MOB exponential family survival function with three
parameters, λ, β0, β1, and β2. Following the same procedure used by Shi and Wu
[35], the following properties can be obtained accordingly:

Proposition 1: The joint distribution of T1 and T2 has the following two-parameter
survival function,

ST1,T2(t1, t2) =
⎧
⎨

⎩

S(t1|β0 + β1, λ)S(t2|β2, λ) t1 > t2

S(t1|β1, λ)S(t2|β0 + β2, λ) t2 > t1

S(t |β0 + β1 + β2, λ) t = t1 = t2.
(5)

Proposition 2: The joint PDF of T1 and T2 is given as the following two-parameter
function,

fT1,T2(t1, t2) =

⎧
⎪⎨

⎪⎩

f1(t1, t2) = f (t1|β0 + β1, λ)f (t2|β2, λ) t1 > t2

f2(t1, t2) = f (t1|β1, λ)f (t2|β0 + β2, λ) t2 > t1

f0(t1, t2) = β0
β0+β1+β2

f (t |β0 + β1 + β2, λ) t = t1 = t2.
(6)

Place n identical systems of two competing failure modes, which have
latent lifetimes T1 and T2, under the progressive type II with censor-
ing scheme, {R1, R2, · · · , Rm}. The resulting observed type II progres-
sively censored samples are presented as (X1:m:n, δ1, R1), (X2:m:n, δ2, R2),
(X3:m:n, δ3, R3),· · · ,(Xm−1:m:n, δm−1, Rm−1), (Xm:m:n, δm,Rm), where

∑m
i=1 Ri +

m = n and the indicator δi = k is used to show the ith failure system due to the
failure mode k, k = 0, 1, or 2. Let Ik(δi = k) = 1 and Ik(δi �= k) = 0, where k =
0, 1, or 2 and i = 1, 2, 3, · · · ,m. The random variable n0 = ∑m

i=1 I0(δi = 0) is
the number of fail systems due to both failure modes, n1 = ∑m

i=1 I1(δi = 1) is the
number of fail systems due to failure mode k = 1, and n2 =∑m

i=1 I2(δi = 2) is the
number of fail systems due to failure mode k = 2.

Let T be the failure time of the aforementioned competing risks model. It is easy
to find the system survival function to be ST (t) = exp (−(β0 + β1 + β2)g(t; λ)).
Therefore, the p-th quantile lifetime, tp, of the competing risks model can be

obtained as tp = g−1
( − ln(1−p)
β0+β1+β2

; λ
)

, where 0 < p < 1 and g−1(·; λ) is the

generalized inverse function of g(t; λ).
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3 Maximum Likelihood Estimation

Based on the progressively type II censored sample, (X1:m:n, δ1, R1), (X2:m:n, δ2, R2),
(X3:m:n, δ3, R3),· · · ,(Xm−1:m:n, δm−1, Rm−1), (Xm:m:n, δm,Rm) collected from the
n systems mentioned above, the likelihood function can be presented as

L(β0, β1, β2, λ) ∝
m∏

i=1

⎧
⎨

⎩
(fT1,T2(Xi:m:n,Xi:m:n))I0(δi )

2∏

j=1

×
[

−∂ST1,T2(t1, t2)

∂tj
|(Xi:m:n,Xi:m:n)

]Ij (δi )
(ST1,T2(Xi:m:n,Xi:m:n))Ri

}

, (7)

where

fT1,T2(Xi:m:n,Xi:m:n) = β0

β0 + β1 + β2
f (Xi:m:n|β0 + β1 + β2, λ) (8)

= β0g
′(Xi:m:n; λ) exp(−(β0 + β1 + β2)g(Xi:m:n; λ))

− ∂ST1,T2(t1, t2)

∂t1
|(Xi:m:n,Xi:m:n) = f (Xi:m:n|β1, λ)S(Xi:m:n|β0 + β2, λ) (9)

= β1g
′(Xi:m:n; λ) exp(−(β0 + β1 + β2)g(Xi:m:n; λ))

− ∂ST1,T2(t1, t2)

∂t2
|(Xi:m:n,Xi:m:n) = f (Xi:m:n|β2, λ)S(Xi:m:n|β0 + β1, λ) (10)

= β2g
′(Xi:m:n; λ) exp(−(β0 + β1 + β2)g(Xi:m:n; λ))

ST1,T2(Xi:m:n,Xi:m:n) = S(Xi:m:n|β0 + β1 + β2, λ) (11)

= exp(−(β0 + β1 + β2)g(Xi:m:n; λ)).

Therefore, the likelihood function can be represented as

L(β0, β1, β2, λ) ∝
2∏

j=0

β
nj
j

m∏

i=1

g′(Xi:m:n; λ) exp

×
(

−(β0 + β1 + β2)

m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

, (12)
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and the log-likelihood function without constant term can be presented as

l(β0, β1, β2, λ) =
2∑

j=0

nj ln(βj )+
m∑

i=1

ln(g′(Xi:m:n; λ))− (β0 + β1 + β2)

(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

. (13)

Taking the first-order partial derivative of l(β0, β1, β2, λ) with respective to
β0, β1, β2 and λ, respectively, the following results are obtained:

∂l(β0, β1, β2, λ)

∂β0
= n0

β0
−
(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

, (14)

∂l(β0, β1, β2, λ)

∂β1
= n1

β1
−
(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

, (15)

∂l(β0, β1, β2, λ)

∂β2
= n2

β2
−
(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

, (16)

∂l(β0, β1, β2, λ)

∂λ
=

m∑

i=1

g′
λ(Xi:m:n; λ)
g′(Xi:m:n; λ)

− (β0 + β1 + β2)

(
m∑

i=1

(Ri + 1)gλ(Xi:m:n; λ)
)

, (17)

where g′
λ(x; λ) = ∂g′(x;λ)

∂λ
. Setting ∂l(β0,β1,β2,λ)

∂βj
= 0, the MLE of βj is given as

β̂j = nj
(∑m

i=1(Ri + 1)g(Xi:m:n; λ)
) (18)

for j = 0,1, or 2, given λ > 0. Plugging β̂j in the log-likelihood function, the
profile log-likelihood function without constant term can be obtained as follows:

cl(λ) =
2∑

j=0

nj ln(nj )−m ln

(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
)

+
m∑

i=1

ln(g′(Xi:m:n; λ))−m.
(19)

The existence of MLE, λ̂, depends upon some regular conditions of g(x; λ) that
make profile log-likelihood function have concave down and unimodal shape in
terms of λ.
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3.1 Special Family 1: Weibull Distribution

When g(x, λ) = xλ, the two-parameter exponential life time distribution has
Weibull distribution. The profile log-likelihood function of Eq. (19) can be repre-
sented as follows:

clw(λ) =
2∑

j=1

nj ln(nj )−m ln

(
m∑

i=1

(Ri + 1)Xλi:m:n

)

+m ln(λ)

+ (λ− 1)

(
m∑

i=1

ln(Xi:m:n)
)

−m (20)

and

dclw(λ)

dλ
= m

λ
+

m∑

i=1

ln(Xi:m:n)−m
∑m
i=1(Ri + 1)Xλi:m:n ln(Xi:m:n)
∑m
i=1(Ri + 1)Xλi:m:n

. (21)

The following propositions for Weibull distribution can be used to show the MLE λ̂
of common shape parameter of Weibull distributions is uniquely defined:

Proposition 1: The profile log-likelihood function clw(λ) is a concave function
of λ.

Proposition 2: If nj > 0 for j = 0, 1, 2, then MLEs of βj > 0 for j = 0, 1, 2
and λ for Weibull distributions are uniquely defined.

3.2 Special Family 2: Burr XII Distribution

When g(x, λ) = ln(1+xλ), the two-parameter exponential life time distribution has
Burr XII distribution that has inner shape parameter λ. The profile log-likelihood
function of Eq. (19) can be represented as follows:

clB(λ) =
2∑

j=1

nj ln(nj )−m ln

(
m∑

i=1

(Ri + 1) ln
(
1 +Xλi:m:n

)
)

+ m ln(λ)+ (λ− 1)

(
m∑

i=1

ln(Xi:m:n)
)

−
m∑

i=1

ln(1 +Xλi:m:n)−m

= Ψ (λ)−m ln

(
m∑

i=1

(Ri + 1) ln
(
1 +Xλi:m:n

)
)

, (22)
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where Ψ (λ) = ∑2
j=1 nj ln(nj ) + ∑m

i=1 ln(g′(Xi:m:n; λ) − m. It is easy to show
that Ψ (λ) is a strictly concave function in λ > 0. Following the same argument by
Wingo [36, 37] and Lio and Tsai [25],

Proposition 3: Given a positive value of β0 + β1 + β2, the MLE, λ̂, is always
uniquely defined if and only if at least one observation is different from unity.

Proposition 4: Let J ≥ 2 and n0 > 0, n1 > 0, n2 > 0. Assume that Xi1:m:n �=
Xi2:m:n for some i1 �= i2 from 1 ≤ i1, i2 ≤ m. Then MLEs of βj for j = 0, 1, 2
and λ for Burr XII distributions are uniquely defined positive values.

Please note that n0 > 0, n1 > 0, and n2 > 0 are sufficient conditions to ensure
that MLEs β̂j > 0, j = 0, 1, 2. It is very often that nj = 0, j = 1, 2, or 3 during
the simulation study. Therefore, simulation study is only conducted to evaluate the
performance of Bayesian estimators.

4 Bayesian Estimation

Let the model parameters given above be represented as Θ = (θ0, θ1, θ2, θ3) =
(β0, β1, β2, λ). Under the Bayesian framework, it is assumed that all unknown
parameters, θl, l = 0, 1, 2, 3, are independent and θl, l = 0, 1, 2, have prior
distributions with probability density functions, respectively, given as follows:

hl(θl;αl, γl) = 1

Γ (αl)γ
αl
l

θ
αl−1
l exp

{

− θl
γl

}

, (23)

where αl > 0 and γl > 0 are hyper-parameters for l = 0, 1, 2. θ3 has prior
distribution with probability density function h3(θ3) ∝ C where C > 0 is a
constant. Combining (12), (23), and h3(λ), the joint posterior probability density
function of Θ given a progressively type II censored data, D = {(X1:m:n, δ1, R1),
(X2:m:n, δ2, R2), (X3:m:n, δ3, R3),· · · ,(Xm−1:m:n, δm−1, Rm−1), (Xm:m:n, δm,Rm)},
can be presented as

Π(β0, β1, β2, λ|D) ∝ exp

(

−(β0 + β1 + β2)

(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
))

×
⎛

⎝
2∏

j=0

β
nj
j

m∏

i=1

g′(Xi:m:n; λ)
⎞

⎠

× h0(β0;α0, γ0)h1(β1;α1, γ1)h2(β2;α2, γ2)h3(λ). (24)

Hence, the marginal posterior density functions of β0, β1, β2, and λ given data D
are, respectively, represented as
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Π0(β0|D) =
∫ ∫ ∫

Π(β0, β1, β2, λ|D)dβ1dβ2dλ, (25)

Π1(β1|D) =
∫ ∫ ∫

Π(β0, β1, β2, λ|D)dβ0dβ2dλ, (26)

Π2(β2|D) =
∫ ∫ ∫

Π(β0, β1, β2, λ|D)dβ0dβ1dλ, (27)

and

Π3(λ|D) =
∫ ∫ ∫

Π(β0, β1, β2, λ|D)dβ0dβ1dβ2. (28)

The joint marginal posterior density functions of any three parameters can be
obtained as follows:

Πβ0 ,β1 ,β2
(β0, β1, β2|D) =

∫

Π(β0, β1, β2, λ|D)dλ, (29)

Πβ0 ,β1 ,λ
(β0, β1, λ|D) =

∫

Π(β0, β1, β2, λ|D)dβ2, (30)

Πβ0 ,β2 ,λ
(β0, β2, λ|D) =

∫

Π(β0, β1, β2, λ|D)dβ1, (31)

and

Πβ1 ,β2 ,λ
(β1, β2, λ|D) =

∫

Π(β0, β1, β2, λ|D)dβ0. (32)

Meanwhile, the full conditional posterior probability density function of β0, given
β1,β2, and λ, is

Π0(β0|β1, β2, λ,D) ∝ βn0+α0−1
0 exp

(

−β0

(
1

γ0
+

m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
))

, (33)

the full conditional posterior probability density function of β1, given β0,β2, and λ,
is

Π1(β1|β0, β2, λ,D) ∝ βn1+α1−1
1 exp

(

−β1

(
1

γ1
+

m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
))

, (34)
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the full conditional posterior probability density function of β2, given β0,β1, and λ,
is

Π2(β2|β0, β1, λ,D) ∝ βn2+α2−1
2 exp

(

−β2

(
1

γ2
+

m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
))

, (35)

and the full conditional posterior probability density function of λ, given β0,β1, and
β2, is

Π3(λ|β0, β1, β2,D) ∝ exp

(

−(β0 + β1 + β2)

(
m∑

i=1

(Ri + 1)g(Xi:m:n; λ)
))

×
(
m∏

i=1

g′(Xi:m:n; λ)
)

. (36)

In this chapter, the loss functions considered are squared error, absolute error,
and LINEX loss functions. The corresponding Bayesian estimators will be the
posterior distribution mean and median under square error loss and absolute error
loss functions, respectively. Under LINEX loss function, L(θl, θ̂l) = exp(φ(θ̂l −
θl))−φ(θ̂l−θl)−1, where θ̂l is the Bayesian estimator of θl and φ �= 0 is a given real
number, and the Bayesian estimate is −1

φ
ln(E(exp(−φθl)|D)) where E(·|D) is the

posterior expectation. Among all the aforementioned posterior density functions for
the parameters β0, β1, β2, and λ, it can be noted that the respective posterior density
functions of θl, l = 0, 1, 2, 3 are not in a closed function. Hence, in order to obtain
the Bayes estimates, Markov-Chain Monte Carlo method through the application of
Metropolis–Hastings (M–H) algorithm [18, 27] via the Gibbs scheme [17] is utilized
to draw the samples of β0, β1, β2, and λ, respectively, through (33), (34), (35),
and (36).

4.1 A Markov-Chain Monte Carlo Process

Given j = 0, 1, 2, 3, the Markov chain θ(i)j , i = 1, 2, · · · , of the j th parameter, θj ,
can be constructed by applying the Metropolis–Hastings (M–H) algorithm stated as
follows. Let qj (θ

(∗)
j |θ(i)j ) be a proposed conditional transition probability density

function for θ(∗)j , given θ(i)j for j = 0, 1, 2, 3. Given a current state value, θ(i)j , of

the parameter θj , θ
(∗)
j is a candidate value for the parameter θj in the next state

and generated by qj (θ
(∗)
j |θ(i)j ). Then, θ(∗)j is accepted as the value of the next state,

θ
(i+1)
j , with a probability of min

{

1,
Πj (θ

(∗)
j |D)qj (θ(i)j |θ(∗)j )

Πj (θ
(i)
j |D)qj (θ(∗)j |θ(i)j )

}

. If θ(∗)j is rejected as the

value of the next state, then the next state θ(i+1)
j = θ

(i)
j . The Markov chain for
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{β(i)0 , β
(i)
1 , β

(i)
2 , λ

(i), i = 1, 2, 3, · · · } ={θ(i)0 , θ
(i)
1 , θ

(i)
2 , θ

(i)
3 , i = 1, 2, 3, · · · } can

be generated through the Markov-Chain Monte Carlo (MCMC) iterative process
stated as follows:

Step 1: Set i=0
Step 2: Generate θ(∗)0 from q0(θ

(∗)
0 |θ(i)0 ) and u0 from uniform distribution over

(0, 1) interval independently, and

θ
(i+1)
0 =

⎧
⎨

⎩

θ
(∗)
0 if u0 ≤ min

{

1,
Π0(θ

(∗)
0 |θ(i)1 ,θ

(i)
2 ,θ

(i)
3 ,D)q0(θ

(i)
0 |θ(∗)0 )

Π0(θ
(i)
0 |θ(i)1 ,θ

(i)
2 ,θ

(i)
3 ,D)q0(θ

(∗)
0 |θ(i)0 )

}

θ
(i)
0 otherwise.

(37)

Step 3: Generate θ(∗)1 from q1(θ
(∗)
1 |θ(i)1 ) and u1 from uniform distribution over

(0, 1) interval independently, and

θ
(i+1)
1 =

⎧
⎨

⎩

θ
(∗)
1 if u1 ≤ min

{

1,
Π1(θ

(∗)
1 |θ(i+1)

0 ,θ
(i)
2 ,θ

(i)
3 ,D)q1(θ

(i)
1 |θ(∗)1 )

Π1(θ
(i)
1 |θ(i+1)

0 ,θ
(i)
2 ,θ

(i)
3 ,D)q1(θ

(∗)
1 |θ(i)1 )

}

θ
(i)
1 otherwise.

(38)

Step 4: Generate θ(∗)2 from q2(θ
(∗)
2 |θ(i)2 ) and u2 from uniform distribution over

(0, 1) interval independently, and

θ
(i+1)
2 =

⎧
⎨

⎩

θ
(∗)
2 if u2 ≤ min

{

1,
Π2(θ

(∗)
2 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i)
3 ,D)q2(θ

(i)
2 |θ(∗)2 )

Π2(θ
(i)
2 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i)
3 ,D)q2(θ

(∗)
2 |θ(i)2 )

}

θ
(i)
2 otherwise.

(39)

Step 5: Generate θ(∗)3 from q3(θ
(∗)
3 |θ(i)3 ) and u3 from uniform distribution over

(0, 1) interval independently, and

θ
(i+1)
3 =

⎧
⎨

⎩

θ
(∗)
3 if u3 ≤ min

{

1,
Π3(θ

(∗)
3 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i+1)
2 ,D)q3(θ

(i)
3 |θ(∗)3 )

Π3(θ
(i)
3 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i+1)
2 ,D)q3(θ

(∗)
3 |θ(i)3 )

}

θ
(i)
3 otherwise.

(40)

Step 6: Set i = i + 1 go to Step 2.

Starting with initial values, θ(0)0 ,θ(0)1 θ
(0)
2 , and θ(0)3 , the above iterative process is

running through a huge number of periods (saysN ). For j = 0, 1, 2, 3, the empirical
distributions of θj could be described by the realizations of θj after a burn-in
period, Nb. The Bayes estimators of θj can be approximated based on the values

of
{
θ
(i)
j |i = Nb, . . . ., N

}
, respectively. For instance, if the squared loss function is

used, then the Bayes estimates of θj are the means of
{
θ
(i)
j |i = Nb, . . . ., N

}
; if the

absolute value of difference loss function is used, then the Bayes estimates of θj are
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the medians of the empirical distributions of
{
θ
(i)
j |i = Nb, . . . ., N

}
; and if LINEX

loss function is used, then the Bayes estimates of θj can be evaluated by

θ̂l,φ = −1

φ
ln

⎛

⎝ 1

N −Nb
N∑

k=Nb+1

exp(−φθ(k)l )
⎞

⎠ .

In order to find the Bayesian estimation of a function, η(Θ), ofΘ , the Markov chain
η(i)(Θ), i = 1, 2, 3, · · · can be approximately obtained by plugging in method
using the Markov chain Θ(i), i = 1, 2, · · · . The posterior distribution of η(Θ) can
be approximated by using the empirical distribution based on the Markov chain
η(i)(Θ), i = 1, 2, 3, · · · . Then the Bayesian estimate can be derived for η(Θ),
accordingly.

It should be mentioned that Π0(θ0|θ1, θ2, θ3,D), Π1(θ1|θ0, θ2, θ3,D),
Π2(θ2|θ0, θ1, θ3,D), andΠ3(θ3|θ0, θ1, θ2,D) can be replaced byΠ(θ0, θ1, θ2, θ3|D)
during the implementation of Metropolis–Hastings algorithm, and when the MCMC
process is implemented based on non-informative priors (i.e., hl(θl) ∝ C for
l = 0, 1, 2, 3 where C is a constant), the MCMC process will approach to the
maximum likelihood estimates for the parameters μ1 and μ2 and ρ, respectively
(see, for example, Chib and Greenberg [9]). Moreover, the full conditional posteriors
for βl, l = 0, 1, 2 are gamma distribution with shape parameter nl + αl and rate
parameter 1

γl
+∑m

i (Ri+1)g(Xi:m:n; λ) that is only dependent on given λ. Therefore,
the MCMC jumps, Steps 2, 3 and 4 can be replaced by taking sample from the
corresponding gamma distribution, instead. Step 5 can be modified as follows,

Step 5∗: Let θold3 = θ(i)3 .

Step 5.1: Generate θ∗
3 from q3(θ

∗
3 |θold3 ) and u3 from uniform distribution over

(0,1) interval independently, and

θ
(i+1)
3 =

⎧
⎨

⎩

θ
(∗)
3 if u3 ≤ min

{

1,
Π3(θ

(∗)
3 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i+1)
2 ,D)q3(θ

(old)
3 |θ(∗)3 )

Π3(θ
(old)
3 |θ(i+1)

0 ,θ
(i+1)
1 ,θ

(i+1)
2 ,D)q3(θ

(∗)
3 |θ(old)3 )

}

θ
(old)
3 otherwise.

(41)

Step 5.2: Let θold3 = θ(i+1)
3 . Repeat Step 5.1 and Step 5.2 for some more times.

5 Simulation Studies

A simulation study is conducted to investigate the performance of the proposed
Bayesian estimates of the competing risks model parameters and system lifetime
utilizing square error, absolute error, and LINEX loss functions based on the
progressively type II censored data that includes failure times and the associated
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causes. The simulation inputs, which include sample sizes n = 30 and 50,
progressive censoring Ri, i = 1, 2, 3, · · · ,m, and population parameters, β0, β1,
β2, and λ, are listed in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
and 18. For βl, l = 0, 1, 2, two prior distributions that include non-informative and
light informative gamma priors with hyper-parameters α0 = 2, γ0 = 0.1; α1 = 6,
γ1 = 0.2; α2 = 10, γ2 = 0.1 are applied. For λ, only simulation inputs, the
simulation was conducted by 10,000 iterations. Each iteration generates Markov
chain of size 50,000 for each estimator, and Bayesian estimate was calculated by
using burn-in at 40,000. Parts of simulation results have been displayed in Tables 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18. that show the general
behaviors from the simulation study. that show the general behaviors from the
simulation study.

Tables 1, 2, and 3 show the simulation results for the competing risks model
of two independent failure modes that have the distributed latent lifetimes, and
Tables 4, 5, and 6 display the simulation results for dependent two failure modes
that have the Weibull distributed latent lifetimes. These six tables use the same
parameters βl, l = 1, 2 and λ and dependent factor with β0 = 0.2 for Tables 4,
5, and 6. In viewing these six tables, it can be noted that the Bayesian estimates
of distribution parameters for dependent system are a little bit more accurate than
those for independent system. But there are no much difference between Bayesian
estimates of quantile lifetime estimates for both systems. Meanwhile Tables 1, 2, 3,
4, 5, 6, 7, 8, and 9 show that the Bayesian estimates are getting more accurate when
the dependent factor β0 increases. Tables 10, 11, and 12 have the simulation results
by using non-informative priors. Comparing the simulation results from Tables 4, 5,
and 6 and the simulation results from Tables 10, 11, and 12, it can be seen that the
informative prior does improve the accuracy of Bayesian estimates. Tables 13, 14,
15, 16, 17, and 18 display the simulation results for the Burr XII distributed latent
failure time system. Again, it can be seen that when dependent factor β0 increases,
the accuracy of Bayesian estimate is improved.

6 An Illustrative Example

The data set about the effect of laser treatment to delay the onset of blindness from
71 patients under the Diabetic Retinopathy Study conducted by the National Eye
Institute will be used to illustrate the proposed Bayesian estimation procedure. At
the beginning, one eye from the ith patient for i = 1, 2, · · · , 71 was randomly
selected for giving the laser treatment and the other eye without giving the laser
treatment. Then the minimum time, Xi , in terms of day to blindness and the
cause index δi = 1, 2, 0 for specifying treated, untreated, or both eyes was
recorded. More detail description of the complete data set can be obtained from the
report by Csorgo and Welsh [13]. Feizjavadian and Hashemi [16] investigated the
maximum likelihood estimates and approximated maximum likelihood estimates
of the competing risks model with two dependent causes whose latent times have
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the MOB Weibull distribution by using type II progressive hybrid censored samples
generated from the complete data set with time transformed to in terms of year. They
reported the obtained estimations of the parameters were closed to the maximum
likelihood estimates by using the complete data set. For easy reference, the complete
data set reported by Csorgo and Welsh [13] is also reported in Table 19. In this
section, Bayesian estimates for the competing risks model with two dependent
causes whose latent times have the MOB Weibull distribution are studied based
on progressive type II censored sample generated from the complete data reported
in Table 19. Following the same suggestion by Feizjavadian and Hashemi [16], we
also converted times in terms of day to be times in terms of year.

Table 20 displays a progressively type II censored sample that was generated
from Table 19 with censoring scheme (2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0,
2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 20) and m = 31. Gamma prior, h0(β0; 2.0, 0.1),
Gamma prior, h1(β1; 6, 0.2), Gamma prior, h2(β2; 10, 0.1), and non-informative
prior, h3(λ), are used. During the implementation of MCMC process, the Markov
chain, θ(i+1)

j is generated from Gamma distribution with shape parameter nj + αj
and rate parameter 1

γj
+∑m

i=1(Ri+1)Xλ
(i)

i:m:n for j = 0, 1, 2. Meanwhile, Step 5 was

replaced by Step 5∗ for 150 times to ensure the Markov chain of θ(i)3 , i = 1, 2, 3, · · ·
after burn-in reach stable and independent. Figure 1 displays time series plots,
histogram, and ACF plots (from left column to right column) for the Markov chains
of λ, β0, β1, and β2 (from top row to bottom row) after burn-in, respectively.
Figure 2 displays time series plots, histogram and ACF plots (from left column to
right column) for the Markov chains of ten-percentile lifetime, median lifetime, and
ninety-percentile lifetime (from top row to bottom row) after burn-in, respectively. It
should be mentioned that all plots produced by R and histograms were using option
freq=FALSE. Using square error loss function, the Bayesian estimates of λ, β0, β1,
β2, and three lifetimes are given in Table 21.

7 Conclusion

This chapter has provided a brief review of competing risks research work and
presented a competing risks model with two latent failures that have MOB
exponential family distribution. The MOB exponential family distribution covers
Burr XII, Gompertz and Weibull distributions as special cases. Bayesian estimation
via Markov-Chain and Monte Carlo process has been focused to estimate the model
parameters of competing risks model when both competing causes have Burr XII
and Weibull distributed failure times. The current simulation study is based on
progressive type II censored sample. The extension to some other hybrid progressive
censoring schemes should not be difficult. Furthermore, some potential work to find
general conditions for MOB family distribution for the uniqueness of maximum
likelihood estimation and the linkage with copula bivariate distribution would be
interesting.
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Fig. 1 Time series plots (left column), histogram (middle column), and ACF plots (right column)
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Fig. 2 Time series plots (left column), histogram (middle column), and ACF plots (right column)

Table 21 Bayesian estimates using square

Parameter λ β0 β1 β2 t0.1 t0.5 t0.9

Estimate 1.7031 0.0589 0.1685 0.2266 154.18 474.17 986.99

Appendix

Proof of Proposition 1

Let h(λ) = ∑m
i=1(Ri + 1)Xλi:m:n. Then the first derivative, h′(λ), and the second

derivative, h′′(λ) of hw(λ), with respective to λ are, respectively, obtained as
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h′(λ) =
m∑

i=1

(Ri + 1)Xλi:m:n ln(Xi:m:n)

h′′(λ) =
m∑

i=1

(Ri + 1)Xλi:m:n(ln(Xi:m:n))2.

Let

h′′(λ)h(λ)− (h′(λ))2 =
(
m∑

i=1

a2
i

)(
m∑

i=1

b2
i

)

−
(
m∑

i=1

aibi

)2

,

where ai = (Ri + 1)1/2Xλ/2i:m:n ln(Xi:m:n), bi = (Ri + 1)1/2Xλ/2i:m:n. By Cauchy–

Schwarz inequality, (
∑m
i=1 a

2
i )(
∑m
i=1 b

2
i )−

(∑m
i=1 aibi

)2 ≥ 0.
Therefore, h′′(λ)hw(λ)− (h′(λ))2 ≥ 0. Hence,

d2clw(λ)

dλdλ
= −m

λ2 −mh
′′(λ)h(λ)− (h′(λ))2

(h(λ))2
≤ 0,

which implies clw(λ) is a concave function. Proposition 1 is proved.

Proof of Proposition 2

Consider the following equation,

1

λ
=
∑m
i=1(Ri + 1)Xλi:m:n ln(Xi:m:n)
∑m
i=1(Ri + 1)Xλi:m:n

−
∑m
i=1 ln(Xi:m:n)

m
.

Let ξ(λ) = 1
λ

. ξ(λ) is the decreasing function, and ξ(λ) → ∞ as λ → 0+ and
ξ(λ)→ 0 as λ→ ∞. Let

ζ(λ) =
∑m
i=1(Ri + 1)Xλi:m:n ln(Xi:m:n)
∑m
i=1(Ri + 1)Xλi:m:n

− 1

m

m∑

i=1

ln(Xi:m:n).

Follow the same proof of Proposition 1, it can be proved that ζ ′(λ) > 0. Hence,
ζ(λ) is an increasing function. Moreover, ζ(λ) → � as λ → 0+ where
� = 1

n
(
∑m
i=1(Ri + 1) ln(Xi:m:n)) − 1

m

∑m
i=1 ln(Xi:m:n) and ζ(λ) → (ln(m) −

1
m

∑m
i=1 ln(Xi:m:n)) > 0 as λ→ ∞.
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Proof of Proposition 3

Let φ(λ) = ∂l(β0,β1,β2,λ)
∂λ

. It can be noticed that

φ(λ) = m

λ
+

m∑

i=1

ln(Xi:m:n)−
m∑

i=1

Xλi:m:n ln(Xi:m:n)
1 +Xλi:m:n

− (β0 + β1 + β2)

(
m∑

i=1

(Ri + 1)
Xλi:m:n ln(Xi:m:n)

1 +Xλi:m:n

)

.

It is trivial that φ(λ) = ∞ as λ→ 0+. Next, define the following index sets:
M = {i|i = 1, 2, · · · ,m,Xi:m:n < 1.0}, P = {i|i = 1, 2, · · · ,m,Xi:m:n >

1.0}. By basic calculation, the following results are obtained:

m∑

i=1

Xλi:m:n ln(Xi:m:n)
1 +Xλi:m:n

→
∑

i∈P
ln(Xi:m:n), as λ→ ∞.

Therefore, for any given βj > 0, j = 0, 1, 2, the following can be proved

φ(∞) =
∑

i∈M
ln(Xi:m:n)− (β0 + β1 + β2)

(
∑

i∈P
(Ri + 1) ln(Xi:m:n)

)

.

Since at least one of the index setsM and P is nonempty, it can be seen that φ(∞) <
0. Therefore, there exists at least one real solution of φ(λ) = 0 on the positive real
line. Furthermore, ∂φ(λ)

∂λ
< 0 implies that φ(λ) is monotone decreasing in λ for

λ > 0. Proposition 3 is proven.

Proof of Proposition 4

When βj , j = 0, 1, 2, and common λ are unknown, the MLE of λ can be obtained
by maximizing the profile log-likelihood function clB(λ). Let

ξ(λ) = ∂clB(λ|λ0, λ1, λ2)

∂λ
;

then

ξ(λ) = m

λ
+

m∑

i=1

ln(Xi:m:n)−
m∑

i=1

Xλi:m:n ln(Xi:m:n)
1 +Xλi:m:n
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− m
∑m
i=1(Ri + 1)

Xλi:m:n ln(Xi:m:n)
1+Xλi:m:n∑m

i=1(Ri + 1) ln(1 +Xλi:m:n)
.

By utilizing the same argument as Wingo [36] and Lio and Tsai [25], ξ(λ) = 0 has
a unique solution on the positive real line. Proposition 4 is proven.
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Part II
Stochastic Processes in Reliability Analysis



Bayesian Computations for Reliability
Analysis in Dynamic Environments

Atilla Ay and Refik Soyer

Abstract In this chapter, we consider systems operating under a dynamic environ-
ment that causes changes in the failure characteristics of the system. We discuss
different modeling strategies to describe the evolution of the dynamic environment
and develop Bayesian analysis of the models using Markov Chain Monte Carlo
methods and data augmentation techniques. We present illustrations from repairable
systems using data from software testing, railroad track maintenance, and power
outages.

1 Introduction and Overview

Stochastic processes play an important role in reliability analysis of systems that
operate under dynamic environments. As noted by Singpurwalla [27], the physics
of failure is affected by the dynamic environment and the changes in failure behavior
of the system can be described by stochastic processes. According to [29], the first
use of stochastic processes in reliability analysis dates back to [15], who modeled
wear by dependent renewal processes, and [12], who described the deterioration of
a system by Markov models. As pointed out by Soyer [29], Gaver [10] was the first
one who proposed modeling the failure rate as a stochastic process and introduced
the notion of a randomly changing environment.

More formally [6] considered reliability of a system as a function of a stochastic
process governing the dynamic environment. This notion was further developed
in [7] who proposed models for dependence caused by a random environment.
Özekici [19] developed maintenance policies for systems operating under random
environments [21] considered a random environment to describe software failure
behavior dependent on the operational profile of the software, and optimal testing
strategies for software with an operational profile were presented in [20]. Network
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reliability assessment under a random environment was considered in [22]. A survey
of stochastic processes for modeling reliability in dynamic environments is given in
[28], and related statistical issues are discussed in [23].

It is important to note that the term “environment” is used in a loose sense
in the reliability literature so that it represents any set of conditions that affect
the deterioration and aging of the system in question. The notion is applicable
to both discrete- and continuous-time changes in the failure characteristics of the
system. For example [25] proposed a discrete-time hidden Markov process to
describe changes in reliability of software as a result of modifications made to
it during the debugging process. Landon et al. [14] considered a continuous-time
Markov chain to describe the intensity of a Poisson process for software reliability
analysis, whereas [16] used a gamma process to model the cumulative intensity of a
nonhomogeneous Poisson process representing the rail track failures.

These processes have been of interest to statisticians because of the difficult
inferential issues that they pose as a result of unobserved or hidden components they
include. Advances in computational Bayesian methods and particularly in Monte
Carlo-based approaches after 1990s have enhanced areas such as Bayesian inference
in stochastic processes and Bayesian decision analysis in all fields including
reliability analysis. A recent review of advances in Bayesian decision making in
reliability and risk analysis can be found in [26].

In this chapter, our focus will be on recent methodological advances in Bayesian
inference in stochastic processes with an emphasis on computational issues. In so
doing, we consider Bayesian reliability modeling under random environments and
present results for modulated Poisson processes and Markov modulated Markov
processes. In Sect. 2, we present a Bayesian semi-parametric model for interval
censored data coming from rail track inspections and discuss recent computational
issues associated with the use of gamma process priors. In Sect. 3, we discuss
Markov modulated Markov processes and illustrate how Bayesian inference can
be developed for these processes using a modification of the exact Gibbs sampler
proposed by Fearnhead and Sherlock [9]. In Sect. 4, we present two numerical
illustrations implementing some of the methodology using actual reliability data
from software engineering and power systems. Concluding remarks follow in
Sect. 5.

2 Modulated Nonhomogeneous Poisson Processes for Rail
Track Failures

Merrick and Soyer [16] considered railroad tracks that experience wear as a function
of traffic usage, which is measured in millions of gross tons (MGTs). As noted by
the authors, the wear causes a failure of a railroad track in the form of a crack in a rail
section, and such a crack can possibly lead to a fracture if it is not repaired. Since the
replacement of a whole rail track is very costly, it is preferred to repair such cracks.
When a crack is found on the rail, a small piece of rail section around the crack is
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cut out and replaced with a new rail piece. Since this does not significantly change
the performance of the rail section that can be miles in length, the rail sections are
assumed to be minimally repaired. Thus, it is common practice to model the number
of failures over MGT intervals as a nonhomogeneous Poisson process (NHPP).

A block replacement protocol with minimal repair (MR) in the sense of [2] was
considered in [16], and optimal replacement policies were developed. In so doing,
the authors considered a NHPP for Ni(t), the number of failures over an MGT
interval [0, t) for rail section i, with cumulative intensity Λi(t). Following [8],
the cumulative intensity was defined by modulating a baseline cumulative intensity
Λ0(t) with a function of covariates ZZZi associated with rail section i as

Λi(t,Zi ) = Λ0(t)e
βT ZiβT ZiβT Zi . (1)

The model in (1) that takes into account both the time and the covariate effects on
the failure intensity can be considered as a point process version of the proportional
hazard models of Cox. It is important to note that in (1), the baseline cumulative
intensity is assumed to be common for all rail sections and the differences between
rail sections are represented by the covariate vector ZZZi with unknown coefficient
vector βββ. If heterogeneity of rail sections cannot be fully captured by ZZZi’s, one
can consider multiplicative random effects as in [30] or a semi-parametric Bayesian
approach can be used with mixtures of Dirichlet processes following [17].

One strategy in Bayesian modeling of the cumulative intensity (1) is to assume
a parametric form for the baseline cumulative intensity Λ0(t) and to specify a
parametric prior for the coefficient vector βββ. For example, a power law model can
be specified asΛ0(t) = αtγ . As an alternative strategy, we can use a nonparametric
form forΛ0(t) and still use a parametric prior for βββ. This gives us a semi-parametric
Bayesian model. We can achieve this by treating the baseline cumulative intensity
as a stochastic process and treat Λ0(t) as an unknown sample path of the stochastic
process. This approach provides more flexibility than the parametric form since it
allows for a wide variety of different forms for Λ0(t).

As pointed out by Merrick and Soyer [16], since Λ0(t) is a nondecreasing
function taking values in [0,∞) and there is no restriction on the size of jumps of
theΛ0(t), a suitable stochastic process forΛ0(t) is a gamma process. The choice of
gamma process implies that all partitions of the sample path Λ0(t) are independent
and have gamma distributions; see [30]. Following [16], we specify the gamma
process prior for Λ0(t) as

(Λ0(t)|D0) � G(cM(t), c), (2)

where M(t) is a best guess or the mean function and c is a precision parameter
representing strength of belief about the choice of M(t) given the prior history D0.
More specifically, (2) implies that

E[Λ0(t)|D0] = M(t)
V [Λ0(t)|D0] = M(t)/c. (3)
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Note thatM(t) and c are specified in (2) where higher values of c describe a strong
prior belief in the mean function M(t). We can complete the specification of the
Bayesian model by assuming a prior distribution for βββ that is typically assumed to
be independent of Λ0(t) a priori.

2.1 Bayesian Analysis of the Modulated NHPP

Due to its conjugacy with the Poisson likelihood, the gamma process prior is a
natural choice in the nonparametric Bayesian analysis of NHPPs. It is well known
that if we assume a gamma process for the cumulative intensity function of an
NHPP, then the posterior distribution for the cumulative intensity function is also
a gamma process if all event times of the NHPP are observed; see, for example [13].
More specifically, if n event times are observed during the time interval [0, t), then
the posterior of Λ0(t) will be given by the gamma distribution

(Λ0(t)|D0, n) � G(cM(t)+ n, c + 1), (4)

and for any subinterval [s, τ ), i.e., 0 < s < τ < t , where we observe ns,τ < n event
times, the posterior distribution ofΛ0(τ )−Λ0(s) will have a gamma distribution as

(Λ0(τ )−Λ0(s)|D0, ns,τ ) � G(c(M(τ)−M(s))+ ns,τ , c + 1). (5)

Due to the inspection process used for rail sections, exact times of failures will
not be known. Inspections are typically performed using detection techniques such
as visual image analysis. Detection equipment is placed in special cars that travel
along the rail detecting and recording cracks (failures). The data is recorded in the
form of the counts over a defined interval, that is, the data is interval censored. As
a result, Bayesian analysis of modulated NHPPs using a gamma process prior is
not straightforward for interval count data. Merrick and Soyer [16] point out that in
the rail track failure data, different rail sections are inspected over different MGT
intervals that typically overlap and as a result posterior process for Λ0(t) is no
longer a gamma process. The authors proposed a data augmentation step within
the Gibbs sampler to develop Bayesian analysis of modulated NHPPs with interval
count data.

Following the notation of [16], we assume that for rail section i, the processNi(t)
is observed at ri MGT intervals with endpoints

(
ti,1, . . . , ti,ri

)
, where ti,1 < . . . <

ti,ri . We denote the number of failures on the j th MGT interval [ti,j−1, ti,j ) of rail
i by ni,j . In other words, ni,j is the realization of Ni(ti,j ) − Ni(ti,j−1). We denote
the observed data for rail section i by Di defined as

Di = {ni,j ,Zi , j = 1, . . . , ri
}
, (6)

where Zi is the covariate vector for rail section i. As noted by the authors, Zi may
include variables such as grinding level performed on the rail section, curvature
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of the rail section, and the weight and the speed limit for traffic traversing the
rail.

Given data Di on rail section i, using the independent increment property of the
NHPP, we can write the likelihood function Li(Λ0(t), βββ;Di) as

ri∏

j=1

([
Λ0(ti,j )−Λ0(ti,j−1)

]
eβββ

T Zi
)ni,j

ni,j ! × exp
{
−
([
Λ0(ti,j )−Λ0(ti,j−1)

]
eβββ

T Zi
)}
. (7)

We assume that conditional on Λ0(t) and βββ the Ni(t)s are independent
NHPPs. Given prior information and failure data from m rail sections as
D = (D0,D1, . . . , Dm), the complete likelihood is obtained as a product of
Li(Λ0(t), βββ;Di)’s, that is,

L(Λ0(t), βββ;D) =
m∏

i=1

Li(Λ0(t), βββ;Di). (8)

Development of Bayesian analysis using the gamma process prior (2) for Λ0(t)

and a standard parametric prior, such as multivariate normal, for βββ with the
likelihood function (8) requires the use of Markov Chain Monte Carlo (MCMC)
methods. Since one can easily draw samples from the full conditional posterior
distribution of βββ using Metropolis–Hastings, an efficient sampling scheme is needed
to draw from the full posterior conditional ofΛ0(t), that is, from p(Λ0(t)|βββ,D) for
all partitions of t over (0,∞). Then one can use a Gibbs sampler to develop posterior
and predictive analysis for rail failure data. Merrick and Soyer [16] proposed a
data augmentation method to draw from p(Λ0(t)|βββ,D), and we next discuss their
approach.

2.1.1 Data Augmentation for Sampling from p(���0(t)|βββββββββ,D)

To illustrate the data augmentation algorithm, we first consider a few simple
examples. Suppose that for rail section i failure data is observed for two intervals
[t1,1, t1,2) and [t1,2, t1,3) such that Di = {n1,1, n1,2,Zi

}
as shown in Fig. 1.

n1,1

t1,1 t1,2 t1,3

n1,2

0

Fig. 1 Single rail section with two intervals
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Using the independent increment property of the gamma process and the Bayes’
rule, the full conditional posterior distribution of Λ0(t) can be obtained for the
following MGT intervals:

(Λ0(t)|βββ,Di)�G(cM(t), c), t ≤ t1,1
(Λ0(t1,2)−Λ0(t1,1)|βββ,Di)�G(c(M(t1,2)−M(t1,1))+ n1,1, c + eβββT Zi ), t1,1 < t ≤ t1,2
(Λ0(t1,3)−Λ0(t1,2)|βββ,Di)�G(c(M(t1,3)−M(t1,2))+ n1,2, c + eβββT Zi ), t1,2 < t ≤ t1,3
(Λ0(t)−Λ0(t1,3)|βββ,Di)�G(c(M(t)−M(t1,3)), c), t > t1,3. (9)

We next consider the same scenario in Fig. 1 but focus on updating a subinterval
as shown in Fig. 2. Assume that for prediction purposes or for evaluating a
replacement strategy we need the posterior distribution of Λ0(t

∗), where t1,1 <
t∗ ≤ t1,2, and n∗ is the unknown number of failures between t1,1 and t∗.

As pointed out by Merrick and Soyer [16], one can obtain the posterior
distribution of Λ0(t

∗) via data augmentation. If Ni(t∗) − Ni(t1,1) = n∗ is known,
then the distribution of Λ0(t

∗) can be updated as the sum of independent gamma
random variables

[
Λ0(t

∗)−Λ0(t1,1)
]+Λ0(t1,1), where (Λ0(t1,1)|Di) is given from

the first line of (9) and

(Λ0(t
∗)−Λ0(t1,1)|βββ,Di, n∗) � G(c(M(t∗)−M(t1,1))+n∗, c+ eβββT Zi ). (10)

Similarly, we can obtain

(Λ0(t1,2)−Λ0(t
∗)|βββ,Di, n∗) � G(c(M(t1,2)−M(t∗))+ (n1,1 − n∗), c+ eβββT Zi ).

(11)
Note that the distribution of Λ0(t1,3) − Λ0(t1,2) is still given by the third line
of (9).

The final component of the Gibbs sampler is the conditional distribution of(
Ni(t

∗)−Ni(t1,1)
)

given Λ0(t) and Di . This distribution can be obtained using
the properties of NHPPs as a binomial distribution given by

t1,1

n1,1

n*

t *

n1,2

t1,2 t1,30

Fig. 2 Prediction in a single rail section
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t1,1

n1,1

n2,1

t2,1 t1,2 t2,20

Fig. 3 Two rail sections with overlapping intervals

t1,1

n2,1-n*2

n1,1-n*1

t1,2t2,1

n*1

n*2

t2,20

Fig. 4 Data augmentation for two rail sections

(
Ni(t

∗)−Ni(t1,1) = n∗|Λ0(t),Di
) ∼ Bin

(

n1,1,
Λ0(t

∗)−Λ0(t1,1)

Λ0(t1,2)−Λ0(t1,1)

)

.

(12)
It is also possible to have inspection data on two or more rail sections observed

for overlapping MGT intervals. Figure 3 illustrates such a case with two rail
sections. In this case, since the observed counts n1,2 and n2,2 are coming from
overlapping intervals, (Λ0(t1,2) − Λ0(t1,1)) and (Λ0(t2,2) − Λ0(t2,1)) cannot be
updated separately.

Similar to the prediction problem in a single rail section, we can data augment
using unobserved counts n∗

1 and n∗
2 as shown in Fig. 4. We note that, conditional

on the counts n∗
1 and n∗

2, using the independent increment property of the gamma
process, we can update the baseline cumulative intensity as

(Λ0(t2,1)−Λ0(t1,1)|βββ, n∗
1,D) � G

(
c[M(t2,1)−M(t1,1)] + n∗

1, c + eβββT Z1
)
,

(Λ0(t1,2)−Λ0(t2,1)|βββ, n∗
1, n

∗
2,D) � G

(
c[M(t1,2)−M(t2,1)] + (n1,1 − n∗

1)

+ (n2,1 − n∗
2), c +

2∑

i

eβββ
T Zi
)
,

(Λ0(t2,2)−Λ0(t1,2)|βββ, n∗
2,D) � G

(
c[M(t2,2)−M(t1,2)] + n∗

2, c + eβββT Z2
)
.

(13)
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t1,1 t1,2 t2,2 t3,2

n3,1

n2,1

n1,1

t3,1 t2,10

Fig. 5 A more general case

We can show that the full conditionals of latent counts can be obtained as
independent binomial random variables given by

(

N1(t2,1)−N1(t1,1)|n1,1,
Λ0(t2,1)−Λ0(t1,1)

Λ0(t1,2)−Λ0(t1,1)

)

� Bin

(

n1,1,
Λ0(t2,1)−Λ0(t1,1)

Λ0(t1,2)−Λ0(t1,1)

)

(

N2(t2,2)−N2(t1,2)|n2,1,
Λ0(t2,2)−Λ0(t1,2)

Λ0(t2,2)−Λ0(t2,1)

)

� Bin

(

n2,1,
Λ0(t2,2)−Λ0(t1,2)

Λ0(t2,2)−Λ0(t2,1)

)

.

2.1.2 General Data Augmentation Algorithm

As noted by Merrick and Soyer [16], as the number of inspected rail sections
and overlapping intervals increases, deciding which intervals upon which to data
augment is more complicated and, therefore, requires a systematic approach. One
alternative is to break the possible traffic usages into a partition defined by the
endpoints of all intervals. This is illustrated in Fig. 5 for the case of three rail sections
with overlapping intervals.

Merrick and Soyer [16] proposed a data augmentation algorithm to deal with the
case of m rail sections with overlapping MGT intervals. In what follows we present
the more general form of this data augmentation algorithm discussed by Kuzu and
Soyer [13]. The first step in the algorithm is to determine the intervals that will be
used for the data augmentation. Following [13], we define t∗1 < t∗2 < · · · < t∗q
as the q ordered values among the interval endpoints ti,j for j = 1, . . . , ri and
i = 1, . . . , m.

Also, we define the unobserved number of failures in the interval [t∗k , t∗k+1) for
rail section i by N∗

i,k and define B∗
k = {i : t∗k ≤ ti,j < t

∗
k+1} for k = 1, . . . , q, as

the set of rail sections that have a failure count that spans the interval [t∗k , t∗k+1). Let
S∗
i,j = {t∗k : ti,j−1 ≤ t∗k < ti,j } denote the set of all interval endpoints that fall in

interval [ti,j−1, ti,j ) and m∗
i,j = |S∗

i,j | be the number of interval endpoints in this
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set. Furthermore, define the ordered list of members of S∗
i,j by {�1

i,j , . . . , �
m∗
i,j

i,j } with

�
m∗
i,j+1

i,j = ti,j .
As pointed out by Kuzu and Soyer [13], once these components are defined

and N∗ = (N∗
i,k; i = 1, . . . , m, k = 1, . . . , q − 1) are obtained, at each itera-

tion of the Gibbs sampler we can draw from the full conditional distributions
p(Λ0(t)|N∗, βββ,D), p(N∗|Λ0(t), βββ,D) and p(βββ|N∗,Λ0(t),D). For drawing sam-
ples from p(Λ0(t)|N∗, βββ,D), we can update Λ0(t

∗
k+1) − Λ0(t

∗
k ) by using the

independent increment property of the gamma process. More specifically, given
N∗,D and βββ, a vector of covariate parameters, we can easily show that

(Λ0(t
∗
k+1)−Λ0(t

∗
k ) |N∗, βββ,D) � G(c[M(t∗k+1)−M(t∗k )] +

∑

i∈B∗
k+1

N∗
i,k, c

+
∑

i∈B∗
k+1

eβββ
TZZZ∗

i,k ) (14)

for k = 1, . . . , q − 1, where ZZZ∗
i,k denotes the covariate vector associated with rail

sections that have a failure count spanning the interval [t∗k , t∗k+1).
To obtain the full conditional distribution ofN∗

i,k’s, we consider the vectorN∗
i,j =

(N∗
i,k : t∗k ∈ S∗

i,j ) containing N∗
i,k’s that lie in the interval [ti,j−1, ti,j ) for rail section

i. GivenΔ = {Λ(t∗k+1)−Λ(t∗k ); k = 1, . . . , q− 1}, using the properties of NHPPs,
we can obtain the full conditional of N∗

i,j ’ as a multinomial given by

(
N∗
i,j |Δ,D

)
� Mult

(
ni,j , p

∗
i,j,1, . . . , p

∗
i,j,m∗

i,j

)
, (15)

where

p∗
i,j,h =

Λ0

(
�h+1
i,j

)
−Λ0

(
�hi,j

)

Λ0

(

�
m∗
i,j+1

i,j

)

−Λ0

(
�1
i,j

) , (16)

for h = 1, . . . , m∗
i,j − 1. Obviously, if m∗

i,j = 1, then N∗
i,k = ni,j . It is important

to note that N∗
i,j ’s are drawn as independent multinomials across rail sections i and

intervals j = 1, . . . , ri , for a given rail section.
The full conditional posterior distribution of βββ is not available in a familiar form,

and therefore, a Metropolis–Hastings step can be used at each iteration of the Gibbs
sampler to draw samples from p(βββ|N∗,Λ0(t),D); see, for example [4].

Computation of posterior predictive distributions of the number of failures for
new rail sections with different MGT intervals requires a minor modification of the
data augmentation as discussed in [13].
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3 Markov Modulated Markov Processes

Stochastic processes that are governed by Markov processes, which cannot be
observed, are referred to as hidden Markov models (HMM) or Markov modulated
Markov processes; see [29]. The term HMM is typically used to refer to discrete-
time processes governed by Markov chains, whereas the term Markov modulated
process is reserved for the case where the governing process is a continuous-time
Markov chain (or Markov process). A semi-Markov process can also be used as the
governing process as discussed in [24], but this will not be our focus in this section.

Ay et al. [1] consider a doubly stochastic Markov representation of the Markov
modulated Markov processes (MMMPs) where the generator is also stochastic. In
other words, the authors assume that the entries in the generator change with respect
to the changing states of yet another Markov process that describes the random
environment that the system operates in. This allows them to develop a Markovian
analysis of the model and develop Bayesian inference using MCMC methods and
consider special cases of MMMPs.

3.1 The Bivariate Markov Model

Following [1], we let Z = {Zt ; t ≥ 0} be a stochastic process such that Zt
representing the state of the system at time t. We assume that Z has a finite state
space F = {1, 2, · · · , N} and it has a Markov structure. We define an environmental
process Y = {Yt ; t ≥ 0} where Yt represents the state of the environment at time t
that has an effect on the process Z. Y is a continuous-time Markov process with a
finite state space E = {1, 2, · · · ,K} with generator

Gij =
{−ρi ifj = i
ρiPij ifj �= i. (17)

Equivalently, we can write Gij = ρi(Pij − Iij ) where I is the identity matrix. Note
that the process Y spends an exponential amount of time with holding rate ρi in
state i and, when it jumps, it randomly goes to state j with transition probability Pij
where Pii = 0. Note that the environmental process Y is unobservable.

When state of the environment Yt is i ∈ E, the observable process Z evolves as
a Markov process with generator

Ai(x, y) =
{−λi(x) ify = x
λi(x)Mi(x, y) ify �= x . (18)

The generator (18) implies that while the process Y is in state i, the processZ spends
an exponential amount of time with holding rate λi(x) in state x and, when it jumps,
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it randomly goes to state y with transition probabilityMi(x, y)whereMi(x, x) = 0.
We refer to Z as a MMMP.

As noted by Ay et al. [1], the bivariate process (Y, Z) = {(Yt , Zt ); t ≥ 0} is a
Markov process with state space E × F where the generatorQ of (Y, Z) is

Q(i,x),(j,y) =
⎧
⎨

⎩

ρiPij j �= i, y = x
λi(x)Mi(x, y) j = i, y �= x
−(ρi + λi(x)) j = i, y = x

(19)

for all i, j ∈ E and x, y ∈ F. There are well-known processes that arise as special
case of the bivariate process with generator (19). For example, Markov modulated
Poisson process of [14] is a special case where λi(x) = λi and Mi(x, x + 1) = 1.
In the setting of [14], Zt represents the total number of software failures until time t
with initial state Z0 = 0 and the state of Y process determines the failure intensity.

The Markov modulated birth–death process is another special case of the MMMP
with λi(x) = γi + μi and

Mi(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γi

γi + μi y = x + 1

μi

γi + μi y = x − 1,

where γi and μi are the birth and death rates of the process andMi(0, 1) = 1.
The MMMP reduces to a Markov modulated compound Poisson process when

Zt =
Nt∑

k=1

Wk, (20)

where N is a Poisson process with jump rate λi in environment i, Wk’s are
independent and identically distributed random variables representing the jump
size, and Mi(x, y) is the probability of having a jump with magnitude (y − x)

in environment i. One possibility is to assume that Wk’s all have the binomial
distribution with parameters ni and pi , while the jump occurs in environment i so
that

Mi(x, x + z) =
(
ni

z

)

pzi (1 − pi)ni−z (21)

for z = 0, 1, 2, · · · , ni . It is important to note that in the case of the compound
Poisson process, the environmental process Y governs both the arrival rate of the
Poisson process and the “success” probability of the binomial model (21). This is
illustrated in Fig. 6 where the Y process occupies three different states over time.
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Time

Environmental
State

3

2

1
�1, p1 �1, p1

�2, p2

�3, p3

�2, p2

Fig. 6 Modulation in the compound Poisson process

Since (Y, Z) is a Markov process with generator matrix Q, its transition
probability function

P(i,x),(j,y)(t) = P [Yt = j, Zt = y|Y0 = i, Z0 = x] (22)

is given by the exponential matrix form

P(t) = exp (Qt) =
+∞∑

n=0

tn

n!Q
n. (23)

Computationally tractable procedures for evaluation of the exponential matrix (23)
is discussed in [18].

3.2 Bayesian Analysis of MMMPs

A Gibbs sampler based on data augmentation using the history of the environmental
process Y was proposed by Fearnhead and Sherlock [9] for Bayesian analysis of
Markov modulated Poisson processes. The exact Gibbs sampler proposed by the
authors was implemented in [14] for software reliability analysis. Ay et al. [1]
modified the Fearnhead–Sherlock algorithm for developing posterior inference for
the MMMPs. In what follows, we will summarize the Ay et al. [1] modification.

The modified Gibbs sampler involves a three-stage process as in [9] to develop
inference on all unknown parameters ΘΘΘ of the MMMP as well as the latent states
of the Y process. Note that ΘΘΘ = (ρρρ, PPP , λλλ,MMM), where ρρρ = {ρi; i ∈ E}, the holding
rates of the Y process, PPP = {Pij ; i, j ∈ E}, transition probabilities of Y , λλλ =
{λi(x); i ∈ E, x ∈ F }, the holding rates of the Z process, andMMM = {Mi(x, y); i ∈
E, x, y ∈ F }, its transition probabilities.
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Fig. 7 Simulating the history of latent process Y

It is assumed that the process Z is observed completely until some time tobs ,
while the process Y is latent. We suppose that the process Z changes its state a
total of n times during [0, tobs], and we let t (1) < t(2) < · · · < t(n) denote the
jump times of the Z process. To simplify the notation, we will let z(k) = Zt(k)

denote the observed state of Z after the kth change of state and Y (k) = Yt(k) denote
the unobserved state the hidden Markov process at the kth time of change of the
observed process Z.

Following [1], we also set t (0) = 0, t (n+1) = tobs for completeness and let z(0) =
Z0 denote the initial observed state, while z(n+1) = z(n) is the last state observed.
Note that {t (k)} and {z(k)} are all contained in the data D = {zt ; 0 ≤ t ≤ tobs},
where zt is the state of the MMMP observed at time t.

Given the entire path of the hidden Markov process, F = {Yt ; 0 ≤ t ≤ tobs}, it is
possible to obtain the posterior distribution of the unknown parameters p(ΘΘΘ|F ,D).
Since F is not observed, to evaluate the posterior distribution p(ΘΘΘ|D), we use a
Gibbs sampler where we can simulate from the conditional posterior distributions
p(ΘΘΘ|F ,D) and p(F |ΘΘΘ,D) recursively by using the approach of [9].

The first stage of the modified algorithm involves simulating the state of the
hidden Markov process at each of the times t (1), t (2), · · · , t (n) given in the observed
data set D and conditional on the parameters ΘΘΘ . This is achieved by using
the forward–backward algorithm [3] given the states at the start and end of the
observation window. This is illustrated in part (a) of Fig. 7.

Given the simulated states of the Y process at each of our observation times {t (k)},
we next simulate the entire hidden Markov process Y . To do this, we first simulate
it over the interval (t(0), t (1)), then (t(1), t (2)) and so on until (t(n), t (n+1)), where
t (n+1) = tobs . The simulation over each interval is done using the uniformization



114 A. Ay and R. Soyer

of the Markov process Y assuming that ρ = maxi∈E ρi is finite. In doing so,
the Markov process Y can be represented as a Markov chain X̂ subordinated to
a Poisson process N̂ with arrival rate ρ so that Yt = X̂

N̂t
as discussed in [1]. Over

any interval (t(k−1), t (k)), given the simulated states Yt(k−1) = sk−1 and Yt(k) = sk
from stage 1, the number of arrivals from this process during (t(k−1), t (k)) can be
simulated. Finally, the states at these arrival times can be simulated recursively. The
stage 2 of the algorithm is shown in parts (b) and (c) of Fig. 7.

Stage 3 of the algorithm involves simulating a new set of parameter values using
the simulated history of the hidden Markov process and observed data. Since history
F includes information on quantities such as the total time that the hidden Markov
process Y spends in state i, the total amount of time that the modulated process
Z spends in state x, while the state of Y is i, the number of times the hidden
process Y makes a transition from state i to state j , and the number of times that
the process Z jumps from state x to y while the hidden process Y is in state i, one
can use conjugate priors for all unknown parameters. As a result, components of
the posterior full conditional distribution p(ΘΘΘ|F ,D) can be obtained analytically.
More specifically, one can use gamma priors for holding rates and Dirichlet priors
for the transition probabilities as discussed in [1].

All details of the modified Gibbs sampler and related computational issues are
given in [1]. The authors also discuss computation of marginal likelihood, in the
sense of [4], to infer the number of states of the environmental process Y as well as
treatment of different types of data.

4 Numerical Illustrations

In this section, we present two illustrations of Bayesian analysis of MMMPs using
actual data. The first illustration involves Bayesian analysis of software failure data
using a Markov modulated Poisson process, and the second illustration is on the use
of a Markov modulated compound Poisson process to analyze power outages.

4.1 A Markov Modulated Poisson Process Model for Software
Failures

We consider the “BDATA” of [11] on software testing. The data was observed over
a period of tobs = 16,648 units, and n = 207 failures were observed during this
time.

We present results from the analysis of two-state Markov modulated Poisson
process. We used proper but noninformative gamma priors for the arrival and
holding rates with parameters aλi = bλi = a

ρ
i = b

ρ
i = 0.01 for i = 1, 2. After

using a small burn-in sample, we collected 5000 simulations to obtain the posterior
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distributions. The posterior distributions of λ1 and λ2 are given in Fig. 8, and the
posterior density for ρ1 is given in Fig. 9. The posterior means of λ1 and λ2 are
given as λ1 = 0.021 and λ2 = 0.0085, and the posterior mean of ρ1 is obtained as
0.0002.

Similar to the findings of [14] for a different set of software failure data, our
analysis has shown that state 2 is acting like an absorbing state, that is, expected
holding time is infinite. The process starts in state 1, stays there for a while, and then
absorbed at state 2. We can also see this behavior by looking at the plot of actual and
the expected time between failures using the holding rate of the environment with
the higher posterior probability. This is shown in Fig. 10 where the red lines are the
expected time between failures under the specific environments. Note that expected
time between failures is higher under state 2, which has the lower failure rate, and
the fact that the process is absorbed at state 2 suggests that the software debugging
process has resulted in reliability improvement.
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Fig. 10 Actual versus expected time between failures based on posterior modes of state distribu-
tion

4.2 A Markov Modulated Compound Poisson Process Model
for Power Outages

In this section, we consider a Markov modulated compound Poisson process model
for outage data from Loudoun County, Virginia, from May 1, 2014 to December
31, 2019 and the number of customers affected by each outage. The data consists
of 1949 outages with the number of customers affected by each outage ranges from
1 to 1141. We use hours as the time unit in our analysis. We note that this data is
different than the Stafford County, Virginia data considered in [1].

We consider a binomial model for representing the number of customers affected
by each outage as in (21) but with ni = n representing the total number of
customers (that is, households) that potentially could be affected by each outage.
As in the previous section, we present results from the analysis using a two-
state environmental process that now governs both the arrival and holding rates as
well as the probabilities of the binomial model (21) process. We used proper but
noninformative priors for all parameters. Specifically, gamma priors for the arrival
and holding rates with aλi = bλi = a

ρ
i = b

ρ
i = 0.01 for i = 1, 2. We specified beta

priors for binomial probabilities with api = b
p
i = 0.01 for i = 1, 2. Again, after

using a small burn-in sample, we collected 5000 simulations to obtain the posterior
distributions.

The posterior distributions of λ1 and λ2 are shown in Fig. 11 where the posterior
means can be obtained as λ1 = 0.772 and λ2 = 6.337 implying that environment 2
is a more severe environment than environment 1. In other words, we expect to see
more outages under environment 1.
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The posterior distributions of the holding rates ρ1 and ρ2 of the environmental
process are given in Fig. 12. The posterior means of holding rates are very close
given by ρ1 = 0.0000968 and ρ2 = 0.0000934 suggesting that the environmental
process spends equal time in both states.

The posterior distributions of the binomial probabilities p1 and p2 are illustrated
in Fig. 13. The posterior means of pi’s can be obtained as p1 = 0.068 and p2 =
0.108 suggesting that it is more likely that an household will be affected from an
outage when the environmental process is in state 2. This is intuitive since state 2
represents a more severe environment in this case. We note that similar results were
obtained in [1] for Stafford County, Virginia.



118 A. Ay and R. Soyer

0

0
5

T
im

e 
be

tw
ee

n 
ou

ta
ge

s

10
15

500 1000 1500

Outage Index

2000

Actual
E1
E2

Fig. 14 Actual and expected time between outages based on the environmental state with the
highest posterior probability

As we did in the previous illustration, we can also look at the state occupancies of
the environmental process and compare them with the actual time between outages.
We show in Fig. 14 the actual time between outages (in hours) in black and the
expected time between outages in red when the posterior probability favors state 1.
The expected time between outages when the posterior probability favors state 2 are
shown in green. Again we see from the figure that the state 2, which is the more
severe environment, is associated with shorter outage times.

5 Concluding Remarks

In this chapter, we have discussed some of the recent work in Bayesian computing
in reliability analysis in dynamic environments. In doing so, first we have focused
on Bayesian computations for semi-parametric NHPPs for analysis of interval count
data and presented a data augmentation algorithm to alleviate difficulties associated
with the use of gamma process priors. The second class of models considered was
the MMMPs for which we discussed a modified algorithm based on the work of [9].
Although both classes of models were motivated from reliability problems, they
have applications in other areas in operations such as call center modeling; see [30]
and ticket queues; see [13].
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Bayesian Analysis of Stochastic Processes
in Reliability

Evans Gouno

Abstract In reliability, models involving complex stochastic processes play an
important role. This type of model allows analysts to handle many problems such
as the missing data or uncertain data problem. The Bayesian approach relying on
prior belief or expertise appears to be a natural tool in such situations. Thus the
Bayesian approach provides efficient methods for reliability analysis with stochastic
processes. The objective of this chapter is to describe the main techniques to make
Bayesian inference for stochastic processes.

1 Introduction

The literature on stochastic processes is plethoric. It is clear that the theory of
stochastic processes contains many tools that can be applied to deal with different
problems arising in the domain of reliability. Indeed reliability issues involve
counting events or observing durations or to be general, non-negative random
variables such as kilometers, the numbers of cycle, etc. The events of interest can be
of different natures. Usually, they correspond to failures. Thus durations are times
to failure or times elapsed between events. These elapsed times between events are
often called interarrivals. Depending on the nature of the observation, the model
will be different. In the case of interarrivals, renewal processes are the natural
approach. When counting events, Poisson processes cover many situations since
they are characterized by their intensities that can have many different forms.

Kijima and Shaked [37] gave a comprehensive overview of the applications
and the concepts of stochastic processes theory in the field of reliability. They
reviewed the use of the first-passage time concept in Markov chain and in some
non-Markovian processes to deal with aging in maintenance issues. They describe

E. Gouno (�)
Université Bretagne Sud, LMBA, Vannes, France
e-mail: evans.gouno@univ-ubs.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Lio et al. (eds.), Bayesian Inference and Computation in Reliability and Survival
Analysis, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-88658-5_6

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88658-5_6&domain=pdf
mailto:evans.gouno@univ-ubs.fr
https://doi.org/10.1007/978-3-030-88658-5_6


122 E. Gouno

cumulative damage shock processes. They also display some results for comparison
of repairable systems and replacement policies via point processes.

Ridgon and Basu [64] provided a general review of statistical methods
for repairable systems. Kamranfar et al. [35] compare classical and Bayesian
approaches for statistical analysis of a repairable sytem exposed to shocks.
Nakagawa [55] surveyed basic stochastic processes with applications to reliability.
Singpurwalla [69] proposed a road map to describe the stochastic process approach
to failure models that displays the diversity of models from Poisson processes to
extended gamma processes through shot noise processes. The book [70] provides a
comprehensive overview of the use of stochastic processes for software reliability.

For this chapter, the goal is to give an overview of the Bayesian inference for
some stochastic processes that are used in the context of reliability. The following
section recalls the basic definitions and properties of stochastic processes. The
intensity function is the fundamental object that characterizes a stochastic process.
In Sect. 2, we propose a survey that displays various forms of intensity functions.
After a short reminder of the principle of the Bayes analysis, we review applications
of the Bayesian techniques for inference on various types of stochastic processes.
This chapter is not intended to be an exhaustive review since hundreds of papers and
entire books on the topic [5, 32] are available.

2 Stochastic Processes

A stochastic process can be viewed as a mathematical tool to describe a collection
of points on the real line. One can be interested in the position of the points on the
real line (dates) or in the number of points in a given interval (a time interval) or in
the distance between two successive points (interarrival times). In practice, a point
corresponds to an event (for example, a failure). Therefore, a stochastic process is
described as a sequence T1, T2, T3, . . . of dates, where Ti is the date of the i-th event,
or as a sequence of interarrivals X1, X2, . . . with Xi = Ti − Ti−1, i = 1, 2, . . .,
T0 = 0, or as

{
N(t), t � 0

}
, where N(t) is the number of points in [0, t]. It seems

natural to consider that the evolution of the process at a given time t might depend
on the history of the process that is to say, the sequence Ht = {t1, t2, . . . tN(t−)

}
or

Ht = {
N(u); 0 � u � t−

}
, where ti is a realization of the random variables (r.v.)

Ti | Ti−1, . . . , T1.
A classical procedure to characterize a stochastic process is to assume the

following:

i. The numbers of events happening in disjoint intervals of time are independent.
ii. The probability of two or more events in an infinitesimal interval of length h is
o(h):

Pr
(
N(t, t + h) > 1 | Ht

) = o(h).
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iii. The probability of exactly one event in an infinitesimal interval of length h is
proportional to h with a coefficient λ(t) depending on time

Pr
(
N(t, t + h) = 1 | Ht

) = λ(t) h+ o(h), (1)

where o(h) is such that o(h)/h goes to 0 when h goes to 0.
The coefficient λ(t) is called the intensity of the process. It is the rate of

occurrence of failures (ROCOF) in reliability. Since

lim
h→0

1

h
P r
(
N(t, t + h) = 1 | Ht

) = λ(t),

it is also called the instantaneous failure rate so that it is not confused with the
hazard rate.

From the above assumptions, the distribution of the number of failures in the
interval [0, t] can be obtained as a Poisson distribution with parameter:

Λ(t) =
∫ t

0
λ(s)ds

and

Pr
(
N(t) = k) = Λ(t)k

k! e−Λ(t), ∀k ∈ N, t ∈ R
+. (2)

Thus the expected number of failures at time t is

E[N(t)] = Λ(t).

Λ(t) is called the mean function of the process. This characterization defines an
important family of processes that is named Poisson processes. This family is very
popular since according to the form of λ(t), the intensity, Poisson processes cover
many situations for practical applications.

In this family, processes can be classified into two categories according to the
limiting behavior ofΛ(t) [40]. We distinguish processes such that limt→+∞Λ(t) is
finite and processes where Λ(t) goes to infinity when t goes to infinity.

2.1 Distributions Associated with Stochastic Processes

From (i.) and (2), one can write: for any 0 � s < t

P r
(
N(s, t) = k) =

(
Λ(t)−Λ(s))k

k! e
−
(
Λ(t)−Λ(s)

)

, ∀k ∈ N.
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Remark that: Pr
(
N(ti−1, t) = 0

) = Pr(Ti > t | Ti−1 = ti−1).

Therefore, Pr(Ti > t | Ti−1 = ti−1) = exp
{− (Λ(t)−Λ(ti)

)}
, and taking the

derivative, we obtain the probability density function (p.d.f.) of Ti given
Ti−1 = ti−1:

fTi |Ti−1=ti−1(t) = λ(t) exp
{− (Λ(t)−Λ(ti)

)}
, i = 1, . . . , n.

Let us consider TnTnTn = (T1, T2, . . . , Tn) as a sample of dates with T1 < T2 < . . . <

Tn. Suppose that TnTnTn admits a p.d.f. fTnTnTn(.).
This p.d.f. can be expressed as

fTTT (ttt) =
n∏

i=1

fTTT i |TTT i−1=ttt i−1
(ti),

where TiTiTi = (T1, T2, . . . , Ti), tititi = (t1, t2, . . . , ti ).
A general expression for the marginal distribution of the i-th failure date, i > 1,

can be proposed as

Pr(Ti � t) = Pr(N(t) � i) =
+∞∑

k=i

Λ(t)k

k! e−Λ(t), i = 1, . . . , n.

Taking the derivative, we have the p.d.f.

fTi (t) = Λ(t)i−1

(i − 1)! Λ
′(t) e−Λ(t), i = 1, . . . , n.

For the distribution of Xi = Ti − Ti−1, the time elapsed between the (i − 1)-th
failure and the i − th failure, we have

Pr(Ti − Ti−1 > t | Ti−1 = s) = Pr(N [s, s + t] = 0).

Therefore,

Pr(Ti − Ti−1 > t | Ti−1 = s) = exp{−[Λ(s + t)−Λ(s)]}

and

Pr(Xi > t) =
∫ +∞

0
Pr(Ti − Ti−1 > t | Ti−1 = s) fTi−1(s)ds

=
∫ +∞

0
exp{−Λ(s + t)} Λ(s)

i−2

(i − 2)! dΛ(s).
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The previous expressions of the distributions of Ti and Xi depend on the mean
function Λ(t) and thus on the intensity function λ(t). The next section is devoted to
the various possible forms of intensity function.

3 Intensity Functions

As mentioned before, a stochastic process is characterized by its intensity function,
that is to say this intensity function accounts for the behavior of event occurrences.
This function needs to be an integrable function. In this section, we investigate the
different possible forms of the intensity function.

A basic example is the situation where the rate is not depending on time that is
λ(t) = λ. Then the process is the well-known homogeneous Poisson process (HPP).
In this case, interarrivals are independent r.v. and follow an exponential distribution
with rate parameter λ. The date of the i-th event has a gamma distribution with
parameter (i, λ). The number of events occurring in an interval of length t follows a
Poisson with parameter λt , and the expected number of failures is a linear function
of t with a slope equal to λ. Therefore, performing Bayesian techniques in this case
turns around performing Bayesian techniques for exponential distribution or Poisson
distribution.

When the rate depends on time, the process is said to be a non-homogeneous Pois-
son process (NHPP). This family of Poisson processes is clearly a rich family, since
one can imagine a vast number of forms for the intensity. That is the reason why it
has been used in many fields from epidemiology to actuarial sciences (seismology,
neurophysiology, software reliability). McCollin [48] described various forms of
intensity for NHPP. Table 1 displays some classical expressions.

The choice of the shape intensity depends on the problem being investigated. For
example, studying subway train doors reliability, Pievatolo et al. [60] suggest the
following intensity function:

λ(t) = α log(1 + βt)
1 + β , α, β � 0,

where t are kilometers run by the train.

Table 1 Some classical
examples of intensity
function

Model λ(t)

Exponential λ0

Polynomial λ0 + αt (linear ROCOF)

λ0 + αt + βt2 (quadratic ROCOF)

Duane [19] αβtβ−1

Cox–Lewis [14] exp
{
α + βt}, α, β > 0

Goël–Okumoto [24] αβe−βt , α, β > 0

Musa–Okumoto [54] αβ/(1 + βt)



126 E. Gouno

When periodicity is involved (earthquakes), the following form can be conside-
red:

λ(t) = exp {α + ρ sin(ωt + θ)} .

Ruggeri and Sivaganesan [65] defined the general class of NHPPs described by
an intensity function of the form λ(t;M,β) = Mg(t, β), with M , β > 0. This
formulation is very convenient to develop a Bayesian approach. One can see that
the models in Table 1 belong to this class. Huang and Bier [31] considered an
exponential intensity of the form λ(t) = λ0e

βt , β ∈ R, which is again an element
of this class.

Kuo and Yang [40] suggested an interesting categorization of NHPP models
relying on general order statistics (GOS) model and record values statistic (RVS)
model that unifies models used in software reliability and gives in the same time, a
technique to generate different forms of intensity. The basic set-up for observation
of a stochastic process is a time window [0, C] where jumps of the process are
recorded. We have a sequence of dates t1, t2, . . . , tn such that t1 � t2 � . . . �
tn � C and n is the realization of a discrete r.v. N . This sequence can be
interpreted as the first-order statistic from a random sample of n positive random
variables X1, . . . , Xn. When the distribution of the Xi’s is assumed to be of the
form βf (βt | θ), this model is called the general order statistics (GOS) model
[61]. If N has a Poisson distribution with parameter ρ, this model is equivalent to
a NHPP with an intensity function λ(t) = ρf (βt), (ρ > 0). If F is the cumulative
distribution function (c.d.f.) associated to f , then the expected number of failures
at t is Λ(t) = ρF(βt) and can be interpreted as ρ, the expected number of failures
over [0,+∞) times a weight F(t). These approaches generate a category of NHPPs
that can be characterized by the fact that the expected number of failures at time t is
such that lim

t→+∞Λ(t) < +∞. The NHPPs with such property are said to be NHPP-

I [40]. Classical choices for f are exponential, Weibull and Pareto distributions.
Remark that the exponential case corresponds to the Goël–Okumoto model. Kundu
et al. [38] studied in more details the analogy between NHPP and GOS models in
the context of software reliability.

Another elegant result given by Kuo and Yang [40] is to consider the sequence
t1 � t2 � . . . � tn as record values. Let us recall the definition of record
values. Suppose X1, . . . , Xn a n sample of independent and identically distributed
random variables with p.d.f. f and c.d.f. F . We define the sequence of record values{
Tn, n � 1

}
and the record times Rk , k � 1, as follows [70]:

R1 = 1,
Rk = min

{
i : i > Rk−1, Xi > XRk−1

}
, for k � 1, and

Tk = XRk , for k � 1.
The sequence

{
Tk, k � 1

}
can be associated to a NHPP via the following result

from Dwass [20]:
Suppose that the date of events is described as the record values generated by
a collection of independent and identically distributed random variables with a
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common distribution F . Let N(t) denote the number of events in times [0,t]. Then{
N(t), t �

}
can be described by a NHPP with mean value function Λ(t) =

log
(

1/
(
1 − F(t))

)
, and intensity function λ(t) = f (t)/

(
1 − F(t)), where f (t)

is the p.d.f. at t , if it exists [70].
This approach is particularly interesting in the context of software reliability

where a repair might introduce new potential bugs. Therefore, the mean value
function is no longer bounded. Indeed, in the RVS model, lim

t→+∞Λ(t) = +∞. The

models from this family are said to be NHPP-II [40]. When f is the exponential
p.d.f., we have a homogeneous Poisson process. When f (x) = αβα/(β + x)α+1, a
Pareto p.d.f., we have the Musa–Okumoto process. When f (x) = αβtβ−1e−αtβ , a
Weibull p.d.f., we have the PLP.

Thus, a large panel of intensity and process can be introduced providing model
with a great flexibility.

For example, Vicini et al. [75] considered the generalized Gamma distribution
leading to the following expression of the intensity:

λ(t) = 1

Γ (k)
θβkαtαk−1 exp

{− βtα}.

Another example of intensity with high flexibility is given by Ramirez Cid et al.
[63] who considered a p.d.f. from the exponentiated Weibull family [53] and studied
the NHPP with an intensity function of the form:

λ(t) = αθ
[
1 − exp

(− (t/σ )α)]θ−1 exp
(− (t/σ )α)(t/σ )α−1

σ
(
1 − [1 − exp

(− (t/σ )α)]θ )
,

which they named the exponentiated Weibull intensity.

If α � 1 and θ � 1/α, λ(t) is monotone increasing.
If α � 1 and θ � 1/α, λ(t) is monotone decreasing.
If α > 1 and θ < 1/α, λ(t) has a bathtub form (0 < θ < 1).
If α < 1 and σ > 1/α, λ(t) is unimodal.

The exponentiated-Weibull intensity has the advantage to cover many situations
of monotonicity in particular it could be suitable for bathtub form. Bar-Lev et al.
[2] developed a systematic method to build intensity function that also has this
property. Their technique called operator-based intensity allows the construction
of huge classes of non-monotonic intensity functions (convex or concave) for
nonhomogeneous Poisson process, all of which convenient to modeling bath curve
data.

More recently Bar-Lev and van der Duyn Schouten [3] studied in more detail
the subclass of intensity generated by the operator-based intensity for which the
base function is the intensity function of the power law. This special class is named
exponential power law process.
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Yang and Kuo [77] considered the superposition of NHPP that provides more
flexibility on the rate of occurrence of failures. For example, the intensity of a
process obtained by superposition a Musa–Okumoto process and a PLP has three
possible types of shapes: increasing, decreasing, and bathcurve [29]. Yang and Kuo
made Bayesian inference for this case using Markov Chain Monte Carlo (MCMC).

Another approach to generate flexible intensities is suggested by Ryan [62]. The
basic idea is to “switch” from an intensity to another as t increases. For example,
one can consider intensity of the form:

λ(t) = [1 −G((t − ω)/σ )]λPLP (t)+G
(
(t − ω)/σ )μ,

where λPLP (t) is the intensity of a power law process (see Table 1),G is an arbitrary
c.d.f., and ω, σ , μ parameters to be estimated.

An important family of intensity was introduced by Hawkes [26] defining self-
exciting point processes (SEPP). A SEPP is a stochastic process such that the rate
of failures at time t is not only depending on t but also on the number of failures
N(t−) that occurs before t [71]. Thus the intensity is itself a stochastic process since
it depends on the process

{
N(t), t � 0

}
. It is called the intensity process. Thus SEPP

belongs to the family of doubly stochastic Poisson processes as introduced by Cox
in 1955 [11]. With SEPP, the numbers of events in disjoint intervals are no longer
independent. An example of SEPP is the classical birth and death process [36]. The
intensity of a birth and death process is defined as a Markov process such that:

Pr
(
N(t + h) = j | N(t) = i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λi h+ o(h), j = i + 1,

1 − (λi + μi) h+ o(h), j = i,
μi h+ o(h), j = i − 1,

o(h), otherwise,

(3)

with i = 0, 1, 2, . . ., λi � 0, μi � 0 and P
(
N(0) = n0

) = 1, n0 � 0. λi (the birth
rate) and μi (the death rate) depend on i. When μi = 0, ∀i, the process is a pure
birth process. A classical choice for the birth rate is λi = iλ (Yule’s process). When
λi = 0, we have a pure death process that moves from an initial state n0 through
state n0 − 1, n0 − 2, . . . , 2, 1 until 0 (extinction). A classical choice for the death
intensity is μi = (N − i)μ to describe the extinction of a population where each
individual has a probability μ to die. In the context of software reliability, the death
process is underlying the Jelinski–Moranda model. This model assumes thatN bugs
are present in the software at the initial time. Each time a failure occurred, the bug
is fixed without delay leading to a reliability growth. When all the bugs have been
fixed, the intensity is zero.

Many stochastic processes can be interpreted as SEPP. Singpurwalla and Wilson
[70] pointed out that almost all of the proposed models for software reliability are
special cases of the SEPP. Chen et al. [10] used SEPP to unify software reliability
models.
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Table 2 Some examples of
response functions

Response function g(t)

Lomnitz formula αe−βt , α < β
Omori formula K/(t + c)p

Laguerre type polynomial
m∑

k=0

akt
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Fig. 1 Intensity of a SEPP for a Lomnitz response function with μ = 0.5, α = 4, and β = 5

In a seminal paper, Hawkes [26] considered the general following expression for
the intensity:

λ(t) = μ+
∫ t

−∞
g(t − s)dN(s). (4)

Before the first jump, the process behaves like a HPP and then each jump generates
a modification of the rate of events. The function g is called the response function
that has many possible forms. Table 2 displays some examples.

Let us consider an example of SEPP. Suppose that we observe a sample t1, . . . , tn
of dates of events. The expression (4) is equivalent to λ(t) = μ before t1 and

λ(t) = μ+
i−1∑

j=1

g(tj − tj−1)+ g(t − ti−1), after ti .

Figure 1 displays the intensity of a SEPP for a Lomnitz response function with
parameters μ = 0.5, α = 4, and β = 5.

To end this section on intensity, let us mention the Cox model [12] that suggests
a relationship between the hazard rate and some covariates of the form:

λ
(
t; z)) = exp{βββ ′z(t)

}
λ0(t), (5)

where z(t) is a p-dimensional vector describing the environment at time t ; the
component of z(t) could be constraints such as temperature, voltage, etc., βββ is a
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vector of unknown parameters to be estimated, and λ0(t) the baseline, the hazard
rate, in the standard conditions. As we mentioned before, the intensity should not be
confused with the failure rate (hazard rate) but a stochastic with an intensity of the
form (5) worth to be investigated [13]. Merrick et al. [51] considered an intensity
of such form with λ0(t) = αγ tγ−1 to study the effect of a maintenance practice on
railroad tracks. The components of the vector z are the amount of grinding that is
applied on rail fatigue defects and some other physical characteristics of the rail.

4 Bayesian Inference

The basic principle for a Bayesian approach of statistical inference is to assume a
prior distribution for the unknown parameter of the statistical model and to consider
an update of this prior through the observation called the posterior distribution. The
procedure relies on the Bayes formula. Let f (x | θ) be the distribution of X (in
practice, f (x | θ) is often inaccurately called the likelihood) and π(θ), a prior
distribution of θ . The posterior distribution of θ given x is

π(θ | x) = f (x | θ)π(θ)/f (x),

where f (x) =
∫

Θ

f (x | θ)π(θ)dθ , the commonly named the predictive distribu-

tion.
Different strategies are available to define Bayes estimators. Very often, the

expectation associated to the posterior distribution or its mode is retained. For
an extended complete coverage of Bayesian analysis, the book of Berger [4] is a
reference book. In order to develop Bayesian techniques for inference on stochastic
process, we need to express the likelihood associated with the observation of this
latter. Then choices for the prior distribution are to be made. Different expressions
for the likelihood are obtained depending on the form of the observation. Roughly
speaking, the observation is usually a total number of events accompanied by
a sample of dates. We have remarked previously that many processes can be
interpreted as SEPP. Therefore, we choose to write the likelihood for a SEPP with
an intensity function denoted λ(t,Ht ) to be general.

Let us consider
{
t1, t2, . . . , tN(C)

}
a sequence of dates in a time window [0, C].

A general expression for the likelihood [16] can be obtained as

L
(
θ | N(C)) =

N(C)∏

i=1

λ(ti,Hti ; θ) exp

{

−
∫ C

0
λ(s,Hs; θ)ds

}

, (6)

and the log-likelihood is
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logL(θ | N(C)) =
{∫ C

0
log
(
λ(t,Ht ; θ)

)
dN(t)−

∫ C

0
λ(s,Hs; θ)ds

}

. (7)

In some situation, N(C) is predetermined; it is a fixed number n that is to say the
observation stops after the n-th events. In this case, the likelihood is

logL(θ | N(C)) =
n∑

i=1

log λ(ti,Hti ; θ)−
∫ tn

0
λ(s,Hs; θ)ds. (8)

Here the parameter of interest is θ that is an element of a subset Θ of R
q . Let

us recall that the intensity is itself a stochastic process. A nonparametric point of
view can be adopted assuming a prior for the stochastic process

{
λ(t,Ht ), t ≥ 0

}

or the mean value function. Lo [46] proved that a gamma process is a conjugate
prior for the Poisson process model. This approach leads to interesting theoretical
development relying on measure theory.

The expression of the likelihood displayed in (6) is general. Every hypothesis of
intensity will generate a particular form. Therefore, the choices of prior distribution
for the parameters needed in order to perform a Bayesian inference for stochastic
processes will depend on the nature of the stochastic process.

In the following, we review some classical stochastic process examples that are
useful in the context of reliability.

5 Homogeneous Poisson Process

The parameter of interest for a HPP is the constant intensity λ. We have the
following results:

• The expected number of failures at time t is proportional to λ: Λ(t) = λt .
• The interarrivals have an exponential distribution with parameter λ (a HPP with

intensity λ is a renewal with independent exponential interarrivals with parameter
λ).

• The i-th failure date has a gamma distribution with parameters (i, λ).

Thus deriving a Bayesian approach for a HPP boils down to consider Bayesian
inference for a Poisson distribution or an exponential or a gamma distribution
depending on the observation considered (the numbers of events, times between
failures, dates of failure). The literature on the topic is considerable. The Poisson
distribution and the exponential distribution are classical basic examples used
to illustrate the Bayesian paradigm. They are also interesting to investigate and
illustrate the problem of prior parameters elicitation; examples and references are
given in [32].

In the following section, we investigate some classical examples of nonhomoge-
neous Poisson process. We begin with the PLP.
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6 The Power Law Process

For a HPP, the expected number of failures is a linear function:Λ(t) = λt . A natural
generalization is to consider a function of the form:

Λ(t) = λtβ, β > 0.

In this case, we have a NHPP with intensity λβtβ−1. This model is clearly
more flexible than the HPP model and covers different possible evolutions for
the expected number of failures (growth, decay). A stochastic process with such
intensity function is called a power law process (PLP). Others denominations can
be found in the literature: Duane process, Weibull process, etc. The PLP is very
popular because of its mathematical tractability, and the literature on this process is
extensive. Another common parametrization is

λ(t) = β

αβ
tβ−1, α > 0, β > 0,

called the Weibull intensity [21].
The denomination Weibull process is misleading since some authors call Weibull

process, the renewal process with Weibull independent interarrivals [72, 73]. For a
PLP, only the time to the first failure has a Weibull distribution. The distribution of
the time Ti to the i-th failure given the time ti−1 of the (i − 1)-th failure is a left-
truncated Weibull distribution with support [ti−1,+∞[. Suppose that we observe n
events t1 < . . . < tn in a time window [0, C]. Taking into account the fact that no
failure occurs between tn and C, the writing of the likelihood is straightforward:

L(α, β) = f (t1)f (t2 | t1)f (t3 | t2, t1) · · · f (tn | tn−1 · · · t1)P
(
N(tn, C) = 0

)

= βn

αnβ

n∏

i=1

t
β−1
i exp

{

−
(
C

α

)β
}

. (9)

The same expression can be obtained by applying (6).
We review in the following Bayesian approach for inference on the PLP.
Considering the parametrization λ(t) = λβtβ−1 and assuming that the obser-

vation stops at tn, Higgins and Tsokos [27] suggested what they refer to as a
quasi-Bayes strategy to estimate the value of the intensity at the n-th failure date that
is νn = λβtβn . They computed a pseudo-likelihood for νn as a parameter, considered
a gamma prior distribution for νn, and obtained the quasi-Bayes posterior mean as a
Bayesian estimate of νn. They compared maximum likelihood estimates and quasi-
Bayes estimates through simulations that demonstrate results quite favorable to the
quasi-Bayes estimates.

Kyparisis and Singpurwalla [41] analyzed both interval and event truncation data
by employing informative priors on α and β and derived prediction distributions of
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future jumps and the number of jumps in some future time interval. Their predictive
and posterior distributions generally require complicated numerical computations.

Assuming a sample t1, . . . , tn, successive occurrence times of failures from a
PLP process, Guida et al. [25] proposed Bayes estimators considering different types
of priors. They considered: 1. a non-informative prior for the two parameters, 2. a
combination of informative and non-informative priors, and 3. an informative case.
For illustration, the obtained estimators are displayed hereafter. They do not have
closed-form expression and require numerical computations:

1. Non-informative prior

π(α, β) ∝ 1

αβ
Bayes estimators

β̂ = 1

n− 1

n∑

i=1

log(tn/ti)

α̂ = tnz
n−1

Γ (n)Γ (n− 1)

∫ +∞

0
βn−2wβΓ (n− 1/β)dβ

2. Informative/non-informative
π(β) ∝ U [β1, β2]
π(α) ∝ 1

α
, α > 0

Bayes estimators

β̂ = I (β1, β2; n)
I (β1, β2; n− 1)

α̃ = tn

Γ (n)

I (β1, β2; n)
I (β1, β2; n− 1)

,

where I (β1, β2; k) =
∫ β2

β1

βkwβdβ.

3. Informative
π(α | β) = βbaCβα−β−1 exp

[− b(C/α)β]/Γ (a)
π(β) ∝ U [β1, β2]
Bayes estimators

β̂ = I2(β1, β2; n+ 1)

I2(β1, β2; n)
with I2(β1, β2; k) =

∫ β2

β1

βkw
β
C

[
(tn/C)

β + b]−n−adβ

α̂ = C

Γ (n+ a)
I3(β1, β2; n)
I2(β1, β2; n)

with I3(β1, β2; k) =
∫ β2

β1

βnw
β
C

[
(tn/c)

β + b]−n−a+1/β
Γ (n+ a − 1/β)dβ

Calabria et al. [6] derived predictive distributions for future failure times using
both informative and non-informative priors and noted the numerical equivalence
with classical methods when non-informative priors are used. The above three
references usually assume that the prior distributions on α and β are independent.
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Alternatively, they consider independent priors on α and the mean value function
Λ(t), with t fixed. Both scenarios can be handled in the same manner and result
in the same type of posterior inference on α and β in contrast to the frequency
approach in which each case must be treated separately and different types of
results are obtained. Yu et al. [78] developed Bayesian techniques for predictive
inference on the PLP. Bar-Lev et al. [1] considered a non-informative prior of the
form (αβν)−1. They expressed the posterior distributions and present techniques
for making prediction on the number of failures in times intervals and prediction
on future failure times. From the same form of non-informative prior, Sen [67]
showed that the posterior inference of current intensity yields closed-form results.
He considered various loss functions to calculate the Bayes estimators of λ(t).
The expressions have the form of the MLE times a weight and can be seen as
generalization of some classical frequentist estimators.

An important issue is the elicitation of the hyperparameters, that is to say
the determination of the prior parameter values. De Oliveira et al. [17] pro-
posed a reparametrization of the likelihood considering η = (C/α)β in (9).
The parametrization has the advantage to facilitate the prior elicitation since the
parameters have a simple operational interpretation. Indeed, η is the expected
number of failures and β is the elasticity of this number.

Huang and Bier [30], among others [9, 17, 18], developed conjugate prior
distribution for the parameters of the PLP.

Relying on [30], Do and Gouno [18] defined the Huang–Bier (H–B) distribution
as a natural conjugate prior distribution. It is a bivariate distribution with 4
parameters.

Definition 1 A bivariate r.v. (X, Y ) ∈ R
+ × R

+ has a Huang–Bier distribution
with parameters (a, b, c, d) where a, b, c, d > 0 and such that c < da , denoted
(X, Y ) ∼ HB(a, b, c, d), if it has a p.d.f. of the form:

fX,Y (x, y) = K (xy)a−1cy exp{−bdyx}, (10)

where K = [b log(da/c)]a/Γ (a)2.

Figures 2, 3, and 4 display the density and contour plots for Huang–Bier
distribution with different parameter values.

The following theorem provides the conditional distribution of X.

Theorem 1 Let (X, Y ) ∼ HB(a, b, c, d). Then:
(i) Y has a gamma distribution with parameters

(
a, log(da/c)

)
.

(ii) X given Y = y has a gamma distribution with parameters (a, bdy).

This theorem allows to compute the expectation of X:

E(X) = a

b

[
log(da/c)

log(da+1/c)

]a
, (11)
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Fig. 2 Density plot and contour plot of the HB(10, 1, 2, 1, 10)
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Fig. 3 Density plot and contour plot of the HB(10, 10, 2, 1, 10)

x0
1

2
3

y

0

2

4

6

8

z

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

Fig. 4 Density plot and contour plot of the HB(10, 100, 2, 1, 10)
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and the expectation of Y :

E(Y ) = a

log(da/c)
. (12)

The variances are

V ar(X) = a

b2

[
log(da/c)

log(da+1/c)

]a
and V ar(Y ) = a

[
log(da/c)

]2 .

It is interesting to remark that when d = 1, X and Y are independent and have
gamma distributions.

We have the following theorem:

Theorem 2 Let (X, Y ) ∼ H −B(a, b, c, 1). ThenX and Y are independent,X has
a gamma distribution with parameters (a, b), and Y has a gamma distribution with
parameters (a, log(1/c)).

Thus when d = 1, the expectations and the variances are easily obtained.
E(X) = a/b, V ar(X) = a/b2, E(Y ) = a/ log(1/c), and V ar(Y ) =

a/[log(1/c)]2. The following theorem claims that the HB distribution is a natural
conjugate prior for the PLP Bayesian inference.

Theorem 3 Let t = (t1, . . . , tn) be the jump dates of a PLP with intensity λβtβ−1.
Then a Huang–Bier distribution with parameters (a, b, c, tn) is a natural conjugate
prior, and the posterior distribution is a Huang–Bier distribution with parameters
(n+ a, 1 + b, c∏ni=1 ti , tn).

Assuming a quadratic loss, the Bayes estimators are the expectation of the
posterior distributions. Therefore, from (11) and (12), we have

β̂ = n+ a
log
[
ta+nn /

(
c
∏n
i=1 ti

)] (13)

and

λ̂ = n+ a
1 + b

⎡

⎣
log
[
ta+nn /

(
c
∏n
i=1 ti

)]

log
[
ta+n+1
n /

(
c
∏n
i=1 ti

)]

⎤

⎦

n+a

. (14)

7 Software Reliability Models

Software reliability is a domain where stochastic processes play a central role. Many
models suggested in this domain have an inherent Bayesian flavor. Soyer [74] gave
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an overview of the state of art in software reliability. The book of Gaudoin and
Ledoux [22] and the book of Singpurwalla and Wilson [70] are major contributions
on the topic that give a complete framework to handle problems involved in the
domain. In this section, we review some traditional models and their Bayesian
analysis.

7.1 Jelinski–Moranda Model

The famous Jelinski–Moranda model (J–M model) is an application of the classical
extinction processes well known in population studies and in biology. Suppose a
population of size n, and consider the process

{
N(t), t � 0

}
, and the number of

remaining individuals in the population (N(0) = n). A jump of this process is
interpreted as a death.

{
N(t), t � 0

}
can be interpreted as a Markov process whose

state space is 0, 1, . . . , n and for which:

i. P
(
N(t + h) = j − 1 | N(t) = j) = λjh+ o(h), i = 1, . . . , n.

ii. P
(
N(t + h) = j | N(t) = j) = 1 − λjh+ o(h), i = 1, . . . , n.

iii. P
(
N(t + h) > j | N(t) = j) = 0, j = 0, 1, . . . , n.

The transposition to software reliability is straightforward by assuming thatN(0) =
n bugs are contained in a given code at the initial time; each time a failure occurs a
bug is detected and corrected without delay and the process

{
N(t), t � 0

}
decreases

of one unit. Axiom i. means that, at any time, the probability of more than one fault
in an interval of length h with h close to 0 is proportional to a constant depending
on the number of remaining bugs in the code. Jelinski and Moranda [33] suggested
a dependency of the form:

λj = (n− j + 1)φ.

This is the Jelinski–Moranda model. This model is a linear death process, and
applying classical properties of this model family, we have that the distribution of
N(t) given N(0) = n is a binomial distribution with parameters

(
n, e−φt

)
. Let T be

the time where all the faults have been removed from the software, and we have

P(T � t) = P (N(t) = 0 | N(0) = n) = (1 − e−φt)n.

Remark that the linear death process arises when considering n independent
lifetimes associated to the bugs from an exponential distribution with parameter
φ. Then it can be shown that the time elapsed between the (j − 1)-th fault and the
j -th fault, Tj , follows an exponential distribution with rate parameter (n− j + 1)φ,
i.e.,

P(Ti � t) = exp
{− (n− j + 1)φt

}
.
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Therefore, the failure rate between bugs is a constant. Furthermore, a bug contributes
the same amount φ to the rate, and when a bug is detected, it is perfectly repaired.
The model is simple but relies on unrealistic assumptions. Alternative models have
been proposed. If the model is considered as a SEPP, modifications can be done
through the response function.

Indeed, the J-M model is a SEPP with a failure rate μ = nφ before the first bug
and with a response function g(t) = −φ, that is to say each time a failure occurs,
the failure decreases of an amount φ. After the detection of the n bugs contained in
the program, the failure rate is 0. We have

λ(t) = nφ −
N(t−)∑

i=1

φ = (n−N(t−))φ.

Thus the failure rate is a linear function of the remaining bugs in the software. In
this case, the response function is a constant and does not depend neither on t nor on
the number of failures occurred previously. This model does not take into account
the uncertainty in the removal of a bug.

Moranda [52] suggested a model where the failure rate is still constant between
failures but decreasing geometrically:

λ(t) = ρN(t−)φ, 0 < ρ < 1.

This model can be interpreted as a SEPP where the response function depends on
the number of failures and is defined as

g(t) = −ρN [(t+a)−](1 − ρ)φ 1[a,+∞[(t), a ∈ R.

Starting with a rate φ, the occurrence of the i-th failure results in a decrease of
ρi−1(1 − ρ)φ of the failure rate.

There are two unknown parameters in the J-M model: n and φ. Meinhold and
Singpurwalla [50] considered two choices of prior distributions. A first choice
is: n has a Poisson distribution with a given parameter and φ is degenerated
at a known quantity. The second choice is: n has a Poisson distribution with
a given parameter and φ has a gamma distribution. In both case they compute
the posterior distributions. Kuo and Yang [39] developed the previous results
considering a hierarchical model and using Gibbs and Metropolis algorithms to deal
with computations issues.

A generalization of the J-M model is suggested by Washburn [76] who considers
a negative binomial prior distribution for the number of faults remaining with a
gamma prior for φ. Jewell [34] calculated the predictive distribution of not detected
error at the end of the software testing.

To override the hypothesis of perfect repairs inherent in the J-M model, Goel and
Okumoto [23] suggested an imperfect debugging model introducing a proportion p
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such that after i bugs detected, a proportion p× i of the failures have been perfectly
repaired. The model becomes:

λ(t) = (n− pN(t−))ϕ(t).

Schick and Wolverton [68] considered the model where ϕ(t) = φt .
Remark that as a death process is considered to model the evolution of the

number of bugs in the software, a birth and death process might be an interesting
model to characterize the fact that new bugs can be introduced in the program. In the
definition of the birth and death process (3), the rate of death λ(t) will be the rate of
occurrences of failures due to bugs and the rate of birth μ(t) will be the rate of news
bugs introduced in the software. Dauxois [15] investigated the Bayesian analysis of
this process in a general context.

7.2 Littlewood–Verrall Model

Littlewood [44] reconsidered the J–M model assuming that each failure does not
have the same contribution to the intensity. He turns the parameter φ from the J-M
model into a parameter φi , a failure rate associated to the failure i that is considered
to be a r.v. from a gamma distribution. Littlewood and Verrall [45] extended the
previous model by assuming the following:

1. The interarrival times t1, . . . , tn are conditionally independent, and ti given λi
has an exponential distribution with parameter Λi :

f (ti | Λi) = Λi exp
{−Λiti

}
.

2. The Λi’s are independent and have a gamma distribution with parameter
(α, ψ(i))

g(Λi | α,ψ(i)) = ψα

Γ (α)
Λ
ψ(i)−1
i exp

{− ψ(i)Λi
}
,

where ψ is a function from N to R.

From these assumptions, the distribution of ti can be deduced as a Pareto distribution
with parameters

(
α,Φ(i + 1)

)
.

The intensity of Littlewood–Verrall model (L–V model) is

λ(t) = α

ψ(N(t− + 1)+ t − TN(t−) .

If the function ψ is chosen to be increasing, then the intensity is decreasing
implying a “reliability growth.” A classical choice forψ is a linear function β0+β1i.
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Littlewood [43] suggested the form β0i + β1i
2. Kuo and Yang [39] considered a

polynomial: ψ(i) = β0 + β1 i + β2 i
2 + · · · + βk ik . For inference, Littlewood and

Verrall proposed an hybrid approach. The parameter α is estimated via a Bayesian
method, and a maximum likelihood method is used for the coefficients β0 and β1.
Mazzuchi and Soyer [47] considered a hierarchical model and applied Lindley’s
approximation to compute the moment of the posterior distribution. Their work
is extended by Kuo and Yang [39] to polynomial curves. They developed Gibbs
sampling techniques to obtain the posterior moments. Langberg and Singpurwalla
[42] suggested that adopting a Bayesian point of view on the J-M model enables
a unification of many models in software reliability. They emphasized the link
between J-M, L-V, Goël-Okumoto (G-O) models through adequate choices of prior
distributions.

7.3 Goël–Okumoto Model

The Goël–Okumoto model (G–O model) [24] is characterized by an intensity of the
form: αβe−βt . Applying (6), the likelihood is

L(α, β) =
(
n∏

i=1

αβe−βti
)

exp
{− α(1 − e−βt )}.

Kuo and Yang [39] assumed that α and β are independent, and consider gamma
distributions as prior: α ∼ G (a, b) and β ∼ G (c, d). Setting N ′ = N − n, they
suggest the following Gibbs algorithm:

N ′ | α, β ∼ P(αe−βti )
α | N ′, β ∼ G

(
a + n+N ′, b + 1

)

β | N ′, α ∼ G
(
c + n, d + tN ′ +∑n

i=1 ti
)

Assuming that n bugs have been detected by a time t , McDaid and Wilson [49]
computed the joint distribution of (α, β) given n, t1, . . . , tn, t and described some
elicitation strategies.

7.4 Musa-Okumoto Model

Musa and Okumoto [54] considered a NHPP where the expected number of failures
at t has a logarithmic form leading to an intensity of the form:

λ(t) = αβ

1 + βt .
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Campodónico and Singpurwalla [7, 8] performed the Bayesian analysis for this
model introducing expert opinion in the construction of the prior distribution
of (α, β). Hirata et al. [28] presented a unified MCMC algorithm based on the
Metropolis–Hastings algorithm. Their algorithm can be applied to many software
reliability models and is implemented as a Java-based tool. Okamura et al. [57, 58]
investigated a variational Bayesian approach of inference for NHPP in software reli-
ability model. This approach provides closed analytical forms for approximations of
the posterior distributions that have almost the same accuracy than MCMC but are
much lower in terms of computational complexity.

8 Self-Exciting Point Processes

As we mentioned before, many of the stochastic processes described previously
can be interpreted as SEPPs. The form of SEPPs intensity allows to cover many
situations encountered in “real life.” Chen and Singpurwalla [10] proposed a
unification of software reliability models via self-exciting point processes.

Developing a Bayesian methodology to analyze the time evolution of earthquake
activity, Peruggia and Santner [59] considered the epidemic-type model [56]

λ∗(t) = μ+
∑

ti<t

eω(mi−Mr)βe−α(t−ti ),

where ti , i = 1, . . . , n, are the occurrence times, mi , i = 1, . . . , n, are the
magnitude of events, andMr is a structural parameter given by experts, a threshold
(prespecified).

The parameters (ω, α, β) characterize the aftershock and are the parameters to
be estimated with μ that characterize the main shock.

Peruggia and Santner [59] chose gamma distributions for prior on the parameters
assuming independence except for ω for which they considered a gamma distribu-
tion given α, β. They developed Markov Chain Monte Carlo algorithms to compute
the posterior distributions.

Another example of Bayesian strategy for SEPP is presented by Ruggeri and
Soyer [66] in the context of software reliability. They introduced a SEPP model
where the intensity increases each time a bug is attempted to be fixed. The
maintenance introduces new bugs and so on. The repair is imperfect. They suggested
the following expression for the intensity:

λ∗(t) = μ(t)+
N(t−)∑

j=1

Zj gj (t − tj ).

Occurrences of bugs are basically described as a power law process with intensity
μ(t) = Mβtβ−1. Zj is a Bernoulli r.v. with parameter pj .
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Zj = 1 if the repair of the j -th failure (bug) introduced a new bug and 0
otherwise. The response function gj (t) is supposed to be positive.

Suppose we observe a sequence of jumps t1, . . . , tn, denoted t, in a time window
[0, C] and Z1, . . . , Zn, denoted Z. The distribution of the observation is

f (t | Z;M,α, β) =
n∏

i=1

[
μ(ti)+

i−1∑

j=1

Zjg(ti − tj )
]

× exp
{

−
∫ C

0
μ(t)dt −

N(t−)∑

j=1

Zj

∫ C−tj

O

gj (t)dt
}

= Mnβn
n∏

i=1

Ai(β,Zi−1) exp
{

−M B(β,Zn)
}
,

where Zi = (Z1, . . . , Zi), Ai(β,Zi−1) = tβ−1
i +

i−1∑

j=1

Zj (ti − tj )

and B(β,Zn) = Cβ +
N(C−)∑

j=1

Zj (C − tj )β .

Ruggeri and Soyer [66] proposed the following choices for the prior distributions:

M ∼ G (α, δ).
β ∼ G (ρ, λ).
pj ∼ Beta(μj , σj ), j = 1, . . . , n.

And the following conditional posterior distributions are obtained:

• M | β,Z,p ∼ G
(
α + n, δ + B(β,Z)).

• β | M,Z,p ∝ βρ+n
n∏

i=1

Ai(β,Zi−1) e
−MB(β,Z)−λβ .

• pj | M,β,Z, p−j ∼ Beta
(
μj + Zj , σj + (1 − Zj )

)
,

where p−j = (p1, . . . , pj , pj+1, . . . , pn).

MCMC methods are used to make inference on the parameters.

9 Conclusion

This chapter has provided an overview of the Bayesian modeling of stochastic
processes in the context of reliability. It shows the diversity of the techniques
combining issues in modeling and computation and attempts to be a guideline, not
exactly a comprehensive state of art, to help the reader who may wish to go further.
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We have described some principles of the methods for Bayesian parameter
estimation. The MCMC techniques allow to avoid the untractability computational
issues that usually arise from the Bayesian paradigm. The use of stochastic process
is everywhere in reliability, from accelerated life test (ALT) to degradation model.
The Bayesian approach offers a great flexibility to assess model in each of these
various topics.
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Bayesian Analysis of a New Bivariate
Wiener Degradation Process

Ancha Xu

Abstract Copula functions are often used to describe the dependence between
two performance characteristics of a system. However, the reliability of the system
has no analytic form when using copula method, and choosing a suitable copula
function can be hard. In this chapter, we propose a new bivariate degradation model,
which could describe the unit-to-unit variation and dependence simultaneously. The
reliability functions of the system and the residual lifetime have analytic forms and
are presented in this chapter. Statistical inference is conducted by data augmentation
and Bayesian methods. Weak informative priors are considered, and Gibbs sampling
method is utilized to draw sample for the evaluation of the unknown parameters.
A simulated example is used for illustration purpose.

1 Introduction

Traditionally, accelerated life testing (ALT) was the main way to collect the failure
data of a product, and the collected data was used to assess the reliability of the
product. Many statistical models and methods of ALT have been widely used in
practice and summarized for reference. See [15] for more details. However, as the
products become more and more reliable, collecting failure data by ALT becomes
harder. Under this situation, if a product has a quality characteristic or performance
characteristic (PC) that degenerates with time, and the PC is related with the life of
the product, then we could monitor the degradation of PC to assess the reliability of
the product. Fortunately, most of the commercial products have at least one PC. For
example, operating current is the PC of laser device [15], and light intensity is the
PC of a light-emitting diode (LED) product [12]. In such a case, the failure threshold
level will be specified in advance, and if the degradation of PC exceeds the threshold
level, the product is considered to have failed. There are two main kinds of models
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for fitting the degradation data of the PC. The first one is the degradation path model,
which was first proposed by Lu and Meeker [14]. The model is actually the mixed-
effect model, taking the unit-to-unit variation of the products into consideration. For
further details about this kind of models, see [1, 27, 38] and the references therein.
The second kind of models is stochastic process. Three commonly used stochastic
processes are Wiener process [12, 17, 21, 31, 37], gamma process [10, 13, 18], and
inverse Gaussian process [23, 28, 34]. This chapter will not introduce these models
in detail, and hence readers can refer [35] for more information.

All the above literature only considered the system with one PC. However,
complex systems usually have two or multiple PCs. For example, heavy machine
tools [22] have two performance indicators: positioning accuracy and output power.
The rubidium consumption and the light intensity are the two PCs of a rubidium
discharge lamp, and the lamp is considered to have failed if the degradation value of
one of the PCs exceeds the specified threshold level. The literature on bivariate or
multiple degradation paths are rare compared with those on one degradation path.
Huang and Askin [6] considered an electronic device with two failure modes, one
of which is a catastrophic failure and the other is a degradation failure, and they
assumed that the two failure modes are independent. Bagdonavicius et al. [2] and
[3] studied the problem of multiple failure modes with degradation data when the
failure modes were also assumed to be independent. To the best of our knowledge,
the study by Sari [26] was the first to consider the dependence among the multiple
degradation paths, and the dependence of the degradation paths was described by a
copula function. Pan and Balakrishnan [16] considered a system with two PCs, and
the degradation process of each PC followed a stationary gamma process. Then, the
reliability function of the system can be approximated by a bivariate Birnbaum–
Saunders distribution and its marginal distributions. Using the copula method,
bivariate degradation process models based on Wiener process, gamma process, and
inverse Gaussian process are considered by [19, 20, 22, 30], and [29]. Although
the copula method is commonly used to describe the dependence between two
random variables, there are several drawbacks for modeling bivariate degradation
process: (1) Copula functions are difficult to select. Usually, the authors choose
several Archimedean copulas and use Akaike information criterion (AIC) to pick the
best one. However, the reason for choosing these copula functions or Archimedean
family is hard to justify, which still is an open question. (2) Copula method models
dependency on the increments of the two assumed stochastic processes, which
means that the correlation coefficient or Kendall’s tau is constant for any time
interval. This assumption may be a little strong and is hard to verify, because the
means and variances of the increments are dependent on time. Jin and Matthews
[9] proposed a bivariate Wiener process that models the dependence of increments
of the two PCs by assuming that the diffusion parameters of the Wiener processes
are correlated. However, the model also fails to describe the dynamic changes of
the correlation coefficient. (3) The reliability function of the system usually has no
analytic form using copula method. Recently, Xu et al. [33] proposed a bivariate
Wiener degradation by assuming that the degradation of the two PCs is affected by
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a common frailty factor. However, their model is only suitable for the case that a
common random factor affects the degradation of two PCs simultaneously. In this
chapter, we propose a new bivariate Wiener degradation process for analyzing the
degradation data of two PCs. The new model will include the model of [33] as a
special case. Based on the new model, a dynamic correlation coefficient between
two processes can be shown intuitively and the reliability function of the system has
an analytic form. Besides, statistical inference based on the proposed model is very
flexible.

This chapter is organized as follows. In Sect. 2, a new bivariate Wiener degrada-
tion process with time-scale transformation is introduced. We derive the correlation
coefficient function between the bivariate Wiener process and the reliability function
of the system. In Sect. 3, we propose data augmentation and Bayesian method to
estimate the model parameters when the observed data are available. In Sect. 4,
an artificial data is analyzed for illustration. Finally, we give a conclusion of this
chapter.

2 Bivariate Degradation Model

2.1 Model

Assume that a system has two PCs and that the degradation process of the s-th PC
is modeled as follows:

Ys(t) = αshs(t, βs)+ σsBs(hs(t, βs)), s = 1, 2, (1)

where αs and σs denote the drift parameter and the diffusion parameter, respectively,
hs(t, βs) is a non-decreasing function of time with hs(0, βs) = 0, and Bs(t) is a
standard Brownian motion. Thus, Ys(t) follows a Brownian motion with time-scale
transformation. We assume that B1(t) and B2(t) are independent of each other. Due
to some endogenous and exogenous factors, the products may have heterogeneities.
To describe the unit-to-unit variation among the products, we assume that αs is
random, and

α = (α1, α2)
′ ∼ NNN2(μ,Σ), μ =

(
μα1

μα2

)

and Σ =
(

σ 2
α1

ρσα1σα2

ρσα1σα2 σ 2
α2

)

, (2)

where NNN2(μ,Σ) denotes the bivariate normal distribution with mean μ and
variance–covariance matrix Σ . We can rewrite the model (1) as follows:

Ys(t) = γsμαshs(t, βs)+ σsBs(hs(t, βs)), s = 1, 2,
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where (γ1, γ2)
′ ∼ NNN2((1, 1)′,Σγ ), and Σγ=

(
σ 2
α1
/μ2
α1

ρσα1σα2/(μα1μα2 )

ρσα1σα2/(μα1μα2 ) σ 2
α2
/μ2
α2

)

.

If σ 2
α1
/μ2
α1

= σ 2
α2
/μ2
α2

and ρ = 1, then the model is reduced to the model of [33].
Assume that conditions on α, Y1(t), and Y2(t) are independent. Thus, the joint

probability density function (pdf) of (Y1(t), Y2(t), α) is

f (Y1(t), Y2(t), α)

= (2π)−1|Σ |− 1
2 exp

{
− (α − μ)′Σ−1(α − μ)

2

}

× (2π)−1
(√
σ 2

1 h1(t, β1)σ
2
2 h2(t, β2)

)−1

× exp

{

− (y1(t)/h1(t, β1)− α1)
2

2σ 2
1 /h1(t, β1)

− (y2(t)/h2(t, β2)− α2)
2

2σ 2
2 /h2(t, β2)

}

.

After integrating out α, the joint pdf of Y1(t) and Y2(t) is a bivariate normal
distribution and

(
Y1(t)

h1(t, β1)
,
Y2(t)

h2(t, β2)

)′
∼ NNN2

((
μα1

μα2

)

,Σ +
(
σ 2

1 /h1(t, β1) 0
0 σ 2

2 /h2(t, β2)

))

.

Let

H =
(
h1(t, β1) 0

0 h2(t, β2)

)

, μH =
(
μα1h1(t, β1)

μα2h2(t, β2)

)

,

Σ1 = Σ +
(
σ 2

1 /h1(t, β1) 0
0 σ 2

2 /h2(t, β2)

)

.

Then, we have

(
Y1(t)

Y2(t)

)

∼ NNN2(μH ,H
′Σ1H). (3)

The variance–covariance matrix of Y1(t) and Y2(t) is not diagonal. Thus, they are
correlated. The correlation coefficient between Y1(t) and Y2(t) at time t is

ρ(t) = corr(Y1(t), Y2(t)) = ρσα1σα2√
σ 2
α1

+ σ 2
1 /h1(t, β1)

√
σ 2
α2

+ σ 2
2 /h2(t, β2)

.

For the copula method, the dependence between Y1(t) and Y2(t) is reflected by
the increments of the degradation observations of the two PCs, and the dependent
structure between Y1(t) and Y2(t) at a certain time is hard to explain. However,
in our model, the correlation coefficient function ρ(t) between Y1(t) and Y2(t)
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changes with time and is a non-increasing or non-decreasing function of time t
when ρ < 0 or ρ > 0. Before the product being put into use, ρ(t) = 0, while as
t → ∞, ρ(t) → ρ. Therefore, we can see that as the product begins to be used,
the two PCs degenerate correspondingly, which leads to the changes of dependence
between the two PCs. Thus, the new model can reflect that the two PCs influence
each other dynamically and intuitively.

Denote that the threshold level of Ys(t) is τs , s = 1, 2. Let τ = (τ1, τ2)
′. The

lifetime of the s-th PC is defined as

Ts = inf{t : Ys(t) ≥ τs}.

Then, conditioned on αs , the pdf of Ts is [36]

fs(ts |αs) = τs
√

2πσ 2
s (hs(ts, βs))

3
exp

{

− (τs − αshs(ts, βs))2
2σ 2
s hs(ts, βs)

}
dhs(ts, βs)

dts
.

(4)
Thus, the joint pdf of T1 and T2 is

f (t1, t2)

=
∫∫

f1(t1|α1)f2(t2|α2)f (α1, α2)dα1dα2

= τ1τ2

(h1(t1, β1)h2(t2, β2))2
(2π)−1|Σ1|− 1

2 exp

{

− (τH − μ)′(Σ1)
−1(τH − μ)

2

}

× dh1(t1, β1)

dt1

dh2(t2, β2)

dt2
.

= (2π)−1|Σ1|− 1
2 τ1τ2

(h1(t1, β1)h2(t2, β2))2
exp

{
− 1

|Σ1| [(
τ1

h1(t1, β1)
− μα1)

2(σ 2
α2

+ σ 2
2 /h2(t2, β2))

− 2ρσα1σα2

(
τ1

h1(t1, β1)
− μα1

)(
τ2

h2(t2, β2)
− μα2

)

+
(

τ2

h2(t2, β2)
− μα2

)2

× (σ 2
α1

+ σ 2
1 /h1(t1, β1))]

}dh1(t1, β1)

dt1

dh2(t2, β2)

dt2
,

where

τH =
(
τ1/h1(t1, β1)

τ2/h2(t2, β2)

)

, |Σ1| = [σ 2
α1

+ σ 2
1 /h1(t1, β1)][σ 2

α2
+ σ 2

2 /h2(t2, β2)] − ρ2σ 2
α1
σ 2
α2
.

The cumulative distribution function (cdf) of Ts given αs is

FTs (ts |αs) = Φ
(
αshs(ts, βs)− τs
σs

√
hs(ts, βs)

)

+ exp

{
2αsτs
σ 2
s

}

Φ

(−τs − αshs(ts, βs)
σs

√
hs(ts, βs)

)

.

(5)
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Before giving the joint cdf of T1 and T2, we need to introduce some notations. Let

C1 =
(−τ1/(σ1

√
h1(t1,β1))

−τ2/(σ2
√
h2(t2,β2))

)

, ν =
(

2τ1/σ 2
1

2τ2/σ 2
2

)

, D1 =
(√
h1(t1, β1)/σ1 0

0
√
h2(t2, β2)/σ2

)

,

D2 =
(√
h1(t1, β1)/σ1 0

0 −√
h2(t2, β2)/σ2

)

, D3 =
(−√

h1(t1, β1)/σ1 0
0

√
h2(t2, β2)/σ2

)

,

and D4 = −D1. Then, the joint cdf of T1 and T2 can be rewritten as

F(t1, t2) =
∫∫

FT1(t1|α1)FT2(t2|α2)f (α1, α2)dα1dα2

=A1 + A2 + A3 + A4,

(6)

whereA1 = Φ2((D1ΣD1+I2)− 1
2 (C1+D1μ)), A2 = exp

(
2τ2μα2
σ 2

2
+ 4τ 2

2
(1−ρ2)σ 2

α2
σ 4

2

)

·

Φ2((D2ΣD2 + I2)
− 1

2 (C1 + D2μ)), A3 = exp

(
2τ1μα1
σ 2

1
+ 4τ 2

1
(1−ρ2)σ 2

α1
σ 4

1

)

Φ2((D3ΣD3 + I2)− 1
2 (C1 +D3μ)), and A4 = exp

(
ν′μ+ ν′Σ−1ν

2

)
Φ2((D4ΣD4 +

I2)
− 1

2 (C1 + D4μ)), where Φ2((x1, x2)
′) = Φ(x1)Φ(x2) and Φ(·) is the cdf of

standard normal distribution. Ip denotes the p-dimensional identity matrix. The
derivation of (6) is given in Appendix.

2.2 Reliability Function

The lifetime of the product is defined as

T = min(T1, T2).

The reliability of the product at time t can be computed as follows:

R(t) = P(T > t) =P(T1 > t, T2 > t)

=P(T1 < t, T2 < t)+ 1 − P(T1 < t)− P(T2 < t)

=F(t, t)+ 1 − FT1(t)− FT2(t),

(7)

where FTs (t) is the cdf of Ts , and its analytic form is
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FTs (t) =
∫

FTs (t |αs)f (αs)dαs

= Φ
⎛

⎝ μαshs(t, βs)− τs√
σ 2
αs
(hs(t, βs))2 + σ 2

s hs(t, βs)

⎞

⎠+

exp
{2μαs τs
σ 2
s

+ 2σ 2
αs
τ 2
s

σ 4
s

}
Φ

⎛

⎝−2σ 2
αs
τshs(t, βs)+ σ 2

s (μαshs(t, βs)+ τs)
σ 2
s

√
σ 2
αs
(hs(t, βs))2 + σ 2

s hs(t, βs)

⎞

⎠ ,

where f (αs) is the marginal pdf of αs .
The residual life L(s)k of the s−th PC at time tk is defined as

L
(s)
k = inf{l : Ys(l + tk) ≥ τs |Ys(tj ) < τs, j = 1, 2, · · · , k}, s = 1, 2, (8)

where t1, . . . , tk are the measurement times. The cdf of L(s)k given αs is

F
L
(s)
k

(ls |αs) = Φ
(
αshs(ls, βs)− (τs − Ys(tk))

σs
√
hs(ls, βs)

)

+

exp

{
2αs(τs − Ys(tk))

σ 2
s

}

Φ

(
(Ys(tk)− τs)− αshs(ls, βs)

σs
√
hs(ls, βs)

)

.

After obtaining the observations of

Y = {Y1(t1), . . . , Y1(tk), Y2(t1), . . . , Y2(tk)},

the joint cdf of α is also updated. Let

hsk = hs(tk, βs), H =
(
σ 2

1 /h1k 0
0 σ 2

2 /h2k

)

, Yk =
(
Y1(tk)/h1k

Y2(tk)/h2k

)

.

Using Bayesian theory, we can obtain that given the current observations Y , the joint
cdf of α is

α|Y ∼ NNN2(μ̃, Σ̃),

where μ̃ = (Σ−1 + H−1)−1(Σ−1μ + H−1Yk) = (μ1l , μ2l )
′, Σ̃ = (Σ−1 +

H−1)−1 =
(
σ̃11 σ̃12

σ̃21 σ̃22

)

. Then, the joint cdf of (L(1)k , L
(2)
k )

′ is
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FL(l1, l2) =
∫∫

F
L
(1)
k

(l1|α1)FL(2)k
(l2|α2)f (α1, α2|Y )dα1dα2

=B1 + B2 + B3 + B4,

(9)

where B1 = Φ2((D1lΣ̃D1l + I2)− 1
2 (C1l +D1l μ̃)),

B2 = exp

(
2(τ2−Y2(tk))μ2l

σ 2
2

+ 4(σ 2
2 +h2k(1−ρ2)σ 2

α2
)(τ2−Y2(tk))

2

(1−ρ2)σ 2
α2
σ 6

2

)

Φ2((D2lΣ̃D2l +
I2)

− 1
2 (C1l +D2l μ̃)),

B3 = exp

(
2(τ1−Y1(tk))μ1l

σ 2
1

+ 4(σ 2
1 +h1k(1−ρ2)σ 2

α1
)(τ1−Y1(tk))

2

(1−ρ2)σ 2
α2
σ 6

1

)

Φ2((D3lΣ̃D3l +
I2)

− 1
2 (C1l +D3l μ̃)), and

B4 = exp

(

ν′
l μ̃+ ν′

l Σ̃
−1νl
2

)

Φ2((D4lΣ̃D4l + I2)
− 1

2 (C1l + D4l μ̃)), C1l , νl ,

D1l , D2l , D3l , and D4l are C1, ν, D1,D2,D3, and D4, where τs and ts are replaced
by τs − Ys(tk) and ls , respectively. The derivation of (9) is similar to (6), and thus
we omit it.

Assume that the s-th PC does not exceed the threshold τs at current time tk . Then,
the residual life of the product is defined as

Lk = min(L(1)k , L
(2)
k ). (10)

Similarly, the reliability function of Lk at time l can be computed as follows:

RLk (l) = FL(l, l)+ 1 − F
L
(1)
k

(l)− F
L
(2)
k

(l), (11)

where F
L
(s)
k

(l) is the cdf of L(s)k , and its analytical form is

F
L
(s)
k

(l) = Φ
(
μslhs(l, βs)− (τs − Ys(tk))
√
σ̃ss(hs(l, βs))2 + σ 2

s hs(l, βs)

)

+

exp
{2μsl(τs − Ys(tk))

σ 2
s

+ 2σ̃ss(τs − Ys(tk))2
σ 4
s

}
×

Φ

(

−2σ̃ss(τs − Ys(tk))hs(l, βs)+ σ 2
s (μslhs(l, βs)+ (τs − Ys(tk)))

σ 2
s

√
σ̃ss(hs(l, βs))2 + σ 2

s hs(l, βs)

)

.

3 Statistical Inference

Assume that there are n products tested in an experiment. For the i-th product,
let yisj be the j -th measured value of the s-th PC at the measurement time tisj ,
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s = 1, 2, j = 1, 2, . . . , mis . Here we do not require the two PCs measured
at the same time, and the number of measurement times could be different. Let
yis0 = 0, zisj = yisj − yis(j−1), and gisj (βs) = hs(tisj , βs)− hs(tis(j−1), βs), s =
1, 2, i = 1, 2, . . . , n, j = 1, 2, . . . , mis . For the sake of notation simplification,
we denote gisj = gisj (βs). Then, for the i-th product, we have the model
zisj |αis ∼ NNN(αisgisj , σ

2
s gisj ), and αi = (

αi1
αi2

) ∼ NNN2(μ,Σ), s = 1, 2, j =
1, 2, . . . , mis . Let z = {zisj , s = 1, 2, i = 1, 2, . . . , n, j = 1, 2, . . . , mis} and
θ = {μ,Σ, σ 2

1 , σ
2
2 , β1, β2}. The likelihood function of the observed data z is

L(z|θ)

=
n∏

i=1

∫∫ 2∏

s=1

mis∏

j=1

1
√

2πσ 2
s gisj

exp

{

− (zisj − αisgisj )2
2σ 2
s gisj

}

× (2π)−1|Σ |− 1
2 exp

{

− (αi − μ)
′Σ−1(αi − μ)

2

}

dαi1dαi2

=
n∏

i=1

{
⎡

⎣
2∏

s=1

mis∏

j=1

1
√

2πσ 2
s gisj

exp

{

− z2
isj

2σ 2
s gisj

}⎤

⎦ exp

{
y2
i1mi1

2σ 2
1 hi1mi1

+ y2
i2mi2

2σ 2
2 hi2mi2

}

×
√

2πσ 2
1 σ

2
2

hi1mi1hi2mi2
|Σ +Hi |−1/2 exp

{

− (ȳi − μ)
′(Σ +Hi)−1(ȳi − μ)

2

}}

,

(12)

where hismis = hs(tismis , βs), Hi =
(
σ 2

1 /hi1mi1 0
0 σ 2

2 /hi2mi2

)

, ȳi = (yi1mi1/hi1mi1
yi2mi2/hi2mi2

)
.

(12) is too complicated and is hard to get reasonable solutions using optimization.
Considering that αi is a latent variable and is unobservable, EM algorithm can be
used in such a case. However, the interval estimates of the parameters are not easy
to compute using EM algorithm. Alternatively, Bayesian method can obtain point
estimates and interval estimates simultaneously using Markov chain Monte Carlo
(MCMC) and thus is preferred in this chapter.

3.1 Prior Specification

Prior information plays an important role in Bayesian statistics, where the parame-
ters in the model are treated as random variables. Prior distribution can be specified
by several ways, e.g., noninformative priors, conjugate priors, and hierarchical
priors. Noninformative priors are typically elicited from some well-defined rules and
principles, such as the principle of maximum entropy [7], the Jeffrey’s rule [8], and
the Kullback–Liebler divergence [4]. We need to check the posterior property of the
model parameters, as noninformative priors are usually improper. For the proposed
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bivariate Wiener degradation model, both the derivation of the noninformative priors
and the proof of the posterior property are not easy. Conjugate priors are the most
commonly used because the prior and posterior distributions are from the same
distribution family, and the hyper-parameters can be easily explained. The hyper-
parameters in prior distribution can be elicited by experts’ experience or some
historical information. If neither of these information are available, we can elicit the
conjugate prior with large variance by choosing proper hyper-parameters, so that
the impact of the prior distribution would be weak. The rationality of the method of
hyper-parameter specification has been justified by many authors; see [11, 32] for
more details. The priors for the parameters in this chapter are as follows:

1. The conditional conjugate prior for μ is assumed to be bivariate normal distribu-
tion with mean μ0 and variance–covariance matrixΣ0; that is, μ ∼ NNN2(μ0,Σ0).
The hyper-parameter μ0 is chosen as (1, 1)′, Σ0 is a 2 × 2 symmetric positive-
definite matrix, and we let Σ0 = 102 · I2. The large variance means the weak
belief on the μ0, which can make data information play the main role in the
Bayesian analysis.

2. We assume that Σ follows the inverse Wishart distribution IWIWIW(Ψ, v) with pdf

|Ψ |v/2
2vπ1/2Γ (v/2)Γ ((v − 1)/2)

|Σ |−(v+3)/2 exp{−tr(ΨΣ−1)},

where Ψ is a 2 × 2 symmetric positive-definite scale matrix, v is the degrees of
freedom, v > 1, and Γ (·) is the gamma function. Similarly, we let v = 2 and
Ψ = I2 in the data analysis. In fact, the inverse-gamma distribution is a special
case of inverse Wishart distribution for the one-dimensional case.

3. The prior for σ 2
s is specified as inverse-gamma distribution IGIGIG(as, bs) with pdf

b
as
s

Γ (as)

(
σ 2
s

)−as−1
exp{−bs/σ 2

s }.

The prior for βs is specified as gamma distribution GGG(cs, ds) with mean cs/ds
and variance cs/d2

s . We set as = bs = cs = ds = 0.01 to reflect that we are
lacking the knowledge about the parameters. This setting makes the shape of the
inverse-gamma prior or gamma prior flat and can be regarded as noninformative
prior.

3.2 Gibbs Sampling

Notice that αi is unobservable, and using the likelihood function (12) is intractable
for posterior analysis. Thus, we use data augmentation method to do the Bayesian
analysis. Let α0 = (α1, . . . , αn). The likelihood function of the complete data
(α0, z) is
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L(α0, z|θ) =
n∏

i=1

{ 2∏

s=1

mis∏

j=1

1
√

2πσ 2
s gisj

exp
{

− (zisj − αisgisj )2
2σ 2
s gisj

}

× (2π)−1|Σ |− 1
2 exp

{
− (αi − μ)′Σ−1(αi − μ)

2

}}

.

(13)

Based on the priors specified above and (13), the full conditional posterior distribu-
tions of the parameters can be obtained as follows.

1. Conditioned on the parameters θ and z, the posterior distribution of αi is the
bivariate normal distribution with mean μ̃i and variance–covariance matrix Σ̃i ,
where μ̃i = (Σ−1 + H−1

i )−1(Σ−1μ + H−1
i ȳi ), Σ̃i = (Σ−1 + H−1

i )−1, i =
1, . . . , n.

2. Given z, α0, and θμ (θ except for μ), the posterior distribution of μ is also the
bivariate normal distribution with mean μ̃ and variance–covariance matrix Σ̃ ,

where μ̃ = (Σ−1
0 + nΣ−1)−1(Σ−1

0 μ0 + nΣ−1ᾱ), ᾱ = 1
n

n∑

i=1
αi , and Σ̃ =

(Σ−1
0 + nΣ−1)−1.

3. Given z, α0, and θΣ , the posterior distribution of Σ is the inverse Wishart

distribution IWIWIW

(
n∑

i=1
(αi − μ)(αi − μ)′ + Ψ, n+ v

)

.

4. Given z, α0, and θσ 2
s
, the posterior distribution of σ 2

s is the inverse-gamma

distribution IGIGIG

(
n∑

i=1
mis + as, 1

2

n∑

i=1

mis∑

j=1

(zisj−αisgisj )2/gisj + bs
)

, s = 1, 2.

5. Given z, α0, and θβs , the posterior density function of βs is proportional to

n∏

i=1

2∏

s=1

mis∏

j=1

1√
gisj

exp
{

− (zisj − αisgisj )2
2σ 2
s gisj

}
(βs)

cs−1 exp{−dsβs}.

Unlike the other parameters, the full conditional posterior distribution of βs is
related to the analytic form of hs(t, βs). Metropolis–Hastings algorithm can be
used to get the posterior samples of βs .

After getting the full conditional posteriors of the parameters, the Gibbs sampling
algorithm can be implemented correspondingly. For example, we run the Gibbs
sampling iteration K times, and check the convergence of the Gibbs sampling
algorithm by ergodic mean. The burn-in periodK ′ will be also determined when the
ergodic means become stationary. For other methods for checking the convergence
of MCMC, please refer to [5, 24]. After discarding the burn-in samples, we monitor
the autocorrelation functions of the posterior samples and choose a sampling lag
L after which the corresponding autocorrelation is small enough. Then the length
of the thinning interval can be chosen as L. Finally, the number of kept posterior
samples is (K −K ′)/L, which will be used for estimating the parameters.
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4 Data Analysis

The original data from [15] present the growth of fatigue crack with measurement
frequency 0.01 million of cycles up to 0.09 million of cycles. There are totally 21
units in the experiment. The initial crack length of each unit is 0.9 inches. For
the illustration of bivariate degradation analysis, the authors of [20, 26], and [29]
selected 20 units and divided them into two parts equally. One part represents the
degradation of the first PC, and the other part denotes the degradation of the second
PC. The artificial data are showed in Fig. 1. The failure threshold levels for the two
PCs are 1.3 inches and 1.6 inches, respectively. Similar to [20] and [29], we assume
that the two PCs are dependent on each other. Two time-scale transformations
hs(t, βs) = tβs and hs(t, βs) = exp{βst} − 1 are considered. However, we compare
the two time-scale transformations, and it shows that hs(t, βs) = tβs is substantially
better than the other model in terms of the AIC for model selection. Thus, we just list
the detailed results of the model with the time-scale transformations hs(t, βs) = tβs .

The iteration number of Gibbs sampling is 100,000. The ergodic means of each
parameters are shown in Fig. 2. As we can see in Fig. 2, the ergodic means become
stationary very fast, and thus we discard the first 4000 iterations as the burn-in
period. For the rest of the posterior samples, autocorrelation functions are computed
and listed in Table 1. According to Table 1, we can see that the posterior samples
are heavily correlated. The autocorrelations of posterior samples of σ 2

1 , σ 2
2 , σ 2

α1
,

σ 2
α2

, and ρ are not significant when the lag is 30, while the lag should be 60 for
the other parameters. Such a phenomenon is very common for data augmentation
method (see [25] for more details). Thus, the length of thinning interval is taken to
be 60. Finally, (100,000 − 4000)/60 = 1600 posterior samples are kept for further

Fig. 1 The artificial fatigue crack data
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Fig. 2 Ergodic means of the posterior samples of the model parameters

Table 1 Autocorrelations based on different lags

Lag β1 β2 σ 2
1 σ 2

2 μα1 μα2 σ 2
α1

σ 2
α2

ρ

30 0.301 0.239 0.021 1.51 × 10−3 0.263 0.203 0.021 0.0161 1.79 × 10−3

50 0.142 0.103 4.23 × 10−3 9.68 × 10−4 0.125 0.087 6.41 × 10−3 6.59 × 10−3 7.05 × 10−3

60 0.090 0.077 3.01 × 10−3 −2.04 × 10−4 0.079 0.062 1.30 × 10−3 2.54 × 10−3 −4.64 × 10−5

parameter estimation. The results of posterior means and 95% credible intervals
of the parameters are listed in Table 2, where the estimates of the parameters for
the independent case are also listed, and “SD” denotes the standard deviation.
The model assumption implies that the drift parameters of the degradation process
should be positive, and the probability of the improper feature Pr{α1 ≤ 0, α2 ≤ 0}
is estimated to be 2 × 10−16, which is negligible. In Table 2, we can see that the
posterior means of the parameters are very close to each other for the dependent
and independent cases. This result is similar to [29]. The reason may be that the
dependence between the two PCs is not strong enough. Although the posterior
mean of ρ is 0.667, as we have pointed out in the previous section, the correlation
coefficient between Y1(t) and Y2(t) is a function of time, and when the time
goes to infinity, the correlation coefficient will be ρ. Figure 3 shows the curve of
correlation coefficient function between Y1(t) and Y2(t). When the million of cycles
is less than 0.05, the correlation coefficient function ρ(t) is very small, even less
than 0.4.

Based on the posterior means of the parameters, we draw the reliability functions
of the system and the two PCs according to (7). Figure 4 shows the three reliability
functions, and we can see that the reliability before 0.08 millions of cycles is very
close to 1 and will decrease fast after that. Based on (11), we select one of the
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Table 2 Estimation of the model parameters

Dependent case Independent case

95% credible 95% credible

Parameters Mean SD interval Mean SD interval

μα1 10.474 1.056 (8.506, 12.667) 10.860 1.180 (8.430, 13.043)

σ 2
1 0.0398 4.736×10−3 (0.0316, 0.0501) 0.0399 4.864×10−3 (0.0317, 0.0507)

β1 1.235 0.0369 (1.161, 1.306) 1.264 0.0394 (1.159, 1.314)

μα2 5.011 0.645 (3.674, 6.285) 4.914 0.654 (3.610, 6.269)

σ 2
2 0.0163 1.872×10−3 (0.0129, 0.0202) 0.0165 1.969×10−3 (0.0131, 0.0208)

β2 1.125 0.0472 (1.020, 1.205) 1.119 0.0480 (1.021, 1.219)

σ 2
α1

1.813 1.430 (0.563, 4.606) 2.908 2.415 (0.531, 9.078)

σ 2
α2

0.662 0.459 (0.175, 1.883) 0.811 0.650 (0.209, 2.425)

ρ 0.667 0.225 (0.106, 0.923) – – –

Fig. 3 The correlation coefficient function between Y1(t) and Y2(t)

tested systems, and the reliability of residual life of the system at different time is
shown in Fig. 5. Figure 5 shows that the more we use the system, the less reliable the
system will be. Figure 6 shows the normal quantile–quantile plot of the standardized
residual of the model, where the straight lines indicate that the model fits the data

well. As a comparison, we also draw the estimated mean degradation paths μ̂αs t
β̂s

of the models of [20] and [29] in Fig. 7, where “the empirical mean” denotes the
empirical mean of degradation process. We can see that the model of [20] and the
proposed model seem to fit the data better than the model of [29]. For fitting the data
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Fig. 4 The reliability of the product, PC 1 and PC 2

Fig. 5 The reliability of residual life of the system at different times

of the first PC, the proposed model performs better than the model of [20], while
for fitting the data of the second PC, the results of the two models are very close to
each other.
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Fig. 6 Normal Q–Q plot of residuals based on the proposed model

Fig. 7 Model comparison
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5 Conclusion

In this chapter, a new bivariate Wiener degradation process has been proposed to
characterize the system with two PCs, and the dependence between two PCs is
described by a bivariate normal distribution. The reliability functions of the system
and the residual lifetime are derived under the proposed model. Bayesian methods
are used to obtain the estimation of the model parameters. Finally, the proposed
model is illustrated by a simulated example.

Appendix

Lemma 1 1. If Y = (y1, . . . , yp)
′ ∼ NNNp(μ,Σ), then for any C ∈ Rp, D ∈

Rp×p, E[Φp(C +DY)] = Φp
(
(DΣD′ + Ip)− 1

2 (C +Dμ)
)
, where Φp(Y ) =

p∏

i=1
Φ(yi).

2. If Y ∼ NNNp(μ,Σ), and v, C ∈ Rp, D ∈ Rp×p, then
E[exp(v′Y )Φp(C + DY)] = exp(v′μ + v′Σ−1v

2 )Φp

(
(Ip + DΣD′)− 1

2 (C +
Dμ+DΣv)

)
.

Proof of (1):
Using the property of conditional expectation, we have

E[Φp(C +DY)] = E[E(I{Z≤C+DY })|Y ] = P(Z ≤ C +DY)
= P(Z −DY − C < 0) = Φp

(
(DΣD′ + Ip)− 1

2 (C +Dμ)
)
,

where I{·} denotes the indicator function, Z ∼ NNNp(0, Ip), and Z and Y are
independent. Then, Z −DY − C ∼ NNNp(−C −Dμ, Ip +DΣD′).
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Proof of (2):

E[exp(v′Y )Φm(C +DY)] =

(2π)−
m
2 |Σ |− 1

2

∫

exp
{

− (Y − μ)′Σ−1(Y − μ)
2

}
exp(v′Y )Φm(C +DY)dY

= (2π)−m
2 |Σ |− 1

2

∫

exp
{

− (Y − (μ+Σv))′Σ−1(Y − (μ+Σv))
2

}

exp
{
v′μ+ v′Σ−1v

2

}
Φm(C +DY)dY

= exp
{
v′μ+ v′Σ−1v

2

} ∫

φm(Σ
− 1

2 [Y − (μ+Σv)])Φm(C +DY)dY

= exp
{
v′μ+ v′Σ−1v

2

} ∫

φm(z)Φm(C +Dμ+DΣv +DΣ 1
2 z)dz

= exp
{
v′μ+ v′Σ−1v

2

}
Φm((Im +DΣD′)

1
2 (C +Dμ+DΣv)).

Proof of the joint cdf of T1 and T2

F(t1, t2) =
∫∫

FT1(t1|α1)FT2(t2|α2)f (α1, α2)dα1dα2

=A1 + A2 + A3 + A4.

Using (5) and Lemma 1, we have

A1 =
∫∫ 2∏

s=1

Φ

(
αshs(ts, βs)− τs
σs

√
hs(ts, βs)

)

f (α1, α2)dα1dα2

=Eα[Φ2(C1 +D1α)] = Φ2((D1ΣD1 + I2)− 1
2 (C1 +D1μ)),

where

C1 = −
(
τ1/σ1

√
h1(t1,β1)

τ2/σ2
√
h2(t2,β2)

)

, D1 =
(√
h1(t1, β1)/σ1 0

0
√
h2(t2, β2)/σ2

)

.
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A2 =
∫∫

Φ1

(
α1h1(t1, β1)− τ1
σ1

√
h1(t1, β1)

)

exp

{
2α2τ2

σ 2
2

}

×

Φ

(−τ2 − α2h2(t2, β2)

σ2
√
h2(t2, β2)

)

f (α1, α2)dα1dα2

=Eα[exp(v′
1α)Φ2(C1 +D2α)]

= exp

(
2τ2μα2

σ 2
2

+ 2τ 2
2

(1 − ρ2)σ 2
α2
σ 4

2

)

Φ2((D2ΣD2 + I2)− 1
2 (C1 +D2μ)),

where

v1 =
(

0
2τ2/σ 2

2

)

, D2 =
(√
h1(t1, β1)/σ1 0

0 −√
h2(t2, β2)/σ2

)

,

Σ−1 = 1

1 − ρ2

⎛

⎝

1
σ 2
α1

− ρ
σα1σα2

− ρ
σα1σα2

1
σ 2
α2

⎞

⎠ .

A3 =
∫∫

Φ2

(
α2h2(t2, β2)− τ2
σ2

√
h2(t2, β2)

)

exp

{
2α1τ1

σ 2
1

}

×

Φ

(−τ1 − α1h1(t1, β1)

σ1
√
h1(t1, β1)

)

f (α1, α2)dα1dα2

=Eα[exp(v′
2α)Φ2(C1 +D3α)]

= exp

(
2τ1μα1

σ 2
1

+ 2τ 2
2

(1 − ρ2)σ 2
α1
σ 4

1

)

Φ2((D3ΣD3 + I2)− 1
2 (C1 +D3μ)),

where

v2 =
(

2τ1/σ 2
1

0

)

, D3 =
(−√

h1(t1, β1)/σ1 0
0

√
h2(t2, β2)/σ2

)

.
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A4 =
∫∫

exp

(
2τ1α1

σ 2
1

+ 2τ2α1

σ 2
2

)

Φ

(−τ1 − α1h1(t1, β1)

σ1
√
h1(t1, β1)

)

×

Φ

(−τ2 − α2h2(t2, β2)

σ2
√
h2(t2, β2)

)

f (α1, α2)dα1dα2

=Eα[exp(ν′α)Φ(C1 +D4α)]

= exp

(

ν′μ+ ν′Σ−1ν

2

)

Φ2((D4ΣD4 + I2)− 1
2 (C1 +D4μ)),

where

ν =
(

2τ1/σ 2
1

2τ2/σ 2
2

)

, D4 =
(−√

h1(t1, β1)/σ1 0
0 −√

h2(t2, β2)/σ2

)

= −D1,

ν′μ+ ν′Σ−1ν

2
= 2

2∑

s=1

τsμαs

σ 2
s

+ 2

1 − ρ2

[
τ 2

1

σ 2
α1
σ 4

1

− 2
ρτ1τ2

σα1σα2σ
4
1 σ

4
2

+ τ 2
2

σ 2
α2
σ 4

2

]

.
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Bayesian Estimation for Bivariate
Gamma Processes with Copula

Yu-Jau Lin, Tzong-Ru Tsai, and Yuhlong Lio

Abstract Gamma stochastic process has been proposed to replace Brownian
motion and geometric Brownian motion to characterize the degradation measure-
ments from an accelerated degradation test (ADT). Tsai et al. [27] applied bivariate
Gamma process to model the two-variable ADT under the independent assumption.
In this chapter, we consider three bivariate Gamma processes utilizing the Clayton,
Frank, and Gumbel copulas to describe the dependence characteristics of bivariate
Gamma variables. Owing to the complex structure of modeling, the differentiation-
based likelihood estimation of the copulas are not always tractable. Bayesian
analysis using Markov chain Monte Carlo method is an effective alternative to
implement parameter estimation and model comparisons. Extensive simulation
studies that calculate the mean square errors (MSEs) of the derived estimates are
conduced to show the efficiency of the proposed method. Three data sets from the
Clayton, Frank, and Gumbel copulas are analyzed and used for the demonstration
of model selections via Bayesian approach.

1 Introduction

An accelerated degradation test (ADT) is one of the effective procedures in
reliability engineering to obtain the lifetime-related degradation information from
highly reliable systems within a relatively short time for reliability inference that
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includes the prediction of the mean time to failure or lifetime percentiles of products
based on the degradation information of test products under high stress-loading
conditions. Lim and Yum [14], Padgett and Tomlinson [18], Park and Padgett [19],
and Tsai et al. [24] had provided comprehensive introduction about ADT. Because
of using s-normal distribution to model the increments of degradation in consecutive
periods at an original scale and logarithmic transformation, Brownian motion (BM)
and geometric Brownian motion (GBM) processes had been easy and widely applied
to model the degradation of products under ADT over time. For more detailed
information, the reader can refer Liao and Tseng [13], Lim and Yum [14], Tsai
et al. [24]), Tsai et al. [25], and Whitmore [29]. However, the flow of BM and
GBM processes for the modeling of the degradation of items under the ADT is that
these two processes allow the degradation process that has negative increments. It
is not true for numerous realistic cases that have shown the cumulative damage of a
product is always monotonically increasing over time; for example, the LED Lumen
degradation studied by Tsai et al. [24] as well as fatigue crack growth data discussed
by Gertsbackh and Kordonskiy [10] and studied by Lu and Meeker [16]. Therefore,
the Gamma process is more suitable to model a degradation process for performing
reliability assessment than the BM and GBM processes due to the positive output
from Gamma process. Boulanger and Escobar [1], Guan, and Tang [11], Park and
Padgett [19], Park and Padgett[20], Park and Padgett [21], Peng [22], Tsai et al.
[26], and Tseng et al. [28] have more comprehensive information about the Gamma
process.

Recently, a multi-variable ADT of Gamma process has been proposed to model
a damage at high stress-loading levels for performing reliability inferences by
Ling et al.[15], Park and Padgett [20, 21], Tsai et al. [25], and Tsai et al.
[27] via the maximum likelihood estimates (MLEs). Chiang et al. [3] proposed
Markov chain Monte Carlo method to the estimation for the ADT Gamma process.
Because of the complexity, the aforementioned studies under multi-variate Gamma
accelerated variables were conducted under the independent assumption. In this
chapter, the copula will be proposed to describe the dependent complexity of two
stress variables. In this investigation, we consider three bivariate Gamma processes
utilizing the Clayton, Frank, and Gumbel copulas to describe the dependence of two
variables.

The rest of this chapter is organized as follows. More details of the two stress
variables ADT of the Gamma process with copulas and the corresponding likelihood
functions will be presented in Sect. 2. The Bayesian Markov chain Monte Carlo
estimation of model parameters and model fitting will be discussed in Sect. 3. A
Monte Carlo simulation study to evaluate the performance of the estimation method
and a copula model selection will be provided in Sect. 4. Finally, some discussions
and concluding remarks are given in Sect. 5.
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2 Gamma Process with Copula

Let the increments of two degradation damages, (Y1, Y2), from a highly reli-
able product under a constant-stress ADT that collects these two degradation
observations at the same predetermined time schedules be governed by marginal
gamma processes, respectively, with positive shape parameters, ν1 and ν2, and scale
parameters, β1 and β2, where the shape parameters, ν1 and ν2, depend upon the
stress level L of the ADT. Therefore, the marginal probability density functions of
Yl for l = 1, 2 are, respectively, given as

fl(y; νl, βl) = 1

Γ (ν) βνl
yνl e−y/βl , y > 0, l = 1, 2. (1)

This chapter focuses on the modeling of these two possibly dependent increments
of the degradation damages, (Y1, Y2). According to Sklar’s Theorem, if
H(y1, y2; ν1, β1, ν2, β2) is a joint distribution with marginals F1(y; ν1, β1) and
F2(y; ν2, β2), then there exists a copula C such that the following is true:
H(y1, y2; ν1, β1, ν2, β2) = C(F1(y1 : ν1, β1), F2(y2 : ν2, β2)). Practically, a
copula has been approved to be a flexible and convenient method to combine
two marginal distributions into a bivariate distribution to address the possible
dependence of two marginal distributions. Therefore, we would like to use the form
of copula to address the dependence of these two random increments at all stress
levels. There are many useful copula functions that include elliptical family (such as
Gaussian, t, etc.) and Archimedean family (such as Frank, Gumbel, Clayton, etc.).
Three aforementioned Archimedean copula functions that include the Clayton,
Frank, and Gumbel copula with the parameter θ are introduced briefly as follows.

Clayton copula is a symmetric copula for bivariate random variables. The CDF
of Clayton copula is given by

Cθ1(u, v) = (u−θ + v−θ − 1
)−1/θ

(2)

with the corresponding density as

cθ1(u, v) = (θ + 1)(uv)−(θ+1)(u−θ + v−θ − 1)−
2θ+1
θ . (3)

The second copula is Frank copula. Its CDF is given by

Cθ2(u, v) = −1

θ
log

{

1 + [e−θu − 1][e−θv − 1]
e−θ − 1

}

(4)

with the corresponding density as

cθ2(u, v) = θ [1 − e−θu][e−θ(u+v)]
1 − e−θ − [1 − e−θu][1 − e−θv] . (5)
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The third copula is Gumbel copula and its CDF is given by

Cθ3(u, v) = exp{−[(− log u)θ + (− log v)θ ]1/θ } (6)

with the corresponding density as

cθ3(u, v) = Cθ3(u, v)(uv)−1 [(ũ)(ṽ)]θ−1

[ũθ + ṽθ ]2−1/θ

{
(ũθ + ṽθ ) 1

θ + θ − 1
}
, (7)

where ũ = − log(u) and ṽ = − log(v).

2.1 The Likelihood Function

Let a highly reliable product have two cumulative damage paths, labeled by Wt =
(Xt1 , Xt2), that starts at w0 = (0, 0) and follows the bivariate GP of Eq. (1)
with C(u, v) of Eq.(2), Eq.(4), or Eq.(6). The bivariate GP has marginal GPs,
respectively, with positive shape parameters, νL1 and νL2 , and scale parameters,
β1 and β2, where the shape parameters, νL1 and νL2 , depend on the stress level L of
the ADT. The product is classified as failed when eitherXt1 passes a given threshold
ξ1 first time or Xt2 passes a given threshold ξ2 first time by the termination of the
ADT; otherwise, the product is classified as surviving. Let S1 be the first passage
time of Xt1 to ξ1 and S2 be the first passage time of Xt2 to ξ2.

The ADT is conducted with the working assumptions (A1) to (A5), which were
given by Tsai et al. [27]:

(A1) k treatments are considered for the tested units in the ADT. Treatment i
consists of a combination of two stress-loading levels, denoted by L′

i =
(L′

1i , L
′
2i ) for i = 1, 2, · · · , k.

(A2) A total of ni units are allocated to the run i of the ADT, and all units are tested
subject to treatment L′

i .
(A3) The two components of stress-loading levels of L′

i are, respectively, standard-
ized as follows:

L1i = 1/L′
10 − 1/L′

1i

1/L′
10 − 1/L′

1M
, for ambient temperature,

L2i = 1/L′
20 − 1/L′

2i

1/L′
20 − 1/L′

2M
, for drive current, i = 1, 2, · · · , k,

where 1/L′
10 and 1/L′

20 are the respective levels of normal use condition for
both treatments; additionally, 1/L′

1M and 1/L′
2M are the respective levels of

the highest stress loading for both treatments. Obviously, L10 = L20 = 0,
L1M = L2M = 1, 0 < L1i ≤ 1,0 < L2i ≤ 1 for i = 1, 2, · · · , k.
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Moreover, L1i and L2i are scale-free and increasing functions of 1/L′
1i and

1/L′
2i , respectively, for i = 1, 2, · · · , k.

(A4) Let the starting time, tij0 = 0, of the ADT and the initial damages of two
paths for each unit in life test be xij01 = 0 and xij02 = 0. The damage
of first path of each surviving unit at Li = (L1i , L2i ) is measured at
times, tij1 < tij2 < · · · < tijm1 , and labeled by xij11, xij21, · · · , xijmi1,
respectively, for i = 1, 2, · · · , k; and the damage of second path of each
surviving unit at Li = (L1i , L2i ) is measured at times, tij1 < tij2 <

· · · < tijm1 , and labeled by xij12, xij22, · · · , xijmi2, respectively, for i =
1, 2, · · · , k. The increments of the damages of two processes, yijh1 =
xijh1 − xij (h−1)1 and yijh2 = xijh2 − xij (h−1)2, follow a bivariate Gamma
distribution of H(yijh1, yijh2; δijh1, β1, δijh2, β2) with Cθ(u, v) of Eq.(3),
two shape coefficients δijh1 = νLi1νijh and δijh2 = νLi2νijh, and two scale
parameters β1 and β2, where j = 1, 2, · · · , ni , h = 1, 2, · · · ,mi , and
i = 1, 2, · · · , k. It should be noticed that the marginal probability density
functions of H(yijh1, yijh2; δijh1, β1, δijh2, β2) are, respectively, given as
follows:

fl(yijhl; δijhl, βl) = 1

Γ (δijhl)β
δijhl
l

y
δijhl−1
ijhl e−yijhl/βl , yijhl > 0 for l = 1, 2.

(8)
(A5) The two shape parameters of the marginal gamma distribution can be

expressed in terms of L1i and L2i through the generalized Eyring model
(GEM) as

νLi l = exp(γ0l+γ1l L1i+γ2l L2i+γ3l L1iL2i ), i = 1, 2, · · · , k, and l = 1, 2,
(9)

where γ0l < 0, γ1l , γ1l > 0 and γ3l ∈ R for l = 1, 2.

The GEM model in Eq. (9) is a generalized function that includes three widely
used single-loading acceleration models as special cases: the Arrhenius law model,
a power law model, and an exponential law model when only eitherL1 orL2 is used.
Using the exact distributions of the first passage times, S1 and S2 under Gamma
degradation process, to achieve an optimal ADT plan is difficult. For the case of
one degradation path, Park and Padgett [19] indicated that the distribution of the
first passage time, Sl , can be approximated by the IG distribution if the condition
Cβl/

√
νLl � Cβl/νLl (i.e.,

√
νLl � 1) is true, where Cβl = (ξl − x0l )/βl for

l = 1, 2. Let μLl = Cβl/νLl , and λLl = C2
βl/νLl for l = 1, 2. Park and Padgett

[19] showed that such an approximation is effective even if
√
λLl is not excessively

greater than μLl when μLl is high for l = 1, 2. The PDF of the IG distribution is
defined by

gSl (s;Cl) = gSl (s; x0l = 0, Cl) =
Cβl√
νLl√
(2πs3

exp

⎛

⎝
−(νLl (s − Cβl√

νLl
)2

2s

⎞

⎠ for l = 1, 2.

(10)
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The pdf of the damage increments observed from the marginal gamma process
can be presented by Eq. (8), where δijhl = νLi lτijh for j = 1, 2, · · · , ni ,
h = 1, 2, · · · ,mi , i = 1, 2, · · · , k, and l = 1, 2. Let D = {(yijhl, τijh), i =
1, 2, · · · , k, j = 1, 2, · · · , ni, h = 1, 2, · · · ,mi, l = 1, 2} denote the data set of
join damage increments observed from the bivariate gamma process. The likelihood
function and log likelihood function can be presented, respectively, by

L(D | Θ)

=
k∏

i=1

ni∏

j=1

mi∏

h=1

Cθ(F1(yijh1; δijh1, β1), F2(yijh2; δijh2, β2) ·
2∏

l=1

y
δijhl−1
ijhl e−yijhl/βl

Γ (δijhl)β
δijhl
l

(11)

and

l(D | Θ) =
k∑

i=1

ni∑

j=1

mi∑

h=1

{Cθ(F1(yijh1; δijh1, β1), F2(yijh2; δijh2, β2)

−
[

2∑

l=1

ln(Γ (δijhl)+ δijhl ln(βl)− (δijhl − 1)ln(δijh1 + yijh1/βl)

]

,

(12)

where Cθ is one of Clayton, Frank, and Gumbel copulas in Eq.(2), Eq.(4), and
Eq.(6), θ is the corresponding copula parameter, andΘ = (β1, γ01, γ11, γ21, γ31, β2,

γ02, γ12, γ22, γ32, θ ).
No close forms of the MLEs (θ̂ ) can be found due to the complicated

log-likelihood function l(θ | D). Numerical computing methods such as
the quasi-Newton method can be used to obtain the MLEs of the model
parameters to maximize the log-likelihood function l(θ | D). The MCMC
approach will be addressed as follows to find the Bayesian estimates of
β̂1, ˆγ01, ˆγ11, ˆγ21, ˆγ31, β̂2, ˆγ02, ˆγ12, ˆγ22, ˆγ32, and θ̂ through using Gibbs sampling
algorithm and Metropolis–Hastings algorithm.

3 Markov Chain and Monte Carlo Procedure

Markov Chain and Monte Carlo (MCMC) method is an effective procedure
for obtaining information about distributions, especially for estimating posterior
distributions in Bayesian inference. It allows one to calculate numerical approx-
imations of multi-dimensional integrals and to sample from the un-normalized
posterior distribution over parameters. (See, for example, Cowles and Carlin [5],
Chen [2], and Tan et al. [23]). Unlike Monte Carlo sampling methods that draw
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independent samples from the distribution, MCMC method draws samples from the
dependent sample conditionally on the existing sample. This allows the algorithms
to approximate the target distribution with the simulated MCMC samplers.

Assume that the model parameter Θ has a joint prior pdf π(Θ). The posterior
likelihood function can be represented as

Pr(Θ | D) ∝ L(Θ | D)π(Θ), (13)

where Θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11) ≡ (β1, γ01, γ11, γ21, γ31, β2,

γ02, γ12, γ22, γ32, θ ). In this study, independent priors for parameters will be
applied. However, the analytic form of the marginal posterior distribution in Eq.(13)
is difficult to be obtained, and it is also infeasible to implement a numerical
integration when using the marginal posterior distribution. Hence, in order to derive
the Bayesian estimations of the parameters, the MCMC approach through the use
of the Metropolis–Hastings algorithm (Hastings [12], Metropolis et al. [17]) to
draw the sample of θj for j = 1, 2, 3, · · · , 11 via the Gibbs sampling scheme
(Geman and Geman [9]) will be applied in this study. When non-informative
prior for each parameter (i.e., no prior for each parameter) is used, the MLEs
Θ̂ = (β̂1, γ̂01, γ̂11, γ̂21, γ̂31, β̂2, γ̂02, γ̂12, γ̂22, γ̂32, θ̂ ) can be derived through the
MCMC approach. Readers may refer Chib and Greenberg [4] for more information.

Let the joint prior pdf

π(Θ) =
{

2∏

l=1

π1l (βl)π2l (γ0l)π3l (γ1l )π4l (γ2l)π5l (γ3l )

}

πθ (θ),

where π1l (βl) is the pdf of inverse Gamma distribution, πjl(γ(j−2)l) ∝ 1 for j =
2, 3, 4, 5 and l = 1, 2, and π(θ) ∝ 1. Then, π(Θ) can be represented as

2∏

l=1

η
λl
l

Γ (λl)
β

−λl−1
l e−ηl/βl , βl > 0 for l = 1, 2. (14)

Then

Pr(Θ | D) ∝
k∏

i=1

ni∏

j=1

mi∏

h=1

cθi (F1(yijh1; δijh1, β1), F2(yijh2; δijh2, β2)

·
2∏

l=1

y
δijhl−1
ijhl e−yijhl/βl

Γ (δijhl)β
δijhl
l

. (15)

The Bayesian estimate of θi is close to the MLE for maximizing l(θ) if the hyper-
parameters λl and ηl are selected to have a big variance of βl for l = 1, 2 in the pdf
(8).
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3.1 Blocking

The Metropolis–Hastings is a specific implementation of MCMC. It works well in
high-dimensional spaces as opposed to Gibbs sampling and rejection sampling. It
uses q to randomly walk in the distribution space, accepting or rejecting jumps to
new positions based on how likely the sample is.

It is not necessary to update each of the parameters individually. (see Gelman et
al. [8], Chen [2]). Since the marginal distribution of a bivariate Gamma copula is free
of the other counterpart parameters and is again Gamma distributed, we consider the
following Gibbs sampling scheme that the parameters B1 = (β1, γ01, γ11, γ21, γ31),
B2 = (β2, γ02, γ12, γ22, γ32), and θ are iteratively updated. That is, if Θ =
(B1, B2, θ), the Gibbs sampling scheme consists of three parts:

1. Update B1|D,B2, θ .
2. Update B2|D,B1, θ .
3. Update θ |D,B1, B2.

3.2 Updating Bi|D,Bj, θ (i �= j)

To update B1|D,B2, θ or equivalently B1| yijh1, B2, θ , the M–H algorithm that

generates the Markov chain {B(i)1 } of B1 is as follows:

1. Set the initial parameter values, B(1)1 .

2. At each bth (b > 1) Gibbs sampling iteration, simulate the candidates B(∗)1 from

their transition densities q1 and w
iid∼ U(0, 1), then

B
(b+1)
1 =

⎧
⎪⎨

⎪⎩

B
(∗)
1 if w ≤ min

{

1,
L(B

(∗)
1 | yijh1, B2, θ) q1(B

(b)
1 |B(b)1 )

L(B
(b)
1 | yijh1, B2, θ) q1(B

(∗)
1 |B(∗)1 )

}

B
(b)
1 otherwise.

,(16)

where L(B1| yijh1, B2, θ) is the conditional posterior density proportional to
Eq. (15). It is proportional to the product of the marginal likelihood in Eq. (11)
times the marginal prior density distributions of B1 in Eq. (14). Equivalently,

L(B1| yijh1, B2, θ) =
⎧
⎨

⎩

k∏

i=1

ni∏

j=1

mi∏

h=1

y
δijhl−1
ijh1 e−yijh1/β1

Γ (δijh1)β
δijh1
1

⎫
⎬

⎭
· η

λ1
l

Γ (λ1)
β

−λ1−1
l e−η1/β1 . (17)

Likewise, B2|D,B1, θ can be updated in a similar way.

1. Set the initial parameter values, B(1)2 .
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2. At each bth (b > 1) Gibbs sampling iteration, simulate the candidates B(∗)2 from

their transition densities q2 and w
iid∼ U(0, 1), then

B
(b+1)
1 =

⎧
⎪⎨

⎪⎩

θ(∗) if w ≤ min

{

1,
L(B

(∗)
2 | yijh2, B1, θ) q2(B

(b)
2 |B(b)2 )

L(B
(b)
2 | yijh2, B1, θ) q2(B

(∗)
2 |B(∗)2 )

}

θ(b) otherwise.

,(18)

where

L(B1| yijh2, B1, θ) =
⎧
⎨

⎩

k∏

i=1

ni∏

j=1

mi∏

h=1

y
δijh2−1
ijh2 e−yijh2/β2

Γ (δijh2)β
δijh2
2

⎫
⎬

⎭
· η

λ2
2

Γ (λ2)
β

−λ2−1
2 e−η2/β2 .

3.3 Updating Copula Parameter

Copula measures the complex dependence between variables. Although there are
lots of ways to estimate the copula parameter θ in the literature, the derivative-
based estimation of the copula parameter is ad hoc, especially for high-dimensional
data. The MCMC method via M–H algorithm to estimate the copula parameter is
an effective alternative. In this case, the M–H algorithm to estimate the parameter
θ |D,B1, B2, is as follows:

1. Set the initial value of θ , say θ(1).
2. At each bth Gibbs sampling iteration, simulate the candidate θ(∗) from their

transition densities q3 and w
iid∼ U(0, 1), then

θ(b+1) =

⎧
⎪⎨

⎪⎩

θ(∗) if w ≤ min

{

1,
L(θ(∗)|D,B1, B2) q3(θ

(∗)|θ(b))
L(θ(b)|D,B1, B2) q3(θ(b)|θ(∗))

}

θ(b) otherwise.

,

where the posterior likelihood is proportional to Eq.(13) times the non-
informative prior of θ , π(θ) ∝ 1, which is

L(θ |D,B1,B2) =
k∏

i=1

ni∏

j=1

mi∏

h=1

cθ (F1(yijh1; δ(b)ijh1, β
(b)
1 ), F2(yijh2; δ(b)ijh2, β

(b)
2 ) · 1.

(19)

The sample means of these MCMC samplers, {Θ(b)}Nb=Nb+1, after some burn-in
periods Nb are the Bayes estimates.
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3.4 Model Comparison

Once the parameters are estimated, there arises the question of model selection.
Bayesian model comparison is a method of model selection based on Bayes factors.
See, for example, Gelman et al. [8] and Chen [2]. The Bayes factor is a likelihood
ratio of the posterior marginal likelihood of two competing models, which can be
written as the posterior probability odds of models Mi and Mj multiplied by the
model priors’ odds. That is, the Bayes factor in favor ofMi and againstMj is defined
as

Bij = Pr(D|Mi)
Pr(D|Mj) =

Pr(Mi |D)Pr(D)
Pr(Mi)

Pr(Mj |D)Pr(D)
Pr(Mj )

= Pr(Mi |D)
Pr(Mj |D)

Pr(Mj )

Pr(Mi)
, (20)

whereD is the data, and Pr(Mi |D) is the posterior probability (likelihood) of model
Mi . When the two models are equally probable a priori, i.e., Pr(Mi) = Pr(Mj ), the
Bayes factor is equal to the ratio of the posterior probabilities of Mi and Mj . That
Bij > 1 indicates that Mi is a better model fitting than Mj . In our case, it is fair to
assume Pr(Mi) = 1/3 for i = 1, 2, 3 since the underlying three models are equally
preferred.

The posterior probability can be approximated by the likelihood function of the
MCMC sampler of Θ (see Chen [2]).

Pr(D|Mi) =
∫

L(D|Mi,Θ)π(Θ|Mi) dΘ = Eπ(Θ) (Pr(D|Mi,Θ))

≈ 1

N −Nb
N∑

b=Nb
Pr(D|Mi,Θ(b)), (21)

where {Θ(b)}Nb=1 is the MCMC sampler ofΘ ,N is the number of MCMC iterations,
Nb is the burn-in period, and Pr(D|Mi,Θ(b)) = L(D|Mi,Θ(b)) is the likelihood
function evaluated at Θ = Θ(b) in Eq.(11) at each bth Gibbs sampling iteration.

4 Numerical Analysis

4.1 Simulation Study

To show the performance of our proposed approach, an extensive simulation study
is conducted to calculate the mean square errors (MSEs) of the Bayes estimates.
For the computational simplicity, let us consider the data experiment: let ADT
experiment k = 6 treatments, 26 weeks (one week = 168 h) for ADT, check the
test for every two weeks, the number of measurement times is m = mi = 13
for all treatments, scaled time increment is 14, [L1i]6

i=1 = [25, 45, 60, 75, 75, 75],
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[L2i]6
i=1 = [350, 650, 650, 450, 550, 650], and the same target parameters (i.e.,

B1 = B2) are r01 = −2.902, r11 = r12 = 0.577, r21 = r22 = 0.533, and
β1 = β2 = 0.662, and θ is one of the Clayton, Frank, and Gumbel copula
parameters in Eq. (2), (4), and (6). n1 = n2 = n pairs of bivariate Gamma variates
{(yijk1, yijk2)}i,j,k from the Clayton, Frank, or Gumbel copula with marginal
distribution are, respectively, simulated using the R copula package. Our proposed
MCMC method in Sect. 3.3 with non-informative parameter prior distributions is
then applied to calculate the Bayes estimates.

Using R NIMBLE packages to implement the MCMC estimation computation,
see, for example, de Valpine et al. [6, 7], the following tables summarize the
approximated MSEs of selected parameters θ , r01, r11, r21, β1 in 500 times of
simulation study. Selected R NIMBLE codes that simulate bivariate Gamma variates
with Clayton copula and estimate the corresponding parameters using MCMC
method are included in Appendix.

From Table 1, we see, regardless of the Clayton, Frank, or Gumbel copula
functions, as the sample size 6×n×13 of bivariate data is getting larger, all the MSEs
of all parameters get smaller. This demonstrates the effectiveness of our proposed
MCMC method.

Table 1 The Bayes estimate of each parameter is the sample mean of its 21,000 MCMC samplers
after 1000 burn-in periods at each simulation run. The values at each cell are the MSEs and bias
with parenthesis, respectively

Parameter θ r01 r11 r21 β1

Clayton copula θ = 3

ni = 2 0.15417 0.01619 0.02127 0.01953 0.00489

(0.05696) (0.01786) (−0.01139) (−0.01141) (0.00526)

ni = 5 0.11739 0.00776 0.00689 0.00718 0.00158

(−0.0187) (0.01544) (−0.01975) (−0.00791) (0.00623)

ni = 10 0.02979 0.00393 0.00352 0.00293 0.00088

(−0.01236) (0.00550) (−0.00168) (−0.00169) (−0.00100)

Frank copula θ = 3

ni = 2 0.37304 0.01539 0.02294 0.02655 0.00388

(−0.00414) (0.00972) (−0.00735) (−0.02397) (0.01439)

ni = 5 0.11248 0.00752 0.00844 0.00693 0.00143

(−0.03808) (0.01451) (−0.00969) (−0.00862) (0.000695)

ni = 10 0.05625 0.00403 0.00355 0.00295 0.00069

(0.00559) (0.00493) (−0.00756) (−0.0007) (0.00237)

Gumbel copula θ = 3

ni = 2 0.07767 0.02045 0.03455 0.01666 0.00625

(0.04093) (0.05120) (−0.01838) (−0.06294) (0.01656)

ni = 5 0.02334 0.01111 0.01115 0.01186 0.00213

(0.00963) (0.01589) (−0.00637) (−0.01054) (0.00086)

ni = 10 0.01493 0.00454 0.00413 0.00433 0.00116

(0.00118) (0.01660) (−0.00871) (−0.01145) (−0.00140)
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4.2 Numerical Example

In this section, three data sets of {yijkl}, namely D1, D2, and D3, with sample size
156 (= 6∗2∗13) from the Clayton, Frank, and Gumbel copulas with the same copula
parameter θ = 3 are, respectively, simulated. To observe the behavior of bivariate
copulas, the scatter plots and contour plots of datasets D1, D2, and D3 along with
those for the three copulas with θ = 6 are shown in Figs. 1 and 2, respectively.
We see that the two-dimensional density of Frank copula, blue contours in the two
figures, is more dense than the Clayton and Gumbel copulas. This shows that the
bivariate data from the Frank copula is more highly correlated than the others.

Given the data sets D1, D2, and D3 assuming from Clayton (M1), Frank (M2),
and Gumbel (M3) copulas, the Bayes point and interval estimation with non-
informative prior distribution is calculated and summarized in Table 2. Look at
the estimation of Di |Mi, i = 1, 2, 3 in the first, fifth, and ninth rows in Table 2.
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Fig. 1 θ = 3



Bayesian Estimation for Bivariate Gamma Processes with Copula 181

ll
ll

l

l
ll

ll
l

ll
l

l

l
l

l

l

ll

l

l

llll
l

l

ll
lll l

ll
l l

l

ll
ll

ll

l

ll
lllll

l

l l l
l

l

ll l

l

l

l l

ll

l

l
l

l
l

l

l
l

l

l

l

l

l l

l

l l

l l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l ll

l

l

l l
l l

l

l

l
ll

l
l

l
l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l
l

l

l

ll

l

l

l

l

ll

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll

l

l

l

l

l

l

l
lll l

l

l
l

l

l

ll

l
l

l

l

l

l ll
l

l

l
l

l

l
l l

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l
l

l

l

l l

ll l

l

l l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

l l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

ll
l l

l

l

l

l

l
l l

l

l

l

l l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

ll

l

l

l

l
l
l

l

l

l

l

l

l
l

l

l

0

2

4

6

8

0 2 4 6 8
x

y

Frank copuls

l
l

lll

l

lllll

l

l

l
l

l

l l l
l ll

ll
l
l

ll

l

lll

l
l

l

l
l

l
l

l

l
l

lll
l

ll

l
l

ll

l

l

ll

ll

l l

ll

l

l l l
l

ll

l

l

l

ll

l
l

ll l

l

l
l

ll

l

l

l

l
l

l
l

l

l

l

l
l

l

l
l

l l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l l
l

l
l

l

l

l

l
l

l l

l l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

ll

l
l

l

l

l

l

l
l

l

ll

l
l

l

l

l

l

l

l

ll

l l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
ll

l

l l
l

l

l l

l
l

l

l

l
l

l

ll

l

l

l

l

l
l

l

l

ll l
l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l
l

l

l

l
l

l

l

l

ll
l

ll

l
l

l
l

l
l

l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l

l

ll l

l

l

l

l

lll l

l

l

l
l

l
l

l l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l l

l

l l

l

l

l

ll

l

l

l
l

l
l

l l

l

l

l

l
l

l

ll

l

0

2

4

6

8

0 2 4 6 8
x

y

Gumbel copula

lll

l

l l ll

l

l
ll

l

l

l

l

l
l l

l
l

llll

l

ll
l

ll

l

l
l

llll
l

lll

l

l

l

ll

l

ll

l

l
ll l
l

l
l

lllll

l

l

ll

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

ll

l

l

l
l

l

l
l

l
l

l

l
l

ll l

l

l
l

l l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

ll l

l
l l

l

l

l

l

l

l

l l

l

l

l

l l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l l

l
l

l

ll

l

l
l

l

ll

ll

l

l

l

l

l

l

ll
ll

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l
l l

l

ll l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll l

l

l

l

lll

l

l

ll

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l l
l l

l

l

l l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l l

l
ll

l

l
l

l

ll

l

l

0

2

4

6

8

0 2 4 6 8
x

y

Clayton copula

Data simulated by R cupula package

Fig. 2 θ = 6

The point estimates are around the target parameter values, and the corresponding
credible sets also cover the true parameters. It is saying that the parameters are
correctly estimated if data setsD1,D2, orD3 are from the targeted modelsM1,M2,
or M3, respectively. Otherwise, the estimation is not good since wrong models are
analyzed.

Moreover, we see that the marginal likelihood Pr(D1|M1) = exp(−267.38)
by Eq. (21) is greater than Pr(D1|M2) = exp(−289.74) and Pr(D1|M3) =
exp(−306.15). It indicates that the Bayes factors B12 and B13 in Eq. (20) with
equally likely model preference Pr(M1) = Pr(M2) = Pr(M2) = 1

3 are much
larger than 1. Therefore, given the data setD1, the model coming from the bivariate
Gamma Clayton copula is more likely. Similar conclusions can be drawn that the
data sets D2 and D3 are from the Frank and Gumbel copulas, respectively, as
expected (see, Table 3).
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Table 2 The Bayes estimate of each parameter is the sample mean of its 21,000 MCMC samplers
after 1000 burn-in periods at each simulation run. The values at each cell are the MSE and bias in
the parentheses, respectively

Parameter θ r01 r11 r21 β1

Clayton copula θ = 6

ni = 2 0.51947 0.01558 0.01844 0.01566 0.00498

(0.08396) (0.01352) (−0.03398) (−0.00864) (0.01922)

ni = 5 0.20282 0.00771 0.00555 0.00566 0.00206

(0.05614) (0.00911) (−0.01167) (0.00349) (0.00086)

ni = 10 0.11607 0.003481 0.00295 0.00273 0.00093

(0.03671) (0.00025) (−0.00566) (0.00386) (0.00231)

Frank copula θ = 6

ni = 2 0.29509 0.02048 0.04116 0.04420 0.00631

(0.11337) (0.06270) (−0.06062) (−0.03715) (0.01770)

ni = 5 0.17730 0.00661 0.00761 0.00737 0.00163

(−0.01554) (0.010252) (−0.01669) (−0.01132) (0.00951)

ni = 10 0.07859 0.00351 0.00386 0.00319 0.00067

(0.02316) (0.00690) (−0.01145) (−0.00048) (0.00164)

Gumbel copula θ = 6

ni = 2 0.29806 0.01867 0.04051 0.03617 0.00631

(0.18612) (0.05529) (−0.06697) (−0.03743) (0.02938)

ni = 5 0.10738 0.01217 0.01042 0.01207 0.00203

(−0.00656) (0.02926) (−0.02225) (−0.01314) (0.00168)

ni = 10 0.05720 0.00496 0.00442 0.00509 0.00101

(0.00637) (0.01350) (−0.00485) (−0.01015) (0.00124)

5 Concluding Remarks

The ADT with two stress variables in a GP model has been an important approach
to evaluate the reliability of highly reliable products. Following the working
assumptions of GEM model, the estimation problem is typically transferred to
bivariate Gamma variates. Many researchers had studied the MLEs of the reliability
under Gamma process. (See, for example, Ling et al. [15] and Tsai et al. [26]).
However, this differentiation-based MLEs of the bivariate Gamma variates are
sometimes not steady. The existing estimations are ad hoc.

In this chapter, we proposed three bivariate Gamma processes with the Clayton,
Frank, and Gumbel copulas to describe the dependence characteristics of the
bivariate ADT variables and apply MCMC method to do Bayesian estimation for
the bivariate Gamma variates with copulas and model selection. Intensive simulation
studies show that not only the performance of the GP model parameter and copula
estimation in terms of the MSEs are as good as the expectation but also for the model
selection problem, the Bayes factors given by computing their posterior likelihood
identify the correct target model among three possible copulas.
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Table 3 The values at each cell are the point estimate and the credible set in the parentheses

D1 ∼ Clayton copula θ = 3, r01 = −2.9, r11 = 0.577, r21 = 0.531, β1 = 0.662

θ̂ r̂01 r̂11 r̂21 β̂1 log(Pr(D1|Mi))
M1 3.2662 −2.7214 0.6029 0.3066 0.6420 −267.38

(2.47, 4.19) (−2.99, −2.51) (0.33, 0.88) (0.01, 0.59) (0.53, 0.79)

M2 8.9540 −2.9020 0.6776 0.3433 0.6502 −288.74

(7.37, 10.6) (−2.91, −2.90) (0.35, 0.97) (0.01, 0.64) (0.54, 0.78)

M3 2.3442 −2.6777 0.5079 0.2334 0.7276 −306.15

(1.93, 2.82) (−2.92, −2.51) (0.10, 0.80) (0.01, 0.57) (0.58, 0.92)

D2 ∼ Frank copula θ = 3, r01 = −2.9, r11 = 0.577, r21 = 0.531, β1 = 0.662

θ̂ r̂01 r̂11 r̂21 β̂1 log(Pr(D2|Mi))
M1 0.5831 2.7500 0.4135 0.5505 0.6455 −360.93

(0.30, 0.91) (−3.00, −2.53) (0.12, 0.67) (0.29, 0.80) (0.54, 0.77)

M2 3.5226 −2.8920 0.5340 0.5878 0.6544 −351.46

(2.41, 4.66) (−2.90, −2.89) (0.27, 0.76) (0.33, 0.84) (0.55, 0.78)

M3 1.4375 −2.7292 0.4198 0.5037 0.6556 −357.04

(1.25, 1.65) (−2.98, −2.52) (0.05, 0.68) (0.23, 0.77) (0.54, 0.79)

D3 ∼ Frank copula θ = 3, r01 = −2.9, r11 = 0.577, r21 = 0.531, β1 = 0.662

θ̂ r̂01 r̂11 r̂21 β̂1 log(Pr(D3|Mi))
M1 1.8019 −2.7872 0.5080 0.5368 0.6149 −290.69

(1.27, 2.39) (−3.07, −2.54) (0.23, 0.75) (0.29, 0.79) (0.50, 0.74)

M2 8.3216 −2.9389 0.6407 0.5719 0.5882 −267.81

(6.78, 9.94) (−2.94, −2.93) (0.49, 0.79) (0.42, 0.71) (0.52, 0.66)

M3 2.5861 −2.7762 0.5850 0.5470 0.5493 −255.23

(2.22, 2.99) (−2.96, −2.60) (0.41, 0.75) (0.38, 0.70) (0.48, 0.63)

Appendix

Below are the R codes via NIMBLE package in Bayesian using Gibbs sampling
(BUGS) language to estimate the parameters (s1, r2, s2, r2), including copula
parameter (theta).

# install.packages("copula") ## R copula package
(r-nimble.org)

# install.packages("nimble", type="source")
# NIMBLE needs a C++ compiler and the standard utility ’make’

to generate and compile C++

library(nimble) ## call NIMBLE package
library(copula) ## call copula package

## Generate bivariate Gamma
variates from Clayton copula

theta =3 # the target copula parameter
n1=n=3 ## no. of units used for each

treatment
C=50
k=6 ## set up k=6 treatments
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tU=168*26 ## 26 weeks (one week=168
hours) for ADT

t=seq(0,tU,168*2)/24 ## check the test each two weeks
m=length(t)-1 ## no. of measurement times
dt=t[2:(m+1)]-t[1:m] ## scaled time increments
LL=L=array(dim=c(6,2))
LL[1,]=c(25, 350)
LL[2,]=c(45, 650)
LL[3,]=c(60, 650)
LL[4,]=c(75, 450)
LL[5,]=c(75, 550)
LL[6,]=c(75, 650)
mL1=max(LL[,1])
mL2=max(LL[,2])
L[,1]=(1/(25+273.15)-1/(LL[,1]+273.15))/(1/(25+273.15)-1/
(mL1+273.15))
L[,2]=(log(LL[,2])-log(350))/(log(mL2)-log(350))
r0=-2.902; r1=0.577; r2=0.533; r3=0.531; be=0.662
v.r=c(r0,r1,r2,r3,be)

generatedata=function(v,t,be,n1, theta)
{m=length(t)-1 # no. of measurement times
y=array(dim=c(2,m,n1,k))

for (i in 1:k)
{for (j in 1:n1){

cop <- claytonCopula(param = theta, dim = 2)
U <- rCopula(m, cop)
y[1,,j,i]= qgamma(U[,1],shape=v[i]*dt[i],scale=be)
y[2,,j,i]= qgamma(U[,2],shape=v[i]*dt[i],scale=be)
}

}
return(y) # 4 dimensional data
}

v=rep(0,k)
v0=exp(r0)
for (i in 1:k) {v[i]=v0*exp(r1*L[i,1]+r2*L[i,2]+r3*L[i,1]

*L[i,2])} #delta

yy= generatedata (v,t,be,n1, theta) # generate the bivariate
copula data

y1=yy[1,,,]; y2=yy[2,,,]
zeros=array(0,dim=c(m,n1,k))
mydata=list(xx=y1, yy=y2, L=L , r3=0.531) # the data set
myinits=function()list(theta=5, r0=-2.8, r1=0.4, r2=0.4,

be=0.5) # initial values

ClaytonCode=nimbleCode({ # likelihood defined below
for (mm in 1:13){
for( nn in 1:n1){

for (ii in 1:6){
delta[mm,nn,ii] <- (exp(r0)*exp(r1*L[ii,1]+r2*L[ii,2]+r3

*L[ii,1]*L[ii,2]))* 14
dummy[mm,nn,ii] ~ dpois(negLogLike[mm,nn,ii]) # zero trick
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u[mm,nn,ii]<- pgamma(xx[mm,nn,ii], shape=delta[mm,nn,ii],
scale=be) # marginal gamma CDF

v[mm,nn,ii]<- pgamma(yy[mm,nn,ii], shape=delta[mm,nn,ii],
scale=be)

negLogLike[mm,nn,ii]<- 100+(-1)*logLike[mm,nn,ii]
logLike[mm,nn,ii]<- log(theta+1)+(-theta-1)*log(u[mm,nn,ii]

*v[mm,nn,ii])+
((-1)*(2*theta+1)/theta)*log(u[mm,nn,ii]^(-theta)+
v[mm,nn,ii]^(-theta)-1)+
log(dgamma(xx[mm,nn,ii], delta[mm,nn,ii],scale=be))+
log(dgamma(yy[mm,nn,ii],delta[mm,nn,ii],scale=be))

## negLogLike[mm,nn,ii]= (-1)*log-likelihood, which is
"the negative value of the log-likelihood function"

## logLike[mm,nn,ii] is the log-likelihood of Eq.(3)
}}}
theta~ dgamma(.01,.01) # parameter’s prior distributions
r0 ~ dunif(-3.5,-2.5)
r1 ~ dgamma(.01,.01)
r2 ~ dgamma(.01,.01)
be ~ dgamma(.01,.01)
}) # end of nimbleCode function

# computing the
estimation by MCMC
method

mcmc.out=nimbleMCMC(ClaytonCode, # call "Clayton
Code" nimbleCode

monitors=c("theta","r0", "r1", "r2","be"), # interested param-
eters

constants=list(xx=y1, yy=y2, L=L, r3=0.531, n1=n1),
data=list(dummy=zeros), # data and constants
inits=myinits, thin=1, # initial values
nchains=2, niter=20000, nburnin=1000, # 2 chains, 20000

MCMC iterations,
1000 burn-in periods

summary=TRUE) # summary of the MCMC
estimation

mcmc.out$summary # the MCMC estimates
## The Bayes estimates: be=0.6242, r0=-2.8598, r1= 0.4528,

r2=0.6806, theta= 2.7733
## Below are the sample MCMC outputs.

#$chain1
# Mean Median St. Dev. 95%CI_low 95%CI_upp
# be 0.6267 0.6231 0.0619 0.5205 0.7647
# r0 -2.8652 -2.8627 0.1334 -3.1288 -2.6053
# r1 0.4543 0.4579 0.1364 0.1846 0.7146
# r2 0.6802 0.6780 0.1255 0.4274 0.9284
# theta 2.7884 2.7655 0.3917 2.0927 3.6011

#$chain2
# Mean Median St. Dev. 95%CI_low 95%CI_upp
# be 0.6217 0.6183 0.0629 0.5083 0.7606
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# r0 -2.8545 -2.8513 0.1357 -3.1315 -2.6027
# r1 0.4513 0.4509 0.1303 0.1917 0.7012
# r2 0.6810 0.6815 0.1218 0.4339 0.9195
# theta 2.7581 2.7353 0.3877 2.0658 3.5689

#$all.chains
# Mean Median St. Dev. 95%CI_low 95%CI_upp
# be 0.6242 0.6205 0.0625 0.5141 0.7623
# r0 -2.8598 -2.8568 0.1347 -3.1300 -2.6035
# r1 0.4528 0.4544 0.1334 0.1886 0.7081
# r2 0.6806 0.6796 0.1237 0.4306 0.9247
# theta 2.7733 2.7475 0.3900 2.0775 3.5940
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Review of Statistical Treatment for
Oncology Dose-Escalation Trial
with Prolonged Evaluation Window
or Fast Enrollment

Xin Wei and Rong Liu

Abstract In this chapter, we start with the review on three classes of methodologies
for oncology dose-escalation trial design: the 3+3, the statistical model-based
approach including Continuous Reassessment Method (CRM) and Bayesian Logis-
tic Regression Model (BLRM), and the toxicity interval-based algorithms such
as Bayesian Optimal Interval Design (BOIN) and Toxicity Probability Interval
method (TPI) and their respective variations. The focus of this chapter is to give
a comprehensive outline of the various statistical extensions of these methods
to address the statistical challenges caused by the prolonged safety evaluation
window, or equivalently, the fast enrollment rate. They include, in CRM and BLRM
class, the weighted likelihood function method (TITE-CRM), TITE-CRM aided by
suspension rule or Bayesian predictive risk for toxicity to avoid aggressive dose
escalation, the TITE-CRM that leverages drug cycle information, adaptive time-to-
event toxicity distribution, and three-parameter logistic regression extension on the
basis of BLRM. In the toxicity interval-based class, we review R-TPI method for the
Toxicity Probability Interval method, TITE-BOIN which imputes the unobserved
DLT, and BOIN12 which models the long-term toxicity and efficacy concurrently.
The methods under discussion can play a valuable role in improving the accuracy
of optimal dose identification without sacrificing patient safety or significantly
prolonging the trial duration.

1 Introduction

In the pharmaceutical industry, identifying the proper dose of experimental drugs is
a critical mission in early phase development. In the field of oncology, the 1960s–
1970s witnessed the advent of chemo/radiotherapy for cancer treatment. In these
settings, the correlation between the dose of chemotherapy drugs and efficacy is
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established within a certain dose range. However, dose is a double-edged sword,
that is, when the dose is too low, there is little chance for patients to derive treatment
benefit while enduring possible toxicity. On the other hand, the unnecessarily high
dose increases the risks of adverse events that might offset the improvement of the
quality of life as a result of tumor response. Dose-limiting toxicity, DLT, is defined
as the type of adverse events that prohibit further dose escalation in the hope for
better efficacy.

In a traditional oncology setting, it is generally accepted that the chances for both
DLT and tumor response increase concurrently as the dose escalates. A desirable
dose that can be used in the latter development stage, therefore, should be at the
level that strikes a proper balance between the possibility of achieving efficacy and
the level of toxicity that can be managed. Such a dose level, which is defined as
maximumly tolerated dose (MTD) or recommended dose for phase 2 trial (RD2P),
typically has a DLT rate ranging from 20 to 30%, depending on the specific disease
condition and drugs’ mechanism of action [18].

The first-in-human (FIH) oncology trial is typically a dose-escalation study with
the primary objective of identifying MTD or RD2P. The oldest yet still the most
widely used approach is a rule-based algorithm such as the 3+3 method [17].
Briefly, the patients will be enrolled to a specific dose level in a cohort with a fixed
size (typically N = 3). If none of them experiences any DLT, the next cohort of three
subjects will be enrolled to the next higher level. If one subject has at least one DLT,
the current dose will be expanded to another three subjects to further characterize
the safety profile with the emphasis on DLT. If two or more subjects have DLT
among six subjects, the dose will be declared as a non-tolerated dose (NTD). The
dose that is one level below NTD, if already has six subjects tested for DLT, will be
declared as MTD.

Apparently, the 3+3 method suffers several shortcomings. In theory, it can only
target MTD with a DLT rate between 17 and 33% without adequate precision due to
its simple rule-based nature. Secondarily, empirical experience shows that the 3+3
approach tends to prematurely stop a trial by identifying as MTD the dose level that
is lower than a potentially efficacious and tolerable level. As a result, this design
leads to a majority of the trial participants being treated at the suboptimal level and
not getting the clinical benefit they otherwise could.

It has been reported that one of the main reasons for the failures in late-phase
clinical development is improper dose selection during early phase trials. The
methodology such as the 3+3 design, which lacks statistical rigor, is arguably to
blame. In 1990, O’Quigley et al. [14] proposed a statistical model-based dose-
finding algorithm called Continual Reassessment Method (CRM), which later
adopted the full Bayesian solution. It updates the parametric model for dose-toxicity
curves based on prior knowledge and the accumulative data in real time. For a
first-in-human trial with sparse data and rapid decision-making, this approach is
conceptually appealing and in practice demonstrates ability superior to 3+3 in
identifying dose levels that have a better chance to succeed in the later development
stage. Within the Bayesian framework inspired by CRM, a more modified version
of model-based methods, such as Escalation with Overdose Control (EWOC) and
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Bayesian Logistic Regression Model (BLRM), have also been put forward and
widely applied in the pharmaceutical industry [13].

On the other hand, it has been debated whether it is either necessary or feasible
to characterize the full dose-toxicity model using sparse phase I trial data. Both
CRM and BLRM require Bayesian modeling of the toxicity data at all dose levels,
increasing the operational complexity. More importantly, they are not as simple and
transparent as the 3+3 design which the clinical team can readily understand and
deploy.

Therefore, simplified versions of model-based methods, sometimes dubbed as
statistical model-assisted methods, have also been proposed, as exemplified by the
Bayesian Optimal Interval (BOIN) design and the Modified Toxicity probability
Interval (mTPI) design [8, 11]. These models do not attempt to characterize the
whole dose-toxicity relationship within the dose range being tested; instead, they
base the dose recommendation on the frequentist or Bayesian posterior probability
of observed toxicity at individual dose level in relation to a prespecified target DLT
interval. By doing away with modeling all the observed toxicity data all at once,
these interval-based designs provide transparent decision rules that are uniformly
applicable to all the dose levels, which is based on the exhaustive enumeration of
foreseeable cohort size and DLT number. Essentially, BOIN and mTPI methods
provide nearly as transparent and simple implementation as the 3+3 design, with a
performance at least comparable to the more complicated CRM or BLRM model.

Among many challenges Phase I dose-finding trials face, delayed or long-term
dose-limiting toxicity (DLT) is the one that greatly increases the trial duration. In
the first-in-human trial, subjects are tested at a new drug/dose in a very small cohort
size, for the sake of caution, typically not exceeding three, before the next group of
subjects can be dosed. In order for experimental drugs to be studied in an affordable
sample size (N = 30 ~ 40) with a reasonable time span, the current dose level needs
to be cleared of DLT quickly before the next dose level can be tested. Fortunately,
the traditional concept of DLT, conceived during the early days of chemotherapy,
presumes cytotoxicity-related DLT develops shortly after the first dosing within the
first cycle (28 days). These features make the phase I dose-escalation trial what they
look like today.

As more and more molecularly targeted therapies enter the pipeline and mar-
ket, however, they demonstrate diverse mechanisms of action (MOA) that could
impact the onset of DLT. For example, immuno-oncology therapies such as PD-1
checkpoint pathway inhibitors are known for their delayed immuno-response related
toxicities and efficacy [12]. Since all the current patients need to clear the DLT
window before any new patients can enter the trial, a long DLT observation window
will lead to a prolonged trial duration. As an example, a simulation study showed
that it will take 4–8 years to complete a dose-escalation trial with 24–48 patients if
the DLT window is as long as 6 months [3]. Similarly, even if the DLT observation
period itself is not exceedingly long, a relatively rapid enrollment, in case of the
high willingness of patient participation, may cause a backlog and long waiting list
of enrollment and eventually turn away patients who urgently need the opportunity
coming with the potential new therapies.
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In these two scenarios, it is beneficial to allow new patients to start treatment
while the ones before them are still in the DLT observation period. For an early
phase trial with small sample size, however, it is not efficient nor ethical to disregard
even the partial information without the ultimate DLT outcome yet. Currently,
there are numerous approaches to allow new patients to be enrolled in trial while
taking account into the incomplete information carried by patients who have not
yet complete DLT window. In this chapter, we will use three sections to discuss the
current algorithms to handle the late-onset DLT problems in dose-escalation trials.
This section is the summary of the background for the dose-escalation trial. The
second section will summarize the basic types of dose-escalation algorithms, and
the third section will review the extensions of these basic methods to the case of
late-onset toxicity or fast patient enrollment.

2 Dose-Escalation Algorithm

2.1 The 3+3 method

Firstly, escalate the dose from the lowest level to the highest level in cohort size of
three subjects.

(1) If no DLT is encountered among the three subjects, escalate to the next higher
dose level.

(2) In the case of one DLT, three more subjects will be enrolled to the same dose
level.

(3) In the case of two or more DLT, the next cohort of three subjects will be dosed
at one level lower.

(4) Eventually, if two or more DLT are observed among six subjects treated at one
dose, this dose will be declared as a non-tolerable dose (NTD). The dose that is
one level below NTD, if already being tested in six subjects, will be declared as
MTD.

2.2 Model-Based Method

2.2.1 Continual Reassessment Method

First of all, a guessed DLT probability (π(θ)d) for all the dose levels will be solicited
from the consultation with the clinical team based on the best available knowledge,
such as clinical data from the similar compound, preclinical PK, and toxicity data,
etc. The parametric dose-toxicity relationship is expressed by the following one-
parameter power model:

πθ(d) = cθd , θ > 0
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where a suggested prior for log(θ) is a normal distribution with mean 0 and variance
1.342. If the prior median of θ is 1, Cd is the prior median at dose d.

With the one-parameter exponential function as likelihood function and log
normal as the prior distribution for θ, one can derive the posterior distribution of
θ via Bayesian theorem:

f (y) = f (y|λ) g (λ)
g (λ|y)

The next dose level, recommended for the incoming new cohort of patients, will
be the one whose posterior point estimate of DLT rate is the closest to the MTD
level with prespecified DLT rate [14].

2.2.2 Bayesian Logistic Regression Model

Unlike the one-parameter exponential model for CRM, Neuenschwander et al
recommend a two-parameter logistic curve to model the dose-toxicity relationship.
This curve has quite a few resemblances in the field of biology and medicine, thus
has good acceptance among clinicians and translational scientists.

logit {πθ(d)} = log (α)+ β log

(
d

d∗

)

, α, β > 0

The logistic model, coupled with the Bernoulli distribution of DLT status, forms
the likelihood function for DLT rate. The prior distribution of alpha and beta is
specified by lognormal distribution as follows:

log (α) ∼ N
(
μ, σ 2

)
; log (β) ∼ N

(
μ, σ 2

)
,

where the mean of the logistic parameter can be derived from historical data of the
same or similar compound while the variance can be calibrated based on the level
of certainty on this prior knowledge [13].

Another feature of BLRM framework, besides making the parametric inference
on the dose-toxicity relationship, is to take into consideration the uncertainty of
the point estimate of the posterior distribution, which is updated by the upcoming
toxicity data based on the prior distribution. The rationale is that various DLT rates
can be considered equivalent if they fall into a probability interval that is close
or distant enough from MTD with the prespecified DLT probability. Briefly, the
MCMC draws from posterior distribution are tabulated based on their chance of
falling into the probability regions such as “too low/under dose”, “about right/on
target” and “too high/overly toxic”. The dose level that maximizes the on-target
probability, while maintaining the risk of overdose below a prespecified value such
as 25%, will be recommended to the next cohort of patients. This approach has been
shown to avoid aggressive escalation encountered in CRM method.
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2.3 Toxicity Interval-Based Method

2.3.1 Modified Toxicity Probability Interval (mTPI)

“All models are wrong, some are useful.”
If the main purpose of a dose-escalation algorithm is to identify the one singular

dose level that achieves the proper balance between efficacy and safety, some might
argue, the attempt to characterize the whole dose-toxicity curve, which could be
complex and parameter-rich, might seem to be an overkill. In this spirit, Ji et al
proposed a probability interval-based method which only focuses on the toxicity
estimation for the current dose level, without borrowing information from other
dose levels such as CRM and BLRM [8].

This simple approach is fundamentally Bayesian. With a flat prior beta (1,1), the
posterior distribution of DLT rate for the current dose can be expressed as follows:

Beta (1 + ri, 1 + ni − ri)

where ni is the number of patients enrolled at dose level I, and ri is the number of
patients who experience DLT.

Like BLRM approach, the rate of DLT can be split into three regions: low/under-
dose, medium/on-target and high/overdose, which correspond to three different
decisions: escalate, retainment and de-escalate, respectively. The chance of true DLT
falling into these regions can be modeled by the posterior distribution of the DLT
rate, which is often a bell-shaped beta distribution. The region with the highest Unit
Probability Mass (UPM), which is specified in the following formula:

UPM (i, d) = Pr (Mi | {xd, nd})
S (Mi)

will be the recommended decision for the next cohort of patients.
The implementation of this rule causes some unease in practice. For example,

when three out of six patients experience DLT, the escalation region will have the
highest UPM, thus becoming the recommended decision of the next dose, when
most clinicians would probably agree that this kind of safety profile might warrant
de-escalation.

To fine-tune mTPI, mTPI-2, the modified version of the original method has
been proposed by the same group [5]. Instead of relying on the overall UPM for
the whole decision region (low, medium and overdose), a series of sub-regions are
constructed within each decision region using the length for the narrowest interval
of the three, which typically is the on-target region. Then the maximum UPM for the
resulting sub-intervals from the three regions will be compared, and the region with
the highest maximum sub-region UPM will be selected as the recommended action.
This change enables dose de-escalation in the case of 3 DLT out of 6 subjects.
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2.3.2 Bayesian Optimal Interval Design (BOIN)

BOIN is another popular interval-based method that, similar to mTPI-2, makes dose
recommendation based on the local point estimator of the toxicity at an individual
dose level [10]. It first specifies three toxicity boundaries: !, !1 and !2, where !
is the target DLT rate for MTD,!1 is the highest DLT considered to be suboptimal,
and !2 is the lowest DLT rate deemed too toxic. Conceptually, the implementation
of BOIN is even simpler than mTPI-2. It directly compares the observed toxicity
rate to !1 and !2 , then makes dose recommendation as follows:

(1) Escalate the dose when DLT rate is lower than !1
(2) De-escalate when DLT rate is higher than !2
(3) Otherwise have the next cohort of patients remain on the sample dose level

!, as the target MTD level, is solicited from the clinical team through consultation.
The selection of!1 and!2 can be optimized by minimizing the selection error rate
through the following formulation:

λ1j =
log
(

1−φ1
1−φ

)
+n−1

j log

(
π1j
π0j

)

log
(
φ(1−φ1)
φ1(1−φ)

)

λ2j =
log
(

1−φ
1−φ2

)
+n−1

j log

(
π0j
π2j

)

log
(
φ2(1−φ)
φ(1−φ2)

)

where λ1j and λ2j are the joint error rates when it comes to making decision in
relation to lower and higher bounds of the target DLT interval. It can be shown that
!1 = 0.6! and !2= 1.4! provides satisfactory operating characteristics in most
clinical scenarios.

3 Time-to-Event Consideration

As discussed in the previous section, both scenarios including long DLT follow-
up window/normal enrollment time and normal DLT window/fast enrollment rate
may lead to a significant patient backlog. This could result in excessively long
trial duration and ethical issues such as delaying patients with terminal illness the
access to potential life-saving experimental drugs. To solve this problem, numerous
extensions have been built on the previously described frameworks, allowing for the
continuous enrollment of new patients before all the current patients have completed
DLT evaluation period. We will summarize these developments in this section.
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3.1 The 3+3 Method

The rolling-six method has been proposed by Skolnik et al as an extension to the
3+3 rule to accommodate the need to keep enrollment going while the patients
of the current cohort are still under DLT evaluation [16]. Instead of suspending
enrollment after every three subjects in the 3+3 method, this rolling-six design
allows six patients to be under concurrent evaluation before halting enrollment.

Briefly, if the number of the patients who are at the current dose level reaches
three, the fourth patient will

(1) Be escalated to the next higher level of the current dose if all three subjects’
DLT window are cleared

(2) Stay at the current dose level if at least one subject among the three has not
completed their DLT window or one DLT has been reported from these three
subjects

(3) Be de-escalated to the next lower level of the current dose if two or more DLT
had been reported.

The dosing decision of the fifth and the sixth subject will be the same as above.
Extensive simulations results demonstrate that the expansion of three-patients
cohort to the “rolling-six” cohort lowers the duration of the dose-escalation trial
without exposing patients to excessive toxicity.

The detailed decision rule is summarized as follows (Table 1):

Table 1 The decision table for rolling-six design

From Skolnik [16]
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3.2 CRM/BLRM

3.2.1 Weighted Likelihood Function Method (TITE-CRM)

The essence of model-based Bayesian framework is to construct posterior distri-
bution of toxicity profile by combing the prior distribution and observed data. In
the case of the CRM, the likelihood function of binary DLT data is shown by the
following:

Ln (β) =
n∏

i=1

F
(
d[i], β

)yi{1 − F (d[i], β
)}1−yi

A natural challenge, therefore, is how to deal with the partial toxicity data when
concurrently enrolling new patients, while the current patients have not yet finished
the whole DLT evaluation window. Entirely discarding the data points due to the
lack of the final toxicity call would be inefficient. Before reaching the end of DLT
window, a DLT-free subject with a long follow-up already carries more information
than the one who just starts the treatment. This difference should be reflected in
the data likelihood function when it comes to model update, which is particularly
important to the situation of data scarcity in phase I dose-escalation trial.

One solution, as Cheung et al proposed in 2000, is to have the information of
unfinished patients contribute less to the posterior distribution than the patients who
have the known DLT outcome [3]. This is achieved by penalizing the contribution
of an unfinished patient with a weighted likelihood function as follows:

∼
Ln (β) =

n∏

i=1

G
(
d[i], wi,n, β

)yi,n{1 −G (d[i], wi,n, β
)}1−yi,n

Cheung et al. showed that a simple linear form of weight function from 0 to 1,
in which the information carried by uncompleted DLT-free subject is proportional
to the ratio of his/her follow-up time to the length of DLT window, is adequate to
provide the satisfactory estimate of MTD while reducing the whole trial duration.
The weight function can be expressed as follows:

w (u; T ) = u

T

This weight function assumes a uniform distribution for time-to-DLT. They had
also shown that the more complicated forms of the time-to-DLT distribution, such
as logistic and Weibull distribution, have similar performance in improving MTD
identification and shortening trial duration.

Cheung et al. ’s method is called time-to-event continuous reassessment method
(TITE-CRM) because the time-to-DLT event is taken into account in the update of
the posterior distribution.
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3.2.2 TITE-CRM with Suspension Rule

TITE-CRM, in theory, allows for continuous patient accrual without any suspension,
for the model already takes full advantage of data that, even when they are
incomplete, are available in real time. The real-world clinical practice, however,
shows that TITE-CRM could lead to overly aggressive escalation behavior. In order
to mitigate this risk, Polley introduced a principled approach to halting accrual for
new subjects when the current ones are not adequately followed up [15].

Two user-defined threshold values, m and c, are solicited from clinicians for this
purpose. First of all, m is the maximum waiting time a physician is willing to place
a prospective subject on the waiting list. c is a threshold to measure the extent of
patient safety being evaluated. If the total follow-up time for the patients on the
current dose level, defined as V, exceeds threshold c, then it means that the current
safety assessment is adequate and the new subjects can start treatment right away
without any delay. Otherwise, the clinical team will assign the prospective patient
a waiting time that is proportional to the inadequacy of current safety follow-up,
setting a cap at m, the maximum waiting time that the clinician team can tolerate.
This rule can be expressed by the following formula:

S =
{

m− (m
c

)
V, if V < c,

0, if V ≥ c,

where S is the waiting time.
Simulation study shows that this mitigation improves the overall trial safety

without scarifying the accuracy of the MTD identification.

3.2.3 TITE-CRM with Predictive Risk

In parallel, a more computationally intensive approach had been proposed by Bekele
et al. [1]. Instead of assuming DLT occurs at a constant rate during the entire
span of clinical observation, they use sequential ordinal modeling to describe the
relationship between the dose and time-to-toxicity with the likelihood function as
follows:

L (βββ|Dn) =
n∏

i=1

!
(
βY 0

i ,k(i)

)δi
Y 0
i −1∏

h=1

{
1 −! (βh,k(i)

)}

This method is basically Bayesian. It calculates the predictive toxicity probability
from the posterior distribution. If the predictive toxicity for the prospective patient is
too high, too low, on-target, or on-target with a high level of uncertainty, the decision
will be to de-escalate, escalate, stay on the same dose or stop accrual to collect more
safety information from the ongoing patients, respectively.
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The appeal of this approach is that the decision to suspend accrual can be made
quantitatively with the predictive toxicity risk. Due to its complexity in rule-setting
and derivation of the posterior distribution, however, this method is not used as
widely as TITE-CRM and its other variations.

3.2.4 TITE-CRM with Cycle Information

It can be argued that the uniform distribution may be too simplistic to model the
true nature of time-to-toxicity distribution, to which the aggressive dose-escalation
behavior of TITE-CRM may attribute. Huang et al. propose to leverage the cyclic
nature of cancer drug administration to model the time-to-DLT distribution [6].
Due to the cumulative effect of drug exposure, the patients, even when they are
not followed up long enough at the current cycle, may carry a large amount of
safety information if they are already at a later cycle without experiencing any
DLT in the previous cycles. As result, the weight, which will be used to adjust
the contribution of incomplete observation to the posterior DLT distribution, is an
adaptive function that combines the DLT probability distribution of the previous
cycle with the proportion of local safety follow-up time to cycle length, as follows:

ŵ
(
t, P̂PP (m)

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p̂1(m)G(t) 0 < t ≤ t0
p̂1(m)+ p̂2(m)G (t − t0) t0 < t ≤ 2t0

...
...

∑k−1
i
p̂i (m)+ p̂k(m)G (t − (k − 1) t0) (k − 1) t0 < t ≤ kt0

Then the implantation of the weighted likelihood function, the update of prior
distribution will follow in the same manner as the standard TITIE-CRM.

3.2.5 TITE-CRM with Adaptive Time-to-DLT Distribution

Another line of effort recognized that the distribution of time-to-toxicity, similar to
the dose-toxicity relationship, can be adaptively learned from the real data. Braun
proposed that the probability of DLT, rather than being assumed to have constant
rate across the evaluation window, can be modeled by a beta distribution Beta
(1, θ ) where θ can vary with the dose and determine whether DLT is early or
late-onset event. The objective of this approach is to let the learning of time-to-
event distribution follow a data-driven mode without the strong assumption for the
constant rate [2].

In Braun’s method, the initial uniform distribution of time-to-DLT over DLT
assessment window [0, T] is generalized to a beta distribution Beta (1, θ ), which is
an adaptive weight function with unknown parameter θ :



202 X. Wei and R. Liu

Fc (u|Yi = 1, θi) = [u/T ]θi , θi > 0

where T is DLT window and u is the incomplete follow-up time.
This becomes uniform distribution when θ =1, as the initial TITE-CRM paper

adopted. To model the DLT kinetics as close to reality as possible, θ is allowed to
vary with dose as follows:

θi = Zλ[i],−∞ < λ <∞

The likelihood function involving λ and β is:

Li
(
β, λ|X[i], Ti, δi

) = [p (X[i];β
)
(Ti/T )

θi
]δi [1 − p (X[i];β

)
(Ti/T )

θi
]1−δi

In the following computation, λ, with the prior N (0, σ2), can be inferred from
the posterior DLT distribution along with β, which characterizes the dose-toxicity
relationship in the CRM and the TITE-CRM.

Adaptively training the weight function and time-to-event distribution based on
real toxicity data seems to be data-driven and less arbitrary. However, as the author
suggested, this approach may not manifest its full potential in a phase I setting
with a very small sample size. Furthermore, estimating additional parameters might
have a statistical cost that, when the performance gain is arguably marginal, is not
justifiable.

3.2.6 BLRM Adaptation

In the early phase dose-escalation trial for oncology, it is often time quite common
to consider the first cycle as DLT evaluation window, when DLT is projected to
occur rather soon after the first dose. This practice may negate the need to account
for the time to toxicity in case of long DLT assessment period. When one has a
good rationale to extend the DLT window beyond the first cycle, nonetheless, it
turns out not to be trivial to explicitly define the length of DLT window. Zheng et al.
proposed a three-parameter logistic regression model, built on BLRM framework
advocated by Neuenschwander et al, to model patients’ different extent of drug
exposure during the whole duration, beyond an arbitrarily determined DLT window
[22].

BLRM is based upon the assumption that only the tangible variable that impacts
DLT rate is the dose, which can be modeled by two parameters: the DLT rate at
reference dose (α) and the slope of dose-toxicity curve (β). The approach of Zheng
et al. extends BLRM to an additional parameter, the ratio of treatment time of a
patient to a reference time window, which can be adopted from a commonly used
DLT window. The joint likelihood function based on three-parameter logistic model
is described as follows:
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p (ddd, TTT , δδδ|α, β, γ ) =
N∏

i=1

{
exp (α) (1/T0)

βT
(h)β−1
i (di/d0)

γ β
[
1 + exp (α) (Ti/T0)

β(di/d0)
γ
]2

}III {δi=1}

{
1

1 + exp (α) (Ti/T0)
β(di/d0)

γ

}III {δi=0}

This function will become identical to BLRM formation when the time-to-DLT
is capped at T0, making it a fixed DLT window design.

The rest of the computation can follow the routine of BLRM, though what Zheng
et al. actually used in their paper is to go after the dose level with the posterior DLT
mean closest to the target MTD.

3.3 Model-Assisted Method

3.3.1 R-TPI

The m-TPI2 version of time-to-DLT adjustment is called R-TPI (Rolling-TPI) [4].
Interestingly, this modification, in order to maintain the simplicity in its original
formulation, does not require statistically modeling the partial information carried
by the patients who have not completed the full DLT evaluation. Instead, R-TPI
operates similarly as the rolling-six design.

It first makes dose recommendations based on the status of completed subjects
alone, without considering the pending ones. Then, by assuming the safest case
scenario (no DLT for pending patients) and the most toxic scenario (all the pending
patients will develop DLT eventually by the end of DLT evaluation period), the
algorithm checks whether the initial decision is altered by these hypotheticals. If yes,
it means that the pending result for the incomplete patients would be a game-changer
for dose decision and cautions must be taken; thus the initial dose recommendation
will be moderated in terms of its aggressiveness, or the trial will require more
pending patients to complete their DLT observation period before the new patient
can start the treatment, in order to garner more safety information.

Specifically, the study statistician will work with the clinical team to determine
a trial parameter C, which is the maximum pending patients the team can tolerate
before enrolling any new patients from safety perspective. Therefore, if the number
of pending patients exceeds parameter C, study team would have no option but to
halt the patient accrual. On the other hand, if all patients (nd) in the current dose
level complete the required observation window, the decision rule will follow as a
routine m-TPI2 approach.

The situation becomes trickier if the number of incomplete patients is between 0
and C, where the following rule will be followed if that is the case:
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(1) If the m-TPI2 decision is de-escalation after excluding the pending patients
(md), it means that the safety profile for the current level is a bit precarious even
solely based on the completed subjects (nd). Then m-TPI2 calculation will be
repeated assuming all the pending patients (md) are DLT-free eventually. The
following are two possible outcomes:

(a) If the result remains de-escalation, the final decision will be de-escalation,
reflecting the fact that even the safest assumption for the pending subjects
(md) would not neutralize the overly toxic signal from the patients with
known outcomes.

(b) If the recommended change is staying on the same dose (S), it implies
moderate but volatile toxicity signal based on the complete patients (nd).
Then R-TPI will check the number of patients who are enrolled to the
current dose (kd) in the last batch. If it is below a certain threshold (say,
three), which should be prespecified by the study team and simulation
exercises, the new patient will be enrolled to the current dose, that is, to
increase the sample size thus reducing the uncertainty by honoring the
recommended action: stay. If kd is greater than the prespecified threshold,
on the other hand, it means that the current dose level already has an
adequate sample size; the only way to increase the information content will
be to halt new patient accrual, letting more pending patients reach their
endpoint.

(2) If the m-TPI2 decision is escalating after excluding the pending patients (md),
it means that the current dose level is confidently safe even solely based on the
completed subjects (nd). Then m-TPI2 calculation will be repeated assuming
all the pending patients (md) without unknown outcome will develop DLT
eventually.

(a) If the re-calculated decision remains escalation, then the final decision will
be to escalate, reflecting the fact that even the most toxic assumption for
the pending subjects (md) would not change the conclusion of dose being
safe based on the patients with the known outcomes.

(b) If the recommended change is staying on the same dose, it implies a
moderate toxicity signal based on the complete patients (nd), which has
a high degree of uncertainty. Then the R-TPI will check the number of
patients who are enrolled to the current dose (kd) in the last batch. If
it is below a certain threshold (say, three), new patients will be added
to the current dose, that is, to increase the sample size and reduce the
uncertainty, by honoring the recommended action: stay. If kd is greater than
the prespecified threshold, it means that the current dose level already has
an adequate sample size; the only way to increase the information content
will be to halt the patient accrual, letting more pending patients reach their
endpoint.

Similar to m-TPI2, the decision rule for R-TPI can also be pre-calculated in
the protocol. Its strength of transparency is not lost (Table 2).
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Table 2 R-TPI decision table with target DLT rate = 0.3, width of MTD range = 0.1, and C = 3

RSD rolling-six design
From Guo [4]

3.3.2 TITE-BOIN

The time-to-event version of BOIN method takes a different approach from R-TPI.
When the new patients are waiting while some patients on the current dose level are
still pending without final DLT results, the algorithm goes ahead to impute the DLT
result for these pending patients, so that the waiting patients can enter the study in a
timely manner, based on both the observed and imputed DLT results [20].
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It can be shown that the point estimator of DLT rate at the current dose level,
based on both the observed and unknown data, can be given as follows:

p̂ =
∑
i∈O yi +

∑
i∈Mŷi

n
= s + p

1−p (c − STFT)

n

where O is the set of patients with known outcome of DLT (observed) and M is the
set of patients whose DLT status is still pending. With c being the total number of
pending patients, STFT is the sum of total follow-up time for the c patients divided
by the length of DLT follow-up window, representing the ratio of information
carried by those pending patients up to time ti. This representation assumes the
uniform distribution of DLT rate across the DLT evaluation window, which has been
proven robust in previous literatures. The only unknown entity in the right side of
the equation is p, which can be estimated from the posterior beta distribution for
DLT rate based on a vague prior and the patients who cleared DLT window. The p
hat on the left will be compared with the toxicity interval in the regular BOIN to
facilitate the dose recommendation.

One common strength of R-TPI and TITE-BOIN is that they both produce a
transparent decision table in protocol before the first patient is accrued. For TITIE-
BOIN at each dose level, the sample size, the number of DLT, the number of pending
patients, and the threshold value of STFT are enumerated with the corresponding
four different decision-makings for the incoming patients: de-escalate, stay, suspend
accrual, and escalation, as follows (Table 3):

Table 3 Dose-escalation and de-escalation rule for TITE-BOIN with a target DLT rate of 02 and
cohort size of 3

From Yuan et al. [20]
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3.3.3 BOIN12

During a long DLT period, which we have discussed so far, it is possible for efficacy
signal to emerge alongside with toxicity. An efficient design, therefore, is called for
to select the dose with optimal risk-benefit trade-off. Sometimes, it is desirable to
model both efficacy and toxicity simultaneously even when DLT window is not
very long. For example, CAR-T cell therapy can induce quick and robust efficacy
response and potentially severe toxicity at the same time.

Lin et al. proposed that the efficacy/toxicity balance can be quantitated by the
following 2 × 2 table [9].

where u1 − u4 represent the utility scores which can be solicited from consulta-
tion with the clinical team. Typically, the optimal situation, in which tumor response
is achieved in absence of toxicity, can be rewarded 100 (u1) points with magnitude
of 0–100, while toxicity without efficacy, the most undesirable scenario, has score of
0. Different scores between 0 and 100 can be assigned to u2 and u3 based on medical
consideration, such as value of tumor response, the clinical sequelae of DLT, etc.

Corresponding to the four scenarios laid out above, the number of patients who
have clinical outcomes (efficacy/toxicity) can be denoted as Y(d) = (y1(d), y2(d),
y3(d), y4(4)), which can be modeled by multinomial distribution. In order to simplify
the computation, however, the authors proposed an “quasi-beta distribution” method
to solve this complex situation with binomial approximation.

In a regular binomial setting for toxicity alone, the number of DLT at dose d
follows a binomial distribution B (p, n). Similarly, the equivalent of the binomial
DLT count in “quasi-likelihood” theory here is x(d), the weighted utility score which
can be normalized as follows:

x(d) = u1y1(d)+ u2y2(d)+ u3y3(d)+ u4y4(d)

100
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x(d) follows a “quasi-binomial” distribution Bq (u(d), n(d)) where the expected u(d)
is as follows:

u(d) = u1p1(d)+ u2p2(d)+ u3p3(d)+ u4p4(d)

and n(d) is the total patients treated at dose level d.
The likelihood function, as shown below, has a similar form as binomial

probability:

L
(
D(d)|u∗(d)

) ∝ (u∗(d)
)x(d)(1 − u∗(d)

)n(d)−x(d)

In Bayesian framework, if we assign probability of the utility, u(d), to a beta
distribution Beta (α, β) (α = 1 and β = 1 renders a flat prior), its posterior
distribution can be formulated as follows:

u∗(d) | D(d) ∼ Beta (α + x(d), β + n(d)− x(d))

In BOIN12 algorithm, the dose recommendation is based on the posterior
inference on the probability of the utility, as opposed to DLT rate used in standard
BOIN method. Its step-by-step guideline can be laid out as follows:

1. Define the DLT rate boundary for de-escalation and escalation (λe, λd) in the
same fashion as regular BOIN method and start to treat patients at the lowest
dose level.

2. Upon observing the DLT rate at dose level d, follow the rules below:

a. If the observed DLT rate is greater than the upper boundary λd, de-escalate to
the next lower level d − 1.

b. If DLT rate is on the target range (between λe and λd), and there are adequate
number of patients at the current level (no less than a prespecified number,
say, 6 or 9, etc), the dose level d or (d − 1) will be recommended for the new
patients, depending on which level has the higher posterior probability of the
drug utility, Pr(u(d) > ub|D(d)). Here dose level d+1 is not considered for
potential better utility because of relatively strong confidence that the current
level is not underdose.

c. If the observed DLT rate is below the lower bound λe, or within the target
range (between λe and λd) but with a high degree of uncertainty (the number
of treated patients at the current dose is less than a prespecified threshold
value), even the dose level d+1 which is one level higher than the current
dose, in addition to the current level d and its adjacent lower level d−1, can
be explored for their posterior probability of the utility score. Among these
three levels, the one with the highest posterior probability of functional utility
will be recommended to the new patients.

3. Once the maximum sample size is reached, DLT level at each dose level will be
estimated isotonically and the one whose DLT rate is closest to the target DLT



Review of Statistical Treatment for Oncology Dose-Escalation Trial. . . 209

rate will be declared as MTD. The final recommended dose for phase 2 (RDP2)
should be the dose level with highest estimated utility score while not exceeding
MTD level.

BOIN12 method retains the strength of BOIN and mTPI-2 that is the trans-
parency to pre-tabulate all the decision-making points prior to the start of a trial.
The following is example of decision table (Table 4).

Table 4 Rank-based desirablity score (RDS) table for the BOIN12 design with the upper toxicity
limit = 0.35, the lower efficacy limit = 0.25

Lin et al., personal communication
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3.3.4 Imputation of Unobserved DLT Data

The idea of using imputed DLT outcome from the pending subjects to guide dose
recommendation, as has been done in TITE-BOIN method, has seen its application
in other literatures [7, 11, 21]. We will have two examples as follows.

Liu et al. showed that the imputed DLT status from pending patients, along with
the observed DLT count, can be fit into regular CRM model, leading to the update
of the posterior DLT rate and dose recommendation for the incoming patients based
on the posterior mean [11]. This process is an iterative process consisting two
fundamental steps: (1) imputation of missing DLT value, (2) posterior estimation
of the CRM parameter, as summarized below:

1. The time to DLT for subject i is modeled by a piece-wise exponential model as
follows:

L (Y|λλλ) =
n∏

i=1

K∏

k=1

λ
δi,k
k exp {−Yiλksik}

where y is DLT status, sik is the length of k sub-interval of DLT evaluation window,
λk is the constant hazard rate for kth time interval. In Bayesian framework, λk is
assumed to follow a prior Gamma distribution:

f (λk) = Ga
(∼
λk/C, 1/C

)

where the value C can be calibrated to render the prior vague (C = 2).
This leads to the posterior distribution, which is conditional on the observed data

and model parameters including the power parameter α of the CRM and the DLT
hazard rate λ, as follows:

Yi | (Dobs, ααα, (ג ∼ Bernoulli

⎛

⎝
α

exp(a)
di

exp
(
−∑K

k=1λkSik

)

1 − αexp(a)
di

+ αexp(a)
di

exp
(
−∑K

k=1λkSik

)

⎞

⎠

The missing DLT data can be imputed by drawing posterior samples from the
distribution above.

2. The observed and imputed DLT data can be used to update the posterior
distribution of the CRM model, from which α can be sampled. The DLT hazard
rate λk can be sampled from the conjugate Gamma posterior distribution as
follows:

λk | Y ∼ GGGaaa
⎛

⎝

∼
λk

C
+

n∑

i=1

δik,
1

C
+

n∑

i=1

yisik

⎞

⎠
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3. The drawn samples of α and λk will be fed back into step 1, updating imputation
of the missing DLT data. Then α and λk will be sampled again from the posterior
distribution of the CRM model based on the renewed imputed data. This iterative
process, which is also called Bayesian data augmentation method, will go on
until Markov chain sampling achieves convergence.

4. The final posterior sampling of α will determine the point estimator of the
posterior DLT rate, which will determine the dose recommendation.

This approach is evidently complex. So far there is no definite evidence showing
it outperforms other simpler approaches such as R-TPI.

In a related paper published by the same group, this iterative data augmentation
process is implemented by EM (Estimation-Maximization) algorithm [21]. In
the Estimation step, the missing DLT outcome of yi can be substituted with its
expectation in the form of

E
(
YYY i |ttt i > uuui, α(r), (r)ג

)
=

p
exp(αr )
di

∏
k:τk<ui

(
1 − λ(r)k

)

1 − pexp(αr )
di + pexp(αr )

di

∏
k:τk<ui

(
1 − λ(r)k

)

Then in the M step, the MLE of the CRM power parameter α and the DLT hazard
rate λk by the following likelihood function:

λ
(r+1)
k = mk/

∑K

j=k

(

mj +
∑

i∈Cj
ŷi

)

K = 1, . . . , K, an estimate analogous to Kaplan-Meier’s estimator and

LLL (yyy|ααα) =
nnn∏

iii=1

{
p

exp(α)
di

}yi{
1 − pexp(α)

di

}1−yyyiii

respectively.
Furthermore, this EM-CRM framework also allows multiple dose-toxicity

“skeletons” to be selected, and the Bayesian model selection and averaging will
be employed to give the best estimate for the CRM power parameter α, which is the
basis for DLT rate estimation and subsequent dose recommendation.

3.4 Use Kaplan-Meier Method to Derive Fractional DLT for
Pending Subjects

Finally, the missing DLT status of pending patients can be replaced by fraction of 1,
depending on the proportion of follow-up time to the full DLT observation window.
This fractional value can be used in either rule-based method such as the 3+3 after
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rounding, or model-based method such as CRM/BLRM , given that the specification
of likelihood function can take fraction as the input value [19].

When a subject completes the DLT window, his DLT status yi will be either 0 or
1, depending on whether they experience DLT. When a patient’s final DLT status is
still pending upon a new patient enters, however, their fractional DLT values can be
computed as follows:

ŷi = Ŝ (ui)− Ŝ (τ )
Ŝ (ui)

where S is Kaplan-Meier estimator of survival function at ui or τ . The KM survival
estimator is expressed as:

Ŝ (ti) =
i∏

j=1

(
1 − dj /Yj

)

With the missing DLT data replaced by a fractional DLT, they can serve as input
for any dose-escalation method mentioned above.

4 Summary

In this chapter, we started with the review on three classes of methodologies
for oncology dose-escalation trial design: the 3+3, the statistical model-based
approach including Continuous Reassessment Method (CRM) and Bayesian Logis-
tic Regression Model (BLRM), and the toxicity interval-based algorithms such
as Bayesian Optimal Interval Design (BOIN) and Toxicity Probability Interval
method (TPI) and their respective variations. The focus of this chapter is to give
a comprehensive outline of the various statistical extensions of these methods
to address the statistical challenges caused by the prolonged safety evaluation
window, or equivalently, the fast enrollment rate. They include, in CRM and BLRM
class, the weighted likelihood function method (TITE-CRM), TITE-CRM aided by
suspension rule or Bayesian predictive risk for toxicity to avoid aggressive dose
escalation, the TITE-CRM that leverages drug cycle information, adaptive time-to-
event toxicity distribution, and three-parameter logistic regression extension on the
basis of BLRM. In the toxicity interval-based class, we review R-TPI method for
Toxicity Probability Interval method, TITE-BOIN which imputes the unobserved
DLT and BOIN12 which models the long-term toxicity and efficacy concurrently.
The methods under discussion can play a valuable role in improving the accuracy
of optimal dose identification without sacrificing patient safety or significantly
prolonging the trial duration.
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A Bayesian Approach for the Analysis of
Tumorigenicity Data from Sacrificial
Experiments Under Weibull Lifetimes

Man Ho Ling, Hon Yiu So, and Narayanaswamy Balakrishnan

Abstract This chapter details a Bayesian approach for inference on onset time of
tumors based on tumorigenicity data from sacrificial experiments under Weibull
lifetimes. We assume that both shape and scale parameters are related to various
covariates in log-linear forms. Metropolis–Hastings sampling method is then used
for the estimation of posterior means of quantities of interest. A simulation study
and a sensitivity analysis are carried out to assess the performance of the developed
Bayesian approach with different priors. A comparison is also made with the
likelihood estimates determined from an EM algorithm. Finally, a known mice
tumor toxicology dataset is analyzed to illustrate the developed Bayesian approach.

1 Introduction

In sacrificial experiments that examine tumor occurrence in different organ sites,
each animal under study is sacrificed at a pre-specified time and is examined to
determine the presence of tumors [11]. The data consist of a single sacrifice time for
each animal, and indicators of whether tumors are present at the time of sacrifice. If
a specific type of tumor is found in the animal at the time of sacrifice, it indicates that
the tumor onset time is before the sacrifice time, thus resulting in left-censoring. On
the other hand, if the tumor type is not found in the animal at the time of sacrifice, it
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indicates that the tumor onset time is after the sacrifice time, thus resulting in right-
censoring. Consequently, all tumor onset times are therefore either left- or right-
censored, and the exact tumor onset times can never be observed in this experiment.
This is a special case of current status data [19, 22, 24].

Numerous studies on current status data analysis have been carried out in the
literature. Dinse [10] and Lindsey and Ryan [17] analyzed data on bladder tumor,
liver tumor, lung tumor, lymphoma tumor, and reticulum cell sarcomas in sacrificial
experiments. Subsequently, Dunson and Dinse [12] studied bivariate current status
data on adrenal and lung tumors for male mice from the control and high-dose
groups and found that there is a moderate level of dependence between the onset
times of adrenal and lung tumors. Wang and Ding [23] presented a procedure to
estimate the dependence between the onset times of hypertension, diabetes mellitus,
and hypercholesterolemia under Clayton copula models, and Ding and Wang [9]
further developed an independence test for bivariate current status data. In addition,
current status data may consist of some covariates that may have influence on the
tumor onset times, such as gender, dose level of a chemical, type of strain, radiation
level, etc. [8, 16, 18].

Balakrishnan and Ling [3, 4] developed EM algorithms for estimating the
model parameters under Weibull and gamma lifetime distributions, respectively,
to measure the effects of each covariate on the tumor onset times based on mice
tumor toxicology data [16]. In this chapter, we extend the work of Fan et al. [13] by
assuming tumor onset times to have Weibull distributions and develop a Bayesian
estimation method for tumorigenicity data from sacrificial experiments. In their
work [13], three priors were used in the Bayesian estimation: Exponential, Normal,
and Beta. Their simulation results showed that all the priors performed similarly
when the data possess enough information, while normal performed better when
the data possess zero-failure cases. Here, we adopt Laplace distribution, normal
distribution with non-informative prior for the variance, and beta distribution for the
prior. A simulation study and a sensitivity analysis are then carried out to evaluate
the performance of the developed Bayesian approach under these three priors. A
comparison is also made with the maximum likelihood estimation determined from
the EM algorithm. Finally, an example of a mice tumor toxicology dataset in [16] is
used to illustrate all the inferential results developed here.

2 Model Specification

Tumorigenicity experiments with serial sacrifice are set up as follows:

1. There are I groups of J covariates xi , for i = 1, 2, . . . , I .
2. The number of mice in the i-th group is Ki .
3. The mice in the i-th group are sacrificed at time τi , for i = 1, . . . , I .
4. The number of mice having tumors, ni , are collected from the i-th group.
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As in the work of Balakrishnan and Ling [3], we assume that the tumor onset
time of the k-th mice in the i-th group, tik , has a Weibull distribution with scale
parameter αi > 0 and shape parameter ηi > 0, for i = 1, . . . , I and k = 1, . . . , Ki .
The corresponding pdf and cdf are

fT (t, αi, ηi) = ηit
ηi−1

α
ηi
i

exp

(

−
(
t

αi

)ηi)

, t > 0,

and

FT (t, αi, ηi) = 1 − exp

(

−
(
t

αi

)ηi)

, t > 0,

respectively. We now assume that the scale and shape parameters are linked to the
covariates in the following log-linear forms:

αi = exp

⎛

⎝
J∑

j=0

ajxij

⎞

⎠ = exp(a · xi ) and ηi = exp

⎛

⎝
J∑

j=0

bjxij

⎞

⎠ = exp(b · xi ).

If the tumor onset times of all the mice are independent, then ni is a binomial
random variable with the number of mice Ki and probability of having tumors

1 − pi = FT (τi;αi, ηi), (1)

and so the joint likelihood function of a and b is

L (a,b) =
I∏

i=1

Li(a,b|xi , τi , ni) (2)

∝
I∏

i=1

(1 − pi)ni piKi−ni . (3)

For example, survival and sacrifice data taken from the National Center for
Toxicological Research involved 1816 mice, of which 553 mice had tumors. These
data have been considered earlier by Kodell and Nelson [16], Finkelstein and
Ryan [14], and Lindsey and Ryan [17]. The original data were classified into 5
groups and were reported by Kodell and Nelson [16]. Note that not all mice were
sacrificed at pre-specified times because some died of tumors naturally before the
sacrifice time. So, the time of natural death would also be treated as the sacrifice
time. We considered the mice sacrificed with tumors, died of tumors, and died of
competing risks with liver tumors as those having tumors, while the mice sacrificed
without tumors and died of competing risk without liver tumors as those not having
tumors. Part of these data is presented in Table 1.
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3 Bayesian Approach

For analyzing tumorigenicity data as presented in Table 1, the classical approach
will be based on maximum likelihood estimation method. In this regard, Balakr-
ishnan and Ling [3] developed an EM algorithm for determining the MLEs of the
model parameters under Weibull lifetimes. These authors observed that the method
yields accurate estimates when the sample size is large, but the estimation is not
satisfactory for small sample sizes, especially when cases of zero failure are present.
By incorporating prior information, Bayesian estimation can provide more accurate
inference in the case of small sample sizes; see, for example, Fan et al. [13] and
Berger [7]. For this reason, it is of great interest to develop a Bayesian estimation
method for the model parameters based on tumorigenicity data.

Fan et al. [13] developed a Bayesian approach for estimating the model parame-
ters under exponential lifetimes. Here, we develop results for the Weibull case along
their lines, but for this purpose, several modifications are needed in their algorithm
as described below. Let π(a,b) be the joint prior density of (a,b). Then, the joint
posterior density of a and b is

π(a,b|x, τττ ,n) = L(a,b|x, τττ ,n)π(a,b)
∫ ∫

L(a,b|x, τττ ,n)π(a,b)dadb
. (4)

Due to the presence of non-linear link functions, the denominator in (4) is usually
not in a closed form, and consequently the posterior distribution and the Bayesian
estimates of different lifetime characteristics are not in analytical form. So, we apply
the Metropolis–Hastings algorithm [15] to generate samples and approximate the
posterior distribution.

Following the method of Fan et al. [13], the Bayesian point estimates of a and
b are â = 1

M

∑M
m=1 a(m) and b̂ = 1

M

∑M
m=1 b(m) , where a(m) and b(m) are the

m-th values out ofM samples generated from the posterior distribution. We may be
interested in estimating some characteristics of interest for mice with covariate x0,
such as the probability of mice without tumors at time t , S(t, x0) = 1 − FT (t), and
the mean of tumor onset time μ(x0). They can then be readily estimated as follows:

Ŝ(t, x0; â, b̂) = 1

M

M∑

m=1

exp

⎛

⎜
⎝−

(
t

α
(m)
0

)η(m)0

⎞

⎟
⎠ , (5)

μ̂
(

x0, â, b̂
)

= 1

M

M∑

m=1

α
(m)
0 Γ

(

1 + 1

η
(m)
0

)

, (6)

where α(m)0 = exp(x0 · a(m)) and η(m)0 = exp(x0 · b(m)).
Several prior distributions are considered in this study and the corresponding

hyperparameters based on experts’ information are discussed below.
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3.1 Laplace Prior

The parameters aj and bj , j = 0, · · · , J , may not always be positive. In analogy to
the exponential prior in Fan et al. [13], the Laplace distribution is chosen as one of
the prior distributions. The parameters are assumed to be independent, and the joint
prior density function is

π1(a,b) =
J∏

j=0

exp

(

−
∣
∣
∣
∣
∣

aj

a∗
j

∣
∣
∣
∣
∣

)
J∏

j=0

exp

(

−
∣
∣
∣
∣
∣

bj

b∗
j

∣
∣
∣
∣
∣

)

, (7)

where −∞ < aj <∞ and −∞ < bj <∞ for j = 0, · · · , J .
|a∗
j | and |b∗

j | are the unknown hyperparameters with E(|aj |) = |a∗
j | and

E(|bj |) = |b∗
j |. Fan et al. [13] assumed that pi are around p̂i , for i = 1, · · · , I ,

and so p̂i can be empirically estimated as 1 − ni
Ki

. If one of these estimates is zero,
then it will be hard to determine the initial value. Zero-frequency problem has long
been discussed in the literature, and Agresti [1] suggested adding a constant, say
0.5, to both failure and success cases, that is,

p̃i = 1 − ni + 0.5

Ki + 1
. (8)

We try to obtain the hyperparameters, a∗
j and b∗

j , by the least-squares method:

{a∗,b∗} = argmina,b

I∑

i=0

(

exp

(

−
( τi

ea·xi
)eb·xi)

− p̃i
)2

, (9)

where a∗ = (a∗
j )j=0,··· ,J and b∗ = (b∗

j )j=0,··· ,J . With the presence of ηi = exp(b ·
xi ), the LSEs are not in closed form. We can minimize the summation in (9) by
some standard routines such as optim in R or fminsearch in MATLAB.

3.2 Normal Prior

Since differences exist between the prior belief and the true values of the unknown
parameters, we may assume

p̃i = pi + εi, (10)

where the error terms εi are assumed to be i.i.d. N(0, σ 2) variables. Then, the
conditional likelihood function of a and b, given σ 2, is
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L(a,b|τττ , x, p̃i , σ 2) ∝
I∏

i=1

1√
2πσ 2

exp

{

− 1

2σ 2 (pi − p̃i)2
}

,

where pi and p̃i are as specified in Eqs. (1) and (8), respectively. We will now adopt
the likelihood function as the prior distribution of a and b:

π2(a,b|τττ , x, σ 2) ∝
I∏

i=1

1√
2πσ 2

exp

{

− 1

2σ 2 (pi − p̃i)2
}

. (11)

Since σ 2 is unknown, we adopt Jeffrey’s non-informative prior

π(σ 2) ∝ 1

σ 2 , σ
2 > 0,

which yields the joint prior density of a and b as

π2(a,b|τττ , x) ∝
∫ ∞

0
π2(a,b|τττ , x, σ 2)π(σ 2)dσ 2

∝
∫ ∞

0
(σ 2)−

I+2
2 exp

{

− 1

2σ 2

I∑

i=1

(pi − p̃i)2
}

dσ 2

∝
{
I∑

i=1

(pi − p̃i)2
}−I

. (12)

Then, by Eq. (4), the joint posterior density of a and b becomes

π2(a,b|n, τττ , x) ∝
I∏

i=1

(1 − pi)ni pKi−nii ×
{
I∑

i=1

(pi − p̃i)2
}−I

. (13)

3.3 Beta Prior

Fan et al. [13] considered a beta conjugate prior, beta(αi, βi), for pi of the form

π3(a,b) =
I∏

i=1

p
αi−1
i (1 − pi)βi−1 , (14)

where the hyperparameters αi and βi are chosen such that E(pi) = αi/(αi + βi) ≈
p̃i and var(pi) = αiβi/{(αi + βi)2(αi + βi + 1)} = c2

i , for a given prior belief on



222 M. Ho Ling et al.

p̃i and the uncertainty of the prior belief, c2
i . If the uncertainty is constant for all

groups, c2 = c2
i , the hyperparameters then become

αi = p̃i
(
p̃i(1 − p̃i)

c2 − 1

)

and βi = (1 − p̃i)
(
p̃i(1 − p̃i)

c2 − 1

)

.

Note that the uncertainty has to be small in order for the prior belief to be useful and
αi > 0 and βi > 0, for i = 1, · · · , I . Then, the posterior distribution becomes

π3(a,b|n, τττ , x) ∝
I∏

i=1

J∏

j=1

p
Ki−ni+αi−1
i (1 − pi)ni+βi−1 ; (15)

here, pi is as specified in (1), and p̃i is as specified in (8).

3.4 Prior Belief on pi

Normally, the prior belief on pi is the estimates of the probabilities based on
previous experiments or experts’ judgments. When the prior information is not
available, the estimate based on the data, p̃i = 1 − ni/Ki, is used as if we have
the prior information. It is an approximation in the Bayesian method, and it may be
regarded as an empirical Bayes method.

In the study of Fan et al. [13], they supposed that p̂i is very reliable with regard
to the true unknown parameter pi . So, they generated pi from a beta distribution
with specific choice of parameters. Now, we suppose that p̂i is also very reliable in
the sense that the variance of prior belief on the survival probability, var(p̂i) = c2,
is small, with c2 being a small constant. We also assume that E(p̂i) = pi . Then,
with the choice of parameters being similar to the one in Eq. (14), we have

f (p̂i) ∝ p̂α∗
i −1
i (1 − p̂i)β∗

i −1, (16)

where 0 < p̂i < 1. The parameters α∗
i are chosen to be

α∗
i = pi

(
pi(1 − pi)

c2 − 1

)

and β∗
i = (1 − pi)

(
pi(1 − pi)

c2 − 1

)

,

for the underlying true value pi, i = 1, · · · , I .
The prior belief on the parameter can be used to replace p̃i in Eqs. (9), (13),

and (15), and the corresponding posterior distribution will then result. Note that
α∗
i > 0 and β∗

i > 0, and so there is a restriction on the uncertainty of prior belief
that c2 < pi(1 − pi).
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4 Simulation Study

In this section, we will compare the performance of the Bayesian estimation with
the three prior distributions and two prior beliefs, p̃i and p̂i , with that of the MLEs
determined by the EM algorithm developed in [3]. We consider 9K mice receiving
3 dose levels of a chemical in their drinking water. At each level, 3K mice are
equally divided into 3 groups and sacrificed at various times. The detailed parameter
settings used in this simulation study are summarized in Table 2. We repeated this
experiment with different sample sizes of K mice allocated to each condition.

In this Monte Carlo simulation study, 1000 sets of data were simulated under
each specified setting. For the EM algorithm, the iteration was terminated when
the sum of squares of the differences in the model parameter estimates was less
than 10−5. For the Bayesian estimates, we used Metropolis–Hastings algorithm
to simulate the posterior distributions. We generated a vector of four normal
random variables with mean parameters equal to the previous estimates and different
variance, which gave an acceptance rate of about 0.25, approximately; this is
considered to be optimal in practice as stated in Roberts et al. [20] and Roberts and
Rosenthal [21]. We generated a sequence of 111,000 vectors of random variables
from the algorithm, and the first 10,000 data points were dropped as burn-in. We
then chose one sample for every 100 random variables simulated to avoid correlation
between the iterated samples and, thus, a sample of size 1000 was finally obtained.
For each simulation setting, the MLEs of the model parameters from the EM
algorithm, which are often close to the true parameters, were used as the initial guess
for the model parameters in the Bayesian framework. This ensures the Metropolis–
Hastings algorithm to converge to the posterior distribution in a reasonable amount
of time. To evaluate the relative performance of the estimators, we will compare
their bias 1

N

∑N
i=1 θ

(i)−θ and the MSE 1
N

∑N
i=1(θ

(i)−θ)2, where θ(i) is the estimate
of a quantity of interest from the i-th sample out of N = 1000 simulations and θ is
the true parameter.

Table 2 Parameter values used in the simulation study for tumorigenicity experiments with serial
sacrifice

Parameters Symbols Reaction rates Values

Quick (4.9, −0.05)

Scale link function a0, a1 Moderate ( 5.3, −0.05)

Slow ( 5.7, −0.05)

Shape link function b0, b1 (−0.6, 0.03)

Dose level x11, x21, x31 (30, 40, 50)

Quick (5, 10, 15)

Sacrifice time (days) τττ Moderate (8, 16, 24)

Slow (12, 24, 36)

Sample size K1,K2,K3 (30, 50, 100)

Prior belief variance c2 0.001
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Table 3 Bias and MSE of the estimates of parameters for chemical with quick reaction rate under
different estimation methods

Bias MSE

aL0 = 4.9 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 1.199e-01 6.159e-02 2.968e-02 6.744e-01 3.65e-01 1.555e-01
Laplace(p̃) 4.498e-02 9.514e-03 2.832e-03 8.363e-01 4.601e-01 1.872e-01

Norm(p̃) 1.314e-01 6.818e-02 2.872e-02 6.988e-01 3.875e-01 1.708e-01

Beta(p̃) 1.257e-01 6.167e-02 3.332e-02 6.938e-01 3.74e-01 1.625e-01

Laplace(p̂) 2.79e-02 6.907e-03 1.29e-02 8.109e-01 4.385e-01 2.109e-01

Norm(p̂) 1.412e-01 7.271e-02 4.051e-02 6.01e-01 3.266e-01 1.422e-01
Beta(p̂) 1.316e-01 7.027e-02 3.601e-02 5.093e-01 2.886e-01 1.336e-01

a1 = −0.05 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.441e-03 −1.231e-03 −6.336e-04 2.852e-04 1.552e-04 6.697e-05
Laplace(p̃) 2.24e-04 9.754e-04 8.733e-05 6.492e-04 7.076e-04 8.608e-05

Norm(p̃) −2.544e-03 −1.287e-03 −5.683e-04 2.954e-04 1.654e-04 7.356e-05

Beta(p̃) −2.394e-03 −1.156e-03 −6.826e-04 2.923e-04 1.594e-04 7.016e-05

Laplace(p̂) 1.154e-03 6.17e-04 3.34e-04 7.95e-04 2.967e-04 4.155e-04

Norm(p̂) −2.793e-03 −1.423e-03 −8.125e-04 2.529e-04 1.383e-04 6.095e-05
Beta(p̂) −2.59e-03 −1.368e-03 −7.21e-04 2.149e-04 1.227e-04 5.751e-05

b0 = −0.6 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.785e-03 1.869e-02 −1.592e-03 7.008e-01 4.068e-01 1.928e-01
Laplace(p̃) 9.959e-02 6.43e-02 2.913e-02 7.356e-01 4.623e-01 2.154e-01

Norm(p̃) −5.591e-03 1.457e-02 −1.514e-03 7.502e-01 4.428e-01 2.078e-01

Beta(p̃) −1.932e-02 1.796e-02 −3.606e-03 7.277e-01 4.134e-01 2.09e-01

Laplace(p̂) 9.829e-02 8.348e-02 2.329e-02 7.96e-01 4.776e-01 2.334e-01

Norm(p̂) −1.697e-05 1.318e-02 −4.351e-03 6.667e-01 3.904e-01 1.977e-01
Beta(p̂) −1.513e-02 1.529e-02 −1.107e-03 6.033e-01 3.623e-01 1.846e-01

b1 = 0.03 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 2.532e-04 −4.409e-04 1.647e-04 3.347e-04 1.943e-04 9.284e-05
Laplace(p̃) −3.376e-03 −2.173e-03 −8.215e-04 4.046e-04 2.389e-04 1.116e-04

Norm(p̃) −5.626e-04 −8.815e-04 −7.63e-05 3.642e-04 2.145e-04 1.009e-04

Beta(p̃) −9.677e-04 −1.166e-03 3.556e-05 3.524e-04 2.012e-04 1.022e-04

Laplace(p̂) −3.501e-03 −2.75e-03 −8.182e-04 4.5e-04 2.65e-04 1.287e-04

Norm(p̂) −3.6e-04 −5.128e-04 3.595e-06 3.057e-04 1.792e-04 9.201e-05
Beta(p̂) −2.287e-04 −7.283e-04 −1.162e-04 2.734e-04 1.646e-04 8.564e-05

Also, it is of interest to compare the estimation methods for the probability of
mice receiving x0 = 25 dose level of the chemical and without tumors. For this
purpose, we simulated data sets for different a0 values, with other parameters being
kept constant. We assumed that the accuracy of the prior belief is high and the
variance was set to be c2 = 0.001. The corresponding results obtained for the
estimates of the parameters for various rates of chemical reaction are presented in
Tables 3, 4, and 5. The estimates of the mean of tumor onset time and the probability
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Table 4 Bias and MSE of the estimates of parameters for chemical with moderate reaction rate
under different estimation methods

Bias MSE

aM0 = 5.3 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 6.68e-02 3.045e-02 2.852e-02 4.923e-01 2.445e-01 1.5e-01
Laplace(p̃) 5.003e-03 −8.739e-03 7.035e-03 5.96e-01 3.159e-01 1.994e-01

Norm(p̃) 8.219e-02 4.225e-02 3.712e-02 5.177e-01 2.652e-01 1.626e-01

Beta(p̃) 7.708e-02 3.405e-02 3.139e-02 5.16e-01 2.513e-01 1.613e-01

Laplace(p̂) 2.42e-02 −1.021e-02 −7.28e-03 6.248e-01 3.111e-01 2.273e-01

Norm(p̂) 8.836e-02 3.96e-02 3.708e-02 4.058e-01 2.077e-01 1.296e-01
Beta(p̂) 9.282e-02 4.631e-02 2.842e-02 3.55e-01 1.827e-01 1.183e-01

a1 = −0.05 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.357e-03 −6.837e-04 −5.982e-04 2.11e-04 1.051e-04 6.48e-05
Laplace(p̃) 8.255e-04 1.186e-03 1.253e-04 4.235e-04 1.083e-03 1.383e-04

Norm(p̃) −1.549e-03 −8.564e-04 −7.434e-04 2.214e-04 1.142e-04 7.034e-05

Beta(p̃) −1.444e-03 −6.81e-04 −6.489e-04 2.221e-04 1.081e-04 6.98e-05

Laplace(p̂) 7.262e-04 5.687e-04 7.109e-04 7.124e-04 2.015e-04 3.1e-04

Norm(p̂) −1.732e-03 −7.849e-04 −7.37e-04 1.73e-04 8.921e-05 5.598e-05
Beta(p̂) −1.802e-03 −9.146e-04 −5.388e-04 1.52e-04 7.843e-05 5.146e-05

b0 = −0.6 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.313e-02 −3.635e-03 1.189e-02 6.952e-01 3.291e-01 1.939e-01
Laplace(p̃) 8.349e-02 4.282e-02 3.941e-02 7.755e-01 3.779e-01 2.312e-01

Norm(p̃) −1.887e-02 4.422e-04 9.795e-03 7.334e-01 3.521e-01 2.14e-01

Beta(p̃) −3.308e-02 −1.385e-02 1.134e-02 7.234e-01 3.439e-01 2.093e-01

Laplace(p̂) 8.249e-02 5.532e-02 5.522e-02 8.024e-01 3.755e-01 2.282e-01

Norm(p̂) −1.293e-02 −7.044e-04 1.592e-02 5.975e-01 3.24e-01 1.944e-01
Beta(p̂) −2.949e-02 −4.146e-03 7.319e-03 5.708e-01 2.931e-01 1.82e-01

b1 = 0.03 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 6.192e-04 2.7e-04 −2.344e-04 3.458e-04 1.593e-04 9.177e-05
Laplace(p̃) −2.8e-03 −1.423e-03 −1.158e-03 4.323e-04 2.076e-04 1.161e-04

Norm(p̃) −1.617e-04 −3.873e-04 −4.716e-04 3.691e-04 1.714e-04 1.03e-04

Beta(p̃) −4.394e-04 −2.106e-04 −3.879e-04 3.751e-04 1.68e-04 1.004e-04

Laplace(p̂) −2.855e-03 −1.691e-03 −1.582e-03 4.404e-04 1.969e-04 1.254e-04

Norm(p̂) 1.575e-04 −6.625e-06 −5.375e-04 2.861e-04 1.529e-04 9.151e-05
Beta(p̂) 2.738e-04 −7.88e-05 −3.516e-04 2.681e-04 1.367e-04 8.622e-05

of mice without tumors at some time points of interest are presented in Tables 6, 7,
and 8. The values in bold indicate the three smallest absolute values of bias and
MSEs in each simulation setting. Also, the values within borders indicate which
method is the best under a particular simulation setting.

From all these results, the method with the best performance in terms of the least
absolute values of bias and MSE is summarized in Tables 9 and 10, respectively.
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Table 5 Bias and MSE of the estimates of parameters for chemical with slow reaction rate under
different estimation methods

Bias MSE

aH0 = 5.7 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 6.069e-02 6.06e-02 1.614e-02 4.977e-01 2.884e-01 1.306e-01
Laplace(p̃) −4.148e-02 1.58e-02 −1.451e-02 6.863e-01 3.853e-01 1.886e-01

Norm(p̃) 6.985e-02 7.985e-02 1.829e-02 5.282e-01 3.06e-01 1.41e-01

Beta(p̃) 7.53e-02 6.08e-02 2.138e-02 5.213e-01 2.957e-01 1.372e-01

Laplace(p̂) −1.982e-02 −2.828e-02 −1.325e-02 6.784e-01 4.886e-01 1.961e-01

Norm(p̂) 6.844e-02 7.574e-02 2.256e-02 4.178e-01 2.468e-01 1.203e-01
Beta(p̂) 7.858e-02 8.176e-02 2.837e-02 3.658e-01 2.281e-01 1.046e-01

a1 = −0.05 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.299e-03 −1.268e-03 −3.663e-04 2.149e-04 1.245e-04 5.686e-05
Laplace(p̃) 4.466e-03 5.124e-04 9.349e-04 2.703e-03 6.266e-04 4.816e-04

Norm(p̃) −1.39e-03 −1.596e-03 −3.767e-04 2.286e-04 1.322e-04 6.158e-05

Beta(p̃) −1.505e-03 −1.194e-03 −4.729e-04 2.265e-04 1.283e-04 5.996e-05

Laplace(p̂) 2.364e-03 2.808e-03 7.463e-04 1.219e-03 1.488e-03 2.318e-04

Norm(p̂) −1.342e-03 −1.505e-03 −4.628e-04 1.789e-04 1.061e-04 5.238e-05
Beta(p̂) −1.529e-03 −1.618e-03 −5.803e-04 1.565e-04 9.804e-05 4.568e-05

b0 = −0.6 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 3.967e-02 −2.853e-02 −1.157e-03 6.186e-01 3.658e-01 1.838e-01
Laplace(p̃) 1.337e-01 2.89e-02 2.446e-02 7.161e-01 4.034e-01 2.105e-01

Norm(p̃) 4.368e-02 −4.078e-02 −3.5e-03 6.653e-01 4.022e-01 1.956e-01

Beta(p̃) 1.919e-02 −4.306e-02 −3.991e-03 6.425e-01 3.833e-01 2.014e-01

Laplace(p̂) 1.067e-01 2.446e-02 2.706e-02 7.106e-01 4.236e-01 2.116e-01

Norm(p̂) 4.708e-02 −3.633e-02 −3.072e-03 5.821e-01 3.376e-01 1.804e-01
Beta(p̂) 1.702e-02 −3.361e-02 −2.581e-03 5.371e-01 3.276e-01 1.703e-01

b1 = 0.03 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −5.368e-04 6.938e-04 1.095e-04 2.938e-04 1.748e-04 8.943e-05
Laplace(p̃) −4.233e-03 −1.279e-03 −8.436e-04 4.176e-04 2.169e-04 1.174e-04

Norm(p̃) −1.478e-03 4.027e-04 −7.712e-05 3.226e-04 1.946e-04 9.579e-05

Beta(p̃) −1.531e-03 3.027e-04 2.386e-05 3.241e-04 1.868e-04 9.981e-05

Laplace(p̂) −3.394e-03 −1.431e-03 −9.157e-04 3.845e-04 2.634e-04 1.215e-04

Norm(p̂) −1.203e-03 6.023e-04 2.777e-05 2.705e-04 1.563e-04 8.652e-05
Beta(p̂) −7.506e-04 3.842e-04 −7.85e-05 2.484e-04 1.509e-04 8.162e-05

It should be mentioned that corresponding to quick, moderate, and slow rates of
chemical reaction, we used sacrifice times (τ1, τ2, τ3) = (10, 20, 30), (30, 40, 50),
and (60, 70, 80), respectively. From Table 9, we observe that the Laplace prior is
good for estimating a0 and a1. As expected, Laplace(p̂) is good for chemicals with
quick reaction rate and Laplace(p̃) performs better in the cases of slow reaction
rate. There is no single dominant method for estimating b0, b1, but Norm(p̂) seems
to outperform others in general. For estimating the mean of tumor onset time,
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Table 6 Bias and MSE of the estimates of mean of tumor onset time at normal level, μ(x0),
and the probability of mice without tumors, S(·, x0), for chemical with quick reaction rate under
different estimation methods

Bias MSE

μ(x0) = 36.51 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 1.832e+01 6.52e+00 2.44e+00 1.048e+04 6.328e+02 1.278e+02
Laplace(p̃) 1.267e+19 3.548e+29 2.733e+00 1.605e+41 1.259e+62 2.301e+02

Norm(p̃) 2.322e+01 7.598e+00 2.841e+00 2.019e+04 7.456e+02 1.527e+02

Beta(p̃) 2.193e+01 7.314e+00 2.795e+00 1.21e+04 7.455e+02 1.392e+02

Laplace(p̂) 9.753e+14 9.146e+06 4.995e+08 9.51e+32 8.364e+16 2.495e+20

Norm(p̂) 2.133e+01 7.09e+00 2.857e+00 1.939e+04 7.025e+02 1.322e+02
Beta(p̂) 1.633e+01 6.473e+00 2.629e+00 4.844e+03 5.948e+02 1.193e+02

S(10, x0) = 0.8114 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 8.725e-04 1.226e-03 3.447e-04 3.315e-03 2.02e-03 9.869e-04
Laplace(p̃) −2.433e-03 −2.437e-03 −8.904e-04 3.941e-03 2.622e-03 1.221e-03

Norm(p̃) −4.638e-03 −2.39e-03 −1.53e-03 3.671e-03 2.285e-03 1.101e-03

Beta(p̃) −1.072e-02 −3.661e-03 −8.962e-04 3.713e-03 2.164e-03 1.13e-03

Laplace(p̂) −3.953e-03 −1.188e-03 −6.577e-04 4.213e-03 2.541e-03 1.321e-03

Norm(p̂) 1.158e-03 1.229e-03 −1.468e-04 2.561e-03 1.624e-03 9.668e-04
Beta(p̂) −1.033e-03 9.504e-04 −2.666e-04 2.259e-03 1.505e-03 8.73e-04

S(20, x0) = 0.6265 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −8.383e-03 −4.479e-03 −2.272e-03 5.604e-03 3.1e-03 1.365e-03
Laplace(p̃) −1.633e-02 −1.178e-02 −5.784e-03 8.722e-03 4.854e-03 2.019e-03

Norm(p̃) −1.18e-02 −6.981e-03 −4.114e-03 6.148e-03 3.456e-03 1.59e-03

Beta(p̃) −1.672e-02 −8.226e-03 −2.957e-03 5.748e-03 3.353e-03 1.518e-03

Laplace(p̂) −1.873e-02 −1.066e-02 −4.349e-03 8.813e-03 4.437e-03 2.051e-03

Norm(p̂) −4.265e-03 −2.796e-03 −1.241e-03 2.921e-03 1.822e-03 9.507e-04
Beta(p̂) −4.441e-03 −2.129e-03 −1.548e-03 1.671e-03 1.317e-03 8.345e-04

S(30, x0) = 0.4729 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.088e-02 −1.337e-02 −6.506e-03 1.57e-02 9.072e-03 4.008e-03
Laplace(p̃) −2.881e-02 −2.222e-02 −1.18e-02 1.976e-02 1.207e-02 5.259e-03

Norm(p̃) −2.041e-02 −1.406e-02 −7.845e-03 1.576e-02 9.463e-03 4.408e-03

Beta(p̃) −2.297e-02 −1.453e-02 −6.594e-03 1.497e-02 9.176e-03 4.182e-03

Laplace(p̂) −3.26e-02 −2.196e-02 −9.582e-03 2.048e-02 1.162e-02 5.306e-03

Norm(p̂) −1.489e-02 −1.06e-02 −4.523e-03 1.133e-02 6.871e-03 3.203e-03
Beta(p̂) −1.315e-02 −9.141e-03 −4.761e-03 8.426e-03 5.562e-03 2.98e-03
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Table 7 Bias and MSE of the estimates of mean of tumor onset time at normal level, μ(x0), and
the probability of mice without tumors, S(·, x0), for chemical with moderate reaction rate under
different estimation methods

Bias MSE

μ(x0) = 54.46 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 2.237e+01 6.346e+00 3.573e+00 2.196e+04 9.372e+02 2.843e+02
Laplace(p̃) 2.93e+10 3.212e+27 4.925e+05 8.582e+23 1.031e+58 2.422e+14

Norm(p̃) 3.206e+01 7.944e+00 4.395e+00 6.513e+04 1.171e+03 3.22e+02

Beta(p̃) 2.807e+01 7.514e+00 4.121e+00 2.833e+04 9.855e+02 3.309e+02

Laplace(p̂) 6.034e+10 9.051e+07 4.167e+10 3.64e+24 8.191e+18 1.736e+24

Norm(p̂) 2.093e+01 6.701e+00 3.887e+00 1.68e+04 9.061e+02 2.674e+02
Beta(p̂) 2.073e+01 6.559e+00 3.565e+00 1.733e+04 7.963e+02 2.481e+02

S(30, x0) = 0.6246 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.072e-02 −6.11e-03 −1.053e-03 4.664e-03 2.486e-03 1.224e-03
Laplace(p̃) −1.792e-02 −1.117e-02 −4.093e-03 6.932e-03 3.58e-03 1.936e-03

Norm(p̃) −1.373e-02 −7.271e-03 −1.772e-03 4.961e-03 2.76e-03 1.379e-03

Beta(p̃) −1.93e-02 −9.987e-03 −1.93e-03 5.159e-03 2.691e-03 1.403e-03

Laplace(p̂) −1.466e-02 −1.108e-02 −4.331e-03 7.051e-03 4.02e-03 2.147e-03

Norm(p̂) −5.201e-03 −3.567e-03 4.105e-04 2.232e-03 1.607e-03 7.872e-04
Beta(p̂) −5.112e-03 −2.244e-03 −1.114e-03 1.234e-03 1.002e-03 6.626e-04

S(40, x0) = 0.5182 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.025e-02 −1.132e-02 −4.376e-03 9.778e-03 4.906e-03 2.523e-03
Laplace(p̃) −2.96e-02 −1.803e-02 −8.644e-03 1.331e-02 6.76e-03 3.66e-03

Norm(p̃) −2.071e-02 −1.14e-02 −4.475e-03 9.943e-03 5.266e-03 2.754e-03

Beta(p̃) −2.436e-02 −1.325e-02 −5.002e-03 9.796e-03 4.968e-03 2.743e-03

Laplace(p̂) −2.573e-02 −1.815e-02 −9.536e-03 1.316e-02 7.15e-03 4.057e-03

Norm(p̂) −1.237e-02 −8.059e-03 −2.379e-03 5.641e-03 3.516e-03 1.831e-03
Beta(p̂) −1.064e-02 −5.719e-03 −3.509e-03 3.766e-03 2.397e-03 1.553e-03

S(50, x0) = 0.4266 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.428e-02 −1.426e-02 −6.763e-03 1.518e-02 8.057e-03 4.498e-03
Laplace(p̃) −3.336e-02 −2.145e-02 −1.157e-02 1.877e-02 1.037e-02 5.955e-03

Norm(p̃) −2.22e-02 −1.322e-02 −6.215e-03 1.488e-02 8.453e-03 4.826e-03

Beta(p̃) −2.411e-02 −1.433e-02 −7.09e-03 1.46e-02 7.918e-03 4.769e-03

Laplace(p̂) −2.961e-02 −2.174e-02 −1.292e-02 1.854e-02 1.059e-02 6.503e-03

Norm(p̂) −1.607e-02 −1.081e-02 −4.487e-03 1.049e-02 6.375e-03 3.623e-03
Beta(p̂) −1.371e-02 −8.033e-03 −5.245e-03 8.147e-03 4.862e-03 3.137e-03
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Table 8 Bias and MSE of the estimates of mean of tumor onset time at normal level, μ(x0),
and the probability of mice without tumors, S(·, x0), for chemical with slow reaction rate under
different estimation methods

Bias MSE

μ(x0) = 81.25 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM 3.69e+01 1.333e+01 4.543e+00 1.781e+05 2.904e+03 6.295e+02
Laplace(p̃) 7.185e+38 8.346e+18 5.678e+12 5.061e+80 6.965e+40 3.224e+28

Norm(p̃) 5.6e+01 1.73e+01 5.43e+00 8.481e+05 4.743e+03 7.456e+02

Beta(p̃) 5.423e+01 1.558e+01 5.259e+00 5.797e+05 4.192e+03 6.421e+02
Laplace(p̂) 2.527e+38 5.261e+20 1.523e+09 6.386e+79 2.767e+44 2.318e+21

Norm(p̂) 5.255e+01 1.406e+01 5.149e+00 7.985e+05 2.688e+03 6.971e+02

Beta(p̂) 3.162e+01 1.389e+01 4.913e+00 7.85e+04 2.562e+03 5.045e+02

S(60, x0) = 0.5161 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −1.779e-02 −9.626e-03 −6.362e-03 1.028e-02 5.022e-03 2.556e-03
Laplace(p̃) −2.974e-02 −1.68e-02 −1.073e-02 1.407e-02 7.479e-03 3.497e-03

Norm(p̃) −1.925e-02 −9.19e-03 −7.194e-03 1.066e-02 5.211e-03 2.836e-03

Beta(p̃) −2.117e-02 −1.212e-02 −6.4e-03 1.029e-02 5.059e-03 2.707e-03

Laplace(p̂) −3.169e-02 −2.059e-02 −9.945e-03 1.492e-02 7.885e-03 3.426e-03

Norm(p̂) −1.323e-02 −5.603e-03 −5.056e-03 6.166e-03 3.346e-03 2.012e-03
Beta(p̂) −1.06e-02 −3.668e-03 −3.225e-03 4.292e-03 2.614e-03 1.574e-03

S(70, x0) = 0.4533 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.223e-02 −1.122e-02 −7.72e-03 1.399e-02 7.352e-03 3.725e-03
Laplace(p̃) −3.417e-02 −1.881e-02 −1.249e-02 1.816e-02 1.012e-02 4.85e-03

Norm(p̃) −2.244e-02 −9.636e-03 −8.145e-03 1.426e-02 7.536e-03 4.031e-03

Beta(p̃) −2.268e-02 −1.229e-02 −7.517e-03 1.365e-02 7.22e-03 3.879e-03

Laplace(p̂) −3.53e-02 −2.253e-02 −1.164e-02 1.893e-02 1.066e-02 4.709e-03

Norm(p̂) −1.765e-02 −6.475e-03 −6.174e-03 9.408e-03 5.271e-03 3.075e-03
Beta(p̂) −1.402e-02 −4.419e-03 −4.156e-03 7.164e-03 4.41e-03 2.495e-03

S(80, x0) = 0.3969 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

EM −2.365e-02 −1.138e-02 −8.332e-03 1.684e-02 9.511e-03 4.872e-03
Laplace(p̃) −3.45e-02 −1.879e-02 −1.324e-02 2.071e-02 1.228e-02 6.105e-03

Norm(p̃) −2.266e-02 −8.73e-03 −8.329e-03 1.7e-02 9.685e-03 5.176e-03

Beta(p̃) −2.155e-02 −1.117e-02 −7.893e-03 1.622e-02 9.223e-03 5.033e-03

Laplace(p̂) −3.487e-02 −2.229e-02 −1.238e-02 2.137e-02 1.288e-02 5.907e-03

Norm(p̂) −1.955e-02 −6.283e-03 −6.63e-03 1.231e-02 7.191e-03 4.151e-03
Beta(p̂) −1.544e-02 −4.268e-03 −4.571e-03 9.96e-03 6.301e-03 3.496e-03
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Table 9 The method of
estimation with the least bias

Reaction rate Quick

Size K = 30 K = 50 K = 100

a0 Laplace(p̂) Laplace(p̃) Laplace(p̂)

a1 Laplace(p̃) Laplace(p̂) EM

b0 Norm(p̂) Norm(p̂) Beta(p̂)

b1 Beta(p̂) Norm(p̂) EM

μ(x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ1, x0) EM Beta(p̂) Beta(p̂)

S(τ2, x0) Norm(p̂) Beta(p̂) Beta(p̂)

S(τ3, x0) Beta(p̂) Beta(p̂) Beta(p̂)

Reaction rate Moderate

Size K = 30 K = 50 K = 100

a0 Laplace(p̂) Laplace(p̃) Laplace(p̃)

a1 Laplace(p̂) Laplace(p̂) Laplace(p̃)

b0 Norm(p̂) Norm(p̃) Laplace(p̂)

b1 EM Norm(p̂) Beta(p̃)

μ(x0) Beta(p̂) EM EM

S(τ1, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ2, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ3, x0) Beta(p̂) Beta(p̂) Beta(p̂)

Reaction rate Slow

Size K = 30 K = 50 K = 100

a0 Laplace(p̃) Laplace(p̃) Laplace(p̂)

a1 Laplace(p̃) Laplace(p̃) EM

b0 Beta(p̂) Beta(p̂) EM

b1 Norm(p̂) EM Beta(p̃)

μ(x0) EM Beta(p̂) EM

S(τ1, x0) Norm(p̂) Norm(p̂) Beta(p̂)

S(τ2, x0) Norm(p̂) Norm(p̂) Beta(p̂)

S(τ3, x0) Norm(p̂) Norm(p̂) Beta(p̂)

both Beta(p̂) and EM perform well. For estimating the probability of mice without
tumors, Beta(p̂) seems to be the best method. However, when the chemical reaction
rate is slow, Norm(p̂) seems better for small and moderate sample sizes. The EM
algorithm generally works very well when the sample size is large, and this agrees
with the finding of Balakrishnan and Ling [2]. From Table 10, we see that Beta(p̂)
appears to be the best method in terms of minimum MSE in general.

In some cases, the prior belief p̂ is not always available. The methods with prior
based only on observed data that provide the least bias and MSE in this case are
listed in Tables 11 and 12, respectively. From Table 11, we can see that Laplace(p̃)
estimates the parameters a0 and a1 very well. For the parameters b0 and b1, there
is no particular method that turns out to be best overall. For other quantities, EM
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Table 10 The method of
estimation with the least MSE

Reaction rate Quick

Size K = 30 K = 50 K = 100

a0 Beta(p̂) Beta(p̂) Beta(p̂)

a1 Beta(p̂) Beta(p̂) Beta(p̂)

b0 Beta(p̂) Beta(p̂) Beta(p̂)

b1 Beta(p̂) Beta(p̂) Beta(p̂)

μ(x0) Beta(p̂) Norm(p̂) Beta(p̂)

S(τ1, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ2, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ3, x0) Beta(p̂) Beta(p̂) Beta(p̂)

Reaction rate Moderate

Size K = 30 K = 50 K = 100

a0 Beta(p̂) Beta(p̂) Beta(p̂)

a1 Beta(p̂) Beta(p̂) Beta(p̂)

b0 Beta(p̂) Beta(p̂) Beta(p̂)

b1 Beta(p̂) Beta(p̂) Beta(p̂)

μ(x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ1, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ2, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ3, x0) Beta(p̂) Beta(p̂) Beta(p̂)

Reaction rate Slow

Size K = 30 K = 50 K = 100

a0 Beta(p̂) Beta(p̂) Beta(p̂)

a1 Beta(p̂) Beta(p̂) Beta(p̂)

b0 Beta(p̂) Beta(p̂) Beta(p̂)

b1 Beta(p̂) Beta(p̂) Beta(p̂)

μ(x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ1, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ2, x0) Beta(p̂) Beta(p̂) Beta(p̂)

S(τ3, x0) Beta(p̂) Beta(p̂) Beta(p̂)

algorithm seems to be the best method of estimation. From Table 12, EM seems
to perform well for estimating the parameters and all the quantities of interest. We
also observe that Beta(p̃) estimates the probability of mice without tumors quite
well in the case of quick reaction rate, large sample size, and long sacrifice time.
Also, Beta(p̃) is good at predicting the probability of mice without tumors of a long
sacrifice time when the number of mice having tumors is large.
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Table 11 The method of
estimation with the least bias
among the methods with prior
based only on observed data

Reaction rate Quick

Size K = 30 K = 50 K = 100

a0 Laplace(p̃) Laplace(p̃) Laplace(p̃)

a1 Laplace(p̃) Laplace(p̃) EM

b0 EM EM Beta(p̃)

b1 EM Norm(p̃) EM

μ(x0) EM EM EM

S(τ1, x0) EM EM EM

S(τ2, x0) EM EM EM

S(τ3, x0) Norm(p̃) Norm(p̃) Beta(p̃)

Reaction rate Moderate

Size K = 30 K = 50 K = 100

a0 Laplace(p̃) Laplace(p̃) Laplace(p̃)

a1 Laplace(p̃) Beta(p̃) Laplace(p̃)

b0 Norm(p̃) Norm(p̃) EM

b1 EM Beta(p̃) Beta(p̃)

μ(x0) EM EM EM

S(τ1, x0) EM EM Norm(p̃)

S(τ2, x0) EM EM Norm(p̃)

S(τ3, x0) EM Norm(p̃) Norm(p̃)

Reaction rate Slow

Size K = 30 K = 50 K = 100

a0 Laplace(p̃) Laplace(p̃) Laplace(p̃)

a1 Laplace(p̃) Laplace(p̃) EM

b0 Norm(p̃) Norm(p̃) EM

b1 Beta(p̃) EM Beta(p̃)

μ(x0) EM EM EM

S(τ1, x0) EM EM EM

S(τ2, x0) EM EM Beta(p̃)

S(τ3, x0) EM Norm(p̃) Beta(p̃)

Table 12 The method of estimation with the least MSE among the methods with prior based only
on observed data

Reaction rate Quick Moderate Slow

Size K = 30 K = 50 K = 100 K = 30 K = 50 K = 100 K = 30 K = 50 K = 100

a0 EM EM EM EM EM EM EM EM EM

a1 EM EM EM EM EM EM EM EM EM

b0 EM EM EM EM EM EM EM EM EM

b1 EM EM EM EM EM EM EM EM EM

μ(x0) EM EM EM EM EM EM EM EM EM

S(τ1, x0) EM EM EM EM EM EM EM EM EM

S(τ2, x0) EM EM Beta(p̃) EM EM Beta(p̃) EM EM EM

S(τ3, x0) Beta(p̃) Beta(p̃) Beta(p̃) EM Beta(p̃) Beta(p̃) EM EM EM
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5 Sensitivity Analysis on Prior Accuracy

The prior information with different variances, c2, may affect the estimation of
model parameters. For this reason, we examine the sensitivity of the estimation
for varying c2. It is common in practice to have good prior information in case
of most Bayesian analyses. So, we set values of c as c2 = 0.005, 0.001, and 0.0005
in our simulation study, in order to reflect different levels of accuracy with respect
to prior information. For different c2, the bias and MSE of the estimate of a1 with
normal prior distribution using prior information p̂ are presented in Table 13. From
Table 13, we observe that when c2 decreases, the MSE also decreases because the
prior information becomes more accurate in this case. Of course, decreasing c2

will not necessarily reduce the bias when the sample size is small or moderate.
The reason for this is that the prior information has smaller variance, and so
the estimation will depend more on the accurate prior information instead of the
imprecise information from the sample. In this case, the estimation will put more
weight on the prior information. A decrease in c2 may not necessarily result in a
reduction in the size of bias of the estimates since the samples may be significantly
different from the prior information.

6 Application to Tumorigenicity Data from Sacrificial
Experiments

In this section, a real data from a study of benzidine dihydrochloride to tumor
in mice is analyzed, in which strain of offspring, gender, and concentration of
benzidine dihydrochloride used are involved as the covariates. In addition, in each
group, the time to being sacrificed, the numbers of mice tested, and the numbers of
mice having tumors are all recorded. These data were originally reported by Kodell
and Nelson [16] and analyzed by Balakrishnan and Ling [3] under the Weibull
distribution. One may also refer to Finkelstein and Ryan [14] and Lindsey and
Ryan [17] for some other models in this regard.

Here, let a1, a2, and a3 denote the parameters corresponding to the covariates
of strain of offspring, gender, and square root of concentration of the chemical
benzidine dihydrochloride in the scale parameter of the Weibull distribution, while
b1, b2, and b3 denote similarly for the shape parameter. The estimates of the model
parameters and the mean of onset time of tumors for each group are computed by
means of the Bayesian approach, along with the corresponding standard errors for
all the model parameters. These results are all presented in Tables 14 and 15.

Table 14 presents the Bayesian estimates of the model parameters, along with the
corresponding standard errors, based on various priors. The estimates obtained from
different priors are not similar for some model parameters, especially a1 and a2.

However, from the Norm prior and Beta prior, it is evident that both the shape and
scale parameters vary with all the covariates. Also, under the Weibull distribution,
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Table 14 Bayesian estimates of the model parameters along with standard errors (within brackets)

Scale parameter α

a0 a1 a2 a3

Laplace(p̃) 3.2877 (0.0347) 0.0143 (0.0113) 0.4786 (0.0422) −0.0483 (0.0028)

Norm(p̃) 3.3828 (0.0671) 0.0311 (0.0007) 0.6997 (0.0617) −0.0597 (0.0042)

Beta(p̃) 3.3178 (0.0185) 0.0774 (0.0129) 0.7423 (0.0403) −0.0522 (0.0014)

Shape parameter β

b0 b1 b2 b3

Laplace(p̃) 2.0348 (0.1712) −0.0820 (0.0753) −0.3566 (0.0873) −0.0288 (0.0103)

Norm(p̃) 1.7357 (0.0391) −0.2170 (0.0050) −0.5008 (0.0160) −0.0706 (0.0014)

Beta(p̃) 1.1313 (0.0649) −0.3215 (0.0284) −0.6216 (0.0530) −0.0463 (0.0041)

Table 15 Bayesian estimates of the mean of onset time of tumors along with standard errors (within
brackets)

Concentration μ̂ in months

Strain Gender in ppm Laplace(p̃) Norm(p̃) Beta(p̃)

F1 F 60 17.1094 (0.2679) 16.6401 (0.5491) 16.3120 (0.1404)

F1 F 120 14.5777 (0.1695) 13.6061 (0.2801) 13.8306 (0.0854)

F1 F 200 12.4328 (0.1780) 11.2130 (0.1043) 11.8167 (0.0716)

F1 F 400 9.2810 (0.2623) 8.1532 (0.1102) 9.0860 (0.1056)

F2 F 60 17.2780 (0.2885) 17.0114 (0.5610) 17.8809 (0.3032)

F2 F 120 14.7192 (0.1827) 13.9948 (0.2961) 15.4301 (0.2481)

F2 F 200 12.5524 (0.1820) 11.6632 (0.1272) 13.5046 (0.2090)

F2 F 400 9.3712 (0.2607) 8.8570 (0.1294) 11.1138 (0.2038)

F1 M 60 27.0806 (1.1906) 33.1142 (1.0992) 36.7752 (1.9424)

F1 M 120 23.0676 (0.9134) 27.6913 (1.1414) 32.7747 (1.9602)

F1 M 200 19.6751 (0.7336) 23.7067 (1.1867) 29.9440 (2.1498)

F1 M 400 14.7080 (0.5747) 19.8003 (1.3312) 27.7470 (3.2192)

F2 M 60 27.3419 (1.1785) 34.5574 (1.1557) 45.8196 (2.6647)

F2 M 120 23.2938 (0.8977) 29.5177 (1.2073) 43.3843 (3.0099)

F2 M 200 19.8744 (0.7158) 26.1322 (1.2879) 42.8696 (3.8101)

F2 M 400 14.8749 (0.5553) 24.4588 (1.7216) 48.9678 (7.9914)

the mean of onset time of tumors can be determined. It helps us understand how
much the covariates influence the mean of the onset time of tumors. For example,
females get tumor earlier than males. Tumors are induced by the increase in dose
of benzidine dihydrochloride. F1 strain mice get tumor earlier than F2 strain mice.
It is worth noting that the estimate of the mean of the onset time tumors obtained
from the Beta prior may not be reasonable because it is observed that the mean is
not decreasing when the dose of the chemical is increased.
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7 Concluding Remarks

In this work, a Bayesian approach has been developed for tumorigenicity data from
sacrificial experiments under Weibull lifetime. Three different prior distributions
have been considered, and their corresponding posterior distributions have been
derived by the use of Metropolis–Hastings algorithm. The performance of the
Bayesian approach has been compared with the maximum likelihood estimation
obtained by the use of the EM algorithm by means of Monte Carlo simulations. If
accurate prior information is available, the Bayesian approach turns out to be the
best. If such prior information is not available, the EM-based likelihood method
turns out to be a good method of estimation.

For further study, we can extend the work to the case of gamma lifetimes for
which the likelihood approach has been developed by Balakrishnan and Ling [4]. It
will also be of interest to generalize the present work to incorporate competing risks
along the lines of Balakrishnan et al. [5, 6] who discussed it for the exponential and
Weibull cases. We are currently looking into these problems and hope to report the
findings in a future research.
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Bayesian Sensitivity Analysis in Survival
and Longitudinal Trials with Missing
Data

G. Frank Liu and Fang Chen

Abstract Survival and longitudinal clinical trials are commonly conducted to
evaluate experimental drug, biologic, and vaccine products. Conventional methods
such as the log-rank test and the Cox proportional hazards model assume non-
informative censoring for time-to-event data, and mixed model analysis assumes
missing-at-random (MAR) in longitudinal trials. Although such assumptions play
a critical role in influencing the outcome of the analysis, there are no formal
methods to validate such assumptions from the data at hand. Sensitivity analyses
are often recommended to test the robustness of an analysis that depends on
such assumptions. In this chapter, we discuss how to perform practical sensitivity
analysis, in a Bayesian modeling setting, to handle missing and censored data in
clinical trials. Specifically, we focus on the delta-adjusted and control-based impu-
tation strategies under informative censoring or missing-not-at-random (MNAR)
mechanisms. Applications to real clinical trials are presented to demonstrate these
methods.

1 Introduction

In most survival and longitudinal clinical trials, it is inevitable that some patients
prematurely withdraw from trials for various reasons, such as adverse events and
lack of treatment efficacy. Patients who withdraw from trials can follow different
treatment trajectories. For example, they might stop treatment, switch to a different
treatment, or receive additional treatment. Discontinuation of treatment often leads
to patients dropping out of the study, so no data are collected afterward. Even
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if those patients agree to stay in the study, the outcomes that are collected after
treatment is completed can be systematically different from the outcomes if the
patients were to continue with the assigned treatment in the trial. Such missing data
and potential discrepancies can seriously undermine the validity of the analysis
and hinder our ability to assess the effectiveness of the treatment. The recent
International Council for Harmonization (ICH) E9 (R1) addendum [1] requires
clear definition of the estimands that describe the quantity to be estimated in
study protocols. The estimand framework includes how to handle intercurrent
events (IEs) such as premature discontinuation that can affect the collection and
interpretation of the data for trials. Analyzing trials with appropriate methods to
handle IEs and missing data is critical when we want to evaluate the between-group
treatment effect.

To investigate the treatment effect of a testing product and avoid potential
confounding from other rescue medications, sponsors are often interested in
hypothetical estimands. One of the hypothetical estimands is to envision what
the outcome would be if a dropout patient had not experienced any IEs and
had continued with the assigned treatment. Clearly, data cannot be collected after
dropout under this hypothetical scenario. Rather, assumptions are made in analysis
models to estimate what treatment effect would be. In survival trials, conventional
methods, such as the log-rank test and the Cox proportional hazards model, treat
premature discontinuation as non-informative or random censoring [2]. As a result,
the hazard ratio from those analyses evaluates the treatment difference with the
assumption that all patients would complete the assigned treatment without IEs.
This random censoring is similar to the missing-at-random (MAR) assumption
commonly used in the analysis of longitudinal trials [3], where the repeated
measures after IEs are treated as missing.

Assumptions of random censoring or MAR are not verifiable from observed
study data, meaning we cannot rule out that probabilities of missing data can
depend on the unobserved outcomes (missing not at random). Sensitivity analysis is
recommended by regulatory guidance documents in order to assess the robustness
of the analysis results under various deviations from the random censoring or
MAR assumptions [1, 4]. In the area of survival analysis, control-based multiple
imputation and delta-adjusted methods were put forth as effective and practical
approaches in conducting sensitivity analysis [5–8]. The idea is to impute the
censored event time, many times over, using estimated survival functions from
data in a reference group (e.g., control group) or using adjusted survival functions.
For longitudinal trials, similar approaches of control-based and delta-adjusted
imputation methods have been proposed [11–16].

In this chapter, we review sensitivity analysis approaches in both survival
analysis and longitudinal trials, with a focus on the Bayesian approach using
control-based and delta-adjusted imputation methods. The Bayesian paradigm
offers an effective modeling approach in this area, largely because of its ability to
conduct proper multiple imputation and to model uncertainty of outcome trajecto-
ries with prior distributions. Because of their dependency on heavy computation and
the shortage of user-friendly software packages, Bayesian methods have not been
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widely used in practice. With modern computers and rapid maturing of Bayesian
software packages such as PROC MCMC in SAS, WinBUGS, NIMBLE, and Stan,
Bayesian approaches have become a practical solution to address complex missing
data problems faced in clinical trials.

The chapter is organized as follows. Sensitivity analysis methods based on
multiple imputation (MI) under different assumptions for survival analysis are
presented in Sect. 2. Section 3 discusses sensitivity analysis of missing data in
longitudinal studies, where a Bayesian approach is introduced to incorporate
additional variation for the trajectory responses. Applications to two clinical trial
examples are presented in Sect. 4. A summary and discussion are provided in Sect. 5.

2 Sensitivity Analysis for Censoring in Survival Trials

Suppose that Ti is the time to event of interest and Ci is the censoring time for
patient i. We observe Yi = min(Ti, Ci) and denote the censoring indicator di =
I (Ti > Ci). Under the proportional hazards assumption, the hazard function is

hi(t) = λ0(t) exp(βZi + γγγ ′XXXi) (1)

where Zi = 0 (control) or 1 (test drug) is a treatment indicator and XXXi is a vector
of baseline covariates. The function λ0(t) is an unspecified baseline hazard that
corresponds to the hazards of a patient in the control group at XXXi = 0. The
parameters {β, γγγ } can be estimated using a partial-likelihood approach that has been
widely implemented in many software packages (e.g., PROC PHREG in SAS and
the coxph library in R).

In a clinical trial, two types of censoring can occur: administrative and non-
administrative censoring. Administrative censoring is an operationally inserted
cutoff time point when a patient reaches the end of the study. This type of censoring
is often independent of study outcomes and non-informative; thus it is random
censoring. For this type of censoring, conventional methods, such as the log-rank
test or Cox proportional hazards model, are adequate. Non-administrative censoring
is due to premature discontinuation, which often occurs when patients have safety
or efficacy concerns. This type of censoring can depend on treatment and potentially
the time to event, and therefore it is informative. Sensitivity analysis, under various
scenarios, should be applied to non-administrative censoring data.

One way to handle censoring is to impute the missing event times. Suppose that
the survival function is

S(t) = exp

(

−
∫ t

0
h(s)ds

)

(2)

Under random censoring, the conditional survival function after censoring time at c
is
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S(t |t > c) = S(t)/S(c) = exp

(

−
∫ t

c

h(s)ds

)

(3)

Assume that we are able to estimate the survival function, such as by using a
parametric model or Kaplan–Meier (KM) estimation, and we denote the estimate
to be Ŝ(t). The following steps provide a recipe to impute survival time for a patient
who is censored at ci :

1. Draw a random number ui from a uniform distribution: U [0, Ŝ(ci)].
2. Use the solution to ui = Ŝ(t |Zi,XXXi) as the imputed event time.

Repeat these steps for all censored observations to obtain one copy of a complete
dataset. Repeat the processM times. Then use a Cox regression model on each of the
complete datasets, and obtain M estimates of the log-hazard ratio. The results can
be combined using Rubin’s method of inference. The point estimate is the average
of the log-hazard ratio estimates from the M imputed datasets, and its variance is a
weighted combination of the within and between variances.

2.1 Delta-Adjusted Imputation and Jump-to-Reference

The purpose of sensitivity analysis is to determine how various assumptions, when
incorporated into an imputation model, can alter the outcome of an analysis.
Suppose that the hazard at time t > ci for a non-administratively censored patient
is δhi(t). Then the estimated survival function for this patient is

Ŝ∗
i (t) =

{
Ŝ(t |Zi,XXXi), if t ≤ ci
Ŝ(ci |Zi,XXXi)Ŝ(t |t > ci, Zi,XXXi)δ, if t > ci

(4)

We describe two approaches to assess deviations from the random censoring
assumption: use different δ parameter values or modify the hazard function hi(t)
for censored patients in the test drug group.

(1) Delta-Adjusted Imputation
In the delta-adjusted imputation method [8], the hazard function hi(t) remains
identical to that in Cox PH models, but the δ value is set to be greater than 1 for
patients in the test drug group (i.e., when Zi = 1). Non-administrative censored
observations for patients in the treatment group are imputed using the hazard
function δhi(t). No adjustments are made for censored patients in the control group
(i.e., assuming random censoring). The conditional survival function is

Ŝ(t |t > ci, Zi,XXXi) =
{
Ŝ(t |t > ci, Zi,XXXi), if Zi = 0,
Ŝ(t |t > ci, Zi,XXXi)δ, if Zi = 1

(5)
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Sensitivity analysis using the delta-adjusted method is a way to assess modeling
robustness under potential departure from non-informative censoring. The δ value,
when set to be greater than 1, reflects a less favorable scenario for the test drug
group. In practice, we often gradually move the δ value from small to large, until we
reach a tipping point where the significant p-value of testing treatment difference
becomes insignificant. A larger δ(> 1) value implies more penalty being applied
to the treatment effect. Therefore, a larger tipping point would make us feel more
confident in the primary analysis results; i.e., we need to apply a big penalty to the
treatment group to turn the results from significant to insignificant.

(2) Jump-to-Reference (J2R)
We assume that censoring is random for all patients in the control group. That is,
the hazards for patients who withdraw from a placebo-controlled group should be
similar to the hazards of patients who continue with the placebo, because we do
not anticipate any biologic differences to be introduced by the placebo. For patients
in the test drug group, we set δ = 1 and hi(t) = λ0(t) exp(γγγ ′XXXi) for t > ci ;
that is, after discontinuation, a patient in the test drug group has the same hazard
as a patient in the control group (jump-to-reference, J2R). The conditional survival
function used in imputation for discontinued treatment patients is

Ŝ(t |t > ci, Zi,XXXi) = exp

(

−
∫ t

ci

λ0(s) exp(γγγ ′XXXi)ds
)

(6)

The J2R approach is one of the control-based imputation methods. It hypothe-
sizes a situation where patients in the test drug group stop receiving the test drug
and switch to a treatment that is similar to the one received by the control group.
By replacing the hazard function for patients after the dropout dates, J2R aims to
negate the model-implied hazard on the potential treatment effects after censoring.

2.2 Estimation of Survival Functions

In both the delta-adjusted and J2R imputation methods, one challenge is to estimate
survival functions that can be used to impute censored event times. Instead of using
a piecewise exponential model as recommended by Lu et al. [7] and Lipkovich et al.
[8], we consider a mixture Weibull model to estimate survival functions and use a
Bayesian approach to MI to implement control-based and delta-adjusted sensitivity
analysis.

We first briefly describe a piecewise exponential model. As the name indicates,
the model fits an exponential survival function to each of the time intervals over
the time domain. Let there be p + 1 intervals that are defined by p change points:
0 < τ1 < τ2 < · · · < τp. Within each interval, the hazard rate is a constant with
respect to t ,

hi(t) = λj exp(βZi + γγγ ′XXXi), if τj−1 < t < τj (7)
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for j = 1, . . . , p + 1, where τ0 = 0 and τp+1 = ∞. Its survival function is

S(t |Zi,XXXi) = exp

⎛

⎝−
⎡

⎣
j−1∑

l=1

(τl − τl−1)λl + (t − τj−1)λj

⎤

⎦ exp(βZi + γγγ ′XXXi)

⎞

⎠ ,

if τj−1 < t < τj

Dedicated Bayesian routines that fit piecewise exponential survival models are
readily available in standard software packages (e.g., PROC PHREG in SAS).
Posterior samples of (λ1, . . . , λp), β, and γγγ are used to impute non-administratively
censored data, based on the conditional survival function of Eq. (5) or (6) in either
the delta-adjusted or J2R method.

The biggest challenge of using piecewise exponential models to estimate the
baseline survival function is how to specify the time intervals. A moderately large
value of p is often used. For example, the PHREG procedure uses p = 8 by default,
and places an approximately equal number of events in each interval. Methods of
estimating the change points can be complicated [9, 10]. A fairly large value of p
may be needed to fit survival data that have abrupt drops in the cure effect, which
often occur in studies such as immuno-oncology trials [17]. In order to fit the model
well, each interval must also contain sufficient events. These challenges make it
difficult to prespecify the method, a step that is often required in clinical trials for
regulatory submission.

To overcome shortcomings of the piecewise exponential model, we consider an
alternative approach using a mixture Weibull model. A two- or three-component
mixture model can approximate well to the survival curves of a Cox PH model
that are based on the non-parametric KM baseline survival estimator [17, 18]. This
mixture Weibull model can be prespecified for the sensitivity analysis. In addition,
estimated survival curves from the mixture Weibull model are monotonically
decreasing and smooth, as opposed to zigzagged estimated step functions from Cox
models. The smoothness and monotonicity enable us to efficiently solve the inverse
function ui = Ŝ(t |zi, XXXi) for imputation.

In general, a q-component mixture Weibull model has a survival function

S(t |XXXi) =
q∑

j=1

wj exp

[

−
(

t

λj (XXXi)

)τj ]

(8)

where wj ≥ 0 are the mixture weights and
∑
wj = 1. The scale and shape

parameters of a Weibull distribution (for component j ) are λj (XXXi) = exp(αj +
γγγ ′XXXi) and τj , respectively. Based on the research of Liu and Liao [18], a q value of
2 or 3 would provide a good fit for many oncology trials in applications.

A Cox PH model with a q-component mixture Weibull as the baseline survival
function has the form [18]



Bayesian Sensitivity Analysis in Survival and Longitudinal Trials with Missing Data 245

S(t |Zi,XXXi) = [S(t |XXXi)]exp(βZi)

where S(t |XXXi) is the q-component mixture Weibull defined in Eq. (8). For this fully
parametric model, the likelihood function is known. This makes it possible to spec-
ify the model in a general Bayesian sampling tool, such as PROC MCMC or Stan,
to obtain posterior samples for the parameters of (α1, . . . , αq, τ1, . . . , τq, β, γγγ ) in
the model.

2.3 Inference Using the Bootstrap Method

In both the delta-adjusted and J2R imputation methods, we use a modified hazard
function in the imputation model to generate missing times to event for patients
who withdraw from the test drug group. These imputation models are different from
the analysis model for the complete dataset; the latter model fits the same hazard
function for both observed and imputed times to event in the treatment group.
Disagreement between the two models, in a sensitivity analysis, can result in an
uncongenial imputation condition [19]. For this reason, Rubin’s combination rule
could lead to an inconsistent estimate of the variance, often overestimating it. As is
typical in situations where analytical methods or asymptotic theory does not provide
adequate estimations of standard errors, the bootstrap method can be called on as a
practical, albeit computationally intensive, alternative. The same consideration can
be applied here, and a solution is to combine the bootstrap with MI to obtain an
unbiased variance estimate, as suggested by Lu et al. [7]. The following steps show
how to combine the bootstrap method with MI and perform Bayesian sensitivity
analysis:

Step 1 Draw B bootstrap samples from the original dataset with replacement,
stratified by treatment group.

Step 2 For each of the B bootstrap samples, fit a Bayesian q-component Weibull
PH model and drawM posterior samples for all the parameters in the model.

Step 3 Use each posterior sample from Step 2 to perform δ-adjusted imputation
or control-based imputation (J2R) on the bootstrap sample in Step 2 to get one
imputed dataset. Repeat this across theM posterior samples to createM imputed
datasets.

Step 4 Fit a Cox PH regression to each of the M imputed datasets to obtain M
log-HR estimates.

Step 5 Take the average of theM log-HR estimates as the MI estimate of log-HR
for the bootstrap sample.

Step 6 Repeat Steps 2–5 to complete the analysis for all B bootstrap samples,
and use the sample mean and standard deviation from the B log-HR estimates to
estimate the final log-HR and its standard error for statistical inference.

The p-value and 95% confidence interval for the log-HR can be obtained from
the final log-HR, and its standard error can be obtained from the bootstrap process
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using normal approximation. Simulation studies have shown that the bootstrap
standard error estimate is generally unbiased and represents the sampling variability
of the control-based and delta-adjusted imputation methods [7]. However, adding
the bootstrap steps on top of MI can significantly increase the computational run
time. From a practical perspective, B ≈ 200–500 and M ≈ 50 should be adequate
in many situations [7, 20]. When computationally feasible, we can consider using
larger values of B and M in order to further reduce random variability in analysis
of clinical trials.

3 Sensitivity Analysis in Longitudinal Trials

Missing data due to premature discontinuation in longitudinal trials share similari-
ties to non-administrative censoring in survival trials. In both situations, assump-
tions must be made about missing data mechanisms. Much of the research on
missing data analysis in clinical trials was motivated by longitudinal studies
with repeated measures. For a comprehensive review of missing data methods in
longitudinal studies and extensive literature citations, see Ibrahim and Molenberghs
[21]. The National Research Council report [4] also provides a comprehensive
overview, makes recommendations for the prevention of missing data through study
design, and suggests common methods of handling missing data in analyses.

Consider a clinical trial with continuous endpoints collected over time. Let Yijk
be an outcome (e.g., change from baseline score) for patient i in treatment group j
at time k, where i = 1, . . . , Nj , j = 0 (control) or 1 (test drug), and k = 1, . . . , T .
A common endpoint to assess the treatment effect is the mean difference at the last
time point T .

When there are no missing data, a standard mixed model for repeated measures
(MMRM) analysis is often used to evaluate the treatment difference between the test
drug and the control [22]. MMRM assumes that the vector of outcomes, bf Yij =
(Yij1, . . . , YijT )

′, follows a multivariate normal distribution with mean

E(Yijk) = μjk +XXXijβββk (9)

and covariance matrix Σ , usually taken to be unstructured. In this model, XXXij is a
vector of patient baseline covariates. For simplicity, in this section we assume that
XXXij are centralized, with the overall average X̄XX.. = 0. The treatment difference
is evaluated at the center of the covariates X̄XX.. and at the primary time point T . It
follows that the treatment difference is

θT = μ1T − μ0T (10)

Following the ICH E9 (R1) addendum, we focus our discussions on two
hypothetical estimands for a treatment effect that is not confounded by rescue
medications: (1) the estimand under the MAR assumption and (2) the estimand
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using the control-based imputation strategy. We illustrate how to conduct Bayesian
sensitivity analysis for these two estimands.

3.1 Models under the MAR

When there are missing data in repeated measures, MAR is the assumption most
frequently used to handle the missing values. Its wide usage underscores the impor-
tance of the assumption, primarily for the fact that under the MAR assumption,
parameters in the MMRM model are identifiable and can be estimated using
likelihood-based or MI-based methods [22]. This model evaluates a hypothetical
estimand of the “theoretical” treatment difference under the assumed treatment
condition; that is, the dropout patients have continued in the study with the
assigned therapy, assuming that the reason for dropout is not related to future
unobserved data. Analysis on such a model is not difficult in either the frequentist or
Bayesian paradigm because of widely available software packages. We can use, for
example, PROC MIXED for frequentist inference or PROC BGLIMM for Bayesian
estimation, both in SAS [23].

In clinical trials, there are often two types of missing data: intermittent missing
data, in which the missing data occur between some observed data; and monotone
missing data, in which once a missing observation occurs, all subsequent obser-
vations are missing. Intermittent missing data can be caused by missed visits or
data collection errors, reasons typically unrelated to treatment; therefore, the MAR
assumption is reasonable. In practice, intermittent missing data can be imputed
under MAR to create monotone missing data. More details can be found in the
chapter “A Competing Risk Model Based on a Two-Parameter Exponential Family
Distribution under Progressive Type II Censoring” in O’Kelly and Ratitch [24].
Monotone missing data that are most likely to be attributed to dropouts can be linked
to the treatment because of a lack of efficacy or safety issue. This type of missing
data presents a more complex scenario because of treatment discontinuation. Here
we focus on modeling monotone missing data under different potential assumptions
to assess the sensitivity of the analysis under MAR and a control-based imputation
assumption.

To model monotone missingness, patients can be classified into T patterns, where
T is the total number of repeated time points in the study. Patients in pattern k
(1 ≤ k < T ) are those who dropped out after time k and have outcomes that are
observed up to time k; patients in pattern T are those who completed the trial. For
patients in pattern k, the response vector YYY (k)ij can be partitioned into an observed

part YYY o(k)
ij (of length k) and a missing part YYYm(k)

ij (of length T − k). The mean and
covariance matrix can be partitioned correspondingly as

E(YYY
(k)
ij ) =

(
μμμ

o(k)
j

μμμ
m(k)
j

)

,ΣΣΣ =
(
ΣΣΣoo(k),ΣΣΣom(k)

ΣΣΣmo(k),ΣΣΣmm(k)

)
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In general, the treatment difference at the last time point can be expressed as a
weighted average:

θT =
T∑

k=1

π1kμ
(k)
1T −

T∑

k=1

π0kμ
(k)
0T (11)

where μ(k)jT = μ
m(k)
jT are means of unobserved outcomes in pattern k, k < T , and

μ
(T)
jT = μo(T)

jT , j = 0, 1.

However, the parameters {μo(k)
j l ,μm(k)

j l ; k, l = 1, . . . , T , j = 0, 1} are not
identifiable without certain assumptions. The conventional assumptions for a pat-
tern mixture model, such as CCMV (complete-case missing values) or NCMV
(neighboring-case missing values), are not interesting or practical for clinical trials
(chapter “Bayesian Analysis of a New Bivariate Wiener Degradation Process” [24]).

One of the most commonly used assumptions is MAR, which is an ACMV (all-
case missing values) approach. Under MAR, the missing data are ignorable, so the
parameters in the MMRM (9) can be estimated from the likelihood of the observed
data without the need to model the missing-data mechanism. An MMRM analysis
does not estimate the mean parameters {μo(k)

j l , μ
m(k)
j l ; k, l = 1, . . . , T , j = 0, 1} for

all patterns; instead it estimates the {μjl; l = 1, . . . , T , j = 0, 1} parameters in (9)
for the whole study population.

Alternatively, the parameters {μjl; l = 1, . . . , T , j = 0, 1} can be estimated
using MI, which provides insights into how the missing data are handled in
an MMRM analysis. For missing data in pattern k, imputation is based on the
conditional distribution of YYYm(k)

ij |YYY o(k)
ij , a multivariate normal with the following

mean and covariance:

E(YYY
m(k)
ij |YYY o

ij ) = μμμm
j +ΣΣΣmo(ΣΣΣoo)−1(YYY o

ij − μμμo
j ) (12)

V (YYY
m(k)
ij |YYY o(k)

ij ) = ΣΣΣmm −ΣΣΣmo(ΣΣΣoo)−1ΣΣΣom

where μμμ′
j = (μμμo′

j , μμμm′
j )

′, ΣΣΣmm, ΣΣΣmo, ΣΣΣoo, and ΣΣΣom are sub-vectors or sub-
matrices corresponding to the observed and missing data. Imputation uses the
population-level parameters μμμj , j = 0, 1, and ΣΣΣ that do not depend on the missing
data pattern. Under MAR, MI estimates are asymptotically unbiased ([11, 25]
supplemental document). The mean of treatment group j at the last time point can
be represented as

μjT =
T−1∑

k=1

πjkE
[
E(YYY

m(k)
ij |YYY o(k)

ij )
]

T
+ πjT μ(T)jT (13)

=
T−1∑

k=1

πjk

[
μμμm
j +ΣΣΣmo(ΣΣΣoo)−1(μμμ

o(k)
j − μμμo

j )
]

T
+ πjT μ(T)jT
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where [XXX]T is the T th element of the vector XXX. It follows that the treatment
difference under MAR is

θMAR
T = μ1T − μ0T . (14)

In the imputation model, MMRM under MAR assumes that post-dropout
responses are similar to those from patients who continue the treatment, conditioned
on their having identical covariates and observed outcomes before dropout. In other
words, MMRM analysis addresses a hypothetical estimand for outcomes in the
“what if” situation in which the dropout patients continue the assigned treatment.
However, this assumption poses challenges in practice for being overly optimistic:
Patients who drop out might not be able to continue the assigned treatment, because
of concerns about safety or lack of efficacy, for example. If we want to assess
treatment effects under a more realistic assumption that patients who drop out
cannot continue test treatment, we cannot use MAR analysis, because it leads to
a biased estimate that often favors test treatment. This challenge has spurred the
development of control-based imputation methods, which aim to incorporate more
realistic scenarios in handling missing data after discontinuation of treatment.

3.2 Control-Based Imputation Methods

In placebo-controlled trials, it is reasonable to assume that a patient who drops out
of the control group would have a similar response after dropout to that of patients
who stay in the trial because there is little biologic difference between taking and
not taking a placebo. Therefore, a MAR assumption might be justifiable for the
missing data because of dropouts in the control group. For the test drug group, when
a patient drops out and stops taking the assigned treatment, it is expected that the
unobserved responses after dropout are somewhat similar to those of patients in the
control group. In other words, the control group can provide a reference level for
the response trajectory of dropouts in the test drug group. As with survival analysis
to handle censoring, we can use J2R here to replace the means of responses after
dropout in the test drug group with the means of responses of the control group.
Specifically, the conditional means of Eq. (12) become

E(YYY
m(k)
i0 |YYY o(k)

i0 ) = μμμm
0 +ΣΣΣmo(ΣΣΣoo)−1(YYY o

i0 − μμμo
0) (15)

E(YYY
m(k)
i1 |YYY o(k)

i1 ) = μμμm
0 +ΣΣΣmo(ΣΣΣoo)−1(YYY o

i1 − μμμo
1)

where the means of missing responses in test drug group μμμm1 are replaced with μμμm0
in Eq. (12). Under J2R, the mean of the test drug group at the last time point is as
follows:
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μJ2R
1T =

T−1∑

k=1

π1kE
[
E(YYY

m(k)
i1 |YYY o(k)

i1 )
]

T
+ π1T μ

(T)
1T (16)

=
T−1∑

k=1

π1k

[
μμμm

0 +ΣΣΣmo(ΣΣΣoo)−1(μμμ
o(k)
1 − μμμo

1)
]

T
+ π1T μ

(T)
1T

=
T−1∑

k=1

π1k(μ0T − μ1T )

+
T−1∑

k=1

π1k

[
μμμm

1 +ΣΣΣmo(ΣΣΣoo)−1(μμμ
o(k)
1 − μμμo

1)
]

T
+ π1T μ

(T )
1T

where [XXX]T is the T th element of vector XXX. From Eq. (14), the last two terms in
Eq. (17) become μ1T . Therefore, we have

θ J2R
T =

T−1∑

k=1

π1k(μ0T − μ1T )+ μ1T − μ0T = π1T (μ1T − μ0T )

where π1T is the proportion of patients in the test drug group who completed the
trial. When π1T < 1, the J2R estimate shrinks the treatment effect more toward
0 than the MAR estimate does. The point and variance estimates can be obtained
using the delta-adjusted method [15]:

θ̂ J2R
T = π̂1T (μ̂1T − μ̂0T )

var(θ̂ J2R
T ) = var(θ̂MAR

T )π̂2
1k +

[
var(θ̂MAR

T )+ (θ̂MAR
T )2

]
π̂1T (1 − π̂1T )/n1

where θ̂MAR
T and var(θ̂MAR

T ) are the point estimate and its variance under from
MMRM under MAR; π̂1T is the proportion of completers and n1 is the sample size
in the test drug group.

J2R is a relatively easy control-based imputation method to implement; its
popularity is also boosted by its conservative nature, which shrinks the estimated
treatment effect toward 0. There are other types of control-based imputation
methods, including copy reference (CR) and copy incremental in reference (CIR). In
contrast to the J2R method, in which the means of responses for dropouts in the test
drug jump to the means of responses in the control group, the CR method assumes
that the means of responses for dropouts in the test drug group equal the means of
the control group both before and after dropout. In CIR, mean changes from the
time of dropout in the test drug group are assumed to be similar to the changes in
the control group. Formulas and statistical inference for the estimands of CR and
CIR can be found in Liu and Pang [15].
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3.3 Bayesian Sensitivity Analysis

From the conditional means for the imputation in Eqs. (12) and (16), the assumed
mean parameters after dropout are μm

1 (a subvector of μ1) under MAR or μm
0 (a

subvector of μ0) under J2R for the test drug group. This implies that the mean
profile of dropouts is the same as the mean profile of those who stay in the study
under MAR or that it jumps to the mean profile of the control group under J2R.
Both approaches use “deterministic" mean profiles in the sense that we do not
expect any variations in the trajectory means after dropout. That assumption can, and
should, be checked via a sensitivity analysis, by including uncertainty quantification
on the mean parameters after dropout. Here we consider a Bayesian approach to
incorporate uncertainty about the assumed means.

Because the primary focus of the analysis is the treatment difference at the last
time point, we assume that μm1T = μ1T + δ (under the MAR assumption) and
μm1T = μ0T + δ (under the J2R assumption). We further assume that δ, a sensitivity
parameter, follows an N(ξ, τ 2) prior with known hyperparameters of ξ and τ . As
we vary the values of these hyperparameter, we can obtain a quantified measure
of how sensitive the final analysis is to the changes in these values. The treatment
difference can be derived as follows:

• Under MAR, θMAR
T (δ) = μ1T −μ0T + (1 − π1T )ξ , where π1T is the proportion

of completers in the test drug group. It can be estimated by

θ̂MAR
T (δ) = θ̂MAR

T + (1 − π1T )ξ

and its variance var(θ̂MAR
T (δ)) = var(θ̂MAR

T )+ (1 − π̂1T )
2τ 2.

• Under J2R, θ J2R
T (δ) = π1T (μ1T − μ0T )+ (1 − π1T )ξ , it can be estimated by

θ̂ J2R
T (δ) = π̂1T θ̂

MAR
T + (1 − π̂1T )ξ

with variance var(θ̂ J2R
T (δ)) = var(θ̂ J2R

T )+ (1 − π̂1T )
2τ 2.

In the preceding formulas, θ̂MAR
T and var(θ̂MAR

T ) are the point estimate and variance
of the treatment difference from MMRM analysis, respectively; var(θ̂ J2R

T ) can also
be obtained using the estimates from the MMRM analysis as described in Sect. 3.2.
Therefore, for a given prior N(ξ, τ 2), the sensitivity analysis of θMAR

T and θ J2R
T

can be performed using the results from the MMRM analysis without using the MI
approach. We illustrate the analysis in the next section using examples.
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4 Examples

4.1 A Time-to-Event Trial Example

We conduct Bayesian sensitivity analysis on time-to-event data from a randomized
clinical trial conducted by AIDS Clinical Trials Group Study 175 (ACTG175) [26].
The study evaluated treatment with either a single nucleoside or two nucleosides in
adults infected with human immunodeficiency virus type 1 (HIV-1). These subjects
had CD4 cell counts that ranged from 200 to 500 per cubic millimeter. The study
randomized 2467 patients to one of four daily regimens: 600 mg of zidovudine;
600 mg of zidovudine plus 400 mg of didanosine; 600 mg of zidovudine plus 2.25
mg of zalcitabine; or 400 mg of didanosine. The primary endpoint was time to a
50% or greater decline in the CD4 cell count, development of AIDS, or death. J.
R. Stat. Society [27] made the data publicly available. For illustration purposes, we
use a subset of the data in this example. The subset contains antiretroviral-naive
patients who were assigned to either the monotherapy of zidovudine (ZDV) or the
monotherapy of didanosine (ddI) regimen. The analysis compares the hazard ratio
of the two treatment groups with a model including the treatment group only.

Data from 461 patients (223 in ZDV and 238 in ddI) are used in the analysis.
There are 59 and 44 events observed in the ZDV and ddI groups, respectively. The
log-HR estimate from a Cox PH regression is −0.456 (HR: 0.634) with a p-value
of 0.022, indicating that patients in the ddI group have a significantly lower hazard
than those in the ZDV group.

To evaluate the sensitivity of the analysis to the random censoring assumption
that underlies the Cox PH regression model, we conduct MI analysis using the delta-
adjusted and J2R methods. We assumed that censored values after month 33 are the
administrative type in nature (i.e., censoring is due to the completion of the study)
and are therefore treated as censoring at random. Censored values prior to month
33 are treated as non-administrative, or potentially informative, censoring. After
exploring both two- and three-component mixture Weibull models, we conclude
that a two-component Weibull model provides reasonable fit to the data and a three-
component model does not add much noticeable difference. Figure 1 shows the
estimated survival curves from a two-component mixture model (smooth lines),
which match the non-parametric survival estimate curves from the Cox PH model
(jagged lines) very well.

For the bootstrap steps outlined in Sect. 2.3, we set B to 1000 and M to 100 in
the sensitivity analysis. With these relatively large B and M values, the results are
fairly stable, because almost the same results were obtained by running the analysis
using different random seeds. The results are presented in Table 1.

When non-administrative censoring values are imputed under MAR (second row)
using M = 200 MI, both the point estimate of log-HR (−0.431) and its standard
error (0.200) are similar to those from the Cox PH model (−0.456 and 0.200,
respectively). MI produces a slightly larger p-value than that from the Cox PH
model; this is expected because MI carries additional variation from imputations.
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Fig. 1 Estimated survival curves from a two-component mixture model (smoothed line), overlaid
with non-parametric curves from a Cox PH model. The top fit is from the ddI group; the bottom fit
is from the ZDV group. Shaded regions are pointwise confidence intervals

Table 1 Sensitivity analysis
for ACTG175

Method log-HR S.E. p-value

Cox PH −0.456 0.200 0.022

MARa −0.431 0.200 0.030

J2Rb −0.384 0.180 0.032

δ-adjustmentb

δ = 1.6 −0.401 0.200 0.046

δ = 1.8 −0.393 0.200 0.050

δ = 2.0 −0.386 0.201 0.054
a Based on MI withM = 200
b Using B = 1000 bootstrap plus M =

100 MI approaches

When the non-administrative censoring values are imputed under J2R, both the
estimated log-HR and its standard error shrink toward 0. The p-value from the J2R
analysis is similar to that from the MI analysis under MAR. This is consistent with
what has been reported in the literature regarding J2R analysis for longitudinal trials
[15].

We also perform a tipping point analysis using the δ-adjustment method.
Increased δ values lead to larger p-values, nudging significant results to insignif-
icant. As shown in Table 1, the tipping point for this study is at δ = 1.8, which
produces a p-value of 0.050.

In conclusion, sensitivity analysis based on J2R and δ adjustment (tipping point
analysis) implies that finding from the Cox PH model is robust to the random
censoring assumption. The result from using control-based imputation (J2R) is
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significant. The estimated tipping point value of 1.8 supports the significance of
the findings: The hazards of patients who dropped out of the ddI group would need
to be more than 1.8 times higher than the hazards of patients who remain in the
study before we could eliminate statistical significance.

4.2 A Longitudinal Study Example

In this example, we use a publicly available antidepressant drug trial dataset to
illustrate how to conduct a Bayesian sensitivity analysis in a longitudinal study.
This dataset is constructed from a real clinical trial and is made available by the
DIA Working Group [28].

A total of 172 patients were randomized to an active drug and placebo. The
primary endpoint is the Hamilton Depression 17-item (HAMD-17) total scores,
which were measured at week 0 (baseline) and weeks 1, 2, 4, and 6 of post-
randomization. In this analysis, we exclude one patient who has intermittent missing
data. Overall, about 24% and 26% of patients in the active drug and placebo groups,
respectively, dropped out before week 6 (the primary analysis time point). Figure 2
shows the mean value changes from baseline by treatment group for patients who
dropped out in different weeks (missing data pattern). Solid blue lines represent

Fig. 2 Mean change from baseline of HAMD-17 by treatment and week of discontinuation
(numbers of patients are given in parentheses). Solid blue line indicates drug group, and dashed
red line indicates placebo group
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Table 2 Primary and Bayesian sensitivity analysis for DIA antidepressant dataset

Method θMAR 95% CIa θ J2R 95% CIa

Mixed model −2.90 (−5.12, −0.68) −2.20 (−3.91, −0.49)

Bayesian approach −2.90 (−5.12, −0.73) −2.20 (−3.92, −0.53)

Sensitivity analysis

τ ξ

0 −2.90 (−5.17, –0.63) −2.20 (−3.98, –0.42)

1 1 −2.66 (−4.93, –0.39) −1.96 (−3.74, –0.18)

2 −2.42 (−4.69, –0.15) −1.72 (−3.50, 0.06)

0 −2.90 (−5.32, –0.48) −2.20 (−4.16, –0.24)

2 1 −2.66 (−5.08, –0.24) −1.96 (−3.92, –0.00)

2 −2.42 (−4.84, –0.00) −1.72 (−3.68, 0.24)

0 −2.90 (−5.54, –0.26) −2.20 (−4.43, 0.03)

3 1 −2.66 (−5.30, –0.02) −1.96 (−4.19, 0.27)

2 −2.42 (−5.06, 0.22) −1.72 (−3.95, 0.51)
a Confidence interval or credible interval

patients in the drug group, and dashed red lines represent patients in the placebo
group. The numbers in parentheses (for weeks 1, 2, and 4) are the numbers of
patients from each group who stayed up to that week and then dropped out. The
two numbers, 63 and 65, in week 6, are the number of patients in the two groups
who completed the study. The trend of the graph indicates that patients who drop
out earlier experience a smaller decrease in HAMD-17 scores than those who stay,
suggesting that responses for early dropouts could be worse than those of the
completers.

The primary analysis is to compare treatment effects as measured by the change
from baseline in HAMD-17 total scores at week 6. Table 2 presents analysis results
for MAR and J2R using mixed model and Bayesian analysis. The table also includes
sensitivity analysis over the range of the hyperparameters (ξ and τ in the normal
prior on δ), with δ = 0, 1, 2 and τ = 1, 2, 3.

Table 2 (first two rows) shows that the likelihood-based analysis using the mixed
model (with PROC MIXED) and the Bayesian approach with a non-informative
prior (with PROC MCMC) lead to almost identical results, for both MAR and
J2R. This is expected, because Bayesian and frequentists’ inferences on linear
mixed models are known to produce similar estimates when non-informative prior
distributions are used.

Bayesian sensitivity analysis introduces an additional δ parameter to account for
variability of the assumed mean profiles of the dropouts. This uncertainty is reflected
in the prior distribution, and changes to the mean and variance of the normal
prior of δ can provide sensitivity to assess the treatment difference and its credible
interval. In the MAR analysis, the 95% credible intervals shift upwards (toward
less significant) as either the ξ or τ values increase. When ξ = 2 and τ = 3, the
upper credible interval limit becomes positive, implying insignificant results (in the
classical statistics sense). Because such CIs occur only when ξ or τ values are large,
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this implies that the results are fairly robust to the MAR assumption. Here a positive
large value of ξ shifts the response after dropout toward worsening, and a large
value of τ adds extra variation to the assumed response after dropout. Increasing
either ξ or τ to a certain value might tip the analysis to become insignificant. For
the J2R analysis, the results turn to insignificant territory more quickly than they do
for the MAR analysis. This implies that the J2R analysis is less robust to variations
of the assumed profile for the dropouts. Figure 3 shows the treatment difference and
corresponding 95% CIs for MAR and J2R for different fixed values of ξ and τ .

5 Summary and Discussions

In clinical trials, censoring or missing data occur at a high frequency for reasons
such as patients discontinue the study treatment or decide to leave the trials because
of lack of efficacy, tolerability issues, and so on. Many of these causes are related
to treatment and observed outcomes, indicating a potentially systematic difference
among the patients remaining in the study. Hence censoring and missing data should
be handled carefully and with explicitly stated assumptions. Many statistical models
make random censoring or MAR assumptions to account for missingness because
these assumptions often simplify the modeling difficulties and enable the estimation
based on likelihood- or partial-likelihood and testing on the treatment effects.
However, these assumptions generally are not verifiable from the observed trial data,
casting doubts on the validity of the estimates and the robustness of the analyses.
As we apply increasingly complex models and study designs, such reliance on
missingness assumptions invites a greater degree of scrutiny. This sentiment is
reflected in the recent regulatory guidance documents, which recommend that
sensitivity analyses should be conducted to assess the robustness of the analysis
results [1, 4].

In this chapter, we reviewed sensitivity analysis methods and strategies for
handling missing data for both survival and longitudinal trials. The topics that
we covered include control-based imputation and delta-adjusted methods, and we
illustrated how to conduct such analysis from a Bayesian perspective that offers
flexibility in accounting for variability and in examining sensitivities. It is important
to recognize the inappropriateness of applying Rubin’s combination rules naively
in MI in an uncongenial condition where the imputation model is different from
the analysis model. We recommend using a parametric mixture Weibull model
to estimate survival function; the simplicity of the model provides computational
efficiency without scarifying modeling accuracy. Delta-adjustment can be applied
to impute censored time to events, and bootstrap method can be used to estimate
variance for treatment comparisons in survival trials. For longitudinal trials that
have continuous endpoints, control-based imputation can be implemented using
a likelihood-based method. Extension to Bayesian sensitivity analysis focuses on
examining uncertainty of the assumed mean profile after dropout, which can provide
insight into the robustness of analysis under different missing data assumptions.



Fig. 3 Bayesian sensitivity analysis of the DIA antidepressant dataset using (a) MAR and
(b) J2R methods. A range of values are selected for the hyperparameters ξ (mean) and τ
(standard deviation). The 95% CIs (vertical bars) increase as either the τ (along the X axis) or ξ
(superimposed) value increases. The tipping point is to identify large values of the hyperparameters
that lead to crossing the zero value of the upper CI. Crossing of the zero threshold occurs faster in
J2R than in MAR, indicating the MAR approach is more robust than the J2R approach in modeling
variations of assumed profiles for the dropouts
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We have illustrated how to use Bayesian methods for sensitivity analysis in
survival trials with time to first event and longitudinal trials with continuous
outcomes. In the future, it will be worthwhile to investigate the Bayesian approaches
for sensitivity analysis in other settings, such as in studies with recurrent times to
events and longitudinal trials with categorical and binary outcomes.
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Bayesian Analysis for Clustered Data
under a Semi-Competing Risks
Framework

Seong W. Kim, Sehwa Hong, Yewon Han, and Jinheum Kim

Abstract In clinical trials or medical studies, we often encounter diverse survival
data such as recurrent event data, clustered data, and competing risks data. In
particular, relapse for any disease is quite common, which makes usage of appro-
priate models indispensable. Conventional models including the logistic regression
model are not appropriate in accounting for patients’ transitions who die before
experiencing a relapse within a time of interest. To circumvent this phenomenon we
utilize an illness-death model under a semi-competing risks framework. This model
characterizes some non-terminal events like relapse and a terminal event like death.
We develop Bayesian methods to analyze clustered data under the semi-competing
risks framework. Subsequently, R program codes are provided to analyze publically
available breast cancer data. Parameter estimations are performed based on Gibbs
sampling within Metropolis–Hastings algorithm.

1 Introduction

In classical time-to-event or survival analysis, subjects are at risk for one fatal event.
However, they do not fail from just one certain type of event in some applications,
but are under the risk of failing from two or more mutually exclusive types of events.
These events are often called competing risks. Thus, one of the events censors the
other and vice versa in a competing risks setup [1, 16, 17]. On the other hand, many
clinical trials have frequently shown that a terminal event like “death” censors a non-
terminal event like “disease diagnosis,” but not vice versa under the circumstances
that a subject could be simultaneously exposed to both terminal and non-terminal
events. We often call these types of data semi-competing risks data [2, 6, 11, 18].
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Further, the terminal event can be regarded as a competing event, and a dependency
is formulated between non-terminal and terminal events for model specifications
in the semi-competing risks framework. Fig. 1(a) shows a graphical display for the
structure regarding semi-competing risks data where primary interest lies in some
non-terminal events, the occurrence of which is subject to a terminal event.

We frequently encounter situations that survival data is comprised of several
clusters. For instance, failure times of subjects are observed in multi-center clinical
trials or group-randomized trials [15], forcing us to incorporate dependencies
for survival/failure times within each cluster. There has been a decent amount
of literature for analyzing semi-competing risks data under a clustered structure
framework [5, 12, 15, 18]. In this chapter we use a Bayesian approach to obtain
relevant parameter estimates under the semi-competing risks framework. The rest
of the chapter is organized as follows. In Sect. 2 we present several models that
are used in our analysis. Modeling strategies are briefly described under the semi-
competing risks framework. Section 3 contains data analysis using real breast cancer
data collected from multi-institutional clinical trials under the Bayesian framework.
Brief concluding remarks are provided in Sect. 4. Some R codes are provided in the
Appendix.

2 Models and Methodologies

We conduct univariate analysis in comparison of semi-competing risks analysis. The
univariate logistic analysis is proceeded with a binary response. That is,

logitP(Yij = 1|XXXij ) = XXXTijβ + Vj ,

where Yij = 0 or 1 implies whether the ith patient at the j th location is relapsed
or not, XXXij is a vector of covariates for the ith subject in the j th cluster (i =
1, 2, . . . , nj ; j = 1, 2, . . . , J ), and β is the vector of the regression coefficients
corresponding to XXXij . Here we assume that a random effect Vj , specific to cluster
j , follows a normal distribution with a mean of zero and variance σ 2. Several
possibilities for the working correlation structure of YYY j = (Y1j , Y2j , . . . , Ynj j )

′
have been suggested in the clustered logistic models [13].

When a patient is at risk of experiencing non-terminal event during a prede-
termined (given) time interval, it is quite common to utilize a standard survival
analysis. Let T1 denote the time to a non-terminal event, e.g. relapse, and let T2
denote the time to a terminal event, e.g. death. Then the hazard of relapse can be
expressed as

h∗(t) = lim
Δ→0

P(t ≤ T1 < t +Δ|T1 ≥ t)
Δ

, t > 0. (1)
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Fig. 1 Graphical representation of (a) semi-competing risks and (b) competing risks

We often utilize the hazard function for the relapse with a univariate Cox propor-
tional hazars (PH) model, expressed as

h∗(t |XXXij ) = h∗
0(t) exp{XXXTijβ∗ + Vj }. (2)

We may perform an analysis by incorporating death not as a censoring mech-
anism but as a component of the outcome, often called a composite endpoint.
See Gomez and Lagakos [7] for detailed descriptions. More precisely, let Tc =
min(T1, T2) denote the time from discharges to the first relapse or death. This
process can be proceeded with a conventional survival analysis for Tc by the
following model:

h(tc|XXXij ) = h0c(tc) exp{XXXTijβc + Vj }, (3)

where h0c is the baseline hazard function corresponding to Tc. Usual estimation
procedures for βc can be applied under the assumption that the remaining forms
of censoring are independent. As raised by Haneuse and Lee [10], there is a
shortcoming on this approach. That is, the interpretation of βc should be based on
a mixture of the effects of XXXij on both relapse and death. Therefore, the primary
interest could be drifted away from relapse.

We use the illness-death model to analyze semi-competing risks data. To
formalize the model under a semi-competing risks setup, we utilize the illness-
death model represented as three transition-specific hazard functions (as depicted
in Fig. 1),

h1(t1) = lim
Δ→0

P(t1 ≤ T1 < t1 +Δ|T1 ≥ t1, T2 ≥ t1)
Δ

, t1 > 0,

h2(t2) = lim
Δ→0

P(t2 ≤ T2 < t2 +Δ|T1 ≥ t2, T2 ≥ t2)
Δ

, t2 > 0,

h3(t2|t1) = lim
Δ→0

P(t2 ≤ T2 < t2 +Δ|T1 = t1, T2 ≥ t2)
Δ

, 0 < t1 < t2. (4)



264 S. W. Kim et al.

Subsequently, the Cox PH model [3, 4] under the semi-competing risks framework
can be expressed as

h1(t1|γij , XXXij ) = γijh01(t1) exp{XXXTijβ1 + Vj1}, t1 > 0,

h2(t2|γij , XXXij ) = γijh02(t2) exp{XXXTijβ2 + Vj2}, t2 > 0,

h3(t2|t1, γij , XXXij ) = γijh03(t2|t1) exp{XXXTijβ3 + Vj3}, 0 < t1 < t2, (5)

where γij (> 0) is a subject-specific shared frailty which follows Gamma(θ1, θ1).
Further, note that h01(t1), h02(t2), and h03(t2|t1) denote the baseline hazard
functions. More specifically, h01(t1) denotes the baseline hazard function for relapse
from discharge and β1 is the vector of log hazard ratios (HRs) that take into
account the effect of covariates on the hazard for relapse from discharge. On the
other hand, h02(t2) denotes the baseline hazard for death from discharge. Finally,
h03(t2) corresponds to the conditional baseline hazard function for death, given that
a relapse event occurred at time t1. However, we often face difficulties on choosing
or handling the baseline hazard h03(t2|t1) in (5) due to complex structure inherited
in the model itself. Thus, from a practical standpoint we assume that h03(t2|t1) is
independent of t1. Therefore, the third hazard function in (5) can be expressed as

h3(t2|t1, γij , XXXij ) = γijh03(t2) exp{XXXTijβ3 + Vj }, 0 < t1 < t2. (6)

3 Data and Bayesian Analysis

3.1 Breast Cancer Data

In our analysis we use a dataset from the multi-institutional clinical trials of breast
cancer, where a total of 5715 patients with breast cancer was collected by 36 cancer
centers in the USA and Europe. This dataset has been initially analyzed by Haibe-
Kains et al. [9], and Peng et al. [15] also analyzed this dataset using a semiparametric
regression model under the semi-competing risks framework. The dataset is readily
available from the supplementary materials of Haibe-Kains et al. [9]. Data from 6
different patient cohorts, containing observations (either censored or completed) of
the non-terminal and terminal event times, are gathered from databases collected by
six different institutions.

The survival outcomes of interest are the times for relapse-free survival (RFS)
defined as the duration from the operation time to the time until relapse is detected,
and the time for overall survival (OS) is defined as the duration from the operation
time to death. RFS and OS are considered under semi-competing risks, where RFS
is the non-terminal event and OS is the terminal event. We are interested in how
the clinical information of breast cancer patients affects both two events and the
correlation between these two event times. A total of 987 patients was used in our
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Table 1 Summary of breast cancer data

Distribution Outcome,%

Censored Dead Alive Dead

(alive without without with with

N % relapse) relapse relapse relapse

Total 987 100.00 56.84 9.93 12.06 21.18

Acronym of the dataset

CALa 103 10.44 0.61 6.69 2.43 0.71

NKIb 292 29.58 19.15 0.20 2.74 7.50

STNO2c 88 8.92 4.66 0.51 1.11 2.63

TRANSBIGd 196 19.86 10.84 0.00 3.34 5.67

UCSFe 120 12.16 7.29 2.23 0.91 1.72

UNC4f 188 19.05 14.29 0.30 1.52 2.94

Estrogen receptor status

0 296 29.99 14.49 3.75 2.43 9.32

1 691 70.01 42.35 6.18 9.63 11.85

Histological grade

1 156 15.81 11.85 1.22 1.22 1.52

2 379 38.40 20.97 4.26 6.18 6.99

3 452 45.80 24.01 4.46 4.66 12.66

Nodal status

0 569 57.65 34.65 3.95 6.89 12.16

1 418 42.35 22.19 5.98 5.17 9.02

Treatment

0 403 40.83 23.20 1.32 5.98 10.33

1 584 59.17 33.64 8.61 6.08 10.84
a CAL dataset of breast cancer patients from the University of California, San Francisco, and the

California Pacific Medical Center (United States)
b NKI dataset from National Cancer Institute (the Netherlands)
c STNO dataset from Stanford/Norway (United States and Norway)
d TRANSBIG dataset collected by the TransBIG consortium (Europe)
e UCSF dataset from University of California, San Francisco (United States)
f UNC dataset from University of North Carolina (United States)

analysis after deleting some missing observations. We have also changed the unit of
time from days to years.

Table 1 shows brief summary statistics for breast cancer data. As mentioned
above, there are six institutions including CAL (University of California, San
Francisco, and the California Pacific Medical Center). Three covariates are used
in the analysis. They are estrogen receptor status, 0 for negative and 1 for positive;
historical grade, 1 for low, 2 for intermediate, and 3 for high and nodal status. We
can see that 33% of patients having had operations showed relapse within about
25 years, and 21% of all patients died. The overall death rate turned out to be
31.1%, and 56.8% of patients have never experienced any events (relapse/death)
and censored.
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3.2 Bayesian Inference

As described in Sect. 2 we apply three approaches for modeling. They are the
logistic regression and survival analysis for univariate analysis, and semi-competing
risks analysis. We only present a Bayesian setup for survival analysis in detail.
A setup for semi-competing risks analysis is fairly similar, and thus it is omitted.
We utilize R package BayesSurv_HReg for the analysis. This would be applied to
cluster-correlated, univariate time-to-event data fitting to a Cox PH model with the
Weibull baseline hazard.

Let tij denote the time-to-event of interest for individuals i = 1, . . . , nj in
location j = 1, . . . , J , subject to right censoring at time cij . Let (yij , δij , xxxij )
denote independent observations, where yij = min(tij , cij ), δij = I (tij ≤ cij ),
and xxxij is a vector of covariates for individual i in location j . Similar to what is
presented in (5), the following Cox PH model is assumed:

h(tij |xij ) = h0(tij ) exp(xxxTijβ + Vj ), tij > 0,

where the Vj ’s are location-specific random effects and the baseline hazard h0 is
defined parametrically by a Weibull hazard, h0(t) = ακtα−1. For prior specifica-
tions we assume the following prior distributions below:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π(β) ∝ 1,
π(α) ∼ Gamma(a, b),
π(κ) ∼ Gamma(c, d),
Vj ∼ Normal(0, σ 2),

ξ = 1/σ 2 ∼ Gamma(aN , bN).

We note that a gamma random variable X has the form of f (x|a, b) ∝ xa−1e−bx .
So, the mean and variance ofX are given respectively byμX = a/b and σ 2

X = a/b2.
Thus, we have a = (μX/σX)

2 and b = μX/σ
2
X. In order to impose diffuse

information on the gamma prior distributions, we set the variance to be 1000.
Further, we set the mean value as the MLE of the corresponding parameters. Thus,
the resulting hyperparameter values are

a = 0.00085, b = 0.00092, c = 2.749 × 10−6, d = 5.243 × 10−5.

On the other hand, the cluster-specific random effects are assumed to be i.i.d.
N(0, σ 2). We set aN = 0.1 and bN = 0.01 accordingly. Finally, the number of
replication is 500,000 with a thin value of 1000, and we use 10% as the proportion
of burn-in samples.

Recall that we have three hazards functions given in (5) for the semi-competing
regression models. Since we have patient-specific frailty γij , it is assumed that
γij |θ ∼ Gamma(θ−1, θ−1). Under a hierarchical structure we assume that θ−1
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follows a gamma distribution. Moreover, let VVV j = (Vj1, Vj2, Vj3)
′ denote a vector

of cluster-specific random effects associated with the hazards functions in (5).
Since VVV j is assumed to follow a multivariate normal distribution with a mean
vector of zeros and variance–covariance matrix ΣV , we impose an Inverse-Wishart
distribution as a prior for ΣV , which is commonly used in Bayesian framework.
Specific choices for the hyperparameters in entire computations are provided in
Appendix.

3.3 Results

Table 2 provides the results for three different analysis as mentioned in Sect. 2.
We use age, estrogen receptor status, historical grade, nodal status, tumor size
(unit: cm), and treatment as independent variables for all three analyses. In Table 2
we provide the odds ratios (OR) and HR along with corresponding 95% HPD
intervals. First, the univariate logistic regression utilizes “geeglm” function to
conduct the analysis. There are several arguments to reflect covariance structures
such as independence, exchangeable, AR(1), and unstructured. We simply select one
structure in which the quasi-likelihood correlation information (QIC) is minimized
[14]. It turned out that the exchangeable case has the smallest QIC value of 1203.2
so that this case has been used. We can see that the OR’s for all variables yield
reasonable values. For instance, they increase as the historical grade and nodal status
increase, while estrogen status decreases. The estimates for the common variance
and correlation turned out to be 0.99 and 0.01, respectively.

We have three cases for survival analysis, and their corresponding response
variables are relapse, death, and composite endpoint. More specifically, the variables
of interest are the event for relapse-free survival (RFS) corresponding to relapse, and
an event for overall survival (OS) corresponding to death. Recall that description
for the composite endpoint has been explained in Sect. 2. Regarding the results for
survival analysis, we have similar outcomes as appeared in the logistic regression.
Both the relapse and death rates increase as the level of the historical grade
increases. See HR values of 2.19 and 2.30 for the “Relapse column,” and 1.66 and
2.04 for the “Death column” in Table 2. Similarly, we have an HR value of 1.24%,
which implies that both rates increase as the tumor size increases. There seems to
be little association between the age of patients and the relapse rate since the HPD
intervals contain a value of 1 for all three cases. However, the relapse rate is higher
for younger patients, while the death rate is higher for elderly patients. In view of
composite endpoint analysis, the HR value for the third historical grade is a little
smaller than those for both relapse and overall survival categories. We provide the
values of three different variances for survival analysis. Figure 2 shows the estimated
Weibull hazard functions for the three cases.

We used the function called BayesID_HReg to analyze the data under the semi-
competing risks framework, where the results are provided in the last three columns
of Table 2. Compared to the logistic regression and survival analysis, we have
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Fig. 2 The hazard functions of survival analysis

several different results under semi-competing risks setup. There is a significant
result for age effect with an HR value of 1.06. Also, we have a very significant
result for treatment effect. The HR value turned out to be 3.54 with an HPD interval
(1.55, 8.00). The three estimated hazards functions defined in (5) are plotted in
Fig. 3. The estimates for the three variances of ΣV are 0.011, 0.012, and 0.011,
respectively. Further, the estimates for the three covariances σ12, σ13, and σ23 ofΣV
are −4.96 × 10−4, 9.54 × 10−5, and −5.95 × 10−4, respectively.

The assessment of convergence of the Gibbs sampling is carried out based on the
methodology of Gelman and Rubin [8]. A total of 3 chains were run from different
starting values for the parameters to check convergence. Figure 4 shows trace plots
of the estimates of the regression coefficients for the “death without relapse” model
in (5). They correspond to three different chains (represented by light gray, gray,
and black lines) that were started from initial parameter values reflecting an over-
dispersed state. These trace plots show convergence reasonably well. The other trace
plots of “relapse” and “death after relapse” categories yielded similar patterns for
convergence.

Overall, with regard to relapse through the three approaches, there are significant
results in both survival and semi-competing risks analyses for estrogen receptor
and nodal status, while the logistic regression yields an insignificant result. This
implies that the logistic regression is somewhat inadequate for explaining these risk
factors. When we compare the death rate for survival and semi-competing risks
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Fig. 3 The hazard functions of semi-competing analysis

analyses, both age and nodal status reveal significant results for semi-competing
risks analysis, while they do not seem significant under the survival analysis.
Moreover, in contrast to survival analysis, the treatment has a considerable amount
of effect on death with semi-competing risks analysis. This is mainly due to the
situation that survival analysis contains both “death without relapse” and “death
after relapse” in one category, resulting in a lack of appropriate explanation on
potential high risks.

4 Concluding Remarks

In this chapter, we analyzed the breast cancer data collected by 36 cancer centers in
the USA and Europe with three models: logistics regression, survival analysis, and
semi-competing risks analysis. The maximum likelihood approach was applied for
the first one while the Bayesian approach was employed for the rest of approaches.
For implementing the logistic regression, we used the “geeglm” function reserved in
the R package. Furthermore, we used the “BayesSurv_HReg” and “BayesID_HReg”
functions reserved in the R package for the survival analysis and the semi-competing
risks analysis, respectively. The risk factors affecting the relapse show similar
trends for the first two models, while the effect sizes of the historical grade were
higher in the semi-competing risks model than other models. For death, the effects
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of covariates such as estrogen receptor status, historical status, nodal status, and
treatment were considerably different depending on whether the relapse is treated
as a censoring or not. Finally, we found that the effects of historical status, nodal
status, and treatment on the death were reduced after experiencing the relapse.
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Appendix

## 1. Logistic regression

# Get data from https://www.ncbi.nlm.nih.gov/pmc
/articles/PMC3283537/bin/supp_djr545_jnci-JNCI-11-0924-s02.
csv
breast <- read.csv("breast.csv")
breast <- breast[!is.na(breast$e.rfs) &

!is.na(breast$e.os),
c(1:3, 5:6, 9:13, 16:18)]

obs = which(breast$e.rfs == 0 &
breast$e.os == 1 &
breast$t.rfs < breast$t.os)

breast=breast[-obs,]
# Change the units of the date
breast$t.rfs <- breast$t.rfs / 365.25
breast$t.os <- breast$t.os / 365.25

# Age at diagnosis (years)
age <- breast$age
# Estrogen receptor status
er <- breast$er
# Histological grade
grade2 <- breast$grade2
grade3 <- breast$grade3
# Nodal status
node <- breast$node
# Tumor size (cm)
size <- breast$size
# Time for relapse-free survival
t.rfs <- breast$t.rfs
# Event for relapse-free survival
e.rfs <- breast$e.rfs
# Time for overall survival
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t.os <- breast$t.os
# Event for overall survival
e.os <- breast$e.os
# Treatment
treatment <- breast$treatment

# geepack packages are needed to execute geeglm
install.packages("geepack")
library(geepack)

# Change the data type
breast$dataset <- as.factor(breast$dataset)
id = breast$dataset
LR <-

formula(e.rfs ~ age + er + grade2 +
grade3 + node + size + treatment)

EX <-
geeglm(

LR, id = dataset, data = breast, family = "binomial",
corstr = "exchangeable"

)

install.packages("ztable", repos = "http://cran.us.r-
project.org")
library(ztable)
ztable(EX, size=4, digit=2, caption = "table. Exchangeable")
QIC(EX)

## 2. Survival Analysis

# 2-1. Relapse survival

install.packages("SemiCompRisks")
library(SemiCompRisks)

id = breast$dataset
survival_rfs <-

Formula(t.rfs + e.rfs ~ age + er + grade2
+ grade3 + node + size + treatment)

shape.rfs = rfs[[2]] # shape parameter
scale.rfs = rfs[[3]] # scale parameter

sigma = 1000
a.r <- shape.rfs ^ 2 / sigma
b.r <- shape.rfs / sigma
c.r <- scale.rfs ^ 2 / sigma
d.r <- scale.rfs / sigma
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WB.ab_rfs <- c(a.r, b.r)
WB.cd_rfs <- c(c.r, d.r)
Normal.ab_rfs <- c(0.1, 0.01)

hyperParams <-
list(

WB = list(WB.ab = WB.ab_rfs, WB.cd = WB.cd_rfs),
Normal = list(Normal.ab = Normal.ab_rfs)

)
numReps <- 500000
thin <- 1000
burninPerc <- 0.1

storeV <- TRUE
mhProp_V_var <- 100
mhProp_alpha_var <- 100

mcmc.WB <-
list(

run = list(
numReps = numReps,
thin = thin,
burninPerc = burninPerc

),
storage = list(storeV = storeV),
tuning = list(mhProp_alpha_var = mhProp_alpha_var,

mhProp_V_var =
mhProp_V_var)

) #MCMC Settings

myModel <- c("Weibull", "Normal")
startValues <-

initiate.startValues_HReg(survival_rfs, breast,
id, model = myModel, nChain = 5)

fit_rfs <-
BayesSurv_HReg(survival_rfs, breast, id, model = myModel,

hyperParams, startValues, mcmc.WB)
print(fit_rfs, digits = 2)
summary(fit_rfs)

# 2-2. Overall survival

survival_os <-
Formula(t.os + e.os ~ age + er + grade2 + grade3

+ node + size + treatment)

shape.os = os[[2]]
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scale.os = os[[3]]

a.o <- shape.os ^ 2 / sigma
b.o <- shape.os / sigma
c.o <- scale.os ^ 2 / sigma
d.o <- scale.os / sigma

WB.ab_os <- c(a, b)
WB.cd_os <- c(c, d)
Normal.ab_os <- c(0.1, 0.01)

hyperParams <- list(
WB = list(WB.ab = WB.ab_os, WB.cd = WB.cd_os),
Normal = list(Normal.ab = Normal.ab_os)

)

startValues <-
initiate.startValues_HReg(survival_os, breast,

model = myModel, id, nChain = 5)
fit_os <-

BayesSurv_HReg(survival_os, breast, id, model = myModel,
hyperParams, startValues, mcmc.WB)

print(fit_os, digits = 2)
summary(fit_os)

# 2-3. Composite survival

form_cep <-
Formula(t.c + e.c ~ age + er + grade2 + grade3

+ node + size + treatment)

shape.cps <- cps[[2]]
scale.cps <- cps[[3]]

a.c <- shape.cps ^ 2 / sigma
b.c <- shape.cps / sigma
c.c <- scale.cps ^ 2 / sigma
d.c <- scale.cps / sigma

WB.ab_cps <- c(a.c, b.c)
WB.cd_cps <- c(c.c, d.c)
Normal.ab_cps <- c(0.1, 0.01)

hyperParams <- list(
WB = list(WB.ab = WB.ab_cps, WB.cd = WB.cd_cps),
Normal = list(Normal.ab = Normal.ab_cps)

)

startValues <-
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initiate.startValues_HReg(form_cep, breast,
model = myModel, id, nChain = 5)

fit_cps <-
BayesSurv_HReg(form_cep, breast, id,

model = myModel, hyperParams,
startValues, mcmc.WB)

print(fit_cps, digits = 2)
summary(fit_cps)

## 3. Semi-Competing Risks Analysis

semi_comp <-
Formula(

t.rfs + e.rfs |
t.os + e.os ~ age + er + grade2 + grade3 + node
+ size + treatment |age + er + grade2 + grade3
+ node + size + treatment |age + er + grade2 +
grade3 + node + size + treatment

)

a <- shape.rfs ^ 2 / sigma
b <- shape.rfs / sigma
c <- scale.rfs ^ 2 / sigma
d <- scale.rfs / sigma

theta.ab <- c(0.1, 0.01)
WB.ab1 <- c(a, b)
WB.ab2 <- c(a, b)
WB.ab3 <- c(a, b)

WB.cd1 <- c(c, d)
WB.cd2 <- c(c, d)
WB.cd3 <- c(c, d)

Psi_v <- diag(1, 3)
rho_v <- 100

hyperParams <-
list(

theta = theta.ab,
WB = list(

WB.ab1 = WB.ab1, WB.ab2 = WB.ab2,
WB.ab3 = WB.ab3, WB.cd1 = WB.cd1,
WB.cd2 = WB.cd2, WB.cd3 = WB.cd3

),
MVN = list(Psi_v = Psi_v, rho_v = rho_v)

)



Bayesian Analysis for Clustered Data under a Semi-Competing Risks Framework 277

numReps <- 500000
thin <- 1000
burninPerc <- 0.1
nGam_save <- 0
storeV <- rep(TRUE, 3)

mhProp_theta_var <- 0.1
mhProp_Vg_var <- c(100, 100, 100)
mhProp_alphag_var <- c(100, 100, 100)

mcmc.WB <-
list(

run = list(
numReps = numReps, thin = thin,
burninPerc = burninPerc

),
storage = list(nGam_save = nGam_save, storeV = storeV),
tuning = list(

mhProp_theta_var = mhProp_theta_var,
mhProp_Vg_var = mhProp_Vg_var,
mhProp_alphag_var = mhProp_alphag_var

)
)

myModel_semi <- c("Markov", "Weibull", "MVN")

startValues_semi <-
initiate.startValues_HReg(semi_comp, breast,

myModel_semi, id, nChain =
5)

fit_semicomp <-
BayesID_HReg(semi_comp, breast, id,

model = myModel_semi, hyperParams,
startValues_semi, mcmc.WB)

print(fit_semicomp, digits = 2)
summary(fit_semicomp)
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Survival Analysis for the Inverse
Gaussian Distribution: Natural
Conjugate and Jeffrey’s Priors

Erin P. Eifert, Kalanka P. Jayalath, and Raj S. Chhikara

Abstract This study focuses on the use of a Bayesian method to analyze survival
data that follow an inverse Gaussian (IG) distribution. Both IG parameters are
assumed to be unknown, and the natural conjugate and Jeffrey’s priors are used
in the Bayesian procedure. As the closed-form posteriors of these parameters are
intractable due to censored data, a flexible Gibbs sampler is used to derive them
computationally. The Gibbs sampler is also used to estimate the average remaining
time of the censored units. A comprehensive simulation study is conducted to
assess the effects of natural conjugate hyperparameter settings at differing levels
of skewness, as measured by the shape parameter (φ = λ

μ
), as well as compare

behavior of the two priors. Results are compared for point and interval estimates,
coverage probabilities, and kernel density estimates. A practical example is included
to illustrate the procedure.

1 Introduction

The Inverse Gaussian distribution (IG) originated as a model for the first passage
time in Brownian motion, which models the random movement of particles in a
fluid and for which the position of a particle at any time is governed by the Gaussian
distribution. Schrödinger [16] first derived the distribution of the first passage time
of the particle to a defined point. The name inverse Gaussian was coined by Tweedie
[19] as a result of the inverse relationship between the cumulant generating functions
associated with modeling the distance of the particle and the time until the particle
has been in motion to the defined point.

The Gaussian process underlying Brownian motion is inherent to varied physical,
biological, and other progressive change in developmental environments. As such
the application of IG as a statistical model has been far and wide in fields
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ranging from business to science and engineering. Its use in modeling lifetime
and performing survival analysis, in particular, is found suitable and beneficial. For
references see Chhikara and Folks [6], Seshadri [17], among other related works in
literature.

1.1 Parameterizations

Tweedie [18] proposed different parameterizations for the IG distribution. The most
common parameterization, noted as IG(μ, λ), has probability density function,

f (x;μ, λ) =
√
λ

2π
x− 3

2 exp

(

−λ(x − μ)2
2μ2x

)

, (1)

where μ is the mean of the distribution and λ is a shape parameter. This form has
two primary advantages. First, a substantial body of work exists on the statistical
properties of its parameters μ and λ. As detailed in Chhikara and Folks [6], there
are many analogies of sampling distributions and statistical inferential methods for
these parameters and those of the normal distribution. Parameter μ represents the
mean of the population and thus has a more intuitive meaning and appeal for making
population inference.

An alternate parameterization that utilizes the reciprocal of the mean, θ = 1
μ

, is
denoted here as IG(θ, λ) and has probability density function,

f (x; θ, λ) =
√
λ

2π
x− 3

2 exp

(

−λx
2

(

θ − 1

x

)2
)

. (2)

While this parameterization offers somewhat less meaningful interpretation of
parameters for IG, the parameter θ has a physical meaning as it represents the mean
displacement in unit time for Brownian motion. Moreover, the use of the reciprocal
mean facilitates easier development of some Bayesian forms, such as the natural
conjugate prior.

A third parameterization, proposed by Tweedie [18], makes use of a third
parameter, φ, where φ = λ

μ
. While this form of the density function is not directly

used here, this shape parameter plays an important role in this study. It is a measure
of the skewness of the distribution, with a lower value of φ indicating a more skewed
distribution and a more symmetric distribution associated with a higher value. The
parameter φ is a unitless quantity and is invariant under a scale transformation of
random variable X. Though μ is the mean for IG, it acts as a scale parameter where
X/μ is distributed as IG(1, φ), a form of standard IG involving one parameter only.
In fact, this feature of IG implies that φ is intrinsically the shape parameter for a
family of two-parameter IG(μ, λ).
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1.2 Development of Bayesian Models

Many of the earliest Bayesian developments attributed to Palmer [15] are described
in Chhikara and Folks [6]. Because of many useful statistical properties available
for the IG(μ, λ) parameterization given in Eq. (1), Palmer focused to work with
that form. The natural conjugate prior for this form does not always exist when
both parameters were unknown. Rather than transforming the density to another
parameterization, Palmer [15] suggested, whenever possible, to limit the parameter
space of μ such that the prior existed. Along with a development of the conjugate
prior, Palmer also developed the joint posterior for Jeffrey’s prior. While the prior
was improper, it was shown that the posterior could be normalized to form a proper
density. While a closed form for the marginal distribution of μwas given, a tractable
form of the marginal posterior for λ could not be derived.

Padgett [14] later developed Bayesian estimators for the reliability function,
using both Jeffrey’s and the natural conjugate priors, assuming μ to be known. An
approximation for the marginal posterior density of λ was developed by Achcar et
al. [1] and the method for which was outlined by Kadane and Tierney [11].

Banerjee and Bhattacharyya [3] considered both a locally uniform prior and the
natural conjugate prior for the IG(θ, λ) parameterization and developed the posterior
joint distributions associated with both priors, as well as the marginal posterior
distributions of both parameters. Ahmad and Jaheen [2] later developed estimators
for both parameters and the reliability function, based on approximations by Lindley
[13] and Kadane and Tierney [11]. This instance is one of the few available in
the literature where the hyperparameters specified by Banerjee and Bhattacharyya
[3] are given values and utilized. As the goal of the work was to evaluate the
performance of the estimators, the hyperparameters were set to values that would
minimize their effect on the estimate.

Betrò and Rotondi [4] developed Bayesian forms using a third parameterization.
Palmer [4, 15] argued against the use of the IG(θ, λ) parameterization and preferred
the one specified by Tweedie [18] that uses parameters μ and φ = λ

μ
. Their

work developed a prior that, while not technically a conjugate prior, possessed the
mathematical tractability for the prior and posterior closed forms as well as posterior
moments for both parameters.

1.2.1 Bayesian Survival Analysis

Using the IG(μ, λ) parameterization and assuming a known μ, Ismail and Auda [9]
developed kernel density estimates for λ and the total remaining time of a Type-
II right censored process using a Gibbs sampler. Two estimation procedures were
used, the first being a Bayesian estimation using Jeffrey’s prior, and the second
considering a fiducial approach. Jayalath and Chhikara [10] extended the work of
Ismail and Auda [9] by assuming both parameters unknown and considering any
form of right censoring, including progressively right censored data. The Bayesian
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analysis was performed with a locally uniform prior and was again compared with
that obtained using the fiducial approach.

The present study also makes use of Gibbs sampler to estimate the two unknown
parameters, as well as the average remaining time under right censoring. The priors
currently used are the natural conjugate prior for the IG(θ, λ) parametrization
developed by Banerjee and Bhattacharyya [3], and the Jeffrey’s prior as given in
Palmer [15] and Ahmad and Jaheen [2]. The effectiveness of both priors is examined
for different levels of skewness and at different levels of censoring. Further, the
impact of hyperparameters on the posterior distributions for the natural conjugate
prior is also examined.

1.2.2 Natural Conjugate Prior

For the IG(θ, λ) parameterization, the natural conjugate prior is [3]

fc(θ, λ) = K1λ
n′
2 −1 exp

(

−λn
′α′

2

[

1 + β ′

α′

(

θ − 1

β ′

)2
])

, θ > 0, λ > 0,

(3)
where n′ > 1, α′ > 0, and β ′ > 0 are hyperparameters. The normalization constant
K1 is given by

K1 =
(
β ′
α′
) 1

2
(
n′α′

2

) n′
2

Sn′−1(ξ
′)B
(
n′−1

2 , 1
2

)
#
(
n′
2

) ,whereξ ′ =
(
n′ − 1

α′β ′

) 1
2

. (4)

Here, Sn′−1(·) is the Student’s t-distribution with n′ − 1 degrees of freedom, while
B(·, ·) and #(·) represent the Beta and Gamma distributions, respectively. The joint
posterior distribution is then given by

fc(θ, λ|x) = K2λ
n′′
2 −1 exp

(

−λn
′′α′

2

[

1 + β ′′

α′′

(

θ − 1

β ′′

)2
])

, θ > 0, λ > 0,

(5)
where

K2 =
(
β ′′
α′′
) 1

2
(
n′′α′′

2

) n′′
2
)

Sn′′−1(ξ
′′)B

(
n′′−1

2 , 1
2

)
#
(
n′′
2

) and ξ ′′ =
(
n′′ − 1

α′′β ′′

) 1
2

. (6)

The quantity u is defined as the reciprocal of the MLE for λ,

u = 1

n

n∑

i

1

xi
− 1

x
(7)
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and x =∑n
i=1 xi/n is the MLE of μ. The quantities n′′, α′′, and β ′′ are defined as

n′′ = n+ n′ (8)

α′′ = 1

n′′

[

nu+ n′α′ + nn′β ′

xn′′β ′′

(

1 − x

β ′

)2
]

(9)

β ′′ = (nx + n′β ′)/n′′. (10)

The marginal distributions of θ and λ are, respectively,

fc(θ |x) = K2#

(
n′′

2

)(
n′′α′′

2

)− n′′
2
[

1 + β ′′

α′′

(

θ − 1

β ′′

)2
]− n′′

2

, θ > 0 (11)

and

fc(λ|x) =

(
λn′′α′′

2

) n′′−1
2
!

[(
n′′λ
β ′′
) 1

2
]

λ#
(
n′′−1

2

)
Sn′−1(ξ

′′)
exp

(

−λn
′′α′′

2

)

, λ > 0. (12)

Some discussion on setting the values of the hyperparameters of n′, α′, and β ′
is warranted here. Note that n′ acts as a weighting parameter in relation to the
sample size. If its value is set to a minimal value, as it was in the work of Ahmad
and Jaheen [2], the effect of the hyperparameters will also be minimal. As n′
increases, however, the effect of the hyperparameters becomes more prominent.
The expression for β ′′ in Eq. (10) provides an example of the weighting effected
by n′. That is, the hyperparameter β ′ is weighted against the sample mean, x, in the
posterior distribution. Thus, a difference in setting for β ′ can shift the resulting
posterior curve, resulting in an inverse shift in the estimate for θ , which then
translates to a direct shift for μ. The hyperparameter α′ has a similar effect on
the marginal posterior density of λ, in that it is weighted against the reciprocal of
the MLE for λ. This effect, however, is not as straightforward as that of β ′ to its
distribution parameter θ , because the sample mean and analogous hyperparameter
β ′ also affect the resulting marginal distribution for λ.

In practice, the advantage of an informative prior such as the natural conjugate
prior is to enable, when possible, the incorporation of information about the data
and the system that produces it in the modeling process. It is in this way that the
natural conjugate prior associated with the IG(θ, λ) parameterization has a particular
advantage. Previous researchers, such as Palmer [15] and Betrò and Rotondi [4],
have argued against the use of the IG(θ, λ) parameterization and its associated
natural conjugate prior, for reasons pertaining to both physical meaning and the
breadth of knowledge of the original IG(μ, λ) form. Palmer [15], for example,
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preferred a form of the natural conjugate prior where the parameter space for μ
was limited and the prior existed. Both Palmer [15] and Betrò and Rotondi [4] used
four hyperparameters, but in neither case did these directly relate to some obvious
characteristic of the distribution. The hyperparameters used in this work have more
intuitive meanings, which, in the presence of true prior information, make setting
much easier and their effects more discernible.

1.2.3 Jeffrey’s Prior

The log likelihood of the IG(μ, λ) parameterization, given in Eq. (1), is expressed
as

l(μ, λ) = n

2
ln(λ)−n

2
ln(2π)− 3

2

n∑

i=1

ln(xi)− λ

2μ2

n∑

i=1

xi+nλ
μ

−λ
2

n∑

i=1

1

xi
. (13)

The Jeffrey’s prior, gj (μ, λ), defined as being proportional to [det I (μ, λ)] 1
2 , is

expressed as

gj (μ, λ) ∝ (μ3λ)−
1
2 , μ > 0, λ > 0. (14)

The joint posterior is given by

gj (μ, λ|x) ∝ λ
(n−1)

2

μ
3
2

exp

(

− λ

2μ2

n∑

i=1

xi + nλ

μ
− λ

2

n∑

i=1

1

xi

)

, μ > 0, λ > 0.

(15)
While the prior is improper, this posterior can be normalized to form a proper
density. The marginal posterior distribution of μ is given by

gj (μ|x) ∝ μ− 3
2

(
1

2μ2

n∑

i=1

xi − n

μ
+ 1

2

n∑

i=1

1

xi

)− n+1
2

, μ > 0. (16)

When both parameters are unknown, a closed form for the marginal posterior
distribution of λ is not derivable. Achcar et al. [1] derived an approximation using
methods outlined by [11]. The marginal density may then be approximated by

gj (λ|x) ∝
($∗) 1

2 λ
(n−1)

2 exp
(
−λ

2

∑n
i=1

1
xi

)

(μ̂∗) 3
2 exp

(
λ

2μ̂∗2

∑n
i=1 xi − nλ

μ̂∗
) , λ > 0, (17)

where μ̂∗ = −2nλ+√
4n2λ2+24λ

∑n
i=1 xi

6 , $∗ = − 1
∂2Lλ(μ)

∂μ2

∣
∣
∣
μ=μ̂∗ , and ∂2Lλ(μ)

∂μ2 =
1
n

(
3

2μ2 − 3λ
μ4

∑n
i=1 xi + 2nλ

μ3

)
.
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2 Gibbs Sampling Algorithm

Consider a random sample of size n such that r units are observed, leaving n − r
units to be right censored. Let y′ = (x+

r+1, x
+
r+2, . . . , x

+
n ) designate the censored

values and let ỹ′ = (xr+1, xr+2, . . . , xn) designate the true values of the censored
units. Then, the average remaining time is given by

T = 1

1′1
(ỹ′1 − y′1), (18)

where 1 is a (n − r) × 1 column vector of ones. The Gibbs sampling algorithm
previously employed by Jayalath and Chhikara [10] is adopted here and summarized
as follows:

1. Determine initial estimates for μ and λ, respectively. As noted in Jayalath and
Chhikara [10], given the absence of a closed-form solution for the maximum
likelihood estimator that includes both the observed and censored observations,
these estimates are generated iteratively [7]. Set μ̂MLE = μ(0)1 and λ̂MLE = λ(0)1 .

2. Set the hyperparameters for the natural conjugate prior.
3. Generate n − r random variates from a uniform distribution bounded by

the IG CDF value of the given censored value and 1, that is, ui+1 ∼
U [FIG(x+

i+1;μ(0)1 , λ
(0)
1 ), 1]. Replace the censored values with the inverse

CDF values associated with the generated random variates, that is, x(0)i+1 =
F−1
IG (ui+1;μ(0)1 , λ

(0)
1 ).

4. Given the new samples for censored observations, obtain the marginal posteriors
for both the prior distributions. Update the estimates of μ and λ (say, μ(1)1 and

λ
(1)
1 ) by sampling from these posterior distributions. For the natural conjugate

prior, a sample from the posterior distribution of θ will be obtained and its
reciprocal used.

5. Generate the chain by repeating steps 3 and 4 k times, each time by generating
random variates using the newly sampled parameters in step 4.

6. Calculate the average remaining time, T
(k)

1 , using the last set of simulated
observations: x(k)r+1, x

(k)
r+2, . . . , x

(k)
n obtained using updated parameters μ(k)1 and

λ
(k)
1 .

7. Repeat steps 3–6 above for a total of m repetitions, resulting m posteriors
estimates for μ and λ, as well as m average remaining time T estimates.

Three measures were employed to ensure sufficient convergence of the Gibbs
algorithm. Trace plots were first periodically checked to ensure that the sample
space was evenly and thoroughly explored. To ensure a sufficient chain length
and number of chains, the variance between and within each chain was compared
using the scale reduction factor developed by Brooks and Gelman [5] and Gelman
et al. [8]. For each set of data, the mean and two-tailed 90% confidence bounds
were calculated, with the mean representing the point estimate of the simulation
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sample. The confidence bounds provide both a measure of the frequency with
which the true value was captured in the interval as well as the relative precision
of the estimate, as measured by the coverage probability and the average size of the
interval, respectively.

Further, kernel density estimates were obtained from the parameter estimates
using 1000 random samples in each simulation. These plots provide a visual
description of the marginal posterior distributions and may also be compared with
the sampling distribution of the MLE values for each estimated parameter. If the
hyperparameters shift the posterior distribution of the natural conjugate prior, the
effect will be particularly evident in these plots.

3 Monte-Carlo Simulation

This section presents the results of Monte-Carlo simulation studies conducted to
investigate the use of two priors for the Bayesian survival analysis for IG in its
different parameter settings. Also, the effects of the conjugate hyperparameters are
examined and the relative performance of the two priors is evaluated. Following
the simulation strategy outlined in Sect. 3.1, the Gibbs sampler was applied on 1000
randomly generated right censored IG samples from each of the six parametric cases
considered. Inspection of trace plots, autocorrelation plots, and calculation of the
scale reduction factor indicate that convergence was reasonably achieved with k =
750 iterations and m = 1000 repetitions.

3.1 Selection of Hyperparameters

First, to study the effect of the conjugate hyperparameters, the six cases were divided
by two different levels of skewness as measured by φ = λ

μ
. For each level of

skewness, the variability was increased by a multiple of 2 for standard deviation
σ = √

μ3/λ. Each case was evaluated using 1000 randomly generated samples of
size n = 25 from the given IG(μ, λ) distribution. From each sample, 20% of the
observations were right censored. The weighting hyperparameter for the conjugate
prior, n′ = 5, which is 20% of the sample size for all simulations. This setting
was chosen so that the effects of α′ and β ′ could be assessed without completely
overshadowing the influence of the data.

The six cases are summarized as follows:

Case 1: φ = 0.2, α′ = 1, β ′ = 5

(1a) μ = 2.5, λ = 0.5
(1b) μ = 5, λ = 1 (Control)
(1c) μ = 10, λ = 2
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Fig. 1 Kernel Density Plots for μ, showing hyperparameter effects: Cases 1a, 1b, and 1c (top
panel) and 2a, 2b, and 2c (bottom panel)

Case 2: φ = 5, α′ = 0.2, β ′ = 1

(2a) μ = 0.5, λ = 2.5
(2b) μ = 1, λ = 5 (Control)
(2c) μ = 2, λ = 10

These cases are arranged such that cases 1b and 2b with β ′ = μ and α′ =
λ−1 serve as control cases, where the hyperparameters are set to match with the
parameters of the generated IG data. The other cases would then demonstrate how
the change in the hyperparameters would affect the posterior density compared to
that when a non-informative prior is the basis for the posterior density.

3.1.1 Simulation Results

The simulation results are shown in Table 1. The table provides the point estimates,
their standard errors, the coverage probabilities, and the average width of the 90%
confidence interval for each of the parameters μ, λ, and T . The true value for T was
calculated as the mean of the actual average remaining time over the 1000 samples
simulated.

Kernel density plots for the posteriors of μ are shown in Fig. 1. For the two
control cases depicted in Fig. 1b and e, the two Kernel densities are fairly similar,



288 E. P. Eifert et al.

Table 1 Simulation results for estimation of μ, λ, and T

Conjugate prior Jeffrey’s prior

True Mean Std. err. Coverage Interval length Mean Std. err. Coverage Interval length

Case 1a (φ = 0.2)

μ = 2.5 5.16 0.0681 0.968 13.29 3.80 0.0594 0.904 9.09

λ = 0.5 0.567 0.00495 0.907 0.493 0.609 0.00661 0.867 0.582

T = 6.13 15.57 0.379 0.992 42.61 11.19 0.288 0.889 34.64

Case 1b (φ = 0.2)

μ = 5 7.32 0.111 0.967 17.49 5.96 0.078 0.906 10.61

λ = 1 1.068 0.00860 0.935 0.937 1.210 0.0128 0.880 1.150

T = 12.81 21.64 0.569 0.934 61.23 16.67 0.367 0.868 46.97

Case 1c (φ = 0.2)

μ = 10 11.30 0.171 0.907 24.89 16.43 0.271 0.905 42.54

λ = 2 1.825 0.0123 0.902 1.601 2.419 0.0262 0.866 2.307

T = 25.39 32.13 0.828 0.876 91.80 49.30 1.30 0.895 155.79

Case 2a (φ = 5)

μ = 0.5 0.604 0.00134 0.448 0.227 0.504 0.00165 0.871 0.167

λ = 2.5 2.026 0.0147 0.761 1.815 3.014 0.0366 0.857 3.030

T = 0.197 0.267 0.00218 0.999 0.458 0.193 0.00194 0.948 0.296

Case 2b (φ = 5)

μ = 1 1.008 0.00265 0.926 0.307 1.009 0.00332 0.865 0.330

λ = 5 5.422 0.0476 0.912 5.038 6.040 0.0687 0.859 6.010

T = 0.395 0.398 0.00355 0.984 0.657 0.383 0.00379 0.946 0.586

Case 2c (φ = 5)

μ = 2 1.845 0.00483 0.815 0.646 2.304 0.00602 0.912 0.666

λ = 10 6.924 0.0409 0.545 6.208 12.36 0.153 0.861 12.409

T = 0.771 0.669 0.00632 0.951 1.14 0.769 0.00743 0.963 1.18

indicating no effect on the posterior distributions due to skewness. However, the
posteriors in each case differ from one another with respect to the control primarily
due to a shift resulting from the use of conjugate priors. Though, no obvious effect
on posterior density is seen due to an increase in standard deviation, the estimate of
μ is much higher than the true value when the standard deviation is small, as seen
in cases 1(a) and 2(a) of Table 1. As expected, the interval sizes are increased with
increase in the standard deviations of underlying IG sampling distributions. Overall,
the posterior density of λ is notably taller for the conjugate prior than Jeffrey’s prior,
as seen in Fig. 2. For T , its posteriors depicted in Fig. 3 for the two priors are pretty
much similar in their shape.

It is seen from Table 1 that the natural conjugate prior performs better in higher
skewness (φ = 0.2) scenarios than it does with more symmetric (φ = 5) scenarios.
The effect of β ′ on the marginal posterior of μ is most prominently seen in the
more symmetric cases where φ = 5; there is a noticeable shift in the kernel density
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Fig. 2 Kernel Density Plots for λ, observing hyperparameter effects: Cases 1a, 1b, and 1c (top
panel) and 2a, 2b, and 2c (bottom panel)

curves of the conjugate prior cases (Fig. 1d and f). This effect is also evident in
the coverage probabilities for the two non-control cases 2a and 2c since these are
noticeably below the 90% for which the intervals were obtained. For the more
skewed (φ = 0.2) cases, while a slight shift kernel density is visible in cases 1a
and 1c, this shift does not lead to less coverage of the true parameter within the
intervals.

The effect of the hyperparameters on the posterior distributions of λ is more
complex. As with the effect observed in the posterior of μ, the effect of the
hyperparameters on the posterior distribution of λ is more pronounced in the more
symmetric cases of 2a and 2c depicted in Fig. 2d and f. This may be due to the
way both α′ and β ′ affect the posterior marginal distribution of λ, as seen from the
complex expressions in Eqs. (9) and (12). If α′ is the only hyperparameter affecting
the marginal posterior, then the effect would be similar to that of how β ′ affects for
μ. However, as Eq. (9) shows, both α′ and β ′ affect the posterior for λ. When the
chosen value of β ′ is close to the sample mean, last term in Eq. (9) approaches zero.
Any deviation of β ′, whether positive or negative, from the true mean will increase
the value of α′′, resulting in a leftward shift of the density for λ given in Eq. (12).
Thus, when smaller α′ values should lead to a rightward shift, as in cases 1a and
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Fig. 3 Kernel Density Plots for T , observing hyperparameter effects: Cases 1a, 1b, and 1c (top
panel) and 2a, 2b, and 2c (bottom panel)

2a, the deviation of β ′ from the true mean has a competing effect on the posterior
density. This is seen in the density plots for cases 1a and 2a. In case 1a, no shift is
readily obvious. In case 2a, the shift is in the negative direction, indicating that the
effect of β ′ was much greater than that of α′. Conversely, when the value of α′ leads
to a leftward shift in the posterior density for λ, as in cases 1c and 2c, this leftward
shift is combined with the leftward shift that results from setting β ′ at values that
differ from the true value of μ. While this effect is evident in both cases 1c and 2c,
the combined shift is more pronounced in the more symmetric case.

The kernel density estimates for T given in Fig. 3 show that the posterior
distributions have a tendency to shift in the same direction as that of μ. However,
this shift is less pronounced for T than for μ. The coverage probabilities indicate
that the true average time is captured in the interval at a much higher percentage
than the true value of μ did in the symmetric cases. This is particularly evident in
Case 2a, where the true value of μ is within the bounds of the interval only 44.8%
of the time, while for the same case, the true average time is captured in all but
one sample. In general, the difference in coverage probabilities for the two priors
appears to follow the difference in the length of the interval where the wider interval
generally resulted in higher coverage.
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3.2 Comparison at Different Censoring Levels

To further evaluate the performance of the two priors, two additional levels of
censoring were considered, having censored observations approximately 10% (n−
r = 3) and 40% censoring (n− r = 10). This is done only for the control cases 1b
and 2b discussed earlier in the simulation study. Again, 1000 randomly generated IG
samples from each case are considered. The results for the simulations at different
censoring levels are presented in Table 2. The Kernel density plots are depicted in
Figs. 4, 5, and 6.

In general, it is seen in Table 2 and also the 20% censored results shown in
Table 1 (see cases 1b and 2b), neither prior performed consistently better across all
censoring levels. The estimates of the two parameters μ and λ from each prior do
not vary appreciably across censoring levels. This indicates some robustness of the
suggested procedures when the level of censoring varied for the cases considered.
The natural conjugate prior did produce higher coverage probabilities in every
scenario, but this can be attributed in some cases to wider intervals, which are seen
as heavier tails in the kernel density plots shown in Figs. 4 and 5. In the cases with a
higher level of skewness (φ = 0.2), Jeffrey’s prior produces estimates for μ that are
closer to the true value, smaller intervals, and coverage probabilities that are slightly
lower than the nominal 90% level. In the cases of more symmetric distributions
(φ = 5), the estimates for both priors across all censoring levels provide better
estimates for the true value. For the parameter λ, the natural conjugate prior
produces estimates closer to the true value, as well as higher coverage probabilities

Table 2 Simulation results for estimation of μ, λ, and T for different censoring levels

Conjugate prior Jeffrey’s prior

True Mean Std. err. Coverage Interval size Mean Std. err. Coverage Interval size

φ = 0.2, 10% censoring

μ = 5 7.05 0.105 0.949 15.63 5.997 0.0748 0.899 10.32

λ = 1 1.07 0.0082 0.933 0.929 1.20 0.0120 0.882 1.119

T = 15.47 25.77 0.694 0.938 74.70 20.54 0.455 0.895 61.83

φ = 0.2, 40% censoring

μ = 5 7.12 0.097 0.981 18.46 5.455 0.0765 0.883 10.76

λ = 1 1.09 0.0087 0.929 0.965 1.30 0.0151 0.845 1.289

T = 8.99 13.51 0.288 0.940 37.00 10.12 0.212 0.841 27.64

φ = 5, 10% censoring

μ = 1 1.0086 0.00252 0.924 0.294 1.0100 0.00311 0.878 0.318

λ = 5 5.43 0.0457 0.938 4.876 5.98 0.0646 0.874 5.740

T = 0.382 0.388 0.00332 0.995 0.774 0.373 0.00351 0.983 0.704

φ = 5, 40% censoring

μ = 1 1.0083 0.00294 0.924 0.347 1.0061 0.00387 0.854 0.374

λ = 5 5.55 0.0539 0.906 5.510 6.35 0.0834 0.843 6.651

T = 0.413 0.420 0.00410 0.946 0.558 0.406 0.00464 0.861 0.491
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Fig. 4 Kernel Density Plots for μ at different censoring levels. Top panel: φ = 0.2, at 10%
censoring (a), 20% censoring (b), and 40% censoring (c). Bottom panel: φ = 5, at 10% censoring
(d), 20% censoring (e), and 40% censoring (f)

and smaller intervals than Jeffrey’s prior. The performance of estimated T is very
comparable for both the priors and different censoring levels, certainly when φ = 5.

Figure 4a–c show density curves of μ for the highly skewed (φ = 0.2) cases.
Here, both posteriors provide similar curves but are shifted to the right from the
sampling distribution. For the density curves of the symmetric cases (Fig. 4d–f),
the posterior curves more closely match the shape of the sampling distribution.
In general, the density curves show that the level of censoring hardly affects the
posterior distributions. Figure 5 shows the density curves of the shape parameter λ.
While the natural conjugate prior results in lighter tails for all cases, the two priors
differ in how well each approximates the true sampling distributions. Jeffrey’s prior
appears to better approximate the true sampling distributions in skewed cases while
the conjugate prior appears to perform better in the more symmetric cases. However,
the higher level of censoring seems to affect the performance of the Jeffrey’s prior
negatively for λ estimates, as seen in the progressively shorter peaks for each level
of censoring in Fig. 5d–f.

Of the three estimates, T has the least consistent results in terms of coverage
probabilities, particularly in the more symmetric cases. In these cases, the kernel
density estimates in Fig. 6 show that both priors behave similarly but in lower
censoring cases (Fig. 6d and e) the curves have highly peaked densities than the true
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Fig. 5 Kernel Density Plots for λ at different censoring levels. Top panel: φ = 0.2, at 10%
censoring (a), 20% censoring (b), and 40% censoring (c). Bottom panel: φ = 5, at 10% censoring
(d), 20% censoring (e), and 40% censoring (f)

sampling distributions. However, the sampling distribution is comparatively much
more peaked than the two Bayesian posterior in the skewed (φ = 0.2) cases. In the
higher skewness cases, Jeffrey’s prior provides estimates that are closer to the true
value and contain shorter intervals. While the kernel density curves for these cases
are nearly identical for the high dense regions, the heavier tails can be noticed for
the conjugate prior, which would translate to a larger average interval width.

4 Illustrative Example

For illustration, the Gibbs sampler was employed with the deep-groove ball bearing
data originally reported by Lieblein and Zelen [12] and used by Ismail and Auda
[9] and Jayalath and Chhikara [10]. The data given below provides the number of
revolutions in millions prior to failure.

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12 55.56 67.80

68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40
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Fig. 6 Kernel Density Plots for T at different censoring levels. Top panel: φ = 0.2, at 10%
censoring (a), 20% censoring (b), and 40% censoring (c). Bottom panel: φ = 5, at 10% censoring
(d), 20% censoring (e), and 40% censoring (f)

The MLE values of μ and λ are 72.21 and 231.68, respectively, and thus
φ̂ = 3.208 and therefore the distribution is not heavily skewed. Due to a lack
of information about the process parameters, a bootstrap approach was used
to set the natural conjugate hyperparameters. Specifically, the natural conjugate
hyperparameters β ′ and α′ were obtained using the MLE’s of μ and λ, respectively,
from 10,000 bootstrap samples of the complete data. In order to verify the robustness
of the selection of hyperparameters, the sample mean and all three quartiles of
both the bootstrap distributions were used to set the hyperparameters. The resulting
values of α′ and β ′ are shown in Table 3. In all the cases, the weighting parameter
n′ was kept at 5.

The algorithm was applied at three different censoring levels, corresponding
roughly to 10%, 20%, and 35% censoring. The highest censoring level, which
censors n − r = 8 observations, corresponds to that used by Ismail and Auda [9]
and Jayalath and Chhikara [10] in previous applications of the Gibbs sampler to
these data. Comparisons could then be made regarding the estimate, the size of the
confidence interval, and consistency between different censoring levels.

The results for this data set are shown in Table 3. At all censoring levels, the
estimates for μ and T are remarkably consistent, regardless of the prior or choice
of hyperparameters used in estimation. And the same holds true for the intervals
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for these parameters. When the first quartile MLE values of the bootstrap sample
are used for the hyperparameters, the shift in λ is most noticeable. As noted in
Sect. 3.1 for cases 1c and 2c, when α′ and β ′ set to be smaller than the MLE or
true parameter value of the data, the effect on the estimate of λ is compounded,
resulting in the observed shift. When the third quartile values are used, the estimate
is much more in line with that obtained when Jeffrey’s prior or the conjugate prior
with hyperparameters set to the median and mean of the bootstrap sample for lower
censoring levels. As illustrated with cases 1a and 2a in Sect. 3.1, this is an expected
result, as overestimated hyperparameters help improve the precision of the posterior
estimates, leading to a more robust result.

The results at the higher censoring levels may be compared with the vague prior
results reported in [10]. For λ, the first quartile and median-based hyperparameters
give results similar to those reported in their work. While the μ estimates are
very similar, the T is slightly underestimated for all prior selections, including the
Jeffrey’s prior. This underestimation may be a result of Type-II rightly censored data
with a high level of censoring.

It is also interesting to note that while a shift is observed in some parameter
estimates due to the use of various prior settings, in comparison to the large
shifts evident in the earlier simulations, the estimates are still reasonable, and the
confidence intervals cover the MLE of the data in all cases. The relative scale of
the deep-groove data provides a possible explanation for the increased robustness of
this example, as the most extreme hyperparameter value represents a no more than
40% increase over the MLE of the associated parameter, compared to the halving or
doubling of the true value that occurred in the cases of Sect. 3.1.

5 Concluding Remarks

When the hyperparameters were set within the neighborhood of the true values, both
priors investigated provided similar estimates for the IG distribution parameters and
the average remaining lifetime. Neither prior appeared to outperform the other con-
sistently in terms of accuracy of the estimate and width of the associated confidence
interval, although Jeffrey’s prior tended to have slightly lower coverage probabilities
when compared to a natural conjugate prior with appropriate hyperparameters, but
this difference is often associated with shorter confidence intervals.

The setting of the hyperparameters for the natural conjugate prior deserves
particular attention. When the hyperparameters are set outside the neighborhood of
the true values, the resulting marginal posterior distributions for the parameters will
shift, and the estimation of those parameters will get affected. Thus, in the absence
of appropriate information, a non-informative prior such as Jeffrey’s would be
preferred in estimation of the inverse Gaussian parameters. That said, the estimate of
average remaining lifetime estimate did appear to be relatively robust to the effects
of inappropriately set hyperparameters, even when the estimates for the distribution
parameters were noticeably affected. Further, if the use of an informative prior
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is desired, but some uncertainty remains in the setting of hyperparameters, the
estimates produced by the natural conjugate prior are somewhat more stable when
the hyperparameters are slightly overestimated relative to the values of μ and
λ. That may be due to the fact that those overestimated hyperparameters tend
to offset the right censoring effect of right skewed IG data. In this work, the
role of n′, the weighting hyperparameter, was not investigated in depth, but the
mathematical derivation would indicate that as uncertainty around the values of α′
and β ′ increases, the value of n′ should be decreased, thereby limiting the influence
of poorly set hyperparameters on the posterior estimates.
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Bayesian Inferences for Panel Count Data
and Interval-Censored Data with
Nonparametric Modeling of the Baseline
Functions

Lu Wang, Lianming Wang, and Xiaoyan Lin

Abstract Both panel count data and interval-censored data arise commonly in real-
life studies when subjects are examined at periodic follow-ups. Interval-censored
data are studied when the exact times of the events are of interest and these exact
times are not directly observed but are only known to fall within some intervals
formed by the observation times. Panel count data are under investigation when
the exact times of the recurrent events are not of interest but the counts of the
recurrent events occurring within the time intervals are available and of interest.
A novel unified Bayesian approach is developed for analyzing panel count data
under the Gamma frailty Poisson process model and interval-censored data under
Cox’s proportional hazards model and the proportional odds model. The baseline
functions in these models share the same property of being nondecreasing positive
functions and are modeled nonparametrically by assigning a Gamma process prior.
Efficient Gibbs samplers are developed for the posterior computation under these
three models for the two types of data. The proposed methods are evaluated in a
simulation study and illustrated by three real-life data applications.

1 Introduction

Panel count data frequently occur in epidemiological and social-behavioral studies.
In such studies, subjects experience multiple recurrences of an event of interest such
as smoking or infections, but they are monitored or observed only at finite discrete
time points instead of continuously. A consequence of such designs is that the
exact occurrence times of the events are not observed and only the numbers of the
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occurrences of the events within the time windows are available, which leads to the
panel count data structure. The primary interests for panel count data are to estimate
the mean function of the counting process and/or the covariate effects on the counts.
Sun and Kalbfleisch [28] first studied nonparametric estimation of the mean function
of panel count data and adopted the isotonic regression technique to estimate
the mean function. Wellner and Zhang [34] investigated two likelihood methods
based on a non-homogeneous Poisson process without considering covariates and
showed that their methods are robust to the misspecification of the Poisson process
[34, 35]. To account for overdispersion and the within-subject correlation, Zhang
and Jamshidian [41] and Yao et al. [38] introduced gamma frailty Poisson process
model and developed EM algorithms for their estimation. It is observed that the
estimation methods based on the gamma frailty Poisson models are also quite robust
to misspecification of the gamma frailty distribution [14, 37].

In many situations, the event of interest is not recurrent for a subject, such as
death or HIV infection. In such cases, the resulting counting process becomes a 0-
1 process and the panel count data reduce to interval-censored survival data [34].
Among all of the survival models, Cox’s proportional hazards (PH) model [4] is
unquestionably the most popular and widely used semiparametric regression model
in the literature. It specifies that covariates have a multiplicative effect on the hazard
function of the failure time of interest. Many approaches have been developed
for the regression analysis of interval-censored data under the PH model. For
example, Finkelstein [7] proposed a Newton–Raphson algorithm to fit the model,
Satten [23] proposed a marginal likelihood approach, Goggins et al. [9] developed
a Monte Carlo EM algorithm, Satten et al. [23] proposed estimating equations,
Pan [22] proposed a generalized gradient projection method, Pan [21] developed a
multiple imputation method, Cai and Betensky [3] developed a penalized likelihood
approach, Zhang et al. [40] proposed a sieve maximum likelihood method, Sinha
et al. [27] proposed a Bayesian method by modeling the baseline hazard function
with a piecewise constant function, and Wang et al. [29] developed a computational
efficient EM algorithm. Yi et al. [39] considered time-dependent covariates in the
model and proposed a MCEM algorithm for the estimation. Zhong [42] proposed
a maximum approximate Bernstein likelihood estimation of the baseline density
function and the regression coefficients.

Besides Cox’s model, the semiparametric proportional odds (PO) model is
another popular survival model, which specifies that covariates have a multiplicative
effect on the unspecified baseline odds function. Unlike the PH model, the ratio
of the hazard functions converges to unity as time increases under the PO model.
This model is closely related to logistic regression model for binary data with time
varying intercept. Each regression parameter in the PO model can be interpreted as
the log odds ratio of the failure event due to 1 unit increase in the corresponding
covariate when keeping all other covariates at fixed values. In contrast to the
flourishing work on the PH model, the research on the PO model is quite limited,
especially for interval-censored data. For general interval-censored data using the
PO model, Huang and Rossini [15] proposed a sieve maximum likelihood estimator,
Shen [24] used monotone splines with variable orders and knots for approximating
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the baseline odds function and proposed a sieve maximum likelihood estimator,
Wang and Lin [31] proposed a Bayesian approach based on the work of Lin and
Wang [18] utilizing the relationship between the PO model and the probit model,
and Wang et al. [32] further proposed two new simpler Bayesian computational
algorithms based on the relationships between the standard logistic distribution and
the normal distributions.

In all these three semiparametric models, the baseline functions, more specifi-
cally the baseline mean function in the Gamma frailty Poisson model for panel count
data and the baseline cumulative hazards function in the PH model and the baseline
odds function in the PO model for interval-censored data, are all unspecified
nondecreasing functions taking zero at the initial time point 0. In many existing
approaches, they are approximated by linear combinations of spline functions
[12, 13, 38] or by a step-function with fixed jump sizes at every observation time
points [43]. Different from previous researches, we treat these baseline functions as
random from a Bayesian perspective and assign them a Gamma process prior. The
Gamma process can be thought of as arising from a compound Poisson process of
gamma-distributed increments in which the Poisson rate tends to infinity while the
sizes of the increments tend to zero in proportion [17]. Based on the Gamma process
prior for the baseline functions, we develop new Bayesian estimation methods for
analyzing both panel count data and interval-censored survival data.

Using a Gamma process to model nondecreasing functions is not uncommon in
the literature. For example, Kalbfleisch [16] used the Gamma process to model the
cumulative hazard function under the PH model for right-censored data. Ferguson
and Phadia [6] used the processes neutral to the right as prior distributions for
the unknown cumulative distribution function (CDF) F and provided theoretic
justification of their estimation of F for right-censored data. However, as mentioned
in Wellner and Zhang [36], most of those methods are limited to special cases where
all subjects have the same number of observation times. For example, Groeneboom
and Wellner [10] and Huang [14] developed methods for cases when each subject is
only observed once or twice. The proposed method solves this problem by creating
a fine partition of the time space and defining a Gamma process on these intervals.
The proposed approach allows individuals to have different numbers of observation
times and even different observation schemes. It can also accommodate missing
observation points, which are common in real-life studies.

The organization of the rest of this chapter is as follows. Section 2 provides
detailed description of the data, models, and the observed likelihoods. Section 3
proposes to model the baseline functions under the considered models nonparamet-
rically through a Gamma process. Section 4 introduces a novel data augmentation
that is essential for the posterior computation under the three considered models.
Section 5 presents the proposed Gibbs samplers for both panel count data and
interval-censored data, respectively. Section 6 evaluates the performance of pro-
posed Bayesian approach for analyzing the two types of data through a simulation
study. Section 7 provides illustrations of the proposed methods via three real-life
data applications. Section 8 gives some concluding remarks and discussions.
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2 Models and the Observed Likelihoods

2.1 Gamma Frailty Poisson Process for Panel Count Data

Suppose that there are n independent subjects in a study. For subject i, the
counting process of the recurrent event of interest Ni(t) is only observed at
discrete examination time points {tij , j = 1, ..., Ji}, where Ji is the total number
of examination time points for subject i. Conditioning on an unobserved frailty
φi , we assume a non-homogeneous Poisson process for Ni(t) with the following
conditional mean function:

E(Ni(t)|φi) = μ0(t) exp(x′
iβββ)φi,

where μ0(t) is an unspecified nondecreasing baseline mean function with μ0(0) =
0, xi is a p × 1 vector of time-independent covariates, and φi ∼ Ga(v, v) is a
frailty with mean 1 and variance v−1. The purpose of introducing the unobserved
frailty φi is to account for the within-subject correlation between the counts for
subject i. Even though the above proposed model is conditional on the frailty,
μ0 here can be still interpreted as the marginal baseline mean function since
E{Ni(t)} = E[E{Ni(t)|φi}] = E{μ0(t)φi} = μ0(t) when x = 0. For the same
reason, exp(βj ) also has a marginal interpretation and can be interpreted as the
multiplicative effect on the mean function due to 1 unit increase in the j th covariate
while keeping all other covariates at fixed values.

Define Zij = Ni(tij )−Ni(tij−1), the count of recurrent events within time inter-
val (tij−1, tij ], the properties of the non-homogeneous Poisson process guarantee
that Zij ’s are conditionally independent Poisson random variables given φi and

Zij |φi ∼ Poisson

[

{μ0(tij )− μ0(tij−1)} exp(x′
iβββ)φi

]

for j = 1, · · · , Ji and i = 1, · · · , n. Under the assumption that the observational
process and the recurrent event process are conditionally independent given the
time-independent covariates, the observed data likelihood takes the form

Lobs =
n∏

i=1

∫

g(φi |v)
Ji∏

j=1

P(Zij |μij )dφi,

where g(�|v) is the probability density function (PDF) of Ga(v, v) and P(�|μij ) is
the probability mass function of the Poisson distribution with mean equal to μij =
{μ0(tij )−μ0(tij−1)} exp(x′

iβββ)φi . A similar stochastic model was proposed by Sinha
[26], which assumes that all the subjects are examined at the same set of time points.
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2.2 The PH and PO Models for General Interval-Censored
Data

We consider the PH and PO models for general interval-censored data in this
subsection. Let Ti denote the survival time of interest and xi a p × 1 vector of
potential covariates for subject i, for i = 1, · · · , n. Due to the study design of
examining subjects periodically, Ti is not exactly observed but is known to fall
within some observed interval (Li, Ri], with 0 ≤ Li < Ri ≤ ∞ for i = 1, · · · , n.
This general interval (Li, Ri] yields a left-censored observation when 0 = Li <

Ri < ∞, a strictly interval-censored observation when 0 < Li < Ri < ∞, and
a right-censored observation when 0 < Li < Ri = ∞. Under the assumption
that the failure time and the observation process are independent conditional on the
covariates, the observed data likelihood takes the form

Lobs =
n∏

i=1

{1 − S(Ri |xi )}δi1{S(Li |xi )− S(Ri |xi )}δi2S(Li |xi )δi3, (1)

where S(�|x) is the survival function of the failure time given covariate x, and δi1,
δi2, and δi3 are binary censoring indicators for left-censored, interval-censored, and
right-censored observations, respectively, with the constraint δi1 + δi2 + δi3 = 1 for
each i.

The survival function S(t |x) takes the form S(t |x) = exp{−μ0(t) exp(x′βββ)}
under the PH model and S(t |x) = {1 + μ0(t) exp(x′βββ)}−1 under the PO model,
where μ0(·) can be interpreted as the baseline cumulative hazard function and the
baseline odds function under the PH and PO models, respectively.

It is known that the survival function in the PO model can be rewritten as the
marginal survival function of the frailty PH model with the frailty following a
Ga(1, 1) distribution, i.e.,

S(t |x) = {1 + μ0(t) exp(x′βββ)}−1 =
∫ ∞

0
exp{−μ0(t) exp(x′βββ)φ} exp(−φ)dφ.

This fact suggests that we can rewrite the observed likelihood (1) under the PH and
PO models as the following unified form:

Lobs =
n∏

i=1

∫ ∞

0
[1 − S(Ri |xi , φi)]δi1[S(Li |xi , φi)

−S(Ri |xi , φi)]δi2S(Li |xi , φi)δi3g(φi)dφi,

where S(t |x, φ) = exp{−μ0(t) exp(x′βββ)φ} is the conditional survival function of
the failure time given covariate x and frailty φ, φi’s are i.i.d. frailties with a density
function g, and g takes degenerated Point mass distribution at 1 for the PH model
and Ga(1, 1) for the PO model.
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3 Modeling the Baseline Functions Nonparametrically

The baseline mean function in the Poisson process model, the baseline cumulative
hazard function in the PH model, and the baseline odds function in the PO model are
all unspecified nondecreasing functions taking 0 at time 0. We model these unknown
functions μ0 nonparametrically here by assigning them a Gamma process prior.

Gamma process is a Lévy process with gamma-distributed increments. It has
been extensively studied and applied in various studies since its introduction by
Doksum [5] as one of the processes neutral to the right. For example, Nozer [20]
used a Gamma process to model the hazard rate process in a dynamic environment;
Lawless and Crowder [17] extended the Gamma process model by incorporating
random effect to explore its use as a degradation model; Wang [33] introduced
a nonparametric estimation of the shape function in the Gamma process for
degradation data; Sinha et al. [25] assumes the wear process is a Gamma process
and developed a Bayesian analysis of a stochastic wear process model to fit survival
data that might have a large number of ties, etc.

Specifically, we assign a Gamma process prior GP(H0, η) for μ0, where H0
is the expected function of μ0 and η quantifies the uncertainty level of this
guess. The larger value of η, the closer μ0 is to H0. This prior implies the
following two facts. First, for any t > 0, μ0(t) is a random variable and has
a Gamma distribution Ga(ηH0(t), η). Second, the increments in non-overlapping
time intervals are independent of each other. That is,μ0(t+s)−μ0(t) is independent
of μ0(t) and

μ0(t + s)− μ0(t) ∼ Ga(η{H0(t + s)−H0(t)}, η)

for any t > 0 and s > 0.
Now consider a fine partition of the time space based on the observed times,

i.e., all tij ’s for panel count data and all Li’s and Ri’s for interval-censored data.
Basically, they are intervals over the time line upon which any observed interval
can be written as a union of some of these partitioned intervals. For panel count
data, let kij denote the position of tij in the set of {s0, · · · , sM } for each i and j .
It is easy to see that tij = skij and the interval (tij−1, tij ] can be written as a finite

union of some partition intervals (tij−1, tij ] = ⋃kij−kij−1−1
l=0 (skij−1+l , skij−1+l+1].

For interval-censored data, define ki1 and ki2 to be the positions of Li and Ri in the
set of {s0, · · · , sM} for each i. Then the observed interval (Li, Ri] can be rewritten
as
⋃ki2−ki1−1
l=0 (ski1+l , ski2+l+1] for each i.

Define λm = μ0(sm)−μ0(sm−1) as the increment of the baseline mean function
for panel count data and the baseline cumulative hazard or odds function for interval-
censored data on interval (sm−1, sm], form = 1, · · · ,M . It is known that λm follows
a Gamma distribution Ga({H0(sm) − H0(sm−1}η, η). Since the Gamma process is
robust to the choice of H0, we can simply choose H0(t) = at . Note that the linear
function of H0 does not imply that μ0 is necessarily a linear function. For panel
count data, the increment of baseline mean function for subject i in the j th time
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interval is μ0(tij ) − μ0(tij−1) = ∑kij−kij−1
l=1 λkij−1+l . So the conditional likelihood

after incorporating the Gamma process for μ0 for panel count data can be written as

LPC1 ∝
( n∏

i=1

[ Ji∏

j=1

( kij−kij−1∑

l=1

λkij−1+l
)Zij

ex′
iβββZij φ

Zij
i

× exp
{

−
( kij−kij−1∑

l=1

λkij−1+l
)

ex′
iβββφi

}]

× g(φi |v)
) M∏

m=1

g{λm|a(sm − sm−1)η, η}.

(2)

For interval-censored data, subject i only has one observed interval (Li, Ri], and the
increment of the cumulative baseline hazard or the baseline odds function on this
observed interval is μ0(Ri)−μ0(Li) =∑ki2

m=ki1+1 λm. Thus, the conditional likeli-
hood functions given the frailties φi’s under PH and PO models after incorporating
the Gamma process prior for μ0 take the form

LIC1 ∝
( n∏

i=1

[
1 − exp

{
−
( ki2∑

m=1

λm

)
exp(x′

iβββ)φi

}]δi1

×
[

exp
{

−
( ki1∑

m=1

λm

)
exp(x′

iβββ)φi

}]δi3

×
[

exp
{

−
( ki1∑

m=1

λm

)
exp(x′

iβββ)φi

}

− exp
{

−
( ki2∑

m=1

λm

)
exp(x′

iβββ)φi

}]δi2
exp(−φi)

)

×
M∏

m=1

g{λm|a(sm − sm−1)η, η}.

(3)

4 Data Augmentation

4.1 For Panel Count Data

The summation of λm’s inside the product of the Lpc1 in (2) brings much trouble in
Bayesian posterior computation. To solve this problem, we transform the summation
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into a multiplication by introducing multinomial latent variables. This idea is based
on the fact that for (u1, . . . , uK) ∼ Multinomial{1, ( 1

K
, . . . , 1

K
)}, integrating the

product term
∏K
l=1[λl]ul with respect to (u1, . . . , uK) leads to

∑K
l=1 λl . Specifically,

for i = 1, . . . , n and j = 1, . . . , Ji , we introduce uij = (uij1, · · · , uijnij ) ∼
Multinomial{1, ( 1

nij
, . . . , 1

nij
)}, where nij = kij − kij−1. The augmented likelihood

function has the following simple multiplication form:

LPCC ∝
( n∏

i=1

[ Ji∏

j=1

( kij−kij−1∏

l=1

λ
uijl
kij−1+l

)Zij
ex′
iβββzij φ

Zij
i

× exp
{

−
( kij−kij−1∑

l=1

λkij−1+l
)
ex′
iβββφi

}]

× g(φi |v)
) M∏

m=1

g{λm|a(sm − sm−1)η, η}.

(4)

This augmented data likelihood is the product of Poisson probability mass functions
multiplied by the gamma densities of the frailties and the increments of the baseline
mean function μ0. We will treat this augmented likelihood as the complete data
likelihood, based on which a Gibbs sampler is to be developed. Note that integrating
out the latent variables uijk’s in the augmented likelihood in (4) leads to the
conditional likelihood in (2).

4.2 For Interval-Censored Data

The data augmentation below is based on the connection between the PH and a
latent non-homogeneous Poisson process as in Lin et al. [19] and Wang et al. [29].
Let Ni(t) denote a latent non-homogeneous Poisson process with the following
conditional cumulative intensity function: μ0(t) exp(x′

iβββ)φi for subject i given
frailty φi , and let Ti denote the time of the first jump of the counting process, i.e.,
Ti = inf{t : Ni(t) > 0} for each i. Then it is clear that the conditional probability
that the first jump has not happened yet at time t is

P(Ti > t |φi) = P(Ni(t) = 0 |φi) = exp{−μ0(t) exp(x′
iβββ)φi},

which suggests that Ti has a frailty PH model with frailty φi for each i.
Define oi1 = RiI (δi1 = 1)+LiI (δi2 = 1) and oi2 = RiI (δi2 = 1)+LiI (δi3 =

1) for each i. Let Zi = N(oi1) and Wi = N(oi2) − N(oi1) depending on the
availability of oi1 and oi2 from the observed interval (Li, Ri] for each i. Based on
the properties of Poisson process, one has

Zi ∼ Poisson(μ0(oi1) exp(x′
iβββ)φi)
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and

Wi ∼ Poisson({μ0(oi2)− μ0(oi1)} exp(x′
iβββ)φi).

Conditional on the latent variables Zi’s, Wi’s, and φi’s, the augmented data
likelihood is

LIC2 =
( n∏

i=1

P(Zi |μ0(oi1) exp(x′
iβββ)φi)[P(Wi |{μ0(oi2)

−μ0(oi1)} exp(x′
iβββ)φi)]δi2+δi3

× exp(−φi)
) M∏

m=1

g{λm|a(sm − sm−1)η, η}

∝
( n∏

i=1

{( ki1∑

m=1

λm

)
ex′
iβββφi

}Zi
exp

{
−
( ki1∑

l=1

λm

)
ex′
iβββφi

}

×
{( ki2∑

m=ki1+1

λm

)
ex′
iβββφi

}Wi(δi2+δi3)

× exp
{

−
( ki2∑

m=ki1+1

λm

)
ex′
iβββφi(δi2 + δi3)

}
exp(−φi)

)

×
M∏

m=1

g{λm|a(sm − sm−1)η, η}

subject to the following constraints Zi > 0 when δi1 = 1, Zi = 0 and Wi > 0
when δi2 = 1, and Zi = Wi = 0 when δi3 = 1. Here P(·|γ ) denote the Poisson
probability mass function with the mean parameter γ . Integrating out the Zi’s and
Wi’s in LIC2 leads to the conditional likelihood LIC1 in (3).

Taking advantage of the fact that the sum of independent Poisson random
variables is still a Poisson random variable, we decompose both Zi and Wi as a
sum of ki1 and ki2 − ki1 conditionally independent Poisson random variables given
φi as follows:

Zim ∼ Poisson(λm exp(x′
iβββ)φi), for m = 1, . . . , ki1,

and

Wim ∼ Poisson(λm exp(x′
iβββ)φi) for m = ki1 + 1, . . . , ki2,
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where
∑ki1
m=1 Zim = Zi and

∑ki2
m=ki1+1Wim = Wi for each i. Conditional on the

latent variables Zim’s, Wim’s, and φi’s, the augmented data likelihood takes the
following form:

LICC ∝
( n∏

i=1

[ ki1∏

m=1

{λm exp(x′
iβ)φi}Zim exp{−λm exp(x′

iβββ)φi}
]

exp(−φi)

×
[ ki2∏

m=ki1+1

{λm exp(x′
iβββ)φi}Wimδi2 exp{−λm exp(x′

iβββ)φi(δi2 + δi3)}
])

×
M∏

m=1

g{λm|a(sm − sm−1)η, η} (5)

Integrating out the Zim’s and Wim’s out of LICC leads to the augmented likelihood
LIC2. The augmented likelihood LICC has a simple form of the product of Poisson
probability mass functions and Gamma densities and will be used as the complete
data likelihood for our Bayesian computation for dealing with interval-censored
data.

5 Bayesian Computation

5.1 Prior Specification

For the purpose of providing flexible modeling while also allowing for efficient
posterior computation, we assign conventional vague priors for all of the parameters
in the Bayesian approach. Specifically, we assign a multivariate normal N (μ0,Σ0)

prior for the regression coefficients βββ, with mean vector zero and large independent
variances. Practically, the very noninformative prior can balance both the skeptical
and the enthusiastic views about the effects of covariates [26]. We adopt independent
Ga(1, 1) priors for v, a, and η, respectively.

5.2 Gibbs Sampler for Panel Count Data

Based on the complete data likelihood LPCC in (4) and the prior specifications, we
develop the following Gibbs sampler for analyzing panel count data.

1. Sample λm, for m = 1, . . . ,M , from
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λm ∼ Ga
(

a(sm − sm−1)η +
∑

Am

uijlZij , η +
n∑

i=1

exp(x′
iβββ)φi

)

,

where Am = {(i, j, l) : kij−1 + l = m, j = 1, · · · , Ji, i = 1, . . . , n}.
2. For i = 1, . . . , n, sample φi from

Ga
( Ji∑

j=1

Zij + v, {
Ji∑

j=1

kij−kij−1∑

l=1

λkij−1+l exp(x′
iβββ)} + v

)

.

3. Sample (Uij1, . . . , Uijnij ) ∼ Multinomial(1, (pij1, . . . , pijnij )) for i = 1, . . . , n
and j = 1, . . . , Ji , where

pijl = λkij−1+l
∑kij−kij−1
l=1 λkij−1+l

l = 1, . . . , nij .

4. Sample βββ by using adaptive rejection metropolis sampling (ARMS) from the
following full conditional distribution:

L(βββ|�) ∝ exp

[ n∑

i=1

{
x′
iβββ

Ji∑

j=1

Zij − (
Ji∑

j=1

kij−kij−1∑

l=1

λkij−1+l )φi exp(x′
iβββ)
}

−(βββ − μμμ0)
′Σ−1

0 (βββ − μμμ0)/2

]

.

5. Sample v by using ARMS from the following full conditional distribution:

L(v|�) ∝ exp(−v){ v
v

Γ (v)
}n(

n∏

i=1

φi)
v−1 exp(−v

n∑

i=1

φi).

6. Sample a by using ARMS from the following full conditional distribution:

L(a|�) ∝ ηaηsM exp(−a)
∏M
m=1 Γ {a(sm − sm−1)η}

M∏

m=1

λ
a(sm−sm−1)η−1
m .

7. Sample η by using ARMS from the following full conditional distribution:

L(η|�) ∝ ηaηsM exp(−η∑M
m=1 λm) exp(−η)

∏M
m=1 Γ {a(sm − sm−1)η}

M∏

m=1

λ
a(sm−sm−1)η−1
m .
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5.3 Gibbs Sampler for Interval-Censored Data

Based on the complete data likelihood LICC in (5) and the prior specifications, we
develop the following Gibbs sampler for analyzing interval-censored data under the
PO model. First set all Z′

i s, Z
′
ims,W

′
i s, and W ′

ims to be 0 for the initialization and
then iterate the following steps.

1. Sample λm for m = 1, . . . ,M , from Ga(bm, cm) with

bm =
n∑

i

{ZimI (m ≤ ki1)+Wimδi1I (ki1 < m ≤ ki2)} + a(sm − sm−1)η,

and

cm =
n∑

i

exp(x′
iβββ)φi{I (m ≤ ki1)+ I (ki1 < m ≤ ki2)(δi2 + δi3)} + η.

2. For i = 1, . . . , n, sample φi from

Ga
(

Zi +Wiδi2 + 1,
{

1 + (
ki1∑

m=1

λm)δi1 + (
ki2∑

m=1

λm)(δi2 + δi3)
}

exp(x′
iβββ)

)

.

3. Sample βββ by using ARMS

L(βββ|�) ∝ exp

( n∑

i=1

[
{Zi +Wi(δi2 + δi3)}x′

iβββ

−
{( ki1∑

m=1

λm

)
+
( ki2∑

m=ki1+1

λm

)
(δi2 + δi3)

}
φi exp(x′

iβββ)
])

.

4. Sample Z′
i s, Z

′
ims,W

′
i s, andW ′

ims in the following manner.

(a) If δi1 = 1 (i.e. left-censored) sample Zi from a truncated Poisson distri-
bution; and conditional on Zi , sample (Zi1, . . . , Ziki1) from a multinomial
distribution. Specifically,

Zi ∼ Poisson
{
(

ki1∑

l=1

λl) exp(x′
iβββ)φi

}
I (Zi > 0),

(Zi1, . . . , Ziki1)|Zi ∼ Multinomial
{
Zi, (pi1, . . . , piki1)

}
,
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pil = λl
∑ki1
h=1 λh

, l = 1, . . . , ki1.

(b) If δi2 = 1 (i.e. interval-censored) sample:

Wi ∼ Poisson
{
(

ki2∑

l=ki1+1

λl) exp(x′
iβββ)φi

}
I (Wi > 0),

Wi1, . . . ,Wi(ki2−ki1)|Wi ∼ Multinomial
{
Wi, (qi1, . . . , qi(ki2−ki1))

}
,

qil = λl
∑ki2
h=ki1+1 λh

, l = ki1 + 1, . . . , ki2.

5. Sample a by using ARMS

L(a|�) ∝ ηaηsM exp(−a)
∏M
m=1 Γ {a(sm − sm−1)η}

M∏

m=1

λ
a(sm−sm−1)η−1
m .

6. Sample η by using ARMS

L(η|�) ∝ ηaηsM exp(−η) exp(−η∑M
m=1 λm)

∏M
m=1 Γ {a(sm − sm−1)η}

M∏

m=1

λ
a(sm−sm−1)η−1
m .

As for the PH model, step 2 is skipped and the rest of this Gibbs sampler is kept the
same with all φis being fixed as 1.

6 Simulation Study

A simulation study is conducted to evaluate the proposed approach. To generate
simulated data for each subject, we set 50 evenly allocated examination time
points on time interval (0, 10] to imitate the pre-decided research time span and
observation scheme. Then we randomly remove 20% of examination time points
for each of the subject. This design is very common in real-life studies, where
participants often miss or skip some scheduled examinations. At each of these
examination times, the count of recurrent events is observed for panel count data and
the status of the failure time event is determined. In this way, subjects have different
numbers of examination times and various gap times for adjacent examination times.
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6.1 Panel Count Data

To generate panel count data, the counting process associated with subject i is
generated from the following model:

Zij |φi = Ni(tij )−Ni(tij−1) ∼ Poisson

[

{μ0(tij )−μ0(tij−1)} exp(xi1β1+xi2β2)φi

]

,

where xi1 is continuous variable that follows a normal distribution N(0, 0.52) and
xi2 is a binary variable that follows the Bernoulli distribution Bernoulli(0.5). The
true regression coefficients are β1 = {−1, 1}, β2 = {−1, 1}. The distribution of φi
is Ga(1, 1). Two different baseline mean functions are considered: μ0(t) = log(1 +
t) + t1.5 and μ0(t) = t + sin(t). For each setting, 100 data sets with sample size
n = 100 are generated.

We applied the proposed Gibbs sampler in Sect. 5 for each simulated data set. For
comparison, we implemented the Bayesian approach developed by Wang and Lin
[30] under the same model, which approximates the baseline mean function with the
monotone spline. We set the degree to be 3 and used 18 equally spaced interior knots
over the time domain in our simulation for the monotone spline specification of this
comparison method. Table 1 presents the frequentist operating characteristics of the

Table 1 Estimation of regression parameters for panel count data based on 100 simulated data sets
from the proposed method based on the Gamma process (GP) and the comparison Bayesian method
using monotone spline (SP) [30]. Empirical bias (BIAS), the average of the estimated standard errors
(ESD) and standard deviation (ESD) of β, and the empirical coverage probabilities associated with
95% confidence probability (CP95)

μ0(t) = log(1 + t)+ t1.5 μ0(t) = t + sin(t)

Method (β1,β2) BIAS ESD SSD CP95 BIAS ESD SSD CP95

GP (−1,−1) 0.0217 0.2072 0.1715 0.98 0.0014 0.2228 0.2526 0.94

0.0066 0.2128 0.2186 0.97 0.0145 0.2343 0.2567 0.94

SP 0.0427 0.2056 0.1697 0.97 −0.0185 0.2246 0.2501 0.95

0.0030 0.2133 0.2218 0.93 0.0142 0.2341 0.2568 0.94

GP (−1,1) 0.0250 0.2092 0.2119 0.93 −0.0366 0.2249 0.2403 0.93

−0.0216 0.2126 0.2283 0.95 −0.0099 0.2323 0.2567 0.96

SP 0.0370 0.2111 0.2167 0.92 −0.0607 0.2277 0.2394 0.93

−0.0168 0.2135 0.2301 0.92 −0.0089 0.2347 0.2545 0.96

GP (1,−1) −0.0038 0.1934 0.2096 0.93 0.0074 0.2101 0.2329 0.91

0.0017 0.2032 0.2076 0.92 −0.0164 0.2194 0.2196 0.95

SP 0.0039 0.1933 0.2026 0.93 −0.0148 0.2106 0.2250 0.90

0.0111 0.1994 0.2116 0.94 −0.0158 0.2211 0.2272 0.95

GP (1,1) 0.0160 0.1997 0.2009 0.95 0.0248 0.2112 0.2284 0.93

0.0355 0.2091 0.2005 0.94 −0.0016 0.2150 0.1986 0.97

SP 0.0170 0.1947 0.2013 0.91 −0.0034 0.2103 0.2245 0.94

0.0295 0.2107 0.2075 0.91 −0.0050 0.2175 0.1981 0.97
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estimates of the regression parameters. Bias is calculated as the difference between
the average of the posterior means and the true parameter value; ESE is the average
of the estimated posterior standard errors; SSD is the sample standard deviation of
the posterior means; and CP95 is the empirical coverage probability based on the
95% credible intervals. Overall, the proposed method and the comparison method
have similar performance. The results indicate that the proposed method performs
well in terms of the estimation of the regression parameters because the estimates
show very little bias, ESD and SSD are close to each other, and the coverage
probabilities are all close to the nominal value 0.95.

6.2 Interval-Censored Data under the PH and PO Models

To generate interval-censored data under the PH and PO models, we generate the
failure time T from

F(t |x) = 1 − exp{−Λ0(t) exp(x1β1 + x2β2)}

under the PH model and from

F(t |x) = Λ0(t) exp(x1β1 + x2β2)

1 +Λ0(t) exp(x1β1 + x2β2)
,

under the PO model, where Λ0(t) = log(1 + t) + t1.5, x1 is a N(0, 1) random
variable, and x2 is a Bernoulli(0.5) random variable. The true values of β1 and
β2 are taken to be {0, 1} and Λ0(t) is the baseline cumulative hazards function and
baseline odds function for the PH and PO models, respectively.

The observed interval (Li, Ri] was then determined by the two adjacent exam-
ination times (including 0 and ∞) that bracket the generated failure time ti . For
each parameter configuration, 100 independent data sets were generated each with
sample size n = 200. On average, the simulated data contain 11.1% to 23.1% of
left-censored observations, 31.0% to 38.9% of interval-censored observations, and
19.9% to 36.1% of right-censored observations across all the setups.

We applied the proposed approach in Sect. 5.3 for the simulated data under the
right PH and PO models, and the estimation results are summarized in Table 2.
As seen in Table 2, the proposed method performs well overall in estimating the
regression parameters with small biases, close values of ESD and SSD, and coverage
probability close to 95% in general. Noticing that the results for interval-censored
data are not as good as the results for panel count data as seen in Table 1. It is not
surprising because that the Poisson counts are observed for all the subjects in panel
count data but are latent for all the subjects when dealing with interval-censored
data. In short, panel count data have much more information than corresponding
interval-censored data.
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Table 2 Estimation of regression parameters for interval-censored data based on 100 simulated
data sets from the proposed Bayesian method. BIAS: the empirical bias; ESD: the average
of the estimated standard errors; SSD: standard deviation of β; CP95: the empirical coverage
probabilities associated with 95% confidence probability

β̂1 β̂2

Model (β1,β2) BIAS ESD SSD CP95 BIAS ESD SSD CP95

PH (1,1) −0.0539 0.0905 0.0961 0.88 −0.0495 0.1490 0.1416 0.97

PO −0.0827 0.1301 0.1226 0.92 −0.0517 0.2221 0.2380 0.94

PH (1,0) −0.0438 0.0897 0.0731 0.95 −0.0066 0.1398 0.1259 0.97

PO −0.0547 0.1309 0.1151 0.96 −0.0368 0.2172 0.2297 0.95

PH (0,1) 0.0041 0.0764 0.0751 0.94 −0.0096 0.1492 0.1685 0.92

PO 0.0053 0.1287 0.1226 0.96 −0.0205 0.2268 0.2287 0.93

PH (0,0) 0.0017 0.0737 0.0696 0.97 0.0015 0.1359 0.1495 0.93

PO 0.0006 0.1251 0.1267 0.95 −0.0162 0.2182 0.2298 0.93

7 Real-life Data Application

7.1 The Patent Study

The proposed method is first illustrated by an application to an industrial economics
data set from the R package “pglm.” The data set is extracted from a larger data set
that is collected by Hall et al. [11] to study the relationship between patenting and
research and development activity at the firm level by the US manufacturing sector
during the 1970s. This data set contains 346 firms in the USA, among which 147 are
in the scientific sector. From 1970 to 1979, the number of patents that were granted
each year is recorded for every firm. The data set also includes the firm’s book value
of capital in 1972 and its annual research and development (R & D) spending for
each firm.

The counts of the granted patents during the study period have formed the
structure of panel count data. Our primary objective in this analysis is to assess
the relationship between the mean number of patents and the characteristics of the
firm. Three covariates are considered, with x1 being a binary variable indicating if
the firm is in the scientific sector, x2 being the standardized book value of capital of
the firm in 1972, and x3 the standardized average annual research and development
(R & D) spending for the firm. We standardized x2 and x3 before fitting the model in
order to avoid collinearity. For the purpose of comparison, we also analyzed this data
set with GFNPM [38] by using R package “PCDSpline.” GFNPM is a maximum
likelihood approach based on an expectation–maximization (EM) algorithm. This
approach adopted a monotone spline to approximate the baseline mean function in
gamma frailty non-homogeneous Poisson process model.

As shown in Table 3, the estimates of the regression coefficients from both
methods are in accordance with each other. All these three covariates, being in
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Table 3 Patent data analysis from the proposed approach (GFGP) and GFNPM. Summarized
results are the point estimates (Point), the standard errors (SE), and the 95% credible (confidence)
intervals for all the regression parameters and the frailty variance parameter v

GFGP GFNPM

Point SE CI95 Point SE CI95

β̂1 0.537 0.146 (0.240,0.834) 0.561 0.127 (0.311, 0.798)

β̂2 1.032 0.148 (0.812,1.427) 1.130 0.122 (0.818, 1.303)

β̂3 0.617 0.144 (0.335,0.801) 0.795 0.144 (0.483, 1.005)

v̂ 0.549 0.037 (0.480,0.624) 0.555 0.037 (0.485, 0.630)

Fig. 1 The estimated baseline mean functions of patent counts obtained from the proposed method
that uses the Gamma process to model the baseline mean function (Gamma process) and GFNPM
that uses the monotone spline to model the baseline mean function (Spline)

scientific sector, book value of capital, and the R & D spending, have a significant
positive effect on the mean number of granted patents. It is especially worthy-noting
that the firms in the scientific sector are granted exp(0.537)−1 = 71% more patents
than the firms not in the scientific sector. In Fig. 1, we superimpose the estimated
baseline mean functions of patent counts between 1970 and 1979 obtained by both
methods. The two estimated curves are very close to each other, indicating that the
proposed method provides a similar estimation of the baseline mean function as
GFNPM.
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7.2 The Bladder Tumor Study

We also apply the proposed method to the most widely used panel count data
example in the literature, which arose from a bladder cancer study conducted by
the Veterans Administration Cooperative Urological Research Group [2]. In this
randomized clinical trial study, all the 118 patients had experienced superficial
bladder tumors when they entered the trial. They were randomized into one of
three treatment groups: placebo, thiotepa, and pyridoxine. During the study at
each follow-up visit, new tumors since the last visit were counted, measured, and
then removed transurethrally. The number of follow-up clinical visits and follow-
up times varied noticeably from patient to patient. The primary objective of the
study was to determine if any treatment could significantly reduce the recurrence of
bladder tumor.

This data set has been analyzed extensively using many different approaches
in the literature. Following Wellner and Zhang [35], we focus on 116 patients in
the study, who had at least one follow-up observation after the study enrollment.
Following the literature, we consider the following four covariates, x1 and x2 being
the baseline number of bladder tumors and the size of the largest bladder tumors
at the beginning of the trial, respectively, and x3 and x4 being the binary variables
indicating whether a patient was assigned to the treatment of pyridoxine pills or
thiotepa installation, respectively.

Table 4 shows the results from the proposed approach and two other competitive
frequentist approaches, i.e. GFNPM [38] and WZ [35]. The results from these two
competitors are directly drawn from their papers. As seen in Table 4, the estimates
of the parameters from GFGP and GFNPM are close to each other but quite different
from the results from the WZ approach. The main reason is that the proposed
approach and the GFNPM are based on the same frailty non-homogeneous Poisson
model that accounts for the within-subject correlation, while the WZ approach is
based on the non-homogeneous Poisson model without accounting for the within-
subject correlation. Yao et al. [38] pointed out that the GFNPM approach will
produce the same results as those based on the non-homogeneous Poisson model
when there is no within-subject correlation. The results in Table 4 suggest that
the within-subject correlation is not ignorable for this data set. These explain the
consistency of the results from the proposed method and GFNPM as well as the
discrepancy of their results from the WZ approach.

As seen in Table 4, the results from all these three methods indicate that the
number of initial bladder tumors was positively related to the recurrence of the
tumor while the size of the largest tumor at the enrollment did not have a significant
effect. It also reveals that the thiotepa instillation treatment significantly reduced
the recurrence rate of bladder tumors, while the treatment of pyridoxine pills did
not have a significant effect. Figure 2 plots the estimated mean functions of bladder
tumor counts for the control and the other two treatment groups controlling the other
two covariates at 0. It is clear that the estimated mean functions for the control and
the pyridoxine treatment groups are close to each other and they are higher than the
one for the thiotepa treatment group.
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Fig. 2 The estimated mean functions for different treatment groups in the bladder tumor study

7.3 Breast Cosmesis Data

We illustrate the proposed approach on interval-censored data by analyzing the most
commonly used interval-censored data set in the literature, the breast cosmesis
data [7]. The data came from a study of 94 early breast cancer patients who
were treated with adjuvant therapy following tumorectomy. The primary goal
of this study was to identify if treating patients with primary radiation therapy
and adjuvant chemotherapy could have better long-term cosmetic results than
treating with radiotherapy alone. Among all patients, 48 patients were treated with
radiation therapy combined with chemotherapy and 46 patients were treated with
radiation therapy alone. In this study, patients were examined periodically and
actual examination times differed from patient to patient since some of them missed
their visits. The response variable of interest was the time (in months) until the
appearance of breast retraction. Since the exact onset time of breast retraction was
not observed due to the study design, only interval-censored data were available.

We apply the proposed Bayesian approach (GFGP) and compare it with the
results obtained by fitting the semiparametric Turnbull (SPT) model with a modified
ICM algorithm [1, 22]. The results from the two methods are shown in Table 5. As
seen in Table 5, all the credible (confidence) intervals are above 0 under the PH
and PO models, indicating that chemotherapy increases the hazards and odds of
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Table 5 The results for breast cosmesis data analysis from the proposed approach (GFGP) and
the semiparametric Turnbull (SPT) model [1]. Summarized results are the point estimates (Point),
the standard errors (SE), and the 95% credible (confidence) interval for the treatment effect

GFGP PST

Model Estimate SE CI95 Estimate SE CI95

PH 0.814 0.232 (0.340, 1.257) 0.797 0.345 (0.121, 1.473)

PO 0.798 0.337 (0.142, 1.469) 0.902 0.406 (0.106, 1.698)
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Fig. 3 The estimated survival functions obtained from the proposed approach (GFGP) and the
semiparametric Turnbull (SPT) model under PH model (left) and PO model (right)

breast retraction for patients who have been previously treated with radiotherapy.
This suggests that the combined therapy is not better than the radiation therapy
alone. Figure 3 exhibits the estimated survival functions of appearance of retraction
under the PH and PO models. Again, these plots suggest that treating patients with
radiotherapy alone has a higher survival rate than the combined therapies. This
conclusion agrees with the analysis of Finkelstein and Wolfe [8] and Lin and Wang
[18].

8 Discussion

This chapter develops a new Bayesian estimation approach for panel count data
and interval-censored data. This unified approach is based on the fact that the two
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types of data can be connected by a non-homogeneous frailty Poisson process. The
Poisson process is observed for penal count data but is latent for interval-censored
data. The proposed approach further models the baseline mean, cumulative hazards,
and odds functions nonparametrically by assigning them a Gamma process prior,
providing additional flexibility. Efficient Gibbs samplers are developed based on
innovative data augmentations. This approach has appealing numerical performance
in terms of providing efficient, accurate, and reliable estimation of regression
coefficients under each model. Since the Gamma process is a discrete process
modeling the jumps, it can only provide an estimate of the baseline function as a step
function. When the number of jumps is large, the computation is expensive since it
tries to estimate the size of each jump. In order for readers to reproduce our results,
we provide the computing codes for the real-life data applications on the following
website: https://github.com/luwstat/Computing-sources-for-data-application.
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Bayesian Approach for
Interval-Censored Survival Data with
Time-Varying Coefficients

Yue Zhang and Bin Zhang

Abstract Interval-censored data arise when the failure time cannot be observed
exactly but can only be determined to lie within an interval. Interval-censored
data are very common in medical and epidemiological studies. In this chapter, we
discuss a Bayesian approach for correlated interval-censored data under a dynamic
Cox regression model. Some methods that incorporate right censoring have been
developed for time-to-event data with temporal covariate effects. However, interval-
censored data analysis under the same circumstance is much less developed. In
this chapter, we introduce a piecewise constant coefficients estimate based on a
dynamic Cox regression model under the Bayesian framework. The dimensions
of coefficients are automatically determined by the reversible jump Markov chain
Monte Carlo algorithm. Meanwhile, we use a shared frailty factor for unobserved
heterogeneity or for statistical dependence between observations. Two illustrative
examples are given to demonstrate the methods’ performance. A summary is
provided to discuss the methods introduced in this chapter.

1 Introduction

Interval censoring occurs in studies where the event time cannot be observed
but can only be determined to lie within an interval. It is a common censoring
scheme in many applications, including medical studies, epidemiological studies,
etc. For example, if we are interested in the time to tumor onset for patients with

Y. Zhang (�)
Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai, PR China
e-mail: yue.zhang@sjtu.edu.cn

B. Zhang
Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, OH, USA
e-mail: Bin.Zhang@cchmc.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Lio et al. (eds.), Bayesian Inference and Computation in Reliability and Survival
Analysis, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-88658-5_15

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88658-5_15&domain=pdf
mailto:yue.zhang@sjtu.edu.cn
mailto:Bin.Zhang@cchmc.org
https://doi.org/10.1007/978-3-030-88658-5_15


324 Y. Zhang and B. Zhang

periodic follow-ups, then the exact time to tumor onset is hard to record. Instead,
the time is known to fall between certain visits. There are extensive literature
about interval-censored data. In recent years, survival analysis with time-varying
covariate effects has drawn much attention from researchers in both statistics and
medical fields. Time-varying coefficients are of great interest due to their flexibility
in capturing the temporal covariate effects. Different methods have been proposed
in order to estimate the temporal effects. One difficulty in analysis for interval-
censored data is that the regression parameters and the baseline survival or hazard
function need to be estimated simultaneously due to the lack of partial likelihood.
Wang et al. [28] applied reversible jump Markov chain Monte Carlo (MCMC)
to automatically determine the dimension of coefficients as well as the baseline
hazard function. In addition to temporal effects, data structure could be more
complicated when the survival events are correlated. This could happen when
certain correlation exists between individuals, e.g., clustered data or spatial data.
This chapter focuses on Bayesian approach for correlated interval-censored data
with time-varying coefficients.

The remainder of this chapter is organized as follows. Section 2 discusses
the Bayesian approach for clustered interval-censored data with time-varying
covariate effects. The general data structure will be introduced, and a frailty Cox
regression model is proposed to account for the correlation within each cluster.
Prior specifications and posterior computation will be described in detail. Section 3
considers spatially correlated interval-censored data using Bayesian approach. The
priors on the regression coefficients, the frailties, and the other parameters in the
models will be specified, and posterior inference details will be provided. Section 4
includes two illustrative examples. They are analyzed using the methods described
in Sects. 2 and 3. Concluding remarks can be found in Sect. 5. Bibliographic notes
are provided at the end.

2 Bayesian Approach for Clustered Interval-Censored Data

In this section, we focus on the Bayesian approach for clustered interval-censored
data with time-varying covariate effects. Clustered data are very natural in medical
studies when grouped data are observed where subjects in the same group may share
some information that is not observed. For clustered interval-censored data, the
correlation between different failure times can be described by a frailty, a commonly
used factor for statistical dependence between observations.

2.1 Model and the likelihood

Assume that there are n clusters in a study and mi subjects in each cluster, i =
1, 2, . . . , n . Hence there are a total of N =∑n

i=1mi subjects in the study. Let Ti,j
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denote the survival time for the j th subject in the ith cluster, j = 1, . . . , mi . The p-
dimensional vector xxxi,j represents the p covariates, and ωi denotes the unobserved
frailty random variable for the ith cluster. For interval-censored data, the unobserved
event time Ti,j is located in the censoring interval (Li,j , Ri,j ]. The contribution of
the j th subject in the ith cluster to the observed data likelihood is

Pr(Ti,j ∈ (Li,j , Ri,j ]|ωi, xxxi,j ) = Pr(Ti,j > Li,j |ωi, xxxi,j )− Pr(Ti,j > Ri,j |ωi, xxxi,j ).

Under the Cox model with time-varying regression coefficients, the hazard function
for the j th subject in the ith cluster can be written as

λ(t |ωi, xxxi,j ) = λ0(t)ωi exp
{
xxxTi,j βββ(t)

}
,

where λ0(t) is an unknown baseline hazard function common to all the subjects
and βββ(t) is the p-dimensional regression coefficient function of main interest. This
is a shared frailty model, which is a common type of the frailty model used for
within-cluster dependence. Note that the “shared frailty” implies that individuals
in the same cluster share the common frailty. The frailty ωi is assumed to follow
a parametric distribution, which can either take the form of finite mean frailty
distributions including but not limited to the gamma or the log-normal distribution
or take the form of infinite mean distributions such as the positive stable distribution
Ibrahim et al. [14].

In the above model, both λ0(t) and βββ(t) are assumed to be left continuous step
functions, where both the number of jumps and the locations of the jumps are
random and are estimated. A fine time grid is specified as T = {0 = τ0 < τ1 < τ2 <
. . . τk < . . . < τK < ∞}. It contains all the potential jump points of the functions.
The length of each time interval may be taken to be sufficiently small to approximate
any hazard and coefficient function. Let λk = λ0(τk) and βββk = βββ(τk) denote the
baseline hazard function and the coefficient function evaluated at each grid point k,
k = 1, . . . , K; dNi,j,k indicates whether or not the event time Ti,j falls within the
kth interval of the grid, i.e., dNi,j,k = III (Ti,j ∈ (τk−1, τk]); Yi,j,k denotes the at-risk
variable. If dNi,j,k = 1 for some value k, Yi,j,l = 1 for l < k, and Yi,j,l = 0 for
l > k, while Yi,j,k = (Ti,j − τk−1)/%k for l = k, where %k = τk − τk−1 is the
width of the kth interval. The augmented likelihood function for the j th subject of
the ith cluster is

�i,j (&|{dNi,j,k, Yi,j,k}Kk=1, ωi, xxxi,j )

=
K∏

k=1

{λkωi exp(xxxTi,j βββk)}dNi,j,k exp{−%kλkωi exp(xxxTi,j βββk)Yi,j,k},

where i = 1, 2, . . . , n, j = 1, 2, . . . , mi , and & = {λk, βββk, k = 1, 2, . . . , K}.
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2.2 Prior

In the following description, we use θ(t) to denote either log λ0(t) or one element in
the p-dimensional vector βββ(t). Assume that the number of jumps P in θ(t) follows
a discrete uniform distribution ranging from 1 to K . For a fixed P , the jump times
0 < τ1 < τ2 < . . . τp < . . . < τP = τK are randomly selected from all time
grids except the last one. Given P and the jump times, a hierarchical Markov-type
process prior for θ(t) proposed by [28] is specified as follows:

θ(τ1) ∼ N (0, a0ν),

θ(τp)|θ(τp−1) ∼ N (θ(τp−1), ν), p = 2, 3, .., P ,

ν ∼ IG(α0, η0),

where a0 > 0 is a hyper-parameter that can be chosen as a large number to reflect
higher uncertainty in the prior input, and IG(α0, η0) denotes an inverse-gamma
distribution with a shape parameter α0 and a scale parameter η0 such that the mean
is η0/(α0 − 1). Similar priors have been used in generalized additive models [2, 6].
The gamma distribution, the most commonly used finite mean distribution, is used
to model the frailty term ωi, i = 1, . . . , n. For finite mean frailty distributions, we
need the mean of the frailty distribution to be unity in order for the parameters of
the model to be identifiable. Thus, we assume

ωi
i.i.d.∼ G(κ−1, κ−1), i = 1, 2, .., n,

where κ is the variance of the ωi’s and larger values of κ imply greater heterogeneity
among clusters. Let η = κ−1 for notational convenience. Vague hyper-priors for η
are commonly used, such as the uniform distribution U(0, a) with a large a or the
gamma distribution G(b, b) with b close to zero. In this chapter, a vague gamma
prior G(0.001, 0.001) is used, which is denoted as πη(.). The joint prior density is
proportional to

πη(η)

n∏

i=1

{ωη−1
i exp(−ηωi)} η

α0
0

#(α0)
ν−α0−1 exp

(− η0

ν

)
ν− P

2 exp

{

−θ(τ1)
2

2a0ν

}

×
∏

p≥2

exp

[

−{θ(τp)− θ(τp−1)}2

2ν

]

.

2.3 Posterior Computation

The posterior samples are obtained under a Gibbs sampling framework based on
the j th subject of the ith group observed in the kth time interval, where i =
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1, 2, . . . , n, j = 1, 2, . . . , mi, k = 1, 2, . . . , K , and K is the total number of time
grids. The parameters of interest include θ(t) and the frailty term ωi’s. The event
indicators dNi,j,k’s, the event time Ti,j ’s, and the at-risk variables Yi,j,k’s also need
to be sampled. Let D = {dNi,j,k, Yi,j,k}, & = {θ(t)}, W = {ωi}. The Gibbs
sampling algorithm draws D, &, ν, W , and η iteratively, where ν and η are hyper-
parameters.

The first step is to sample the event time Ti,j , event indicators dNi,j,k’s, and at-
risk variables Yi,j,k’s for augmented data, given & andW . This can be decomposed
into two steps:

(I) Locate the grid interval for each event time. For a finite interval-censored
subject, the event indicators dNi,j,k’s follow a multinomial distribution with
a size 1 and a probability vector (ei,j,1, ei,j,2, . . . , ei,j,k), where for k =
1, 2, . . . , K,

ei,j,k = pi,j,kIII (τk ∈ (Li,j , Ri,j ])
∑
τl∈(Li,j ,Ri,j ] pi,j,l

,

pi,j,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
{
−∑k−1

l=1 %lλlωi exp(xxxTi,j βββk)
}

− exp
{
−∑k

l=1%lλlωi exp(xxxTi,j βββk)
}

if k > 1,

1 − exp
{
−%1λ1ωi exp(xxxTi,j βββ1)

}
if k = 1.

Thus, if the observed interval (Li,j , Ri,j ] only covers one time grid τk , then
dNi,j,k = 1 and all the other event indicators equal 0. Otherwise, if (Li,j , Ri,j ]
covers multiple time grids τk’s, dNi,j,k is sampled from the multinomial
distribution with the probability vector calculated based on these covered time
grids τk’s. In other words, the time interval (τk−1, τk] with dNi,j,k = 1 is
sampled in this step.

(II) Within selected time grids, the exact time Ti,j follows a doubly truncated
exponential distribution on (τk−1, τk] with a distribution function

F(u) = 1 − exp{−λk(u− τk−1)ωi exp(xxxTi,j βββk)}
1 − exp{−λk%kωi exp(xxxTi,j βββk)}

.

Then Ti,j is sampled by the inverse distribution method, and the at-risk
variables Yi,j,k’s are calculated as defined above.

The next step is to sample each component of the baseline hazard log λ0(t)

and the regression coefficients βββ(t), given D and W . The reversible jump MCMC
algorithm is applied here because the number of jumps P is random, and the
dimension of the posterior distribution could vary from iteration to iteration. The
probabilities of taking a birth, death, and update move are set as 0.3, 0.3, and 0.4
[29], respectively.
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(I) Update move. In this step, both P and the jump times are fixed. The
conditional posterior distribution of θ(τp) given D, W , and all the other
components in & is

π(θ(τp)|&/{θ(τp)},D,W) ∝ exp

[

−{θ(τp)− μp}2

2σ 2
p

]

× exp

⎧
⎨

⎩
−

n∑

i=1

mi∑

j=1

K∑

k=1

III (τk ∈ (τp−1, τp])%kλkωi exp(xxxTi,j βββk)Yi,j,k

⎫
⎬

⎭
,

where θ(τp) is either logλ(τp) or one component in βββ(τp). The steps of
computing μp and σ 2

p can be found in Wang et al. [29]. Since it can be shown
that the above function is log-concave, the adaptive rejection algorithm Gilks
and Wild [9] is applied to sample θ(τp).

(II) Birth move. A new jump time τ ′ is “born” in this move. This new τ ′ is
randomly selected from the non-jump time grids.

(III) Death move. One of current jump time τp is removed, where the index p is
uniformly selected from the current jump point set {1, 2, . . . , P − 1}. Details
of birth move and death move are shown in the following sections.

2.3.1 Birth Move

Let {τ ′
p, p = 1, 2, . . . , P + 1} and {τp, p = 1, 2, . . . , P } denote new and current

jump times, respectively. Assume τ ′
p ∈ (τp−1, τp), then θ(τ ′

p) and θ(τ ′
p+1) need to

be sampled.

θ(τ ′
p) = π1θ(τp−1)+ π2{θ(τp)+ u},

θ(τ ′
p+1) = π1{θ(τp)− u} + π2θ(τp+1),

where weights are defined as

π1 = (τ ′
p − τ ′

p−1)/(τ
′
p+1 − τ ′

p−1),

π2 = (τ ′
p+1 − τ ′

p)/(τ
′
p+1 − τ ′

p−1),

where u is generated from a uniform distribution U(−ε0, ε0) and ε0 is set to 1
in this study. Variable u here is an auxiliary variable to the old model, which
helps balance out the one dimension increase of the proposed new model. When
τ ′ is near the boundaries, set θ(τ0) = θ(τ1) and θ(τP+1) = θ(τP ). Let θ =
{θ(τ1), θ(τ2), . . . , θ(τP )} and θ ′ = {θ(τ ′

1), θ(τ
′
2), . . . , θ(τ

′
P+1)}. The acceptance

ratio can be computed with the posterior distribution π(θ ′|&/{θ ′}, ω, ν,D), the
uniform density function πu, and the Jacobian of the transformation,
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Rbirth = π(θ ′|&/{θ ′}, ω, ν,D)
π(θ |&/{θ}, ω, ν,D)π(u)

∣
∣
∣
∣
∂θ ′

∂(θ, u)

∣
∣
∣
∣ .

The acceptance probability is defined as min{1, Rbirth}.

2.3.2 Death Move

One of the current jump times τp is removed, where the index p is uniformly
selected from the current jump point set {1, 2, . . . , P − 1}. Then this can be treated
as an inverse step of birth move. By using the same transformation function of the
birth move, the expression of θ(τ ′

p) can be computed as follows:

θ(τ ′
p) = 1

2

{

−π1

π2
θ(τp−1)+ 1

π2
θ(τp)+ 1

π1
θ(τp+1)− π2

π1
θ(τp+2)

}

,

where the weights are defined as

π1 = (τp − τp−1)/(τp+1 − τp−1),

π2 = (τp+1 − τp)/(τp+1 − τp−1),

and the acceptance probability is min{1, R−1
birth}.

The hyper-parameter ν has a conjugate inverse-gamma prior, and the posterior
distribution is also an inverse-gamma specified as

ν|&,D ∼ IG

⎡

⎣α0 + P

2
, η0 + θ(τ1)

2

2a0
+
∑

p≥2

{
θ(τp)− θ(τp−1)

}2

2

⎤

⎦ .

The conditional posterior distribution of η givenW is

η|W ∝
(
n∏

i=1

ωi

)η−1

ηnη
exp(−η∑n

i=1 ωi)

#(η)n
πη(η),

that is, the conditional posterior distribution of η depends on the data only through
W . The Metropolis–Hastings algorithm is implemented to evaluate the posterior
distribution of η, where the acceptance rate is tuned to be around 25%. As mentioned
before, a gamma distribution G(0.001, 0.001) is used as the prior πη(·) for η in the
following analysis.

The frailty ωi is sampled as follows:

ωi |&,D, η ∼ G

⎛

⎝η +
mi∑

j=1

K∑

k=1

dNi,j,k, η +
mi∑

j=1

K∑

k=1

%kλk exp(xxxTi,j βββk)Yi,j,k

⎞

⎠ .
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3 Bayesian Approach for Spatially Correlated
Interval-Censored Data

Another common case in epidemiological and medical studies is to consider the
correlation between observations based on geographic locations, i.e., spatially
correlated data.

3.1 Model Specification

Let Ti,j denote the survival time for the j th subject in the ith cluster, where
i = 1, 2, . . . , n and j = 1, 2, . . . , mi . Consider a Cox model with time-varying
regression coefficients conditional on a Q-dimensional vector of covariates, xi,j ,
and the unobserved frailty random variable ωi for the ith cluster. The hazard
function can be written as

λ(t |ωi, xi,j ) = λ0(t) exp(xTi,j β(t)+ ωi),

where λ0(.) is an unknown baseline hazard function common to all subjects, xi,j
is the Q × 1 covariate vector for the j th subject in the ith cluster and β(t) is the
Q-dimensional regression coefficient function of main interest. The frailty ωi can
be either independent or correlated. Now, let us consider the model where β(t) is
time varying, ωi ′s are spatially correlated.

As shown in Sect. 2, the contribution of subject j in ith cluster to the observed
data likelihood is

Pr(Ti,j ∈ (Li,j , Ri,j ]|ωi, xi,j ) = Pr(Ti,j > Li,j |ωi, xi,j )− Pr(Ti,j > Ri,j |ωi, xi,j ).

We assume that λ0(t) and β(t) are left continuous step functions, where both the
number and locations of the jumps are random and to be estimated. Let k =
1, 2, . . . , K denote all the ordered grids and 0 = τ0 < τ1 < τ2 < . . . < τK < ∞
be the corresponding time points. Here we assume that the time points (τk, k =
1, 2, . . . K) contain all potential jump points. The length of each time interval may
be taken to be sufficiently small so that the hazard and coefficient functions can
be appropriately estimated. Let dNi,j,k indicate whether or not the event time Ti,j
falls within the kth interval, i.e., dNi,j,k = 1(Ti,j ∈ (τk−1, τk]). Let Yi,j,k be
the at-risk variable defined as Yi,j,l = 1 for l < k, Yi,j,l = 0 for l > k, and
Yi,j,k = (Ti,j − τk−1)/%k for l = k, where %k = τk − τk−1 is the width of the kth
interval. Denote λk = λ0(τk) and βk = β(τk) as the baseline hazard function and
the coefficient function evaluated at each time point. Thus, the augmented likelihood
function for j th subject of ith cluster is
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�i,j

(
&|{dNi,j,k, Yi,j,k}Kk=1, ωi, xi,j

)

=
K∏

k=1

{
λk exp(xTi,j βk + ωi)

}dNi,j,k
exp

{
−%kλk exp(xTi,j βk + ωi)Yi,j,k

}
,

where i = 1, 2, . . . , n, j = 1, 2, . . . , mi , and & = {λk, βk, k = 1, 2, . . . , K}. The
conditional autoregressive (CAR) distribution is imposed for spatially correlated
ωi’s. The general form of the CAR model is

ω ∝ exp

{

−1

2
ωTVω

}

,

where V is an n×n positive definite symmetric matrix. If we specify that V · 1 = 0,
then we get the intrinsic conditional autoregressive (ICAR) model [1]. Note that V
is positive semi-definite, and the variance matrix V−1 no longer exists. An algebraic
decomposition of the power term in CAR model is given by

ω ∝ exp

⎧
⎨

⎩

1

2

∑

i<j

Vij (ωi − ωj )2
⎫
⎬

⎭
.

Since ωi’s are actually non-identifiable, in Bayesian implementation of this study, an
identifying sum-to-zero constraint is imposed by centering theωi’s around zero after
each MCMC sampling iteration [3]. In practice, it is usually furthermore specified
that V = πω · W, where πω is a precision parameter, Wii = mi , Wij = −1(i∼j),
mi is the number of neighbors for area i, and i ∼ j denotes that areas i and j are
neighbors. Then we have

ω ∝ exp

⎧
⎨

⎩
−πω

2

∑

i<j

(ωi − ωj )21(i∼j)

⎫
⎬

⎭
,

and it is also equivalent to

ωi |ω−i ∼ N (ω̄ii , 1/(miπω)),

where ω−i is the set of all spatial frailties except the one for area i, ω̄ii is area
i’s neighbor mean of frailties, and N (ω̄ii , 1/(miπω)) denotes a normal distribution
with mean ω̄ii and variance 1/(miπω). The conditional distribution above is to be
used as a prior for ωi in MCMC. Given πω, the prior for ω is as follows:

ω ∝ π(n−b)/2ω exp

⎧
⎨

⎩
−πω

2

∑

i<j

(ωi − ωj )21(i∼j)

⎫
⎬

⎭
,

where b is the number of disconnected groups of areas.
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3.2 Prior Distributions

To simultaneously estimate time-varying coefficients and spatially correlated frail-
ties, the specification of priors is shown as follows:

θ(s1) ∼ N (0, a0ν),

θ(sp)|θ(sp−1) ∼ N (θ(sp−1), ν), p = 2, 3, .., P ,

ν ∼ IG(α0, η0),

ωi |ω−i ∼ N (ω̄ii , 1/(miπω)), i = 1, 2, . . . , n,

πω ∼ G(0.01, 0.01).

The smoothness of θ(t) is also controlled by Markov-type process prior and
reversible jump MCMC. The prior of frailties is based on ICAR model. The model
can also be easily extended with other coefficient’s priors with various degrees of
smoothness or different frailties’ priors to account for spatial correlation.

3.3 Posterior Inference

The posterior samples are obtained through MCMC sampling including a mixture
of Gibbs sampling, Metropolis–Hastings, and the adaptive rejection algorithm. The
computation is based on j th subject of the ith group observed in the kth time
interval, where i = 1, 2, . . . , n, j = 1, 2, . . . , mi , and k = 1, 2 . . . , K . The
parameters that need to be sampled include three parts: (1) the augmented event
times Tij ’s, whose information is equivalent to those from our specially defined
event indicator dNi,j,k’s and at-risk variable Yi,j,k’s; (2) the baseline λk , coefficients
of covariates βk; and (3) frailty terms ωi’s. Let D = {dNi,j,k, Yi,j,k}, & = {λk, βk},
and ' = {ωi}. The MCMC algorithm draws D,& and ' iteratively.

3.3.1 Sample D

Since baseline hazards and regression coefficients are assumed to be piecewise
constant, the sampling of augmented event time Tij given& and' can be separated
into two steps:

(1) Locate grid interval for each event time. For finite interval-censored subject j
of ith group, event indicator dNi,j,1,
dNi,j,2, . . . , dNi,j,K follows a multinomial distribution with size 1 and proba-
bility vector (ei,j,1, ei,j2, . . . , ei,j,K), where
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ei,j,k = pi,j,k1(τk ∈ (Li,j , Ri,j ])
∑
sl∈(Li,j ,Ri,j ] pi,j,l

,

pi,j,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
{
−∑k−1

l=1 %lλl exp(xTi,j βk + ωi)
}

− exp
{
−∑k

l=1%lλl exp(xTi,j βk + ωi)
}

if k > 1

1 − exp
{
−%1λ1 exp(xTi,j β1 + ωi)

}
if k = 1,

for k = 1, 2, . . . , K . Thus, if the observed interval (Li,j , Ri,j ] covers only
one time grid τk , then dNi,j,k = 1 and all other event indicators equal 0.
Otherwise, if (Li,j , Ri,j ] covers multiple time grids τk’s, dNi,j,k is sampled
from a multinomial distribution with probability vector calculated based on
these covered time grids τk’s. In other words, the time grid (τk−1, τk] with
dNi,j,k = 1 is sampled in this step.

(2) Within selected time grids, the exact time Ti,j follows a doubly truncated
exponential distribution on (τk−1, τk] with a distribution function

F(u) = 1 − exp{−λk(u− τk−1) exp(xTi,j βk)+ ωi}
1 − exp{−λk%k exp(xTi,j βk + ωi)}

.

Then Ti,j will be sampled by an inverse distribution method, and Yi,j,k can be
computed based on the aforementioned definition.

3.3.2 Sample �

This step is to sample each component of the baseline hazards and regression
coefficients, given D and '. Suppose that β(t) is time dependent, θ(t) is used to
denote log baseline log(λ(t)) and one element of β(t). Reversible jump MCMC
algorithm is applied here because the number of jumps P is random, and the
dimension of posterior distribution could vary from iteration to iteration. The
probability of taking a birth, death, and update move is set as 0.3, 0.3, and 0.4,
respectively. For the update move, both P and jump times are fixed. The conditional
posterior distribution of θ(sp) given D, ' and all other components in & is

(θ(sp)|&/{θ(sp)},D,') ∝ exp

{

− (θ(sp)− μp)
2

2σ 2
p

}

× exp

⎧
⎨

⎩
−

n∑

i=1

mi∑

j=1

K∑

k=1

1(τk ∈ (sp−1, sp])%kλk exp(xTi,j βk + ωi)Yi,j,k
⎫
⎬

⎭
,

for some jump time sp. The steps for computing μp and σ 2
p follow Wang et al. [28].

Since it can be shown that the above function is log-concave, an adaptive rejection
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algorithm [9] can also be applied to sample θ(sp). For the birth move, a new jump
time s′ is “born” in this move. This new s′ is randomly selected from non-jump time
grids. In the death move, one of the current jump times sp is removed, where the
index p is uniformly selected from the current jump point set {1, 2, . . . , P − 1}.
Details of the birth move and death move can be found in Zhang and Zhang [30].

3.3.3 Sample �

Suppose ωi’s are spatially correlated, the conditional posterior distribution takes the
form

(ωi |&,D,πω, ω−i ) ∝
mi∏

j=1

K∏

k=1

{λk exp(xTi,j βk + ωi}dNi,j,k exp{−%kλk exp(xTi,j βk + ωi)Yi,j,k}π(ωi |ω−i ),

where π(ωi |ω−i ) denotes the prior in Sect. 3.2. Metropolis–Hastings algorithm can
be applied to sample ωi’s. The precision parameter πω is sampled from G(0.01 +
n−b

2 , 0.01 + 1
2

∑
i<j (ωi − ωj )21(i∼j)).

4 Illustrative Examples

In this section, two examples are provided to illustrate the methods introduced in
the previous sections.

4.1 Dental Health Data

The dental health data from the Signal Tandmobiel project was conducted in
Flanders (Belgium) to examine the oral health condition of Flemish primary
schoolchildren. The children were divided into 15 strata, a combination of 3
educational systems (public, municipal, or private) and 5 provinces. Over 6000
children were recruited, which represented approximately 7% of the total target
population in Flanders [27]. A total of 4468 of them were randomized and examined
annually by 16 trained dentists using the standardized and widely accepted criteria
recommended by the WHO. We focus on the time to the emergence of permanent
tooth 24 (central incisor) in this chapter.

For the analysis, we considered the covariate dmf as a dichotomized variable that
denotes the status of the primary predecessor of this tooth (0 = sound, 1 = decayed,
missing, or filled). A random effect of province-by-gender was considered. Frailty is
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assumed to follow a gamma distribution with an equal shape and scale parameter η,
which has a gamma hyper-prior G(0.001, 0.001). A total of 12,000 Gibbs samples
was generated with a burn-in period of 2000 samples. The convergence of MCMC
chains was checked by trace plots, autocorrelation plots, and Geweke’s statistics.

Figure 1 presents the analysis results by applying the proposed method in Sect. 2.
As tooth 24 does not emerge before age 5, the time scale in Fig. 1 is the time in years
since age 5. The results include the point estimates and the corresponding 95%
credible intervals. The positive estimate indicates that the children with a decayed
primary predecessor have higher risks than those without, which is consistent
with the results based on the iterative convex minorant algorithm Gòmez et al.
[10]. However, there is an obvious trend of the coefficient estimate, and the effect
becomes weaker over time. If the 95% credible interval includes 0, then one may
conclude that the parameter is not significantly different from 0, and thus the effect
is said to be statistically insignificant. As shown in Fig. 1, the credible interval of the
dmf effect after “Year 11” contains 0, which indicates that the dmf effect becomes
insignificant. Table 1 shows the frailty estimates. In general, girls have higher risk
than boys. Specifically, in Antwerpen and Limburg, the two provinces in the north
and adjacent to the Netherlands, the difference between girls and boys is larger
than that in Vlaams Brabant and West Vlaanderen, the two provinces in the middle
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Fig. 1 Estimate of coefficients in children’s dental health data. The black solid line is the posterior
mean. The black dashed lines are 95% credible intervals

Table 1 Estimate of frailties with 95% credible intervals in the children’s dental health data

Antwerpen Limburg Oost Vlaanderen

Girls 1.18 (1.02, 1.35) 1.08 (0.92, 1.25) 1.19 (1.02, 1.36)

Boys 0.84 (0.72, 0.96) 0.81 (0.68, 0.93) 0.91 (0.78, 1.05)

Vlaams Brabant West Vlaanderen

Girls 1.16 (0.98, 1.35) 1.06 (0.89, 1.23)

Boys 0.93 (0.79, 1.08) 0.87 (0.73, 1.00)
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Fig. 2 Estimate of frailties with 95% credible intervals in the children’s dental health data

of Belgium. Moreover, boys in Vlaams Brabant, where the capital city, Brussels,
is located, have the highest risk compared to boys in other provinces (Fig. 2).
The data can be found at https://www.tandfonline.com/doi/full/10.1080/01621459.
2017.1356316 under “Supplemental” and the computational code is available from
authors upon request.

4.2 Smoking Cessation Data

We applied the method in Sect. 3 on an aforementioned smoking cessation data.
More details about the data can be found in Murray et al. [21]. In the full sample,
a total of 5887 adult smokers were followed for 5 years. In this analysis, the event
of interest is the time to smoking relapse, which is defined as the time from quitting
to resuming smoking. Thus, a subset of 223 participants are included here who
are known to have quit smoking at least once during the study period and have an
identifiable Minnesota zip code of residence. The outcome of interest is the time to
smoking relapse, which is interval censored since the subjects were only monitored
at annual visits. The time scale has the study entry time as origin and the maximum
of 5 years. The time to smoking relapse in this particular data set is either interval
censored (64/223 or 29%) or right censored (159/223 or 71%). Two covariates are
considered: gender (0 = Male, 1 = Female) and treatment (0 = usual care [UC]

https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1356316
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1356316


Bayesian Approach for Interval-Censored Survival Data with Time-Varying Coefficients 337

Model 1 Model 2 Model 3

−7.5

−5.0

−2.5

0.0

2.5

−7.5

−5.0

−2.5

0.0

2.5

G
ender (M

ale=
0)

Treatem
ent (U

C
=

0)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
time in years

be
ta

Fig. 3 Estimate of coefficients for smoking cessation data. Black solid line is posterior mean.
Black dashed lines are 95% credible intervals. The effect difference in reducing relapse risk
between smoking intervention and usual care is much smaller for the time around the two peaks
(1.8 years and 3.8 years) than neighbor time periods

group that received no special antismoking intervention, 1 = smoking intervention
[SI] group). Subjects from the same zip code area are treated as a spatial cluster.

Three models were used to fit the data to demonstrate the time-varying coeffi-
cients as shown below:

Model 1 : β (t) is constant, ωi ′s are spatially correlated.
Model 2 : β (t) is time varying, ωi ′s are independent.
Model 3 : β (t) is time varying, ωi ′s are spatially correlated.

We ran 55,000 MCMC iterations, and the first 5000 iterations were discarded as the
burn-in period. In Models 2 and 3, hyperparameter a0 is fixed at 100 so that the
coefficient for the first time grid is assigned a flat prior. The estimated coefficients
with 95% credible intervals for all three models are presented in Fig. 3. From Model
1, the coefficient on gender (βgender) has a posterior mean of 0.343 and 95% credible
interval (−0.175, 0.845), and the coefficient on treatment (βtreatment) has a posterior
mean of −0.433 and 95% credible interval (−0.991, 0.116). Although the credible
intervals cover zero, the posterior means show that women are more likely to relapse
than men, and smoking intervention is effective in reducing relapse risk. For Models
2 and 3, the coefficient for gender is close to a straight line, from which we can
conclude that the effect is constant over time. However, the coefficient of treatment
exhibits obvious trend, suggesting that the inference based on Model 1 could be
misleading. Models 2 and 3 have similar trends for the estimates: it increases from a
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Fig. 4 Maps of posterior means for the spatial frailties ωi over 51 zip code areas in southeast
Minnesota based on Models 1, 2, and 3. The white areas are those zip codes without data

negative value to about zero around 1.8 years and then gradually approaches to −1
between Year 2 and Year 3. After that, the trend reaches the second peak around 3.8
years and ends with a downward curve.

Figure 4 maps the posterior means of spatial frailties (ωi) for the smoking data
using Models 3. It reveals that a few higher values of ωi’s occur in the northwest
region, which happens to be close to the southern suburbs of Minneapolis. This
indicates that higher risks of smoking relapse were observed in those regions. The
LMPL from Model 3 (−200.8) is larger than LPML from Model 1 (−202.7) and
Model 2 (−205.4), which indicates that Model 3 has better performance. The data
can be found in Appendix, and the computational code is available from authors
upon request.

5 Discussion and Remarks

Interval-censored survival data has been studied for decades. Examples of interval-
censored data can be found in De Gruttola and Lagakos [4], Jewell et al. [15], Kim
et al. [16], Sun [25], Shiboski and Jewell [23], Diamond et al. [5], Finkelstein [7],
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Finkelstein andWolfe [8], Hoel and Walburg [13], Self and Grossman [22], Sun and
Kalbfleisch [26], which discussed interval-censored data in AIDS, demographic,
epidemiology, and medical science. In recent years, researchers have become
interested in time-varying coefficients in time-to-event data. For example, several
methods have been introduced for right-censored data, such as the partial likelihood
approach in [31], histogram sieve procedures in [12], and the one-step estimation
procedure for the cumulative parameter function in Martinussen and Scheike
[19], Martinussen et al. [20]. Time-varying coefficients for interval-censored data,
however, are much less developed. Kneib [18] introduced an extended geoadditive
Cox model that estimates the nonlinear effects of covariates based on penalized
splines. Sinha et al.[24] treated the unobserved exact time as latent variables and
sampled from the full conditional posterior distribution via Gibbs sampling. The
estimated curves in these approaches depend on a fixed number of knots, and the
smoothness of the curves is controlled by the prior distribution or penalizing the
difference between adjacent regression coefficients. In some recent studies, the
reversible jump Markov chain Monte Carlo (MCMC) algorithm Green [11] was
used for automatic knot selection. Kim et al.[17] used such an algorithm for a
dynamic baseline hazard function. Wang et al. [28] proposed a Bayesian extension
of the Cox model by applying an efficient reversible jump MCMC and putting
dynamics on all coefficients as well as the baseline hazard, which were specified
as piecewise constants. Zhang and Zhang [30] extended the Bayesian approach to
spatially correlated interval-censored data.

In this chapter, Bayesian approaches for clustered interval-censored data and
spatially correlated interval-censored data were discussed using Cox regression
model with time-varying covariate effects. In order to capture the temporal nature of
covariate effects more precisely, we have shown that it is important to consider the
dependence structure for clustered outcomes. An important step in this procedure is
to determine the number of jumps, which will affect the estimated smoothness of the
estimated curves as well as effectiveness assessment. To this end, reversible jump
MCMC was used to automatically select jumps during model fitting. The regression
coefficients and the baseline hazard are piecewise constant and can be estimated,
given the number of pieces and jump locations. A dynamic prior was specified to
capture the time-varying coefficients.

The methods can be easily extended to other regression models or frailties’
correlations. However, there are a few challenges with the current model. An
immediate one is that the parametric assumption on frailties may not be valid.
Nonparametric priors may be needed to relax the parametric assumption. In this
chapter, Cox regression model was considered, and we may also think about other
alternatives when Cox model assumptions are violated, such as proportional odds
model, etc. Another future work direction could be multivariate or high-dimensional
interval-censored data, which have a more complicated data structure.
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Bayesian Approach for Joint Modeling
Longitudinal Data and Survival Data
Simultaneously in Public Health Studies

Ding-Geng Chen, Yuhlong Lio, and Jeffrey R. Wilson

Abstract This chapter is aimed to overview the joint modeling through the harmo-
nization of longitudinal data and time-to-event data with a Bayesian approach. We
considered a randomized clinical trial in which both longitudinal data and survival
data were collected to compare the efficacy and the safety of two antiretroviral drugs
in treating patients who had failed or were intolerant of zidovudine (AZT) therapy.
Using these data, we demonstrated the advantages of the Bayesian joint modeling
over the classical approach of separately analyzing these types of data with Cox
proportional hazard model and longitudinal linear mixed-effects model. We found
that the Bayesian joint modeling can better address information loss on outcome-
dependent missingness, which can preserve information from both longitudinal
data and time-to-event data. The Bayesian joint modeling can produce unbiased
estimates and retain higher statistical power for public health data analysis.

1 Introduction

In public health studies, we often collect different types of outcome data (i.e.,
responses) from each patient to address complex time-related research questions.
A typical example is when researchers wish to assess the trajectories of time-
varying phenomena (such as CD4 counts in HIV patients’ progression over multiple
years) and their connections to the time at which an event of particular interest
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occurred (e.g., death due to AIDS or dropout from the study). Traditionally, these
different responses are often analyzed separately with a mixed-effects model (such
as random-intercept and random-slope models) to estimate the longitudinal trends
response, and a Cox-type survival model to analyze the time-to-event data (e.g.,
AIDS-related death, or censoring due to dropout and termination of study) to
determine the hazard ratios [2, 23].

However, this traditional approach of analyzing the data independently has at
least three potential problems. First, separate analyses of the responses fail to realize
practical aspects of real-world situation, as it assumes that HIV patients’ CD4
trajectories necessarily evolve in isolation from eventual AIDS-related death and
censoring status. Second, separate analyses on a single outcome risks information
loss from the other outcome response, resulting in biased and inefficient estimation
of any intervention effectiveness [16]. Third, analysis of longitudinal outcomes
handles missing values inaccurately when the analysis fails to incorporate available
time-to-event data [2]. An optimal remedy to these challenges is to simultaneously
model these responses using a joint-modeling approach. It produces more efficient
estimates of treatment and intervention effectiveness.

Beginning in the early 1990s, HIV/AIDS clinical trials spurred the application
of joint models in applied research because of the urgency to simultaneously
understand the progression of CD4 lymphocyte count and its effect on patients’
survival [10, 11, 18]. In recent times, clinical trials and observational studies
widely use joint models. The increased usage is mainly due to advancements in
statistical modeling techniques, the development of open-source software [13], and
the fact that joint models provide “more powerful, accurate, efficient, and robust
estimations” ([23], p. 1) compared to the classical approach of separate Cox and
mixed-effect modeling [16, 17, 26]. Notwithstanding their increased use in health
research, joint models are still emerging in statistical and biostatistical modeling.

This chapter is then aimed to further stimulate interest in joint modeling and to
increase its application by providing an overview of the approach and its merits.
A demonstration on how to use the approach to analyze data from public health
clinical trials and intervention studies when longitudinal and time-to-event data is
made available. To demonstrate the application in real-world public health settings,
we re-analyze classical data from an HIV/AIDS study publicly available and used
by many authors such as Goldman et al. [12] and Guo and Carlin [13].

2 Data and Preliminary Data Analysis

In this study, both longitudinal data and survival data were collected to compare the
efficacy and safety of two antiretroviral drugs in treating patients who had failed or
were intolerant of zidovudine (AZT) therapy. In these data sets, 467 HIV-infected
patients met entry conditions (either an AIDS diagnosis or two CD4 counts of 300
or fewer, and fulfilling specific criteria for AZT intolerance or failure). The patients
were randomly assigned to receive either didanosine (ddI) or zalcitabine (ddC). CD4
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counts were recorded at study entry, and again at the 2-, 6-, 12-, and 18-month visits.
The times to death were also recorded.

The longitudinal CD4 data is available in R library JMbayes as a built-in data
frame named “aids” with 1408 observations on the following nine variables. The
nine variables are (1) “patient” as patients identifier for a total of 467 patients,
(2) “Time” as the time-to-death or censoring, (3) “death” as censoring indicator
with 0 denoting censoring and 1 death, (4) “CD4” as the CD4 measure which is
square-root transformed CD4 cells count to linearize the relationship between the
CD4 measures and the associated “obstime”, (5) “obstime” as the time points at
which the CD4 cells count was recorded, (6) “drug” as a factor with levels ddC
denoting zalcitabine and ddI denoting didanosine, (7) “gender” as a factor with
levels female and male, (8) “prevOI” as a factor with levels AIDS denoting previous
opportunistic infection (AIDS diagnosis) at study entry, and noAIDS denoting no
previous infection, (9) “AZT” as a factor with levels intolerance and failure denoting
AZT intolerance and AZT failure, respectively. Table 1 provides a sample of the
data format from the first three patients with ten measures. For example, the first
patient was censored (i.e., not dead with death = 0) at “Time” of 16.97 months.
Patient #1 was observed at baseline, 6-month, and 12-month with the square root of
CD4 counts of 10.68, 8.43, and 9.43, respectively. Patient #1 (gender is “male”)
was randomly assigned to “drug” of zalcitabine (i.e., ddC). Patient #1 previous
opportunistic infected (“prevOI”) and diagnosed with AIDS at study entry and was
AZT intolerance.

For survival analysis, the first row of each patient in this data was selected to
build a new data frame “aids.id”, which has 467 rows for the 467 patients.

We illustrate the longitudinal trend of the CD4 measure by plotting a line graph
for each of these 467 patients as shown in Fig. 1. In Fig. 1, the baseline CD4
measures are ranged from 0 to 20 with a similar range at 2-, 6-, 12-, and 18-
month visits (i.e., “obstime”). An examination of the trend for each patient reveals
that there is a reasonable linear relationship between CD4 measure and “obstime”.
These linear relations suggest different intercepts and different slopes across the 467

Table 1 Data format from the first three patients

Patient Time Death CD4 obstime Drug Gender prevOI AZT

1 16.97 0 10.68 0 ddC Male AIDS Intolerance
1 16.97 0 8.43 6 ddC Male AIDS Intolerance
1 16.97 0 9.43 12 ddC Male AIDS Intolerance
2 19.00 0 6.32 0 ddI Male noAIDS Intolerance
2 19.00 0 8.12 6 ddI Male noAIDS Intolerance
2 19.00 0 4.58 12 ddI Male noAIDS Intolerance
2 19.00 0 5.00 18 ddI Male noAIDS Intolerance
3 18.53 1 3.46 0 ddI Female AIDS Intolerance
3 18.53 1 3.61 2 ddI Female AIDS Intolerance
3 18.53 1 6.16 6 ddI Female AIDS Intolerance
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Fig. 1 Longitudinal trends for CD4 measures (square-root transformed CD4 counts) for the two
drug treatments

patients. This relation suggests a linear mixed-effects model with random intercepts
and random slopes to analyze the CD4 longitudinal measure data. In addition, there
are missing values due to death and dropouts. There are information for 467 patients
at baseline, for 368 patients at 2 months, for 310 patients at 6 months, for 226
patients at 12 months, and only for 34 patients at 18 months. These missing values
are mostly missing not at random (MNAR) due to death and dropout and thus typical
multiple imputation techniques cannot be directly applied. These longitudinal data
should be analyzed with the survival model (i.e., “Time” to death or censoring)
simultaneously with a joint-modeling framework.

3 Statistical Models

The development of joint modeling is to link time-dependent longitudinal obser-
vations (i.e., CD4 counts) time-to-event (i.e., time-to-death due to AIDS) to
simultaneously assess drug effects in HIV patients. The impact of the joint
modeling is motivated by the goal to produce a more efficient estimate than the
separate modeling the continuous response or the time-to-event, as the longitudinal
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observations are time-dependent and measured with error as dropouts are missing
not at random.

In the following subsections, an illustration of the use of joint modeling using
AIDS data with three competing models are presented: (a) separate analysis of
longitudinal continuous data on CD4 measures, (b) separate analysis of survival
data on time-to-death due to HIV/AIDS, and (c) joint modeling of longitudinal
continuous data and the analysis of survival data. We then present and juxtapose
the three models’ results to highlight the superiority of the joint model over the
classical longitudinal continuous data model and survival data model in dealing with
outcome-dependent missingness and retention of both longitudinal continuous data
and survival data.

3.1 Separate Modeling of Longitudinal Continuous Data

The trend of the CD4 over time trajectories consists of n = 467 in the AIDS study.
The observed response for patient i at time t is denoted by yi(t), i = 1, . . . n; and
t = 1, . . . Ti. These observed responses are continuous in nature where

yi(t) = mi(t)+ εi(t),

with mi(t) represents the true mean at time t for patient i, and εi(t) represents the
random error, which is assumed to be N(0, σ2). The true mean, mi(t), is defined in a
linear mixed-effects model as x′

i (t)β + z′i (t)bi where

yi(t) = mi(t)+ εi(t) = x′
i (t)β + z′i (t)bi + εi(t). (1)

In Eq. (1), x′
i (t)β is the fixed-effects component linked to the unknown fixed-

effects parameter, β (e.g., such as drug effectiveness) and z′i (t)bi is the between-
patient random-effects component with a parameter of bi. This mixed-effects model
is common among public health researchers who model longitudinal continuous
data. Such mixed-effects models are available in several R packages, primarily nlme
[19] and lme4 [1]. Extensive literature exists on model specifications and parameter
estimation in mixed-effects models using the maximum likelihood estimation [13–
15]. The syntax used to compute the linear mixed-effects model in the R statistical
programming language and computing environment is as follows:

R> lmeFit.aids = lme(CD4 ~ obstime + drug, random = ~ obstime |patient, data
= aids)

R> summary(lmeFit.aids)
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3.2 Separate Modeling of Time-to-Event Data

In modeling the time-to-event data (time-to-death due to AIDS), let Ti denote the
observed time (“Time” in Table 1) for the ith patient; δi (“death” in Table 1) is the
censoring indicator that takes the value 1 if the patient is dead and 0 if otherwise.
Therefore, the observed time-to-event data consist of the pairs {(Ti, δi), i = 1, . . . n}.
The typical statistical approach to modeling time-to-event data is to use survival
model with Cox proportional hazards regression [9], where the hazard function
[h(t)] consists of two parts. The first part focuses on the underlying baseline hazard
function [h0(t)] to describe how the risk of event (death due to AIDS) per time
unit changes over time at baseline levels of the covariates. The second part of the
effect parameters, γ, describes how the hazard varies in response to explanatory
covariates, w (drug effect and other covariates, etc.) where:

h (t |w) = h0(t)exp (w, γ ) . (2)

The computation around this model can be obtained in R with the survival
package [25]. The R code used for this Cox proportional hazards regression is:

R> survFit.aids = coxph(Surv(Time, death) ~ drug, x = TRUE, data = aids.id)
R> summary(survFit.aids)

3.3 Joint (Simultaneous) Modeling of Longitudinal
Continuous Data and Time-to-Event Data

A joint model is proposed to address the effect on CD4 data simultaneous with the
time-to-death due to HIV/AIDS. The joint modeling consists of the longitudinal
continuous outcome, yi(t), for patient i at time t in Eq. (1) and the time-to-event
data (Ti, δi), based on the hazard ratio in Eq. (2). The standard approach to achieve
this joint modeling is to extend the hazard risk model in Eq. (2) to incorporate the
history of longitudinal outcome from the time of enrollment to the time the child
achieves permanency, which is denoted as �(t) = {m(u), 0 ≤ u < t}, Therneau and
Grambsch [24]. Thus, the full joint model is

h
(
t |�(t), w) = h0(t) exp (w, γ + αmi(t)) . (3)

The extra parameter α in Eq. (3) quantifies the effect of the underlying longitudi-
nal CD4 outcome on the risk of death for every additional unit increase in the CD4
measure. In the R program output, the α parameter is labeled Assoct.

Parameter estimation on this joint modeling can be obtained using a semipara-
metric maximum likelihood estimation method [14, 15, 27], and implemented by
Rizopoulos’ [20, 21] with the R JM package.
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A Bayesian perspective to estimate the parameters in the joint modeling was
implemented by Rizopoulos [22] in his R package JMbayes for fitting the joint
models under a Bayesian approach using Markov Chain Monte Carlo (MCMC)
algorithms. This R package is useful in fitting a wide range of joint models both for
longitudinal continuous and categorical responses. Under the Bayesian approach,
the posterior distribution of the model parameters is derived under the assumptions
that given the random effects both the longitudinal and event time process are
assumed independent, and the longitudinal responses of each subject are assumed to
be independent. The detailed theoretical derivation is illustrated by Rizopoulos [22].
In this chapter, we use the JMbayes package and the following syntax to demonstrate
the joint model for the CD4 longitudinal continuous responses and the time-to-death
for HIV/AIDS response for patients:

R> jointFit.aids <- jointModelBayes(lmeFit.aids, survFit.aids, timeVar =
“obstime”)

R> summary(jointFit.aids)

This R code runs MCMC for 20,000 iterations but can be changed to any other
number of iterations for better convergence for the joint model with the R objects
from executing the R codes for the linear mixed effects (i.e., lmeFit.aids) and Cox
proportional hazards models (i.e., survFit.aids).

4 Results

4.1 Results from Separate Linear Mixed-Effects Model on CD4
Longitudinal Data

To analyze the longitudinal continuous CD4 data, an examination of the graphical
relation between the CD4 measure and the number of months was made. Figure 1
shows that the CD4 measures have no easily determined pattern: Some patients
have increasing CD4 measure, some have decreasing measure, and others have
more no fixed pattern. However, a linear trend seemed reasonable, so we used the
linear mixed-effects (LME) model in (1) with the R package nlme to investigate the
longitudinal CD4 trend along with the observed time in months from the baseline to
18 months.

In using model selection to identify the best longitudinal model for these data,
we fit four models:

• Model 1: random-intercept LME with interaction between “obstime” and “drug”.
• Model 2 random-intercept LME without interaction between “obstime” and

“drug”.
• Model 3 random-intercept and random-slope LME with interaction between

“obstime” and “drug”.
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Table 2 Model selection statistics for longitudinal linear mixed-effects models

Model Random effects Interaction df AIC BIC logLik L.Ratio p-value

1 Only intercept Yes 6 7170.67 7202.16 −3579.34
2 Only intercept No 5 7168.85 7195.09 −3579.43 0.182 0.670
3 Intercept and slope Yes 8 7135.44 7177.42 −3559.72
4 Intercept and slope No 7 7133.91 7170.65 −3559.96 0.476 0.490

• Model 4 random-intercept and random-slope LME without interaction between
“obstime” and “drug”.

As summarized in Table 2, we first compare the random-intercept LME models
(i.e., Model 1 vs. Model 2). A comparison between Model 1 and Model 2 with
the likelihood ratio chi-square test, we found that the Model 2 is not statistically
significantly different from the Model 1. The difference in the likelihood ratio
statistic is 0.182 and the p-value is 0.670. The AIC and BIC for the Model 2 are
smaller than those in the Model 1. This means that Model 2 would be preferred
based on the principle of model parsimony with less parameters (i.e., no interaction)
among the random-intercept LME models.

Similarly, among the two random-slope LME models (i.e., Model 3 vs. Model
4), Model 4 is preferred due to non-significance of the likelihood ratio test, less AIC
and BIC, as well as model parsimony as seen in Table 2.

To determine which model is preferred among the Model 2 and Model 4,
we can get that the likelihood ratio statistic is 38.9373 (i.e., 2*(−3579.43-
(−3559.96) = 38.9373) with two degrees of freedom (i.e., 7–5 = 2), which gives
the p-value of <0.0001. This suggest that the Model 4 (i.e., random-slope LME
without interaction) is a better fit than the Model 2 (i.e., random-intercept LME
without interaction). In addition, the AIC and BIC for Model 4 (i.e., AIC = 7133.91
and BIC = 7170.65) are smaller than those for Model 2 (i.e., AIC = 7168.85
and BIC = 7195.09), which further confirmed that the random-slope LME model
without “obstime” and “drug” interaction is the best model among the four LME
models to fit the longitudinal CD4 measure data.

The results for the best LME model (i.e., Model 4 in Table 2) for the longitudinal
CD4 measure is presented in Table 3 (left side, titled “Separate linear mixed-
effects model”). With this Model 4, the estimated intercept parameters β̂0= 6.918
(SE = 0.308; p < 0.001), slope parameter for time trend β̂1= −0.149 (SE = 0.015;
p < 0.001), and the slope parameter for the “drug” effect β̂2= 0.549 (SE = 0.433;
p < 0.205). In summary with the separate longitudinal LME modeling, we found
a statistically significant overall declining trend for CD4 measure for these 467
patients. However, the “drug” effect is not statistically significant to the CD4
measures.

The mixed-effects model treats missing values from the longitudinal CD4 as
missing at random. This is an unreasonable assumption as these missing values
originate from the HIV/AIDS patients which could be a result of death or dropout.
Those missing CD4 responses are not missing at random as we know their missing
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Table 3 Summary of the results from the two separate models and the joint models

Separate modeling of longitudinal and survival data Joint modeling

Separate Cox proportional hazards regression model Survival component

Coef. SE P-value Coef. SE P-value
Drug(ddI) 0.210 1.234 0.151 0.328 0.003 0.089

Separate linear mixed-effects model Longitudinal component

Coef. SE P-value Coef. SE P-value
Intercept 6.918 0.308 <0.001 6.949 0.008 < 0.001
obstime −0.149 0.015 <0.001 −0.227 0.001 < 0.001
Drug(ddI) 0.549 0.433 0.205 0.497 0.011 0.264

mechanism on when they died, and therefore treating them as missing at random
in this mixed-effects longitudinal model is erroneous and can produce biased
estimates.

4.2 Results of Separate Cox Proportional Hazards Regression

Of the 467 patients, there are 237 randomly assigned to ‘drug = ddC’ and 230 to
‘drug = ddI’. There are 88 deaths of the 237 patients in ddC and 100 deaths of
the 230 patients in ddI. The time-to-death data is analyzed using Cox proportional
hazards regression in Eq. (2) to determine the drug effects. We found it statistically
non-significant with an estimated log hazard rate of 0.210 (SE = 1.234, p = 0.151),
which is presented in Table 3 (left side, titled as “Separate Cox proportional hazards
regression model”). The estimated survival function can be seen in Fig. 2 and it
can be seen that the estimated survival functions for these two drugs are very close
together without much difference.

4.3 Results of Joint Modeling of Longitudinal CD4
and Time-to-Death

The joint modeling of longitudinal responses of CD4 measure and time-to-death
data involves integrating the models in (3) and (4). The model is used to test the
hypothesis that the CD4 measures are associated with time-to-death, as it pertains
to the type of drug.

The parameters of the joint model can be estimated through MCMC for 20,000
iterations with the R objects from the linear mixed-effects (lmeFit.aids) and
Cox proportional hazards models (survFit.aids). A graphical representation of the
MCMC runs for the longitudinal component of joint modeling are displayed in
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Fig. 2 Estimated survival functions for the two drug treatments

Fig. 3. Similar plots are available for other parameters. Figure 3 demonstrates
convergence in the MCMC series.

The estimated parameters for the joint longitudinal component and survival
component are summarized in Table 3 (right side). The standard errors are smaller
than in the separate models. This suggests that the joint model presents more
efficient estimates. As a result, the drug effect parameter estimateis more statistically
significant.

In particular, the posterior estimates in the joint model for the association
parameter “Assoct” is −0.294 (SE = 0.003, p-value < 0.001) and 95% Bayesian
credible interval is (−0.378, −0.207). This result provides strong evidence of an
association between the two submodels (longitudinal component on CD4 measure
and time-to-death due to HIV/AIDS). This indicates that a patient’s survival status
is significantly related to the longitudinal characteristics of the CD4 which are
specified at the initial CD4 level and the rate of CD4 changes. This finding is
clinically logical since higher CD4 counts are typically linked with better health
status and patients with a more rapid decline in CD4 counts would be expected to
have a poorer health condition and less survival probability.
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Fig. 3 MCMC illustration for the parameters in the longitudinal CD4 component

5 Conclusions and Recommendations

In this chapter, data from an HIV/AIDS are used to demonstrate the merits of the
joint modeling of longitudinal continuous data and time-to-event data simultane-
ously. The joint-modeling approach has several advantages over separate modeling,
both fundamentally and practically.

Fundamentally, the joint-modeling framework incorporated time-to-event data
into the observed longitudinal CD4 measurements to mitigate the impact of missing
CD4 values due to patient death/dropout. Historically, when applying mixed-effects
modeling, the death/dropouts in longitudinal data are treated as missing at random,
thus justifying the need for multiple imputations. However, such an approach is
flawed in these data, and the failure to detect and address such errors leads to biased
estimates and, in some cases, wrong conclusions for public health policymakers
and practitioners. We present a joint-modeling framework that is more logically
consistent with study designs that dually track time-to-event and longitudinal
outcome data while addressing missing data.

Practically, the joint-model framework has higher statistical power to detect an
effect or a relationship when one truly exists in survival models [2, 21, 23]. In the
analysis of the HIV/AIDS data, the efficiency of the joint-modeling framework was
evident in the incorporation of the longitudinal measures and the survival model.
The joint modeling of data increases the statistical power to detect the predictive role
of CD4 trajectories in understanding the survival structure of time-to-death due to
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AIDS. Such higher statistical power has cost implications in that greater efficiency
requires smaller sample sizes.

Given the benefits of the joint-modeling framework, we recommend that when
designing clinical trials and public health intervention studies to understand treat-
ment effects on time-to-event data, researchers should incorporate longitudinal
data. The joint models properly handle outcome-dependent missingness, but they
also potentially allow researchers to achieve higher statistical power even when
sample sizes are small. Researchers should endeavor to collect time-to-event data
so that the missing data from longitudinal measurements can be addressed and
statistically modeled. Joint modeling is in the direction of emerging data pooling
and harmonization practices, where Bayesian approaches are commonly used to
incorporate multiple data sources [3–8].
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