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Abstract. Inferential models (IMs) are used to quantify uncertainty
in statistical inference problems, and wvalidity is a crucial property that
ensures the IM’s reliability. Previous work has focused on validity in
the special case where no prior information is available. Here I allow for
prior information in the form of a non-trivial credal set, define a notion
of validity and investigate its implications.
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1 Introduction

In statistical inference, there are two dominant schools of thought: Bayesian
and frequentist. The most significant difference between the two is that the for-
mer quantifies uncertainty about unknowns in a formal way, using the classi-
cal/ordinary/precise probability theory, while the latter does so in a less for-
mal way, focusing on procedures—hypothesis tests, confidence sets, and other
decision rules—that have appropriate control on their error rates. Numerous
attempts, with different motivations, have been made to reconcile the two frame-
works, including fiducial inference (e.g., Fisher 1935) and Dempster’s extension
(e.g., Dempster 1968), structural inference (Fraser 1968), generalized fiducial
(Hannig et al. 2016), and confidence distributions (Schweder and Hjort 2016).
Modern developments in this area are largely focused on the construction of
data-dependent (precise) probability distributions from which procedures having
frequentist error rate control properties (at least approximately) can be derived.

A different thread of work has focused on the development of data-dependent,
imprecise probabilities that have a certain calibration or validity property
designed to ensure that inferences drawn based on the magnitudes of the (lower
and upper) probabilities would be reliable in a frequentist sense. Although ideas
along similar lines appeared earlier in Balch (2012), to my knowledge, the first
formal definition of walidity and construction of an imprecise probability that
achieves it was given in Martin and Liu (2013) and, later, in Martin and Liu
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(2015); see, also, Martin (2019). Their construction of a valid inferential model
(IM) makes use of random sets and, therefore, the imprecise probabilities take
the form of (consonant) belief functions (Shafer 1976). These and other efforts
to construct calibrated belief functions are surveyed in Denoeux and Li (2018).

In the spirit of de Finetti (1937), the focus in the imprecise probability liter-
ature is largely on the behavioral interpretation of the lower and upper probabil-
ities; see Walley (1991) and Troffaes and de Cooman (2014). In particular, what
minimal conditions on the mathematical structure of those lower and upper
probabilities, treated as bounds on the prices an agent sets for gambles, are
needed to protect him from sure loss? Since these coherence properties concern
the internal reliability of the lower and upper probabilities, while the aforemen-
tioned validity property concerns a sort of external reliability, it makes sense to
investigate the connections between the two.

After some brief background in Sect.2, I give a definition of validity that
is more general than those presented in the references above, and investigate
its consequences in Sect. 3. In particular, I allow for available prior information
in the form of a credal set—a collection of prior distributions—and present a
definition of validity in such cases; previous work focus on the case where the
credal set contains all possible priors. The motivation behind this extension
is two-fold. First, the introduction of prior information brings the formulation
closer to the subjective approach of de Finetti and Walley, where it’s natural
to consider behavioral implications, and I show in Proposition 2 that an agent
adopting a pricing scheme based on lower and upper probabilities derived from
a valid IM avoids sure loss. Second, in modern statistical problems involving
high-dimensional unknowns, it’s often believed that there’s an underlying low-
dimensional structure. These beliefs can be quantified using a set of prior distri-
butions, so it’s important to understand how the notion of validity might extend
to such cases. I show that generalized Bayes is valid in the sense I defined. I also
claim that a variation of Dempster’s generalization of Bayesian inference would
be valid too, but a precise statement and proof will be presented elsewhere.

However, it’s important to emphasize that an IM being valid does not neces-
sarily make it “good.” For example, the IM could be inefficient in the sense that
validity is achieved in a trivial way and the inferences drawn are not practically
useful. In certain cases, especially those where little or no reliable prior infor-
mation is available, there are other constructions—including one from Walley
(2002) and one I refer to as “p-value + consonance”—that are more efficient
without sacrificing efficiency. In cases where reliable prior information is avail-
able, efficiency can be gained by taking this into account. An open question
is how to incorporate prior information so that both validity and this gain in
efficiency is realized; see Cella and Martin (2019) for some first thoughts.

Finally, I present a notion of strong validity, which allows for a practically
relevant uniformity over assertions, and I show that the approach advocated for
in Martin (2019) and elsewhere achieves this stronger notion of validity and is
also efficient, at least in the case of a vacuous prior.

For the sake of space, many details have been omitted. The full-length version
(Martin 2021b), still in progress, contains proofs and more.
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2 Problem Setup

Let Y denote observable data taking values in a sample space Y; note that the
sample space is general, so the data could be a vector, a matrix, etc. Next, con-
sider a statistical model, & = {Py : § € O}, a family of probability distributions
on Y indexed by the parameter space @, which too is general. The goal is to
quantify uncertainty about 6 based on the observed data Y = y.

Prior information about € might available in the form of a (closed and
convex) credal set 2 of prior distributions @ for 6. The “size” of 2 con-
trols the prior’s precision, with 2 = {Q} being the most precise and 2 =
{all probability distributions} being the least. These two extreme 2’s are spe-
cial: the former is classical Bayes while the latter matches the frequentist setup.

By uncertainty quantification, here I mean a data-dependent (precise or
imprecise) probability distribution defined on a collection A of subsets of 6.
I will associate a subset A € A with an assertion about the unknown, i.e., both
A and “0 € A” will be called an assertion. Since the goal is to have something
like a posterior distribution for 6, here I'll take A to be the Borel o-algebra on
O.

Following Martin (2019), define an inferential model (IM) as a mapping from
data y, model &, and prior information 2 to a pair of lower and upper probabil-
ities (11, IT,) defined on A. T'll interpret IT,(A) and IT,,(A) as the y-dependent
belief in and plausibility of the assertion A, respectively. It will be assumed
throughout that y ~— IT,(A) is Borel measurable for all A € A.

In the imprecise probability literature, it is common to give the lower and
upper probabilities a behavioral interpretation. Imagine a situation where, after
data Y = y has been observed, the value of 6 will be revealed and any gambles
made on the truthfulness/falsity of assertions could be settled. Then the (sub-
jective/personal) behavioral interpretation of my (data-dependent) lower and
upper probabilities are

11,(A) = my maximum buying price for 1(6 € A)
11,,(A) = my minimum selling price for 1(6 € A).

Here and in what follows, 1(E) denotes the indicator function of the event E.
This behavioral interpretation, and one’s clear desire to avoid being made a sure
loser imposes certain constraints on the mathematical structure of the lower
and upper probabilities. However, as I mentioned in Sect. 1, these mathematical
constraints do not provide any assurance that the lower and upper probabilities
are reliable in a statistical sense.

3 Statistical Properties

3.1 Validity

As discussed above, motivated by the behavioral interpretation, the imprecise
probability literature mainly focuses on coherence. For data analysts on the
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front lines, the ones crunching the numbers behind real-world decisions, this
kind of internal rationality is important. From the perspective of a statistician
who is developing methods for front-line data analysts to use off-the-shelf, there
are other considerations. The only reason someone might use my method for
their analysis is that they believe it’s reliable, that it “works” in some specific
sense. This goes beyond the internal rationality of coherence—lots of things that
are coherent won’t “work”—and this external rationality is what I call validity.
A formal definition, more general than those in Martin and Liu (2013; 2015)
and Martin (2019; 2021a), and its immediate consequences are below. These
results extend the ideas developed by Cella and Martin (2020) in the context of
prediction to cover the statistical inference problem.

First some additional notation. For the distribution Py of Y and a prior )
for 6, let Pg denote the corresponding marginal distribution for ¥ and @, the
corresponding conditional distribution of 8, given Y = y. Next, for a Q € 2, let
Mg denote the joint distribution of (Y, #) under the corresponding Bayes model.
Similarly, let Mo denote the image of 2 under Q — Mg, and M, and Mo
as the lower and upper envelopes, respectively, corresponding to the assertion-
wise infimum and supremum of Mq over @ € 2. So, if E is any (appropriately
measurable) joint event about (Y, #), then the upper probability M o (E) can be
expressed more concretely as

Mo(E) = sup / / 1{(y.0) € E} Py(dy) Q(db)

Qe2

= sup [[ 11(.6) € E} @, (a8) Po(dy).

Qe2

Similarly, there is a corresponding lower probability, M , that simply replaces
the supremum above with an infimum, but this will not be used here.

Definition 1. An IM (IIy,Ily) is valid, relative to (2,2), if either (and,
hence, both) of the following equivalent conditions holds:

Mo{Ily(A) <a,0 € A} <a, for alllo, A) € [0,1] x A, (1)
Mo{lly(A)>1—-a,0¢ A} <a, forallla, A) €[0,1] x A. (2)

The equivalence of (1) and (2) follows from the duality ITy (A) = 1— I, (A°)
and the “for all A” part of the conditions. The intuition behind this notion of
validity is as follows. In applications, the data analyst will use the magnitudes
of the IM’s lower and upper probabilities to decide if the data support various
assertions about 0. Of course, large values of IT, (A) support the truthfulness of
A and small values ITy (A) support the truthfulness of A¢. So the events

{(y,0) : y(A) <a,0€ A} and {(y,0): I, (A)>1—-a,0¢ A}

are situations when an erroneous conclusion may be made—or gamble may be
lost—and the validity property controls the probability of these undesirable
events, thus making the IM’s uncertainty quantification reliable.
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That this is a generalization of the valid inference framework presented in,
say, Martin (2021a Definition 2), can be seen by considering the case where 2
is the set of all probability distributions on ©. In that case, validity in the sense
of (1) reduces to

sup Pp{Ily(A) < a} < a, forall(a,A) € [0,1] x A,
0cA

which is precisely the definition of validity in Martin (2021a).

A very basic requirement is that validity ought to imply that statistical pro-
cedures derived from the IM have certain error rate control guarantees. Propo-
sition 1 below makes this precise.

Proposition 1. Let (IIy, ITy) be a valid IM in the sense of Definition 1. Then
the following error rate control properties hold.

1. A hypothesis testing rule that says reject ‘9 € A”iff IIy (A) < « satisfies
M g{test rejects andd € A} < a.
2. The set Co(y) = (WA € A: 1L, (A) > 1~ a} satisfies
Mo{CalY) %0} < a (3)

For some intuition about these results, consider two important (extreme)
special cases corresponding to the traditional frequentist and Bayes approaches.
For the frequentist case, where 2 is all possible distributions, (3) immediately
reduces to the familiar non-coverage probability bound, supy Po{Cy(Y) Z 0} <
a, which is satisfied if C,, is a 100(1 — «)% confidence region in the traditional
sense. Next, for the purely Bayes case, where 2 is a singleton {Q}, M o corre-
sponds to a specific joint distribution of (Y, #) and (3) is the condition automat-
ically satisfied when C,, is the 100(1 — «)% posterior credible region.

Validity not only has implications for the operating characteristics of pro-
cedures derived from the IM, it also has behavioral implications. Proposition 2
below can be interpreted as saying that wvalidity implies no sure loss. Avoid-
ing sure loss is related to the aforementioned coherence properties (e.g., Walley
1991, Sect. 6.5.2), establishing a new perspective on validity compared to what
had been discussed in previous works. This helps solidify the intuition that a
procedure which is externally reliable shouldn’t be internally irrational. The
results below focus on the upper probability IT,; there are analogous properties
expressed in terms of the corresponding lower probability /7.

Proposition 2. If an IM (Ily, IIy) satisfies

st;pﬁy(A) <Q(A) = érelfg Q(A) for some A, (4)

then it’s not valid, relative to (£,2), in the sense of Definition 1.
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A closer look at the validity property (1) reveals a relatively simple sufficient
condition, namely, dominance. Indeed, by the iterated expectation formula,

Mo{lly(A)<a,0€ A} = s / H{IT,(A) < a} Qy(A) Po(dy),  (5)

so if IT,(A) > Qu(A) for all y, all A € A, and all Q € 2, then it follows
immediately that (1) holds. But bounding an integral doesn’t require uniform
bounds on the integrand, it’s enough for the above dominance to hold in an
average sense. The following proposition makes this precise.

Proposition 3. If the IM (ILy, Iy satisfies the following dominance property,
A

sup /gyi() Po(dy) <1, for all A, (6)
ez 1I,(A)

then it’s valid, relative to (2, 2), in the sense of Definition 1.

_An immediate consequence of Proposition 3 and the preceding discussion,
if 1T, is the upper envelope in the generalized Bayes rule (e.g., Walley 1991,
Sect. 6.4), that is, if

I, (A) = Q,(A) = s Q(Ay), (7)

then (6) holds and, therefore, so does validity in the sense of Definition 1. So
the conservatism built in to the generalized Bayes rule, motivated by subjective
coherence properties, is sufficient to achieve validity as well.

This also sheds light on what kinds of IM (likely) are not valid in the sense
of Definition 1. For example, consider an approach like that described in Demp-
ster (2008), where independent random sets/belief functions for §—one based
on prior information, the other based on data and statistical model—are com-
bined, via Dempster’s rule, to produce an IM (IIy,II,). The probability inter-
vals [IIy-(A), ITy(A)] obtained by Dempster’s rule tend to be narrower than
those corresponding to the generalized Bayes lower and upper envelopes (e.g.,
Kyburg 1987, Theorems A.3 and A.6). So, while I don’t yet have a concrete
counter-example at this time, the above sufficient condition generally doesn’t
hold, hence validity is questionable.

It’s important to emphasize that dominance in the sense of (6) above is
a sufficient but not necessary condition for validity. Indeed, there are other IM
constructions besides the generalized Bayes lower/upper envelopes that are valid.
One such construction is discussed below. Another is the combination of the
prior-free IM for € constructed in Martin and Liu (2015) with a prior belief
function for 6 via Dempster’s rule; there’s insufficient space to describe this
here, so I'll present the result in a follow-up paper.

It’s also worth emphasizing that validity, on its own, doesn’t make the IM
“good”—it may happen that (6) is achieved in a trivial way, which is not prac-
tically useful. For example, if the credal set 2 is large, then the upper envelope
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(7) in the generalized Bayes rule could be close to 1, for all/many A’s, and then
the inference would not be informative. So, beyond validity, it is necessary to
consider the IM’s efficiency.

3.2 Efficiency

As pointed out above, it’s easy to see that the generalized Bayes solution is valid
but perhaps in an inefficient, even trivial way. So, in a certain sense, the strong
coherence properties satisfied by the generalized Bayes solution come at the cost
of statistical efficiency. Since that formulation using lower and upper envelopes
is only a sufficient condition for validity, there is an opportunity to find a more
efficient solution, which is the focus of this subsection.

Towards finding a more efficient solution, let’s consider a different strategy.
If it can be shown that the IM’s upper probability satisfies

sgp Py{Ily({0}) < a} <a, forall acl0,1], (8)

then validity in the sense of Definition 1 holds by monotonicity:
IIy({0}) <a = IIy(A) < aforall A> 6. (9)

The condition in (8) is (roughly) what Walley (2002) calls the fundamental
frequentist principle, or FFP; Walley’s version says “a € [0,a],” for @ < 1. He
then constructs an IM based on generalized Bayes applied to a special but broad
credal set of the form 2w = (1 — ) Qo + € Zan, where Qo is a fixed prior
distribution on @, 2, is the set of all priors on @, and ¢ € (0, %) Walley shows
that the IM with upper probability II, = @y, with supremum over the special
Dy, satisfies FFP which, for all practical purposes, implies validity in the sense
of Definition 1 for all 2, not just 2y . Most importantly, Walley’s solution is
far more efficient than, e.g., using generalized Bayes directly on 2,;. However,
as Walley notes, this solution is still inefficient in the sense that its plausibility
intervals tend to be wider than classical confidence intervals.

A second option, more in line with the approach in Martin and Liu (2015) and
Liu and Martin (2020), is as follows. Suppose one can find a function m, : © —
[0,1] with the property that the random variable 7y () satisfies the stochastic
inequality in (8). This is precisely the property that typical p-values satisfy, so
these functions are quite common. If that function also satisfies supg 7, (6) = 1
for all y, then I can construct an IM whose upper probability is given by

II,(A) =supm,(d), Ae€A
0cA

Under this construction, IT, is a consonant plausibility function (Shafer 1976)
or, equivalently, a possibility measure (Dubois and Prade 1988; Hose and Hanss
2021), and m, is its corresponding plausibility contour. I'll refer to this below as
the “p-value + consonance” IM construction. It’s easy to show that, like Walley’s
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above, this IM is valid in the sense of Definition 1 for any 2. However, this app-
roach is generally more efficient than Walley’s. For example, in a normal mean
problem, Walley’s plausibility interval has width of the order (log n)l/ 2172,
whereas the p-value 4+ consonance intervals like in Martin and Liu (2015) have
width of the order n=1/2, just like classical confidence intervals.

A subtle point is that the meaning of “efficient” varies by the context. For
example, when 6 is relatively low-dimensional, the IM based on the construc-
tion in Martin and Liu (2015) is guaranteed to be valid and would generally be
efficient. However, if # is high-dimensional, then the same IM would tend to be
inefficient. This is a sort of “curse of dimensionality” —increasing the dimension
0 tends to inflate the plausibility function. More efficient solutions are possible
when, as is typical in high-dimensional inference problems, there is an underly-
ing low-dimensional structure. Combining this assumed low-dimensional struc-
ture/prior information with the data in an appropriate way would lead to a valid
IM with improved efficiency compared to the no-prior IM. An open question is
how to quantify and then incorporate that structural information so that both
validity and efficiency are achieved? This will be answered elsewhere.

3.3 Strong Validity

While the validity condition in Definition 1 seems strong in the sense that it
requires the inequalities (1-2) to hold for all assertions A, there is another sense
in which it is too weak. In a gambling scenario, the agent will advertise his
buying and selling prices based on his specified IM (I, ITy), depending on
data Y, and his opponents can decide what, if any, transactions they’d like to
make. If the opponents also have access to data Y, then surely they will use that
information to make a strategic choice of A in order to beat the agent. If the
opponents can use data-dependent assertions, then it’s not enough to consider
the assertion-wise guarantees provided by Definition 1—some kind of uniformity
in A is required. This scenario is not so far-fetched. Imagine a statistician who’s
developing a method for the applied data analyst to use. If the statistician can
prove that his method satisfies (1-2), then his method is reliable for any fixed
A. But what if the data analyst peeks at the data for guidance about relevant
assertions? Without some uniformity, validity cannot be ensured in such cases.
With this in mind, consider the following stronger notion of validity.

Definition 2. An IM (Il IIy) is strongly valid, relative to (2, 2), if
Mo {Ily(A) < a for someA > 0} < a, for alla € [0,1] (10)
M o{Ily(A) >1—a for some AZ 0} <a, foralla€0,1]. (11)

Both Walley’s and the p-value + consonance IM construction above achieve
validity quite easily, arguably too easily. Perhaps this stronger notion of validity,
with uniformity in A, is “just right.” Indeed, it is not difficult to show that

II,(A) < afor some A>3 60 < II,({0}) <. (12)
If the IM satisfies (8), which is akin to Walley’s FFP, then strong validity follows.
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Proposition 4. If the IM’s upper probability ITy satisfies (8), then the strong
validity property in Definition 2 holds for any 2.

The fact that the p-value + consonance construction presented here achieves
strong validity and is generally more efficient than Walley’s clever neighbor-
hood model construction suggests that the former might be the “right” type
of construction, and that IMs having this consonant structure are fundamental
for statistical inference. I hope to present verification of these latter claims in
follow-up work.

4 Conclusion

In this paper, I've investigated some more general version of the validity prop-
erty first put forward in Martin and Liu (2015). An overarching goal of this and
other ongoing work is to better understand the spectrum between the classi-
cal Bayesian setup with a single precise prior and the frequentist setup whose
“prior” is completely imprecise/vacuous indexed by the level of imprecision, i.e.,
the size/complexity of 2. Previous work had focused primarily on the latter fre-
quentist setup and this paper gives a definition of validity that could be applied
across a range of different precision levels in 2.

The conclusion I draw from Proposition 4 above is that the p-value + con-
sonance construction can be used to achieve (strong) validity for every 2 and
that, in a certain yet-to-be-formalized sense, is the “best” in the frequentist
setup with a vacuous Z; see, also, Martin (2021a). But this doesn’t directly
address the question of how to use genuine prior information in a non-extreme
2 in a way that’s both valid and efficient. Proposition 3 provides some minimal
guidance, in particular, it says that generalized Bayes is a valid IM, but more
investigation into its statistical efficiency is needed.
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Matthias Troffaes for helpful discussions, and to three anonymous conference program
committee members for their feedback on a previous version.
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