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Preface

The theory of belief functions, also referred to as evidence theory or Dempster-Shafer
theory, was first introduced by Arthur P. Dempster in the context of statistical infer-
ence, and was later developed by Glenn Shafer as a general framework for modeling
epistemic uncertainty. These early contributions have been the starting points of many
important developments not only in statistics but also in computer science and engi-
neering. The theory of belief functions is now well established as a general framework
for reasoning with uncertainty, and has well-understood connections to other frame-
works such as probability, possibility, and imprecise probability theories. It has been
applied in diverse areas such as machine learning, information fusion, and pattern
recognition.

The series of biennial International Conferences on Belief Functions (BELIEF),
sponsored by the Belief Functions and Applications Society, are dedicated to the
confrontation of ideas, the reporting of recent achievements, and the presentation of the
wide range of applications of this theory. The first edition of this conference series was
held in Brest, France, in 2010. Later editions were held in Compiègne, France, in 2012,
Oxford, UK, in 2014, Prague, Czech Republic, in 2016, and again in Compiègne,
France, in 2018. The 6th International Conference on Belief Functions (BELIEF 2021)
was held in Shanghai, China, during October 15–19, 2021, together with the 1st
International Conference on Cognitive Analytics, Granular Computing, and Three-way
Decisions (CCGT 2021). Such a joint meeting promotes interactions and discussions
between different communities working on different aspects of uncertainty theories. It
was held both onsite and online due to the COVID-19 situation.

This volume contains the proceedings of BELIEF 2021. It contains 30 accepted
submissions, each reviewed by at least three reviewers. Original contributions were
solicited on theoretical aspects (including, for example, mathematical foundations,
statistical inference) as well as on applications in various areas including classification,
clustering, data fusion, image processing, and so on.

We would like to thank all the people who made this volume and this conference
possible: all contributing authors, the organizers, and the Program Committee members
who helped to build such an attractive program. We are especially grateful to our four
invited speakers, Chunlai Zhou (Renmin University) for his talk “Basic Utility Theory
for Belief Functions”, Deqiang Han (Xi’an Jiaotong University) for his talk
“Learning-based Modelized Methods for Evidence Combination”, Zengjing Chen
(Shandong University) for his talk “A Central Limit Theorem for Sets of Probability
Measures”, and Van-Nam Huynh (Japan Advanced Institute of Science and Technol-
ogy) for his talk “Machine Learning Coupled with Evidential Reasoning for User
Preference”. We would also like to thank all our generous sponsors: Elsevier and the
International Journal of Approximate Reasoning, as well as the International Society
for Information Fusion (ISIF). Furthermore, we would like to thank the editors of the



Springer-Verlag series Lecture Notes in Artificial Intelligence (LNCS/LNAI) and
Springer-Verlag for their dedication to the production of this volume.

August 2021 Thierry Denœux
Eric Lefèvre
Zhunga Liu

Frédéric Pichon
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Fast Unfolding of Credal Partitions
in Evidential Clustering

Zuowei Zhang1,2, Arnaud Martin2(B), Zhunga Liu1, Kuang Zhou3,
and Yiru Zhang4

1 School of Automation, Northwestern Polytechnical University, Xi’an, China
zuowei zhang@mail.nwpu.edu.cn, liuzhunga@nwpu.edu.cn

2 Univ Rennes, CNRS, IRISA, Rue E. Branly, 22300 Lannion, France
Arnaud.Martin@univ-rennes1.fr

3 School of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an, China

kzhoumath@nwpu.edu.cn
4 Department of Computer Science, St. Francis Xavier University,

Antigonish, Canada

Abstract. Evidential clustering, based on the notion of credal partition,
has been successfully applied in many fields, reflecting its broad appeal
and usefulness as one of the steps in exploratory data analysis. However,
it is time-consuming due to the introduction of meta-cluster, which is
regarded as a new cluster and defined by the disjunction (union) of sev-
eral special (singleton) clusters. In this paper, a simple and fast method
is proposed to extract the credal partition structure in evidential clus-
tering based on modifying the iteration rule. By doing so, the invalid
computation associated with meta-clusters is effectively eliminated. It is
superior to known methods in terms of execution time. The results show
the potential of the proposed method, especially in large data.

Keywords: Evidential clustering · Fast credal partition · Belief
functions · Uncertainty

1 Introduction

Clustering is an important branch in data mining and unsupervised machine
learning, which has extensive applications in various domains. It aims to find
groups or clusters of objects that are similar to one another but dissimilar to
objects in any other clusters [1]. Of course, a wide variety of methods for clus-
tering (object and relational) data have been developed with different philoso-
phies [1–7]. Among them, credal partitions [2,3] based on the theory of belief
functions (TBF) [8,9] have attracted a lot of attention since it can provide an
efficient tool in characterizing uncertain and imprecise information, which can
help the users reduce the high risk of errors in some fields [10]. The TBF is a
theoretical framework for reasoning with uncertain information and has been
widely used, for example, in clustering [2–6] and decision-making [11,12].
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 3–12, 2021.
https://doi.org/10.1007/978-3-030-88601-1_1
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A credal partition [2,3] can generate three types of clusters: singleton clus-
ters, meta-clusters, and noise cluster. The meta-cluster is a new cluster with the
same properties as a singleton cluster, and it is defined by the disjunction (union)
of several singleton clusters [3–5]. As a result, the meta-cluster can be consid-
ered a transition cluster among these different close singleton clusters, aiming
to represent the imprecision (partial ignorance) of clustering for the overlap-
ping objects. In this case, the query object may belong to any singleton cluster
and meta-cluster with different masses of belief. For instance, evidential c-means
(ECM) [3], one of the most famous methods based on the notion of credal par-
tition, was presented by Denœux and Masson. It is considered an evidential
version of the fuzzy c-means (FCM) [13] and noise clustering (NC) [14] based
on the TBF. Of course, many evidential clustering methods for relational data
have also emerged [2,6].

We would agree that the meta-cluster introduced by credal partitions has
dramatically enriched our extraction of different data structures. This flexibility
allows us to gain a deeper insight into various data in the real world. However,
this advantage takes a high cost since putting the frame under the power-set
2Ω brings an exponentially increasing computational burden. Of course, these
methods also reduce the computational cost by limiting the number of elements
in meta-clusters [2,3,15]. But this also limits some possibilities. For example, we
only allow the number of focal sets to be less than or equal to 3, but objects
may be difficult to be assigned to 4 or 5 singleton clusters in some scenarios.
The method we propose in this paper does not impose such a restriction but can
reduce the computational complexity.

Motivating by the above considerations, this paper proposes a simple and
fast method to extract the credal partition structure in evidential clustering,
called Fast evidential clustering (FAST-EC). It aims to split the iterative rule of
traditional evidential clustering into the following two steps:

1) The query set is only allowed to be iterated under the frame of discernment
Ω until the robust singleton cluster centers are obtained. Then, the centers
of the associated singleton clusters calculate that of meta-clusters.

2) The masses of beliefs of the objects belonging to different clusters are iterated
again under the power-set 2Ω . In this case, one only needs to iterate one time
to capture the final credal partition.

The rest is organized as follows. The notion of credal partitions is briefly
recalled in Sect. 2. The FAST-EC method is then introduced in Sect. 3. In Sect. 4,
we conduct some experiments to study the performances of FAST-EC using some
synthetic and real-world datasets. Section 5 concludes this paper.

2 Notion of Credal Partitions

One starts with a frame of discernment Ω = {ω1, ..., ωc} consisting of a finite
discrete set of mutually exclusive and exhaustive hypotheses (clusters) The
power-set of Ω denoted 2Ω is the set of all the subsets of Ω. For example, if
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Ω = {ω1, ω2, ω3}, then 2Ω = {∅, ω1, ω2, ω3, {ω1 ∪ ω2}, {ω1 ∪ ω3}, {ω2 ∪ ω3}, Ω}.
The singleton element (e.g., {ω1}) represents a specific cluster. Meta-clusters,
unions of several singleton elements, represent partial ignorance (e.g., {ω1∪ω2}).

Suppose that one has a set O = {o1, o2, ..., on} of n objects. A mass of belief
is a function m(·) from 2Ω to [0,1] satisfying

∑

A∈2Ω

m(A) = 1 and m(∅) = 0. The

subsets A of Ω such that m(A) > 0 are called the focal elements of m(·). The
n-tuple M = (m1,m2, ...,mn) is called a credal partition [3].

Table 1. Illustration of credal partitions.

∅ {ω1} {ω2} Ω

m1 1 0 0 0

m2 0 0.8 0.2 0

m3 0 0.1 0.9 0

m4 0 0 0.1 0.9

Example 1: The 4-tuple M = (m1,m2,m3,m4) with Ω = {ω1, ω2} is a simple
illustration of credal partitions in Table 1. One can see that objects o2 and o3 are
likely to belong to the cluster {ω1} and {ω2}, respectively. In contrast, object o1
has the whole mass of beliefs assigned to the outlier cluster (i.e., ∅). The object
o4 has the most significant mass to Ω, indicating that it might belong to {ω1}
or {ω2}, and we cannot obtain the exact cluster information in this case.

3 Fast Evidential Clustering Method

The fast evidential clustering (FAST-EC) method aims to reduce the computa-
tional burden by changing the iteration rule of existing methods. The implemen-
tation process will be introduced in this Section and take evidential c-means [3],
called FAST-ECM, as an example. The FAST-ECM mainly consists of two parts:
1) Disjunction of singleton cluster centers; 2) Extraction of the credal partition
structure. These two parts are discussed in Subsects. 3.1 and 3.2, respectively.

3.1 Disjunction of Singleton Cluster Centers

Let us consider a query set O = {o1,o2, ...,on} of n data objects clustered
with the frame of discernment Ω = {ω1, ..., ωc}. Since we only need to obtain
the centers of the c singleton clusters in this step, the meta-clusters and noise
cluster do not need to be considered in this iteration process. Inspired by ECM,
the mij can be redefined as follows:

mij =
|Aj |−a/(β−1)

d
−2/(β−1)
ij

∑
Ak �=∅ |Ak|−a/(β−1)

d
−2/(β−1)
ik

, |Aj | = |Ak| = 1,

c∑

j=1

mij = 1. (1)
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It is easy to understand from Eq. (1) that the simplified mass of belief mij

does not consider the meta-clusters and noise cluster during the iteration process.
It can significantly reduce the computational burden since the meta-clusters
will bring many invalid calculations of the distance between the object and the
centers of meta-clusters. Thus, Eq. (1) can be further simplified as follows:

mij =
d

−2/(β−1)
ij

∑
d

−2/(β−1)
ik

,
c∑

j=1

mij = 1. (2)

One may find that the simplified mass function mij is very similar to the mem-
bership function uij in fuzzy c-means (FCM) [13]. In fact, the initial iteration is
a simple derivation of FCM under belief functions, and an FCM-like objective

function with
c∑

j=1

mij = 1 can be defined as follows:

JFAST−EC =
n∑

i=1

∑

Aj⊆Ω,Aj �=∅
|Aj |αmβ

ijd
2
ij , |Aj | = 1. (3)

where the exponent α allowing to control the degree of penalization. Parameter
β has the same meaning as in FCM. dij is the Euclidean distance between the
object oi and the cluster Aj . Thus, the center vector vj of the singleton cluster
obtained by minimizing JFAST−EC is defined by:

vj =

n∑

i=1

mβ
ijxi

n∑

i=1

mβ
ij

, ∀j = 1, ..., c (4)

Here the singleton cluster centers may not be the same as that of ECM,
but they are very similar. Since the meta-clusters and the noise cluster have a
constraining behavior on the iteration, it may lead to a slight difference in the
results compared with ECM. However, this difference is within reasonable limits.

3.2 Extraction of Credal Partition Structure

In this subsection, we will quickly extract the credal partition structure for evi-
dential clustering with the frame of power-set 2Ω . Since we have obtained the real
centers of singleton clusters from Subsect. 3.1, the center vj of the meta-cluster
Aj (|Aj | > 1), as suggested in ECM, can be defined by:

vj =
1

|Aj |
c∑

k=1

skjvk (5)

where skj = 1 if ωk and skj = 0 otherwise. Then, one can obtain the real center
matrix V of the clusters, including singleton and meta-clusters. Thus, the masses
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of belief of the query object oi belonging to different clusters, as suggested in
ECM, can be obtained by:

⎧
⎪⎪⎨

⎪⎪⎩

mij =
|Aj |−a/(β−1)d

−2/(β−1)
ij

∑
Ak �=∅ |Ak|−a/(β−1)d

−2/(β−1)
ik

,

mi∅
Δ= 1 − ∑

Aj �=∅
mij .

(6)

One needs to note that since the real centers are already known, it only
needs to iterate once to get the final mass value of the query object belonging
to different clusters. Thus, one can quickly extract the credal partition structure
after obtaining the mass matrix M = (m1,m2, ...,mn).

Discussion: In previous work, we proposed a dynamic evidential clustering
(DEC) method [5]. Both DEC and this work have adopted a similar way to
obtain singleton cluster centers in the first step, but their goals are not the
same. DEC strives to avoid unreasonable results that may arise from evidential
clustering when the singleton cluster centers are very close to meta-clusters and
improve execution efficiency. In this paper, we hope that different evidential
clustering can quickly unfold under different adaptive scenarios. In the case of
DEC, this work can be regarded as its first step. The flowchart of FAST-EC is
presented in Fig. 1 to show how it works and illustrate the basic principle clearly.

Input the dataset

Obtain the singleton cluster centers via Eq. (3)

Calculate the meta-cluster centers via Eq. (4)

Obtain masses of beliefs for each object via Eq. (5)

Extract the credal partition structure 
via mass Matrix M

Output the results

Fig. 1. Flowchart of the proposed FAST-EC.

3.3 Complexity Analysis in FAST-EC

To reduce the computational complexity of classical evidential clustering, FAST-
EC splits the iteration rule into two steps: 1) Disjunction of singleton cluster



8 Z. Zhang et al.

Table 2. Complexity comparison of some classical credal partitions.

ECM FAST-ECM CCM FAST-CCM MECM FAST-MECM DEC

O(n2c) O(nc) O(n2c) O(nc) O(n2c) O(nc) O(nc)

centers; 2) Extraction of the credal partition structure. Since one only needs to
iterate once to extract the credal partition structure after obtaining the real clus-
ter centers, the computational complexity of FAST-EC mainly depends on the
iteration of the singleton cluster centers. Specifically, the computational com-
plexity is O(nc), where n is the number of the objects in the query set, and
c is the real number of singleton clusters. Thus, it reduces to a level similar to
FCM [13], which is much lower than classical evidential clustering. Here we show
the corresponding complexity of some credal partitions in evidential clustering
methods, as shown in Table 2.

4 Experiment Applications

Two experiments have been done to test and evaluate the performances of
the FAST-EC method and compared it to DEC [5], ECM [3], CCM [4] and
MECM [6], corresponding to FAST-ECM, FAST-CCM, and FAST-MECM,
respectively. In this paper, the error rate (Re), imprecision rate (Ri) and accu-
racy (Ra) are used as evaluation indicators [4,5]. The error is counted for one
object is explicitly belonged to {ωk} but it is assigned to Aj with {ωk}∩Aj = ∅.
Given Aj with {ωk} ∩ Aj �= ∅ and Aj �= {ωk}, it is considered as a meta-cluster.
The error rate denoted by Re (in %) is calculated by Re = ne/n, where ne is the
number of errors, and n is the number of objects under test. The imprecision
rate denoted by Ri (in %) is calculated by Ri = ni/n, where ni is number of
objects assigned to meta-clusters. The elapsed time is denoted by T (s). For con-
venience, we denote ωk,t = {ωk, ωt}. All the methods are run in Matlab 2019A
with Windows 10 operating system, Intel Core i7 CPU, 8 GB RAM.

Fig. 2. Clustering results of SR dataset by different methods.



Fast Unfolding of Credal Partitions in Evidential Clustering 9

First, we consider a particular 3-class synthetic dataset with two dimensions
under Ω = {ω1, ω2, ω3}, which we called SR dataset. It consists of 933 data
points, including 3 noisy data in the five-pointed star shape. The 310 objects in
each class are evenly distributed in a circle with the radius of r = 2, and the
centers of three circles are c1: (0,0), c2: (2.5,5), c3: (5,0). Figure 2 and Table 3
correspond to the clustering results of the SR dataset by different methods. One
can easily deduce such a conclusion from the results that FAST-EC can reduce
computational complexity and improve clustering efficiency when the accuracy
and the error rates are very similar. In addition, it can be found that FAST-EC
as the first step of DEC, its execution time is faster than traditional evidential
clustering methods, including ECM, CCM, and MECM.

Table 3. Statistics results of SR dataset by different methods.

ECM FAST-ECM CCM FAST-CCM MECM FAST-MECM DEC

Ra 72.78 79.21 82.96 82.96 76.75 77.50 80.70

Re 0 0 0 0 0.21 0.21 0.32

Ri 27.22 20.79 17.04 17.04 23.04 22.29 18.98

T 0.5650 0.0990 0.3806 0.0637 0.3296 0.0725 0.0649

Then, seven real datasets from UCI Machine Learning Repository [16] are
employed to evaluate the performance of the proposed FAST-EC method. The
results with real datasets for the different methods are reported in Table 4. One
can find that the accuracy of FAST-EC is often higher than that of traditional
methods while effectively reducing the imprecision rate since the FAST-EC can
obtain more reasonable cluster centers in the iteration process. This is caused
by the difference in the distribution of singleton cluster centers. In the iteration
process of traditional methods, the singleton centers are often constrained by
meta-clusters and then biased toward the centers of meta-clusters, determined
by the objective function minimization rule. For example, given a dataset, we
find that the distribution of singleton cluster centers obtained by FAST-EC is
more reasonable than the distribution of singleton cluster centers obtained by
traditional evidential clustering. Of course, this insignificant difference may not
be easily observed. Furthermore, the execution time shows that FAST-EC is
more efficient than traditional methods because it avoids the enormous compu-
tational burden caused by meta-clusters and obtains more robust cluster cen-
ters. In addition, we can find that FAST-EC and DEC have similar convergence
speeds because they are both dedicated to reducing the computational complex-
ity of traditional evidential clustering. The difference is that FAST-EC is only
an improvement on the computational complexity of the original method and
does not consider the flaws in the design of different evidential clustering. On
the other hand, in DEC, we solved the design flaws of methods such as ECM
and designed a dynamic frame framework for some imprecise objects.
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Table 4. Statistics of clustering for UCI datasets by different methods (in %).

Data Method Ra Re Ri T

Contraceptive
#Class.(3)
#Attr.(9)
#Inst.(1573)

ECM 34.60 57.91 7.49 2.4824

FAST-ECM 36.05 57.36 6.59 0.0875

CCM 35.17 56.48 8.35 1.5513

FAST-CCM 35.64 56.89 7.47 0.0529

MECM 35.17 56.48 8.35 0.4001

FAST-MECM 35.64 56.89 7.47 0.0513

DEC 30.28 56.82 12.90 0.1666

Satimage
#Class.(7)
#Attr.(36)
#Inst.(6435)

ECM 66.48 28.08 5.44 21.8436

FAST-ECM 66.55 29.90 3.45 0.5821

CCM 60.80 30.54 8.66 15.4795

FAST-CCM 55.60 34.10 10.30 0.3495

MECM 53.85 37.95 8.20 13.4121

FAST-MECM 54.95 34.85 10.20 0.3524

DEC 63.37 24.07 12.56 0.5630

Spambase
#Class.(2)
#Attr.(57)
#Inst.(4597)

ECM 61.78 33.85 4.37 5.5081

FAST-ECM 62.01 33.07 4.92 0.3347

CCM 63.15 34.07 2.78 3.2178

FAST-CCM 62.87 34.35 2.78 0.3001

MECM 62.32 33.26 4.42 3.1023

FAST-MECM 62.32 33.61 4.07 0.3061

DEC 64.15 31.79 4.06 0.1196

Abalone
#Class.(3)
#Attr.(8)
#Inst.(4174)

ECM 36.23 36.22 27.55 6.9495

FAST-ECM 39.88 40.35 19.77 0.2432

CCM 48.11 45.18 6.71 4.0985

FAST-CCM 44.87 42.43 12.70 0.1420

MECM 46.05 42.57 11.38 3.2804

FAST-MECM 41.30 41.02 17.68 0.1398

DEC 47.37 42.13 10.50 0.1882

Segment
#Class.(7)
#Attr.(36)
#Inst.(4174)

ECM 44.50 51.39 4.11 48.79

FAST-ECM 46.28 51.30 2.42 0.5828

CCM 54.23 41.53 4.24 18.9143

FAST-CCM 57.89 37.86 4.24 0.3386

MECM 42.38 49.74 7.88 8.3136

FAST-MECM 46.13 45.58 8.29 0.3529

DEC 45.60 49.17 5.23 0.3724

Magic
#Class.(5)
#Attr.(10)
#Inst.(19020)

ECM 56.31 43.32 0.37 20.1879

FAST-ECM 57.70 42.17 0.13 1.2250

CCM 52.42 39.33 8.25 12.1652

FAST-CCM 52.94 37.54 9.52 0.8094

MECM 49.78 36.77 13.44 7.0703

FAST-MECM 50.50 35.19 14.31 0.5823

DEC 51.97 37.15 10.88 0.6273

Vehicle
#Class.(4)
#Attr.(18)
#Inst.(846)

ECM 39.00 52.84 8.16 0.3703

FAST-ECM 38.31 52.71 8.98 0.0863

CCM 42.24 51.73 6.03 0.6578

FAST-CCM 44.04 49.81 6.15 0.0818

MECM 57.09 41.96 0.95 0.6491

FAST-MECM 57.33 41.84 0.83 0.0824

DEC 41.50 48.23 10.28 0.1803
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5 Conclusion

This paper presented a simple and fast method to extract the credal parti-
tion structure in evidential clustering based on modifying the iteration rule. We
found that more robust singleton cluster centers can be obtained while avoiding
the computational burden caused by meta-clusters. The experiments show that
FAST-EC can significantly reduce the computational complexity compared with
traditional methods while getting more robust results. This will further expand
the applications of credal partitions in the future.
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ence Foundation of China under Grants U20B2067, 61790552, 61790554, and in part
by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical
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14. Sen, S., Davé, R.N.: Clustering of relational data containing noise and outliers. In:
1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No. 98CH36228), vol. 2, pp. 1411–
1416. IEEE (1998)

15. Denoeux, T., Sriboonchitta, S., Kanjanatarakul, O.: Evidential clustering of large
dissimilarity data. Knowl.-Based Syst. 106, 179–195 (2016)

16. Asuncion, A., Newman, D.: UCI machine learning repository (2007)



Credal Clustering for Imbalanced Data

Zuowei Zhang1,2(B), Zhunga Liu1, Kuang Zhou3, Arnaud Martin2,
and Yiru Zhang4

1 School of Automation, Northwestern Polytechnical University, Xi’an, China
zuowei zhang@mail.nwpu.edu.cn, liuzhunga@nwpu.edu.cn

2 Univ Rennes, CNRS, IRISA, Rue E. Branly, 22300 Lannion, France
Arnaud.Martin@univ-rennes1.fr

3 School of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an, China

kzhoumath@nwpu.edu.cn
4 Department of Computer Science, St. Francis Xavier University,

Antigonish, Canada

Abstract. Traditional evidential clustering tends to build clusters
where the number of data for each cluster fairly close to each other. How-
ever, it may not be suitable for imbalanced data. This paper proposes
a new method, called credal clustering (CClu), to deal with imbalanced
data based on the theory of belief functions. Consider a dataset with C
wanted classes, the credal c-means (CCM) clustering method is employed
at first to divide the dataset into some (i.e., S (S > C)) clusters. Then
these clusters are gradually merged following a given principle based on
the density of meta-clusters and the associated singleton clusters. The
merging is finished when C singleton wanted classes are obtained. Dur-
ing this merging procedure, the objects in each singleton cluster will be
assigned to one new singleton class. Moreover, a weighted mean vector
rule is developed to classify the objects in the unmerged meta-cluster to
the associated new classes using the K-Nearest neighbor technique. Two
experiments show that CClu can handle imbalanced datasets with high
accuracy, and the errors are reduced by properly modeling imprecision.

Keywords: Evidential clustering · Belief functions · Imbalanced
data · Credal c-means · K-NN

1 Introduction

Cluster analysis remains an important topic in data mining and machine learn-
ing. Clustering aims to group similar data and separate dissimilar data from
a set into, what we call, clusters [1–4]. A recent credal partition [5,6] based
on the theory of belief functions (TBF) is developed by Denœux and Masson.
The TBF [7,8] provides an efficient tool to deal with uncertain and imprecise
information, and it has been well applied in many fields, such as classification
[9,10], clustering [11,12], information fusion [13]. The credal partition allows the
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 13–21, 2021.
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object to belong to any singleton cluster and the set of several clusters (called
meta-cluster) with different belief degrees. By doing this, it can well represent
the imprecision of some overlapping datasets. A wide variety of methods based
on the credal partition for clustering object data have been developed, such as
evidential c-means (ECM) [6], credal c-means (CCM) [11], and dynamic eviden-
tial clustering (DEC) [12]. However, the performance of these algorithms is often
degraded when there is a very different number of data in each cluster, which we
call imbalanced data [14]. Therefore, this paper proposes a new credal clustering
(CClu) method for imbalanced datasets based on the TBF.

CClu mainly consists of three steps: 1) producing some sub-clusters, 2) merg-
ing these sub-clusters, and 3) classifying the objects in some sub-clusters (meta-
clusters) that are not merged to obtain the final results. In the first step, CCM
is employed to produce multiple sub-clusters, and the number of sub-clusters
is bigger than the required number of classes1. The meta-cluster represents the
overlapping zone of different sub-clusters. Thus, if several sub-clusters are really
from a common class, these sub-clusters can be overlapped, and there usually
exist many objects in the associated meta-clusters. In the second step, these
sub-clusters are gradually merged until the final number of singleton classes
is satisfied. This inherits the idea of hierarchical clustering to some extent [4].
Then, we will cautiously classify the objects in the sub-clusters (meta-clusters)
that are not merged to the associated new singleton classes by a mean vector
rule using the K-nearest neighbors (KNN) technique.

This paper is organized as follows. After a brief recall of credal c-means in
Sect. 2, the new CClu method is presented in the Sect. 3. The proposed CClu is
then tested in Sect. 4 and compared with several other clustering methods. The
conclusion of this paper is finally given in Sect. 5.

2 Brief Recall of Credal c-means

Credal c-means clustering (CCM) [11] is developed based on the TBF, which
extends the given framework Ω = {ω1, ..., ωC} to the power-set 2Ω . For example,
if Ω = {ω1, ω2, ω3}, then 2Ω = {∅, ω1, ω2, ω3, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, Ω}.
CCM can produce three clusters: singleton clusters, meta-clusters, and noise
cluster ∅. The meta-cluster is defined as the set of several singleton clusters
and is considered as a kind of imprecise transition cluster among these different
singleton clusters2, which is used to represent partial ignorance. The mass value
of the object xi belonging to any singleton or meta-cluster Aj ∈ 2Ω , j = 1, ..., 2C ,

is denoted as mij
Δ= mxi

(Aj). It is determined by the Euclidean distance between
the prototype vector of vj and xi. The center vj of the meta-cluster is the mean
of that of the associated singleton clusters and defined by:

vj =
1

|Aj |
C∑

c=1

scjvc, with scj =
{

1 if {ωc} ∈ Aj ;
0 otherwise. (1)

1 For ease of description, we define the final clustering results as C wanted classes.
2 We refer to the singleton clusters included in the meta-cluster as the associated ones.
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where vc is the center of the singleton cluster {ωc}, and |Aj | is the cardinality
of Aj , i.e., the number of associated singleton clusters. In CCM, the mass of
belief of the object belonging to a meta-cluster depends not only on the distance
between the object and the center of the meta-cluster but also on the distance
between the object and the centers of associated singleton clusters. The objective
function of CCM denoted by JCCM is designed according to these basic principles
and given by:

JCCM (M,V ) =
N∑

i=1

∑

Aj∈SΩ

mβ
ij D

2
ij ,

∑

Aj∈SΩ

mij = 1 (2)

with

D
2
ij =

⎧
⎪⎪⎨

⎪⎪⎩

δ2, Aj = ∅;
d2

ij , |Aj | = 1;
∑

ωc∈Aj

d
2
ic +γ d

2
ij

|Aj |+γ , |Aj | > 1.

(3)

where M = (m1, ...,mN ) ∈ RN×2C
is the mass of belief matrix for all objects,

and VC×p is the matrix of clustering centers. N is the number of objects and p
the number of attributes in the dataset. The parameters β, δ, γ, SΩ have been
discussed in detail [11].

3 Credal Clustering for Imbalanced Data

In this section, the CClu method is proposed to deal with imbalanced data based
on the TBF. It mainly consists of three steps: 1) produce some sub-clusters and
estimate the corresponding densities, 2) merge the sub-clusters with the given
rule, and 3) classify the imprecise objects in some sub-clusters (meta-clusters)
that are not merged to obtain the final clustering results.

3.1 Estimation of Cluster Density

For a C-class problem, CCM is employed first to generate sub-clusters (the num-
ber of singleton clusters S > C and some meta-clusters) that are more than the
actual number (C) of classes, where only two singleton clusters can be included
in one meta-cluster. By doing this, the densities of these sub-clusters are then
calculated based on the KNN. Here the density ρj of the cluster Aj (singleton
cluster or meta-cluster) can be obtained with a common method as follows:

ρj =

⎡

⎣ 1
Oj

Oj∑

o=1

d̄o

⎤

⎦
−1

(4)

with

do =
1
K

K∑

k=1

dok (5)
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where Oj denotes the number of objects in the cluster Aj , and do is the dis-
tance of the nearest neighbor; dok is the Euclidean distance between xo ∈ Aj

(o = 1, ...,O) and the k-th neighbor. Here the average is taken as the distance
of the nearest neighbor to make the density more robust, and K is the number
of considered neighbors. One can easily find that the density ρj is the reciprocal
of the average of all objects in Aj and that the more dispersed (discrete) the
objects in Aj , the smaller ρj is. In other words, ρj can characterize the degree
of dispersion and also be used as a basis for decision-making on Aj .

3.2 Cluster Merging Rule

As we mentioned earlier, a meta-cluster is considered a locally imprecise cluster
among the different associated singleton clusters. It means that the object may
belong to any associated singleton clusters when the object is assigned to the
meta-cluster. Hence, a meta-cluster is a good bridge between the associated
singleton clusters. We can find that the objects in one (majority or minority)
class may be clustered into several singleton clusters and meta-clusters in CClu.
In this case, the densities of these singleton clusters would be very similar, and
the density of the meta-cluster should be greater than or between the densities
of the associated singleton clusters because the objects in the meta-cluster are
usually distributed in the relative center of the (majority or minority) class. At
the same time, if the density of the meta-cluster is less than that of the two
associated singleton clusters, it means that the two singleton clusters belong to
different classes. Therefore, there are three cases of density relations between the
meta-cluster Λi = {ωk, ωt} and the two associated singleton clusters (i.e., {ωk}
and {ωt}) in CClu:

C1: ρωk
(ρωt

) ≤ ρΛi

C2: ρωk
(ρωt

) < ρΛi
< ρωt

(ρωk
)

C3: ρΛi
≤ ρωk

(ρωt
)

The meta-cluster and the associated singleton clusters satisfying C1 and C2
can be merged, and those satisfying C1 should be merged first. The merging
process also satisfies transitivity. That is, the newly merged sub-classes can be
merged again if there are one or more sub-clusters in both of them.

3.3 Classification of Imprecise Objects

Objects in unmerged meta-clusters, called imprecise objects, will be classified
into new classes or new meta-classes. Thus, a weighted mean vector method
is developed to classify these imprecise objects to the associated classes using
KNN. Thus, we first find the K neighbors of the object xi from the known
new singleton classes3, denoted as x{ω̃i}

k , k = 1, ...,K. x{ω̃i}
k indicates that the

neighbor xk belongs to the class {ω̃i}. For example, the meta-cluster {ω1,5}
3 It should be noted that the K neighbors here have clear class information now.
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includes two singleton clusters {ω1} and {ω5}, where {ω1} is merged into the
real singleton class {ω̃i′}, and {ω5} is merged into {ω̃i′′}. In this case, the object
xi in {ω1,5} will be classified into the singleton class {ω̃i′} or {ω̃i′′}, or the new
meta-class {ω̃i′,i′′}.

Since the distances between the object xi in the unmerged meta-clusters and
the neighbors x{ω̃i}

k (k = 1, ...,K) are usually different, the bigger distance dik

generally leads to the smaller discounting factor φik. For k = 1, ...,K, this factor
φnk is simple defined by:

φik =
d−1

ik
K∑

k=1

d−1
ik

(6)

where dik is the Euclidean distance between xi and its k-neighbor.
By doing this, one can obtain K vectors, named V{ω̃i}

k , where xi is the starting
point, and xk ∈ {ω̃i} is the ending point. Assume that xi may belong to the new
classes ω̃c and ω̃c′ , we then can obtain two partial vectors, called Φc and Φc′ , for
example, Φc is defined as follows:

Φc = sk ·
K∑

k=1

φikV{ω̃i}
k , with sk =

{
1 if xk ∈ {ω̃c};
0 otherwise. (7)

Based on the above analysis, one can easily find that the sum vector

Φ =
K∑

k=1

φikV{ω̃i}
k is mainly determined by the partial vector (i.e., Φc or Φc′)

of the real class to which the object xi belongs. Thus, we define the weighted
mean vector rule as follows:

xi ∈
⎧
⎨

⎩

{ω̃c}, if Lc < Lc′ , |Lc − Lc′ | > ϕ;
{ω̃c,c′}, if Lc ≈ Lc′ , |Lc − Lc′ | ≤ ϕ;
{ω̃c′}, if Lc′ < Lc, |Lc′ − Lc| > ϕ.

(8)

where Lc, for example, is the cosine distance (value) between Φ and Φc, i.e.,
Lc = cos(Φ,Φc). ϕ is the meta-class parameter, and ϕ ∈ [0, 2]. In general, the
larger ϕ is, the more the objects are assigned to the meta-classes.

Guideline for Choosing Parameters: In applications, the value of S
(C < S < N) cannot be too small, but too large requires a huge computa-
tional cost. S = 2C is recommended as the default based on some experiments.
The parameter ϕ should be tuned depending on the imprecision degree that one
accepts. K is the number of neighbors, and we recommend K = 5 as the default.

Computational Complexity: The computational burden mainly depends on
two parts: producing some sub-clusters and calculating Euclidean distance for
obtaining the cluster density. To reduce the burden, CCM is simplified here. We
find the centers of singleton clusters first, and that of meta-clusters are then
calculated. Thus, the complexity of CClu method is O(N · S).

The pseudo-code of CClu is presented in Algorithm 1 to show how CClu
works and illustrate its basic principle clearly.
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Algorithm 1. Credal clustering for imbalanced data.
Require: The query set: X = {x1, ...,xN}; Given the parameters:

S: the number of sub-clusters, S = 2C;
K: the number of neighbors, K = 5;
ϕ: the meta-class parameter, 0 ≤ ϕ ≤ 0.4.

Ensure: Clustering decision results.
for n = 1 to N
Generate S singleton clusters and some meta-clusters;

for j = 1 to 2C + C2
2C + 1

Calculate the densities of different clusters using Eqs. (4) and (5);
end

Merge meta-clusters and related singleton clusters based on the cases C1 and C2;
Generate new singleton classes and find imprecise objects;
Calculate the vectors of imprecise objects using Eqs. (6), (7);
Classify objects in unmerged meta-clusters using Eq. (8).
end
return Class label.

4 Experimental Applications

Two experiments have been done to test and evaluate the performances of the
CClu method. Since the introduction of meta-cluster, the error rate (Re), impre-
cision rate (Ri) and accuracy (Ra) are employed as indicators of performance
[11,12]. The error is counted for one object is explicitly belonged to {ωc} but it
is clustered into A with {ωc}∩A = ∅. Given A with {ωc}∩A �= ∅ and A �= {ωc},
it is considered as a meta-class. The error rate denoted by Re (in %) is calcu-
lated by Re = Ne/N , where Ne is the number of errors, and N is the number of
objects under test. The imprecision rate denoted by Ri (in %) is calculated by
Ri = Ni/N , where Ni is number of objects assigned to meta-classes.

The first experiment is mainly used to clearly explain the use of CClu (ϕ = 1)
in clustering imbalanced data on 2-class datasets. It has 2400 artificial data
points which arise from a mixture of two bivariate Gaussian densities given by:

5
6

· Gaussian
(

6
0

) (
5 0
0 5

)
+

1
6

· Gaussian
(

14
0

) (
2 0
0 2

)

The generated dataset is shown in Fig. 1(a), and the clustering results of C-
means [1], Fuzzy c-means (FCM) [2], and Credal c-means (CCM) [11] are shown
in Fig. 1 (b)-(d), respectively.

The average error rates, imprecision rates, and accuracy are given in Table 1.
One can see that error rates are lower while the accuracy of the CClu method is
higher than the other methods. When S increases, one can get similar results, but
at a higher computational cost. Thus, we should find a good compromise between
the error rate and computational cost, and a large number of experiments we
have done show that a small computational cost can be paid while achieving a
lower error rate when S = 2C. So it is recommended as default in applications.
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Fig. 1. The results of the 2-class dataset by different methods.

Table 1. Results of the 2-class dataset (in %).

C-means FCM CCM CClu

Re 5.5 14.08 7.12 1.21

Ri \ \ 8.25 1.04

Ra 94.5 85.92 84.63 97.75

In the second experiment, we selected five UCI datasets (wireless, letter, ecoli,
yeast, and Poker)4. There are the classes (1-class is complete, and 2, 3, 4-class
randomly select 50 data objects ) in Wireless Indoor Localization dataset and
the classes (A-class is complete, and B, C, D-class randomly select 66, 36, 5 data
objects) in Letter Image Recognition dataset, and the classes in Ecoli dataset
(i.e., cp, om, omL, and imL), Yeast dataset (i.e., CYT, VAC, POX, and ERL)
and Poker dataset (i.e., 0, 1, 2, 3). The basic information is given in Table 2.

The clustering results with execution time of the real datasets by different
methods have been shown in Table 3. We can see that the error rates of CClu are
lower than other applied methods since the CClu reasonably employs multiple
centers to represent one class and then merges the sub-clusters that originally
belong to the same class. One can also find that CClu can deal well with the
imbalanced dataset at the cost of an enormous computational burden. Hence, the
CClu method is suitable for handling the case where high accuracy is required,
but the computational speed is not very crucial.

4 It is available: http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Table 2. Basic information of the used four-class datasets.

Name Attributes Instances

{ω1} {ω2} {ω3} {ω4}
Wireless 7 500 50 50 50

Letter 16 789 66 36 5

Ecoli 8 143 20 5 2

Yeast 8 463 30 20 5

Poker 10 513702 433097 48828 21634

Table 3. Results of UCI datasets by different methods (in %).

data C-means FCM ECM CCM CClu

Re Re {Re, Ri} {Re, Ri} {Re, Ri}
Wireless 13.38 43.69 {45.69, 2.43} {44.31, 5.69} {15.23, 0.15}
T (s) 0.1150 0.0550 1.787 2.381 0.4610

Letter 60.16 67.08 {65.70, 1.65} {49.56, 0} {40.18, 0}
T (s) 0.1150 0.0540 2.149 5.382 0.5280

Ecoli 21.76 58.24 {55.29, 0.59} {32.35, 0} {17.65, 0}
T (s) 0.114 0.115 0.892 1.239 0.456

Yeast 46.72 57.92 {59.02, 0} {47.10, 0} {16.99, 0}
T (s) 0.115 0.053 0.202 0.314 2.012

Poker 73.92 68.18 {68.22, 0} {51.43, 0} {24.33, 0.002}
T (s) 21.49 24.67 1014 1159 986.8

5 Conclusion

In this paper, we proposed a new CClu method for clustering imbalanced data
based on the theory of belief functions. It mainly consists of three steps: 1)
produce some sub-clusters and estimate the corresponding densities, 2) merge the
sub-clusters with the given rule, and 3) classify the imprecise objects in some sub-
clusters (meta-clusters). In CClu, the objects that are difficult to classify could
be assigned to the meta-classes to reduce the risk of errors. Two experiments
with artificial and real datasets are used to evaluate the performances of CClu
by comparing it with other classical methods. The results show that CClu can
efficiently improve the accuracy when clustering imbalanced data and capture
the imprecision thanks to the meta-class.
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Abstract. Generally, the data to be clustered are from one single view.
In real clustering applications, sometimes the data are insufficient so that
it is difficult to learn an ideal cluster model. In such cases, multi-view
data can be taken into consideration in the clustering task. However,
the inconsistency cross views may increase the cluster uncertainty. In
this research, a new clustering method for multi-view object data, called
MvWECM (Multi-view Weighted Evidential C-Means) is introduced in
the framework of belief functions. The proposed method can take con-
sistency and diversity cross each view into account by incorporating the
concept of view weights to measure the importance of each view. An
objective function is defined to look for the best credal partitions over
the different views. Experimental results on generated and UCI data sets
show the advantage of the proposed method.

Keywords: Multi-view clustering · Belief functions · View weights

1 Introduction

Clustering is an unsupervised classification technique which has been applied to
many fields, such as recommendation system [1], community detection [3] and
so on [9]. Sometimes, data from one single view are too insufficient to study an
ideal clustering model. Fortunately, nowadays multi-view data are very common
in the real world. Generally, multi-view data can be obtained from multi-source,
describing the same objection from distinctive aspects. For example, in the user
clustering problem which is often required in personalized recommendation sys-
tems, the online user review data contains traveling histories, personal attributes,
ratings in the form of texts and imagines, etc.

Some clustering approaches combine the multiple data into single-view data
when dealing with multiple data, but this may lead to the loss of diversity infor-
mation [4]. The multi-view clustering approach can be used to deal with this
problem and it has been a popular topic in data mining [11]. Besides, some
clustering algorithms based on multi-view data are proposed. Bickel et al. pro-
posed partitioning multi-view clustering algorithms for text data [2]. Wang et
al. proposed a novel multi-view clustering algorithm termed multi-view affinity
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 22–32, 2021.
https://doi.org/10.1007/978-3-030-88601-1_3
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propagation based on max-product belief propagation [10]. Jiang et al. proposed
a multi-view fuzzy clustering algorithm by weighting the importance of each
view [5]. Zhang et al. proposed a Two-level Weighted Collaborative k-means
algorithms [11], taking collaborative manner to keep the diversity and consis-
tency among each view.

The diversity across each view may increase the cluster uncertainty. The the-
ory of belief functions is an efficient mathematical tool for uncertain information
representation and fusion. There are already some clustering approaches devel-
oped in this framework, such as the Evidential c-means (ECM) clustering [6],
which can derive effective clustering results for uncertain data. In this paper,
inspired by ECM and a multi-view evidenial clustering method called CEC [7],
we propose a multi-view clustering approach with a collaborative strategy named
Multi-view Weighted Evidential C-Means algorithm (MvWECM). Different from
CEC which can not distinguish the importance of different views, in MvWECM
we introduce the concept of view weights to qualify the contribution of each view
to cluster structure. Experimental results on Gaussian and UCI data sets show
the effectiveness of the proposed method.

This paper is organized as follows. The proposed MvWECM is introduced in
Sect. 2. Experimental results are shown in Sect. 3. Conclusions are given in the
final section.

2 Multi-view Weighted Evidential c-means

The MvWECM algorithm is introduced in this section. We assume that the
number of clusters in each view is the same but the feature dimensions are
different. The objective function of MvWECM will be defined first in Sect. 2.1,
and then the optimization method will be described in Sect. 2.2.

2.1 The Objective Function

Notation X = {X[1],X[2], · · · ,X[T ]} denotes the dataset with T views, where
X[t] = {x1[t],x2[t], · · · ,xN [t]} denots N samples of the tth view. The dimen-
sions of X in each view are denoted by Q = {q1, q2, · · · , qT }.

Let the discernment frame be Ω = {ω1, ω2, · · · , ωc}. Denote the weights of the
T views by W = (w[1], w[2], · · · , w[T ]). Let M [t] = {m1[t], m2[t], · · · ,mN [t]}
denote the BBAs in tth view, where mi[t] = {mij [t] � mi(Aj)[t]|Aj ⊆ Ω}
represents mass assignments for the cluster membership of sample xi[t]. Let
V = {V [1],V [2], · · · ,V [T ]} represent the cluster center sets for T views, where
V [t] is a matrix of size (c × qt).
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We aim to find out the multi-view optimal credal partial, cluster centers and
view wights by minimizing the following objective function:

JMvWECM =
T∑

t=1

w[t]

⎛

⎝
N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
cα
j m2

ij [t]d
2
ij [t] +

n∑

i=1

δ2[t]m2
i∅[t]

⎞

⎠

+ η

T∑

t=1

T∑

s �=t

k[t, s]
N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
(mij [t] − mij [s])

2
d2ij [t]

+ β

T∑

t=1

w[t] log w[t], (1)

subject to:
T∑

t=1

w[t] = 1, w[t] ∈ [0, 1], t = 1, 2, · · · , T, (2)

and
∑

{j|Aj⊆Ω,Aj �=∅}
mij [t] + mi∅[t] = 1,∀Aj ⊆ Ω, i = 1, · · · , N ; t = 1, · · · , T. (3)

In Eq. (1), notations skj and cα
j have the same meaning as those in ECM algo-

rithm. Parameters η and β are introduced to control the effect of disagreement
among views and view weights respectively. k[t, s] ∈ [0, 1] is used to measure the
collaborative strength of the sth and tth views. The greater value of k[t, s] is, the
stronger collaborative strength between sth view and tth one is. It’s easy to get
k[t, t] = 0, t = 1 · · · T . Notation dij [t] denotes the Euclidean distance between
sample xi[t] and barycenter of focal set Aj . The objective function JMvWECM

consists of three parts. The first part is similar to ECM, which computes the
sum of with-in weighted distance in each view. The second part qualifies the
disagreement across multiple views. The last part is the entropy-based terms,
reflecting the degree of view weights influence in Eq. (1).

2.2 Optimization

The Lagrange multiplier approach is adopted here to minimize the objective
function JMvWECM. The optimization process can be iteratively proceeded by
the following three steps.

(1) Update the basic belief assignments

In this part, the BBA M [t] was updated with view weight w[t] and clustering
centers V [t] fixed. Aiming to minimize the constrained function with respect to
the BBA matrix M [t] in tth view, N×T Lagrange multiplier λ[t], (i = 1 · · · N, t =
1 · · · , T ) are introduced into Lagrangian Function L(M [t], λ[t]), and we show it
as follows:
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L(M [t], λ[t]) = JMvWECM

−
T∑

t=1

N∑

i=1

λi[t]

⎛

⎝
∑

{j|Aj⊆Ω,Aj �=∅}
mij [t] + mi∅[t] − 1

⎞

⎠ . (4)

Differentiating the above equation with respect to mij [t], mi∅[t] and λi[t] and
setting the partial differential equation into zero, we can obtain:

∂L(M [t], λ[t])
∂mij [t]

= 2w[t]cα
j mij [t]d2ij [t]

+ 2η

T∑

s �=t

k[t, s](mij [t] − mij [s])d2ij [t] − λi[t] = 0, (5)

∂L(M [t], λ[t])
∂mi∅[t]

= 2w[t]δ[t]2mi∅[t] − λi[t] = 0 (6)

and
∂L(M [t], λ[t])

∂λi[t]
= −

∑

{j|Aj⊆Ω,Aj �=∅}
mij [t] − mi∅[t] + 1 = 0. (7)

From Eqs. (5) and (6), we can deduce

mij [t] =
ηϕij [t]

w[t]cα
j + ηψ[t]

+
λi[t]

2(w[t]cα
j + ηψ[t])d2ij [t]

(8)

and

mi∅[t] =
λi[t]

2w[t]δ2[t]
, (9)

where

ψ[t] =
T∑

s �=t

k[t, s] (10)

and

ϕij [t] =
T∑

s �=t

k[t, s]mij [s]. (11)

Equations (8) and (9) are substituted into Eq. (7), then Lagrange multiplier λi[t]
can be expressed by fixed parameters as follows:

λi[t] =

1 − ∑
{j|Aj⊆Ω,Aj �=∅}

ηϕij [t]
w[t]cα

j +ηψ[t]

∑
{j|Aj⊆Ω,Aj �=∅}

1
2(w[t]cα

j +ηψ[t])d2
ij [t]

+ 1
2w[t]δ2[t]

. (12)
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Then Eq. (12) is substituted into Eqs. (5) and (6), the update rule of BBA M [t]
is the minimum point of JMvWECM with other variables fixed, can be derived as
follows:

mij [t] =
ηϕij [t]

w[t]cα
j + ηψ[t]

+

(
1 − ∑

{j|Aj⊆Ω,Aj �=∅}
ηϕij [t]

w[t]cα
j +ηψ[t]

)
1

(w[t]cα
j +ηψ[t])d2

ij

∑
{j|Aj⊆Ω,Aj �=∅}

1
(w[t]cα

j +ηψ[t])d2
ij [t]

+ 1
w[t]δ2[t]

∀i = 1, 2 · · · , N ;∀t = 1, · · · , T,
(13)

and
mi∅[t] = 1 −

∑

{j|Aj⊆Ω,Aj �=∅}}
mij [t]. (14)

(2) Update the view weights

In this part, view weight w[t] is updated with BBA M [t] and clustering
center V [t] fixed. Similar to the first step, the Lagrangian Function is given as
follows:

L(w[t], μ) = JMvWECM − μ

(
T∑

t=1

w[t] − 1

)
, (15)

where μ is the Lagrangian multiplier. Similarly, differentiating the Lagrangian
with respect to w[t] and μ, we can obtain:

∂L(w[t], μ)
∂w[t]

=
N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
cα
j m2

ij [t]d
2
ij [t]

+
N∑

i=1

δ2[t]m2
i∅[t] + β(1 + log w[t]) − μ = 0 (16)

and
∂L(w[t], μ)

∂μ
= −

T∑

i=1

w[t] + 1 = 0. (17)

From Eq. (16), we can deduce:

Δ[t] + β(log w[t] + 1) − μ = 0, (18)

where

Δ[t] =
N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
cα
j m2

ij [t]d
2
ij [t] +

N∑

i=1

δ2[t]m2
i∅[t]. (19)
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Equation (18) is equivalent to

w[t] = exp
{−Δ[t] − β

β

}
exp

{
μ

β

}
. (20)

Substituting the above formula into Eq. (2), we have

T∑

t=1

exp
{−Δ[t] − β

β

}
exp

{
μ

β

}
= 1. (21)

From the above formula, we can get

exp
{

μ

β

}
=

1
T∑

t=1
exp

{
−Δ[t]−β

β

} . (22)

Finally, exp
{

μ
β

}
in Eq. (22) is substituted into Eq. (21), and the update rule of

w[t] can be derived as follows:

w[t] =
exp

{
−Δ[t]−β

β

}

T∑
t=1

exp
{

−Δ[t]−β
β

} . (23)

(3) Update the clustering centers

In this part, clustering center V [t] is updated with variable BBA M [t] and
view weight w[t] fixed. We can find the minimization of JMvWECM with respect
to V [t] is an unconstrained optimization problem. The partial derivation of
JMvWECM with respect to the centers are given by

∂J

∂vl[t]
= w[t]

N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
cα
j m2

ij [t]
∂d2ij [t]
∂vl[t]

+ η
T∑

s �=t

k[t, s]
N∑

i=1

∑

{j|Aj⊆Ω,Aj �=∅}
(mij [t] − mij [s])2

∂d2ij [t]
∂vl[t]

, (24)

where

∂d2ij
∂vl[t]

= −2
1
cj

sljxi[t] + 2
1
c2j

c∑

k=1

sljskjvk[t],∀l = 1 . . . c;∀t = 1 . . . T. (25)
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Setting these derivatives to zeros, from Eqs. (24) and (25) we can get l linear
equations of vk[t]:

N∑

i=1

xi[t]
∑

{j|wl∈Aj}
w[t]cα−1

j m2
ij [t]

+
N∑

i=1

xi[t]
T∑

s �=t

ηk[t, s]
∑

{j|wl∈Aj}
(mij [t] − mij [s])2

1
cj

=
c∑

k=1

vk[t]
N∑

i=1

∑

{j|{wl,wk}⊆Aj}
w[t]cα−2

j m2
ij [t]

+
c∑

k=1

vk[t]
T∑

s �=t

ηk[t, s]
N∑

i=1

∑

{j|{wl,wk}⊆Aj}
(mij [t] − mij [s])2

1
c2j

. (26)

Let B[t] be a matrix of size (c × qt) that is defined by

Blq[t] =
N∑

i=1

xiq[t]
∑

{j|ωl⊆Aj}
cα−1
j m2

ij [t]w[t], l = 1, · · · , c; q = 1, · · · , qt, (27)

and define B[t, s] as a matrix of size (c × qt) :

Blq[t, s] =
N∑

i=1

xiq[t]
∑

{j|ωl∈Aj}
(mij [t] − mij [s])2

1
cj

, l = 1, · · · , c; q = 1, · · · , qt.

(28)
Let H[t] be a matrix of size (c × c) that is defined by

Hlk[t] =
N∑

i=1

∑

{j|{ωl,ωk}⊆Aj}
w[t]cα−2

j m2
ij [t], l, k = 1 · · · c, (29)

and H[t, s] be a matrix of size (c × c) given by

Hlk[t, s] =
N∑

i=1

∑

{j|{ωl,ωk}⊆Aj}
(mij [t] − mij [s])2

1
c2j

, l, k = 1 · · · c. (30)

With those notations, the update of cluster centers of the tth view can be
obtained by

V [t] =

⎛

⎝H[t] +
T∑

s �=t

ηk[t, s]H [t, s]

⎞

⎠
−1 ⎛

⎝B[t] +
T∑

s �=t

ηk[t, s]B[t, s]

⎞

⎠ . (31)

For clarify, the proposed MvWECM approach is summarized in Algorithm 1.
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Algorithm 1. Multi-view Weighted Evidential C-Means clustering.
Input: : The data set X = {X [1],X [2], · · · ,X [T ]}, parameters α,β and η, the number

of clusters c, the maximum number of iteration nmax

1: Initialization:n = 0, M [t] = M 0[t], V [t] = V 0[t], W = (1/T, · · · , 1/T ), ∀t =
1 · · · T

2: repeat
3: n ← n + 1
4: Claulate the value of objective function J based on Eq. (1)
5: JOld ← J
6: Update the basic belief assignment M based on Eqs. (13) and (14)
7: Update the view wights W based on Eq. (23)
8: Update the clustering center V based on Eq. (31)
9: Calculate the value of objective function J based on Eq. (1)

10: until |J − JOld| < 10−3 or n ≥ nmax

Output: The basic belief assignments M , the view wights W and the cluster centers
V

3 Experiments

In this section, some experiments are performed on Gaussian and UCI data
set Iris to evaluate the effectiveness of the proposed algorithm. Fused credal
partitions derived from MvWECM and ECM are calculated by:

MMvWECM =
T∑

t=1

wt · MMvWECM[t], MECM =
1
T

T∑

t=1

MECM[t]. (32)

Credal partitions are transformed into hard ones by maximizing the correspond-
ing Pignistic probability [8]. Then, Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI) and Cluster Accuracy (CA) are adopted to measure
the clustering performance.

A. Gaussian data set
The mean values and covariance matrices of Gaussian data are listed in

Table 1. We set c = 2, k[t, s] = 1(t �= s), β = 25 and η = 1 in MvWECM ,
while other parameters are set as default.

Table 1. Distribution of Gaussian data set

View Mean Covariance Size Mean Covariance Size

1th view (4,4)

[
1 0

0 1

]
200 (7,7)

[
1.2 0

0 1.2

]
200

2th view (3,6)

[
2 0

0 2

]
200 (5,7)

[
2 0

0 2

]
200
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Fig. 1. Clustering results of 2-class Gaussian data set by different methods.

Table 2 shows that the proposed MvWECM has gained improvement com-
pared with ECM in terms of all the three indexes. We can find that the proportion
of sample in overlapping zones of cluster {ω1} and {ω2} in the second view is
larger than that in the first view as Fig. 1.a - Fig. 1.b shows. It indicates that
the first view is more important than the second one. As expected, the first view
wight provided by MvWECM is larger than the second view one. There are lots
of samples belonging to {ω1} or {ω2} are assigned to the meta-class {ω1, ω2}
by MvWECM as Fig. 1.c - Fig. 1.d shows, while the result of ECM in Fig. 1.e -
Fig. 1.f not only has the uncertain partition but also shows that many samples
are assigned incorrectly.

Fig. 2. Clustering results of Iris data set transformed by different methods.
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Table 2. The ARI, NMI and CA values of clustering results on Gaussian data set .

Index MvWECM ECM

ARI NMI CA ARI NMI CA

Value 0.87 0.80 0.94 0.85 0.77 0.93

B. Iris data set
The Iris data are divided into 3 views by features, such that the distributions
of each view are (a) Sepal.Length, Sepal.Width; (b) Sepal.Width, Petal.Length;
(c) Petal.Length, Petal.Width respectively. We set c = 3, k[t, s] = 1(t �= s),
β = 25, η = 1 in MvWECM, while other parameters are set as default.

Table 3 shows that, especially, AC obtained by MvWECM has outperformed
6% over ECM. Figure 2.a - Fig. 2.c show that {ω1} is easier to identify, how-
ever, {ω2} and {ω3} are more difficult to divide depending on the first and the
second views but easier on 3th view. The view weights given by MvWECM are
[0.011, 0.037, 0.952], those correspond the importance of the view we found on
the benchmark data set in advance. The results in Fig. 2.d - Fig. 2.i show that
the samples in {ω2} and {ω3} are divided as much as possible by MvWECM
than ones by ECM. MvWECM has gained improvement compared with ECM.
This can be attributed to the fact that it can mine and measure the contribution
of each view to cluster structure by weighting views, meanwhile it preserves the
diversity of each view when finding the mutual information from different views.

Table 3. The ARI, NMI and CA values of clustering results on Iris data set.

Index MvWECM ECM

ARI NMI CA ARI NMI CA

Value 0.58 0.61 0.71 0.53 0.60 0.67

4 Conclusion

In this study, we proposed a novel multi-view clustering method called
MvWECM in the framework of belief functions. The innovation of this app-
roach is that can take advantage of multi-view data and consider the weights of
different views. The uncertain cluster structure is modeled by credal partitions.
Experimental results show that MvWECM is effective on both Gaussian and
UCI data sets.
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Abstract. Evidential preference based on belief function theory has
been proposed recently, simultaneously characterizing preference infor-
mation with uncertainty and imprecision. However, traditional distances
on belief functions do not adapt to some intrinsic properties of preference
relations, especially when indifference relation is taken into comparison,
therefore may cause inconsistent results in preference-based applications.
In order to solve this issue, Unequal Singleton Pair (USP) distance has
been proposed previously, with applications limited in preference aggre-
gation. This paper explores forward the effectiveness of USP distance in
preference clustering, especially confronting multiple conflicting sources.
Moreover, a combination strategy for multiple conflicting sources of pref-
erence is proposed. The experiments on synthetic data show that USP
distance can effectively improve the clustering results in Adjusted Rand
Index (ARI).

Keywords: Belief function theory · Preference clustering · Distance

1 Introduction

With the blossomy development of the digital world, there are various ways
to describe one’s preference information, such as binary choice (like, dislike),
rated with ranks, scores, even colors. Indeed, it is challenging to accurately and
effectively cluster preferences, and data quality is one problem. Low quality may
be caused by uncertainty, conflicts, incompleteness, or other flaws. We refer to
such preference data as “imperfect” in this paper.

Many works have been devoted to modeling imperfect preferences. For exam-
ple, fuzzy preference [11], possibilistic model [1], probabilistic model [8] and
Plackett-Luce model [9] have been proposed to deal with preference with uncer-
tainty and have gained success in various scenarios of applications. However,
these methods are usually limited to uncertainty information with uncertainty
by proportional or probabilistic values by imposing distribution assumptions.

Dissimilarity measures play an important role in preference analysis, notably
in preference aggregation [5,13] and preference learning [7,14] applications. The
former application concerns combining multiple preferences into a consensus one,
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 33–43, 2021.
https://doi.org/10.1007/978-3-030-88601-1_4
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while the latter one concentrates on machine learning over preference informa-
tion, usually applied in ranking problems [4]. Preference clustering is a mission
in preference learning, aiming at categorize the preference information based
on their similarities, often applied in recommendation systems and commu-
nity detection tasks [6,16,17]. Indeed, some preference aggregation strategies
are intrinsically identical to the minimization of distance sums, as demonstrated
in a work of Viappini [15].

Naturally, dissimilarity measure methods in BFT come into the focus for
evidential preferences. Even though many dissimilarity measures have been pro-
posed in BFT, they are proved not suitable for evidential preference in [19]
because of the conflicts between inherent properties of preference relations. An
important one is the equal dissimilarity value between singletons. Formally, in a
framework of discernment (FoD) Ω = {ω1, ω2, . . . , ωH}, ∀ωp, ωq ∈ Ω, to the limit
of our knowledge, the dissimilarity function d(·) over two singletons d(ωp, ωq) is
a constant, usually normalized as 1. However, dissimilarity between singletons
should be naturally discriminated in preference relation. For example, the dissim-
ilarity dΔ between three binary preference relations “strict prefer to” (denoted as
�), “indifferent to” (denoted as ≈), and “inverse strict prefer to” (or “preferred
by”, denoted as ≺) is naturally dΔ(�,≺) > dΔ(�,≈) while all dissimilarity
measures in BFT output dΔ(�,≺) = dΔ(�,≈). This valuation set ignores the
intermediate role of “indifference” between the two directions of “strict prefer-
ence”, which is detrimental in distance based applications with weak preferences.
Zhang et al. [19] discussed negative consequences of such valuation in preference
aggregation application and proposed Unequal Singleton Pair (USP) distance,
solving the issue by discriminating the dissimilarity between different singleton
pairs with other important properties in BFT still guaranteed.

The effectiveness of USP distance in evidential preference aggregation has
already been demonstrated [19], while not applied in evidential preference clus-
tering.

In this paper, we study USP distance in evidential preference clustering
applications. The evidential preferences are obtained from conflicting preference
sources over identical alternative pairs. In our method, the conflicts between
multiple sources are interpreted as the ignorance of an agent. The experiments
show that the clustering results are improved by applying USP distance in terms
of Adjust Rand Index (ARI).

The paper is organized as follows: in Sect. 2, basic notions on belief functions
as well as evidential preference model are introduced, followed by the calculation
tutorial of USP distance and clustering model in Sect. 3. Afterward, the com-
parison experiments of clustering with other distances are depicted in Sect. 4.
Conclusion and discussions are given finally in Sect. 5.
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2 Preliminary

2.1 Belief Functions

Let Ω = {ω1, . . . , ωH} be a finite set representing all possible status of a cate-
gorical attribute, the uncertainty and imprecision of this attribute is expressed
by Basic Belief Assignment (BBA).

Definition 1. (Basic Belief Assignment (BBA)) A Basic Belief Assignment
(BBA) on Ω is a function m : 2Ω → [0, 1] such that:

m(∅) = 0 and
∑

X⊆Ω

m(X) = 1. (1)

The subsets X of Ω such that m(X) > 0 are called focal elements, while the
finite set Ω is called the framework of discernment (FoD). Ω is also considered as
total ignorance since it represents all the possibilities. A BBA representing total
ignorance (m(Ω) = 1) is also called a vacuous BBA. A BBA is simple supported
if a non-zero value is assigned only to one singleton and Ω. Besides, a BBA m is
called categorical on element X,X ∈ 2Ω if m(X) = 1, denoted as X0. We refer
to a categorical BBA on one singleton as categorically simple supported.

2.2 Evidential Preference Model

Preference modeling is usually based on order theory. In this paper, we use the
widely accepted notions in studies of preferences from [12].

Definition 2. (Preference relation) Between any two alternatives ai, aj , only
three exclusive relations possibly exist {�,≈,∼}, defined from binary relation
R, with ¬ denoting logic negation, as:

Strict preference: ai � aj iff aiRaj and aj¬Rai;
Indifference: ai ≈ aj iff aiRaj and ajRai;

Incomparability: ai ∼ aj iff ai¬ � aj and ai¬ ≺ aj and ai¬ ≈ aj .

Definition 3. (Preference Structure) A preference structure is a collection of
binary relations defined on the set A and such that:

– for each couple (ai, aj), ai, aj ∈ A, at least one relation is satisfied;
– for each couple (ai, aj), ai, aj ∈ A, if one relation is satisfied, any other rela-

tion cannot be satisfied.

The evidential preference model is originally proposed by [10] on weak orders
and extended to quasi orders with the consideration of incomparability by [18].

Definition 4. (Evidential preference) For any alternative pair ai, aj ∈ A, four
relations are possible. Therefore, the preference FoD Ωpref

ij is defined as:

Ωpref
ij = {ωR

ij |R ∈ {�,≺,≈,∼}}. (2)
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The degree of uncertainty on preference relation is represented by values on
singletons. The imprecision is characterized by values on union sets.

With the combination rules in the framework of BFT, the evidential pref-
erence model is effective in group decision-making with imperfect preference
information sources, as systematically discussed in [19].

3 Clustering Model for Evidential Preferences with
Unequal Singleton Pair (USP) Distance

In this section, we introduce the clustering model over evidential preference with
USP distance, followed by a brief tutorial for calculating USP distance.

3.1 Strategy of Reasoning and Clustering

The reasoning strategy is designed with the procedure depicted in Fig. 1, where
σ denotes a preference structure, u an agent, and D the matrix of pairwise
distances.

Fig. 1. Strategy of clustering

In a case that an identical agent u’s (u ∈ U) preference is expressed by
multiple sources, agent u is therefore represented by a list of pairwise evidential
preferences obtained by the combination of multiple sources. Afterward, pairwise
distances between different agents are calculated for the clustering process. In
this strategy, three main steps are included:

1. Combination of multiple conflicting preference sources for one agent;
2. Calculation of distances between different agents;
3. Clustering over agents based on the proximity distances.

In the following parts, we introduce the combination of multiple preferences and
the calculation of distances, while the clustering method is out of the scope
because any clustering method for proximity data is available.
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3.2 Evidential Preference Reasoning and Combination

Evidential preferences are reasoned from conventional crisp preference informa-
tion, wildly conflicting preferences from multiple sources. We develop an eviden-
tial preference reasoning strategy for multiple (conflicting) sources.

Given multiple preference structures (from multiple sources) S = {σ1, σ2, . . .}
for one agent u on identical alternative set A, the average mutual conflicting
(AMC) κAMC among S is defined as:

κAMC =
1

(|S|
2

)
∑

σp,σq∈S
p<q

d(σp, σq), (3)

where d denotes a distance function for preference orders (rather than pair-wise
preferences). In this paper, we apply Fagin’s distance [3], which is an extended
version of Kendall’s distance.

The BBAs’ values are obtained by mean rule combination with normalization
of AMC. For agent u’s opinion between ai and aj , denote the crisp preference
from source s as σs(ai, aj). The BBA mu

ij representing agent u’s evidential pref-
erence opinion between ai, aj is calculated by:

mu
ij(X) =

{
1−κAMC

|S|
∑

s∈S ms
ij(X), if X 
= Ω;

κAMC , X = Ω,

where ms
ij is categorical as it comes from a crisp preference source without

uncertainty nor imprecision.
The distance between two agents ur and ul are calculated by the mean value

of their pairwise preference distance, defined as:

d(ur, ul) =
1

(|A|
2

)
∑

ai,aj∈A
i<j

dBFT (mur
ij ,mul

ij ), (4)

where dBFT denotes a distance function for BBAs in the theory of belief func-
tions,

(|A|
2

)
the combination number of 2 elements out of A. In our work, we

apply USP distance as introduced below to avoid the flaw mentioned in the
Sect. 1.

3.3 USP Distance

Unequal Singleton Pair distance is originally proposed to solve a flaw existing
in all dissimilarity measures in BFT. Before USP distance, all measures value
the dissimilarity between singletons equally. In a FoD Ω = {ω1, ω2, . . . , ωH}, the
dissimilarity between any two different singletons is a constant (normalized as
1), formally, ∀ωm, ωn ∈ Ω,ωm 
= ωn:

d({ωm}0, {ωn}0) ≡ 1. (5)
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USP distance, which is an extensive version of Jousselme distance, can solve
this flaw. given for two BBAs m1 and m2 in Ω, USP distance is defined by:

dUSP (m1,m2) =
√

(m1 − m2)T Σ(m1 − m2), (6)

where Σ denotes the similarity matrix between elements in 2Ω . In Jousselme
distance, Σ is a Jaccard matrix defined on the structure of elements, while in
USP distance, Σ is defined by resemblance resemb and entirety entire of the two
elements. The value of resemblance and entirety are calculated by the difference
in the similarity between singleton pairs.

Here we give a tutorial for USP distance calculation. Define a set of ele-
ments in 2Ω , W = {X1,X2, . . . , XM}, therefore W ⊆ 2Ω . Denote resemb(W )
for resemb(X1,X2, . . . , XM ) and entire(W ) for entire(X1,X2, . . . , XM ) to sim-
plify the expression. The size of W is defined by the number of elements X ∈ 2Ω ,
denoted by |W |. Singletons in W is defined by the union of all elements in W ,
formally:

∪ W =
⋃

Xi∈W

Xi. (7)

To guarantee the uniqueness of the solution, the entirety value of a singleton is
set as 1. Denote the subset of W by Wsub, entire(W ) is defined as a generalized
version of cardinal function on the union sets:

entire(W ) =
∑

ω∈∪W

entire(ω) +
|2Ω |∑

t=1

∑

Wsub⊆W
|Wsub|=t

resemb(Wsub) × (−1)t. (8)

To simplify the calculation, we assume that the resemblance values are non-
zero only between two singletons and the entirety of a singleton is 1, formally:

resemb(W ) = 0, ∀W ⊆ 2Ω , |W | ≥ 3, (9)

entire(ω) = 1, ∀ω ∈ Ω. (10)

Inserting above equations into Eq. (8), we have:

entire(X,Y ) =
∑

ω∈X∪Y

entire(ω) −
∑

ωm∈X
ωn∈Y
m �=n

resemb(ωm, ωn). (11)

Hence, the similarity between two elements X and Y is calculated by:

sim(X1,X2) =

∑

ωm∈X1
ωn∈X2
m �=n

resemb(ωm, ωn)

∑

ω∈X1∪X2

entire(ω) −
∑

ωm∈X1
ωn∈X2
m �=n

resemb(ωm, ωn)
. (12)
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To guarantee Eq. (9), the following constraint can be deduced:
∑

ωm,ωn∈Ω
ωm �=ωn

sim(ωm, ωn) ≤ 1. (13)

3.4 Value Setting of USP Distance for Evidence Preference

Assume that similarities between categorical BBA representing preferences are:

dΔ(ω�, ω≈) = dΔ(ω≺, ω≈) = x;
dΔ(ω�, ω≺) = 1.

(14)

Assume resemb(ω�, ω≈) = p, from Eq. (12), we get:

p =
2x

1 + x
(15)

In this work, we take the extreme value as in [19], shown in Table 1, with
which the similarity matrix Sim over 2Ω can be obtained by Eq. (12).

Table 1. Similarity between singletons

sim ω� ω≺ ω≈

ω� 1 0 1/3

ω≺ 0 1 1/3

ω≈ 1/3 1/3 1

For preference structures, by applying Eq. (4), the USP distance degrades to
Fagin’s distance. Due to the space limitations, the proof will be provided in an
extended version.

4 Experiments

In this paper, we show our first experiments on synthetic data generated by
Algorithm 1. The implementation is realised by Python 3.7, based on iBelief
package1. After calculation of pairwise distance over agents, a proximity measure
applicable clustering method is used. In this paper, EkNNclus [2] is chosen as
the clustering learner. Parameter selection in EkNNclus is not in the scope of
this paper. In this paper, we directly set the number of clusters as in the data
generation process.

1 https://github.com/jusdesoja/iBelief python.

https://github.com/jusdesoja/iBelief_python
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Algorithm 1. Generate conflicting preference sources in |C| clusters

Require: Cluster number |C|
Switch time T
neighbour size N
Alternative size in each order |A|

Ensure: |C| clusters of preferences
1: Initialise |C| preference structures as

centroids
2: for each centroid σc do
3: for n in 1 : N do

4: for t in 1 : T do
5: randomly generate index i, j;
6: exchange ranking order of

ai, aj in σc to making a new
order;

7: end for
8: end for
9: end for

Confronting multiple preference sources, several methods are respectively
compared with the average of Euclidean distance and Fagin (Kendall) distance.
Clustering results are evaluated by Adjusted Rand Index and Silhouette score,
depicted in Fig. 2. To avoid random errors, the average value of 20 times exper-
iments is calculated.

Two sets of experiments are conducted to demonstrate the effectiveness of
USP distance in preference clustering. The first one is done with two conflicting
sources, while the neighborhood size of preferences over 10 items increment,
depicted in Fig. 2. The second one is done with 8 clusters of preferences, with
number of sources varying from 1 to 10 with step 2, depicted in Fig. 3.

Fig. 2. Clustering results with different neighbourhood size

It can be easily observed from Fig. 2 that USP distance outperforms other dis-
tances, especially in terms of ARI. The advantages of USP distance are obtained
by moderating the dissimilarity between ≺,� and ≺,≈, which respects better
the natural definition of the preference relations. From Fig. 3, the result is con-
sistent with Experiment 1, that USP distance out performs other in ARI while
worse in sihouette score. Moreover, with one source, experiments with Jousslem
distance, USP distance and Kendall distance return identical clustering results.
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Fig. 3. Clustering results with different number of sources

This proves the assertation that Jousselme distance and USP distance degrade
to Kendall distance confronting conventional preferences in total orders. We also
observe that both ARI and silhouette score dramatically decrease with the num-
ber of conflicting sources augmenting. This is due to the fact that the alternative
space is small (with only 10 alternatives), therefore one pair of conflicting pref-
erence already takes a big portion in all preference structure. In deed, with 10
sources of conflicting sources, two agents often become identical after the com-
bination step. The results with 10 sources are similar in all distances, because
the data is barely separable at this stage.

5 Discussion and Conclusion

This paper explores the usage of a previously proposed distance, Unequal Single-
ton Pair (USP) distance, into clustering applications over evidential preferences.
A combination rule for multiple preference sources is also proposed by inter-
preting the conflicts as imprecision. By applying USP distance over evidential
preferences, clustering results are improved in terms of ARI.

Compared with the simple average strategy, evidential reasoning with USP
distance can moderate the conflict between different information sources. Unfor-
tunately, this also causes some side effects on the clustering mission: The clus-
tering results are improved while the clustering quality is jeopardized in terms
of silhouette scores.

Despite that USP distance is empirically proven useful, its effectiveness over
incomplete preference structure remains suspicious. In the evidential preference
model, missing information is usually modeled by total ignorance, which is equiv-
alent to complete imprecision. However, pieces of missing information are mea-
sured as identical by USP distance, making them easily clustered into one iden-
tical group. Such a phenomenon is ridiculously against logical facts. To correctly
clustering incomplete data within BFT is in the scope of our future work.



42 Y. Zhang and A. Martin

References

1. Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling
of preferences. Appl. Intell. 14(3), 303–317 (2001). https://doi.org/10.1023/A:
1011298804831

2. Denœux, T., Kanjanatarakul, O., Sriboonchitta, S.: EK-NNclus: a clustering pro-
cedure based on the evidential k-nearest neighbor rule. Knowl.-Based Syst. 88,
57–69 (2015)

3. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and aggre-
gating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 47–58
(2004)
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Abstract. Clustering is widely used in text analysis, natural language
processing, image segmentation and other data mining fields. ECM (evi-
dential c-means) is a powerful clustering algorithm developed in the the-
oretical framework of belief functions. Based on the concept of credal
partition, it extends those of hard, fuzzy, and possibilistic clustering
algorithms. However, as a clustering algorithm, it can only work well
when the data is sufficient and the quality of the data is good. If the
data is insufficient and the distribution is complex, or the data is suffi-
cient but polluted, the clustering result will be poor. In order to solve
this problem, using the strategy of transfer learning, this paper proposes
a transfer evidential c-means (TECM) algorithm. TECM employs the
historical clustering centers in source domain as the reference to guide
the clustering in target domain. In addition, the proposed transfer clus-
tering algorithm can adapt to situations where the number of clusters in
source domain and target domain is different. The proposed algorithm
has been validated on synthetic and real-world datasets. Experimental
results demonstrate the effectiveness of transfer learning in comparison
with ECM and the advantage of credal partition in comparison with
TFCM.

Keywords: Evidential c-means · Clustering · Transfer learning

1 Introduction

Many current clustering algorithms such as c-means can produce good cluster-
ing results only under the premise of sufficient data. However, in practice, there
are problems such as the data is insufficient and the distribution is complex,
or the data is sufficient but polluted. One way to solve this problem is transfer
learning. Transfer learning is applying knowledge learned in one domain or task
to a different but related domain or task. At present, research on transfer learn-
ing mainly focuses on classification, while research on clustering is very limited
despite the wide range of real-world clustering applications. Over the last decade
or so, there are some studies on transfer learning for clustering. According to
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the transfer method, they can be roughly divided into four categories [1]: (1)
instance-based method, in which it assumes that certain parts of the data in
source domain can be reused for learning in target domain by reweighting; (2)
feature-representation-based method [2,3], in which the intuitive idea behind this
case is to learn a “good” feature representation for target domain; (3) parameter-
based method [4–10], in which it assumes that the source domain and the target
domain share some parameters or prior distributions of the hyperparameters of
the models; (4) relational-knowledge-based method [11], in which it deals with
transfer learning for relational domains. Among them, parameter-based transfer
clustering is a research hotspot, such as transfer fuzzy c-means [4] and transfer
possibilistic c-means [7] have been proposed. The core idea of these algorithms
are using the clustering centers in source domain to guide the clustering in target
domain.

ECM (evidential c-means) [12] is a powerful clustering algorithm developed
in the theoretical framework of belief functions, it extends those of hard, fuzzy,
and possibilistic clustering algorithms. ECM is based on a new concept of parti-
tion, referred to as a credal partition. This is done by allocating, for each object,
a mass of belief, not only to single clusters, but also to any subset of the set of
clusters Ω = [w1, ..., wc]. In order to enhance its performance in insufficient data
situations, in this paper, transfer learning for ECM is exploited. Firstly, on the
basis of retaining the structure of the classical ECM objective function, consid-
ering the similarity between the clustering centers of the source domain and the
target domain, the clustering centers of the source domain and the clustering
center correlation matrix are introduced into the new objective function. Then,
the iterative algorithm for solving the objective function is derived.

The rest of the paper is organized as follows. In Sect. 2, ECM clustering
algorithm is briefly reviewed. In Sect. 3, TECM clustering algorithm is proposed.
Experimental results are reported and discussed in Sect. 4. Finally, conclusions
are given in Sect. 5.

2 Evidential C-Means

In [13], it is proposed to represent partial knowledge regarding the class mem-
bership of an object i by a basic belief assignment (bba) mi on the set
Ω = [w1, ..., wc]. Based on this representation, it is possible to model all sit-
uations ranging from complete ignorance to full certainty concerning the class
of i. For each object i, mij = mi(Aj) is low when the distance dij between i and
the focal set Aj is high. Like in fuzzy clustering, each class wk is represented by
a vk ∈ Rp. We propose to associate to each subset Aj of Ω the barycenter vj of
the centers associated to the classes composing Aj . Some notations that will be
used are introduced.

skj =
{

1 if wk ∈ Aj

0 else,
(1)

and we compute the barycenter vj associated to Aj by vj = 1
cj

c∑
k=1

skjvk, where

cj denotes the cardinal of Aj .



Transfer Evidential C-Means Clustering 49

Then, we propose to look for the credal partition M = {m1, ...,mn} ∈ Rn×2c

and the matrix V of size (c ∗p) of clustering centers by minimizing the following
objective function:

JECM (M, V ) =
n∑

i=1

∑
{j/Aj �=∅,Aj⊆Ω}

cα
j mβ

ij ||xi − vj ||2 +
n∑

i=1

δ2mβ
i∅,

s. t.
∑

{j/Aj⊆Ω,Aj �=∅}
mij + mi∅ = 1 ∀i = 1, n,

(2)

where mi∅ denotes mi(∅), δ controls the amount of data considered as outliers,
α and β are weighting exponents.

3 Transfer Evidential C-Means Clustering

3.1 Objective Function

Adopting the transfer method similar to that in [4], in this paper, we construct
a novel objective function by utilizing the historical matrix of barycenter Ṽk in
source domain, and propose the transfer evidential c-means clustering algorithm
correspondingly. The objective function of TECM is defined as follows:

min JTECM =
n∑

i=1

∑
{j/At,j �=∅,At,j⊆Ω}

cα
j mβ

ij ||xi − vj ||2 +
n∑

i=1

δ2mβ
i∅

+λ
∑

{k/As,k �=∅,As,k⊆Ω}

∑
{j/At,j �=∅,At,j⊆Ω}

cα
j rkj

γ ||ṽk − vj ||2,

s. t.
∑

{j/At,j⊆Ω,At,j �=∅}
mij + mi∅ = 1 ∀i = 1, n,

∑
(j/At,j �=∅,At,j∈Ω)

rkj = 1,

(3)

where rkj denotes the similarity between the barycenter vj in the target domain
and the barycenter ṽk in the source domain, λ is a balance coefficient of transfer
learning and γ is a weighting exponent.

For Eq. (3), the following explanations are given.

1) The first term and the second term in Eq. (3) are directly inherited from the
classical ECM, which is mainly used to learn from the data available in the
target domain.

2) The third one is used to learn the knowledge from the source domain. In
this term, rkj denotes the similarity between the jth barycenter in the target
domain and the kth barycenter in the source domain; this term implies that
if the jth barycenter in the target domain and the kth barycenter in the
source domain are more similar, the jth barycenter in the target domain will
learn more knowledge from the kth barycenter in the source domain.
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3.2 Derivation

By minimizing (3) and using the Lagrange optimization, one may derive the
following update equations for the credal partition M and the clustering center
correlation matrix R:

mij =
c
−α/(β−1)
j ||xi − vj ||−2/(β−1)

∑
At,l �=∅ c

−α/(β−1)
l ||xi − vl||−2/(β−1) + δ−2/(β−1)

, (4)

rkj =
c
−α/(γ−1)
j ||ṽk − vj ||−2/(γ−1)

∑
At,l �=∅ c

−α/(γ−1)
l ||ṽk − vl||−2/(γ−1)

(5)

Now it is considered that M and R are fixed. The minimization of JTECM with
respect to V is an unconstrained optimization problem. The partial derivatives
of JTECM with respect to the centers are set to zero:

∂JTECM

∂vl
= 0, (6)

namely,
∑

i

xi

∑
At,j �=∅

cα−1
j mβ

ijslj + λ
∑

As,k �=∅
ṽk

∑
At,j �=∅

cα−1
j rγ

kjslj

=
∑

z

vz

∑
i

∑
At,j �=∅

cα−2
j mβ

ijsljszj + λ
∑

z

vz

∑
As,k �=∅

∑
At,j �=∅

cα−2
j rγ

kjsljszj .
(7)

Let B1, B2, H1 and H2 be matrixs defined by

B1lq =
n∑

i=1

xiq

∑
At,j �=∅

cα−1
j mβ

ijslj =
n∑

i=1

xiq

∑
wl∈At,j

cα−1
j mβ

ij , (8)

B2lq =
∑

As,k �=∅
ṽkq

∑
At,j �=∅

cα−1
j rγ

kjslj =
∑

As,k �=∅
ṽkq

∑
wl∈At,j

cα−1
j rγ

kj , (9)

H1lz =
∑

i

∑
At,j �=∅

cα−2
j mβ

ijsljszj =
∑

i

∑
At,j⊇{wz,wl}

cα−2
j mβ

ij , (10)

H2lz =
∑

As,k �=∅

∑
At,j �=∅

cα−2
j rγ

kjsljszj =
∑

As,k �=∅

∑
At,j⊇{wz,wl}

cα−2
j rγ

kj , (11)

where l = 1, c, q = 1, p, and z = 1, c. With these notations, V is solution of the
following linear system:

B1 + λB2 = (H1 + λH2)V, (12)

which can be solved using a standard linear system solver. Based on the above
analysis, the proposed TECM is presented in Algorithm 1.
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Algorithm 1. Transfer Evidential C-means Clustering
Input: samples in target domain:{x1,...xn}, barycenter in source domain: {ṽ1,...ṽk},

clustering number: c, weighting exponent: α � 0, β > 1, γ > 1, distance to the
empty set: δ > 0, termination threshold: ε, balance coefficient of transfer learning:
λ.

Output: credal partition M .
1: initial clustering centers V0.
2: t ← 0
3: repeat
4: t ← t + 1
5: compute credal partition Mt using (4);
6: compute clustering center correlation matrix Rt using (5);
7: compute B1,B2,H1,H2 using(8)(9)(10)(11);
8: compute clustering centers Vt using (12);
9: until (|JTECM (t) − JTECM (t − 1)| < ε)

4 Experimental Results

In this section, the proposed algorithm will be extensively evaluated on synthetic
and real-world datasets. The experiment is divided into two parts, the first part
is comparing with ECM algorithm to illustrate the effectiveness of the transfer
learning, the second part is comparing with TFCM proposed in [4], the advantage
of credal partition is illustrated.

4.1 Comparison of TECM and ECM

In this section, we will verify the effectiveness of the transfer learning by compar-
ing the clustering effects of ECM. The indices used for performance evaluation
are accuracy (ac), Adjusted Rand Index (ARI), Normalized Mutual Informa-
tion (NMI) and Davies-Bouldin Index (DB). The definations of these indices
are shown in [2,6,10].

Synthetic Dataset. Due to space constraints, we only consider a more general
case of different clustering number here. T-1 and S-1 represent the datasets in
target and source domain. Parameters used to generate datasets are given in
Table 1. From Table 1, we can see that the first three clusters in S1 have similar
but different means and covariances as T1, which means that S1 is a source
domain dataset containing useful information for clustering dataset T1 in the
target domain.

TECM is repeated 100 times on T-1. The means of ac, ARI, NMI, and DB
values on the target dataset T-1 obtained by the proposed TECM algorithm
using different parameter setting (λ) based on the knowledge extracted from the
S-1 are shown in Fig. 1.

From the experimental results, it can be seen that when choosing appropri-
ate λ, the clustering effect using TECM compared with ECM (λ = 0) has large
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Table 1. Parameters used to generate the synthetic datasets T-1 and S-1.

T-1 Mean Covariance Size

Cluster 1 [−4 4] [6 0; 0 6] 10

Cluster 2 [1 13] [6 0; 0 6] 10

Cluster 3 [4 6] [6 0; 0 6] 10

S-1 Mean Covariance Size

Cluster 1 [−5 6] [5 0; 0 5] 1000

Cluster 2 [0 15] [5 0; 0 5] 1000

Cluster 3 [5 5] [5 0; 0 5] 1000

Cluster 4 [−5 −5] [5 0; 0 5] 1000

Fig. 1. The means of ac, ARI, NMI, and DB values on the target dataset T-1 obtained
by the proposed TECM algorithm using different parameter setting (λ).

improvement. The values of three external indexs all increase and the value of
internal index DB decreases when the appropriate λ is selected, this means that
even if the clustering number of source domain and target domain is different,
some structures in target domain are similar to that in source domain, the clus-
tering effect will also be improved.

It also can be seen from the experimental results that as the value of λ
increases, the clustering performance first becomes better and then becomes
worst. When the value of λ is small, the effect of transfer learning is not obvious;
when the value of λ is too large, negative transfer will occur. Therefore, it is very
important to choose the appropriate λ. As for how to select the appropriate λ,
firstly, the data of source domain and target domain are normalized. Then, the
appropriate λ is selected in range of [0, 1] through the grid search strategy.

Texture Image Segmentation. The experimental dataset used in this section
is Brodatz texture image segmentation dataset. Specifically, six basic textures:
D6, D11, D46, D93, D96, and D101, in this repository are used to synthesize
the texture images acting as the source or target dataset in our experiment. The
size of the composite texture image has been resized to 90 pixels by 90 pixels.
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In order to simulate the real dataset environment, Gaussian noise is added to
texture images in target domain. In the experiment, (a, c) in Fig. 2 represent the
image in source domain and (b, d) in Fig. 2 represent the corresponding image
in target domain. In the first group, the clustering number K of source domain
and target domain is the same, while the latter group is different.

Fig. 2. Texture images in source domain and target domain.

Fig. 3. The segmentation results of T-2 and T-3.

The results of image segmentation in target domain are shown in Fig. 3, where
(a) is segmentation result of T-2 without using the transfer knowledge and (b)
is the segmentation result of T-2 using the transfer knowledge from S-2, (c) is
segmentation result of T-3 without using the transfer knowledge and (d) is the
segmentation result of T-3 using the transfer knowledge from S-3.

It can be seen from the segmentation results that the segmentation effect of
texture image is improved to a certain extent after using the transfer knowledge,
and the texture information in the image is also clearer.

4.2 Comparison of TECM and TFCM

Two-Class Dataset. To illustrate the advantage of TECM over TFCM, let us
consider the following Two-class dataset. The parameters used to generate the
Two-class dataset are shown in the Table 2. The number of classes in TFCM
and TECM are all set to 2 (w1, w2). But in TECM, the barycenters consist of
w1, w2, w1 ∪ w2 and empty set.
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The clustering result of T-4 is shown as Fig. 4. In TECM, since no sam-
ples belong to the empty set, there are three barycenters in clustering result of
TECM. The samples at the junction of two classes are separately clustered. Such
clustering result is richer and more accurate compared with the clustering result
of TFCM.

Table 2. The parameters used to generate the Two-class dataset.

T-4 Mean Covariance Size

Cluster 1 [0 0.2] [1 0; 0 1] 10

Cluster 2 [1 0.2] [1 0; 0 1] 10

S-4 Mean Covariance Size

Cluster 1 [0 0] [1 0; 0 1] 100

Cluster 2 [1 0] [1 0; 0 1] 100

Fig. 4. Clustering results of T-4 using TECM (a) and TFCM (b)

5 Conclusion

In this paper, a transfer clustering algorithm based on ECM is proposed. In
this method, classical ECM is applyed to source data to gain the clustering
centers of source domain. Then, the clustering centers of source domain and
the target data are used to structure novel objective function. The experimental
results show that transfer learning is useful, and the comparsion with TFCM
illustrates the advantage of TECM. Although the proposed TECM clustering
algorithm has demonstrated their promising performance, more works can be
further addressed about this research topic. One important work is how to tune
the tradeoff λ adaptively.
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Abstract. Clustering is an essential part of data mining, which can be
used to organize data into sensible groups. Among the various cluster-
ing algorithms, the prototype-based methods have been most popularly
applied due to the easy implementation, simplicity and efficiency. How-
ever, most of them such as the c-means clustering are no longer effective
when the data is insufficient and uncertain. While the data for the cur-
rent clustering task may be sparse, there is usually some useful knowl-
edge available in the related scenes. Transfer learning can be adopted to
address such cross domain learning problems by using information from
data in a related domain and transferring that data/knowledge to the
target task. The inconsistency between different domains can increase
the uncertainty in the data. To handle the insufficiency and uncertainty
problems in the clustering task simultaneously, a prototype-based evi-
dential transfer clustering algorithm, named transfer evidential c-means
(TECM), is introduced in the framework of belief functions. The pro-
posed algorithm employs the cluster prototypes of the source data as
references to guide the clustering process of the target data. The exper-
imental studies are presented to demonstrate the advantages of TECM
in both synthetic and real-world data sets.

Keywords: Belief functions · Clustering · Transfer learning ·
Uncertainty · Source domain

1 Introduction

Clustering is an unsupervised technique aiming to classify patterns into groups
[6,10]. It has been widely used in many fields such as image segmentation, mar-
ket research and data analysis. Traditional clustering methods, such as c-means,
usually work well when the data are sufficient. However, in real world, uncertain
and noisy data are omnipresent. Moreover, sometimes we can not get enough
data to train a fine clustering model. To address the problems of a lack of infor-
mation and data impurity, several advanced cluster models have been developed,
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such as semi-supervised learning [1], multi-view clustering [7], transfer learning
[2,4] and so on.

Transfer learning can learn an effective model for the target domain by effec-
tively leveraging useful information from the source domain [2]. Figure 1 illus-
trates a situation where transfer learning is useful. As we can see, it is difficult
to obtain an ideal partition for the target data (the left figure) as they are too
sparse. However, if information from the source domain (the right figure) is con-
sidered, more promising clustering results can be expected. In general, two kinds
of information can be transferred from the source to the target domain: raw data
or knowledge [9]. Due to the necessity of privacy protection in some applications,
such as users’ personal information, the original raw data in the source domain
are not always accessible. Thus to employ some advanced knowledge from the
source domain instead of raw data is more practical. For example, in the clus-
tering task, the cluster prototypes of the source data (red triangles in the right
figure) can be regarded as good references for the target domain.

Fig. 1. An example where transfer learning is required for the clustering task. (Color
figure online)

The available knowledge in the source domain can help us improve the clus-
ter model, but the inconsistency between information from the two domains
may increase the uncertainty in the data. The theory of belief functions is an
efficient mathematical tool for uncertain information representation and fusion.
The concept of credal partitions defined in the framework of belief functions
is first proposed by Denœux et al. [3] to deal with the uncertain cluster struc-
ture, and following many evidential clustering methods have been designed and
widely applied [5,8]. In this paper, we combine the idea of evidential clustering
and transfer learning to develop a new clustering method, named transfer evi-
dential c-means (TECM), for insufficient and uncertain data. It first identifies
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cluster prototypes based on the source domain, which are then transferred into
the target domain to guide the clustering procedure. The experimental results
on generated and UCI data show the effectiveness of the proposed method.

The remainder of this paper is organized as follows. The proposed TECM
algorithm is presented in detail in Sect. 2. Numerical experiments are conducted
in Sect. 3. Conclusions are drawn in the final section.

2 Transfer Evidential c-means

Inspired by the idea of evidential clustering and transfer learning, in this section
we will introduce the transfer evidential c-means (TECM) clustering algorithm.

Denote the n data samples in the target domain by X = {x1,x2, · · · ,xn} and
assume that there are c clusters. The frame of discernment is Ω = {ω1, · · · , ωc}.
The available supervised knowledge in a related domain is represented by pro-
totypes V (s) = {v(s)

1 ,v
(s)
2 , · · · ,v

(s)
c }. The superscript (s) indicates that the pro-

totypes are from the source domain. The objective function of TECM and the
optimization approach will be introduced in the following.

2.1 The Objective Function of TECM

As an evidential clustering method in the framework of belief functions, TECM
aims to look for the optimal credal partition M = (m1, · · · ,mn) ∈ R

n×2c

and
the matrix V = (v1, · · · ,vc) of size (c × p) of cluster centers in the target data
by minimizing the following objective function:

JTECM(M ,V ) =
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα
j mβ

ijd
2
ij +

n∑

i=1

δ2mβ
i∅

+ β1

⎡

⎢⎢⎣
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα
j mβ

ijd
2(s)
ij +

n∑

i=1

δ2mβ
i∅

⎤

⎥⎥⎦ + β2

c∑

k=1

||v(s)
k − vk||2, (1)

subject to: ∑

Aj⊆Ω,Aj �=∅
mij + mi∅ = 1, (2)

where mij denotes mi(Aj) and mi∅ denotes mi(∅). cj = |Aj | denotes the cardi-
nal of Aj . dik denotes the distance between xi and the barycenter (prototype,
denoted by vk) associated with Ak:

d2ik = ‖xi − vk‖2, (3)

where prototype vk can defined mathematically by:

vk =
1
ck

c∑

h=1

shkvh, with shk =

{
1 if ωh ∈ Ak

0 else
. (4)
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Notation vh denotes the center of samples in cluster ωh. Parameters α, β and
δ control the degree of penalization for imprecise classes with high cardinality,
the fuzziness of the partition, and the amount of data considered as outliers
respectively. These parameters have the same meaning as those in ECM [8].

The objective functions in Eq. (1) has four terms. The first two terms are
directly inherited from ECM, which are mainly used to learn from the target
data. The third and fourth terms enable the model to learn with the knowledge
from the source domain, where the knowledge in the form of cluster prototypes is
available for the clustering task. β1 and β2 are nonnegative parameters which can
balance the influence of data in the target domain and knowledge in the source
domain. In the experiments, we suggest the default values for these parameter
α = 1, β = 2, β1 = β2 = 1, δ = 10.

2.2 Optimization

To minimize the objective function JTECM, the Lagrange multipliers method
is adopted. First, consider that the prototype sets in the target domain, V ,
is fixed. To solve the constrained minimization problem with respect to the
membership matrix M , n Lagrange multipliers λi(i = 1, · · · , n) are introduced
and the Lagrangian can be written as:

L(M ;λ1, · · · , λn) = JTECM −
n∑

i=1

λi

⎛

⎜⎜⎝
∑

Aj⊆Ω

Aj �=∅

mij + mi∅ − 1

⎞

⎟⎟⎠ . (5)

Differentiating the Lagrangian with respect to mij , mi∅, and λi and setting the
derivatives to zero, the necessary condition of optimality for M can be got as:

∂L

∂mij
= cα

j βmβ−1
ij

(
d2ij + β1d

2(s)
ij

)
− λi = 0. (6)

∂L

∂mi∅
= βmβ−1

i∅
(
δ2 + β1δ

2
) − λi = 0. (7)

∂L

∂λi
=

∑

Aj⊆Ω

Aj �=∅

mij + mi∅ − 1 = 0. (8)

From Eqs. (6) and (7), it is easy to obtain

mij =

⎛

⎝ λi

cα
j β

(
d2ij + β1d

2(s)
ij

)

⎞

⎠
1/(β−1)

. (9)
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mi∅ =
(

λi

β(δ2 + β1δ2(s))

)1/(β−1)

. (10)

Substituting Eqs. (9) and (10) into Eq.(8), we can get
(

λi

β

)1/(β−1)

=
1

∑
Aj⊆Ω

Aj �=∅

Δij +
(

1
δ2+β1δ2(s)

) 1
β−1

, (11)

where

Δij =

⎛

⎝ 1

cα
j

(
d2ij + β1d

2(s)
ij

)

⎞

⎠

1
β−1

. (12)

Return in Eqs. (9) and (10),

mij =

(
1/

(
cα
j

(
d2ij + β1d

2(s)
ij

))) 1
β−1

∑
Ak⊆Ω

Ak �=∅

(
1/

(
cα
k

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

, (13)

and

mi∅ =

(
1

δ2+β1δ2

) 1
β−1

∑
Ak⊆Ω

Ak �=∅

(
1/

(
cα
k

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

. (14)

Next we consider that the credal membership matrix M is fixed. It is easy to
see the minimization of JTECM with respect to V is an unconstrained optimiza-
tion problem. The partial derivatives of JTECM with respect to the prototypes
of the specific classes in the target domain can be given by:

∂JTECM

∂vl
=

n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα
j mβ

ij

∂d2ij
∂vl

− 2β2(v
(s)
l − vl), (15)

∂d2ij
∂vl

= 2 (xi − vj)
(

−slj
1
cj

)
, (16)

where vj is defined by Eq. (4). Thus we have:

∂JTECM

∂vl
= −2

n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα−1
j mβ

ijslj

(
xi −

∑c
k=1 skjvk

cj

)

− 2β2

(
v
(s)
l − vl

)
. (17)
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Setting these derivatives to zero, we can get l linear equations of vk:

∑

i

xi

∑

Aj⊆Ω

Aj �=∅

cα−1
j mβ

ijslj =
c∑

k=1

vk

n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα−2
j mβ

ijskjslj

− β2

(
v
(s)
l − vl

)
. (18)

Let B be a matrix of size (c × p), and it can be defined by:

Blq =
n∑

i=1

xiq

∑

Aj⊆Ω

Aj �=∅

cα−1
j mβ

ijslj =
n∑

i=1

xiq

∑

Aj�ωl

cα−1
j mβ

ij , (19)

and H be a matrix of size (c × c) given by:

Hlk =
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα−2
j mβ

ijsljskj =
∑

i

∑

Aj�{ωk,ωl}
cα−2
j mβ

ij . (20)

Let I be the (c×c) identity matrix. The prototype matrix v can be got by solving
the following linear system:

(H + β2I)v = B + β2v
(s). (21)

3 Experiments

Some experiments are provided in this section. Generated Gaussian data and
some UCI data sets are considered to show the performance of the proposed
evidential transfer clustering method. In all experiments, the credal partitions
provided by ECM and TECM are transformed into hard partitions by using
maximum the corresponding Pignistic probability [11]. The parameters in ECM
and TECM are all set as default (α = 1, β = 2, β1 = β2 = 1, δ = 10). Then,
the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
to measure closeness of a hard partition to the ground truth are adopted as
performance index.

3.1 Gaussian Data Sets

As mentioned, TECM has advantages in the situation when the data in the target
domain are insufficient and uncertain to train a good model. This experiment is
to illustrate the application scope of TECM. Assume that source data and target
data both follow two-dimensional Gaussian distribution. The mean values and
covariance matrices of the source data and target data are listed in Table 1.

There are three clusters in both the target data and the source data. Denote
the number of data samples in each cluster of the target and source domain by
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Table 1. Distributions of source data and target data.

Mean Covariance Mean Covariance

µ
(s)
1 = [2, 4]

[
10 0

0 10

]
µ1 = [3, 4]

[
10 0

0 11

]

µ
(s)
2 = [9, 15]

[
25 0

0 7

]
µ2 = [10.5, 12.5]

[
25 0

0 7

]

µ
(s)
3 = [8, 30]

[
30 0

0 20

]
µ3 = [9, 29]

[
30 0

0 19.5

]

nt and ns respectively. As mentioned, when nt is small, it is difficult to cluster
the samples in the target domain correctly.

The experiment is designed by increasing nt gradually (from 10 to 500) and
applying both ECM and TECM algorithms. For each nt, Gaussian data are
generated 100 times under the fixed parameters in Table 1. ECM and TECM
algorithms are evoked each time. Noted that here in TECM the prototypes of
clusters in the source domain are got by evoking c-means clustering method on
the source data. The average values of ARI and NMI are reported and the results
are shown in Fig. 2. As can be seen, the clustering results obtained by TECM is
significantly better than those by ECM in terms of both ARI and NMI.

Fig. 2. The ARI and NMI value of the clustering results on Gaussian data.

3.2 Iris Data

This experiment is to show the effects of the prototypes available in the source
domain on the clustering performance for the target data. We consider the Iris
data set consisting of 50 samples from each of three species of Iris. Four fea-
tures are measured from each sample: Sepal.Length (SL), Sepal.Width (SW),



Evidential Clustering Based on Transfer Learning 63

Petal.Length (PL) and Petal.Width (PW). The four features are divided into
two parts FT1 and FT2. The six cases are listed in Table 2. The samples with
features in FT1 are regarded as the target data to be clustered.

Table 2. The feature division for Iris data.

Case FT1 FT2 Case FT1 FT2

Case 1 SL, SW PL, PW Case 4 SW, PL SL, PW

Case 2 SL, PL SW, PW Case 5 SW, PW PL, PL

Case 3 SL, PW SW, PL Case 6 PL, PW SL, SW

In order to generate the prototypes in the source domain which are required
before evoking TECM, for each case we first apply c-means clustering on the
samples with features in FT2 and get the best hard partition for the 150 samples.
Then the following two schemes are designed to get the prototypes v

(s)
k :

Scheme A: By the feature mean of samples in each group with feature set FT2;
Scheme B: By the feature mean of samples in each group with feature set FT1;

The methods with two schemes are termed by TECM-A and TECM-B respec-
tively. We can see that in Scheme B the prototypes are from the target data (with
FT1) based on a clustering rule learned with the source domain (with FT2),
while in Scheme A the prototypes are from the source data (with FT2) based on
a clustering rule learned with the same domain (with FT2). The ARI and NMI
for the results by ECM, TECM-A and TECM-B are displayed in Fig. 3. From
the figure we can see:

– For TECM-B, it performs better than ECM in all the cases except Cases 1
and 4, where the behavior of the two methods (TECM-B and ECM) is similar.

– For TECM-A, it performs worse than TECM-B in all the cases. It is not
better than ECM in Cases 1, 3, 4, and 5.

In TECM-B, the transferred knowledge of prototypes have the same fea-
ture set as the target samples (this corresponds to the illustrative example in
the introduction). The results show that the clustering performance is indeed
improved by the use of information from the source. On the contrary, in TECM-
A, the feature sets in the source and target domain are different. The knowledge
from the source has a negative influence on the performance of transfer cluster-
ing in this situation. The imperfect matching between information provided by
the two domains can degrade the clustering performance. We will study how to
avoid such kind of negative transfer in the future.

3.3 UCI Data Sets

Three UCI data sets are used in this experiment: Seeds, Wine and Karate Club
network. The first two data sets are object data while the last is a graph data.
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Fig. 3. The ARI and NMI for the clustering results on Iris set by TECM and ECM.

Table 3. The ARI and NMI of clustering results on UCI data sets.

Dataset nf = 2 nf = 3

ARI NMI ARI NMI

ECM TECM ECM TECM ECM TECM ECM TECM

Seeds 0.4748 0.5074 0.4685 0.4999 0.5046 0.5276 0.4907 0.5177

Wine 0.3497 0.3938 0.357 0.3838 0.3233 0.3785 0.3419 0.3694

Karate 0.2636 1 0.3173 1 0.7717 1 0.7329 1

The number of samples of Seeds data is 210 while 178 for Wine data. The Karate
Club network is a graph with 34 nodes and 78 edges.

There are 7 features in Seeds data and 13 for Wine data. In the experiment,
nf features are randomly selected from the original data to form the target
data set. For Karate graph, the vector embedding is first calculated by spectral
decomposition of its adjacency matrices [12]. The embedding dimension is set to
nf . Then ECM and TECM algorithms are used. We note here as the benchmarks
for these data sets are known, in TECM the average values of the samples in the
target data are directly used to simulate the prototypes in the source domain.

The ARI and NMI values of the clustering results provided by ECM and
TECM are listed in Table 3. In all the experiments, the results by TECM are
better than those by ECM as they generally have higher ARI and NMI values.
This confirms the advantages of the evidential transfer clustering approach when
there is some available positive transferred knowledge in the source domain.

4 Conclusion

In this study, the concept of knowledge transfer has been used to develop an
evidential transfer clustering method named TECM for the application of clus-
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tering task when the target data are uncertain or insufficient. The proposed
TECM algorithm can learn from not only the data of the target domain but
also from the knowledge of the source domain in the form of prototypes as well.
The experimental results on generated data and UCI data have demonstrated
the effectiveness of TECM algorithm compared with ECM which is without the
transfer learning ability.

In TECM, the number of clusters in the source domain and in the target
domain is assumed to identical, which may be difficult to satisfy in real applica-
tions. How to deal with the case when the number of classes in the two domains
is different will be studied in the future.
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Abstract. Transfer learning hopes to borrow transferable knowledge
from source domain (related domain) to build up an adapter for target
domain. Since the adapter is built on the source domain, the robust-
ness and generalization of a single adapter are more likely to be limited.
To further improve the performance of the adapter, in this paper, we
propose a parallel ensemble strategy based on evidence theory. Specif-
ically, firstly, we quantify an adaptation degree for instances of source
domain based on evidence theory. Secondly, we redefine Determinan-
tal Point Processes (DPP) sampling with adaptation degree, and use the
improved DPP sampling to generate k different subsets. Finally, we select
and combine the base adapters that are trained by the subsets. In the
proposed ensemble strategy, the adaptation degree can ensure the higher
transferability of the base adapters, DPP sampling can increase the diver-
sity among the base adapters. Thus, the ensemble strategy can reduce
the conflict between accuracy and diversity, and improve the robustness
and generalization of the adapters. Numerical experiments on real-world
applications are given to comprehensively demonstrate the effectiveness
and efficiency of our proposed ensemble strategy. The results show that
the ensemble strategy can improve transfer performance.

Keywords: Transfer learning · Domain adaptation · Ensemble
learning · Evidence theory · Determinantal point processes

1 Introduction

In the field of machine learning research, supervised learning methods have
already witnessed outstanding performance in many applications. The key point
of supervised learning is to collect sufficient labeled data sets for model train-
ing, which also limits the usage of supervised learning in the scenarios lack of
training data. Furthermore, data annotating is usually a time-consuming, labor-
expensive, or even unrealistic task.
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To settle this situation, transfer learning (TL) [25,34,35] is a promising
methodology, which aims to build an efficient model for the target domain
by making use of labeled instances from other related source domains. Exist-
ing TL methods can be divided into four types, namely instance-based [3,5],
feature-based [4,14], model-based [13,19], and deep learning-based [1,31]. Their
fundament thought is to discover transferable knowledge through maximizing
the consistency between the source domain and target domain, and transfer the
knowledge to the model of target domain.

However, in transfer learning, most methods focus on improving the perfor-
mance of the single adapter. Because the adapter is trained on source domain, a
single adapter could be limited on robustness and generalization. For example,
when the distance is far between source domain and target domain, the source
domain exists a lot of outliers. These outliers lead easily to negative transfer for
a single adapter.

To tackle this problem, in this paper, we propose a parallel ensemble strategy
based on evidence theory. Specifically, firstly, we design a measure criterion,
based on evidence theory, to quantify the adaptation degree of instances of source
domain. Secondly, we redefine Determinantal Point Processes (DPP) sampling
[22] with adaptation degree, and utilize improved DPP to sample from source
domain for generating k different subsets. Finally, we train the base adapters by
the subsets, and use the adaptation degree of subsets to select and combine the
base adapters. In our ensemble strategy, the adaptation degree can ensure that
the base adapters is more suited to target domain. In addition, according to the
property of our improved DPP sampling, we can obtain the subsets with greater
diversity and higher transferability. Specifically, the sampling process with DPP
determines that the probability of two locally adjacent elements occurring at
the same time is relatively small. The property can increase the diversity of
subset. Thus, our ensemble strategy can reduce the conflict between diversity
and accuracy, and improve the robustness and generalization of adapters. The
contributions of this paper are summarized as follows.

– Proposing a parallel ensemble strategy that improves the robustness and gen-
eralization of the adapter in transfer learning.

– Quantifying an adaptation degree that source domain transfers to target
domain.

– Improving the DPP sampling with adaptation degree for reducing the conflict
between accuracy and diversity.

2 Evidence Theory

Evidence theory can be considered as a generalized probability [6,27]. It can
use Dempster’s rule to finish possibility reasoning [7,10,11]. Based on this view,
Denoeux et al. combine the evidence theory with machine learning and designs
some supervised and unsupervised algorithms that can solve the problem of
imprecise information to improve the robustness of algorithms. Such as, Evi-
dential K-NN classification [8], Evidential Linear Discriminant Analysis [26],
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Evidential Neural Network Classifier [9] and multiple evidential clustering algo-
rithms [12]. In this section, we recall mass function and Dempster’s rule from
evidence theory.

Let Ω be a finite set that includes all possible answers in decision problem.
The Ω is called the frame of discernment. In the classification problems, the
Ω can be regarded as the label space. We denote the power-set as 2Ω and the
cardinality of power-set is 2|Ω|.

The mass function m(·) is the Basic Possibility Assignment (BPA) that rep-
resents support degree of evidence, and m(·) is a mapping from 2Ω to the interval
[0,1]. It satisfies the condition as follows:

⎧
⎨

⎩

∑
A∈2Ω m(A) = 1

m(∅) = 0
(1)

Dempster’s rule reflects the combined effect of evidence. Let m1 and m2

be two mass functions induced by independent items of evidence. They can be
combined using Dempster’s rule to form a new mass function defined as:

(m1 ⊕ m2) (A) =
1

1 − κ

∑

B∩C=A

m1(B)m2(C) (2)

where A ⊆ Ω, A �= ∅ and (m1 ⊕ m2) (∅) = 0. ⊕ is the combination operator of
Dempster’s rule. k is the degree of conflict between m1 and m2.

κ =
∑

B∩C=∅
m1(B)m2(C) (3)

3 Adapters Ensemble Based on Evidence Theory

3.1 Estimating Adaptation Degree Based on Evidence Theory

In this section, a measure criterion is designed, based on evidence theory, to
quantify the adaptation degree of source domain for target domain.

In evidence theory, mass function m(Ω|x;Φ) can be interpreted as a degree of
knowing nothing for classification results based on evidence set, in which Ω can
be considered as a label space in classification task and Φ denotes the evidence
set. For transfer learning, when x is from the source domain and evidence set
Φ is from the target domain, m(Ω|x;Φ) can represent the unknown degree of
x about target domain classification task. Thus, m(Ω|xΦ) can reflect the adap-
tation degree of x for target domain task. Based on this view, in our work, we
utilize evidence theory to design m(Ω|x;Φ) for estimating the adaptation degree
of source domain.

We first obtain evidence set Φ from a little of labeled target domain. To this
end, the objective function is defined as

Φ = argmin
Φ

f
(
xs, Φ ⊂ Dt

l

)
, (4)
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in which xs is an instance of source domain, Dt
l is a little of labeled target

domain, and the function f(·) measures the discrepancy between xs and the
evidence set Φ in a reproducing kernel Hilbert Space (RKHS) H,

f (xs, Φ) =

∥
∥
∥
∥
∥
ϕ (xs) − 1

|Φ|
∑

e∈Φ

ϕ(e)

∥
∥
∥
∥
∥

2

H
, (5)

where ϕ : X �→ H is the feature mapping. |Φ| is the number of elements in
evidence set. The optimal evidence set Φ in Equation (4) can be solved by the
greedy search algorithm on a little of label target domain.

In evidence theory, the evidence set Φ can be viewed as a set of different
granular evidence

Φ = {Φ1, . . . , Φn}, (6)

where Φc = {(e1, z1 = c) , . . . , (em, zm = c)} is a set in which the labels of evi-
dence is equal to c.

Then, based on the evidence set Φ, the mass functions are defined as

m (Ω|xs;Φ) =
⊕

Φc⊆Φ

m (Ω|xs;Φc)

=
1
κ

n∏

c=1

m (Ω|xs;Φc) =
1
κ

n∏

c=1

∏

e∈Φc

m (Ω|xs; e),
(7)

where xs is an instance of source domain, e denotes an element of evidence
set. The orthogonal sum

⊕
represents the combination operator of Dempster’s

rule. κ is the degree of conflict between evidence. It can be interpreted as a
normalizing factor.

κ =
n∑

c=1

(m (z = c|xs;Φc)
∏

j �=c

m (Ω|xs;Φc)) +
n∏

c=1

m (Ω|xs;Φc) , (8)

3.2 Improving DPP Sampling with Adaptation Degree

In this section, we modified the L-matrix in the Determinantal Point Processes
(DPP) sampling using the adaptation degree.

Definition 1. k-DPP sampling [20]. Suppose any sampled subset CS consists
of k instances from source domain, the k-DPP of sampling is defined by the
following probability measure of subset selection with L-ensemble,

P k(CS) =
det (LCS )

∑

C′⊆C∧|C′|=k

det (LC′)
(9)

where
∣
∣CS

∣
∣ = k and LCS is the k × k submatrix of L indexed by CS.
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Suppose L =
M∑

i=1

λiviv
T
i , λi refers to the eigenvalue corresponding to the

eigenvector vi, the probability of selecting a k-size subset CS is

P k(CS) =
det (LCS )

∑

C′⊆C∧|C′|=k

det (LC′)
=

∏
ci∈CS λi

∑

C′⊆C∧|C′|=k

{
∏

cj∈C′
λj

} .
(10)

According to the definition above, the correlation matrix L determines the k-
DPP sampling probability. The different correlation matrices have different sam-
pling properties. For improving the diversity and adaptation of subsets, we rede-
fine the matrix L.

(Matrix L Construction). According to [21], we can decompose the matrix
L as a Gram matrix L = BT B, and reformulate the matrix L with adaptation
degree. Suppose each vector Bi in B has the form of Bi = m(Ω|xs

i ;Φ) · φi , in
which m(Ω|xs

i ;Φ) is the adaptation degree of ith element and φi is the normalized
feature vector of the ith element. We rewrite the matrix L as

L = [Lij ]1≤i,j≤M , Lij = (m (Ω|xs
i )) · φT

i · φj · (
m

(
Ω|xs

j

))
(11)

We can see that the inner product φT
i φj ∈ [−1,+1] indicates the similarity

between the elements i and j. Thus, Lij consists of the adaptation degree and
similarity of the pair of elements. Denoting the similarity sij = φT

i · φj , we
rewrite

L =
{
Lij = m(Ω|xs

i ) · sij · m(Ω|xs
j) |1 ≤ i ≤ M, 1 ≤ j ≤ M

}
(12)

In our improved DPP sampling, the m(Ω|xs
i ) can ensure that the sampling

instances are more transferability, and the sij can ensure that the instances
are diverse. Thus, we can obtain the subset with greater diversity and higher
transferability.

3.3 Adapters Selection and Ensemble

Let us consider a simple scenario of transfer learning with a large number of
instances of labeled source-domain Ds, a small number of instances of labeled
target-domain Dt

l that are available.
Firstly, we single out a subset Ti from source domain Ds, according to the

improved DPP sampling with adaptation degree. Then, by repeating the process
of DPP sampling, we can obtain a set of candidate subsets {T1, T2, . . . , TN}.

Secondly, we select the transfer data from the candidate subsets by

T = T ∪ {Ti|Ent (Ti) ≤ β} , (13)
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in which Ent (Ti) represents the confidence of subset in transfer process. The
higher value of Ent(Ti) represents that the subset Ti is more suited to target
domain. The confidence is defined as

Ent (Ti) = − 1
|Ti|

∑

x∈Ti

(m(Ω|x)) log(m(Ω|x)). (14)

Finally, according to each selected subset Ti, we train a set of base adapters
{f1, f2, . . . , fN} for target domain, and we use the confidence of subsets to cal-
culate the weight of base classifier.

wi =
Ent (Ti)

∑|T |
i=1 Ent (Ti)

. (15)

And we combine the base adapters by

H(x) =
|T |∑

i=1

wifi(x). (16)

The final decision is made by

H(x) = arg max
c

|T |∑

i=1

wif
c
i (x). (17)

where c is the class of instance x.

4 Experiments

In this section, we implement the experiment to validate the effectiveness of the
proposed ensemble strategy on text and image datasets.

4.1 Data Preparation

Text Dataset : The Amazon product reviews dataset [2] is commonly used for
the task of sentiment classification in transfer learning. The reviews are about
four product domains: book (B), dvd (D), electronic (E) and kitchen appliance
(K). We create 12 transfer learning subproblems by combining in a pairwise
manner. For example, the B → D means that the book is as source domain and
the dvd as the target domain.

Image Dataset : The Office+Caltech dataset [17] includes 10 classes. It is com-
monly used for the task of visual object recognition in transfer learning. It
includes four domains: Amazon (A), Webcam (W ), DSLR (D), and Caltech(C).
We create 12 subproblems by combining in a pairwise manner.
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4.2 Experimental Setting

Our Method , in our ensemble strategy, we choose the weighted logistic regres-
sion as the base adapter, in which the weights depend on adaptation degree.

Baseline Methods, we overall evaluate the performance of the method through
comparing with three deep learning-based transfer learning methods:
DANN [16], DDC [30], WDGAL [28] and eight traditional transfer learning
methods: KMM [18], TCA [24],GFK [17],JDA [23], CORAL [29], MTLF [33],
SCA [15], EasyTL [32] on text and image datasets.

4.3 Experimental Results

In the experiment of the overall evaluation, as shown in Table 1 and Table 2, the
average accuracy improvement of our method is 2.41% and 2.49% respectively
compared to the best baseline on the two types of datasets. These results indi-
cate that our method achieves statistically superior performance against other
comparing methods. Specifically, we observe from Table 1 that our method out-
performs other well-established methods on 11 transfer learning subproblems
of Amazon reviews. As shown in Table 2, our method outperforms other well-
established transfer learning methods on eight subproblems of Office+Caltech.
These results indicate that the proposed ensemble strategy is effective on text
and image datasets.

In summary, our method achieves highly competitive performance against
other comparing methods. These results clearly validate the effectiveness that
the ensemble strategy based on evidence theory.

Table 1. Accuracy % on the Amazon product reviews

Data Our method TCA CORAL GFK JDA KMM MTLF SCA EasyTL WDGAL

B → D 85.62 77.76 70.76 75.76 77.26 83.76 68.59 81.56 79.80 83.05

B → E 84.29 75.54 66.21 72.00 75.93 79.02 69.63 78.08 79.70 83.28

B → K 85.55 78.74 70.00 73.50 78.09 75.90 72.74 79.09 80.90 85.45

D → B 86.78 76.05 73.05 71.85 77.65 80.5 70.70 82.35 79.90 80.72

D → E 81.62 76.38 68.70 68.96 76.03 68.51 71.90 78.82 80.80 83.58

D → K 85.66 79.34 71.96 75.70 78.29 76.45 74.18 80.39 82.00 86.24

E → B 82.85 73.35 69.90 72.60 72.65 73.7 69.20 77.00 75.00 77.22

E → D 83.44 73.66 65.71 71.11 72.16 77.86 70.73 77.26 75.30 78.28

E → K 89.32 79.74 72.35 76.20 80.14 80.39 71.36 84.63 84.90 88.16

K → B 82.06 73.05 67.45 73.75 75.05 74.25 66.04 78.90 76.50 77.16

K → D 83.30 77.26 68.61 74.21 77.56 75.96 70.31 77.46 76.30 79.89

K → E 87.62 78.74 75.68 76.58 80.32 85.00 68.58 85.65 82.50 86.29

Average 84.84 76.63 70.03 73.52 76.76 77.61 70.33 80.10 79.47 82.43
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Table 2. Accuracy % on the Office+Caltech datasets with DeCAF6 Features

Data Our method TCA CORAL GFK JDA KMM DANN SCA EasyTL DCC

A → C 89.21 78.98 83.88 76.85 75.07 83.08 87.80 78.81 81.66 85.00

A → D 82.20 84.71 80.25 79.62 78.34 83.44 82.46 85.35 84.07 89.00

A → W 86.29 74.92 74.58 68.47 70.85 74.24 77.81 75.93 72.88 86.10

C → A 95.29 89.67 89.98 88.41 89.67 91.23 93.27 89.46 90.50 91.90

C → W 92.21 77.29 78.64 80.68 80.00 80.34 89.47 85.42 75.59 85.40

D → A 94.10 89.77 85.50 85.80 88.31 84.34 84.70 89.98 83.40 89.50

D → C 89.20 79.96 79.25 74.09 73.91 71.86 82.21 78.09 74.09 81.10

D → W 95.58 98.64 99.66 98.64 98.31 98.98 98.95 98.64 93.11 98.20

W → A 94.06 84.45 77.14 75.26 80.27 72.81 82.98 86.12 74.53 84.90

W → C 88.79 77.74 74.98 74.80 72.93 67.14 81.30 74.80 67.31 78.00

Average 90.69 84.96 84.15 81.04 83.02 83.85 87.67 85.88 81.24 88.20

5 Conclusion

To tackle the problem of limited performance of a single adapter in transfer
learning, we proposed a novel ensemble strategy based on evidence theory. In the
proposed ensemble strategy, the adaptation degree can ensure the high trans-
ferability of the base adapters, the DPP sampling can increase the diversity
among the base adapters. Thus, the ensemble strategy can reduce the conflict
between accuracy and diversity, and improve the robustness and generalization
of the adapters. Experimental results on a large number of real-world datasets
with text and image demonstrate that the proposed ensemble strategy achieves
highly competitive performance against other state-of-the-art transfer learning
methods. Moving forward, we believe that our ensemble strategy can potentially
be used in other tasks, such as cross-modal medical image classification, etc.

References

1. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp.
17–36 (2012)

2. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 440–
447 (2007)

3. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In:
Advances in Neural Information Processing Systems, pp. 2456–2464 (2011)

4. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865
(2016)

5. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Pro-
ceedings of the 24th International Conference on Machine Learning, pp. 193–200
(2007)



74 Y. Lv et al.

6. Dempster, A.P., et al.: Upper and lower probabilities generated by a random closed
interval. Ann. Math. Stat. 39(3), 957–966 (1968)

7. Denœux, T.: Reasoning with imprecise belief structures. Int. J. Approx. Reason.
20(1), 79–111 (1999)

8. Denoeux, T.: A k-nearest neighbor classification rule based on dempster-shafer
theory. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer The-
ory of Belief Functions, pp. 737–760. Studies in Fuzziness and Soft Computing,
vol. 219. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
44792-4 29

9. Denœux, T.: Logistic regression, neural networks and dempster-shafer theory: a
new perspective. Knowl.-Based Syst. 176, 54–67 (2019)

10. Denoeux, T.: Distributed combination of belief functions. Inf. Fusion 65, 179–191
(2021)

11. Denoeux, T., Shenoy, P.P.: An interval-valued utility theory for decision making
with dempster-shafer belief functions. Int. J. Approx. Reason. 124, 194–216 (2020)

12. Denoeux, T., Sriboonchitta, S., Kanjanatarakul, O.: Evidential clustering of large
dissimilarity data. Knowl.-Based Syst. 106, 179–195 (2016)

13. Duan, L., Xu, D., Tsang, I.W.H.: Domain adaptation from multiple sources: a
domain-dependent regularization approach. IEEE Trans. Neural Netw. Learn. Syst.
23(3), 504–518 (2012)

14. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual
domain adaptation using subspace alignment. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 2960–2967 (2013)

15. Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a
unified framework for domain adaptation and domain generalization. IEEE Trans.
Pattern Anal. Mach. Intell. 39(7), 1414–1430 (2017)

16. Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object
recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI),
vol. 8862, pp. 898–904. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13560-1 76

17. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2066–2073. IEEE (2012)

18. Huang, J., Gretton, A., Borgwardt, K., Scholkopf, B., Smola, A.J.: Correcting sam-
ple selection bias by unlabeled data. In: Advances in Neural Information Processing
Systems, pp. 601–608 (2007)

19. Karbalayghareh, A., Qian, X., Dougherty, E.R.: Optimal bayesian transfer learn-
ing. IEEE Trans. Signal Process. 66(14), 3724–3739 (2018)

20. Kulesza, A., Taskar, B.: k-DPPs: fixed-size determinantal point processes. In:
Proceedings of the 28th International Conference on International Conference on
Machine Learning, pp. 1193–1200 (2011)

21. Kulesza, A., Taskar, B.: Learning determinantal point processes (2011)
22. Kulesza, A., Taskar, B., et al.: Determinantal point processes for machine learning.

Found. Trends R© Mach. Learn. 5(2–3), 123–286 (2012)
23. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint

distribution adaptation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2200–2207 (2013)

24. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)

25. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

https://doi.org/10.1007/978-3-540-44792-4_29
https://doi.org/10.1007/978-3-540-44792-4_29
https://doi.org/10.1007/978-3-319-13560-1_76
https://doi.org/10.1007/978-3-319-13560-1_76


Ensemble of Adapters for Transfer Learning 75

26. Quost, B., Denœux, T., Li, S.: Parametric classification with soft labels using
the evidential em algorithm: linear discriminant analysis versus logistic regression.
Adv. Data Anal. Classif. 11(4), 659–690 (2017)

27. Shafer, G.: A mathematical theory of evidence turns 40. Int. J. Approx. Reason.
79, 7–25 (2016)

28. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: AAAI (2018)

29. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
Thirtieth AAAI Conference on Artificial Intelligence (2016)

30. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

31. Venkateswara, H., Chakraborty, S., Panchanathan, S.: Deep-learning systems for
domain adaptation in computer vision: learning transferable feature representa-
tions. IEEE Signal Process. Mag. 34(6), 117–129 (2017)

32. Wang, J., Chen, Y., Yu, H., Huang, M., Yang, Q.: Easy transfer learning by exploit-
ing intra-domain structures. In: 2019 IEEE International Conference on Multime-
dia and Expo (ICME), pp. 1210–1215 (2019)

33. Xu, Y., et al.: A unified framework for metric transfer learning. IEEE Trans. Knowl.
Data Eng. 29(6), 1158–1171 (2017)

34. Zhang, J., Li, W., Ogunbona, P., Xu, D.: Recent advances in transfer learning for
cross-dataset visual recognition: a problem-oriented perspective. ACM Comput.
Surv. (CSUR) 52(1), 1–38 (2019)

35. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1),
43–76 (2020)

http://arxiv.org/abs/1412.3474


Classification



Improving Micro-Extended Belief
Rule-Based System Using Activation
Factor for Classification Problems

Long-Hao Yang1,3,4(B), Jun Liu3, Ying-Ming Wang1,2, Hui Wang3,
and Luis Mart́ınez3,4

1 Decision Sciences Institute, Fuzhou University, Fuzhou, People’s Republic of China
2 Key Laboratory of Spatial Data Mining and Information Sharing of Ministry

of Education, Fuzhou University, Fuzhou, People’s Republic of China
3 School of Computing, Ulster University, Northern Ireland, UK

{j.liu,h.wang}@ulster.ac.uk
4 Department of Computer Science, University of Jaén, Jaén, Spain

martin@ujaen.es

Abstract. The micro-extended belief rule-based system (Micro-EBRBS)
is an advanced rule-based system and has shown its superior ability in
solving big data problems. To overcome the activation rule incomplete-
ness and inconsistency of Micro-EBRBS, a new concept, named activa-
tion factor (AF), is introduced to revise the calculation of individual
matching degree and, furthermore, an AF-based inference (AFI) method
is proposed for improving Micro-EBRBS. A comparative analysis study
is conducted using three classification datasets. Results demonstrate that
the proposed AFI method can not only improve the accuracy of Micro-
EBRBS, but also reduce the number of failed data in the process of rule
inference.

Keywords: Extended belief rule-based system · Activation factor ·
Classification · Rule inference.

1 Introduction

The rule-based system is an artificial intelligent (AI) methodology that applies
rules to manage quantitative data and qualitative knowledge. These rules usually
take form of “IF statements THEN consequents”, which constitutes a kernel
component of the rule-based system, namely rule base. Compared to black box
approaches, the rule-based system fosters the understanding of the underlying
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problem and the reasons behind intelligent decisions and predictions, which has
been always one of the most promising directions to achieve transparent and
explainable AI [1].

As one of advanced rule-based systems, the micro-extended belief rule-based
system (Micro-EBRBS) [2] was recently proposed on the basis of the EBRBS
[3], which is useful to handle uncertain information in both rule antecedent and
consequent owing to belief structures. Comparing to other rule-based systems,
Micro-EBRBS has shown its high efficiency and excellent accuracy in handling
big data classification problems.

However, the current version of Micro-EBRBS usually suffers from the activa-
tion rule incompleteness and inconsistency problems because it is a data-driven
decision model [4], where the former occurs due to the situation that Micro-
EBRBS is unable to activate rules for producing an output class; the latter
happens when Micro-EBRBS fails to produce a confident and accurate result
because two or more rules with different consequents are activated.

Therefore, in the present work, a new concept, named activation factor (AF),
is provided to revise the calculation of individual matching degrees, together
with an AF-based inference (AFI) method for improving Micro-EBRBS. In
order to validate the effectiveness of the proposed AFI method, three classi-
fication datasets are used to provide a case study and comparative anslysis for
the improved Micro-EBRBS.

The remainder of the paper is organized as follows: Sect. 2 reviews the basic
of Micro-EBRBS. Section 3 introduces the proposed AFI method. Section 4 pro-
vides the case study of classification problems for Micro-EBRBS. Finally, Sect. 5
concludes this work.

2 Basics of Micro-EBRBS

2.1 Micro-EBRB and Its Construction Scheme

Micro-extended belief rule base (Micro-EBRB) is the rule-base of Micro-EBRBS
and it consists of a series of extended belief rules with exclusive division domains
[2]. Suppose that there are M antecedent attributes Ui(i = 1, ...,M) with Ji

referential values Ai,j(j = 1, ..., Ji) and one consequent attribute D with N con-
sequents Dn(n = 1, ..., N). The extended belief rule related to division domain
D(Ai,ji ; i = 1, ...,M) is written as follows:

Rj1···jM :IF U1 is {A1,j , α
j1···jM
1,j ; j = 1, ..., J1} ∧ · · · ∧ UM is {AM,j ,

αj1···jM
M,j ; j = 1, ..., JM}THEN D is{Dn, βj1···jM

n ;n = 1, ..., N}
with θj1···jM and {δi; i = 1, ...,M}

(1)

where αj1···jM
i,j and βj1···jM

n denote the belief degrees of referential value Ai,j

and consequent Dn in rule Rj1···jM . Moreover, the belief degrees in antecedent
attribute satisfy αj1···jM

i,ji
> αj1···jM

i,j (j = 1, ..., Ji; j �= ji; i = 1, ...,M); θj1···jM
denotes the weight of rule Rj1···jM ; δi denotes the weight of attribute Ui.
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In order to generate the rules shown in Eq. (1) for constructing Micro-EBRB,
the following steps are performed:

Step 1: To generate belief distributions. Suppose xt,i is the tth (t = 1, ..., T )
input data of attribute Ui. A belief distribution S(xt,i) = {(Ai,j , α

t
i,j); j =

1, ..., Ji} can be generated as follows:

at
i,j =

u(Ai,j+1) − xt,i

u(Ai,j+1) − u(Ai,j)
, at

i,j+1 = 1 − at
i,j , if u(Ai,j) ≤ xt,i ≤ u(Ai,j+1) (2)

at
i,s = 0 for s = 1, ..., Ji and s �= j, j + 1 (3)

where u(Ai,j) denotes the utility value of referential value Ai,j in the ith attribute
Ui; at

i,j denotes the belief degree of referential value Ai,j from data xt,i.
Next, when yt is assumed to be the jth class Dj(j = 1, ..., N), the belief

distribution S(yt) = {(Dn, βt
n);n = 1, ..., N} is calculated as follows:

βt
n =

{
1; if n = j
0; otherwise

(4)

Step 2: To generate extended belief rules. All belief distributions generated
from the tth input-output data pair <xt,i, yt, i = 1, ...,M> is regarded as an
initial extended belief rule R̄t(t = 1, ..., T ) . All these rules should be mapped
into a division domain according to the following map function:

R̄t → D(Ai,ji ; i = 1, ...,M); ji = arg maxj=1,...Ji
{αt

i,j} (5)

where the map function means the collection of the rules with the maximum
belief degree in the same referential values.

Consequently, for the division domain which has one rule at least, all rules
in the same division domain are used to generate a new extended belief rule, in
which the belief degrees of new rule Rj1···jM are calculated as follows:

αj1···JM

i,j =

∑Tj1···jM
t=1 αt

i,j

Tj1···jM
, βj1···JM

n =

∑Tj1···jM
t=1 βt

i,j

T
(6)

where Tj1···jM is the number of rules in division domain D(Ai,ji ; i = 1, ...,M).
Step 3: To calculate rule weights. Suppose that R denotes the set of all new

extended belief rules. The rule weight of Rk(Rk ∈ R) can be calculated by:

θk = 1 − Incons(Rk)∑
Rj∈R Incons(Rj)

(7)

where Incons(Rk) denotes the inconsistency degree of Rk and it is calculated
by the similarity of rule antecedent (SRA) and rule consequent (SRC) [3].
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2.2 Micro-EBRB Inference Scheme

After constructing Micro-EBRB, the corresponding Micro-EBRBS can be used
to classify given input data using Micro-EBRB inference scheme as follows:

Step 1: To calculate individual matching degrees. For a given input data
x = (x1, ..., xM ), each input xi(i = 1, ...,M) needs to be transformed into a
belief distribution S(xi) = (Ai,j , αi,j); j = 1, ..., Ji. Hence, the individual match-
ing degree Sj1···JM (xi, Ui) between rule Rj1···jM and data x for attribute Ui is
calculated based on the similarity measure of belief distributions as follows:

Sj1···JM (xi, Ui) =
{

0, if di > 1
1 − di, otherwise

di =

√√√√ Ji∑
j=1

(αi,j − αj1···JM

i,j )2 (8)

where αj1···JM

i,j is the belief degree of attribute Ui of rule Rj1···jM .
Step 2: To calculate activation weights. Based on the individual match-

ing degrees shown in Eq. (8), the activation weight of rule Rj1···jM , denoted as
wj1···jM , is calculated by

wj1···jM =
θj1···jM

∏M
i=1(S

j1···JM (xi, Ui))δ̄i∑AR(x)
Rk

θk

∏M
i=1(Sk(xi, Ui))δ̄i

, δ̄i =
δi

maxt=1,...,M{δt} (9)

where θj1···jM is the weight of rule Rj1···jM ; δi is the weight of attribute Ui; AR(x)
is the rule set to classify data x and it constrains all rules of Micro-EBRB.

Step 3: To integrate activated rules. Suppose that all rules in AR(x) are acti-
vated for classifying data x and they are further integrated using the analytical
ER algorithm as follows:

βn =

∏AR(x)
Rk

(wkβk
n + 1 − wk) − ∏AR(x)

Rk
(1 − wk)∑N

i=1

∏AR(x)
Rk

(wkβk
i + 1 − wk) − N

∏AR(x)
Rk

(1 − wk)
(10)

where βn is the integrated belief degree. Hence, the output class of Micro-EBRBS
is obtained as follows:

f(x) = Dn, n = arg maxi=1,...,N{βi} (11)

3 Activation Factor to Improve Micro-EBRBS

In this section, the challenge of Micro-EBRBS is discussed to illustrate the pur-
pose of this study, followed by using AF to improve Micro-EBRBS.

3.1 Challenge of Calculating Individual Matching Degrees

Consider that the calculation of individual matching degrees shown in Eq. (8) is
related with the belief degree αi,j generated from data xi and the belief degree
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αj1···jM
i,j generated from data xt,i according to Sect. 2. For the sake of discussion,

suppose that the domain of data xi and xt,i is interval [0, 1], and five utility
values {u(Ai,j); j = 1, ..., 5} = {0.0, 0.25, 0.5, 0.75, 1.0} are used to transform
data xi and xt,i into belief distributions. The corresponding individual matching
degrees are shown in Fig. 1.

Fig. 1. An example of individual matching degrees

From Fig. 1, it is clear that there exists a distance between data xi and xt,i

to ensure that the individual matching degree is greater than 0. For example,
in the case of xi = 0, the individual matching degree is 0 if xt,i is smaller than
0.1768; otherwise the individual matching degree is greater than 0.

However, it is always hard to assign a certain distance for the data needed to
be classified, e.g., xi, and the data used to generate rules, e.g., xt,i, leading to the
activation rule incompleteness and inconsistency, in which the former occurs due
to the situation that all the data used to generate rules are far from the data
needed to be classified, namely Micro-EBRBS is unable to activate rules for
producing an output class; the latter occurs when all the data used to generate
rules not only are close to the data needed to be classified, but also contain
conflicting information, namely Micro-EBRBS fails to produce a confident result
because two or more rules with different consequents are activated.

3.2 Activation Factor-Based Inference Method

In order to overcome the activation rule incompleteness and inconsistency of
Micro-EBRBS, a new definition regarding AF-based individual matching degree
is provided as follows:
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Definition 1 (AF-based individual matching degree): Suppose that the belief
distribution of rule Rj1···jM and data x in attribute Ui is {(Ai,j , α

j1···jM
i,j ); j =

1, ..., Ji} and {(Ai,j , αi,j); j = 1, ..., Ji}, respectively. The new individual match-
ing degree is calculated by

Sj1···JM

λ (xi, Ui) =
{

0, if di > λ
λ − di, otherwise

di =

√√√√ Ji∑
j=1

(αi,j − αj1···JM

i,j )2 (12)

where λ denotes an AF and it has two characteristics: 1) all rules will be activated
when λ =

√
2; 2) none of rules will be activated when λ = 0.

Based on Definition 1, it can be found that the value of λ is vital to overcome
the activation rule incompleteness and inconsistency of Micro-EBRBS. Hence,
an AFI method is proposed for Micro-EBRBS. The detailed steps are provided
as follows:

Step 1: To calculate activation weights. For a given input data x =
(x1, ..., xM ), the activation weight of rule Rj1···jM , denoted as wj1···jM , can be
calculated based on Steps 1 and 2 detailed in Sect. 2.2, in which the individual
matching degree is calculated according to Definition 1.

Step 2: To assign the value of AF. Firstly, rule Rj1···jM should be put into
rule set Δλ, namely Δλ = Δλ ∪ Rj1···jM , when wj1···jM > 0; Next, the consis-
tency of Δλ needs to be evaluated for assigning the value of λ, in which the
evaluation formula is shown as follows:

C(Δλ) =
maxn=1,...,N{Cn}

|Δλ| (13)

where Cn is calculated by

Cn = |Dn;n = arg maxi=1,...,N{βk
i };Rk ∈ Δλ| (14)

Step 3: To integrate activated rules. All activated rules should be integrated
to produce an output class for classifying input data x, in which the formulas of
integrating rules and producing output class are shown in Eqs. (10) and (11).

4 Case Studies on Classification Problems

In this section, the introduction of classification datasets is provided firstly. Then,
a comparative analysis is carried out on the purpose of system validation.

4.1 Classification Datasets

This section aims at introducing the classification datasets and experiment condi-
tions used in the case study. Firstly, three classification datasets obtained from
the KEEL dataset repository [5] and their detailed descriptions are shown in



Improving Micro-EBRBS Using AF for Classification Problems 85

Table 1. Description of three classification datasets

Datasets #Data #Attributes #Classes

Ecoli 336 7 8

Glass 214 9 7

Thyroid 720 21 3

Table 1, in which these descriptions mainly include number of data (#Data),
number of attributes (#Attributes), and number of classes (#Classes).

Additionally, 5-fold cross validation is considered in the experimental study.
The attributes of each dataset are regarded as the antecedent attribute of Micro-
EBRBS and all of them are supposed to have three referential values. The range
of AF is set as interval [0.7,

√
2].

4.2 Comparative Analysis

In order to validate the effectiveness of the AFI method in improving Micro-
EBRBS, the result of each dataset is measured with accuracy and number
of failed data, which indicates that the system could not retrieve any result
due to lack of relevant rules activated. Table 2 shows the comparison results
of Micro-EBRBS with or without AFI method. Table 3 shows the comparison
results of Micro-EBRBS and some classical classifiers, including k-nearest neigh-
bor (KNN), support vector machine (SVM), the fuzzy rule-based classification
system proposed by Chi et al. [6] (Chi-FRBCS), and original EBRBS.

Table 2. Comparison of Micro-EBRBS with or without AFI method

Datasets Accuracy No. of failed data

Without AFI With AFI Without AFI With AFI

Ecoli 73.81 77.08 3 0

Glass 65.89 67.29 5 0

Thyroid 88.19 92.08 29 0

As Table 2 illustrates, the AFI method not only can improve the accuracy
of Micro-EBRBS, but also is able to reduce the number of failed data, i.e.,
the accuracy of Ecoli is increased from 73.81% to 77.08%, and the number of
failed data is decreased from 29 to 0. The similar results can be also found in
Glass and Thyroid. This is because the AFI method can adjust the value of AF
to dynamically select activated rules, so that Micro-EBRBS is able to activate
consistent rules for any given input data.

From Table 3, it can be found that Micro-EBRBS obtains the 2nd best accu-
racy in Ecoli and Glsss, respectively, and the 3rd best accuracy in Thyroid, and
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Table 3. Comparison of Micro-EBRBS with other classifiers

Datasets KNN SVM Chi-FRBCS EBRBS Micro-EBRBS

Ecoli 80.95(1) 42.56(5) 76.49(3.5) 76.49(3.5) 77.08(2)

Glass 49.53(5) 65.89(3) 50.00(4) 69.16(1) 67.29(2)

Thyroid 95.00(1) 92.50(2) 88.06(5) 88.19(4) 92.08(3)

Average rank 2.33 3.33 4.16 2.83 2.33

they are 77.08%, 67.29%, and 92.08%. Moreover, in the comparison of other clas-
sifiers using average rank, the result is Micro-EBRBS (2.33) = KNN (2.33) >
EBRBS (2.83) > SVM (3.33) > Chi-FRBCS (4.16), indicating that the Micro-
EBRBS can produce satisfactory results comparing to some machine learning-
based classifiers and rule-based classification systems.

5 Conclusions

In this study, a new concept of AF was proposed to revise the calculation of indi-
vidual matching degree and further overcome the activation rule incompleteness
and data inconsistency of Micro-EBRBS. The results of experimental evaluations
demonstrated that the proposed AFI method not only improved the accuracy
of Micro-EBRBS, but also avoided the situation when none of the rules are
activated for any given input data.

For future research, an offline method should be further studied to determine
the value of AF for Micro-EBRBS, which would promote the application of
Micro-EBRBS for various complex classification problems.

References

1. Barredo, A.A., Daz-Rodrguez, N., Del Ser, J., et al.: Explainable Artificial Intelli-
gence (XAI): concepts, taxonomies, opportunities and challenges toward responsible
AI. Inf. Fusion 58, 82–115 (2020)

2. Yang, L.-H., Liu, J., Wang, Y.-M., et al.: A micro-extended belief rule-based system
for big data multiclass classification problems. IEEE Trans. Syst. Man Cybern. Syst.
51(1), 420–440 (2021)

3. Liu, J., Mart́ınez, L., Calzada, A., et al.: A novel belief rule base representation,
generation and its inference methodology. Knowl.-Based Syst. 53, 129–141 (2013)

4. Calzada, A., Liu, J., Wang, H., et al.: A new dynamic rule activation method for
extended belief rule-based systems. IEEE Trans. Knowl. Data Eng. 27(4), 880–894
(2015)

5. Alcala-Fdez, J., Fernndez, A., Luengo, J., et al.: KEEL data-mining software tool-
data set repository, integration of algorithms and experimental analysis framework.
J. Mult.-Valued Log. Soft Comput. 17, 255–287 (2011)

6. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms with Applications to Image Processing
and Pattern Recognition. World Scientific, Singapore (1996)



Orbit Classification for Prediction Based
on Evidential Reasoning and Belief Rule Base

Chao Sun1 , Xiaoxia Han2, Wei He1,2(B) , and Hailong Zhu1

1 Harbin Normal University, Harbin 150025, China
2 Rocket Force University of Engineering, Xi’an 710025, China

Abstract. At present, most of the modeling methods in orbit classification for
prediction (OCP) are data-drivenmethods, these reasoning processes are not inter-
pretable, and the modeling effect is not good under small samples. In this paper, a
new interpretable small sample OCP method is proposed based on evidence rea-
soning (ER) and belief rule base (BRB). First, multiple indicators were integrated
by ER iteration to reduce the parameters. Then the BRB model was constructed
based on expert knowledge and quantitative data. Finally, the projection covari-
ance matrix adaptation evolutionary strategy (P-CMA-ES) is used to optimize
model parameters. A case study is constructed to verify the effectiveness of the
proposed method.

Keywords: Belief rule base · Evidential reasoning · Orbit prediction

1 Introduction

Orbit prediction is the basis for research on aerospace science and technology and has
important research significance both in theory and engineering [1].

In engineering practice, data samples are not always sufficient [2]. However, most
of the research on OCP is mainly related to data-driven methods [3, 4], and its modeling
process is uninterpretable. In this case, an interpretable method that can be modeled
under small samples is need to be constructed. The belief rule base, developed based
on the traditional IF-THEN rules and Dempster–Shafer (D–S) theory [5], can integrate
expert knowledge and quantitative data to construct models, its reasoning process is
interpretable [6–9]. Because of the addition of expert knowledge, the input information
of the model is increased, which makes BRB becomes an ideal choice for modeling with
small samples. At the same time, considering the multiple indicators and small samples,
to reduce the modeling parameters, the indicators are first integrated by the evidential
reasoning before inputting to the BRB [10–12]. Therefore, an OCPmethod based on ER
and BRB is proposed.

The paper is organized as follows: Sect. 2 constructs an OCP model based on ER
and BRB expert system, and its processes are presented. A case study is provided in
Sect. 3. This paper is concluded in Sect. 4.
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2 OCP Model Based on ER and BRB

In this section, an OCPmodel is established based on ER and BRB. The implementation
processes of OCP are described in Sect. 2.1. An indicator integration model based on
ER is constructed in Sect. 2.2. A BRB-based OCP model is constructed in Sect. 2.3.

2.1 Implementation Process of OCP

The implementation process of OCP is shown in Fig. 1 and is mainly composed of two
parts. The first part is to obtain the combined indicators by ER iteration. The second
part constructs the prediction model based on BRB and then uses the projection covari-
ance matrix adaptation evolutionary strategy (P-CMA-ES) [7] algorithm to optimize the
model parameters.

It is worth noting that the proposed method is not limited by the optimization
method. Because the P-CMA-ES has a better effect on single-objective optimization
under constrained conditions, it is selected as the optimization algorithm in this paper.

Fig. 1. The implementation process of OCP

To clearly describe the aggregation process, recursive ER is used in the integration
process, and its modeling process is clear and interpretable. In the optimization process,
analytical ER is used to train model parameters [13].

After integration, two combined indicators are obtained, then the rules in the BRB
can be generated based on the indicators and their referential values. At the same time,
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because there are not many referential values in this paper, there will be no combinatorial
explosion problem.

2.2 An ER Model for Indicators Integration

Evidential reasoning is developed based on the D-S and decision-making theory, it can
solve the fusion problem of conflicting evidence by establishing a unified belief frame
[14]. In this subsection, the recursive ER is used to integrate the indicators, and the
processes are outlined as:

Step 1: The frame of discernment (FoD) in the ER model is {Hn, n = 1, · · · , 4}. Let
βn,i represents the belief degree that the sample is evaluated to the nth grade in the ith
indicator. Then the belief distribution of the ith indicator ei can be described as:

S(ei) = {(Hn, βn,i), n = 1, ...,N }, i = 1, ...,L (1)

where N denotes the grade number, L is the indicator number. 0 ≤ βn,i ≤ 1(n =
1, · · · ,N ) and

N∑

n=1
βn,i ≤ 1.

Step 2: Indicators fusion.
1) Calculate the basic probability masses.

mn,i = ωiβn,i

mH ,i = 1 − ωi

N∑

n=1

βn,i

mH ,i = 1 − ωi

m̃H ,i = ωi(1 −
N∑

n=1

βn,i) (2)

where ωi denotes the relative importance of the ith indicator, mn,i is the basic prob-
ability mass of the ith evaluated to the nth grade. mH ,i represents the basic probability
mass that not assigned to any grade and is consists of two parts: mH ,i and m̃H ,i. The for-
mer represents the importance of other indicators in the evaluation, the latter represents
the incompleteness of the ith indicator, in other words, if the distribution is complete,
m̃H ,i = 0.

2) Fusing indicators by the Dempster rule.

mn,I(i+1) = KI(i+1)[mn,I(i)mn,i+1 + mH ,I(i)mn,i+1 + mn,I(i)mH ,i+1]
mH ,I(i) = m̃H ,I(i) + mH ,I(i)

m̃H ,I(i+1) = KI(i+1)[m̃H ,I(i)m̃H ,i+1 + m̃H ,I(i)mH ,i+1 + m̃H ,I(i)mH ,i+1]
mH ,I(i+1) = KI(i)[mH ,I(i)mH ,i+1]
KI(i+1) = [ 1

1 −
N∑

t=1

N∑

l=1
l �=t

mt,I(i)ml,i+1

]−1 (3)
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where mn,I(i+1) and mH ,I(i) are the integration results of the first (k + 1) indicators.
The former denotes the combined belief degree, the latter denotes the residual belief
degree.

3) Calculate the belief degree of the ith indicator.

βn = mn,I(L)

1 − mH ,I(L)

(4)

where βn is the belief degree of the ith indicator to the nth grade.
4) The integration results are calculated using the utility function.

utility =
N∑

n=1

U (Hn)βn (5)

where U (·) denotes the utility function.

2.3 A BRB Model for Orbit Prediction

In the BRB-based classification model,there are multiple belief rules, and the kth rule is
profiled as:

Rk : IF x1 is A
k
1 ∧ x2 is A

k
2 ∧ . . . ∧ xM is Ak

M

Then y is {(D1, β1,k), (D2, β2,k), . . . , (DN , βN ,k)}
WITH rule weight θk

AND attribute weight δ1, δ2, . . . , δM (6)

where Rk denotes kth belief rule in BRB. x1, x2, ..., xM are the characteristics of the
practical system. Ak

1,A
k
2, ...,A

k
M denotes the reference points of the kth belief rule of the

system characteristics and they are determined by experts. D1,D2, ...,DN are the orbit
classifications and β1,k , β2,k , ..., βN ,k are their corresponding belief degrees. θk is the
rule weight of the kth belief rule. δ1, δ2, ..., δM are the indicator weights. L is the amount
of the belief rules.

The orbit prediction is inferred by the analytic ER. The processes can be outlined as:
Step 1: The initial rule weights, attribute weights, and belief degrees of the BRB

model are provided by the experts.
Step 2: Transform the input sample into belief distribution.

aki =

⎧
⎪⎪⎨

⎪⎪⎩

Al+1
i −xi

Al+1
i −Ali

, k = l,Al
i ≤ xi ≤ Al+1

i

1 − aki , k = l + 1
0, k = 1, · · · ,L, k �= l, l + 1

(7)

where aki denotes the kth referential value, xi denotes the ith sample in the dataset.
Step 3: Calculate rule activation weight.

ωk =
θk

Mk∏

i=1
(aki )

δi

L∑

l=1
θl

Mk∏

i=1
(ali )

δi

(8)
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δi = δi

max
i=1,··· ,Mk

{δi} (9)

where ωk denotes the kth rule’s activation weight, δi is the ith attribute’s normalized
attribute weight.

Step 4: Combination of the activated rules.

βn =
μ[

L∏

k=1
(ωkβn,k + 1 − ωk

N∑

j=1
βj,k) −

L∏

k=1
(1 − ωk

N∑

j=1
βj,k)]

1 − μ[
L∏

k=1
(1 − ωk)]

(10)

μ = [
N∑

n=1

L∏

k=1

(ωkβn,k + 1 − ωk

N∑

j=1

βj,k) − (N − 1)
L∏

k=1

(1 − ωk

N∑

j=1

βj,k)]−1 (11)

where βn denotes the belief degree of the ith indicator integration level.
Step 5: Calculate the output by the utility function.

UTILITY =
N∑

n=1

μ(Dn)βn (12)

where μ(·) denotes the utility function.
In this paper, the P-CMA-ES is used as the optimization algorithm of the BRB, and

the optimization objective function is given by:

min MSE(θk , βn,k ,δi)

st.

0 ≤ θk ≤ 1, k = 1, · · · ,L,

0 ≤ δi ≤ 1, i = 1, · · · ,M ,

0 ≤ βn,k ≤ 1, n = 1, ...,N , k= 1, · · · ,L,

N∑

n=1

βn,k = 1, k = 1, · · · ,L (13)

3 Case Study

In this section, to illustrate the effectiveness of the proposed method, a case study for
the OCP is presented.
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3.1 Problem Formulation

To classify the orbits of asteroids, the asteroid data from NASA are selected to be
the experiment samples and the web link is https://www.kaggle.com/brsdincer/orbitc
lassification. After selection, 81 samples were obtained. Each sample contains eleven
indicators and one classification result. For indicator information, please refer to the
following web link: https://www.kaggle.com/brsdincer/orbitclassification.

Each asteroid data has a corresponding classification, the FoD used in this paper is
{AMO, APO, ATE, IEO} and the detailed information can be found in the following
web link: https://pdssbn.astro.umd.edu/data_other/objclass.shtml.

3.2 Establishment of OCP Model Based on ER and BRB

The OCP model includes indicators integration and orbit prediction. The dataset of the
asteroid is analyzed, then the indicators are divided into two groups. The first group has
five indicators, which are related to distance. The second group has six indicators, which
are not related to distance. When the integration model is established, different types
of asteroid indicators are fused by the recursive ER algorithm, and then the combined
indicators are obtained. Their referential values are shown in Table 1.

Table 1. The reference values of the combined indicators

Combined indicators Reference values

Combined indicator 1 0.1665 43.39564 101.3315 180.5768

Combined indicator 2 0.1856 44.50822 102.07603 181.2103

After integration, the BRB model is constructed, and its initial belief degrees are
shown in Table 2.

Table 2. The initial belief degrees of BRB

No. Rule weight Belief degree {AMO APO ATE IEO}

1 1 {0.9 0.1 0 0}

2 1 {0.6 0.4 0 0}

3 1 {0.4 0.3 0.3 0}

4 1 {0.4 0.1 0.1 0.4}

5 1 {0.5 0.5 0 0}

6 1 {0.1 0.8 0.1 0}

7 1 {0 0.5 0.5 0}

(continued)

https://www.kaggle.com/brsdincer/orbitclassification
https://www.kaggle.com/brsdincer/orbitclassification
https://pdssbn.astro.umd.edu/data_other/objclass.shtml
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Table 2. (continued)

No. Rule weight Belief degree {AMO APO ATE IEO}

8 1 {0 0.3 0.4 0.3}

9 1 {0.3 0.3 0.3 0.1}

10 1 {0 0.4 0.6 0}

11 1 {0 0 0.9 0.1}

12 1 {0 0 0.7 0.3}

13 1 {0.1 0.2 0.3 0.5}

14 1 {0 0.4 0 0.6}

15 1 {0 0 0.3 0.7}

16 1 {0 0 0.2 0.8}

The BRB model is constructed by the above processes. Then the analytical ER is
utilized to infer the model. Finally, the P-CMA-ES is used to optimize the parameters.
The computational process and results can refer to in the paper [15].

3.3 Comparative Analysis

In this subsection, the BRB is compared with the fuzzy expert system [16], extreme
learning machine (ELM) [17], and Random Forest [18]. Ten rounds of comparative
experiments are carried out, with 50 experiments in each round. The training samples
are 50% of the total samples, and the test samples are all samples. Take the average of
the best 5 results in each round as the optimal result of each round. The accuracies of

Fig. 2. Comparison of the four methods
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10 rounds are shown in Fig. 2, and the average accuracies of them are shown in Table 3,
the average Mean Square Errors (MSEs) are shown in Table 4.

Table 3. Average accuracy

BRB Fuzzy expert
system

ELM Random Forest

Accurate rate 98% 61% 54% 72%

Table 4. Mean MSEs

BRB Fuzzy expert
system

ELM Random Forest

MSE 0.0011 1.15 1.7347 1.1605

From the analysis above, the following conclusions can be drawn:

1) According to Tables 3 and 4. The proposed OCP model has the highest accuracy,
which proves the effectiveness and superiority of the proposed OCP method.

2) The BRB modeling process has a clear causal relationship. Therefore, the BRB-
based OCP method has better credibility than the method based on quantitative
data.

3) Since BRB can be trained through samples, the OCP method based on BRB has
better accuracy than the method based on qualitative knowledge.

With the increase of sample data, the parameters will be better trained, and the
accuracy of the model will be further improved.

4 Conclusion

In this paper, to predict the orbit classification of asteroids, an OCP model based on
ER and BRB was proposed. The work’s main contribution is to provide an effective
OCP method in small samples, and its reasoning process is interpretable. Experiments
show that in fewer samples, the proposed OCP method can predict the orbit better than
the machine learning method, which provides a suitable method for related background
research. The future works can be carried out from the following aspects: 1) OCP model
construction under interval data; 2)Construction ofOCPmodel consideringperturbation.
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Abstract. Imbalance data is an important research for the classification
and there are multiple techniques to deal with this problem. Each strat-
egy has its particular advantage for solving imbalance data. To improve
the classification performance, these strategies are combined in decision
level via an appropriate way for taking fully advantages of the com-
plementary information among different methods. Thus a new method
is proposed as Evidence Redistributive Combination (ERC) for imbal-
ance data. For query pattern, the classifier output produced by differ-
ent techniques (i.e., undersampling, oversampling, hybridsampling) may
have different reliabilities. So a cautious quality evaluation rule is cre-
ated to estimate the credibility of each classification result based on the
close neighborhoods. Then the revised classification results from differ-
ent strategies are combined by Dempster’s rule to reduce the ignorant
information and to generate the final classification result. Multiple exper-
iments are used to test the performance of the new ERC method, and
it shows that ERC can efficiently improve the classification performance
with respect to other related methods.

Keywords: Classification · Evidence theory · Imbalance data · Data
sampling

1 Introduction

Traditional classification methods usually assume that each category in a dataset
contains the same number of samples and the misclassification costs are equal.
However, the data in the real world may have imbalanced distributions. A class
with fewer instances is known as a positive class or a minority class, and a
class with more examples is called a negative class or a majority class. The
minority class is more important than the majority class in the real world, and
the cost of misclassification is also higher. Nowadays, imbalanced classification
is widely used in information security [1] and software prediction [2]. In such
a way, the imbalanced data classification has attracted extensive interest from
many researchers.

The imbalanced data classification methods are divided into three kinds:
data preprocessing level [3], feature selection level [4], and classification meth-
ods improvement level [5]. In this work, we attempt to solve the problem at
c© Springer Nature Switzerland AG 2021
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data preprocessing level, which decreases the imbalance ratio of the dataset via
creating minority data or deleting majority data. It focuses on undersampling
[6], oversampling [7] and hybridsampling [8] methods to minimize the imbal-
ance ratio by redistributing the data. In undersampling technique, it deletes the
majority data to increase the classification accuracy of minority classes such as
the Nearmiss [6] method. In the oversampling method, it creates the minority
data by the Euclidean distance to balance the sample ratio such as Synthetic
Minority Oversampling Techniques (SMOTE) [7]. The hybridsampling methods
are linked with undersampling and oversampling techniques such as SmoteTomek
[9] method.

These methods have their own advantages and drawbacks when they are
utilized to deal with the imbalanced data classification. Oversampling method
allows to generate minority data but it may cause the overfitting problems.
Undersampling techniques remove majority data which may discard potentially
important information. Hybridsampling algorithms are conducted with the con-
nection of undersampling and oversampling methods. Each technique has its
own particular benefits. To better improve the classification accuracy, we will
propose a new method at decision level to combine these three algorithms via
making full use of their complementary information.

Belief function theory provides an essential decision-level information fusion
tool, and it is able to well combine the uncertain information. It has been already
applied in data fusion and pattern classification fields [10,11]. In this paper,
we want to propose a new method called Evidence Redistributive Combination
(ERC) for imbalanced data. The output classification results generated by dif-
ferent methods (i.e., undersampling, oversampling, hybridsampling) may have
different qualities/reliabilities. A reliability matrix through the neighborhood of
the object is proposed to make a refined reliability evaluation. The classification
outputs by different techniques will be cautiously revised utilizing the reliability
matrix. Finally, the corrected classification results are combined by the evidence
combination rule for making the final decision.

The remainder of this paper is organized as follows. Section 2 describes the
proposed method in detail. The experimental applications are presented to test
the performance of ERC in Sect. 3. Section 4 concludes this work.

2 A New Evidential Combination Method of Imbalance
Data

The three imbalance data classification methods (undersampling, oversampling,
hybridsampling) have their own benefits and drawbacks. To better improve the
classification performance, these three methods are combined through an appro-
priate way for taking fully advantages of the complementary information among
these methods. Belief function theory also called as Dempster’s rule, which pro-
vides an efficient tool to combine the uncertain information at decision level.
Thus, the evidence theory will be utilized here to combine these three tech-
niques. A new method called Evidence Redistributive Combination (ERC) is
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proposed here to revise the classifier. We can obtain three pieces of classifica-
tion results represented by evidence with three classifiers (i.e., undersampling,
oversampling, hybridsampling), and we will combine these classification results
under the framework of belief function efficiently.

The classification results of different data sampling method may have differ-
ent reliabilities, and it may be harmful for the combination if the result with low
reliability. So it is essential to evaluate the reliability of each classification output
properly, and then revising the result based on the evaluation to improve the
combination performance. We propose to estimate a refined reliability matrix to
represent the qualities of each classification result. Such reliability matrix will
be estimated based on the neighborhoods of objects in training dataset space,
and it will show the possibility of the object misclassified to other classes. After
that, the classification results are able to revised according to this matrix in a
cautious way under belief function framework. The three corrected classification
results are combined by belief function theory for predicting the class of object.

2.1 Evidential Combination of Classifier

In belief function theory, the mass function m, also called the basic belief assign-
ment (BBA) is defined over the frame of discernment denoted by Ω = {ωi, i =
1, 2, . . . , c}, consisting of c exhaustive and exclusive hypotheses (classes) ωi,
i ∈ 1, 2, . . . , c. The power-set 2Ω is composed by all the subsets of Ω. A BBA is
a mapping m(.) from 2Ω to [0, 1] which satisfies m(φ) = 0 and

∑

A∈2Ω

m(A) = 1 (1)

A is called a focal element of m(.) which satisfy m(A) > 0. The BBA is
called Bayesian BBA if the focal elements of BBA are all singleton classes. In
this paper, we mainly assume that combining the classification results in form
of BBAs.

Dempster’s rule is usually utilized to combine the multiple classification
results represented by BBA. DS rule for the combination of two BBA as
m = m1 ⊕ m2 over 2Ω is defined by m(φ) = 0, and ∀A �= φ ∈ 2Ω with the
following equation

m = m1 ⊕ m2 =

{ ∑
B∩C=A m1(B)m2(C)

1−K , ∀A ∈ 2Ω\{φ}
0, ifA = φ

(2)

where K =
∑

B,C∈2Ω |B∩C=φ m1(B)m2(C) is the total conjunctive conflicting
masses. DS rule is associative, and the combination results are not influenced by
the combination order for multiple BBA.

In reality, the classification result by different classification methods (i.e.,
undersampling, oversampling, hybridsampling) may have different reliabilities.
It is essential to estimate the qualities of classification results and revised the
results based on the evaluation before combination.
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2.2 Evidence Quality Estimation

The classification results by different classifier may have different qualities. The
undersampling method deletes the majority data which may change the distri-
bution of data to affect the classification accuracy. The oversampling technique
generates fake instance for minority class which may also has bad influence on
classification result. The classification result of different methods can be seen as
the evidence (BBA). The three methods (undersampling, oversampling, hybrid-
sampling) are denoted by three classifiers as C1, C2, C3 here. The object is clas-
sified over the frame of discernment Ω = ω1, ω2, . . . , ωc, and ωi represents the
class label. For each classifier Cl, l ∈ 1, 2, 3, the classification result for the train-
ing data xi, i ∈ 1, 2, . . . , s, is denoted by pi = {pi,1, pi,2, . . . , pi,c}, where pi,j

represents the probability which xi belongs to ωj . The true classification result
of training data is ti(ωj) = 1 and ti(ωg) = 0, ωj �= ωg when the true label of xi

is ωj . Given a test pattern y, the classification result of y by different classifier
can be shown as a BBA ml, l ∈ 1, 2, 3. The final label of y is calculated by the
combination of these BBAs.

For each classifier Cl, l ∈ 1, 2, 3, it often shows close performance to close
neighborhoods, and the close neighbors of object in dataset can be used to
evaluate the quality of each classification result [12,13]. The classification results
of training data are given by pi, and the true label of training data is also known.
So the bias error of classifier can be computed by comparing the classifier output
and the true label. Thus we can estimate the quality of the classification result
of the y based on these neighbors.

How to select the suitable neighbors is an essential rule in reliability evalua-
tion of each classification result. If we seek the close neighbors according to the
attribute data, the selected neighbors seem near from the object, but the classi-
fication result of these neighbors as pi may not close to the object of mi. These
neighbors are not very useful to efficiently evaluate the quality of the classifi-
cation result. The close neighbors are selected depending on both the attribute
data and the classifier output (probability) at the same time. This ensures the
selected neighbors with close attribute and the classification results to the object.

We select K nearest neighbors of the test data y using the attribute
data and the classifier output. The selected attribute data are denoted by
x1, x2, . . . , xK , and the classification results of the K nearest neighbors are given
by p1,p2, . . . ,pK with the corresponding ground truth are t1, t2, . . . , tK. These
two kinds of data can provide essential information for reliability evaluation. As
there is a great difference between attribute data, the general linear normaliza-
tion method is used to normalize the attribute data to [0,1].

Since these chosen neighbors are not totally same with the object, it can not
be completely trusted during the reliability evaluation. The confidence factor
mainly depends on the difference between the object and the selected neighbors,
and both distance of attribute as well as the classifier output are considered to
compute the difference. The majority of beliefs in the classification result will
input the correction process when the confidence factor is high. Otherwise, a few
beliefs will be redistributed.



100 J. Niu and Z. Liu

The confidence factor αl, l ∈ 1, 2, 3 is computed to the average distance
between object and these neighbors.

αl = e−βldl (3)

dl =
1

2K
(

∑K
k=1 dA

yk

d̄A
+

∑K
k=1 dP

yk

d̄P
) (4)

d̄A =
1

Ks

s∑

i=1

K∑

k=1

dA
xk, d̄P =

1
Ks

s∑

i=1

K∑

k=1

dP
xk (5)

βl is a parameter distinct for each classifier Cl, which is used to adjust the
influence of attribute distance and classifier output distance ratio on the con-
fidence factor. dl is the average distance between object and the K neighbors
in regard to attribute as well as probability. dA

yk = ‖y − xk‖ represents the
Euclidean distance between the object and the K neighbors. dP

yk = ‖ml − pk‖
represents the Euclidean distance between the classifier output of the object and
the K neighbors. d̄A is the mean value of the average distance from each training
data to its K neighbors. d̄P represents the mean value of the average distance
from the classification result for the training data to its K neighbors.

The beliefs are divided into two parts. One part will be redistributed in
correction process on the basis of the reliability evaluation, and the other part
will still preserved on each class as in original classification result.

mlr = αlml, mlo = (1 − αl)ml (6)

2.3 Revision of Classification Result

The quality of the classification result of object will be evaluated in a refined way
based on K neighbors, and then the classifier output will be revised according
to the evaluation.

A reliability matrix Φ reflects the information about the misclassification
error of the object, and the element φij is the probability of the object classified
to ωi but the ground truth is ωj . We are able to estimate the possibility of the
object classified to ωi when it truly belongs to ωj with the aid of the true label
t and the classification result pi. It is defined by the sum of the probabilities
classified to ωi with the true label ωj .

wji =
∑

tkj=1

e−d̃kpk (ωi) (7)

where d̃k = 1
2 [ dA

yk

mink dA
yk

+ dP
yk

mink dP
yk

] is the relative distance between the object

and the K neighbors.
The probability of the object classified to ωi when it belongs to ωj can be

calculated by Bayesian rule.
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φij =
wji∑
g wgi

(8)

where
∑c

j=1 φij = 1, c is the number of the classes.
The classification result of the object can be revised by this matrix. The

reliability matrix obtain the prior knowledge about the conditional probability
of the object belonging to one class when it is classified to another class. We can
get the belief of the object belonging to each class ωj , j = 1, 2, . . . , c as follows.

m̃lr(ωj) =
c∑

i=1

φijmlr(ωi) (9)

Thus we can obtain the evidence as

m̂l(ωj) = mlo(ωj) + m̃lr(ωj)

= (1 − αl)ml(ωj) +
c∑

i=1

φijmlr(ωi)
(10)

2.4 Parameter Optimization

In our proposed method, it includes a tuning parameter: β, which is used to
determine the confidence factor α by (3). The optimal parameter is sought by
minimizing an error criteria defined by the sum of distances between combined
classifier result mf and the true label t. In MATLAB, the function fmincon is
used to deal with this optimization problem.

{β} = arg min
β

s∑

i=1

∥∥∥mf
i − ti

∥∥∥ , β ∈ [0, 1] (11)

where ‖.‖ is the Euclidean distance, and s is the number of the training
dataset. mf

i is the result of combining evidence concerning the ith training
data, and ti = [ti1, ti2, . . . , tic]. tij = 1 means the true label of xi is ωj .

3 Experimental Application

In this section, we will test the performance of our proposed ERC method with
some benchmark datasets by comparing with other related imbalance data clas-
sification methods and information fusion method such as Smote, Nearmiss,
SmoteTomek, and averaging fusion (AF). Some datasets are selected from UCI
and KEEL dataset repository shown in Table 1.

As can be seen from Table 2–3, Evidence Redistributive Combination (ERC)
method generally produces higher AUC values than a single data sampling
method. This indicates that the complementary information among different
techniques is very useful for improving classification performance. We can also
find that the proposed ERC method typically yields the highest performance
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Table 1. Imbalanced dataset description of the UCI and KEEL.

Data Example Attribute Class Majority
examples

Minority
examples

Imbalance
ratio

Penbased 1100 16 10 80 75 1.06

Pima 768 8 2 400 215 1.87

Abalone 2560 8 3 1000 200 5

Page-blocks0 5472 10 2 3932 438 8.79

Yeast 1484 8 7 400 20 23.15

Yeast4 1484 8 2 1150 40 28.1

Yeast5 1484 8 2 971 29 32.73

Thyroid 720 21 3 533 13 36.94

Ecoli 336 7 8 100 7 71.5

Shuttle 2175 9 4 1200 9 853

comparing with the other combination methods. In ERC method, the reliability
is evaluated based on the close neighbors in a refined way, and then the classi-
fier output is cautiously revised to improve the quality. Moreover, the involved
parameter in ERC is automatically optimized by minimizing an error criteria.
Thus, ERC is able to produce the best classification performance in general.

Table 2. The AUC values using RF classifier

Datasets Original Smote Nearmiss Smotetomek Voting Average ERC

Penbased 91.07 96.55 91.26 96.17 96.23 95.66 99.14

Pima 71.24 81.79 84.24 83.69 75.84 84.16 84.34

Abalone 66.96 76.48 70.32 76.65 66.51 77.05 77.71

Page-blocks0 94.48 89.69 98.93 98.76 94.79 98.00 98.96

Yeast 60.21 91.07 86.15 90.63 76.97 90.65 91.16

Yeast4 88.96 87.64 72.64 88.64 66.79 86.05 87.73

Yeast5 97.55 95.11 89.56 98.99 86.02 98.40 99.41

Thyroid 99.01 99.37 98.96 99.37 98.43 98.38 99.01

Ecoli 85.14 97.31 93.67 97.01 92.07 96.47 97.75

Shuttle 88.53 96.99 89.87 97.02 93.54 97.21 99.99

Average 84.32 91.2 87.56 92.69 86.52 92.98 93.52
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Table 3. The AUC values using KNN classifier

Datasets Original Smote Nearmiss Smotetomek Voting Average ERC

Pima 66.67 72.54 75.63 74.81 69.07 71.26 75.84

Penbased 96.61 99.15 98.63 99.15 98.11 99.16 99.19

Abalone 59.41 68.12 65.65 71.22 71.47 70.29 69.62

Page-blocks0 90.09 93.36 92.38 95.81 90.89 95.33 97.12

Yeast 80.53 84.42 84.56 87.42 76.78 89.62 89.61

Yeast4 62.93 66.06 79.54 81.86 78.46 82.15 86.71

Yeast5 79.46 86.02 96.84 92.51 86.02 98.83 98.91

Thyroid 86.11 93.75 62.18 91.38 80.21 93.96 95.38

Ecoli 81.19 93.31 93.35 93.29 90.38 95.09 95.41

Shuttle 89.37 97.78 86.64 98.58 96.69 98.99 99.96

Average 79.24 85.45 83.54 88.3 83.81 89.47 90.78

4 Conclusion

In this paper, we have proposed a new method for combination of classifiers
to solve the imbalance data classification. Evidence Redistributive Combination
(ERC) method is able to take advantage of essential complementary information
among different data sampling techniques to improve classification performance.
Multiple imbalanced datasets are used to validate the performance of the pro-
posed method. The experimental results show that the ERC method is able to
improve classification result comparing with other data sampling techniques and
fusion methods.
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Abstract. Decision tree is widely applied in classification and recogni-
tion areas, but meanwhile it is hard to learn from evidential data with
uncertainty. To solve this issue, we propose a decision tree method which
can learn from uncertain data sets and guarantee a certain classifica-
tion performance when handle problems with huge ignorance or uncer-
tainty. This tree method selects attribute based on belief entropy, a kind
of uncertainty measurement, which is calculated from the basic belief
assignment. And especially the Evidential Expectation-Maximization
algorithm is adopted to extract the distribution parameters from evi-
dential likelihood to generate the basic belief assignment. The proposed
method is an extension of decision tree based on belief entropy, which is
supposed to handle problems with precise data. Some numerical exper-
iments on Iris and Sonar data set are conducted and the experimental
results suggested that the proposed tree method achieves good result on
data with high-level uncertainty.

Keywords: Decision tree · Belief functions · Evidential data · Belief
entropy · Evidential likelihood

1 Introduction

As one of the best-known classification methods, decision trees are widely used
for their good learning capabilities and ease of understanding. However, tra-
ditional decision trees can only handle certain samples with precise data. The
uncertain instances are usually ignored or removed by replacing them with pre-
cise instances when building decision trees, despite the fact that they may contain
useful information [5], which may cause the lose of accuracy. We consider the
situation that attributes are accurately observed, and their classes are impre-
cisely or incompletely observed, which generally happen when the observation
is related to subjective opinion. An realistic example is the identification of out-
worn ancient stone inscriptions or scribbled handwritten numbers, in which the
training set is built on experts’ manual calibration of the fuzzy image samples,
whose attributes, the image information, are certain, meanwhile the classes may
be uncertain.
c© Springer Nature Switzerland AG 2021
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To solve the uncertain evidential data classification, some works based on
probability theory have been carried out recent years. However various authors
[1] have argued that probability cannot always adequately represent data uncer-
tainty. Then the belief function theory is introduced into the tree method with
the Evidential Expectation-Maximization (E2M) algorithm [3,4] proposed by
Denœux. Based on E2M algorithm Sutton-Charani et al. [10] estimate tree
parameters by maximizing evidential likelihood function. Ma et al. [7] proposed
an active belief decision tree learning approach that can improve classification
accuracy by querying while learning.

These above decision tree methods select best attributes according to the
information entropy. Motivated by the idea of building decision tree on precise
sample set by selecting attributes based on belief entropy [6], we extend it to evi-
dential data set with uncertainty. The proposed method use E2M algorithm to
generate Basic Belief Assignment(BBA) from uncertain data labels, and choose
best attribute by Deng entropy [2,11], which is calculated from BBAs of all sam-
ples corresponding to each attribute. The split strategy and stopping criterion
are also adjusted accordingly. This method keeps fairly good accuracy even on
sample set with high uncertainty level showed by experiments on UCI machine
learning data set.

The sequel of the paper is organized as follows: Sect. 2 describes the genera-
tion of BBAs from sample set based normal mixture model and E2M algorithm.
Then we introduce the detailed procedure of the tree building in Sect. 3, which
contains splitting strategy and stopping criterion. Some numerical experiments
are conducted in Sect. 4. Concluded remarks are presented in Sect. 5.

2 Generation of BBAs

The proposed tree method primarily chooses split attribute based on belief
entropy, which measures the uncertain level of instance in the form of BBA,
the basic conception in belief function theory. So we firstly discuss the genera-
tion of BBA from each instance of the whole sample set in this section.

The purpose of a classification method is to build a model that maps an
attribute vector X =

(
x1, ..., xd

)
with D-dimensional attributes

(
A1, ..., AD

)
,

to an output class y ∈ C = {C1, ..., CK} taking its value among k classes. The
learning of the classification is based on a complete training set of precise data,
denoted as

T =

⎛

⎜
⎝

X1,y1
...

Xn,yn

⎞

⎟
⎠ =

⎛

⎜
⎝

x1
1, ..., x

D
1 , y1

...
x1

n, ..., xD
n , yn

⎞

⎟
⎠ .

In this paper, we consider the case that the output class labels of sample
set contain uncertainty and model the uncertain output by mass function my :
2C → [0, 1], such that my (∅) = 0, and

∑
A⊆C my (A) = 1, which is indeed the

BBA. The subset A is called a focal set where my (A) > 0, and the my (A) can
be interpreted as the support degree of the evidence towards case that the true
value is in set A.
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One-to-one related to the mass function my, the belief function and plausi-
bility function are defined as:

Bely (B) =
∑

A⊆B

my (A), (1)

Ply (B) =
∑

A∩B �=�
my (A), (2)

which respectively indicate the minimum and maximum belief degree of evidence
towards set B. The function ply (w) = Ply ({w}) is called contour function.

When we model uncertain labels of evidential data with mass functions, the
training set becomes

T =

⎛

⎜
⎝

X1,m1

...
Xn,mn

⎞

⎟
⎠ =

⎛

⎜
⎝

x1
1, ..., x

D
1 ,m1

...
x1

n, ..., xD
n ,mn

⎞

⎟
⎠ .

2.1 Parameter Estimation of Normal Mixture Model

We denote the d-th attribute vector Xd =
(
xd
1, · · · , xd

n

)T
, d ∈ {1, ...,D} by

W = (w1, · · · , wn)T in this chapter. The normal distribution is commonly
encountered in practice, and is used widely in statistics as a simple model for
complex issue. This is due to the normal distribution is very tractable analyti-
cally. When considering particular one attribute, we assume in this paper that
this attribute value w of the sample is normal with mean μk and standard devi-
ation σ independent on k:

w ∼ N (
μk, σ2

)
, k = 1, ...,K,

when this sample belongs to class Ck. It is actually a particular case of
linear discriminant analysis [9] when the dimensionality of attribute is only
one, in another word, a one-dimensional normal mixture model. Let πk be the
marginal probability when Y = Ck, and θ = (μ1, ..., μK , σ, π1, ..., πK) the param-
eter vector. The complete-data likelihood is

Lc (θ) =
n∏

i=1

p (wi |Yi = yi )p (yi) =
n∏

i=1

K∏

k=1

φ (wi;μk, σ)yik πyik

k ,

where the φ is normal distribution probability density, and yik is a binary indi-
cator variable, such that yik = 1 if yi = k and yik = 0 if yi �= k.

when expended to evidential data, where we use contour function to describe
the labels, we get the evidential likelihood

L (θ) =
n∏

i=1

K∑

k=1

plikφ (wi;μk, σ) πk.
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according the evidential EM algorithm. Then we compute the expectation of
complete-data log likelihood

�c (θ) =
n∑

i=1

K∑

k=1

yik [log φ (wi;μk, σ) + log πk]

with respect to the combined mass probability function

pX

(
x

∣
∣
∣pl; θ(q)

)
=

n∏

i=1

p
(
xi

∣
∣
∣pli; θ(q)

)

in the E-step of the E2M algorithm. We denote

p
(
xi

∣
∣
∣pli; θ(q)

)
= ζ

(q)
ik , for k = (1, ...,K)

where

ζ
(q)
ik =

plikπ
(q)
k φ

(
wi;μ

(q)
k , σ(q)

)

∑
� pli�π

(q)
� φ

(
wi;μ

(q)
� , σ(q)

) .

We get the to-be-maximized function

Q
(
θ, θ(q)

)
=

n∑

i=1

K∑

k=1

ζ
(q)
ik [log φ (wi;μk, σ) + log πk]

whose formal is similar to the function computed in the EM algorithm on the
normal mixture model [8]. Because of the similarity, the optimal parameter max-
imizing Q

(
θ, θ(q)

)
can be iteratively computed by

π
(q+1)
k =

1
n

n∑

i=1

ζ
(q)
ik , μ

(q+1)
k =

∑n
i=1 ζ

(q)
ik wi

∑n
i=1 ζ

(q)
ik

,

σ(q+1) =

√√
√
√ 1

n

n∑

i=1

K∑

k=1

ζ
(q)
ik

(
wi − μ

(q+1)
k

)2

.

2.2 Determine BBA

We get K normal distributions on each attribute denoted as Nkd

(
μkd, σ

2
d

)
, which

model data belong to the k-th class when concerning the d-th attribute only. The
parameters of normal distribution corresponding to each class are calculated by
the E2M algorithm, during which all the samples participate, which means these
parameters contains the general information of samples. Each mean of normal
distribution indicates that the most possible value of this attribute if this sample
belongs to corresponding class.
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For the reason that we will measure the uncertainty each attribute contains
in the attribute selection of decision tree building, we generate D, the number
of attributes, BBAs to describe the uncertainty that one sample contains with
the information of the whole training set.

It is denoted as φkd (xi) = φ
(
xd

i ;μkd, σd

)
that the normal probability density

of d-th attribute of sample xi in the normal distribution Nkd. According to the
property of normal distribution, we assume that the probability that sample xi

belongs to class k is proportional to φkd (xi) when consider attribute Ad only.
So we propose a rule to assign mass function on subset of C.

Firstly, normalize the φkd (xi) with different class k such that

fk = φkd (xi) /
∑

k

φkd (xi).

Then rank fk in decreasing order f ′
r (r = 1, ...,K), whose corresponding class is

denoted as C ′
r (r = 1, ...,K). Assign f ′

r to class set by following rule:

m ({C ′
1}) = f ′

1

m ({C ′
1, C

′
2}) = f ′

2

· · ·
m ({C ′

1, ..., C
′
K}) = m (θ) = f ′

K .

By this rule, we obtain the BBA of xi under the select attribute Ad, which we
denote as md

i .

3 Tree Building Procedure

3.1 Attribute Selection and Splitting Strategy

Shannon entropy is often used to measure the information volume of a system
or a process, and quantify the expected value of the information contained in a
message under the probability theory. When extended to belief theory, there are
a series of uncertainty entropy methods similar to Shannon entropy, are proposed
to measure the uncertainty on BBA. We choose the Deng entropy [2]

Edeng (m) = −
∑

A⊆C
m (A) log2

m (A)
2|A| − 1

to measure the uncertainty in this paper.
Based on the Deng entropy, the decision tree based on Deng Entropy can

be constructed by attribute selection and split from the top to down. For the
attribute Ad, we calculate the average entropy

Edeng

(
Ad

)
=

1
n

n∑

i=1

Edeng

(
md

i

)
,
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where md
i denote the BBAs generated in Sect. 2. The less the entropy is, the less

uncertainty the attribute contains. So on the split node of the decision tree, we
choose the attribute A∗ = argminAdEdeng

(
Ad

)
as the best attribute to split.

Compared to the precise situation, which can directly determine split inter-
vals with maximum value and minimum value of the attribute data which exactly
belong to a same class, the split on the best attribute with imprecise labels can
not be solved directly by adopting the same strategy. We generate the split inter-
vals from the parameter of the K normal distributions modeled from attribute.

According to the property of normal distribution, it is reasonable to declare
that the closer the distance between attribute of a instance and the mean μ, the
more likely this instance sampled from this distribution. Based on this opinion,
we use the intervals with mid-value μ as the split interval, which is denoted as
I = [μ − ε, μ + ε]. The width of the interval is adjusted flexibly to control how
quickly the data are split to the branches, in another word, how deep the tree is
on different sample set. We choose ε = σ in this paper.

It is obvious that there is conflict between the intervals such that Ia ∩ Ib �=
∅,∃Ia, Ib ∈ {I1, ..., IK} if the width are not narrow enough when consider K
normal distributes. So we assign an instance into k-th branch with class label
Ak if the attribute is contained by the Ik only, which is equivalent of cutting the
intervals into what do not intersect with each other.

3.2 Stopping Criterion

In the process of building the decision tree, we iteratively proceed the attribute
selection and training sample splitting. There exist two issues during this process:
firstly, the overfitting when the amount of non-split samples is too small; and
secondly, failure to assign any sample into branches on a tree node caused by
the gathering too much of non-split samples. The first issue causes more error
and the second causes endless loop during building process.

To handle these issues, the stopping criterion is set such that stopping when
the percentage of non-split samples is below a well-setting number or no sample
is assigned into branches on a tree node. The non-split samples are assigned into
corresponding class according to their distance to means of each class.

The decision tree procedure is summarized by the Algorithm 1.

4 Experiments

In this section we present experiments on several UCI data sets and compare
the classification accuracy of the proposed method with traditional decision trees
and belief entropy trees using only precise instances.

We chose two data sets from UCI repository, Iris and Sonar, the former
contains 150 instances with 4 attributes and 3 classes, and the latter contains
208 instances with 60 attributes and 2 classes. 5-fold cross-validations on the
two data sets are performed to validate the proposed methodology.
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Algorithm 1. belief decision tree building
Input: A evidential data sample set T with n instances, attribute A = {A1, ..., AD}

and class C = {C1, ..., CK}, stop threshold α, split interval width ε
Output: tree node set{N1, ..., Ndepth}, corresponding split attribute

{
A∗

1, ..., A
∗
depth

}
,

and corresponding split interval set sequence
{
S∗
1 , ..., S∗

depth

}
in which each split interval

set is S∗ = {I1, ..., IK}
1: i = 1
2: for |T | > αn do
3: calculate normal distribute parameter matrix Nkd (k = 1, ..., K, d = 1, ..., D);
4: determine split attribute A∗

i = argminA∈AEdeng (A);
5: calculate the split interval S∗

i = {I∗
k} = {[μ∗

k − ε∗, μ∗
k + ε∗]} (k = 1, ..., K);

6: for j < |T | do
7: if ∃k, x∗

j ∈ I∗
k and x∗

j /∈ I∗
q for any q �= k then

8: delete the instance xj from T;
9: end if
10: end for
11: if there is no instance is deleted then
12: break;
13: end if
14: build the node Nk with split attribute A∗

i and split interval S∗
i ;

15: i = i + 1;
16: end for
17: build the bottom node Ndepth with the non-split samples T;

Denote the true label of a instance by C∗
i , and give its uncertain observation

myi
. Due to the characters of belief function, we can simulate several situations

from precise data:

• a precise observation is such that plyi
(C∗

i ) = 1, and plyi
(Cj) = 0,∀Cj �= C∗

i ;
• a vacuous observation is such that plyi

(Cj) = 1,∀Cj ∈ C;
• an imprecise observation is such that plyi

(Cj) = 1 if Cj = C∗
i or Cj ∈ Crm,

and plyi
(Cj) = 0 otherwise, where Crm is a set of randomly selected labels;

• an uncertain observation is such that plyi
(C∗

i ) = 1, and plyi
(Cj) = rj ,∀Cj �=

C∗
i , where rj are sampled independently from uniform distribution U ([0, 1]).

We repeated all experiments ten times and computed an average classification
accuracy since the random generation of uncertain data. Three tree building
techniques were compared:

• Tree 1(C4.5), which uses only precise data to build the tree;
• Tree 2(belief entropy tree with precise data), which chooses split attribute by

belief entropy but generates BBAs with precise data only;
• Tree 3(belief entropy tree with uncertain data), which chooses split attribute

by belief entropy and the BBAs are generated from uncertain data.

We tested the three tree building techniques on data sets in several situations:
with vacuousness level V ∈ [0, 1]; with imprecision level I ∈ [0, 1]; and with
uncertainty level U ∈ [0, 1]. The V , I and U controls the chance of an instance
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to become vacuous, imprecise or uncertain. For each instance, a number Vi was
randomly generated on [0,1] and it will be replaced by a vacuous one if Vi < V .
Similar operation was taken to generate imprecision and uncertainty.

Fig. 1. Classification accuracies on Iris data

The Fig. 1 and Fig. 2 showed the classification accuracies of trees in different
situations. We learn from the Fig. 1 that belief entropy tree with uncertain data
roundly performed better than the one with precise data only and classical C4.5
tree when tested on Iris data set. The Fig. 2 shows that, on Sonar data, the
proposed method got slightly weaker but almost same classification accuracy
as classical C4.5 tree method when the V, I and U are low. When processing
data with high vacuousness, Imprecision and uncertainty level, specifically, when
V > 0.6, I > 0.6 or U > 0.7, the belief entropy trees performed obviously better
than C4.5 tree. Particularly, the belief entropy tree with uncertain data and the
one with precise data achieved similar performance on different vacuousness,
Imprecision level and on uncertainty level below 0.7, but the former performed
much better on higher uncertainty level.

We model the value of each attribute by one-dimensional normal mixture
model, which is widely adapted in clustering problems. For this reason, we can
achieve pretty good classification accuracy when handling data with huge uncer-
tainty. However, this method makes a request to the normality of attributes’
distribution, which makes it not always a suitable method for every data set and
results in the different performance between Iris and Sonar data set.
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Fig. 2. Classification accuracies on Sonar data

5 Conclusion

A new classification tree method based on belief entropy with uncertain data
modeled by belief function theory is proposed in this paper. It generates BBAs
by E2M algorithm and selects attributes according to belief entropy. As the
experimental results show, the proposed method is robust to different sorts of
uncertainty especially to high-level uncertainty. It is proved that the classification
tree based belief entropy with evidential data have a potentially broad field of
application.

In future works, we will focus on the details of the tree method such as the
tree node building after reaching stopping criterion. And ensemble methods, such
as bagging and boosting, will be considered to improve the average performance
of the tree, in which the output of single tree will keep in the form of belief
function.
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Abstract. We investigate learning of belief function compositional mod-
els from data using information content and mutual information based
on two different definitions of entropy proposed by Jiroušek and Shenoy
in 2018 and 2020, respectively. The data consists of 2,310 randomly gen-
erated basic assignments of 26 binary variables from a pairwise consistent
and decomposable compositional model. We describe results achieved by
three simple greedy algorithms for constructing compositional models
from the randomly generated low-dimensional basic assignments.

Keywords: Compositional models · Entropy of Dempster-Shafer
belief functions · Decomposable entropy of Dempster-Shafer belief
functions · Mutual information · Information content

1 Introduction

Probabilistic compositional models were first proposed in [3] for discrete vari-
ables. It has since been generalized for many other uncertainty calculi [7]. In this
paper, we are concerned with compositional models for Dempster-Shafer (DS)
belief functions [5].

In the probabilistic framework, one strategy for learning models from data
is to use information-theoretic concepts such as information content or mutual
information based on the concept of Shannon’s entropy [13]. In this paper, we
investigate the use of two measures of entropy of belief functions defined by
Jiroušek and Shenoy in 2018 [8] and 2020 [9]. The 2018 definition does not
satisfy the subadditivity property, whereas the 2020 definition is the only one
that is decomposable in the sense that H(mX ⊕ mY |X) = H(mX) + H(mY |X).
Here, mX is a basic assignment for some variable X, mY |X is a conditional
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basic assignment for Y |X such that its marginal for X is vacuous, ⊕ denotes
Dempster’s combination rule, and H(m) denotes entropy of basic assignment m.

Unfortunately, in contrast to probabilistic model learning, in the framework
of belief function, we have to cope with several additional problems arising from
the fact that we cannot support the respective procedures by belief function
information theory. Not having an analog to probabilistic Kullback-Leibler diver-
gence [12], we have problems even with determining, which of two different mod-
els is a better approximation of a given multidimensional belief function.

To study the applicability of the above-mentioned entropies, we concentrate
only on a part of a complete model learning procedure. As we will see below,
to define a joint compositional model, one starts with a set of low-dimensional
marginal belief functions and then compose them in some order. In the compu-
tational experiments, we will randomly generate sets of pairwise consistent basic
assignments, and compare three different algorithms seeking their best ordering.
The first algorithm is based on decomposable entropy where we learn a com-
positional model that minimizes mutual information. The second is based on
maximizing information content using the 2018 Jiroušek-Shenoy’s definition of
entropy that has two components—Dubois-Prade’s entropy [2] of a basic assign-
ment and Shannon’s entropy of plausibility transform of a basic assignment
[1]. The third is a modification of the second definition where the plausibility
transform is replaced by the pignistic transform [15]. Not having a general tool
allowing us to compare the results, we randomly generate only the situations
when the optimality of a solution can be easily recognized. It occurs, as we will
see below, when the learned model is decomposable. Our results indicate that
the second and third algorithms are more effective than the first one in learning
decomposable compositional models.

2 Preliminaries

Consider a finite set of binary variables W = {S, T, U, . . .}. A basic assignment
for variables V ⊆ W is a mapping mV : 2ΩV → [0, 1], such that

∑
a∈2ΩV mV(a) =

1 and mV(∅) = 0, where ΩV = {0, 1} × {0, 1} × . . . × {0, 1} is a |V|-dimensional
Cartesian product of values of the variables in V. When the set of variables is
evident from the context, or, if the set of variables is irrelevant, we omit the
index V. We say that a ⊆ Ω is said to be a focal element of m if m(a) > 0.

For basic assignment mV , we often consider its marginal basic assignment for
U ⊆ V, denoted by m↓U

V . An analogous notation is used also for projections: for
a ∈ ΩV , let a↓U denote the element of ΩU that is obtained from a by omitting
the values of variables from V \ U , i.e., for a ⊆ ΩV , a↓U = {a↓U : a ∈ a}. The
marginal of basic assignment mV for U ⊆ V is defined as follows: m↓U

V (b) =∑
a⊆ΩV : a↓U=b mV(a) for all for all b ⊆ ΩU .
A basic assignment m can be described by equivalent functions such as

belief function, plausibility function, or commonality function. The latter two
are defined as follows:
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Plm(a) =
∑

b⊆Ω:b∩a �=∅
m(b), Qm(a) =

∑

b⊆Ω:b⊇a

m(b).

When normalizing the plausibility function on singletons, one gets a probability
mass function on Ω called a plausibility transform of basic assignment m [1].
Another popular probabilistic representation of a belief function is the so-called
pignistic transform advocated by Philippe Smets [15] (though, as argued in [1], it
is inconsistent with Dempster’s combination rule). Let λm and πm denote these
two transforms, respectively, as follows. Suppose a ∈ Ω. Then,

λm(a) =
Plm({a})

∑
b∈Ω Plm({b})

, and πm(a) =
∑

b⊆Ω:a∈b

m(b)
|b| .

3 Compositional Models

To construct multidimensional models from low-dimensional building blocks, we
need a binary operator combining two low-dimensional (marginal) basic assign-
ments into one (joint) basic assignment. One such binary operator � is called a
composition operator if it satisfies the following four axioms.

A1 (Domain): mU1 � mU2 is a basic assignment for variables U1 ∪ U2.
A2 (Composition preserves first marginal): (mU1 � mU2)

↓U1 = mU1 .
A3 (Commutativity under consistency): If mU1 and mU2 are consistent, i.e.,

m↓U1∩U2
U1

= m↓U1∩U2
U2

, then mU1 � mU2 = mU2 � mU1 .
A4 (Associativity under special condition): If U1 ⊃ (U2 ∩U3), or, U2 ⊃ (U1 ∩U3)

then, (mU1 � mU2) � mU3 = mU1 � (mU2 � mU3).

For two operators satisfying these axioms see [5]. These operators account for the
common information in two marginal basic assignments when there is overlap in
the domain of the marginals.

By a compositional model, we mean a basic assignment m1� · · ·�mn obtained
by multiple applications of the composition operator. Since the composition oper-
ator is generally neither associative nor commutative, if not specified otherwise
by parentheses, the operators are always performed from left to right, i.e.,

m1 � m2 � m3 � . . . � mn = (. . . ((m1 � m2) � m3) � . . . � mn−1) � mn.

Thus, for a given operator of composition, a (joint) compositional model is
uniquely defined by an ordered sequence of low-dimensional (marginal) belief
functions. In this paper, we consider only a part of the complete model learning
process. Namely, given a set of low-dimensional marginal belief functions, what
sequence should we use to construct the joint. To specify this step properly,
consider a (finite) system W of small subsets of the considered variables W. The
vague assumption that U ∈ W is small is made to avoid the computational prob-
lems connected with computations with the corresponding basic assignments.
Thus, we assume that for each U ∈ W we have (or we can easily get) a basic
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assignment mU and that this basic assignment, as well as the corresponding
commonality function, can be effectively represented in computer memory.

Given system W, we study finding a sequence of sets {Ui}i=1,...,n from W

such that the model mU1 � mU2 � · · · � mUn
represents as much of the relations

among the variables as possible. As discussed in Sect. 1, we do not have a general
tool for comparing two models. Therefore, we will consider a specific situations
in which one can recognize an optimal solution regardless of the composition
operator used.

To describe the necessary theoretical results consider the following notation.
Let mi denote mUi

. Thus, we speak about a compositional model m1 � m2 �
. . . � mn, which is a |U1 ∪ . . . ∪ Un|-dimensional basic assignment, in which basic
assignment mi is defined for variables Ui. It is said to be perfect if all mi’s are
marginals of the model. Recall that pairwise consistency of mi’s is a necessary
but not sufficient condition for perfectness of model m1�. . .�mn. A perfect model
reflects all the information contained in the low-dimensional basic assignments
from which it is composed. So, it is not surprising that the optimal solution of a
model learning algorithm is, if it exists, a perfect model. Quite often we can take
advantage of the fact that such a solution is not defined by a unique sequence of
low-dimensional basic assignments. In [4,7], the following two propositions are
proved.

Proposition 1 (on perfect models). Consider a perfect model m1 � . . . �mn,
and a permutation of its indices i1, . . . , in such that mi1 �. . .�min

is also perfect.
Then m1 � . . . � mn = mi1 � . . . � min

.

Compositional model m1 � m2 � . . . � mn is said to be decomposable if the
sequence of sets U1,U2, . . . ,Un satisfies the so-called running intersection prop-
erty : ∀i = 3, . . . , n ∃j < i : Ui ∩ (U1 ∪ . . . ∪ Ui−1) ⊆ Uj .

Proposition 2 (on consistent decomposable models). Decomposable
model m1 � . . . � mn is perfect if and only if basic assignments m1, . . . , mn are
pairwise consistent, i.e., ∀{i, j} ⊂ {1, 2, . . . , n} : m

↓Ui∩Uj

i = m
↓Ui∩Uj

j .

4 Entropy and Information Content

The goal of this paper is to study the learning of compositional models from data
using entropy and related information quantities. Probabilistic model learning
algorithms are often based on characteristics of information theory. They may
maximize the information content of the probability distribution P (U) defined
as follows: (Hs denotes the classical Shannon’s entropy)

IC(P (U)) =
∑

X∈U
Hs(P (X)) − Hs(P (U))

=
∑

a∈ΩU :P (a)>0

P (a) log
(

P (a)
∏

X∈U P (a↓X)

)

.
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Alternatively, model construction may be based on mutual information defined
as follows: (U and V are disjoint)

MI(P (U ‖ V)) = Hs(P (U)) + Hs(P (V)) − Hs(P (U ∪ V))

=
∑

a∈ΩU∪V :P (a)>0

P (a) log
(

P (a)
P (a↓U ) · P (a↓V)

)

.

Notice that both information content and mutual information are non-
negative. The information content IC measures the strength of dependence
among the variables. All variables are independent (which is much stronger
requirement than the pairwise independence of variables) under probability dis-
tribution P if and only if IC(P ) = 0. Therefore, a model learning algorithm
maximizing IC(P ) looks for a distribution that represents as much knowledge
as possible. Thus, the goal is to find a model maximizing the information con-
tent, which is, due to its definition, equivalent to minimizing Shannon entropy
within the class of models with the same one-dimensional marginals.

In this paper, we investigate learning compositional models in the framework
of belief functions with the help of similar information-theoretic characteristics
of basic assignments. We consider two definitions of entropy introduced in [8]
and [9]. The former paper proposes

HA(m) =
∑

a⊆Ω

m(a) log(|a|) + Hs(λm),

where the first part of this expression is the Dubois-Prade entropy [2], and the
second part is the Shannon entropy of the plausibility transform of m. This
entropy is computationally inexpensive, and, as argued in [8], it is among the
few that are consistent with the semantics of Dempster-Shafer theory of evi-
dence. Its disadvantage is that it is not subadditive, and therefore the derived
information-theoretic characteristics ICA(mU ) =

∑
X∈U HA(m↓X

U ) − HA(mU ),
and MIA(m(U||V)) = HA(m↓U ) + HA(m↓V) − HA(m↓U∪V) need not be pos-
itive. Unfortunately, this manifests itself quite often even in very simple sit-
uations, and therefore we also study its approximation defined by HP (m) =∑

a⊆Ω m(a) log(|a|)+Hs(πm) based on the pignistic transform πm [10]. Though
this entropy has also been shown to be not subadditive [11], in our computa-
tional experiments (described in Sect. 6), we encountered that the information
content based on this entropy ICP (mU ) =

∑
X∈U HP (m↓X

U ) − HP (mU ), or the
corresponding mutual information MIP (m(U ‖ V)) = HP (m↓U ) + HP (m↓V) −
HP (m↓U∪V) was rarely negative1.

The other entropy considered in this paper is the decomposable entropy intro-
duced in [9]. It is defined as follows:

HS(m) =
∑

a⊆Ω

(−1)|a|Qm(a) log(Qm(a)). (1)

1 In our experiments, MIA was negative in about 12% of situations, whilst MIP was
negative only in 0.1% of cases.
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It is defined using the commonality function of basic assignment m, and there-
fore the conversion of m to Qm is required. In general, this function is not
always non-negative. However, its merit is that it is the only definition of
belief function entropy that satisfies an additivity property in the sense that
HS(mX ⊕ mY |X) = HS(mX) + HS(mY |X) (here, mX is a basic assignment for
X, mY |X is a conditional basic assignment for Y given X such that its marginal
for X is vacuous, and ⊕ denotes Dempster’s combination rule). Such a property
characterizes Shannon’s entropy for probability mass functions, and is often used
in machine learning when constructing probabilistic models from data. To use
this property when computing the entropy for compositional models, the condi-
tional entropy is defined as follows (U and V are disjoint sets of variables, for
which m is defined):

HS(mU|V) =
∑

a⊆ΩU∪V

(−1)|a|Qm↓U∪V (a) log(QmU|V (a)), (2)

where QmU|V (a) = Qm↓U∪V (a)/Qm↓V (a↓V) for all a ⊆ ΩU∪V (note that for V = ∅,
HS(mU|V) = HS(mU )). Thus, we see that this entropy can be computed for
compositional models of large dimensions if the composition operator satisfies
the following axiom:

A5 (Conditional independence): For basic assignment mU1 �mU2 , variables U1 \
U2 and U2 \ U1 are conditionally independent given variables U1 ∩ U2.

Axiom A5 implicitly defines conditional independence for sets of variables
in the DS theory. This definition is consistent with the definition of conditional
independence in valuation-based systems [14].

Using the notation from Sect. 3, let Ûj denote U1∪ . . .∪Uj−1. We get for such
compositional models:

HS(m1 � . . . � mn) = HS(m1) +
n∑

j=2

HS

(
mj(Uj \ Ûj |Uj ∩ Ûj)

)
. (3)

5 Algorithms

Based on an analogy with probabilistic model learning processes, we may either
look for a model with the smallest possible entropy or equivalently, a model
maximizing the corresponding informational content. Therefore, we consider the
following simple heuristic algorithm to minimize Eq. (3).

Min-entropy Greedy Algorithm.

1. Define U1 := arg maxU∈W(ICS(mU )), Û = U1, and n:=1.
2. Until

(
Û = W

)

find Un+1 := arg minU∈W
(HS(mU (U \ Û|U ∩ Û))),

where W =
{

U ∈ W : U \ Û �= ∅
}

,

and redefine Û := Û ∪ Un+1, n := n + 1.
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This algorithm cannot be used for entropy other than HS . If all basic assign-
ments are sufficiently small (the current version of our code cannot compute HS

entropy for basic assignments of dimensions larger than four), the algorithm is
very efficient. Note that the algorithm (as well as the one from bellow) ends
when all variables from W are covered by specified sequence U1, . . . ,Un. If there
are some sets left, then adding respective basic assignments to the compositional
model would not make any change because of Axiom A2 from Sect. 3.

An alternative model learning algorithm is based on the computation of
information content using entropies HA and HM .

Max-information Greedy Algorithm.

1. Define U1 := arg maxU∈W(ICA(mU )), Û = U1, and n:=1.
2. Until

(
Û = W

)

find Un+1 := arg maxU∈W

(
MIA(mU (U \ Û ‖ U ∩ Û))

)
,

where W =
{
U ∈ W : U \ Û �= ∅

}
,

and redefine Û := Û ∪ Un+1, n := n + 1.

Similar to the case of min-entropy greedy algorithm, the efficiency of this
algorithm follows from the fact that all the necessary computations are real-
ized with basic assignments mU , U ∈ W. The algorithm does not compute any
information-theoretic quantity of a complete model. Naturally, in general, this
greedy algorithm doesn’t find an optimal model either.

6 Results of Experiments

In this section, we briefly describe results achieved when applying the algo-
rithms described in Sect. 5 to randomly generated systems of low-dimensional
basic assignments. When constructing several compositional models from a sys-
tem of low-dimensional assignments, we do not have a criterion enabling us
to say, which of them is the best. The only characteristic we can compute for
the multidimensional compositional models is their HS entropy. Unfortunately,
as it can be shown by examples, neither this characteristic guarantees that it
achieves the lowest value for the optimal model. Thus, as the main criterion for
the comparison of the considered approaches we consider how often they find
decomposable models. We know that if it exists, then it is optimal.

In our computational experiments, we considered 26 binary variables. Ran-
domly generated systems of basic assignments were such that

– the dimension of any basic assignment was not greater than 4,
– the basic assignment in a system were pairwise consistent,
– the basic assignments could be ordered so that the sets of variables met the

running intersection property.
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According to these rules, we generated 2,130 systems of basic assignments.
Each system was generated by the following procedure: First, an ordered cover-
ing U1, . . . Un of all 26 binary variables satisfying the running intersection prop-
erty was generated. This systems of sets was used for sequential generation of
corresponding basic assignments (defined over respective variables) as follows.

1. mU1 is randomly generated
2. for i ∈ 2 . . . n

find j < i : Ui ∩ (U1 ∪ . . . ∪ Ui−1) ⊆ Uj

mUi
is randomly generated

mUi
= (mUj

� mUi
)↓Ui

By randomly generated we mean the following. Randomly set the number
of focal elements, randomly generate focal elements, and randomly generate
respective mass assignments. This procedure guarantees pairwise consistency of
respective basic assignments [6]. Using the ibelief package [16], we generated
random belief functions of four types with respect to their focal elements: ran-
dom, random with Ω guaranteed, quasibayesian, and nested with Ω guaranteed.
However, it appeared that the type does not have any significant impact on the
result of the experiment and therefore the type is not reported bellow. All cal-
culations were performed in R language using our experimental routines based
on relational databases.

To each generated system of basic assignments, we applied the min-entropy
greedy algorithm, and two versions of the max-information greedy algorithm
using entropies HA and HP . As mentioned earlier, the main criterion to evalu-
ate the results was how often the algorithms found decomposable models. Even
though all the generated systems could be ordered to meet the running intersec-
tion property, we could not expect that this goal would be always achieved. As
an extreme situation consider a system of basic assignments consisting of basic
assignments for independent variables. Then all models describe a multidimen-
sional basic assignment of independent variables regardless of the ordering of low-
dimensional assignments in a model. The existence of only one basic assignment
meeting an improper conditional independence may prevent the construction of
a decomposable model. Since we control only systems of variables and not the
values of basic assignments (these were left to the random generator), we could
not expect that there would be a chance that a model learning process would
find decomposable models for all generated data. Actually, in 295 cases (from
2,130 generated) none of the three algorithms found a decomposable model.

7 Conclusions

A summary of results from the experiments is shown in Fig. 1, where the numbers
indicate the number of successes of the respective algorithms. One can see that
in 524 cases all three algorithms found decomposable models. The min-entropy
greedy algorithm with HS entropy found 524 + 43 + 132 + 18 = 717/2,130 =
0.337% decomposable models, the max-information greedy algorithm using HA



Entropy-Based Model Learning 125

Fig. 1. A Venn diagram indicating the number of successes of the three algorithms.

entropy found 17 + 1076 + 524 + 18 = 1,635/2,130 = 0.768% decomposable
models, and the max-information greedy algorithm using HP entropy found
1076 + 25 + 43 + 524 = 1,668/2,130 = 0.783% decomposable models. Thus, we
conclude that the min-entropy greedy process with HS entropy is not as efficient
as max-information greedy process with either HA or HM entropies for learning
decomposable compositional models.

Notice also that the max-information greedy algorithm does not depend very
much on the entropy used. They both succeed for about 0.77% of randomly gen-
erated systems of basic assignments. When using HP , it found a decomposable
model only in 33 more cases (about 1.5%) than when using HA.

The computations required by the min-entropy greedy algorithm required
about 35 times more time than that of the max-information greedy algorithm.
This is because the computations of HS require transformation of a basic assign-
ment into a commonality function. If the data were given in a form of common-
ality functions, the difference would not be so striking (but the space complexity
would noticeably increase).
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Abstract. Existing frameworks for probabilistic inference assume the
inferential target is a feature the posited statistical model’s parameters.
In this paper, we develop a new version of the so-called generalized infer-
ential model framework for possibilistic inference on unknowns that are
well-defined independent of a statistical model. We provide a bootstrap-
based implementation and establish approximate validity.
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1 Introduction

In statistics, it is common to work under an assumed statistical model. There are
a number of advantages to a model-based approach, including (a) the inferential
targets—the model parameters—are well-defined, and (b) a model is necessary
in order to apply existing probabilistic inference frameworks, including Bayes and
generalized Bayes (de Finetti 1990; Walley 1991), fiducial (Fisher 1935), general-
ized fiducial (Hannig et al. 2016), structural inference (Fraser 1968), Dempster–
Shafer theory (Dempster 1967, 1968, 2008; Shafer 1976), and inferential models
(IMs, Martin and Liu 2015), which are model-based.

In machine learning, however, the inferential targets are rarely model param-
eters. Instead, they are features that characterize a “best” action, the one that
would minimize a suitable risk function. A risk minimizer is a “real-world” quan-
tity, a functional of the true distribution, not something whose existence relies
on the correctness of a posited statistical model. And if the quantity of interest
is well-defined independent of a model, then the use of a model-based approach
for inference on that quantity creates a risk of model misspecification bias. For
example, consider estimation of a qth population quantile, θ, where q ∈ (0, 1).
One approach might be to specify an exponential model, with scale parame-
ter λ, and estimate the quantile as θ̂ = −λ̂−1 log(1 − q), where λ̂ is, say, the
maximum likelihood estimator. This would be a reliable estimator if the under-
lying distribution were at least approximately exponential, but not so otherwise.
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The sample quantile, on the other hand, is a direct, model-free estimate of the
quantity of interest and, therefore, would be reliable more generally.

In light of the potential biases model specification can create, when the quan-
tity of interest is not determined by parameters of a statistical model, a model-
free approach would be desirable. In this paper we develop a new approach, a
further generalization of the so-called generalized IMs in Martin (2015, 2018).
The motivation behind the original generalized IM was to avoid giving a com-
plete specification of the data-generating process, which generally simplifies the
IM construction without sacrificing its desirable validity property. In this paper,
we push this idea further by developing a generalized IM that requires no model
specifications. While the original generalized IM construction proceeds without
a complete description of the data-generating process, its implementation still
requires a statistical model. Here we side-step this requirement by leveraging
the powerful bootstrap procedure (e.g., Efron 1979) that provides a model-free
approximation of the relevant sampling distributions.

Following some brief background about generalized IMs in Sect. 2, the main
results are presented in Sect. 3. There we lay out the model-free generalized IM
framework, with its bootstrap-based implementation, and offer some theoretical
support in the form of an asymptotically approximate validity property. An brief
illustration in the context of quantile regression is presented in Sect. 4, with some
concluding remarks in Sect. 5.

2 Generalized IMs

Assume that data Zn = (Z1, . . . , Zn) are independent and identically distributed
(iid) with distribution Pθ, and inference on the parameter θ ∈ Θ is desired. Note
that the individual Zi’s could be response–predictor variable pairs (Xi, Yi) as
in Sect. 4.1. The IM approach quantifies uncertainty about θ using belief and
plausibility functions, denoted by (ΠZn ,ΠZn). These are interpreted as data-
dependent degrees of belief/plausibility in assertions about the unknown θ. These
measures are meaningful thanks to their so-called validity property, which states
that, for any A ⊂ Θ, as a function of Zn iid∼ Pθ, the random variable ΠZn(A)
tends not to be small when θ ∈ A, i.e., when A is a true assertion. More precisely,
validity means that the IM’ plausibility function satisfies

sup
θ∈A

Pθ{ΠZn(A) ≤ α} ≤ α, for all α ∈ [0, 1], all A ⊆ Θ. (1)

Given the duality between belief and plausibility functions, i.e., ΠZn(A) = 1 −
ΠZn(Ac), and the fact that (1) is required to hold for all A, an equivalent
definition of validity can be stated in terms of the belief function.

The original IM developments in Martin and Liu (2013) utilized a description
of how the data Zn are generated to construct the valid belief and plausibility
functions. More specifically, Pθ is written in terms of an association between
data Zn, parameter θ and a set of unobservable auxiliary variables Un through

Zn = a(θ, Un), (2)
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where Un iid∼ PU and PU is known. The IM construction proceeds with the
specification of a random set S to predict the unobserved value of Un. Easy to
arrange properties of this user-specified random set ensure that the prediction
of the auxiliary variable is done in a reliable/calibrated way, which turns out
to be fundamental for the IM validity. Lastly, this random set gets fused with
the observed data and the statistical model, originating a new random set on Θ,
the parameter space. The distribution of this random set, as a function of the
random S for fixed zn, defines the IM’s belief and plausibility functions.

In this formulation, it is important to write the association in (2) in terms of
data summaries that match the dimension of the parameter of interest. Doing so
reduces the dimension of the auxiliary variable too, which makes its prediction by
a (lower-dimensional) random set easier and more efficient. Unfortunately, this
dimension reduction step is not always easy to do. The generalized IM approach
in Martin (2018) bypasses this potential obstacle through the specification of
a real-valued function T that associates Zn, θ, and an unobservable auxiliary
variable. For example, consider the log-relative likelihood

Tzn(θ) = log Lzn(θ) − log Lzn(θ̂zn), (3)

where Lzn(θ) is the likelihood function and θ̂zn the corresponding maximum
likelihood estimator. Let Fθ(t) = Pθ{TZn(θ) ≤ t} the distribution function of
TZn(θ) under Pθ. Then the generalized association takes the form

TZn(θ) = F−1
θ (U), U ∼ Unif(0, 1). (4)

Since θ values having large likelihood are most “plausible”, the recommended
random set in this case is

S = [0, Ũ ], Ũ ∼ Unif(0, 1). (5)

This random set gets pushed forward, through the generalized association (4) at
the observed Zn = zn, to a corresponding random set on the θ-space:

Θzn(S) = {ϑ : Fϑ(Tzn(ϑ)) � S} = {ϑ : Fϑ(Tzn(ϑ)) ≤ Ũ}.

Since S is nested, so is Θzn(S), so the IM output has the special form of a con-
sonant belief/plausibility function or, equivalently, necessity/possibility measure
(Dubois and Prade 1988), and, therefore, can be fully characterized by its plau-
sibility contour function

πzn(ϑ) = PS{ΘTyn (S) � ϑ} = 1 − Fϑ(Ty(ϑ)), ϑ ∈ Θ.

That is, Πzn(A) = supϑ∈A πzn(ϑ) and Πzn(A) = 1 − Πzn(Ac). Validity, in the
sense of (1), follows from the easily-verified fact that πZn(θ) ∼ Unif(0, 1) when
Zn iid∼ Pθ; see Martin (2015, 2018) for details.

Computation of the generalized IM can be difficult because the distribution
function Fθ is needed, at least approximately, for all θ in a dense grid. See Martin
(2020, 2021) for details. For specific inferential tasks, at least, simplification
would be possible (e.g., Syring and Martin 2021).
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3 Generalized IMs Without a Model

3.1 Construction

As described above, the benefit of the generalized IM is that it does not require
a full specification of the data-generating process, which in turn simplifies the
entire construction. However, implementing that generalized IM still depends
on a statistical model in several ways, including: the relative likelihood and the
distribution function Fθ defined in (4) are features of the model. Here we describe
a new approach that avoids the model dependencies.

Here we assume that data Zn are iid but with an entirely unspecified dis-
tribution P . The quantity of interest is some specified feature θ = θ(P ) of the
distribution P , taking values in a space Θ. Our focus here will be on features
defined as minimizers of a risk function. Start with a loss function 	ϑ(z) that
measures the discrepancy between a single data point z and a generic feature
value ϑ; see Sect. 4 for a practical example. Define the risk R(·) function

R(ϑ) ≡ RP (ϑ) :=
∫

	ϑ(z)P (dz), ϑ ∈ Θ,

the P -expected loss. Then define the quantity of interest θ = θ(P ) as

θ = arg min
ϑ∈Θ

R(ϑ). (6)

Of course, the risk-minimizer framework does not cover all cases, but we leave
these further generalizations for future work. Our present goal is valid, model-
free, (imprecise) probabilistic uncertainty quantification about θ.

Naturally, θ can be estimated by replacing the risk function R, that depends
on the unknown P , with its empirical version

RZn(ϑ) =
1
n

n∑
i=1

	ϑ(Zi), ϑ ∈ Θ.

The corresponding estimate of θ is

θ̂Zn := arg min
ϑ∈Θ

RZn(ϑ).

This is the so-called M-estimator. Analogous to the log-relative likelihood in (3),
define the empirical risk difference

TZn(ϑ) = n{RZn(ϑ) − RZn(θ̂Zn)}, ϑ ∈ Θ. (7)

This is exactly the log-relative likelihood if 	ϑ(z) = − log pϑ(z) and pϑ is the
density of a parametric model for the true distribution. The multiplier “n” in
(7) could be removed, but we keep it here for the direct connection to the log-
relative likelihood. Of course, TZn(θ) is a random variable as a function of Zn,
and it has a distribution function F (t) = P{TZn(θ) ≤ t} where Zn iid∼ P . The
choice to only use the true θ, and not generic ϑ, is deliberate.
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If the distribution function F was known, then we could proceed exactly as
in Sect. 2 above. That is, the generalized association would be

TZn(θ) = F−1(U), U ∼ Unif(0, 1),

and, for observed data Zn = zn, using the same random set S as in (5), we end
up with a plausibility contour

πzn(ϑ) = 1 − F
(
Tzn(ϑ)

)
, ϑ ∈ Θ, (8)

which, as before, defines a consonant plausibility function/possibility measure
that can be used for inference on θ. And just like above, the validity of the
corresponding generalized IM would follow from

Zn iid∼ P =⇒ πZn(θ) is stochastically no smaller than Unif(0, 1). (9)

Things above are much more difficult than they appear. Indeed, the “if the
distribution function F was known” statement never holds, so we stumble imme-
diately when trying to carry out the above construction. But we can pick our-
selves up by our bootstraps by making use the powerful bootstrap procedure
developed in the seminal work by Efron (1979). The basic idea behind the boot-
strap is that iid samples from the empirical distribution of the observed data zn

should closely resemble iid samples from P . Our proposal is to approximate the
unknown distribution F using this bootstrap strategy.

The bootstrap requires an extra level of randomization and here is a conve-
nient way to describe that. Let ξ = (ξ1, . . . , ξn) denote a random vector having a
multinomial distribution with size n and bin probabilities (n−1, . . . , n−1). Then
the bootstrap version of the empirical risk function is given by

Rξ
zn(ϑ) =

1
n

n∑
i=1

ξi 	ϑ(zi), ϑ ∈ Θ,

and θ̂ξ
zn is the corresponding bootstrap version of the empirical risk minimizer.

This leads naturally to the bootstrap version of the empirical risk difference, i.e.,

T ξ
zn(ϑ) = n{Rξ

zn(ϑ) − Rξ
zn(θ̂ξ

zn)}, ϑ ∈ Θ.

Finally, the bootstrap approximation to the distribution function F is given by

F̂ boot(t) = Qn{T ξ
zn(θ̂zn) ≤ t}, t ∈ R,

where Qn is the aforementioned multinomial distribution for ξ. To be clear, the
data zn is fixed in the above calculation, the probability is with respect to the
distribution of ξ. Note also that where the definition of F involved the true θ,
the definition of F̂ boot involves the risk minimizer from the original data zn.
This leads to a bootstrap-based plausibility contour

πboot
zn (ϑ) = 1 − F̂ boot

(
Tzn(ϑ)

)
, ϑ ∈ Θ, (10)
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which can be readily converted into a consonant belief/plausibility function for
inference on θ, via the rule Π

boot

zn (A) = supϑ∈A πboot
zn (ϑ), A ⊂ Θ.

Of course, in practice it is not possible to evaluate even this bootstrap-based
plausibility contour exactly, because there are too many distict ξ’s to enumerate.
Instead, we can do a simple Monte Carlo approximation,

π̂boot
zn (·) =

1
B

B∑
b=1

1{T
ξ(b)
zn (θ̂zn) > Tzn(·)}, ξ(b) ∼ Qn, b = 1, . . . , B, (11)

where B is a user-specified bootstrap sample size.

3.2 Theoretical Properties

Recall that if F , the distribution of (7), were available and used in the IM con-
struction, validity would follow immediately from (9). However, in the present
context where F is unknown, we have recommended the bootstrap-based plau-
sibility contour πboot

zn in (10). Technically, we also approximate this by a Monte
Carlo average (11), but since for large enough B, which is in our control, we
clearly have π̂boot

zn ≈ πboot
zn , it suffices to work with the latter in our theoretical

investigation. Dependence on the bootstrap also suggests that the best we can
hope for is asymptotically approximate validity.

Suppose that the risk minimization problem is sufficiently smooth that it can
be restated as a root finding problem, i.e.,

θ = arg min
ϑ

R(ϑ) ⇐⇒ Ṙ(θ) = 0, (12)

where the dot denotes differentiation. Assume that the loss function 	ϑ(z) is such
that Ṙ(ϑ) =

∫
	̇ϑ dP , i.e., that the order of differentiation and integration can

be interchanged. Then the M-estimation problem can be recast as Z-estimation,
and the asymptotic theory for θ̂Zn and θ̂ξ

Zn can be studied using the general
results in, e.g., Kosorok (2008, Ch. 10.3). His Z-estimator master theorem pro-
vides sufficient conditions for our Assumption A1 below. Then smoothness of
the loss (Assumption A2) allows us to show that TZn(θ) and T ξ

Zn(θ̂Zn) have the
same limiting distribution, hence validity in a sense similar to (1).

Theorem 1. Assume that the loss function is such that M-estimation is equiv-
alent to Z-estimation in the sense of (12). In addition, assume

1. n1/2(θ̂Zn − θ) and n1/2(θ̂ξ
Zn − θ̂Y n) have the same limiting distribution;

2. there exists a function f on the Z-space, with Pf < ∞, such that ϑ → 	̈ϑ(z)
is f(z)-Lipschitz in a neighborhood of θ.

Then P{Π
boot

Zn (A) ≤ α} → α as n → ∞, for all α ∈ [0, 1] and all A � θ(P ).

A direct consequence of Theorem 1 is that the set

{ϑ : π̂boot
yn (ϑ) > α} (13)

constitutes an approximately valid 100(1 − α)% plausibility region.
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The detailed proof of Theorem 1 is too lengthy to provide here, but the
idea is simple so we provide just a brief sketch. Define Hn(t) and Hboot

n ,
the survival functions of TZn(θ) and T ξ

Zn(θ̂Zn), respectively, and observe that
πZn(θ) = Hn(TZn(θ)) and πboot

zn (θ) = Hboot
n (TZn(θ)). Then we have

πboot
Zn (θ) = πZn(θ) + Δn,

where |Δn| ≤ supt |Hboot
n (t) − Hn(t)|. Since πZn(θ) is exactly valid, the claim

follows from Slutsky’s theorem if we can show that Δn → 0 in probability. We
proceed by using Taylor approximations of TZn(θ) and T ξ

Zn(θ̂Zn), with Assump-
tion 2 to control the remainder, and Assumption 1 to show that both TZn(θ)
and T ξ

Zn(θ̂Zn) have the same limiting distribution. This implies Hn and Hboot
n

merge together as n → ∞, and hence that Δn vanishes in probability.

4 Examples

4.1 Quantile Regression

Consider a typical regression context where a response variable Y is coupled a
covariate X ∈ R

p. The goal is to estimate the quantile for the conditional distri-
bution of Y , given X. This problem is known as quantile regression, an extension
of linear regression useful in cases where the linear regression assumptions are
violated. Fix a probability τ ∈ (0, 1) and let QY |X(τ) denote the τ th conditional
quantile. Then the quantile regression “model” says

QY |X=x(τ) = x�θ,

where θ = θτ ∈ R
p is the vector of regression coefficients of interest. The goal is

inference on θ. Koenker and Bassett (1978) show that θ is a risk-minimizer with
respect to the loss function 	θ(x, y) = |y − x�θ| − (2τ − 1)x�θ.

Let Xi
iid∼ Unif(0, 4), i = 1, . . . , n, with n = 200, and let Yi = μ(Xi) + ε(Xi),

where μ(x) = θ0 + θ1x, and ε(x) ∼ N
(
0, (0.1 + 0.1x)2

)
. Suppose the interest is θ

for τ = 0.75. Figure 1 (left) displays the data and the estimated quantile regres-
sion line corresponding to the empirical risk minimizer θ̂zn . A 95% plausibility
region for θ is obtained from (13) and the plot shows the corresponding marginal
plausibility band for μ. Approximate validity of the plausibility bands is implied
by the approximate validity of the generalized IM. To check this claim empir-
ically, we simulate 1000 data sets according the above scheme and calculated
π̂boot

Zn (θ), in each replication. Figure 1 (right) shows the empirical distribution
of these values over replications and it is clear this closely matches a uniform
distribution, confirming Theorem 1. The same plots for τ = 0.25 and τ = 0.5
are included and all suggest the uniform approximation is accurate.
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Fig. 1. Left: plot of the data, the fitted third quartile regression line and the 95%
plausibility band, based on B = 500. Right: empirical distribution function of π̂boot

Zn (θ)
based on 1000 replications; this is show for τ ∈ {0.25, 0.5, 0.75}.

4.2 Multivariate Median

In univariate analysis, it is well known that the median is a more robust measure
of the distribution’s center than the mean. This is also the case in multivariate
analysis. However, replacing the multivariate mean by a multivariate median is
not so straightforward; since multivariate data do not have a natural ordering,
there are various different was of defining the multivariate median or, more
generally, multivariate quantiles (Oja 2013).

The most common version of a multivariate median is the spatial median
(e.g., Brown 1983). For two-dimensional data y = (y1, y2), the spatial median is
defined as the point in the plane minimizing the sum of absolute distances to y.
That is, the two-dimensional spatial median is an M-estimator associated with
the loss function 	θ(y) = ‖y − θ‖2 − ‖y‖2, where ‖ · ‖2 is the usual 	2-norm.

For a quick illustration, Fig. 2(a) shows the data pairs yi = (yi1, yi2), for
i = 1, . . . , n = 200, which are samples from bivariate normal with mean θ =
(1, 1)�, unit variances, and correlation 0.7. In Fig. 2(b), the plausibility contour
in (11) is shown, based on the loss function above and B = 500. The shaded
area in Fig. 2(c) represents the 95% plausibility region for θ derived by (13) and,
in red, the classic 95% confidence ellipse based on the asymptotic normality.
Figure 2(d) shows the resulting empirical distribution of the simulation study
where the above scenario is repeated 1,000 times and, for each data set, π̂boot

Y n (θ)
is evaluated. Approximate validity is once again verified.
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Fig. 2. Panel (a): Scatter plot of the data. Panel (b): Plausibility contour in Equation
(11), based on B = 500. Panel (c): Classic 95% confidence ellipse based on the asymp-
totic normality in red and 95% plausibility region shaded in grey. Panel (d): Empirical
distribution function of π̂boot

Zn (θ) based on 1000 replications.

5 Conclusion

Here we focused on data-driven uncertainty quantification for unknowns that are
defined outside the context of a statistical model. We presented a new generalized
IM that not only avoids the explicit description of the data generating process,
but does not require a model at all—only a loss function is needed to define the
inferential target. We showed that this construction leads to approximately valid
uncertainty quantification in the sense of Theorem 1. This provides guarantees
beyond those from classical confidence regions. The IM’s validity property applies
to belief assignments to all assertions about the unknown.

Applications in cases beyond the simple, low-dimensional problems above
will be reported elsewhere. Of course, larger dimension creates computational
challenges, so calculating the plausibility contour on a grid may not be practically
feasible. In such cases, powerful techniques like stochastic gradient descent are
expected to be useful.
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Abstract. Inferential models (IMs) are used to quantify uncertainty
in statistical inference problems, and validity is a crucial property that
ensures the IM’s reliability. Previous work has focused on validity in
the special case where no prior information is available. Here I allow for
prior information in the form of a non-trivial credal set, define a notion
of validity and investigate its implications.

Keywords: Belief function · Coherence · Consonance · Generalized
bayes · Possibility measure · Statistical inference

1 Introduction

In statistical inference, there are two dominant schools of thought: Bayesian
and frequentist. The most significant difference between the two is that the for-
mer quantifies uncertainty about unknowns in a formal way, using the classi-
cal/ordinary/precise probability theory, while the latter does so in a less for-
mal way, focusing on procedures—hypothesis tests, confidence sets, and other
decision rules—that have appropriate control on their error rates. Numerous
attempts, with different motivations, have been made to reconcile the two frame-
works, including fiducial inference (e.g., Fisher 1935) and Dempster’s extension
(e.g., Dempster 1968), structural inference (Fraser 1968), generalized fiducial
(Hannig et al. 2016), and confidence distributions (Schweder and Hjort 2016).
Modern developments in this area are largely focused on the construction of
data-dependent (precise) probability distributions from which procedures having
frequentist error rate control properties (at least approximately) can be derived.

A different thread of work has focused on the development of data-dependent,
imprecise probabilities that have a certain calibration or validity property
designed to ensure that inferences drawn based on the magnitudes of the (lower
and upper) probabilities would be reliable in a frequentist sense. Although ideas
along similar lines appeared earlier in Balch (2012), to my knowledge, the first
formal definition of validity and construction of an imprecise probability that
achieves it was given in Martin and Liu (2013) and, later, in Martin and Liu
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(2015); see, also, Martin (2019). Their construction of a valid inferential model
(IM) makes use of random sets and, therefore, the imprecise probabilities take
the form of (consonant) belief functions (Shafer 1976). These and other efforts
to construct calibrated belief functions are surveyed in Denoeux and Li (2018).

In the spirit of de Finetti (1937), the focus in the imprecise probability liter-
ature is largely on the behavioral interpretation of the lower and upper probabil-
ities; see Walley (1991) and Troffaes and de Cooman (2014). In particular, what
minimal conditions on the mathematical structure of those lower and upper
probabilities, treated as bounds on the prices an agent sets for gambles, are
needed to protect him from sure loss? Since these coherence properties concern
the internal reliability of the lower and upper probabilities, while the aforemen-
tioned validity property concerns a sort of external reliability, it makes sense to
investigate the connections between the two.

After some brief background in Sect. 2, I give a definition of validity that
is more general than those presented in the references above, and investigate
its consequences in Sect. 3. In particular, I allow for available prior information
in the form of a credal set—a collection of prior distributions—and present a
definition of validity in such cases; previous work focus on the case where the
credal set contains all possible priors. The motivation behind this extension
is two-fold. First, the introduction of prior information brings the formulation
closer to the subjective approach of de Finetti and Walley, where it’s natural
to consider behavioral implications, and I show in Proposition 2 that an agent
adopting a pricing scheme based on lower and upper probabilities derived from
a valid IM avoids sure loss. Second, in modern statistical problems involving
high-dimensional unknowns, it’s often believed that there’s an underlying low-
dimensional structure. These beliefs can be quantified using a set of prior distri-
butions, so it’s important to understand how the notion of validity might extend
to such cases. I show that generalized Bayes is valid in the sense I defined. I also
claim that a variation of Dempster’s generalization of Bayesian inference would
be valid too, but a precise statement and proof will be presented elsewhere.

However, it’s important to emphasize that an IM being valid does not neces-
sarily make it “good.” For example, the IM could be inefficient in the sense that
validity is achieved in a trivial way and the inferences drawn are not practically
useful. In certain cases, especially those where little or no reliable prior infor-
mation is available, there are other constructions—including one from Walley
(2002) and one I refer to as “p-value + consonance”—that are more efficient
without sacrificing efficiency. In cases where reliable prior information is avail-
able, efficiency can be gained by taking this into account. An open question
is how to incorporate prior information so that both validity and this gain in
efficiency is realized; see Cella and Martin (2019) for some first thoughts.

Finally, I present a notion of strong validity, which allows for a practically
relevant uniformity over assertions, and I show that the approach advocated for
in Martin (2019) and elsewhere achieves this stronger notion of validity and is
also efficient, at least in the case of a vacuous prior.

For the sake of space, many details have been omitted. The full-length version
(Martin 2021b), still in progress, contains proofs and more.
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2 Problem Setup

Let Y denote observable data taking values in a sample space Y; note that the
sample space is general, so the data could be a vector, a matrix, etc. Next, con-
sider a statistical model, P = {Pθ : θ ∈ Θ}, a family of probability distributions
on Y indexed by the parameter space Θ, which too is general. The goal is to
quantify uncertainty about θ based on the observed data Y = y.

Prior information about θ might available in the form of a (closed and
convex) credal set Q of prior distributions Q for θ. The “size” of Q con-
trols the prior’s precision, with Q = {Q} being the most precise and Q =
{all probability distributions} being the least. These two extreme Q’s are spe-
cial: the former is classical Bayes while the latter matches the frequentist setup.

By uncertainty quantification, here I mean a data-dependent (precise or
imprecise) probability distribution defined on a collection A of subsets of Θ.
I will associate a subset A ∈ A with an assertion about the unknown, i.e., both
A and “θ ∈ A” will be called an assertion. Since the goal is to have something
like a posterior distribution for θ, here I’ll take A to be the Borel σ-algebra on
Θ.

Following Martin (2019), define an inferential model (IM) as a mapping from
data y, model P, and prior information Q to a pair of lower and upper probabil-
ities (Πy,Πy) defined on A. I’ll interpret Πy(A) and Πy(A) as the y-dependent
belief in and plausibility of the assertion A, respectively. It will be assumed
throughout that y �→ Πy(A) is Borel measurable for all A ∈ A.

In the imprecise probability literature, it is common to give the lower and
upper probabilities a behavioral interpretation. Imagine a situation where, after
data Y = y has been observed, the value of θ will be revealed and any gambles
made on the truthfulness/falsity of assertions could be settled. Then the (sub-
jective/personal) behavioral interpretation of my (data-dependent) lower and
upper probabilities are

Πy(A) = my maximum buying price for 1(θ ∈ A)

Πy(A) = my minimum selling price for 1(θ ∈ A).

Here and in what follows, 1(E) denotes the indicator function of the event E.
This behavioral interpretation, and one’s clear desire to avoid being made a sure
loser imposes certain constraints on the mathematical structure of the lower
and upper probabilities. However, as I mentioned in Sect. 1, these mathematical
constraints do not provide any assurance that the lower and upper probabilities
are reliable in a statistical sense.

3 Statistical Properties

3.1 Validity

As discussed above, motivated by the behavioral interpretation, the imprecise
probability literature mainly focuses on coherence. For data analysts on the
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front lines, the ones crunching the numbers behind real-world decisions, this
kind of internal rationality is important. From the perspective of a statistician
who is developing methods for front-line data analysts to use off-the-shelf, there
are other considerations. The only reason someone might use my method for
their analysis is that they believe it’s reliable, that it “works” in some specific
sense. This goes beyond the internal rationality of coherence—lots of things that
are coherent won’t “work”—and this external rationality is what I call validity.
A formal definition, more general than those in Martin and Liu (2013; 2015)
and Martin (2019; 2021a), and its immediate consequences are below. These
results extend the ideas developed by Cella and Martin (2020) in the context of
prediction to cover the statistical inference problem.

First some additional notation. For the distribution Pθ of Y and a prior Q
for θ, let PQ denote the corresponding marginal distribution for Y and Qy the
corresponding conditional distribution of θ, given Y = y. Next, for a Q ∈ Q, let
MQ denote the joint distribution of (Y, θ) under the corresponding Bayes model.
Similarly, let MQ denote the image of Q under Q �→ MQ, and MQ and MQ

as the lower and upper envelopes, respectively, corresponding to the assertion-
wise infimum and supremum of MQ over Q ∈ Q. So, if E is any (appropriately
measurable) joint event about (Y, θ), then the upper probability MQ (E) can be
expressed more concretely as

MQ (E) = sup
Q∈Q

∫∫
1{(y, θ) ∈ E}Pθ(dy)Q(dθ)

= sup
Q∈Q

∫∫
1{(y, θ) ∈ E}Qy(dθ)PQ(dy).

Similarly, there is a corresponding lower probability, MQ that simply replaces
the supremum above with an infimum, but this will not be used here.

Definition 1. An IM (ΠY ,ΠY ) is valid, relative to (P,Q), if either (and,
hence, both) of the following equivalent conditions holds:

MQ

{
ΠY (A) ≤ α, θ ∈ A

} ≤ α, for all(α,A) ∈ [0, 1] × A, (1)

MQ

{
ΠY (A) > 1 − α, θ �∈ A

} ≤ α, for all(α,A) ∈ [0, 1] × A. (2)

The equivalence of (1) and (2) follows from the duality ΠY (A) = 1−ΠY (Ac)
and the “for all A” part of the conditions. The intuition behind this notion of
validity is as follows. In applications, the data analyst will use the magnitudes
of the IM’s lower and upper probabilities to decide if the data support various
assertions about θ. Of course, large values of ΠY (A) support the truthfulness of
A and small values ΠY (A) support the truthfulness of Ac. So the events

{(y, θ) : Πy(A) ≤ α, θ ∈ A} and {(y, θ) : Πy(A) > 1 − α, θ �∈ A}
are situations when an erroneous conclusion may be made—or gamble may be
lost—and the validity property controls the probability of these undesirable
events, thus making the IM’s uncertainty quantification reliable.
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That this is a generalization of the valid inference framework presented in,
say, Martin (2021a Definition 2), can be seen by considering the case where Q
is the set of all probability distributions on Θ. In that case, validity in the sense
of (1) reduces to

sup
θ∈A

Pθ{ΠY (A) ≤ α} ≤ α, for all(α,A) ∈ [0, 1] × A,

which is precisely the definition of validity in Martin (2021a).
A very basic requirement is that validity ought to imply that statistical pro-

cedures derived from the IM have certain error rate control guarantees. Propo-
sition 1 below makes this precise.

Proposition 1. Let (ΠY ,ΠY ) be a valid IM in the sense of Definition 1. Then
the following error rate control properties hold.

1. A hypothesis testing rule that says reject “θ ∈ A”iff ΠY (A) ≤ α satisfies

MQ{test rejects andθ ∈ A} ≤ α.

2. The set Cα(y) =
⋂{A ∈ A : Πy(A) > 1 − α} satisfies

MQ{Cα(Y ) �� θ} ≤ α. (3)

For some intuition about these results, consider two important (extreme)
special cases corresponding to the traditional frequentist and Bayes approaches.
For the frequentist case, where Q is all possible distributions, (3) immediately
reduces to the familiar non-coverage probability bound, supθ Pθ{Cα(Y ) �� θ} ≤
α, which is satisfied if Cα is a 100(1 − α)% confidence region in the traditional
sense. Next, for the purely Bayes case, where Q is a singleton {Q}, MQ corre-
sponds to a specific joint distribution of (Y, θ) and (3) is the condition automat-
ically satisfied when Cα is the 100(1 − α)% posterior credible region.

Validity not only has implications for the operating characteristics of pro-
cedures derived from the IM, it also has behavioral implications. Proposition 2
below can be interpreted as saying that validity implies no sure loss. Avoid-
ing sure loss is related to the aforementioned coherence properties (e.g., Walley
1991, Sect. 6.5.2), establishing a new perspective on validity compared to what
had been discussed in previous works. This helps solidify the intuition that a
procedure which is externally reliable shouldn’t be internally irrational. The
results below focus on the upper probability Πy; there are analogous properties
expressed in terms of the corresponding lower probability Πy.

Proposition 2. If an IM (ΠY ,ΠY ) satisfies

sup
y

Πy(A) < Q(A) := inf
Q∈Q

Q(A) for some A, (4)

then it’s not valid, relative to (P,Q), in the sense of Definition 1.
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A closer look at the validity property (1) reveals a relatively simple sufficient
condition, namely, dominance. Indeed, by the iterated expectation formula,

MQ

{
ΠY (A) ≤ α, θ ∈ A

}
= sup

Q∈Q

∫
1{Πy(A) ≤ α}Qy(A)PQ(dy), (5)

so if Πy(A) ≥ Qy(A) for all y, all A ∈ A, and all Q ∈ Q, then it follows
immediately that (1) holds. But bounding an integral doesn’t require uniform
bounds on the integrand, it’s enough for the above dominance to hold in an
average sense. The following proposition makes this precise.

Proposition 3. If the IM (ΠY ,ΠY ) satisfies the following dominance property,

sup
Q∈Q

∫
Qy(A)
Πy(A)

PQ(dy) ≤ 1, for all A, (6)

then it’s valid, relative to (P,Q), in the sense of Definition 1.

An immediate consequence of Proposition 3 and the preceding discussion,
if Πy is the upper envelope in the generalized Bayes rule (e.g., Walley 1991,
Sect. 6.4), that is, if

Πy(A) = Qy(A) := sup
Q∈Q

Q(A | y), (7)

then (6) holds and, therefore, so does validity in the sense of Definition 1. So
the conservatism built in to the generalized Bayes rule, motivated by subjective
coherence properties, is sufficient to achieve validity as well.

This also sheds light on what kinds of IM (likely) are not valid in the sense
of Definition 1. For example, consider an approach like that described in Demp-
ster (2008), where independent random sets/belief functions for θ—one based
on prior information, the other based on data and statistical model—are com-
bined, via Dempster’s rule, to produce an IM (ΠY ,Πy). The probability inter-
vals [ΠY (A),ΠY (A)] obtained by Dempster’s rule tend to be narrower than
those corresponding to the generalized Bayes lower and upper envelopes (e.g.,
Kyburg 1987, Theorems A.3 and A.6). So, while I don’t yet have a concrete
counter-example at this time, the above sufficient condition generally doesn’t
hold, hence validity is questionable.

It’s important to emphasize that dominance in the sense of (6) above is
a sufficient but not necessary condition for validity. Indeed, there are other IM
constructions besides the generalized Bayes lower/upper envelopes that are valid.
One such construction is discussed below. Another is the combination of the
prior-free IM for θ constructed in Martin and Liu (2015) with a prior belief
function for θ via Dempster’s rule; there’s insufficient space to describe this
here, so I’ll present the result in a follow-up paper.

It’s also worth emphasizing that validity, on its own, doesn’t make the IM
“good”—it may happen that (6) is achieved in a trivial way, which is not prac-
tically useful. For example, if the credal set Q is large, then the upper envelope
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(7) in the generalized Bayes rule could be close to 1, for all/many A’s, and then
the inference would not be informative. So, beyond validity, it is necessary to
consider the IM’s efficiency.

3.2 Efficiency

As pointed out above, it’s easy to see that the generalized Bayes solution is valid
but perhaps in an inefficient, even trivial way. So, in a certain sense, the strong
coherence properties satisfied by the generalized Bayes solution come at the cost
of statistical efficiency. Since that formulation using lower and upper envelopes
is only a sufficient condition for validity, there is an opportunity to find a more
efficient solution, which is the focus of this subsection.

Towards finding a more efficient solution, let’s consider a different strategy.
If it can be shown that the IM’s upper probability satisfies

sup
θ

Pθ

{
ΠY ({θ}) ≤ α

} ≤ α, for all α ∈ [0, 1], (8)

then validity in the sense of Definition 1 holds by monotonicity:

ΠY ({θ}) ≤ α =⇒ ΠY (A) ≤ α for all A � θ. (9)

The condition in (8) is (roughly) what Walley (2002) calls the fundamental
frequentist principle, or FFP; Walley’s version says “α ∈ [0, ᾱ],” for ᾱ ≤ 1. He
then constructs an IM based on generalized Bayes applied to a special but broad
credal set of the form QW = (1 − ε)Q0 + εQall, where Q0 is a fixed prior
distribution on Θ, Qall is the set of all priors on Θ, and ε ∈ (0, 1

2 ). Walley shows
that the IM with upper probability Πy = Qy, with supremum over the special
QW , satisfies FFP which, for all practical purposes, implies validity in the sense
of Definition 1 for all Q, not just QW . Most importantly, Walley’s solution is
far more efficient than, e.g., using generalized Bayes directly on Qall. However,
as Walley notes, this solution is still inefficient in the sense that its plausibility
intervals tend to be wider than classical confidence intervals.

A second option, more in line with the approach in Martin and Liu (2015) and
Liu and Martin (2020), is as follows. Suppose one can find a function πy : Θ →
[0, 1] with the property that the random variable πY (θ) satisfies the stochastic
inequality in (8). This is precisely the property that typical p-values satisfy, so
these functions are quite common. If that function also satisfies supθ πy(θ) = 1
for all y, then I can construct an IM whose upper probability is given by

Πy(A) = sup
θ∈A

πy(θ), A ∈ A.

Under this construction, Πy is a consonant plausibility function (Shafer 1976)
or, equivalently, a possibility measure (Dubois and Prade 1988; Hose and Hanss
2021), and πy is its corresponding plausibility contour. I’ll refer to this below as
the “p-value + consonance” IM construction. It’s easy to show that, like Walley’s
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above, this IM is valid in the sense of Definition 1 for any Q. However, this app-
roach is generally more efficient than Walley’s. For example, in a normal mean
problem, Walley’s plausibility interval has width of the order (log n)1/2n−1/2,
whereas the p-value + consonance intervals like in Martin and Liu (2015) have
width of the order n−1/2, just like classical confidence intervals.

A subtle point is that the meaning of “efficient” varies by the context. For
example, when θ is relatively low-dimensional, the IM based on the construc-
tion in Martin and Liu (2015) is guaranteed to be valid and would generally be
efficient. However, if θ is high-dimensional, then the same IM would tend to be
inefficient. This is a sort of “curse of dimensionality”—increasing the dimension
θ tends to inflate the plausibility function. More efficient solutions are possible
when, as is typical in high-dimensional inference problems, there is an underly-
ing low-dimensional structure. Combining this assumed low-dimensional struc-
ture/prior information with the data in an appropriate way would lead to a valid
IM with improved efficiency compared to the no-prior IM. An open question is
how to quantify and then incorporate that structural information so that both
validity and efficiency are achieved? This will be answered elsewhere.

3.3 Strong Validity

While the validity condition in Definition 1 seems strong in the sense that it
requires the inequalities (1–2) to hold for all assertions A, there is another sense
in which it is too weak. In a gambling scenario, the agent will advertise his
buying and selling prices based on his specified IM (ΠY ,ΠY ), depending on
data Y , and his opponents can decide what, if any, transactions they’d like to
make. If the opponents also have access to data Y , then surely they will use that
information to make a strategic choice of A in order to beat the agent. If the
opponents can use data-dependent assertions, then it’s not enough to consider
the assertion-wise guarantees provided by Definition 1—some kind of uniformity
in A is required. This scenario is not so far-fetched. Imagine a statistician who’s
developing a method for the applied data analyst to use. If the statistician can
prove that his method satisfies (1–2), then his method is reliable for any fixed
A. But what if the data analyst peeks at the data for guidance about relevant
assertions? Without some uniformity, validity cannot be ensured in such cases.
With this in mind, consider the following stronger notion of validity.

Definition 2. An IM (ΠY ,ΠY ) is strongly valid, relative to (P,Q), if

MQ{ΠY (A) ≤ α for someA � θ} ≤ α, for allα ∈ [0, 1] (10)

MQ{ΠY (A) > 1 − α for some A �� θ} ≤ α, for allα ∈ [0, 1]. (11)

Both Walley’s and the p-value + consonance IM construction above achieve
validity quite easily, arguably too easily. Perhaps this stronger notion of validity,
with uniformity in A, is “just right.” Indeed, it is not difficult to show that

Πy(A) ≤ α for some A � θ ⇐⇒ Πy({θ}) ≤ α. (12)

If the IM satisfies (8), which is akin to Walley’s FFP, then strong validity follows.
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Proposition 4. If the IM’s upper probability ΠY satisfies (8), then the strong
validity property in Definition 2 holds for any Q.

The fact that the p-value + consonance construction presented here achieves
strong validity and is generally more efficient than Walley’s clever neighbor-
hood model construction suggests that the former might be the “right” type
of construction, and that IMs having this consonant structure are fundamental
for statistical inference. I hope to present verification of these latter claims in
follow-up work.

4 Conclusion

In this paper, I’ve investigated some more general version of the validity prop-
erty first put forward in Martin and Liu (2015). An overarching goal of this and
other ongoing work is to better understand the spectrum between the classi-
cal Bayesian setup with a single precise prior and the frequentist setup whose
“prior” is completely imprecise/vacuous indexed by the level of imprecision, i.e.,
the size/complexity of Q. Previous work had focused primarily on the latter fre-
quentist setup and this paper gives a definition of validity that could be applied
across a range of different precision levels in Q.

The conclusion I draw from Proposition 4 above is that the p-value + con-
sonance construction can be used to achieve (strong) validity for every Q and
that, in a certain yet-to-be-formalized sense, is the “best” in the frequentist
setup with a vacuous Q; see, also, Martin (2021a). But this doesn’t directly
address the question of how to use genuine prior information in a non-extreme
Q in a way that’s both valid and efficient. Proposition 3 provides some minimal
guidance, in particular, it says that generalized Bayes is a valid IM, but more
investigation into its statistical efficiency is needed.
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Matthias Troffaes for helpful discussions, and to three anonymous conference program
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Abstract. As a derivative of DS (Dempster-Shafer) theory, ER (Evidential Rea-
soning) rule can be used as a combination strategy in ensemble learning to dig the
classifier information. However, when ER rule are used to integrate classifiers, it is
sometimes difficult to assign weight to classifier by traditional ER rule. In view of
the above problems, ER rule are improved by using combinationweighting instead
of expert knowledge weighting in traditional ER rule in this paper, so as to reduce
the loss of information and set a more reasonable weight. Firstly, the subjective
weight and objective weight are combined to get the combination weight. Then
the value range of weight in ER rule is studied, and the regularization of weight is
discussed. Finally, the validity of the proposed weight setting method is verified
through the classification of the English Bay weather image data set.

Keywords: Ensemble learning · ER rule · Weight · Combination weighting
method

1 Introduction

As a common machine learning method, Ensemble learning usually consists of two
parts: the generation of classifiers and the combination of classifiers. As a combination
strategy, ER rule [1] can combine classifiers bymeans of decision reasoning andget better
integration results. However, when the classifier in ensemble learning is generated by
the black box model or the data set is too complex, it is difficult for the traditional ER
rule to set the appropriate weight for the classifier.

In traditional ER rule, the weight of evidence is given by expert knowledge, such
as Tang [2] and Zhou [3] in the setting of weight are given by experts with actual
industrial process, but the human factors of this subjective way is too strong. In some
non-industrial fields, it is also difficult for experts to give proper weight. Recently, some
scholars proposed to use objective weighting method [4, 5] set weight for evidence. But
this method is highly dependent on samples and may lead to wrong judgments. Other
scholars set theweight of evidence throughmathematical optimization [6].Mathematical
optimization can give more precise weight to the evidence, but it needs a large number of
evidence samples for training. However, in ensemble learning, the number of classifiers
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is generally less. Based on the above problems, the combination weighting method is
used in this paper to assign the weight of each classifier integrated by ER rule. The
combination weighting method has been widely applied in many fields, such as fault
analysis [7], electric energy evaluation [8], ecological evaluation [9]. This method can
minimize the loss of information, reflect both subjective and objective information, and
give more reasonable weight [10–12].

In this paper, theweight of evidence based onER rule in ensemble learning is studied.
The method of combination weight is proposed to set weight for classifier. In addition,
this paper studies the weight constraints in ER rule based on accuracy.

2 Problem Description

As a part of the integration learning process, the combination strategy has certain influ-
ence on the integration result. A good combination strategy can dig the information
of classifier deeply and improve the accuracy of integration model [13]. Based on its
advantages in uncertainty and reasoning, ER rule can make the integrated model get
better results compared with strategies such as the voting method.

The main problems solved in this paper include the following two:
Problem 1: When using ER rule for ensemble learning, appropriate methods should
be adopted to set the weight of evidence. In ensemble learning, Sometimes classifiers
may be generated by black box patterns, so it is difficult for experts to give accurate
weights. and the number of classifiers is generally small, so it is difficult to set weights
bymathematical optimization. Therefore, this paper combines the subjective assignment
method and the objective assignment method to establish a combined assignment model
for weight.

Problem 2: At present, there is no clear range for the sum of weights of evidence in ER
rule. In ER rule, the range of a single weight is 0 ≤ ωk ≤ 1. There is no requirement
for the range of the sum of the weights. But the sum of the weights of all the evidence is
sometimesgreater than1, sometimes equal to 1,without a clear definition [14]. Therefore,
whether the weight of evidence should be regularized has always been a controversial
issue among scholars. In view of this, this paper takes the accuracy rate as the evaluation
index and studies whether the weight needs regularization through experiments.

3 The Integration Process of Combination Weighting ER Rule

In this paper, the ER rule improved on Dempster’s rule in DS theory [15] is used as the
combination strategy in ensemble learning. The classifier is regarded as evidence, and
the classifier is integrated by ER rule. The integration process is shown in Fig. 1.

3.1 The Setting of Reliability of Evidence

The reliability of evidence is an inherent characteristic of evidence, which reflects the
ability of the evidence to provide a correct assessment or solution for the hypothesis [15].
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ER rule
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Fig. 1. Integration process of ER rule

In ensemble learning, the probability that each classifier correctly classifies each sample
in the sample set is its ability to correctly evaluate. Therefore, by means of mathematical
statistics, the accuracy of each classifier for the correct classification in the data set is its
reliability rk in ER rule.

3.2 The Setting of Weight of Evidence

The weight of evidence is usually set by subjective or objective weighting methods. In
this paper, several representative methods are combined to give evidential weight. The
weighting process of evidence is shown in Fig. 2.
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Fig. 2. Evidential weight assignment process

Analytic Hierarchy Process Method (AHP)
AHP is based on the experience of decision-makers, combines quantitative analysis and
qualitative analysis, judges the relative importance of each measurement target, and
gives the weight of the decision scheme.
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Step1: Build a hierarchical model. The goal, criterion and object of decision-making are
divided into the highest level, middle level and the lowest level.
Step2: Construct a pairwise comparison matrix. Based on the accuracy of each classifier,
the classifier is pairwise compared, the scale is given, and the matrix is formed.
Step3: Hierarchy total ordering and consistency check. Calculate the weight −→ωk of all
classifier.

Entropy Weight Method (EW)
EW is based on the information content contained in the data of the evaluation index
system, and determines the weight of the index by calculating the information entropy.
The calculation steps are as follows:

Step1: An evaluation matrix Yij is constructed by means of standardization. If there
are I evaluation samples, K classifier, and T categories, then there are KT evaluation
indexes, X1, X2, · · · ,XKT . Where Xj = {

X1j,X2j, · · ·XIj
}
, xij is the value of the j(j =

1, · · · ,KT ) th index of sample i (i= 1, · · · , I) th. The indicators used in this paper are
all positive indicators, and the value yij of the evaluation indicator is obtained through
standardization:

yij =
{

0 max
(
Xj

) = min
(
Xj

)

xij −min(Xj)
max(Xj)−min(Xj)

max
(
Xj

)
> min

(
Xj

) (1)

Yij =

⎧
⎪⎨

⎪⎩

0 max(Xj) = min(Xj)
yij
I∑

i
yij

max(Xj) > min(Xj) (2)

Step2: Calculate the information entropy of the j index in the matrix:

Ej =
⎧
⎨

⎩

0 max(Xj) = min(Xj)

− ln (I)−1
I∑

i
Yij ln Yij max(Xj) > min(Xj)

(3)

Step3: Calculate weight:

ωkt = ωj = 1 − Ej

n −
KT∑

j=1
Ej

(4)

Coefficient of Variation Method (COV)
COV is based on the degree of variation between the current value and the target value
of each index in the index system, and the index weight is determined by calculating the
degree of variation of each index in the system. The calculation steps are as follows:
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Step1: Same as Step1 in entropy weight method.
Step2: The coefficient of variation of index j th in the matrix is calculated as follows:

vj =

√
∑I

i=1 (yij− 1
I

∑I
i=1 yij)

2

I−1

1
I

∑I
i=1 yij

(5)

Step3: Calculate weight:

ωkt = ωj = vj
∑KT

j=1 vj
(6)

CRITIC Method
CRITIC is based on the comparative strength and conflict of each index in the evaluation
index system, and determines the index weight through the objective attribute of the data
itself. The calculation steps are as follows:

Step1: Same as Step1 in entropy weight method.
Step2: The information content of item j th in the matrix is calculated as follows:

Cj =
√∑I

i=1 (yij − 1
I

∑I
i=1 yij)

2

I − 1

KT∑

i=1

(1 − rij) (7)

Step3: Calculate weight:

ωkt = ωj = Cj
∑KT

j=1 Cj
(8)

Combination
AHP takes into account the knowledge and intention of the decision-maker and makes
full use of the decision-maker’s experience, but it is subjective and arbitrary. EW, COV,
CRITIC method and other methods can mine data information, which are relatively
objective, but they are too dependent on data, and sometimes there may be phenomena
that do not conform to the actual situation. Based on the advantages and disadvantages of
the abovemethods, this paper combines theweight result−→ωk determined by the subjective
assignment method with the weight result ←−ωk determined by the objective assignment
method to obtain the weight ωk of each classifier in ER rule integration [16–18]. The
combination mode is shown in Eq. (9):

ωk = −→ωk + ←−ωk or ωk = −→ωk ∗ ←−ωk (9)
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3.3 Evidential Reasoning Process

It is assumed that each classifier in the integration process is an independent evidence
with a total of K evidence. The evidential reasoning process is as follows:

Step1: The category is taken as the evaluation level, and the probability of the clas-
sifier’s judgment on the sample category is taken as its belief corresponding to the
evaluation level. The reliability distribution of each evidence can be expressed as
ek = {(θn, pn,k), n = 1, · · · ,N ; (�, p�,k)}.
Step2: The reliability rk and weight ωk of evidence have been determined by Sects.
3.1 and 3.2 respectively. The weighted belief distribution of article k th evidence with
reliability is mk = {(θ,mθ,k),∀θ ⊆ �; (P(�),mP(�),k)}.
Step3: The evidential fusion process is as follows:

m
∧

θ,e(b) = [(1 − rb)mθ,e(b−1) + mP(�),e(b−1)mθ,b] +
∑

A∩B=θ
mA,e(b−1)mB,b,∀θ ⊆ �

(10)

m
∧

P(�),e(b) = (1 − rb)mP(�),e(b−1) (11)

mθ,e(b) =
⎧
⎨

⎩

0, θ = ∅

m
∧

θ,e(b)∑
A⊆� m

∧

A,e(b)+m
∧

P(�),e(b)
, θ ⊆ �, θ 	= ∅

(12)

belief after fusion:

Pθ,e(b) =
⎧
⎨

⎩

0, θ = ∅

m
∧

θ,e(b)∑
A⊆� m

∧

A,e(b)
, θ ⊆ �, θ 	= ∅

(13)

Step4: Let the utility of assessment level θn be u(θn), and the expected utility u of the
final model be:

u =
N∑

1

u(θn)Pθ,e(b) (14)

Compare the expected utility uwith the utility u(θn) of the evaluation level. If u = u(θn),
then the result of integration using ER rule is the n th category.

4 Experimental Analysis

The data set used in this experiment was a Kat Kam webcam image of the English
Bay and Burrard Street Bridge in Vancouver, British Columbia, Canada, under different
weather conditions. Including 484 clear pictures, 816 cloudy pictures, 648 rain pictures,
90 snow pictures, a total of 2038 pictures. The specific experimental steps are as follows:
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Step1: DenSent201(D), GoogleNet(InceptionV3,G), Vgg16(V), AlexNet(A) and
ResNet50(R), five currently common deep learning algorithms are used as classifiers.
Model parameters are shown in Table 1. 60% of the samples in the dataset are taken as
the training set and all the samples are taken as the test set to make classification predic-
tion. During ensemble learning, three deep learning algorithms are randomly selected
from the five deep learning algorithms for integration. Five classifier combinations of
DGA, GAV, DVR, DGR and GVR were generated. A matrix of 2038 × 12 is formed
by taking the number of samples as rows and the combination of categories and deep
learning algorithms as columns. The value in i th row and kt th column represents the
probability that the classifier predicts that the sample i th will belong to case t th.

Table 1. The parameters of each model

Epochs Learning
rate

Batch_size Activation Padding

D 100 0.01 20 ReLu Y

G 100 0.0001 32 ReLu Y

V 100 0.01 20 ReLu Y

A 100 0.01 30 ReLu Y

R 100 0.001 32 ReLu Y

Step2: The accuracy of the classifier for the sample prediction is calculated as the relia-
bility of the classifier. The probability matrix is used as the original evaluation matrix,
and the subjective weight and objective weight are calculated by the AHP, EW, COV
and CRITIC method respectively. The combined weight of the classifier is obtained by
the combination weighting method of multiplication or addition. To reduce the influence
of diversity on classifier integration. In the comparative experiment, the same group of
classifier combinations were used.
Step3: In this paper, the classifier is taken as evidence, the category is taken as the
evaluation level of evidence, and the probability of prediction by different classifier is
taken as the belief distribution. The classifier was integrated with evidential reasoning
algorithm, and the expected utility value was compared with the evaluation level to
obtain the judgment of the image category by ER rule. The accuracy rate after ER rule
integration was obtained by mathematical statistics. This is shown in Table 2, Table 3
and Table 4.

As shown in Table 2, different methods to determine weight have their advantages
and disadvantages in integration. For example, when the three classifier of DGR are
integrated, the weight determined by AHP is the best; when the three classifier of DGA
are integrated, the weight determined by COV is the best; when the three classifier of
GAV, DVR and GVR are integrated, the weight determined by the CRITIC is the best.
So it is difficult to judge which method is more excellent in determining the weight.
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Table 2. Comparison of integration accuracy of ER rule with different weight determination
methods

DGA GAV DVR DGR GVR

EW 0.7620 0.7448 0.8189 0.8184 0.8131

COV 0.7674 0.7444 0.8155 0.8229 0.8131

CRITIC 0.7655 0.7463 0.8219 0.8229 0.8135

AHP 0.7591 0.7399 0.8165 0.8268 0.8069

Table 3. Comparison of ER rule integration accuracy after combination weight without
regularization

DGA GAV DVR DGR GVR

EW+AHP 0.7625 0.7458 0.8209 0.8229 –

COV+AHP 0.7689 0.7483 0.8229 0.8263 0.8155

CRITIC+AHP 0.7659 0.7458 0.8224 0.8268 0.8140

EW*AHP 0.7645 0.7365 0.8077 0.8155 0.8081

COV*AHP 0.7571 0.7380 0.8081 0.8175 0.8042

CRITIC*AHP 0.7610 0.7370 0.8081 0.8189 0.8047

According to the comparison between Table 2 and Table 3, the weight determined by
the combined weighting method makes the accuracy rate of ER rule integration greatly
improved comparedwith the objectiveweightingmethod or subjectiveweightingmethod
alone. Themethod of weight combination by addition is better than themethod of weight
combination by multiplication. The method of weight combination by addition of COV
andAHP achieves the highest accuracy in the four classifier combinations of DGA,GAV,
DVR and GVR, which is slightly weaker than that of the method of weight combination
by addition of CRITIC andAHP inDGR. It is worth noting that in theGVR combination,
the weight of the ResNet model given by EW is 0.5253, and the weight of the ResNet
model given byAHP is 0.5396. The sumof the two exceeds the range of evidential weight
in ER rule, and it is impossible to calculate the accuracy after integration. Therefore,
—is used instead of accuracy.

The comparison between Table 3 and Table 4 shows that the accuracy of weight
regularization in the case of addition combination is usually lower than that in the case
of unregulated weight. In the case of multiplication combination, the accuracy of weight
regularization is close to that without weight regularization. Sometimes it is higher than
that without weight regularization. In Table 4, COV and AHP determining weight by
addition are still the best. This may be caused by the size of the weight. The weight value
of evidence given by objective weighting method and subjective weighting method is
between 0 and 1. So in the additive combination, weight value will increases, in the
multiplicative combination, weight value will decrease. The larger weight value may
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Table 4. Comparison of ER rule integration accuracy after combination weight in the case of
weight regularization

DGA GAV DVR DGR GVR

EW+AHP 0.7596 0.7444 0.8184 0.8209 0.8121

COV+AHP 0.7635 0.7458 0.8194 0.8238 0.8126

CRITIC+AHP 0.7596 0.7424 0.8194 0.8238 0.8121

EW*AHP 0.7615 0.7390 0.8111 0.8189 0.8057

COV*AHP 0.7596 0.7380 0.8140 0.8189 0.8096

CRITIC*AHP 0.7596 0.7375 0.8145 0.8189 0.8096

more effectively respond to the relative importance between different classifiers and
provide the basis for the evidential reasoning process. Therefore, when the combination
weighting method is used to assign values to the evidence in ER rule, it is recommended
to use a larger weight combination when the weight of each evidence is guaranteed to
be greater than or equal to 0 and less than or equal to 1.

5 Summary and Prospect

1. When ER rule is applied to ensemble learning as a combination strategy, a more rea-
sonable weight can be set through the combination weighting method, which makes
the final model obtain higher accuracy. Except in the field of ensemble learning,
whether the combined weighting method is applicable to ER rule in other fields has
yet to be verified.

2. Among the common methods of combination weighting, the combination effect of
coefficient of variation method and analytic hierarchy process is the best, and the
combination of subjective weight and objective weight by addition is more effec-
tive than multiplication. This paper only studies the several classical combination
of objective weighting methods and subjective weighting methods. There are more
combination methods worth studying, and more combination methods of combina-
tion weighting method can be used, such as deviation maximization, game theory
and other methods.

3. Under the premise that the weight of each evidence in ER rule is greater than or
equal to 0 or less than or equal to 1. The larger the weight value of evidence is, the
better the effect of the final model integration will be. Therefore, regularization of
the weight of evidence is generally not recommended.
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Abstract. Positron Emission Tomography (PET) and Computed
Tomography (CT) are two modalities widely used in medical image anal-
ysis. Accurately detecting and segmenting lymphomas from these two
imaging modalities are critical tasks for cancer staging and radiotherapy
planning. However, this task is still challenging due to the complexity
of PET/CT images, and the computation cost to process 3D data. In
this paper, a segmentation method based on belief functions is proposed
to segment lymphomas in 3D PET/CT images. The architecture is com-
posed of a feature extraction module and an evidential segmentation (ES)
module. The ES module outputs not only segmentation results (binary
maps indicating the presence or absence of lymphoma in each voxel)
but also uncertainty maps quantifying the classification uncertainty. The
whole model is optimized by minimizing Dice and uncertainty loss func-
tions to increase segmentation accuracy. The method was evaluated on
a database of 173 patients with diffuse large b-cell lymphoma. Quan-
titative and qualitative results show that our method outperforms the
state-of-the-art methods.

Keywords: Lymphoma segmentation · 3D PET/CT · Belief
functions · Dempster-Shafer theory · Uncertainty quantification · Deep
learning

1 Introduction

Positron Emission Tomography - Computed Tomography (PET/CT) scanning is
an effective imaging tool for lymphoma segmentation with application to clinical
diagnosis and radiotherapy planning. The standardized uptake value (SUV) for
PET images is widely used to locate and segment lymphomas thanks to its
high sensitivity and specificity to the metabolic activity of tumor. CT images
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are usually used jointly with PET images because of their anatomical feature
representation capability.

Although a lot of progress has been made in computer-aided lymphoma
segmentation, the segmentation of whole-body lymphomas is still challenging.
(Figure 1 shows an example of lymphoma patient. There is great variation in
intensity distribution, shape, type and number of lymphomas). The methods
can be classified into three main categories: SUV-threshold-based [5], region-
growing-based [4] and Convolutional Neural Network (CNN)-based [7] methods.
For PET images, it is common to segment lymphomas with a set of fixed SUV
thresholds. This method is fast but lacks of flexibility in boundary delineation
and requires domain knowledge to locate the region of interest. Region-growing-
based methods have been proposed to optimize boundary delineation by taking
texture and shape information into account. However, those methods still need
clinicians to locate the seeds for region growing [11].

Fig. 1. Examples of patient with lymphomas. The first and second rows show, respec-
tively PET and CT, slices of one patient in axial, sagittal and coronal views. The
lymphomas are marked in red. (Color figure online)

CNN-based segmentation methods have recently achieved great success. The
UNet architecture [12] has become the most popular medical image segmentation
model.Drivenbydifferenttasksanddatasets,manyextendedandoptimizedvariants
of UNet have been proposed, such as VNet [9], nnUNet [6] and SegResNet [10]. In
[7], Li et al. propose a SegResNet-based lymphoma segmentationmodelwith a two-
flow architecture (segmentation and reconstruction flows). In [1], Blanc-Durand
et al. propose a nnUNet-based lymphoma segmentation network.

Because of low resolution and contrast due to limitations of medical imaging
technology, PET/CT image segmentation results are tainted with uncertainty,
which greatly limits the segmentation accuracy. Traditional uncertainty mea-
surement methods [8] focus on model rather than information uncertainty to
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improve the robustness of the model. Belief function (BF) theory [3,13], also
known as Dempster-Shafer theory, is a formal theory for information modeling,
evidence combination and decision-making under uncertainty. In this paper, we
propose a 3D PET/CT diffuse large b–cell lymphoma segmentation model based
on BF theory and deep learning. The proposed deep neural network architec-
ture is composed of a UNet module for feature extraction and a BF module
for decision with uncertainty quantification. End-to-end learning is achieved by
minimizing a two-part loss function allowing us to increase the Dice score while
decrease the uncertainty. The model will first be described in Sect. 2 and exper-
imental results will be reported in Sect. 3.

2 Methods

2.1 Network Architecture

Figure 2 shows the global lymphoma segmentation architecture (ES-UNet). It is
composed of (1) an encoder-decoder feature extraction module (UNet), and (2)
an evidential segmentation (ES) module comprising a distance activation layer,
a basic belief assignment layer and a mass fusion layer. Details about the ES
module will be given in Sect. 2.2. Two loss terms are used for optimizing the
training process: the Dice loss, which quantifies the segmentation accuracy and
the uncertainty loss, which quantifies the segmentation uncertainty. These loss
functions will be described in Sect. 2.3. A “slim UNet” with (8, 16, 32, 64, 128)
convolution filters was implemented to reduce computation cost and avoid over-
fitting.

Fig. 2. Global lymphoma segmentation model (ES-UNet).

2.2 Evidential Segmentation Module

A probabilistic network with a softmax output layer may assign voxels a high
probability of belonging to one class while the segmentation uncertainty is actu-
ally very high because, e.g., the voxel is located close to the fuzzy boundary
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between the tumor region and other tissues. Based on the evidential neural net-
work model introduced in [2] and using an approach similar to that recently
described in [14], we propose a BF theory-based ES module to quantify the
uncertainty about the class of each voxel by a Dempster-Shafer mass function.
The main idea of the ES module is to assign a mass to each of the K classes and
to the whole set of classes Ω, based on the distance between the feature vector
of each voxel and I prototype centers. For a given voxel x, each prototype pi

is considered as a piece of evidence, the reliability of which decreases with the
Euclidean distance di between x and pi. Each prototype pi is assumed to have a
membership degree uik to each class ωk with the constraint

∑K
k=1 uik = 1. The

mass function induced by prototype pi is

mi({ωk}) = αiuik exp(−γid
2
i ), k = 1, . . . , K (1a)

mi(Ω) = 1 − αi exp(−γid
2
i ), (1b)

The network parameters are the prototypes pi, the coefficients αi and γi, and
the membership degrees uik. They are learnt by minimizing a loss function [2].

The mass functions induced by the I prototypes are then combined by Demp-
ster’s rule [13]

m =
I⊕

i=1

mi. (2)

The ES module outputs for each voxel three mass values: two masses cor-
responding to lymphoma ({a}) and background ({b}), and an additional mass
corresponding to ignorance (Ω). For the voxels that are easy to classify into
lymphoma or background, the mass values m({a}) or m({b}) are high and the
mass m({a, b}) is low. A high mass m({a, b}) signals a lack of information to
make a reliable decision. Thus, some constraints are required to reduce m(Ω)
during training, as will be explained in Sect. 2.3.

Since the output of the ES module is a mass function with K + 1 focal sets
while there are K classes, we transform the mass function by distributing a
fraction ξ of m(Ω) to each class, as

Tξ,k = m({ωk}) + ξ m(Ω) with 0 � ξ � 1. (3)

In this paper, Ω = {a, b} and K = 2, thus we set ξ = 0.5. The crisp output S of
module ES module is defined as S = 1 if m({a}) < m({b}) and S = 0 otherwise.

2.3 Loss Function Based on Accuracy and Uncertainty for
Segmentation

In general, a good segmentation system is expected to make few segmentation
errors while providing as informative outputs as possible. Since we quantify
uncertainty by the “ignorance class” via the evidential network, we propose to
minimize a loss function defined as the sum of two terms: a Dice loss lossd that
measures the discrepancy between the ground truth and segmentation outputs,
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and an uncertainty loss lossu that measures the uncertainty of the segmentation
outputs. We use the Dice loss instead of the original cross-entropy loss in UNet
because the goal of segmentation is to maximize the Dice coefficient. The Dice
loss is defined as

lossd = 1 − 2
∑N

n=1 SnGn
∑N

n=1 Sn +
∑N

n=1 Gn

, (4)

where N is the number of voxels in the image volume, Sn and is the n-th voxel
of the segmented output image and Gn is n-th voxel of the ground truth image.
The uncertainty loss is defined as

lossu =
1
N

N∑

n=1

[mn(Ω)]2, (5)

where mn is the mass function computed for voxel n. With the uncertainty
loss, the parameters of the model can be further optimized and more precise
segmentation results can be obtained. The total loss function is then

loss = lossd + lossu + λ ‖α‖1 , (6)

where λ is the regularization coefficient for parameter vector α = (α1, . . . , αI)
with the αi defined in (1). The regularization term allows us to decrease the
influence of unimportant prototype centers and avoid overfitting.

3 Experimental Results

3.1 Experimental Settings

The dataset contains 3D images from 173 patients who were diagnosed with
large b-cell lymphoma and underwent PET/CT examination. The study was
approved as a retrospective study by the Henri Becquerel Center Institutional
Review Board. The lymphomas in mask images were delineated manually by
experts and considered as ground truth G. The size and spatial resolution of
PET and CT images and the corresponding mask images vary due to different
imaging machines and operations, from 267×512×512 to 478×512×512 and from
276×144×144 to 407×256×256, respectively; this makes it difficult to transfer
the data into a deep neural model directly. We resized PET, CT and mask images
to the same 3D size 256 × 256 × 128, and we applied intensity normalization to
both PET and CT images from each patient independently by subtracting the
mean and dividing by the standard deviation of the body region only. For data
augmentation, we applied a random intensity shift between [−0.1, 0.1] of the
standard deviation of each channel, as well as a random scaling intensity of the
input between scales [0.9, 1.1].

We randomly selected 80% of the data for training, 10% for validation and
10% for testing. Dice score, sensitivity, specificity, precision and F1 score were
used to evaluate the segmentation performance. We first computed the five
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indices for each test patient and then averaged these indices over the patients.
During training, PET and CT images were concatenated as a two-channel input.
The number of prototypes was set to 20, taking class number and computation
cost into consideration. The prototype vectors and membership degrees were
initialized randomly using uniform distributions, while the parameters α and
γ were initialized, respectively, at 0.5 and 0.01. The learning rate was set to
10−3 during training and the model was trained with 50 epochs using the Adam
optimization algorithm. The regularization coefficient λ in (6) was set to 10−5.
All methods were implemented in Python with a PyTorch-based, medical image
framework MONAI and were trained and tested on a desktop with a 2.20 GHz
Intel(R) Xeon(R) CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card with
32 GB GPU memory.

3.2 Results and Discussion

The quantitative results are shown in Table 1. Our model outperforms the base-
line model UNet as well as the other state-of-the-art methods. In particular,
our model outperforms the best model SegResNet by, respectively, 1.9%, 2.4%,
1.4% in Dice score, Sensitivity and F1 score. It should be noted that the state-
of-the-art models were trained with 100 epochs on our dataset because they
are slower to converge during training. Figure 3 displays the learning curves of
the training loss and validation Dice score for UNet and ES-UNet, showing the

Table 1. Performance comparison with the baseline methods on the test set.

Models Dice score Sensitivity Specificity Precision F1 score

ES-UNet (our model) 0.830 0.923 0.908 0.912 0.915

UNet [12] 0.769 0.798 0.963 0.890 0.833

nnUNet [6] 0.702 0.950 0.499 0.758 0.807

VNet [9] 0.802 0.882 0.904 0.916 0.909

SegResNet [10] 0.811 0.899 0.942 0.925 0.901

 (iteration) ( epoch )

Fig. 3. Training process visualization: training loss (left) and validation Dice score
(right).
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Fig. 4. Uncertainty maps obtained during training, corresponding to different training
steps for the same image. For one map, the pixels classified to background, lymphoma,
ignorance are marked in purple, yellow and iridescent, respectively. (Color figure online)

Fig. 5. Segmentation results of ES-UNet. From left to right: ground truth and seg-
mented lymphomas in overlapped CT modality, ground truth and segmented lym-
phomas overlapped in PET modality, difference map between the ground truth, and
segmented lymphomas.

advantage of ES-UNet in terms not only of segmentation accuracy, but also of
convergence speed. Figure 4 shows the segmentation and uncertainty maps at
different steps during the training of ES-UNet. Our model quantifies the uncer-
tainty of ambiguous pixels instead of classifying them unambiguously into a
single class. The uncertainty decreases during the learning process thanks to the
minimization of the uncertainty loss term.

Figure 5 shows an example of segmentation results obtained by ES-UNet.
Our model can locate and segment most of the lymphomas. The segmentation
results were found credible and were confirmed by experts.
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4 Conclusion

An evidential segmentation framework (ES-UNet) for segmentation of lym-
phomas from 3D PET/CT with uncertainty quantification has been introduced.
The proposed architecture is based on the concatenation of a UNet and an evi-
dential segmentation layer, making it possible to compute output mass functions
for each voxel. The training is performed by minimizing a two-part loss function
composed of a Dice loss and an uncertainty loss, with the effect of increasing the
Dice score while decreasing the uncertainty. Qualitative and quantitative eval-
uations show promising results when compared to the baseline model UNet as
well as the state-of-the-art methods. While we only concatenated PET and CT
as a two-channel input in this work, future research will tackle multi-modality
medical image fusion with BF theory by considering PET and CT images sep-
arately. Moreover, the sensitivity of the results with respect to the number of
prototypes and the initial parameters will be studied in greater detail.
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Abstract. We propose an information-fusion approach based on belief
functions to combine convolutional neural networks. In this approach,
several pre-trained DS-based CNN architectures extract features from
input images and convert them into mass functions on different frames
of discernment. A fusion module then aggregates these mass functions
using Dempster’s rule. An end-to-end learning procedure allows us to
fine-tune the overall architecture using a learning set with soft labels,
which further improves the classification performance. The effectiveness
of this approach is demonstrated experimentally using three benchmark
databases.

Keywords: Information fusion · Dempster-Shafer theory ·
Convolutional neural network · Object recognition · Evidence theory

1 Introduction

Deep learning-based models, especially convolutional neural networks (CNNs)
[5] and their variants (see, e.g., [9]), have been widely used for image classifica-
tion and have achieved remarkable success. To train such networks, several image
data sets are available, with different sets of classes and different granularities.
For instance, a dataset may contain images from dogs and cats, while another
one may contain images from several species of dogs. The problem then arises
of combining networks trained from such heterogenous datasets. The fusion pro-
cedure should be flexible enough to allow the introduction of new datasets with
different sets of classes at any stage.

In this paper, we address this classifier fusion problem in the framework of
the Dempster-Shafer (DS) theory of belief functions. The DS theory [10], also
known as evidence theory, is based on representing independent pieces of evi-
dence by mass functions and combining them using a generic operator called
Dempster’s rule. DS theory is a well-established formalism for reasoning and
making decisions with uncertainty [3]. One of its applications is evidential clas-
sifier fusion, in which classifier outputs are converted into mass functions and
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fused by Dempster’s rule [8,16]. The information-fusion capacity of DS theory
makes it possible to combine deep-learning classifiers.

We present a modular fusion strategy based on DS theory for combining
different CNNs. Several pre-trained DS-based CNN architectures, also known
as evidential deep-learning classifiers in [12], extract features from input images
and convert them to mass functions defined on different frames of discernment.
A fusion module then aggregates these mass functions by Dempster’s rule, and
the aggregated mass function is used for classification in a refined frame. An
end-to-end learning procedure allows us to fine-tune the overall architecture
using a learning set with soft labels, which further improves the classification
performance. The effectiveness of the approach is demonstrated experimentally
using three benchmark databases: CIFAR-10 [4], Caltech-UCSD Birds 200 [15],
and Oxford-IIIT Pet [7].

The rest of the paper is organized as follows. DS theory is recalled in Sect. 2.
The proposed approach is then introduced in Sect. 3, and the numerical experi-
ment is reported in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Dempster-Shafer Theory

Let Θ = {θ1, . . . , θM} be a set of classes, called the frame of discernment. A
(normalized) mass function on Θ is a function m from 2Θ to [0,1] such that
m(∅) = 0 and

∑
A⊆Θ m(A) = 1. For any A ⊆ Ω, each mass m(A) is interpreted

as a share of a unit mass of belief allocated to the hypothesis that the truth
is in A, and which cannot be allocated to any strict subset of A based on the
available evidence. Set A is called a focal set of m if m(A) > 0. A mass function
is Bayesian if its focal sets are singletons; it is then equivalent to a probability
distribution.

A refining from a frame Θ to a frame Ω, as defined in [10], is a mapping
ρ : 2Θ → 2Ω such that the collection of sets ρ({θ}) ⊂ Ω for all θ ∈ Θ form a
partition of Ω, and

∀A ⊆ Θ, ρ(A) =
⋃

θ∈A

ρ({θ}). (1)

The frame Ω is then called a refinement of Θ. Given a mass function mΘ on Θ,
its vacuous extension mΘ↑Ω in Ω is the mass function defined on frame Ω as

mΘ↑Ω(B) =

{
mΘ(A) if ∃A ⊆ Θ, B = ρ(A),
0 otherwise,

(2)

for all B ⊆ Ω. Two frames of discernment Θ1 and Θ2 are said to be compatible
if they have a common refinement Ω.

Two mass functions m1 and m2 on the same frame Ω representing indepen-
dent items of evidence can be combined conjunctively by Dempster’s rule [10]
defined as follows:

(m1 ⊕ m2) (A) =
∑

B∩C=A m1 (B)m2 (C)
∑

B∩C �=∅ m1 (B)m2 (C)
(3)
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Fig. 1. Architecture of a MF-ECNN classifier.

for all A ⊆ Ω, A 
= ∅, and (m1 ⊕ m2)(∅) = 0. Mass functions m1 and m2 can be
combined if and only if the denominator in the right-hand side of (3) is positive.
The operator ⊕ is commutative and associative. The mass function m1 ⊕ m2 is
called the orthogonal sum of m1 and m2. Given two mass functions mΘ1 and mΘ2

on compatible frames Θ1 and Θ2, their orthogonal sum mΘ1 ⊕mΘ2 is defined as
the orthogonal sum of their vacuous extensions in their common refinement Ω:
mΘ1 ⊕ mΘ2 = mΘ1↑Ω ⊕ mΘ2↑Ω .

3 Proposed Approach

In this section, we describe the proposed framework for fusion of evidential deep
learning classifiers. The overall architecture is first described in Sect. 3.1. The
end-to-end learning procedure is then introduced in Sect. 3.2.

3.1 Overview

The main idea of the proposed approach is to combine different pre-trained
evidential CNN classifiers by plugging a mass-function fusion module at the
outputs of these CNN architectures. The architecture of the proposed approach,
called mass-fusion evidential CNN (MFE-CNN) classifier, is illustrated in Fig. 1
and can be defined by the following three-step procedure.

Step 1: An input image is classified by N pre-trained DS-based CNN archi-
tectures [12]. The n-th CNN architecture, n = 1, . . . , N , extracts a feature
vector from the input, as done in a probabilistic CNN [5]. The vector is then
fed into an evidential distance-based neural-network layer for constructing
mass functions, called the DS layer [1]. Each unit in this layer computes a
mass function on the frame of discernment Θn composed of M(n) classes
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θn
1 , . . . , θn

M(n) and an “anything else” class θn
0 , based on the distance between

the feature vector and a prototype. The mass on Θn is larger when the fea-
ture vector is further from the prototype. The mass functions computed by
each of the hidden units are then combined by Dempster’s rule. Given the
design of the DS layer, the focal sets of mass function mn are the singletons
{θn

k } for k = 1, . . . , M(n) and Θn. The outputs after this first step are the
N mass functions m1, . . . ,mN defined on N compatible frames Θ1, . . . , ΘN .

Step 2: A mass-function fusion module aggregates the N mass functions by
Dempster’s rule. Let Ω be a common refinement of the N frames Θ1, . . . , ΘN .
A combined mass function m̃ on Ω is computed as the orthogonal sum of
the N mass functions m̃ = m1 ⊕ . . . ⊕ mn. This final output of the mass-
function fusion module represents the total evidence about the class of the
input image based on the outputs of the N CNN classifiers.

Step 3: The pignistic criterion [2,11] is used for decision-making: the mass func-
tion m̃ is converted into the pignistic probability BetPm̃ as

BetPm̃({ω}) =
∑

{A⊆Ω:ω∈A}

m̃(A)
|A| ,

for all ω ∈ Ω, and the final prediction is ω̂ = arg maxω∈Ω BetPm̃(ω).

3.2 Learning

An end-to-end learning procedure is proposed to fine-tune all the parameters in a
MFE-CNN classifier using a learning set with soft labels, in order to improve the
classification performance. In the procedure, the learning sets of different pre-
trained CNN architectures are merged into a single one. As some labels become
imprecise after merging, they are referred to as soft labels. For example, the
“bird” label in the CIFAR-10 [4] database becomes imprecise when the database
is merged with the Caltech-UCSD Birds 200 database containing 200 bird species
[15]. To fine-tune the different classifiers using a learning set with soft labels, we
define a label as a non-empty subset A ∈ 2Ω\∅ of classes an image may belong
to. Label A indicates that the true class is known to be one element of set A,
but one cannot determine which one specifically if |A| > 1.

In the fine-tuning phase, all parameters in a MFE-CNN classifier are initial-
ized by the parameters in the pre-trained CNNs. Given a learning image with
non-empty soft label A ⊆ Ω and output pignistic probability BetPm̃, we define
the loss as:

L(BetPm̃, A) = − log BetPm̃(A) = − log
∑

ω∈A

BetPm̃(ω). (4)

This loss function is minimized when the pignistic probability of soft label A
equals 1. The gradient of this loss w.r.t all network parameters can be back
propagated from the output layer to the input layer.
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Table 1. Lists of classes in the CIFAR-10, CUB, Oxford databases. The notations θ2
0

and θ3
0 stand for the “anything else” class added to the frames of the CUB and Oxford

databases.

Frame Class

CIFAR-10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

CUB cardinal, house wren, . . . , (200 species of birds), θ2
0

Oxford bengal, boxer, . . . , (37 species of cats and dogs), θ3
0

Common frame airplane, automobile, deer, frog, horse, ship, truck, cardinal,
house wren, . . . , (200 species of birds), bengal, boxer, . . . ,
(37 species of cats and dogs)

4 Experiment

In this section, we study the performance of the above fusion method through
a numerical experiment. The databases and metrics are first introduced in
Sect. 4.1. The results are then discussed in Sect. 4.2.

4.1 Experimental Settings

Three databases are considered in this experiment: CIFAR-10 [4], Caltech-UCSD
Birds-200-2010 (CUB) [15], and Oxford-IIIT Pet [7]. The CIFAR-10 database
was pre-split into 50k training and 10k testing images. For the CUB (6,033
images) and Oxford (7,349 images) databases, we divided each database into
training and testing sets with a ratio of about 1:1. The training and testing
sets keep the ratio of about 1:1 in each class. In the fine-tuning procedure, the
frames of the three databases are refined into a common one, as shown in Table 1.
Thanks to the “anything else” classes, the three frames are compatible. After
merging the three databases, there are 56,692 training samples and 16,690 testing
samples for, respectively, fine-tuning and performance evaluation.

For a testing set T with soft labels, the average error rate is defined as

AE(T ) = 1 − 1
|T |

∑

i∈T

1A(i) (ω̂(i)) , (5)

where A(i) is the soft label of sample i, ω̂(i) is the predicted class, and 1A(i) is
the indicator function of set A(i).

The three CNNs used for the three datasets have the same FitNet-4 [9]
architecture with 128 output units. The numbers of prototypes in the DS layers
for the CIFAR-10, CUB, and Oxford databases are, respectively, 70, 350, and
80. We compared the proposed classifier to four classifier fusion systems with
the same CNN architectures:

Probability-to-mass fusion (PMF) [16]: we feed the feature vector from each
CNN n into a softmax layer to generate a Bayesian mass function on Θn.
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Table 2. Average test error rates of different classifiers. “E2E” stands for fine-tuned
classifiers. E- and P-FitNit-4 are the evidential and probabilistic CNN classifiers before
fusion. The lowest error rates are in bold and second low are underlined.

Classifier CIFAR-10 CUB Oxford Overall

Before fusion E-FitNit-4 6.4 6.6 10.2 –

P-FitNit-4 6.5 7.4 10.5 –

After fusion MFE 5.0 6.6 9.9 6.4

PMF 5.9 7.3 10.2 7.1

BF 6.2 8.9 11.1 7.7

E2E MFE 4.5 6.5 9.8 6.0

E2E PMF 5.4 7.3 10.1 6.8

E2E BF 6.2 8.7 10.9 7.6

E2E EFC 6.9 7.2 11.3 7.9

E2E PFC 6.2 6.4 9.7 7.0

The mass functions from the three CNNs are then combined by Dempster’s
rule. (It should be noted that the vacuous extension of each Bayesian mass
function in the common refinement Ω is no longer Bayesian.)

Bayesian-fusion (BF) [14]: the feature vector from each CNN is converted into
a Bayesian mass function on the common frame Ω, by equally distributing
the mass of a focal set to its elements; the obtained Bayesian mass functions
are combined by Dempster’s rule. This procedure is equivalent to Bayesian
fusion.

Probabilistic feature-combination (PFC) [6]: the three feature vectors are
concatenated to form a new vector of length 384, which is fed into a softmax
layer to generate the probability distribution on the common frame.

Evidential feature-combination (EFC): feature vectors are concatenated
as in the above PFC approach, but the aggregated vector is fed into a DS
layer to generate an output mass function. The dimension of the aggregated
vector and the number of prototypes are, respectively, 192 and 400, to obtain
optimal performance of the EFC-CNN classifier.

4.2 Results

Table 2 shows the average test error rates of the evidential and probabilistic
classifiers trained from each of the three datasets, as well as the performances of
the different fusion strategies (with and without fine tuning) on each individual
dataset, and on the union of the three datasets.

Looking at the performance of the MFE strategy, we can see that, after
fusion, the error rates on the CIFAR-10 and Oxford databases decrease, but
the one on the CUB database does not change. As shown in Table 3, the error
rates for the “cat”, “dog”, “bird” classes on the CIFAR-10 database decrease,
but the ones of other classes do not change after fusion. These observations
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Table 3. Test error rates before and after information fusion on CIFAR-10.

Classifier Aero Mobile Bird Cat Deer Dog Frog Horse Ship Truck

Before fusion E-FitNit-4 2.4 3.9 6.4 13.5 9.0 10.1 5.6 6.8 3.5 2.7

P-FitNit-4 1.6 2.6 8.7 15.7 9.6 12.5 4.2 5.3 1.9 2.6

After fusion E2E MFE 2.2 3.9 1.9 6.3 8.5 3.9 5.5 6.5 3.5 2.7

E2E PMF 1.6 2.5 5.0 12.8 9.0 9.2 4.2 5.3 1.8 2.6

E2E BF 1.5 2.5 8.1 14.0 9.0 11.0 4.1 5.2 1.8 2.5

Table 4. Examples of mass functions (MF’s) before and after fusion by the MFE
strategy. Only some masses before and after fusion are shown for lack of space.

Instance/label
Before fusion MF on Ω

after fusionMF from CIFAR-10 MF from CUB MF from Oxford

/bird

m({airplane}) = 0.506 m({caspinan}) = 0.698 m({samyod}) = 0 m({airplane}) = 0.101
m({bird}) = 0.382 m({horned grebe}) = 0.109 m({pyrenees}) = 0.001 m({caspinan}) = 0.672
. . . . . . . . . . . .
m(Θ1) = 0.065 m(θ2

0) = 0.098 m(θ3
0) = 0.905 m(Ω) = 0.007

/caspian

m({airplane}) = 0.009 m({caspinan}) = 0.423 m({samyod}) = 0 m({caspinan}) = 0.415
m({bird}) = 0.823 m({horned grebe}) = 0.452 m({pyrenees}) = 0.001 m({horned grebe}) = 0.450
. . . . . . . . . . . .
m(Θ1) = 0.092 m(θ2

0) = 0.084 m(θ3
0) = 0.951 m(Ω) = 0.009

/byssinian

m({cat}) = 0.742 m({caspinan}) = 0.002 m({byssinian}) = 0.412 m({byssinian}) = 0.414
m({dog}) = 0.131 m({horned grebe}) = 0 m({bengal}) = 0.503 m({bengal}) = 0.505
. . . . . . . . . . . .
m(Θ1) = 0.032 m(θ2

0) = 0.931 m(θ3
0) = 0.038 m(Ω) = 0.005

/keeshond

m({cat}) = 0.158 m({albatross}) = 0.001 m({rogdoll}) = 0.682 m({rogdoll}) = 0.369
m({dog}) = 0.705 m({horned grebe}) = 0 m({keeshond}) = 0.254 m({keeshold}) = 0.485
. . . . . . . . . . . .
m(Θ1) = 0.058 m(θ2

0) = 0.975 m(θ3
0) = 0.001 m({cat}) = 0.021

show that the proposed approach makes it possible to combine CNN classifiers
trained from heterogenous databases to obtain a more general classifier able to
recognize classes from any of the databases, without degrading the performance
of the individual classifiers, and sometimes even yielding better results for some
classes.

Table 4, which shows examples of mass functions computed by the different
classifiers, allows us to explain the good performance of the MFE fusion strategy.
The first example from the CIFAR-10 database is misclassified using only the
mass function from the classifier trained from this dataset, but the decision is
corrected after the evidential fusion because the mass function provided by the
classifier trained from the CUB data supports some bird species. In contrast, for
images misclassified by the CUB mass function, such as the second instance, the
other two individual classifiers do not provide any useful information to correct
the decisions. Consequently, the classification performance on the CUB database
is not improved. Besides, the mass function from the CIFAR-10 classifier some-
times includes useful information for classifying samples into one species of cat
or dog, such as the final instance, even though the number of such examples is
small. This phenomenon is responsible for the small change in the performance
on the Oxford database.
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Comparing the test error rates of the MFE classifiers with and without the
end-to-end learning procedure as shown in Table 2, we can see that fine tun-
ing further boosts the overall performance, as well as the performance on the
CIFAR-10 and Oxford databases. Thus, the fine-tuning procedure decreases the
classification error rate of the proposed architecture, and can be seen as a way
to improve the performance of CNN classifiers. This is because the end-to-end
learning procedure adapts the individual classifiers to the new classification prob-
lem. More specifically, before fusion, the CNN classifiers are pre-trained for the
classification tasks with the frames of discernment before refinement. The pro-
posed end-to-end learning procedure fine-tunes the parameters in the CNN and
DS layers to make them more suitable to the classification task in the refined
frame.

Finally, Table 2 sheds some light on the relative performance of different
classifier fusion strategies. The PMF fusion strategy also improves the perfor-
mance of the probabilistic CNNs trained on each of the three databases, but it
is not as good as the proposed method. In contrast, the Bayesian fusion strategy
(BF) degrades the performance of the individual classifiers, which shows that
the method is not effective when the numbers of classes in the different frames
are very unbalanced. The relatively high error rates obtained of the two feature
fusion strategies (E2E EFC and E2E PFC) show that this simple fusion method
is less effective than the other ones. All in all, the proposed evidential fusion
strategy outperforms the other tested methods on the datasets considered in
this experiment.

5 Conclusion

In the study, we have proposed a fusion approach based on belief functions to
combine different CNNs for image classification. The proposed approach makes
it possible to combine CNN classifiers trained from heterogenous databases with
different sets of classes. The combined classifier is able to classify images from any
of these databases while having at least as good performance as those of the indi-
vidual classifiers on their respective databases. Besides, the proposed approach
makes it possible to combine additional classifiers trained from new datasets
with different sets of classes at any stage. An end-to-end learning procedure
further improves the performance of the proposed architecture. This approach
was shown to outperform other decision-level or feature-level fusion strategies
for combining CNN classifiers. Future work will consider combining evidential
fully convolutional networks for pixel-wise semantic segmentation [13].
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Abstract. Fine-grained image classification (FGIC) aims to classify
subordinate classes belonging to the same meta category. One of the
existing FGIC methods is to use attention mechanism to localize and
crop a discriminative region from the input image, and this process can
be executed recurrently. In this way, the cropped image will progressively
focus on a smaller local region containing the object part. However, this
may cause the contour information of the object to be incomplete at
the finest-scale and thereby the accuracy of the finest-scale is affected.
In addition, the fusion strategy of these methods, which generally con-
catenates the outputs of multiple scales for the final classification, is not
sufficient. To tackle the problems, based on the backbone of RA-CNN
we first construct a multi-branch attention proposal network (APN) at
middle scale of RA-CNN to jointly localize a most discriminative region
where multiple APNs can complement each other’s incomplete contour
information. Moreover, in addition to concatenating the outputs of all
scales, we also use the Dempster’s combination rule to combine the out-
puts of all scales. Then, the features of these two parts are further com-
bined for the final classification. Experimental results on the real-world
datasets clearly validate the effectiveness of the proposed method.

Keywords: Fine-grained image classification · Attention mechanism ·
Dempster-Shafer theory · Evidence theory

1 Introduction

In the past few years, deep convolutional neural networks have made remark-
able achievements in traditional image classification, such as distinguishing cats
from dogs or cars from airplanes. In contrast, fine-grained image classification
(FGIC) is a task to distinguish subordinate classes belonging to the same meta
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category [10,16], such as distinguishing the subordinate categories of dogs or the
subordinate categories of cars.

Fine-grained image classification still remains challenging for two main rea-
sons. 1) The inter-class variance is small and the intra-class variance is large. 2)
Labeled training examples are very limited for each subordinate class. The main
idea to alleviate these problems is to find or localize discriminative regions from
original images. In recent years, weakly-supervised FGIC becomes a promis-
ing method, which can automatically learn to localize discriminative regions
[1,9,12,15,17], while strongly-supervised FGIC requires additional object part
annotations [11,14].

One of weakly-supervised FGIC methods is to leverage attention mechanism
to recurrently localize a discriminative sub-region from the discriminative region
obtained in the previous step [4,5,13,17,18]. The results of multiple scales are
then combined to obtain the final results. Although promising results have been
reported, further improvement suffers from the following limitations. First, the
classification accuracy of last scale is lower than that of previous scale [5,13].
The possible reason is that the last scale pays too much attention to the local
region of the object part and loses the contour information of the object. Second,
the method of fusing multiple scales’ results is simple concatenation or sum with
different weights.

To tackle these problems, based on the backbone of Recurrent Attention Con-
volutional Neural Network (RA-CNN), we construct multiple APNs in scale two
of RA-CNN to jointly pay attention to a most discriminative region together.
Specifically, we propose a novel loss function for optimizing APNs where a regu-
larization term is introduced to make APNs localize similar but complementary
region. It is important to note that our method is different from some mul-
tiple attentions based FGIC methods, which use multiple attention blocks to
localize different discriminative regions. Then, we use Dempster’s combination
rule [2,3,8] to fuse the results of three scales as an extra information to fur-
ther improve the classification performance. The contributions of this paper are
summarized as follows.

• We construct a multi-branch APN to jointly localize a most discriminative
region. By designing a novel loss function, the object contour attended by mul-
tiple APNs could be complementary. In addition, compared with the method
of using multiple attention blocks to localize different discriminative regions,
our proposed framework is intuitive and easy to implement.

• We leverage Dempster’s combination rule to fuse the classification results of
different scales to improve the overall accuracy.

2 The Proposed Model

In this section, we will introduce our proposed multi-branch RA-CNN, which
includes two parts. The first part is shown in Fig. 1, which is similar to RA-CNN.
The biggest difference is that we construct a multi-branch APN at scale two
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Fig. 1. Overview of the first part of our proposed framework. Each row is a commonly
used CNN classification model (connected by blue arrows). (Color figure online)

(here, we set the number of APNs to two for better illustration) to complement
the missing information caused by using only one APN at scale two. The second
part is a decision fusion of different scales, as shown in Fig. 2. We first use
Dempster’s combination rule to fuse the results of the three scales as an extra
information. Then we concatenate it with the original outputs of the three scales
to train a fully-connected layer for the final classification.

2.1 Construction of Classification Network

Given a training set including N labeled images {(x1,y1), (x2,y2), ..., (xN ,yN )}
where yi is a one-hot vector encoding the ground-truth label of xi, such as
yij = 1 and yik = 0 for any k �= j. As shown in Fig. 1, the inputs of three scales
use different images, while the targets of all scales are the same. The input
image of coarse-scale is cropped and resized by APN to obtain the input image
of finer-scale recurrently. Note that scale three has two input images cropped
from scale two using two APNs. For scale three, the two images are first fed into
two convolutional networks, then the outputs of last convolutional layer of two
networks are concatenated and fed into a fully-connected layer.

For each scale s, the classification loss is defined as the sum of the cross-
entropy loss of all training images

Ls
CE =

N∑

i=1

−yilog(pi), (1)
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where pi is the predicted result from the classification network of scale s. Assum-
ing that the APN has been already fine-tuned, the classification network of each
scale can be trained separately using (1).

2.2 Construction of Multi-branch Attention Proposal Network

The purpose of APN is to leverage the attention mechanism to locate and crop
a discriminative region from the input image. Then, the discriminative features
learned from the region are used to train the classification network to improve
the accuracy of the model. In this paper, we use the same formation of APN as
RA-CNN, which is constructed as a two-stacked fully-connected layers, and can
be formalized as

[tx, ty, tl] = f(g(x)), (2)
where g(x) denotes the feature map obtained from the last convolutional layer of
the classification model, and f(·) is the two-stacked fully-connected layers. The
output of APN is a triplet [tx, ty, tl], where tx, ty is the center coordinate of the
region, and tl denotes the half of the square’s length. The forward propagation of
APN is similar to that of RA-CNN, in which APN is transformed into a variant
of two-dimension boxcar function to ensure it can be optimized in the training
stage. In addition, as we mentioned above, the last scale’s classification accuracy
of RA-CNN is lower than that of previous scale, and the reason is that the last
scale pays too much attention to the local region of the object part and thus
misses the contour information of the object.

In order to alleviate this problem, we construct a multi-branch APN at scale
two to capture the missing information caused by using only one APN. Here, we
set the number of APNs to two, and the two APNs are denoted as APN2,∗ and
APN2,1, respectively. These two APNs need to jointly localize the discriminative
region, and the contour of object attended by APN2,∗ and APN2,1 should be
complementary at the same time. To this end, we first use the original rank loss
of RA-CNN to optimize APN2,1

L
APN2,1
rank = max{0, p2

t − p3
t + margin}, (3)

where p2
t (resp. p3

t ) denotes the prediction probability of scale two (resp. scale
three) on the correct category label t. Assume that classification network of
scale two and scale three are well-trained, the rank loss will be minimized (which
corresponds to p3

t ≥ p2
t + margin) when APN2,1 localize a most discriminative

region from input image of scale two. Such a design can enable APN2,1 to gradu-
ally update the parameters to approach the most discriminative region. Besides,
in order to make the region cropped by APN2,∗ close to the region cropped by
APN2,1, so as to capture the missing information of APN2,1 and maximize p3

t

with combined information of APN2,1 and APN2,∗. We propose a rank loss with
regularization term to optimize APN2,∗, defined as

L
APN2,∗
rank = max{0, p2

t−p3
t +margin}−λ||fAPN2,∗(g(xi))−fAPN2,1(g(xi))||22, (4)

where λ is a hyper-parameter, fAPN2,∗ and fAPN2,1 denote two triplets given by
APN2,∗ and APN2,1, respectively.
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2.3 Joint Representation of Multi-scale with Dempster’s
Combination Rule

As we discussed before, concatenating the outputs of different scales to obtain the
final classification results does not well represent the multi-scale view. Motivated
by [6] and [7], we want to leverage the merit of DS theory to improve the fusion
performance. In this section, we first define the mass functions in our model,
then introduce how to use Dempster’s combination rule in our framework.

According to [3], let Ω be the frame of discernment. A mass function is a
mapping m from the power set of Ω to [0, 1] and satisfies following two equations

m(∅) = 0 and
∑

A⊆Ω

m(A) = 1, (5)

where a focal set of m is defined as the subset A of Ω satisfying m(A) > 0.
Here, each class in the dataset is viewed as an element in the frame of dis-

cernment Ω, such as Ω = {y1, y2, ..., yk}, where k is the number of classes. In
addition, we assume that each scale’s classification network (corresponding each
row in Fig. 1) is treated as an expert’s evaluation. Therefore, the output of the
softmax layer of each scale’s classification network can be used as a mass func-
tion m. From the multi-scale classification network, we obtain multiple mass
functions. Then, we can use the Dempster’s combination rule to combine all
mass functions to obtain the fusion result. For all A1, A2, ..., As ⊆ Ω, the fusion
formula can be formalized as

(m1⊕m2⊕···⊕ms)(A) =
1

1 − K

∑

A1∩A2∩...∩As=A

m1(A1)m2(A2) · · · ms(As), (6)

where K is a conflict coefficient defined as

K =
∑

A1∩A2∩...∩As=∅
m1(A1)m2(A2) · · · ms(As). (7)

By using Eq. (6), we can obtain the fused prediction result of multi-scale clas-
sification network. In order to train and test the final classification layer, the
original output of the fully-connected layer at each scale is normalized indepen-
dently at first. Then we concatenate them with the result derived from Eq. (6)
as the input of the final classification layer for training and testing. The overall
framework of the final classification layer can be seen in Fig. 2.

2.4 Training Details

The training strategy here is similar to RA-CNN, in addition, we modify some
details.

step 1 : we replace VGG with pre-trained (on ImageNet) MobileNetV2 to
initialize the classification networks of all scales in Fig. 1.

step 2 : We use a method similar to RA-CNN to pre-train APN at all scales
which constructs a pseudo triplet as the ground-truth, and optimizes the output
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Fig. 2. Decision fusion of multiple scales

of APN to approach it. Different from the method of pseudo triplet construc-
tion in RA-CNN, the pseudo triplet is constructed by searching a square in the
input image at scale one (or scale two) with the highest response value in the
penultimate convolutional layer. In addition, the length of the square is set to
half length of the input image. Note that, APN2,∗ and APN2,1 are pre-trained
using the same pseudo triplet.

step 3 : the parameters of APNs and classification networks are optimized in
an alternative way.

3 Experiments

Data Sets: In this section, we conduct experiments on Caltech-UCSD Birds
(CUB-200-2011). The dataset contains 5994 training images and 5794 testing
images, corresponding to 200 birds species.

Experiments and Results: We compare our proposed method with RA-CNN in
terms of top-1 accuracy, and we test two different fusion strategies to combine
the output of the three scales, one is Dempster’s combination rule (as shown in
Fig. 2), and the other is direct concatenation. As shown in Table 1, compared
with RA-CNN, our methods achieve better top-1 accuracy with and without
Dempster’s combination rule, which verifies the effectiveness of our proposed
method. In addition as shown in Table 1, compared with the results of direct
concatenation of multiple scales’ outputs, both our method and RA-CNN can
be further improved by using Dempster’s combination rule, which validates the
superiority of DS theory.

As shown in Table 2, our method outperforms RA-CNN in terms of accuracy
at scale three. The superior performance of our method against RA-CNN at
scale three clearly verifies the effectiveness of using multi-branch APN.
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Table 1. Comparison of different methods on CUB-200-2011

Backbone Method DS fusion Top-1 accuracy (%)

MobileNet-V2 RA-CNN 84.6

RA-CNN � 85.2

Our method 85.3

Our method � 85.7

Table 2. Comparison between RA-CNN and our method at different scales

Scale Top-1 accuracy (%)

RA-CNN Our method

Scale 1 80.4 80.5

Scale 2 82.0 82.0

Scale 3 80.9 82.3

4 Conclusion

The existing FGIC methods, which leverage attention mechanism to recurrently
localize a discriminative region, are generally constructed as multiple scales.
However, the finest-scale of the methods pay too much attention to the local
region of object part, and thereby the contour information of the object is lost.
In order to alleviate this problem, we constructed a multi-branch APN at mid-
dle scale of RA-CNN. By proposing a novel loss function, the multiple APNs
can jointly localize the most discriminative region and complement each other’s
incomplete contour information, so as to improve the classification accuracy
of finest-scale. In addition, we utilize Dempster’s combination rule to fuse the
opinions of different scales to further improve the overall accuracy. Experimental
results demonstrate the effectiveness of our proposed method.

References

1. Chang, D., et al.: The devil is in the channels: mutual-channel loss for fine-grained
image classification. IEEE Trans. Image Process. 29, 4683–4695 (2020)

2. Denoeux, T.: Analysis of evidence-theoretic decision rules for pattern classification.
Pattern Recogn. 30(7), 1095–1107 (1997)

3. Denoeux, T.: Decision-making with belief functions: a review. Int. J. Approximate
Reasoning 109, 87–110 (2019)

4. Ding, Y., Zhou, Y., Zhu, Y., Ye, Q., Jiao, J.: Selective sparse sampling for fine-
grained image recognition. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 6599–6608 (2019)

5. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convo-
lutional neural network for fine-grained image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446
(2017)



184 Z. Xu et al.

6. Li, F., Qian, Y., Wang, J., Liang, J.: multigranulation information fusion: a
Dempster-Shafer evidence theory-based clustering ensemble method. Inf. Sci. 378,
389–409 (2017)

7. Li, S., Yao, Y., Hu, J., Liu, G., Yao, X., Hu, J.: An ensemble stacked convolutional
neural network model for environmental event sound recognition. Appl. Sci. 8(7),
1152 (2018)

8. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University
Press, Princeton (1976)

9. Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for
fine-grained image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss,
Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 834–850. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01270-0 49

10. Wei, X.S., Wu, J., Cui, Q.: Deep learning for fine-grained image analysis: a survey.
arXiv preprint arXiv:1907.03069 (2019)

11. Wei, X.S., Xie, C.W., Wu, J., Shen, C.: Mask-CNN: localizing parts and selecting
descriptors for fine-grained bird species categorization. Pattern Recogn. 76, 704–
714 (2018)

12. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for
fine-grained classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 438–454. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 26

13. Zhang, L., Huang, S., Liu, W., Tao, D.: Learning a mixture of granularity-specific
experts for fine-grained categorization. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8331–8340 (2019)

14. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-
grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10590-1 54

15. Zhang, Y., et al.: Weakly supervised fine-grained categorization with part-based
image representation. IEEE Trans. Image Process. 25(4), 1713–1725 (2016)

16. Zhao, B., Feng, J., Wu, X., Yan, S.: A survey on deep learning-based fine-grained
object classification and semantic segmentation. Int. J. Autom. Comput. 14(2),
119–135 (2017). https://doi.org/10.1007/s11633-017-1053-3

17. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural
network for fine-grained image recognition. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 5209–5217 (2017)

18. Zheng, H., Fu, J., Zha, Z.J., Luo, J., Mei, T.: Learning rich part hierarchies with
progressive attention networks for fine-grained image recognition. IEEE Trans.
Image Process. 29, 476–488 (2019)

https://doi.org/10.1007/978-3-030-01270-0_49
http://arxiv.org/abs/1907.03069
https://doi.org/10.1007/978-3-030-01264-9_26
https://doi.org/10.1007/978-3-319-10590-1_54
https://doi.org/10.1007/978-3-319-10590-1_54
https://doi.org/10.1007/s11633-017-1053-3


Deep Evidential Fusion Network
for Image Classification

Shaoxun Xu1, Yufei Chen1(B), Chao Ma2, and Xiaodong Yue3

1 College of Electronics and Information Engineering, Tongji University,
Shanghai 200092, China

yufeichen@tongji.edu.cn
2 Department of Radiology, Changhai Hospital of Shanghai,
Second Military Medical University, Shanghai 200433, China

3 School of Computer Engineering and Science, Shanghai University,
Shanghai 200444, China

Abstract. Evidential deep learning (EDL) has been proposed to esti-
mate the uncertainty and the prediction confidence of neural networks.
In this paper, we investigate the fusion method based on the EDL model
and Dempster’s rule of combination. For fusion models, a better uncer-
tainty estimation may be more helpful than high accuracy. To this end,
we propose a deep evidential fusion method to best utilize the belief
assignment and uncertainty estimation by improving the objective func-
tion and introducing the approximation of the base rate distributions.
The experimental results show that our proposed method achieves a more
reliable fusion result. We also explore the application of belief function
and evidence theory in the field of medical image analysis, where multi-
modality well fits the framework of belief functions.

Keywords: Evidential fusion · Deep neural network · Belief function ·
Image classification

1 Introduction

Deep learning models have achieved outstanding performance in a large num-
ber of classification tasks in different fields of machine learning. Despite their
success in out-performance of traditional methods, the concerns of the poor gen-
eralization lead to the research of the ability to estimate the uncertainty and the
prediction confidence of the networks. Modeling uncertainty also brings a new
perspective for learning on small data without pretraining and other transferred
knowledge. Utilizing uncertainty model, with Dempster-Shafer theory (DST) of
evidence fusion, we can improve the prediction confidence by combining the
evidence from several information sources. This specific kind of task is quite
common in medical image analysis, where images are often in several differ-
ent modalities but difficult to collect. Related research also shows that transfer
learning offers limited performance gains in medical tasks [6].
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Dempster-Shafer theory of evidence shows a promising approach to quantify
the uncertainty with Basic Belief Assignment (BBA), considering that the uncer-
tainty is caused by a lack of evidence or conflicting evidence. During the past
several years, various studies have been conducted to combining belief functions
and deep learning [7,9]. The belief theory of Subjective Logic (SL) [4] formalizes
the BBA in an equivalent belief/uncertainty representation manner but provides
a different interpretation. By formalizing the process of the BBA over the frame
of discernment as a (hyper-) Dirichlet model in SL, Evidential Deep Learning
(EDL)[3,7,10] may quantify the classification uncertainty in a computationally
simple approach, which provides a pipeline flow for information fusion learning,
such as multi-view learning [2] and multi-modality learning.

In this paper, we propose a deep evidential fusion method based on the EDL
model, and to best utilize the belief assignment and uncertainty estimation, we
present that (1)by minimizing an approximation to the expected L∞ norm of
the prediction error, the fusion result will be better and more reasonable despite
the small accuracy drop on a single information source, and (2)by introducing
the approximation of the base rate distributions, the fusion model would learn
the knowledge prior of the task and thereby improve the final fusion result.

The rest of the paper is organized as follows: Sect. 2 reviews the basics con-
cerning the evidence theory and subjective logic. In Sect. 3, the proposed deep
evidential fusion learning method is described. In Sect. 4, experiments on pub-
lic synthetic dataset and real-world medical image dataset are demonstrated.
Section 5 concludes this paper.

2 Preliminaries

2.1 Evidential Deep Learning

In the case of the classification task, EDL uses Dirichlet distributions to quantify
the belief masses and overall predictive uncertainty. The concentration parame-
ters of a Dirichlet distribution can be viewed as a belief distribution [4]. Specif-
ically, for K mutually exclusive singletons (e.g., class labels), subjective logic
assigns a belief mass bk for every k = 1, ...,K and an uncertainty mass of u. The
sum of these K + 1 non-negative mass values is one:

u +
K∑

k=1

bk = 1, (1)

where u ≥ 0 and bk ≥ 0. It can be viewed as a particular case of the Dempster-
Shafer belief function, where the masses of all conjunction terms except the total
set are equal to zero. By limiting the mass of uncertainty terms, we get a more
computationally efficient belief function when we don’t care about any particular
uncertainty term.

A subjective opinion, or also called belief mass assignment in DST, b =
(b1, ..., bK), can be viewed as a sample of a Dirichlet distribution with concen-
tration parameters α = (α1, ..., αK), and the probability density function on
vector p given by
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Dir(p | α) =
1

B(α)

K∏

k=1

pαk−1
k , (2)

where B(·) is the multivariate Beta function.
To get a non-sparse Dirichlet distribution, we constraint the concentration

parameters to be larger than one, αk = ek+1, where ek denotes the non-negative
evidence. Accordingly, the belief mass bk and the uncertainty u are computed as
bk = ek/S and u = K/S, where S =

∑K
k=1(ek + 1). The uncertainty is inversely

proportional to the total evidence and the term evidence is a measure of the
amount of support learning from data in favor of a sample to be classified into
a certain class.

A neural network could capture features from the input and generate sub-
jective opinions if we model the output of the network as a belief distribution.
An activation layer, e.g., ReLU, is used to ascertain network output as a non-
negative evidence vector e. Consequently, the mean of this distribution is con-
sidered as an estimation of the class probabilities p. To train an EDL model,
the objective can be optimized by minimizing the mean-square-error(MSE) loss.
Specifically, for a sample xi with one-hot labels yi, the objective reads

Li(Θ) = Epi∼Dir(·;αi)[‖yi − pi‖22] =
K∑

j=1

(yij − p̂ij)
2 +

p̂ij (1 − p̂ij)
(Si + 1)

. (3)

2.2 Dempster’s Rule for EDL

The Dempster-Shafer theory (DST) of evidence gives a mathematical framework
to combine evidence from different sources. Technically, the basic belief assign-
ment of DST and the belief/uncertainty representation of subjective opinions are
equivalent [4]. Through Dempster’s rule, we combine the evidence assignments
from different EDL models by utilizing all available information sources.

Suppose that we have total T information sources (e.g., T different modali-
ties) on the same K classification task. To combine T basic belief assignments
{Mt}T

t=1, where Mt = {bt
1, ..., b

t
K , ut}, Dempster’s rule of combination shows

that M⊕ = ⊕T
t=1Mt.

The fusion of two masses M1 =
{
b11, ..., b

1
K , u1

}
and M2 =

{
b21, ..., b

2
K , u2

}

can be formulated as follows:

b1⊕2
k =

1
1 − C

(
b1kb2k + b1ku2 + b2ku1

)
, u1⊕2 =

1
1 − C

u1u2, (4)

where C =
∑

i�=j b1i b
2
j is a measure of the degree of relative conflict between the

two belief assignments.
After obtaining the fusion result M⊕ of T information sources, the corre-

sponding concentration of joint Dirichlet distribution is computed by

e⊕
k =

Kb⊕
k

u⊕ , α⊕
k = e⊕

k + 1. (5)
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By combining the evidence from all available information sources, we obtain
the final joint Dirichlet distribution Dir(p | α⊕) to generate the fusion belief
and the overall uncertainty of the classification task.

3 Deep Evidential Fusion

Having reviewed the mathematics of uncertainty estimation and evidence fusion,
in this section, we focus on the adaptation of the EDL model to multiple infor-
mation sources fusion.

3.1 Modeling with Knowledge Prior

A good fusion result with Dempster’s rule of combination highly depends on the
individual belief assignment and uncertainty estimation. When coming to mul-
tiple information sources (e.g., multiple modalities) on the same object, these
sources may not share the same background information, which means that dif-
ferent sources have different prior distributions on the confidence and uncertainty
estimation.

With the purpose of modeling the different knowledge priors, the concept of
base rate, also known as prior probabilities, is introduced. For subjective opin-
ions, SL combines the belief mass b, uncertain mass u with the base rates a
through the projected probability Pr(yi = k) = bk + aku, which represents
the probability that sample xi is assigned to class k. With base rates, SL rede-
fines the concentration parameters α of Dirichlet distribution by introducing the
uncertainty evidence through a non-informative prior weight W , formulated as

α = e + aW. (6)

For belief fusion models, we explicitly model the base rate distribution for
each information source t by introducing a series of parameter θ in the learning
process, that is, at ∼ Dir(at | θt). The final evidence Dirichlet distribution for
the observation of information source t will be

Dir(p | et,at) =
1

B(et + atW )

K∏

k=1

p
et
k+at

kW−1
k , (7)

and the corresponding belief assignment and uncertainty mass are bk = ek/S

and u = W/S, where S = W +
∑K

k=1 ek.
When applying Dempster’s rule for combining evidence from different infor-

mation sources, Eq. 5 should be modified to

e⊕
k =

Wb⊕
k

u⊕ , α⊕
k = e⊕

k + a⊕
k W. (8)

The joint base rate distribution a1⊕2 of a1 and a2 is given by the following
belief constraint fusion operation in SL,

a1⊕2
k =

{
a1
k(1−u1)+a2

k(1−u2)
2−u1−u2 for u1 + u2 < 2,

a1
k+a2

k

2 for u1 = u2 = 1.
(9)
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where W denotes the non-informative prior weight, which is normally set to
W = 2. The choice of W would adjust the sensibility of the model to the new
observation evidence.

3.2 Evidential Fusion with Deep Learning

By modeling the knowledge prior, a EDL model could learn the source-related
prior distribution to improve the confidence and uncertainty estimation. How-
ever, when coming to limited training samples, training a large number of param-
eters in a EDL model may lead to a high risk of overfitting. The MSE in Eq. 3
will amplify the errors produced by outliers, resulting in over-confident on the
observation evidence of training samples and discounting the model’s ability of
uncertainty estimation.

An intuitive way to improve objective function in Eq. 3 is by minimizing an
approximation to the expected L∞ norm of the prediction error, which is a better
representation of the highest prediction error among the classes. In practice, by
utilising Jensen’s inequality on norm, i.e., ‖ · ‖∞ ≤ ‖ · ‖p, we relax the target
L∞ norm to the Lp space, which provides a tractable upper bound:

Li(Θ) = Epi∼Dir(·;αi)[‖yi − pi‖p]. (10)

[11] gives a closed form of Eq. 10 as follows,

Li(Θ) =
(

Γ (Si)
Γ (Si + p)

) 1
p

⎛

⎝
Γ

(∑
k �=c αk + p

)

Γ
(∑

k �=c αk

) +
∑

k �=c

Γ (αk + p)
Γ (αk)

⎞

⎠

1
p

, (11)

where Γ (·) is the gamma function and c is the correct class label of sample xi.
Note that the p in Eq. 11 represents p-norm. The larger p, the tighter the Lp

norm approximates the L-infinity of the prediction error, practically p can be
adjusted to balance the prediction accuracy and the uncertainty behavior of the
incorrect predictions.

The above objective could help the network to discover more patterns to
assign evidence to each class label. It guarantees that more evidence will be
assigned to the correct label but not ensures less evidence for the incorrect
labels. Hence, we put a regularization term to minimize the contribution of the
misleading patterns associated with incorrect labels.

Given the auxiliary vector α̃ = (1 − y)�α+y, where � represents Hadamard
product, the regularization term is introduced with the following KL divergence:

Ri(Θ) =KL[Dir(pi|α̃i)‖Dir(pi|1)]

= log

⎛

⎝
Γ

(∑K
k=1 α̃ik

)

Γ (K)
∏K

k=1 Γ (α̃ik)

⎞

⎠+
K∑

k=1

(α̃ik − 1)

⎡

⎣ψ (α̃ik) − ψ

⎛

⎝
K∑

j=1

α̃ij

⎞

⎠

⎤

⎦ ,

(12)
where 1 represents vector of K ones, ψ(·) is the digamma function.
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For N training samples, the total loss to be minimized is:

L(Θ) =
1
N

N∑

i=1

Li(Θ) + λtRi(Θ). (13)

λt increases with an annealing schedule, e.g., λt = λ0min( t−T0
T , 1) for t > T0 for

annealing step T and λt = 0 for t ≤ T0. This annealing factor setting guides the
network to learn all available evidence before penalizing the incorrect evidence
assignment.

Applying the fusion operation mentioned in Eq. 4, 8 and 9, we extend an
EDL model to a Deep Evidential Fusion (DEF) model for combining evidence
from different information sources.

4 Experiments

4.1 Experiments on Synthetic Dataset

To illustrate the behavior of the proposed fusion model, we first show a simple
example on a synthetic multi-modality MNIST-SVHN dataset proposed by [8],
which combines pairs of MNIST and SVHN such that each pair depicts the
same digit class. Theoretically, we could treat these two sources as two differ-
ent pseudo-modalities since they share the same intrinsic information on digits
but have different data distributions. To simulate the few sample situation, we
intentionally limited the number of samples used in training to 50 samples per
class, while the validation and test were done on the original set.

A standard ResNet18 was adopted as the backbone for all experiments with
same Adam [5] optimizer. Data augmentation, dropout and batch-normalization
were used to mitigate overfitting. For proposed DEF model,the results were
generated using the norm p = 4 and λ0 = 0.3. Comparisons were made with
following methods: (a) cross entropy (CE) loss as a baseline, (b) cosine loss [1]
for few samples, (c) EDL [7], (d) EDL with proposed Lp loss, and (e) DEF is our
proposed model. All non-evidential methods were only done for single modality
separately and no fusion was made. Table 1 shows the Top-1 test accuracy for
these methods.

When given 50 samples per class as training set, as can be seen from Table 1,
the original EDL method may have better accuracy on one single modality, but
the fusion result suffers a downgrade due to the incorrect predictions on SVHN
dataset. By contrast, a more reasonable fusion result was obtained with Lp loss
in the case of only a small accuracy drop on a single modality. Our proposed
fusion model achieved the best fusion result, and the comparison also shows that
the introduction of base rate improves the confidence and uncertainty estimation
for fusion.
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Table 1. Test accuracy in percent (%) achieved with different methods, trained with
50 samples per class. The best value per row is set in bold.

(a) CE (b) Cosine (c) EDL (d) EDL(Lp) (e) DEF (ours)

MNIST 92.8 93.4 95.2 91.6 92.6

SVHN 32.2 35.2 39.6 38.8 38.6

MNIST-SVHN 93.4 92.8 95.4

4.2 Application: Pancreatic Tumor Classification

We applied our proposed method to a real-world medical image analysis task on
a dataset of enhanced 3-phase Computed Tomography (CT) images of 5 sub-
types of pancreatic tumor patients collected by Changhai Hospital. The dataset
consists of 51 patients of pancreatic ductal adenocarcinoma (PDAC), 47 patients
of intraductal papillary mucinous neoplasm (IPMN), 28 patients of pancreatic
neuroendocrine tumor (NET), 29 patients of serous cystic neoplasm (SCN), 32
patients of adenosquamous carcinoma (ASC), and 187 patients in total. The
CT scan was performed in arterial phase (AP), venous phase (VP) and delayed
phase (DP). We selected the maximum cross-section of the tumor as the region of
interest for network input and did the same comparisons mentioned in Sect. 4.1
with same experiment setups. The fusion was done with any possible combina-
tion of the 3 phases. Limited by the total scale of the dataset, all results were
obtained by 5-fold cross-validation. Table 2 shows the Top-1 accuracy of different
methods.

Table 2. Test accuracy in percent (%) achieved with different methods for pancreatic
tumor classification. The best value per row is set in bold.

(a) CE (b) Cosine (c) EDL (d) EDL(Lp) (e) DEF (ours)

AP 50.0 45.0 48.0 48.1 58.0

VP 53.0 47.5 53.5 51.5 53.0

DP 52.5 47.5 43.0 43.5 52.3

AP+VP 50.0 52.4 61.0

AP+DP 47.2 44.0 60.4

VP+DP 44.5 53.1 55.0

AP+VP+DP 55.0 55.0 62.5

The original EDL method(c) failed to estimate the evidence Dirichlet distri-
bution for tumor subtypes given arterial phase (AP) and delayed phase (DP) CT
images, causing a worse prediction result than simple cross entropy loss(a). Our
proposed method improved the performance in those phases and obtained the
best fusion results on all possible combinations of phases. By evidential fusion of
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all three phases, the prediction result was 4.5% better than the best prediction
in one phase, 9% better than that of original EDL, and 9.5% better than that
of non-evidential methods.

5 Conclusion and Future Work

In this work, we propose a deep evidential fusion method for classification tasks
on small dataset, based on the belief assignment and evidential fusion. The
experimental results show that the evidence theory has a promising application
of the fields like medical image analysis, where the explainable interpretation of
belief/uncertainty assignment and evidence fusion could be a qualified framework
for medical information fusion. The multi-modality of medical imaging makes it
a good practical playground for belief functions and evidential fusion theory. In
future work, we will focus on better belief assignment and uncertainty estimation
with small training samples and, based on the proposed fusion method, promote
the application of evidence theory in the field of medical image analysis.
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Abstract. The paper studies the variation of the conflict measure with
blurring of focal elements and discounting of the masses of the belief
functions in the framework of the theory of evidence. Blurring of focal
elements is modeled using fuzzy sets. Such properties of the conflict mea-
sure as the robustness to transformations of the bodies of evidence, the
monotonicity and the direction of change are investigated. A numerical
example of calculating the measure of conflict, taking into account the
blurring of focal elements and discounting of masses for the selection of
bodies of evidence for the aggregation of analysts’ forecasts regarding
the oil price, is considered.

Keywords: Evidence theory · Conflict measure · Blur focal elements

1 Introduction

Conflict assessment and combining of evidence bodies in the evidence theory
is a two-pronged problem. On the one hand, the conflict value must be taken
into account when combining evidence. On the other hand, the conflict itself is
estimated, as a rule, with the help of aggregation of evidence bodies. The method
of conflict estimation and the choice of the combining rule should be consistent
with each other in a certain sense [9].

As a rule, the (external) conflict of two bodies of evidence is understood
as a quantity proportional to the sum of the products of the masses of non-
intersecting (or ‘weakly intersecting’ with respect to some similarity index) focal
elements of this evidence. For example, the conflict in Dempster’s rule [2] is the
mass of the empty set obtained using the non-normalized conjunctive rule.

Robustness is one of the important requirements for conflict assessment.
We will under-stand by robustness the stability of the conflict measure to the
‘small’ variation of focal elements and their masses. In general, the robustness
of calculation the conflict measure can be achieved by applying specialization-
generalization procedures [1,5].
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We will consider bodies of evidence, the focal elements of which are defined
on some set X ⊆ R [11]. The specialization-generalization procedure for such
bodies of evidence can be implemented using fuzzy blurring of focal elements.
The concept of fuzzy focal elements was considered, for example, in [12,13].

If the focal elements on the X ⊆ R are defined by experts, then information
on the preferential conservatism or radicalism of expert can also be taken into
account using the blur procedure. For example, if one expert predicts the value
of shares of a certain company in the interval A = [40, 45), and another in the
interval B = [35, 50), then the second evidence can be considered more conserva-
tive than the first. If the second expert often gives conservative estimates, then
we can assume that the interval B is a support of a fuzzy number-evidence. On
the contrary, if the estimates of the first expert are often radical, then we can
assume that the interval A is the kernel of a fuzzy number-evidence.

Finally, the blurring procedure of focal elements can be used to account for
the reliability of information sources together with a procedure for discounting
the masses.

In this paper, we will investigate some properties of the conflict measure
of evidence bodies, determined on the X ⊆ R, taking into account blurring of
focal elements and discounting of masses. A numerical example of the choice for
combining evidence bodies will be considered, taking into account their conflict,
reliability and accuracy and using the procedure for blurring of focal elements.

2 Background of the Belief Function Theory

Let X be some set, A ⊆ 2X be some finite subset of nonempty sets from X. Some
non-negative mass function m : 2X → [0, 1],

∑
A∈A m(A) = 1 is considered in

the theory of evidence [2,10]. Without loss of generality, we can assume that
m(A) > 0 for all A ∈ A. In this case, set A is called the set of focal elements,
and a pair F = (A,m) is called a body of evidence. Let F(X) be a set of all
bodies of evidence on X. There is one-to-one correspondence between the body
of evidence F = (A,m) and the belief function Bel(A) =

∑
B⊆A m(B) or the

plausibility function Pl(A) =
∑

B:A∩B �=∅ m(B).
The body of evidence (evidence) FA = (A, 1) (i.e., A = {A}, m(A) = 1) is

called categorical. In particular, the body of evidence FX is called vacuous.
Then any body of evidence F = (A,m) can be represented as a convex sum

of categorical bodies of evidence: F =
∑

A∈A m(A)FA. The body of evidence is
called simple, if F ζ

A = (1 − ζ)FA + ζFX , ζ ∈ [0, 1].
In this paper, we will consider evidence bodies on X ⊆ R [11]. Moreover, we

assume that all focal elements of evidence are intervals of the form [a1, a2). In this
case, the intersection of such sets will also have the form [a1, a2). Consequently,
we get a new set of focal elements of the same kind when combining the bodies
of evidence using conjunctive rules.

Suppose there are two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2).
It is necessary to assess the conflict between these two bodies of evidence. Tra-
ditionally this is done most often with the help of the measure
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Con0(F1, F2) =
∑

A∩B=∅
m1(A)m2(B).

However, this measure does not take into account the ‘weakly intersecting’
(i.e. pairs of intersecting focal sets of different bodies of evidence for which the
external measure (for example, the length of interval on R) the intersection
of the sets is small compared to the external measure of each of these sets)
focal elements of the bodies of evidence. The value of the conflict should be a
decreasing function of the value of the ‘strong’ intersection of focal elements with
large masses in the general case. Therefore, we will use the measure

ConΓ (F1, F2) =
∑

A∈A1,B∈A2

γ(A,B)m1(A)m2(B), (1)

instead of the measure Con0(F1, F2) to account for ’weakly intersecting’ focal
elements, where Γ = (γ(A,B))A,B∈A, γ(A,B) = 1 − s(A,B) and s(A,B) is a
similarity index satisfying the conditions: 1) 0 ≤ s(A,B) ≤ 1; 2) s(A,B) = 0,
if A ∩ B = ∅; 3) s(A,A) = 1 (or weaker condition 3)’ max

B
s(A,B) = s(A,A)).

An example of such an index is the Jaccard index s(A,B) = |A ∩ B|/|A ∪ B|,
which we will mainly consider in this article. Note that if γ(A,B) = 1 in the case
A ∩ B = ∅ and γ(A,B) = 0 in all other cases, then in (1) we get the measure
Con0(F1, F2). Some properties of the bilinear conflict measure of the form (1)
were investigated in [6].

The conflict measure (1) will be coordinated with the combination of the
bodies of evidence F1 = (A1,m1), F2 = (A2,m2), according to the rule F1,2 =
(A,m1,2) = F1 ⊗ F2, where

m1,2(C) =
1
K

∑

A∩B=C

s(A,B)m1(A)m2(B), (2)

if K = 1 − ConΓ (F1, F2) 
= 0. This is Zhang’s center combination rule [14]. The
general structure of the bilinear combination rules was investigated in [7].

The reliability of information sources can be taken into account using Shafer’s
discounting method [10]: m(η) (A) = ηm(A), if A 
= X and m(η)(X) = 1 −
η + ηm(X), where η ∈ [0, 1]. The change in ignorance after the application of
Dempster’s rule to the discounted bodies of evidence was studied in [8].

3 Blurring Focal Elements

Let F̃ = (Ã, m̃) be a transformation of the body of evidence F = (A,m), where
Ã is a set of fuzzy focal elements, i.e. blurring intervals from the A; m̃ is a
discounted mass function.

We will consider below the important properties of the conflict measure in
relation to blur and discounting operations. Let d be some metric on the set of
all fuzzy sets (see [4]).
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Definition 1. (robustness). The conflict measure Con will be called robust
to small transformations ˜ of the bodies of evidence, if ∀F1, F2 ∈ F(X) and
∀ε > 0 ∃δ1, δ2 > 0:

∣
∣
∣Con(F̃1, F2) − Con(F1, F2)

∣
∣
∣ < ε ∀F̃1 = (Ã1, m̃1) ∈ F(X):

d
(
Ã1,A1

)
=

∑
A∈A1

d
(
Ã, A

)
< δ1, d (m̃1,m1) =

∑
A∈A1

|m̃(A) − m(A)| < δ2.

Definition 2. (monotonicity). Let’s call the conflict measure Con monotonic
(strictly monotonic) with respect to a given transformation˜of the body of evi-
dence, if ∀F1, F2, F3 ∈ F(X): Con(F1, F2) ≤ Con(F1, F3) ⇒ Con(F̃1, F2) ≤
Con(F̃1, F3) (the corresponding inequalities are strictly).

If the conflict measure is monotonic, then blurring does not change the order
relation with respect to that measure. In particular, in the problem of choosing
the least conflicting evidence bodies for combining, the monotonicity of the con-
flict measure means that these transformations of evidence bodies will not lead
to a change in the choice.

It is easy to see that the conflict measure Con0 is monotonic if the transfor-
mation is reduced only to discounting the masses according to Shafer’s method.

Definition 3. (directionality of change). A transformation ˜ is said to be
non-increasing (not decreasing) the conflict measure Con, if Con(F̃1, F2) ≤
Con(F1, F2) (Con(F̃1, F2) ≥ Con(F1, F2)) ∀F1, F2 ∈ F(X).

It is easy to see that discounting the masses by Shafer’s method does not
increase the degree of conflict Con0. This observation is interpreted as follows:
if we know that the reliability of the information source is low, then this infor-
mation itself becomes less conflicting with information from other sources.

The properties of monotony and directionality of transformation may not be
satisfied for arbitrary conflict measure and transformation of evidence bodies.

Let the number η ∈ [0, 1] characterize the level of reliability of the information
source (η = 1 corresponds to an absolutely reliable source). If the source of
information is not entirely reliable (η < 1), then we will consider blurring of
focal elements together with discounting of masses. If A = [a1, a2) is a focal
element, then Ã = A(η) is a fuzzy number associated with A. We have that
A(1) = A.

Let the symmetric (L-R)-type fuzzy number [4] Ã be the blur of the focal
element A = [a1, a2). It means that the fuzzy number Ã has a membership
function μÃ: μÃ(x) = 1 for x ∈ [x1, x2), μÃ(x) = L(x) = θ

(
x1−x
δ|A|

)
for x ∈

[x1 − δ |A| , x1], μÃ(x) = R(x) = θ
(

x−x2
δ|A|

)
for x ∈ [x2, x2 + δ |A|], where x1 ≤

x2, δ ∈ (0, 1) and a strictly decreasing integrable function θ : [0, 1] → [0, 1]
satisfies the conditions θ(0) = 1, θ(1) = 0. The value δ = δ(η) > 0 controls the
degree of blur. We assume that δ(1) = 0 and δ(η) are a non-increasing function
on [0, 1].

As a result, we get a fuzzy focal element Ã = A(η), which is a blur
(more precisely, a δ-blur) of the element A, ker Ã = {x ∈ R : μÃ(x) = 1} =
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[x1, x2] (the core of the fuzzy number Ã), supp Ã = {x ∈ R : μÃ(x) > 0} =

[x1 − δ |A| , x2 + δ |A|] (the support of the fuzzy number Ã). Let
∣
∣
∣Ã

∣
∣
∣ =

∫
X

μÃ(x)dx be the cardinality of a fuzzy set Ã, EI[Ã] = [E[L],E[R]], where
E[L] =

∫ x1

−∞ xdL(x), E[R] = − ∫ +∞
x2

xdR(x) (expected interval of the fuzzy num-
ber Ã).

If an expert (decision maker, DM) is a source of information, then different
blurring strategies, depending on the information about the degree of caution of
the DM, are possible:

1) if the DM estimates are too careful (conservative), then supp Ã = A (internal
blur);

2) if the DM estimates are excessively accurate (radical), then ker Ã = A (exter-
nal blur);

3) if the DM estimates are neutral, then EI[Ã] = Ā, where EI is the expected
interval of a fuzzy number (neutral blur).

The meaning of these conditions is as follows. A cautious expert’s assessments are
often too imprecise. Therefore, they should be made more accurate (supp Ã = A)
when blurring. On the other hand, the assessments of an careless expert are often
overly precise. Therefore, they must be expanded (ker Ã = A) when blurring.

Lemma 1. The following properties are valid:

a) ker Ã = [a1 + δ |A| , a2 − δ |A|], δ = δ(η) ∈ (0, 0.5] for internal δ-blur (i.e.
supp Ã = A);

b) supp Ã = [a1 − δ |A| , a2 + δ |A|], δ = δ(η) > 0 for external δ-blur (i.e. ker Ã =
A);

c) ker Ã = [a1+δ |A| θ0, a2−δ |A| θ0], supp Ã = [a1−δ |A| (1−θ0), a2+δ |A| (1−
θ0)] for neutral δ-blur (i.e. EI[Ã] = Ā), where θ0 =

∫ 1

0
θ(s)ds and 0 < δ(η) ≤

1
2θ0

.

Corollary 1. If d
(
Ã, A

)
=

∫
X

∣
∣μA(x) − μ

˜A(x)
∣
∣ dx, then:

a) d
(
Ã, A

)
= 2δ |A| (1 − θ0) for internal δ-blur of the interval A;

b) d
(
Ã, A

)
= 2δ |A| θ0 for external δ-blur of the interval A;

c) d
(
Ã, A

)
= 4δ |A| θ1 for neutral δ-blur of the interval A, where θ1 =

∫ 1

θ0
θ(s)ds.

Note that θ0 = 1
2 , θ1 = 1

8 , if θ(t) = 1−t. The fuzzy number Ã will be trapezoidal
in this case.

Definition 4. The arrangement of intervals of two sets A1 and A2 is called
stable if there is such δ0 > 0 that the nature of the inclusion or intersection
of the pairs suppA-supp B, ker A-ker B is preserved for δ-blur ∀δ < δ0 and
∀A ∈ A1, B ∈ A2. Let’s call this δ-blur small.
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4 Conflict Variation When Transforming Evidence
Bodies

Let ηF = (A(η),m(η)), η ∈ [0, 1] be the body of evidence obtained as a result of
blurring the focal elements and discounting the masses of evidence F = (A,m).
We have that 1F = F .

The conflict measure ConΓ will be robust to small transformations in the evi-
dence bodies due to the continuous dependence of the masses on the discounting
parameter η and the Jaccard index s(A,B) on the blurring parameter δ.

Let us first consider the variation of the conflict measure ConΓ when the
transformation consists only in discounting the masses. The following statements
are true.

Proposition 1. The condition ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), η ∈ [0, 1] is
satisfied for the body of evidence F1 and ∀F2 if and only if the inequality

∑

A∈A1

s(A,B)m1(A) ≤ s(X,B) (3)

is true ∀B ∈ A2.

Corollary 2. The condition ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), η ∈ [0, 1] is satis-
fied ∀F1, F2 ⇔ s(AB , B) ≤ s(X,B) ∀B ∈ A2, where AB = arg maxA∈A1

s(A,B).

Corollary 3. If s(A,B) ≤ s(X,B) ∀A,B or s(X,B) = 1 ∀B, then the inequal-
ity ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), ∀η ∈ [0, 1] is true for arbitrary bodies of
evidence F1 and F2.

Example 1. Let s0(A,B) =
{

1, A ∩ B 
= ∅,
0, A ∩ B = ∅.

Then condition (3) will be true,

since s0(X,B) = 1 ∀B. In this case, we have ConΓ (F1, F2) = Con0(F1, F2) and
we will obtain: Con0(ηF1, F2) ≤ Con0(F1, F2) ∀η ∈ [0, 1].

Example 2. Let s(A,B) = |A∩B|
|X| . Then the condition s(A,B) ≤ s(X,B) ∀A,B

is satisfied and also the inequality ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), ∀η ∈ [0, 1] is
true.

The continuous dependence of the conflict measure ConΓ (ηF1, F2) on the
discount coefficient η implies that the measure ConΓ will be strictly monotonic
for small (close to 1) discounting of the masses.

If focal elements are blurred only, then we have the following proposition.

Proposition 2. We have in the case of small internal (external) δ-blurring of
focal elements: 0 ≤ ConΓ (ηF1, F2) − ConΓ (F1, F2) ≤ 2δ(η)θ0

1−2δ(η)θ0(∣
∣ConΓ (F1, F2) − ConΓ (ηF1, F2)

∣
∣ ≤ 2δ(η)θ0

(
1 − ConΓ (F1, F2)

))
.
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5 Conflict Variation When Transforming Categorical
Bodies of Evidence

We consider more detailed the conflict variation when transforming categorical
bodies of evidence. Let two categorical bodies of evidence FA and FB be given.
Then ConΓ (FA, FB) = 1 − s(A,B). We’ll consider blurring and discounting the
body of evidence FA. As a result, we get a simple evidence ηFA = ηFA(η) + (1 −
η)FX , where A(η) is some blur of the focal element A. Then

ConΓ (ηFA, FB) = 1 − s(A(η), B)η − s(X,B)(1 − η).

We will evaluate the change in conflict in the case of discounting and blurring
of categorical evidence for substantially ’close’ focal elements.

Definition 5. The focal elements A and B are said to be substantially close to
each other with respect to the index s, if s(A,B) ≥ max {s(A,X), s(X,B)}.

The substantially closeness of the focal elements A and B suggests that they
are not only close to each other (the value s(A,B) is large), but also strongly
differ from the entire set X. Below, we will consider relations of substantial
closeness only with respect to the Jaccard index.

Suppose now that only the focal element A is blurred in the categorical
evidence FA. In this case, we have the following propositions.

Proposition 3. We have:

1) ConΓ (ηFA, FB) ≥ ConΓ (FA, FB) in the case of small internal blurring of the
element A;

2) in the case of small external blurring of the element A: ConΓ (ηFA, FB) ≥
ConΓ (FA, FB) if B ⊆ A and ConΓ (ηFA, FB) ≤ ConΓ (FA, FB) in all other
cases.

Proposition 4. If the focal element A has the same relative position with the
elements B and C (with respect to mutual inclusion or intersection), then the
conflict measure ConΓ will be monotonic for small blurring of any nature (inter-
nal, external, or neutral) for the triple categorical bodies of evidence FA, FB and
FC , i.e. ConΓ (ηFA, FB) ≤ ConΓ (ηFA, FC), if ConΓ (FA, FB) ≤ ConΓ (FA, FC)
for any admissible values η.

Finally, we present some result on the change in the conflict when discounting
and blurring categorical bodies of evidence only for the case of a stable location
of substantially close focal elements A and B.

Proposition 5. Let the focal elements A and B be stably located, substan-
tially close and B ⊆ A or A ⊆ B. Then the inequality ConΓ (ηFA, FB) ≥
ConΓ (FA, FB) is true for small internal blurs ⇔ δ(η) ≤ 1−η

2θ0
· s(A,B)−s(X,B)

s(A,B)−(1−η)s(X,B)

&B ⊆ A or δ(η) ≤ 1−η
2θ0η · s(A,B)−s(X,B)

s(A,B) &A ⊆ B.
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6 Numerical Example

Let’s consider an example of selection of analysts’ forecasts on the cost of
Brent crude oil in 2021 for aggregation [3]. Forecast prices provided by 7 major
investment banks: BNP Paribas, Citigroup, RBC, JPMorgan, Bank of America,
Deutsche Bank, Standard Chartered. Each forecast is an interval Ai = [ai, bi),
where ai, bi are the forecasts of the i-th investment bank for Brent crude oil
prices in the 4th quarter of 2020 and in the 4th quarter of 2021, respectively (see
Table 1). Thus, each prediction is categorical evidence FAi

, i = 1, ..., 7.
We will define the reliability ηi of the categorical body of evidence FAi

as
inversely proportional to the deviation of the middle of the predicted interval (the
’mean’ value of the categorical evidence FAi

) E(FAi
) = ai+bi

2 from the current
value of the Brent oil price c0. In this case, the formula ηi = 10+max dk−di

15+max dk−min dk

was used, where di = |E(FAi
) − c0|. The value c0 was taken equal to the price of

Brent oil as of the date 1.03.2021: c0 = 65. The values of the lengths li = l(Ai) =
bi − ai of the intervals-focal elements characterize the degree of uncertainty in
the forecasts. The interval X = [20, 80] was considered as the base set (upper
and lower prices for Brent crude oil for the last three years).

Table 1. Boundaries of focal elements,
reliability and uncertainty of evidence
bodies.

Investment banks ai bi ηi li

A1 BNP Paribas 45 59 0.8 14

A2 Citigroup 44 56 0.71 12

A3 RBC 41 55 0.63 14

A4 JPMorgan 39 52 0.53 13

A5 Bank of America 47 51 0.67 4

A6 Deutsche Bank 45 50 0.61 5

A7 Standard Chartered 35 50 0.41 15

Table 2. The values of the conflict mea-
sure ConΓ with discounting and with mixed
blur.

A1 A2 A3 A4 A5 A6 A7

A1 0.26 0.5 0.64 0.75 0.63 0.69 0.76

A2 0.5 0.35 0.55 0.7 0.56 0.61 0.73

A3 0.64 0.55 0.4 0.59 0.59 0.51 0.65

A4 0.75 0.7 0.59 0.44 0.7 0.58 0.57

A5 0.63 0.56 0.59 0.7 0.4 0.58 0.76

A6 0.69 0.61 0.51 0.58 0.58 0.42 0.66

A7 0.76 0.73 0.65 0.57 0.76 0.66 0.43

It seems advisable to use internal blur for ‘large’ (in length li) focal elements
and external blur for ‘small’ focal elements. It can be seen from Table 1 that
the focal elements A5 and A6 can be considered small and we will use external
blur for them. The rest of the focal elements can be considered large and we
will use internal blur for them. The values of the conflict measure with discount-
ing and with the described mixed blurring are presented in Table 2. The blur
function δ(η) = 1 − η was used. In this case, the following pairs of evidence
are prioritized for combining according to the principle of minimum conflict:
(F1, F2) � (F3, F6) � (F2, F3) ∼ (F2, F5).

Let us now consider the aggregation of the highest priority pairs of bodies of
evidence (F1, F2) and (F3, F6) with mixed blur. We will aggregate simple bodies
of evidence ηiF

A
(ηi)
i

and ηj F
A

(ηj)
j

using the formula (2): ηiF
A

(ηi)
i

⊗ ηj F
A

(ηj)
j

=

(Ai,j ,mi,j) =: Fi,j .
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We will evaluate the quality of the combination by finding changes in the
characteristics of the aggregated evidence compared to the same characteris-
tics of the aggregated evidence bodies. We will consider such characteristics of
evidence as the degree of imprecision, reliability and conflict.

The degree of imprecision of the body of evidence F = (A,m) will be esti-
mated using the functional H(F ) =

∑
A∈A m(A) |A|. Let Hi = H

(
ηiF

A
(ηi)
i

)
,

Hi,j = H (Fi,j).
The reliability of the result of combining the bodies of evidence ηiF

A
(ηi)
i

and
ηj F

A
(ηj)
j

(we denote it by ηi,j) will be calculated using the above formula, as a

normalized estimate of the distance from the ’average’ value of the prediction
E (Fi,j) to the current value of c0. The ’average’ value E(F ) of the body of
evidence F = (A,m) is calculated by the formula E(F ) =

∑
A∈A m(A)E(FA)

(if A is a fuzzy number, then E(FA) is equal to the center of gravity of this
number: E(FA) =

∫
X

xμA(x)dx/
∫

X
μA(x)dx).

In addition, we will find the value of the conflict measure ConΓ between the
result of combining Fi,j and each of the bodies of evidence ηiF

A
(ηi)
i

and ηj F
A

(ηj)
j

.

The corresponding values of the conflict measure will be denoted by ConΓ
i and

ConΓ
j . Table 3 shows the changes in the characteristics of imprecision, reliability

and conflict after aggregation of simple bodies of evidence ηiF
A

(ηi)
i

and ηj F
A

(ηj)
j

for pairs of focal elements A1, A2 and A3, A6.

Table 3. Changing characteristics after aggregation.

Hi Hj Hi,j ηi ηj ηi,j ConΓ ConΓ
i ConΓ

j

A1, A2 21.11 23.27 13.77 0.8 0.71 0.73 0.5 0.4 0.34

A3, A6 27.64 27.51 22.01 0.63 0.61 0.64 0.51 0.65 0.4

It can be seen from this table that the degree of imprecision decreases after
combining, reliability increases when combining a pair A3, A6 and changes itself
in different ways when combining a pair A1, A2. The conflict between the result
of the combination and the original evidence is reduced. Thus, we get more
accurate, equally reliable and less conflicting evidence after combining.

7 Conclusion

The measure of the conflict between the bodies of evidence defined on the real
line is considered in this article. The change of this measure in cases of ‘blurring’
of focal elements and discounting of masses is investigated. These procedures
are performed in order to improve the robust properties of the conflict measure,
to take into account the caution or optimism of experts as sources of informa-
tion, and also to take into account the reliability of these sources. Blurring of
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focal elements is modeled using fuzzy numbers. The properties of the robustness
and the monotonicity of the conflict measure, the directionality of change of
the conflict measure are considered with regards of small transformation. These
properties are being studied for different types of focal element ‘blurring’, which
correspond to varying degrees of expert caution. A numerical example of calcu-
lating the values of the conflict measure, taking into account the blurring and
discounting, when choosing for the subsequent aggregation of expert forecasts
regarding the oil price is considered.
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Abstract. Measuring inconsistency has been and is still an active
research topic in both logic and evidence theory. However, the two fields
have developed distinct notions and measures of inconsistency, following
different paths. In this paper, we attempt to build some first bridges
between the two trends, suggesting some first means for one to enrich
the other, and vice-versa.

Keywords: Inconsistency · Logic · Belief functions

1 Introduction

Evidence theory (a.k.a. Dempster-Shafer theory, Belief function theory) and logic
share many common concerns, and one of them is how to deal with inconsistency
of information coming from multiple sources. For example, the notion of maximal
coherent subsets or its dual, minimal unsatisfiable subset, appear in both settings
to deal with inconsistencies [4,18].

One particular problem that has attracted a lot of attention in the two set-
tings is how to measure inconsistency [3,5,6,14,18]. However, as the two fields
commonly use different basic models and assumptions (e.g., in the way the set of
possible worlds is generated), they have provided different answers to this issue.

Our goal in this paper is not to introduce new ways to measure conflict or
inconsistency in belief function theory, as there is already an ample literature
on the topic (the reader can check [3,9,14], for instance). Our agenda is rather
to explore what logic and belief functions theory can bring to each other when
it comes to measure inconsistency. Similarly, while bridges between evidence
theory and some logic frameworks such as penalty logic were studied before [16],
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the interconnections of the two settings when it comes to inconsistency is barely
mentioned, let alone investigated.

In this paper, we mainly expose why we think tools issued from logic could
be interesting for evidential reasoning and inconsistency quantification, and pro-
pose a simple way to use them within evidential reasoning. In particular, we
think that measures of inconsistency issued from logic can help in identifying
the main sources of observed inconsistency, a topic already explored within evi-
dence theory [15], but never by using a logical perspective.

We start by detailing an example motivating the topic considered on this
paper in Sect. 2, in which we also provide some notations used in the paper.
Section 3 then makes a first simple, yet original proposal1 to embed inconsistency
measures issued from logic within evidential reasoning.

2 A Motivational Example

In this section, we first introduce some notations, before detailing an example
motivating the interest of using inconsistency measures within the framework of
evidence theory.

2.1 Needed Notations

We consider a finite propositional language L. We denote by Ω the space of
all interpretations of L, and by ω an element of Ω. Given a formula φ, ω is a
model of φ if it satisfies it, denoted ω |= φ. We denote the models of a formula
φ by Eφ, that corresponds to usual subsets of Ω, the set of all interpretations.
For convenience and to recall that we are assuming that sets are models of
propositional logic formulas, we will also sometimes denote by ⊥ and � the
empty set ∅ and Ω, respectively. Since there is no ambiguity in propositional
logic, we will also confuse φ with its sets of models for convenience. A knowledge
base KB = {φ1, . . . , φn} is usually formed of a conjunction φ1 ∧ . . . ∧ φn of
formulas. We will denote by K the set of possible knowledge basis.

We consider that uncertain information is modelled by mass functions, i.e., a
non-negative and normalised mapping m : Ω → [0, 1] with

∑
E⊆Ω m(E). Subsets

with a strictly positive mass are called focal elements. In our case Ω will be the
set of interpretations, and focal elements Eφ will correspond to sets of models
of formulas φ. Usually, the inconsistency of a mass function m is measured by
the quantity m(∅). While there are good reasons (by which we mean properties
and axioms) to consider it as a reasonable inconsistency measure [3], several
authors have discussed alternatives [3,9,14]. In this paper, we will not question
nor challenge its validity, but will rather increase its expressiveness.

Also, while in propositional logic there is in general no harm in confusing a
knowledge base and/or a formula φ with its set of interpretations Eφ, as two
formulas giving rise to the same set are semantically equivalent, in our case it

1 to our knowledge.



Logical and Evidential Inconsistencies 209

will be important, at least in the case of inconsistent knowledge bases and mass
functions, to consider not only the sets Eφ but also the knowledge bases from
which they stem, as we will precisely argue that it can be sensible to distinguish
Eφ1 = ∅ and Eφ2 = ∅, despite the fact that φ1, φ2 induce the same set of
interpretations.

Our discussion is mostly independent of the origin of the mass function, even
if such origins may be the reason to use refined inconsistency measures (see
Sect. 3.3). Here, we will consider examples where the inconsistency is generated
by the merging rule, and we will focus on the standard conjunctive rule to
simplify the exposure. Given two mass functions m1,m2, the mass m12 on a
given set C resulting from the conjunctive rule is

m12(C) =
∑

A,B⊆Ω,A∩B=C

m1(A)m2(B). (1)

Let us now proceed to an example that will serve as a basis and motivation for
our discussion.

2.2 The Example

In maritime security, estimating if a vessel under surveillance is involved in
some illicit activity often requires combining different opinions from experts
with different expertise, together with artificial intelligence tools. Let us con-
sider the propositional language a, b where a denotes the proposition “fish-
ing vessel” and b the proposition “involved in an illicit activity”, so that
Ω = {(a, b), (a,¬b), (¬a, b), (¬a,¬b)}. One expert is able to answer about the
conjunction of these events with a level of confidence α ∈ [0; 1], while a classifier
trained for recognizing fishing vessels expresses information only about a or ¬a
with similar levels of confidence. For instance, the focal elements φ1 = {a ∧ b},
i.e., “fishing vessel involved in an illicit activity” and φ2 = {¬a}, i.e., “not a
fishing vessel” generate Eφ1 = {(a, b)} and Eφ2 = {(¬a, b), (¬a,¬b)} and the
following mass functions:

m1(φ1 = {a ∧ b}) = α1 m1(�) = 1 − α1

m2(φ2 = {¬a}) = α2 m2(�) = 1 − α2

We consider now another observation of that vessel under investigation provided
by another expert who thinks that the vessel is indeed a fishing vessel, but that it
is not involved in illicit activity, thus partially disagreeing with the first expert,
leading to a third mass function m3:

m3(φ3 = {¬b ∧ a}) = α3 m3(�) = 1 − α3

The conjunctive combination of m3 with m1 and m2, if we restrict ourselves to
those intersections leading to the empty set, is

m1...3(φ1 ∧ φ2 ∧ φ3 = ⊥) = α1α2α3
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m1...3(φ1 ∧ φ2 = ⊥) = α1α2(1 − α3)

m1...3(φ1 ∧ φ3 = ⊥) = α1(1 − α2)α3

m1...3(φ2 ∧ φ3 = ⊥) = (1 − α1)α2α3.

The usual measure of inconsistency m(∅) for belief functions is equal to
α1α2 + α1(1 − α2)α3 + (1 − α1)α2α3 as it sums up the masses allocated to
the inconsistent formulas. However, it could well be argued (and has been in
standard logic setting) that the consistency of knowledge base φ1 ∧ φ2 ∧ φ3 is
usually perceived as different from the one of φ1∧φ2, φ1∧φ3, or φ2∧φ3. It would
therefore be necessary to be able to make such a distinction in the measurement
of the inconsistency of m.

In the next section, we make a first proposal as how this could be done by
combining inconsistency measures issued from the logic framework to masses of
evidence.

3 A First Step Towards a Combination

As we said before, a knowledge base KB = {φ1, . . . , φn} is a collection of formu-
las, which is inconsistent (denoted KB � ⊥) iff {ω |= ∧n

i=1φi} = ∅, i.e., if there is
no model/interpretation/world satisfying the set of formulas. An inconsistency
measure I : K → R

∞
+ for a knowledge base KB associates to KB a positive

extended real-value quantifying how much it is inconsistent.

3.1 A Quick Note on Logical Inconsistency Measures

There is a large literature on the properties that I should satisfy, and we refer
to [18] for a rather exhaustive study. In this work, we will only focus on a
handful of normalized measures, i.e., I(KB) ∈ [0, 1], with the usual requirement
that I(KB) = 0 if and only if KB is consistent. While such a normalisation is
usually not a pre-requisite in logical settings, it should be satisfied if we want
to be able to compare different situations (e.g., different combination rules or
subset of sources), and if we want to be consistent with evidence theory. Below
we introduce two measures we will consider and discuss in the rest of the paper,
as they will allow us to connect logical inconsistency measures with classical
evidential ones, as well as illustrate the fact that other classical inconsistency
could be useful to better analyse/differentiate various situations.

Definition 1. Drastic inconsistency measure. The measure Id is such that

Id(KB) =

{
1 if KB � ⊥
0 else

(2)

To introduce the next measure of logical inconsistency, we need to consider
probabilities over Ω and the associated probability measure over formulas (or,
equivalently, events). If p is a probability mass over the set of interpretations Ω,
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then the probability associated with a formula φ is P (φ) =
∑

ω|=φ p(ω), i.e., the
probability of the set of models of this formula. We will denote P(Ω) the set of
all such probabilities over Ω.

Example 1. Consider the example of Sect. 2.2 with the formula φ2 (“not a fishing
vessel”), and the uniform probability over Ω, p(ω) = 1/4. Then

P (φ2) = p((¬a, b)) + p((¬a,¬b)) = 1/2

Definition 2. Minimal η-inconsistency measure. The measure Iη is such that

Iη(KB) = 1 − max
p∈P(Ω)

inf
φ∈KB

P (φ) (3)

Iη corresponds to one minus the probability mass over interpretations that
maximises the probability of each formula being true. If KB is consistent, i.e.,
if all formula have a common model (say ω∗), then Iη(KB) = 0 is obtained by
p(ω∗) = 1. Otherwise, it is lower than one, and reaches zero if and only if one
of the formula φ is self-inconsistent (e.g., φ = a ∧ ¬a). It should be noted that
the probability in Eq. (3) is a way to measure inconsistency of a single KB, and
is not related to the set of probabilities we can associate to the belief function
whose inconsistency we are trying to measure. An easy way to see this is that,
if we have inconsistency in the belief function, then the corresponding set of
probabilities is empty, and therefore replacing P(Ω) in Eq. (3) by an empty set
would not make much sense.

Example 2. Consider again the example of Sect. 2.2 with the three formulas
φ1, φ2, φ3. We do have

Id({φ1, φ2}) = Id({φ1, φ3}) = Id({φ2, φ3}) = Id({φ1, φ2, φ3}) = 1

and

Iη({φ1, φ2}) = Iη({φ1, φ3}) = Iη({φ2, φ3}) = 1/2, Iη({φ1, φ2, φ3}) = 2/3

That means that according to Id there is no difference in inconsistency for
instance between “the vessel is not a fishing vessel” (φ2) and “the vessel is a
fishing vessel involved in an illicit activity” (φ1) on the one hand and between
the same two formulas and “the vessel is a fishing vessel not involved in an illicit
activity” (φ3). Using Iη allows discriminating between the two situations.

3.2 A Simple Proposal to Embed Logical Measure in Evidence
Framework

Our proposal is quite simple: we consider a mass function m having for “focal
elements”2 a collection of knowledge bases KB1, . . . ,KBn, among which some
2 Technically speaking, we admit that multiple knowledge bases may lead to the same

subset of models, meaning that the same subset may appear multiple times as focal
element.
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of them are inconsistent. Given a logical inconsistency measure I, and by small
abuse of notation, the inconsistency of m according could be computed as

I(m) =
∑

KBi

I(KBi) · m(KBi), (4)

with I(m) = 0 if and only if m(∅) = 0, if I has the usual requirement of
inconsistency measures.

One can also readily see that in the case where I = Id, we have

Id(m) =
∑

KBi�⊥
m(KBi) = m(∅), (5)

and we retrieve the usual measure of inconsistency for belief functions. Since Id

is an upper bound of other normalized inconsistency measures, so will be Id(m).
Equation (4) is therefore a legitimate and straightforward extension of classical
measure of inconsistency for mass functions, that basically consists of a weighted
average of masses over the empty set (i.e., KBs having the same empty set of
models but are syntactically different). One could however think of different ways
to combine the m(KBi) and I(KBi), for example by using a T-norm within the
sum, that would not change our observation made for Eq. (5). Replacing the
sum seems a bit trickier if we want the classical inconsistency measure m(∅) to
still be a particular instance of our framework. Let us now come back to our
previous example.

Example 3. If we come back to the example of Sect. 2.2, we can see that using
Id(m), all focal elements generating some inconsistency will be considered as
having the same weight, i.e.,

Id(m1...3) = α1α2α3 + α1(1 − α2)α3 + α1α2(1 − α3) + (1 − α1)α2α3,

in contrast, we will have

Iη(m1...3) =
2
3
α1α2α3 +

1
2
α1(1 − α2)α3 +

1
2
α1α2(1 − α3) +

1
2
(1 − α1)α2α3,

indicating that some focal elements leading to inconsistency have more impor-
tance than others.

3.3 The Case of Simple Support Mass Functions

In a setting where focal elements are equivalent to logical formulas, a simple
support mass function takes the form m(φi) = αi, m(�) = 1 − αi.

In this case, using logical inconsistency measurements may not only allow
one to have a more nuanced analysis of conflict, but also potentially identify
which sources are the most responsible for the observed conflict. This would
be especially interesting in procedures aiming to restore consistency by, e.g.,
forgetting some sources.
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Indeed, some works exist on identifying the formula bringing the most conflict
in a knowledge-base, for instance based on the Shapley value [7] or by considering
minimal inconsistent subsets [8]. Since in the case of simple support functions, a
formula is equivalent to the information provided by a source (minus its uncer-
tainty), such works could be used to identify which source is to blame for the
observed inconsistency. Such values have been used, for instance, to guide the
repair of inconsistent knowledge bases [19], i.e., how to remove the inconsistency.
One possible use of our proposal would then be to adapt such strategies to the
evidential framework, that is to use inconsistency measures to guide discounting
strategies or to choose some information item to remove (as a formula φi in the
simple support case is associated with an information source).

4 Conclusion and Discussion

In this paper, we made some first exploration as to how inconsistency handling
tools developed in logic and in evidence theory could be combined together, so
as to benefits from each others. More precisely, we have pointed out that using
inconsistency measurements issued from logic may allow one to have a refined
analysis of conflict between mass functions, at least when those are bearing over
logical formulas (or their models). To do so, we have made a simple proposal to
embed logical inconsistency measures in evidence theory. Note that such mass
functions will be typically encountered in applications involving logical settings,
such as the semantic web [13] or pattern mining [17] where the extraction of logi-
cal association rule is common. Recent works also show that probabilistic answer
set programming generates mass functions over possible interpretations [2]

However, and as indicate the title of our paper, these are only the first steps
on a possibly long road, as many things remain to be explored, such as studying
the meaning of the numerous inconsistency measures for belief functions, or how
they can be used in practice (e.g., to repair inconsistent combinations).

In addition to that, we can also point out other ways in which studies about
inconsistency in logic and evidence theory could be intertwined:

– A first one is to try to draw connection between logical inconsistency measures
and other approaches dealing with conflict in evidence theory. One could think
for example of distance-based approaches [14], geometrical approaches [1]
or approaches that aim at decomposing the existing conflict into different
parts [15];

– A second one would be to develop an axiomatic of inconsistency measures
adapted to evidential knowledge bases, for instance in the fashion of [10]
where this task was done for prioritized knowledge bases, which are similar
to possibilistic knowledge bases. Connections could also be made with the
work of Muiño [11,12].
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17. Samet, A., Lefèvre, E., Ben Yahia, S.: Evidential data mining: precise support and
confidence. J. Intell. Inf. Syst. 47(1), 135–163 (2016). https://doi.org/10.1007/
s10844-016-0396-5

18. Thimm, M.: On the evaluation of inconsistency measures. In: Measuring Inconsis-
tency in Information, vol. 73, chap. 2. College Publications (2018)

19. Yun, B., Vesic, S., Croitoru, M., Bisquert, P.: Inconsistency measures for repair
semantics in obda. In: IJCAI-ECAI: International Joint Conference on Artificial
Intelligence-European Conference on Artificial Intelligence, pp. 1977–1983 (2018)

https://doi.org/10.1007/978-3-540-44792-4_14
https://doi.org/10.1007/978-3-540-30597-2_7
https://doi.org/10.1007/978-3-540-30597-2_7
https://doi.org/10.1007/978-3-030-03643-0_4
https://doi.org/10.1007/s10844-016-0396-5
https://doi.org/10.1007/s10844-016-0396-5


A Note About Entropy and Inconsistency
in Evidence Theory

Anne-Laure Jousselme1(B), Frédéric Pichon2, Nadia Ben Abdallah3,
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Abstract. Information content is classically measured by entropy mea-
sures in probability theory, that can be interpreted as a measure of inter-
nal inconsistency of a probability distribution. While extensions of Shan-
non entropy have been proposed for quantifying information content of
a belief function, other trends have been followed which rather focus
on the notion of consistency between sets. Relying on previous general
entropy measures of probability, we propose in this paper to establish
some links between the different measures of internal inconsistency of a
belief functions. We propose a general formulation which encompasses
inconsistency measures derived from Shannon entropy as well as those
derived from the N -consistency family of measures.

Keywords: Information content · Inconsistency · Conflict · Entropy

1 Introduction

In a multi-intelligence context, information generally arises from different sys-
tems (or services), each having their own local representation and underly-
ing mathematical formalism. The choice of this formalism is usually driven
by the nature of data or information to be handled. For instance, numerical
data (when available in large volume) usually summarize in probabilistic mod-
els, while human judgments are best handled by logical approaches managing
knowledge bases. The underlying mathematical setting constrains not only the
internal reasoning of those services, but also their output which includes some
meta-information such as the information content or information value. In deci-
sion support, conflict or inconsistency measures play an essential role in detect-
ing sources’ defect or intentional deception, but also in quantifying information
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credibility when no ground truth is available. In probability theory, measuring
conflict goes back to Shannon entropy [16] which quantifies an inverse notion of
the information contained in a probability distribution, i.e. a notion of internal
inconsistency (e.g., [10]). Indeed, the state of maximum inconsistency is reached
by the uniform distribution while the state of minimal inconsistency is reached
whenever an element is assigned a probability of 1. In propositional logic, a belief
base (a set of formulas) is inconsistent if it entails the contradiction1 [6]. In evi-
dence theory, which captures both probabilistic and logical notions, measuring
inconsistency of belief functions has thus naturally followed two main trends:
on the one hand, some measures extend Shannon entropy (e.g., [5,7–9,21]) and
on the other hand inconsistency is measured through the inconsistency between
sets (e.g., [3,4,13]).

We propose in this paper to establish some links between the different
approaches to inconsistency measurement. In Sect. 2, we introduce basic con-
cepts and notations of belief functions together with two families of measures of
entropy for probabilities. In Sect. 3 we survey the different trends followed and
propose a general formulation, and highlight the main elementary constructs
leading to inconsistency measures. In Sect. 4, after revealing the “hidden” mass
of the empty set within Shannon entropy we propose a general formulation which
encompasses most of classical existing measures across the different approaches.
We conclude in Sect. 5 on perspectives and future work.

2 Background and Notations

2.1 Belief Functions

We consider in this paper the singular interpretation of belief functions as devel-
oped by Shafer [15] and Smets and Kennes [17]. Belief functions are thus used
to represent and handle subjective uncertainty (or beliefs) of an agent about the
actual state of the world. Let us denote by X an uncertain variable defined on
frame of discernment X = {x1, . . . , xK} representing the possible values (states)
for that variable. A mass function is a mapping m : 2X → [0, 1] satisfying∑

A⊆X m (A) = 1. The mass m(A) represents the amount of belief allocated to
the fact of knowing only that x ∈ A. We will denote by M the set of all mass
functions on X . Subsets A of X such that m(A) > 0 are called focal sets of m,
and the set of focal sets of m will be denoted by F . A mass function m is called
categorical if m(A) = 1 for some A ⊆ X , in which case it defines a classical set
and will be denoted by mA in the following. It is called vacuous if m(X ) = 1
and denoted by mX . It represents total ignorance. The mass function is called
empty if m(∅) = 1 and denoted by m∅. It represents total inconsistency in the
agent’s beliefs about the set of values that are conceivable for x [18]. It is called
Bayesian if m(A) �= 0 only for |A| = 1 and defines a probability distribution.
And finally it is called normalised if m(∅) = 0.

1 Or equivalently, is unsatisfiable or has no model.
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We define a consistency index between two sets to satisfy minimally:

φ(A,B) =

{
0 if A ∩ B = ∅
1 if A = B

(1)

Equivalent representations of a mass function m are the belief function Bel
and the plausibility function Pl which follow the general formulation:

f(A) =
∑

B⊆X
m(B)φ(A,B) (2)

Pl(A) is obtained with φ(A,B) = 1 if A ∩ B �= ∅ and 0 otherwise, and is the
amount of belief consistent with x ∈ A; Bel(A) is obtained with φ(A,B) = 1
if B ⊆ A and 0 otherwise, and is the amount of belief implying x ∈ A. The
contour function π : X → [0, 1] is such that π(x) = Pl({x}), for all x ∈ X . It is
the plausibility function restricted to the singletons of X .

Let m1 and m2 be two mass functions representing pieces of evidence about
x. Their combination by the conjunctive rule [2] is defined by, for all A ⊆ X ,

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C). (3)

The conflict between m1 and m2 can be quantified as m1 ∩©2(∅) [15].

2.2 Generalized Entropy Measures of Probabilities

Rényi Entropy. Given a probability distribution p over X , the Rényi entropy
of order α, is defined for a parameter α ∈ IR+\{1} as [14]:

δ
(α)
R (p) =

1
1 − α

log

(
∑

x∈X
p(x)α

)

(4)

For α = 0, (4) is Hartley measure log (|X |), while Shannon entropy is retrieved
whenever α → 1, δ

(1)
R (p) = −∑

x∈X p(x) log p(x). For α = 2, the colli-
sion entropy is defined, δ

(2)
R (p) = −∑

x∈X p(x)2. Interestingly, δ
(α)
R (p) is a

decreasing function of α, and for α → +∞, we obtain the minimum entropy,
δ
(∞)
R (p) = − log maxx∈X p(x).

Power Entropy. Another family of entropy measures which still extends Shan-
non entropy has been defined by Vajda and Zvárová [20], relying on the decreas-
ing power function ψa :]0; 1] → IR, for a ∈ IR:

ψa(μ) =

{
1

a−1

(
1 − μa−1

)
, if a �= 1

− log(μ) if a = 1
(5)
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with ψa(0) = limμ→0 ψa(μ) if a �= 1, ψ1(0) = +∞ and 0 · ψa(0) = 0. Power
entropy measures are thus defined as [20]:

δ
(a)
V (p) =

∑

x∈X
p(x)ψa (p(x)) (6)

Similarly to Rényi entropy, Shannon entropy is obtained for a = 1 while δ
(0)
V (p) =

log (|X |) − 1 is one-to-one related to Hartley entropy. We note that for a �= 1 in
Eq. (5), Eq. (6) defines Tsallis entropy [19].

Power functions ψa are interesting as they allow to reverse a consistency
notion into an inconsistency notion. Indeed, they are decreasing and satisfy
ψa(1) = 0, meaning that if p(x) is a degree of consistency, ψa(p(x)) is a degree
of inconsistency. In the following, we will denote by φ indexes or measures of
consistency between sets or of a mass function, while the corresponding incon-
sistency indexes or measures will be denoted by δ. For instance, an inconsistency
index corresponding to (1) would satisfy minimally δ(A,B) = 1 if A ∩ B = ∅
and 0 if A = B.

3 Inconsistency of Belief Functions

3.1 An Entropy Approach

The first trend followed to quantify the internal inconsistency of a belief function,
aims at extending Shannon entropy, focusing on the probabilistic dimension of
belief functions. Developed mostly between 1982 and 1992, the measures follow
the general formulation:

δ(m) =
∑

A⊆X

m(A)

⎛

⎝− log
∑

B⊆X

m(B)φ(A,B)

⎞

⎠ (7)

where φ(A,B) is a consistency index between the sets A and B satisfying (1). In
particular, Yager’s dissonance measure is obtained for φ(A,B) = 1 if A∩B �= ∅.
Other definitions for φ still satisfying (1) lead to the measures of confusion from
Höhle [5], from Nguyen [12], of discord from Klir & Ramer [9] and of strife from
Klir & Parviz [8]. All these measures degenerate to Shannon entropy when m is
a Bayesian mass function and to Hartley measure when m is categorical.

3.2 A Consistency Approach

Another trend followed has given up on the extension of Shannon and Hartley
measures, and their additivity property. Yager first defined a measure of consis-
tency [22] while George and Pal defined the measure of total conflict [4] based
on Jaccard index. These two measures correspond to the general formulation:

δ(m) =
∑

A⊆X

m(A)

⎛

⎝1 −
∑

B⊆X

m(B)φ(A,B)

⎞

⎠ (8)
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3.3 A N-consistency Approach

Recent work [13] proposes the measure of consistency of m:

φN (m) = 1 − m(N)(∅), (9)

where m(N) denotes the mass function resulting from the combination of m by
itself N times, i.e. m(N) = m(N−1) ∩© m with m(0) := mX . Hence, we have
m(1) = m, m(2) = m ∩©m and more generally m(N) = ∩©N

1 m. φN (m) measures
different “shades” of internal consistency of m as N varies and in particular
φN (m) encompasses two forms of consistency already defined in the literature
[13]:

φ1(m) = 1 − m(∅) = max
A⊆X

Pl(A) (10)

φ2(m) = 1 − m(2)(∅) =
∑

A⊆X
m(A)Pl(A) (11)

where φ1 is the measure of so-called probabilistic consistency defined in [3] and
φ2 is the measure of consistency defined in [22]. It has been proved as well that
φ|F| is an alternative measure of logical consistency to the one proposed in [3]
as φπ = maxx∈X π(x). More details can be found in [13].

All measures introduced in this section are built upon a measure of consis-
tency between sets, φ and other elementary constructs such as a reverse function
transforming the notion of consistency into inconsistency. Entropy-like measures
(Sect. 3.1) as well as consistency-like measures (Sect. 3.2) are all based on pair-
wise measures of consistency between sets. Instead, the N -consistency derived
measures (Sect. 3.3) are based on N -wise measures. In the following Sect. 4, we
will thus exploit that extension in order to establish a more general formulation
covering the three types of approaches.

4 Extending Inconsistency

Let us introduce the consistency index between N sets as [13]:

φN (A1, . . . , AN ) =

{
1 if

⋂
i=1,...,N Ai �= ∅

0 else
(12)

and we explore below the extension from pair-wise index to N -wise index in
measuring the inconsistency of m.

4.1 Observation with Probabilities

Let us start by clarifying why Shannon entropy actually quantifies a notion of
internal conflict (or inconsistency). Introduced by Shannon as a measure of infor-
mation [16], the entropy of a probability distribution is the expected information
where IX(x) = − log(p(x)) is the self-information associated with the outcome
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x ∈ X . If p(x) = 0, then IX(x) = −∞ and if p(x) = 1 then IX(x) = 0. With
0 · log 0 = 0, δSh(p) = 0 if and only if the distribution is focused on a single
element of X (i.e., it exists one x such that p(x) = 1), and δSh(p) = log(|X |) if
and only if p is uniformly distributed over X (i.e., p(x) = 1

|X | ∀x ∈ X ). Hence,
p is the most informative when its entropy is null and it is the least informative
when its entropy is maximum. As such, as noticed for instance in [1,11], Shannon
entropy is rather a measure of uncertainty, and even a measure of internal con-
flict (or inconsistency) for p. Indeed, when p is uniformally distributed over X
the internal inconsistency of p is maximum since the same confidence is assigned
to inconsistent hypotheses xi of X , i.e. such that δ(xi, xj) = 0 for all i �= j and
δ(xi, xi) = 1 for all i, where δ is an inconsistency index satisfying the properties
mentioned in Sect. 2. We can thus re-write Shannon entropy making apparent
the consistency index:

δ
(1)
R (p) =

∑

x∈X
p(x)

⎛

⎝− log
∑

y∈X
p(y)φ(x, y)

⎞

⎠ (13)

Computing the conjunctive self-combination (using (3) for Bayesian mass func-
tions) of p makes it more obvious:

(p ∩© p)(∅) = p(2)(∅) = 1 −
∑

x∈X
p(x)

∑

y∈X
p(y)φ(x, y) = 1 −

∑

x∈X
p(x)2 (14)

which is clearly a measure of the internal inconsistency of p, as p(2)(∅) = 0
iff ∃x ∈ X such that p(x) = 1 and it is maximum for the uniform distribution.
Actually, (14) is Gini impurity that can also be written as

∑
x∈X p(x). (1 − p(x)).

If we denote by p(N) the conjunctive combination of p with itself N times we
obtain before any normalisation:

p(N)(∅) = 1 −
∑

x∈X
p(x)N (15)

which is also an inconsistency measure such that p(N)(∅) ≥ p(M)(∅) if N > M .
For integer values of α (that we denote by N), Rényi entropy in Eq. (4) can thus
be written as:

δ
(N)
R (p) = − log

(
1 − p(N)(∅)

) 1
N−1

(16)

where
(
1 − p(N)(∅)

) 1
N−1 is a measure of consistency for p, and N ∈ IN∗.

While for Bayesian mass functions, the N -wise comparison of focal sets
reduces to the pair-wise comparison, it is not true in the general case that we
will detail in the next section.

4.2 Extension to Belief Functions

Let us now introduce the function φ
(N)
m (A) which measures the consistency of

m relatively to a specific set A of X , so that for N > 1:

φ(N)
m (A) =

∑

B1⊆X
m(B1) . . .

∑

BN−1⊆X
m(BN−1)φN (A,B1, . . . , BN−1) (17)
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and φ
(1)
m (A) = φ1(A) as defined in Eq. (12). Note that for N = 2 we get φ

(2)
m (A) =

Pl(A). Then, we define the total consistency of m as:

φ(N)(m) =
∑

A⊆X
m(A)φ(N)

m (A) (18)

which is the expectation of the local inconsistency of m. or N = 1, we get the
probabilistic consistency [3] (Eq. (10)), while for N = 2 we get Yager’s consis-
tency measure [22] (Eq. (11)). We thus propose the following general formulation:

δ(N)
a (m) =

∑

A⊆X
m(A)ψa

(
φ(N)

m (A)
)

(19)

where ψa is the power function introduced in (5).
For a = 1 (i.e., − log(.) as inverse function) and N = 2 (i.e., pair-wise

comparison of focal sets), we retrieve most of the entropy measures introduced
earlier, with different consistency indexes φ between sets. For a = 2 (i.e., 1 − (.)
as inverse function) and still N = 2, we retrieve the consistency-like measures of
George and Pal [4], and Yager [22].

Interestingly, this expression allows also capturing the N -consistency
approaches focused on the mass of the empty set with N -wise comparison of
focal sets. Indeed, if we consider now the case a = 2, with a general value of N ,
(19) becomes simply:

δ
(N)
2 (m) = 1 − φN (m) = m(N)(∅) (20)

As recalled in Sect. 3.3, the function φ|F|(m) obtained for N = |F|, the number
of focal sets of m, has been proven to satisfy required properties of a logical
consistency of m according to the axioms of [3], qualifying itself thus as a valid
alternative measure of logical consistency to φπ(m) = maxx∈X π(x).

Table 1. Entropy and inconsistency measures encompassed by the general expression
of Eq. (19), with different values of a, N and φ.

a = 1 a = 2

N = 2 N = 1 N

φ(A, B) =

{
1 if A ∩ B �= ∅
0 else

Yager [21] Yager [22] Destercke &

Burger [3]

Pichon et al. [13]

φ(A, B) =

{
1 if B ⊆ A

0 else
Höhle [5]

φ(A, B) =

{
1 if A = B

0 else
Nguyen [12]

φ(A, B) =
|A ∩ B|

|B| Klir & Ramer [9]

φ(A, B) =
|A ∩ B|

|A| Klir & Parviz [8]

φ(A, B) =
|A ∩ B|
|A ∪ B| George & Pal [4]
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Table 1 summarises the list of measures corresponding to the general expres-
sion from Eq. 19 for different values of parameters a and N , and for several
consistency indices φ satisfying (1) discussed in this paper. For clarity, the con-
sistency indices are provided for N = 2 (pair-wise comparison of sets) which
corresponds to the most populated case, as displayed in the left part of the
table. Other cases for N = 1 and general N are displayed in the right part of
the table, while the corresponding indices are not defined.

We have thus shown that the expression (19) encompasses not only classical
entropy measures in evidence theory, but also some non-additive measures of
internal conflict and consistency, and last but not the least, measures of incon-
sistency derived from the N -consistency family of measures.

5 Conclusions

In this paper, we have firstly shown that most of inconsistency measures defined
so far in evidence theory satisfy a general formulation involving a pair-wise
consistency index between sets, an inverse function transforming the notion
of consistency into inconsistency and some expectation operator. Furthermore,
by rendering apparent the underlying inconsistency in Rényi entropy family of
measures, we have shown how the inconsistency measure derived from the N -
consistency falls also under this general formulation. This preliminary result
offers new perspectives on the coherent measurement of inconsistency within
and across artificial intelligence systems. In future work, we will study other
types of inconsistency indexes as well as possible links with other logical consis-
tency and entropy measures. We will also explore the possible orders induced by
such information measures.
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{tekwa.tedjini,sohaib.afifi,frederic.pichon,eric.lefevre}@univ-artois.fr

Abstract. Adopting a general framework to faithfully represent uncer-
tainty, such as belief function theory, usually comes at a cost. In many
real-life applications, we are constrained to handle mass functions that
have too many focal elements. Fortunately, one can resort to approx-
imation techniques to bypass this issue. In this paper, we extend the
classical approximation techniques, which are mainly specificity-based,
to other belief function relations such as lattice dominance. This allows
to overcome the limits of classical techniques in some applications.

Keywords: Belief function · Approximation · Specificity · Relations

1 Introduction

Belief function theory [15] is a rich and powerful uncertainty reasoning frame-
work as it extends both the set and probability representations of uncertainty.
Despite its successful application in many real-life problems, it has been criticized
for its high computational complexity. Several techniques have been proposed
to simplify the computations pertaining to this theory, either using exact [12]
or approximate methods. We are particularly interested in the latter. Approxi-
mations can be computed by Monte-Carlo simulations [20], or by replacing the
original mass function by a probability measure or a possibilistic one [7,19].
Other approaches can be used where mass functions are combined on a coars-
ened frame of discernment [3] or where the number of focal sets is reduced
[1,2,8,13,14,18]. We draw a particular attention to this last family of methods.
Besides simplicity, a good approximation has to be consistent and close enough
to the original mass function [8]. Closeness is typically quantified by a distance
measure, whereas consistency is unanimously based on comparing the specificity
of the informative content of the original mass function and its approximation.
Recently, Destercke and al. [4] introduced an approach that extends any set
relation to belief functions. This approach generalizes the notion of comparison
and allows, along with comparing the informative content of beliefs in terms
of specificity, to establish other relations between them such as dominance. In
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 224–233, 2021.
https://doi.org/10.1007/978-3-030-88601-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88601-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-88601-1_23


An Extension of Specificity-Based Approximations 225

this paper, we propose to extend this approach to approximation methods that
reduce the number of focal sets of mass functions. We are motivated by the
deficiency of classical approximation techniques in some applications. This defi-
ciency arises from the use of approximate beliefs that are more or less specific
than the original ones whilst the application requires rather to choose beliefs
that are, for instance, dominant. We will develop this idea later in the paper.

The remainder of this paper is organized as follows. Section 2 gives a quick
reminder on belief functions and set relations. Section 3 describes the notion of
comparison in belief function theory. The proposed generalized approximation
and a particular case study are presented in Sect. 4. We conclude the paper in
Sect. 5.

2 Basic Definitions

In this section, we provide some basic definitions on belief functions and set
relations that are required in our developments.

2.1 Theory of Belief Functions

Let x be an uncertain variable defined on finite set of values X = {x1, x2, . . . , xn}
called the frame of discernment. The available knowledge about x is represented
by a mass function mX : 2X �→ [0, 1] s.t.

∑
A⊆X mX (A) = 1 and mX (∅) = 0.

mX (A) quantifies the part of our belief that x ∈ A without providing any further
information about x ∈ A′ ⊂ A. Each subset A ⊆ X such that mX (A) > 0 is
called focal set or focal element of mX . Other knowledge representations can be
obtained from mX , such as the belief BelX and the plausibility PlX function,
defined for all A ⊆ X :

BelX (A) =
∑

∅�=B⊆A

mX (B), P lX (A) =
∑

B∩A �=∅
mX (B). (1)

BelX is the amount of evidence that supports x ∈ A and PlX is interpreted as
the amount of evidence that is consistent with x ∈ A.

2.2 Set Relations

A relation R between subsets of X is a subset R ⊆ 2X × 2X that specifies which
pair of subsets are related to each other [4]. Let A and B be two subsets of X . We
denote by ARB whenever (A,B) ∈ R. A relation may have several properties
such as: reflexivity (ARA, ∀A ⊆ X ), transitivity (ARB and BRC ⇒ ARC, with
C ⊆ X ), antisymmetry (ARB ∧ BRA ⇒ A = B,∀A,B ⊆ X ), etc. Note that it
is also possible to define more complex relations by combining those properties.
For instance, the set-inclusion relation (ARB ⇔ A ⊆ B) is reflexive, transitive
and antisymmetric [4].
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3 Comparing Belief Structures

According to the Least Commitment Principle [16], if we have to choose among
multiple mass functions compatible with a set of constraints, the most appropri-
ate one is the least informative. To use this principle, one has to define tools to
compare the content of the available mass functions. This is commonly done via
the notion of specialization [6]. Given two mass functions mX

1 and mX
2 defined

on X , mX
1 is said to be at least as informative (specific) as mX

2 , which we denote
by mX

1 � mX
2 , if and only if mX

1 can be obtained from mX
2 by sharing each mass

mX
2 (B) among subsets A ⊆ B. Formally, there exists a non-negative square

matrix, known as the specialization matrix S = [S(A,B)], A,B ∈ 2X , verifying
the conditions below:

∑

A⊆X
S(A,B) = 1, ∀B ⊆ X , (2)

S(A,B) > 0 ⇒ A ⊆ B, ∀A,B ⊆ X , (3)

mX
1 (A) =

∑

B⊆X
S(A,B)mX

2 (B), ∀A ⊆ X . (4)

S(A,B) ∈ [0, 1] is the proportion of mX
2 (B) that flows into A ⊆ B. Note that if

mX
1 � mX

2 then [6]:
[BelX1 , P lX1 ] ⊆ [BelX2 , P lX2 ]. (5)

The recent work of Destercke and al. [4] highlighted the relevance of investigat-
ing other links, besides specificity, between mass functions, particularly those
extending set relations such as equivalence or partial/total order. The authors
introduced a more general definition of the comparison of belief function as fol-
lows:

Definition 1. Let mX
1 and mX

2 be two mass functions and let R be a relation
between subsets of X . We say that mX

1 R̃mX
2 if there is a left stochastic matrix

S, such that ∀A,B ⊆ X .

mX
1 (A) =

∑

B⊆X
S(A,B)mX

2 (B), (6)

(
S(A,B) > 0

)
∧

(
mX

2 (B) > 0
)

⇒ ARB. (7)

S(A,B) is the proportion of mX
2 (B) transferred to A, such that ARB [4].

Note that when R̃ is replaced by � and R by ⊆ in (7), we obtain the spe-
cialization relation defined earlier. Furthermore, when X is ordered, it is also
possible to recover another relation that was studied in [9], by comparing two
subsets A,B ⊆ X defined as A = {a, . . . , a} (a ≤ a) and B = {b, . . . , b} (b ≤ b)
in terms of lattice dominance [4]. We say then that mX

1 is at least as small as
mX

2 , which we denote by mX
1 � mX

2 , with R̃ being replaced by � and R replaced
by ≤d where A ≤d B if a ≤ b and a ≤ b. The following property holds [9]:

mX
1 � mX

2 ⇒ [BelX2 , P lX2 ] ≤d [BelX1 , P lX1 ]. (8)
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4 Generalization of Belief Functions Approximation

Usually, a mass function m is approximated by another mass function m′ that is
at most as specific as m, i.e., m � m′. Assume that we want to approximate m
by reducing the number of its focal sets. m′ can be built from m by preserving
the most significant focal sets, i.e., those with high mass values, and by aggre-
gating or removing the redundant or the least significant ones as in [13]. It is
also possible to reduce the number of focal sets iteratively as in [2,8,14]. These
latter methods help to trade-off between the quality and the computational time
required to determine m′.

In this section, we extend the previously stated techniques to other possi-
ble relations R̃ between m and m′. Our motivation arises from the fact that
specificity-based approximations may be inappropriate in some applications,
such as in the combinatorial optimization problem that we studied in [17]. Specif-
ically, we proposed in [17] a belief-constrained programming approach inspired
from [9] to model the vehicle routing problem with time windows [11] and eviden-
tial service and travel times. In this kind of problems, each vehicle is compelled to
start the service at any customer within his time availability interval (window).
Arrivals after the closure of time windows are therefore forbidden. To fulfill such
particular constraints, given the evidential time parameters, confidence levels are
imposed on the belief and the plausibility functions of the arrival times which
are combination of service and travel times. For instance, if x is the variable
representing the arrival time at a given customer, C is the closure of his time
window and α, β ∈ [0, 1] (α ≤ β) are two confidence levels, the time constraints
for this customer can be expressed as:

Bel(x ≤ C) ≥ α, P l(x ≤ C) ≥ β. (9)

The use of belief functions adds more complexity to the problem that is already
NP-hard. The problem involves indeed costly mass function combinations due
to large numbers of focal sets. Consequently, we turned to classical approxima-
tion methods to overcome this issue. Nevertheless, we noticed that replacing
the original service and travel time mass functions by less specific ones impacts
inappropriately the set of feasible solutions, i.e., solutions that satisfy all the
problem constraints. Indeed, a solution may be feasible when using approxima-
tions while it is rejected when using the original mass functions. Take for instance
the variable x defined earlier, and suppose that uncertainty about the value of
x is represented by the mass function: m({15, 16}) = 0.9, m({16, 17}) = 0.05,
m({16.30, 17.30}) = 0.05. Suppose that C = 16 and that α = 0.9, β = 1. Using
(1), we have Bel(x ≤ 16) = 0.9 = α and Pl(x ≤ 16) = 0.95 < β. The con-
fidence level β is not met, thus the customer can not be served. Suppose now
that uncertainty about x is represented using an approximation m′ such that
m � m′. m′ is given by m′({15, 16}) = 0.9, m′({16, 16.30, 17, 17.30}) = 0.1. We
have Bel′(x ≤ 16) = 0.9 = α and Pl′(x ≤ 16) = 1 = β. Note that Bel′ = Bel
and Pl′ > Pl, this is due to the relation in (5). In this case, both of the confidence
levels are verified and the customer in question can be served. Such a result is
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quite contradictory with the information we had originally. Hence, it is worth-
while to introduce a more general approach so that one can properly approximate
a mass function by another one that is more/less specific or smaller/greater or
equivalent, etc., to span a broad range of real-life applications.

4.1 Formalization

Building on the formal definition of approximations given in [2], we can introduce
a generalized definition of an approximation as follows:

Definition 2. Let P = {P1, P2, . . . , PK} be a partition of the set Nn =
{1, . . . , n}, i.e., Pk ∩ Pl = ∅ and

⋃K
k=1Pk = Nn and let m be a mass function

with focal elements F(m) = {A1, A2, . . . , An} such that m(Ai) ≥ m(Ai+1),∀i =
1, . . . , n − 1. Let m′ be another mass function with F(m′) = {B1, . . . , BK} its
focal sets verifying for each k = 1, . . . , K :

AiRBk,∀i ∈ Pk, (10)

m′(Bk) =
∑

i∈Pk

m(Ai). (11)

m′ is called R̃-approximation of m.

Definition 2 states that for a given relation R̃, any mass function m′ with fewer
focal sets and that is related to m by R̃, i.e., mR̃m′, is an approximation of m.
Note that m and m′ verify the conditions of Definition 1 as it is possible, for
any Pk ∈ P (k = 1, . . . ,K), to retrieve m(Ai) from m′(Bk) by transferring a
proportion S(Ai, Bk) > 0 of the mass m′(Bk) > 0 from the subset Bk to the
subset Ai such that AiRBk, with :

S(Ai, Bk) =
m(Ai)
m′(Bk)

=
m(Ai)∑

j∈Pk
m(Aj)

(12)

Particular Cases: Definition 2 covers some well known cases that were already
studied in the literature. For instance, if R is an outer-inclusion relation, i.e.,
Ai ⊆ Bk, with Bk =

⋃
i∈Pk

Ai, then R̃ = �, that is m � m′, which corresponds
to the outer approximations of the literature [2,8,13,14].

We can also identify another sub-case when R is an inner-inclusion relation,
i.e., Ai ⊇ Bk, where Bk =

⋂
i∈Pk

Ai. In this case R̃ = � that is m � m′, which
is the inner approximation of Denœux [2].

Furthermore, if an order is established on X and R̃ = �, it is also possible
to approximate m by a mass function m′ such that m � m′, where � is the
generalized lattice dominance relation. This new approximation is detailed in
Sect. 4.2.

To use the generalized approximation, one can for instance keep the first K−1
most significant focal sets of m and replace the remaining focal sets by a set B
such that AiRB,∀i = K, . . . , n. This is the generalization of the summarization
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[13]. However, to provide a good quality approximation, we propose to combine
the summarization with the hierarchical clustering procedure introduced in [2].
The main idea of our procedure is to preserve the first (most significant) p focal
sets (p < K < n), then reduce iteratively, starting from p+1, the number of the
remaining focal sets, i.e., those with relatively small masses. At each iteration, a
similarity measure or a distance is computed between each pair of focal sets Ai

and Aj , then the most similar/nearest pair (Ai∗ , Aj∗) is replaced by a set Biter,
such that Ai∗RBiter and Aj∗RBiter with Biter being similar to Ai∗ and Aj∗ ,
and where m(Biter) = m(Ai∗) + m(Aj∗). The process is repeated until we reach
size K. The pseudo-code of the approach is explained in Algorithm 1 which runs
in a time complexity of O(n3). The worst case number of iterations in the repeat
loop is (n − 1) and the most expensive instruction inside this loop is the update
of the similarity matrix O(n2), this yields a total complexity of O(n3).

Algorithm 1. The generalized approximation procedure O(n3 )

Require: a mass function m = {Ai,m(Ai), i = 1, n}, two integers p,K : p < K < n, a relation R,

and a similarity measure S.

Ensure: a mass function m′ with K focal sets.

1: Initialization: m′ ← ∅;
2: Add the most significant p focal sets to m′ and remove them from m;

3: Compute the similarity matrix M s.t M(i, j) ← S(Ai, Aj) ∀i, j = 1, n − p;

4: iter ← n − p;

5: repeat

6: Select the most similar pair (Ai∗ , Aj∗ );
7: Add Biter to m s.t Ai∗RBiter and Aj∗RBiter;

8: m(Biter) ← m(Ai∗ ) + m(Aj∗ );
9: Remove (Ai∗ , Aj∗ ) from m;

10: Update the similarity matrix M ;

11: iter ← iter − 1;

12: until (iter = K − p);

13: Add all the focal sets of m to m′;

4.2 A Lattice Dominance-Based Approximation

This section studies a particular case of the general approximation where R̃ =�.
In other words, we want to approximate m with a mass function m′ that is greater
than m according to lattice dominance. Note that property (8) holds with this
partial order relation.

Consider an ordered set X = {x1, . . . , xn} (x1 ≤ . . . ≤ xn) and a mass
function m defined on X having the following focal sets F(m) = {A1, . . . , An}
s.t Ai = {ai, . . . , ai}(ai ≤ ai), which we denote by �ai, ai�, and where m(Ai) ≥
m(Ai+1),∀i = 1, . . . , n−1. Using Definition 2, we can build a lattice dominance-
based approximation (�-approximation) m′ of m such that m � m′ and where
focal sets of m′ are the subsets Bk = �bk, bk� = {bk, . . . , bk}, with bk ≤ bk, and
verifying for each i ∈ Pk and k = 1, . . . , K , Ai ≤d Bk, i.e., ai ≤ bk and ai ≤ bk.

To illustrate this approximation, we use Algorithm 1 with the lattice domi-
nance relation ≤d and Jaccard’s similarity measure given by: SJaccard(Ai, Aj) =
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|Ai ∩ Aj |
|Ai ∪ Aj | [10]. The pair of the most similar focal sets (Ai∗ , Aj∗) is replaced by

the subset Biter that is the nearest to Ai∗ and Aj∗ and which is defined as
follows:

Biter = �max(ai∗ , aj∗), max(ai∗ , aj∗)� (13)

The process is repeated until m′ reaches size K. Note that the choice of an
adequate measure depends on the relation that is used as well as the application
in hand. Jaccard’s measure can be replaced by any other similarity measure such
as Dice’s measure [5] or others. Moreover, if m has disjoint focal sets, one can
use a geometric distance [21] instead to capture the nearest focal sets.

Example 1. Let us use Algorithm 1 to build a �-approximation for the mass
function m defined such that: F(m) =

{
A1 = �1, 3�, A2 = �2, 7�, A3 =

�3, 9�, A4 = �1, 6�, A5 = �6, 8�, A6 = �2, 4�
}

with m(A1) = 0.4,m(A2) =
0.3,m(A3) = 0.1,m(A4) = 0.1,m(A5) = 0.05,m(A6) = 0.05. Also let K = 4
and p = 2.
∗ Step 1: Add A1 and A2 to m′, then remove them from m. In this case, m
becomes: F(m) =

{
A3 = �3, 9�, A4 = �1, 6�, A5 = �6, 8�, A6 = �2, 4�

}
with

m(A3) = 0.1,m(A4) = 0.1,m(A5) = 0.05,m(A6) = 0.05.
∗ Step 2: Compute the similarity matrix M for m, iter = n − p = 4.

F. sets A3 A4 A5 A6�

A3 - 0.44 0.43 0.25

A4� – – 0.13 0.50

A5 – – – 0

A6 – – – –

The most similar pair of focal sets (A4, A6) is replaced, in m, by the subset
Biter = B4 = �2, 6� that is computed using Eq. (13), and m(B4) = m(A4) +
m(A6) = 0.15. Hence m becomes: F(m) =

{
A3 = �3, 9�, B4 = �2, 6�, A5 =

�6, 8�
}

with m(A3) = 0.1, m(B4) = 0.15 and m(A5) = 0.05.
∗ Step 3: Update the similarity matrix M , iter = iter − 1 = 3.

F. sets A3 B4� A5

A3� – 0.50 0.43

B4 – – 0.14

A5 – – –

The pair (A3, B4) is replaced, in m, by the subset Biter = B3 = �3, 9�, given
(13), and m(B3) = m(A3) + m(B4) = 0.25. Hence m becomes: F(m) =

{
B3 =

�3, 9�, A5 = �6, 8�
}
, with m(B3) = 0.25 and m(A5) = 0.05.
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∗ Step 4: iter = iter−1 = 2 = K−p: Stop and add B3 and A5 to m′. m′ is the �-
approximation of m where F(m′) =

{
A1 = �1, 3�, A2 = �2, 7�, B3 = �3, 9�, A5 =

�6, 8�
}
, with m′(A1) = 0.4, m′(A2) = 0.3, m′(B3) = 0.25 and m′(A5) = 0.05.

4.3 Preliminary Tests

The lattice dominance-based approximation method was incorporated within a
meta-heuristic framework to accelerate the solution scheme of the combinato-
rial optimization problem studied in [17], while preventing the increase of the
set of feasible solutions. Tests were conducted on an adaptation of medium to
large-sized literature instances. The details about the solution scheme as well
as the instances adaptation are explained in [17]. Table 1 presents average cost
results for instances Inst of 50 customers, after performing 15 executions per
instance. Note that the meta-heuristic algorithm stops after 50 iterations without
improvement. Columns 2 (resp. 4) and 3 (resp. 5) show costs C (resp. C�) with-
out (resp. with) �-approximation and the corresponding execution time CPU(s)
(resp. CPU�(s)) recorded in seconds. The percentage of increase in solution cost
induced by �-approximation is displayed in column 6. Average costs C∗

� of solu-
tions using �-approximation for the same amount of time as in column 3 are
presented in column 7. The experiments show a significant decrease in CPU�(s)
when using the approximation, this is expected since the number of focal sets
is reduced. Moreover, the increase in cost values when using approximation is
around 7.18% which is quite acceptable given the gain in time. In addition, the
highlighted costs in column 7, confirm that incorporating the �-approximation
in the meta-heuristic scheme helps to enhance the solution quality. Specifically,
providing fast solutions helps the meta-heuristic engine to explore, rapidly, fur-
ther regions of the set of feasible solutions that might contain better quality
solutions. Note that we chose to present results on medium-sized instances to
highlight the advantage of using the proposed approximation as we were not
even able to get results without approximation for large scale instances.

Table 1. Comparing results with and without ≺-approximation.

Inst C CPU(s) C� CPU�(s) Inc(%) C∗
�

C102 7549.88 260.70 7770.40 26.20 2.92 7238.41

C104 6052.45 668.50 6391.06 48.77 5.59 6421.58

C204 3580.75 356.71 3671.60 61.00 2.55 3474.26

R104 10479.60 970.83 11947.63 27.50 9.55 11573.78

R204 4026.19 742.13 4509.74 66.50 12.01 3842.19

R207 5246.60 299.40 5484.06 44.80 4.52 4294.79

R208 3399.43 1512.27 3734.58 70.50 9.85 3411.02

RC204 4368.41 494.40 4827.95 60.10 10.51 3874.12
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5 Conclusions and Perspectives

We proposed a general approach to approximate belief functions. This approach
benefits from the generalization of set relations to belief functions and offers to
simplify a mass function given any possible relation with its approximation. The
presented approach includes some well known sub-cases, such that the inner and
outer approximations of the literature. A lattice dominance-based case study
was detailed and applied to a combinatorial optimization problem to accelerate
the solution search. In future work, we will investigate other possible relations as
well as the definition of other similarity measures that are problem-related to get
more efficient results. An extension to approximations that are concerned with
reducing the size of the frame of discernment is also an interesting perspective.

References

1. Bauer, M.: Approximation algorithms and decision making in the Dempster-Shafer
theory of evidence -An empirical study. Int. J. Approx. Reason. 17(2–3), 217–237
(1997)

2. Denœux, T.: Inner and outer approximation of belief structures using a hierarchical
clustering approach. Int. J. Uncertain Fuzz 9(4), 437–460 (2001)

3. Denœux, T., Yaghlane, A.B.: Approximating the combination of belief functions
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Abstract. Dempster-Shafer theory (DST) can effectively distinguish
between imprecise information and unknown information, which is
widely used in information fusion. However, when the evidence highly
contradicts each other, it may lead to counter-intuitive results. In addi-
tion, the existing information fusion methods do not take the negation
of BPA into consideration, which can be improved. In this paper, we
propose a new information fusion method by taking into account not
only the information in basic probability assignment (BPA) but also the
information contained in the negation of BPA. In the method, the belief
divergence measure is not only used to calculate the difference between
BPA and its negative BPA to reflect the information volume carried by
its initial BPA, but also to calculate the difference between BPA and
other BPA to consider the discrepancy between evidence. The efficiency
of the method is verified by case studies.

Keywords: Dempster-Shafer theory · Information fusion · Belief
divergence measure · Negation

1 Introduction

Multi-source information fusion can intelligently synthesize multiple informa-
tion of a certain target, resulting in a more accurate and complete evaluation
than a single information source. This is a cross-technology, which has received
widespread attention from scholars this year [1–3]. However, due to the interfer-
ence of environmental factors such as noise, data collected from different sources
may be imprecise and uncertain.
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Dempster-Shafer theory (DST) [4,5], also known as evidence theory or belief
function theory, can effectively distinguish between imprecise information and
unknown information, and provides a powerful tool for the expression of uncer-
tain information. DST has been widely used in information fusion [6,7], fault
diagnosis [8], so on [9–11]. However, there are some defects in DST. The biggest
controversy of evidence theory is the counter-intuitive result in the combination
of highly conflicting evidence. So far, a lot of research has been done to address
this problem [6,12], which can be divided into two categories. One is to modify
the Dempster’s combination rule [13,14]. This idea holds that the Dempster’s
combination rule will produce paradox because it deducts the part of mass of
the empty set after fusion and normalizes the residual parts, so it is necessary
to modify the Dempster’s combination rules. Yager [15] believed that the con-
flicting parts could not provide valid information and assigns them to the entire
recognition framework. Dubois and Prade [16] redistributed each partial conflict
to the union of associated propositions. Smets [17,18] provided the combination
rules to assign the conflict to empty set, which is a non-normalized Dempster
rule. However, the modification of rules often destroys some good properties of
Dempster’s combination rule, such as associativity and commutativity. The other
one is to modify the original body of evidence before fusing them. In literature
[6], xiao used belief Jensen-Shannon (BJS) divergence and Deng entropy [19]
to generate revised evidence to deal with evidence conflicts. However, the BJS
divergence measure cannot well reflect the influence of different kinds of subsets.
Wang et al. [7] proposed a new belief divergence measure (BDM) which has
better performance than BJS divergence in calculating the differences between
evidence.

All of the above methods only consider the information of basic probability
assignment (BPA), but the information contained in the negation of BPA is
ignored. Yin et al. [20] proposed a novel method to generate the negation of
BPA, and proved that the entropy of negation BPA tends to be maximized with
the increase of the number of negation processes. Therefore, the greater the
discrepancy between a BPA and its negation BPA, the smaller the information
volume carried by its initial BPA. Based on this characteristic, we propose a
new information fusion method based on BDM and the negation of BPA. The
BDM is used to calculate the differences between BPA and its negation BPA. In
addition, this method takes into account the discrepancy between the evidence
by calculating the BDM between BPA and other BPAs. The efficiency of the
method is verified by case studies.

2 Preliminaries

2.1 Dempster-Shafer Theory

DST is an important method for modeling and processing uncertain information
[21–24]. The frame of discernment (FOD) in DST is made up of a limited number
of mutually exclusive elements, marked Θ = {θ1, θ2, . . . , θn}. 2Θ is a set of all
subsets of Θ. If the following formula holds,
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∑

A⊆Θ

m(A) = 1 and m(∅) = 0. (1)

then m : 2Θ → [0, 1] is a BPA, or a mass function. If m(A) > 0, then A is a focal
element.

Dempster’s combination rule is used to complete the fusion of evidence from
different sources, the calculation formula is as follows,

m(A) =

{
1

1−K

∑
B∩C=A

m1(B)m2(C) , A �= ∅;

0 , A = ∅.
(2)

with
K =

∑

B∩C=∅
m1(B)m2(C), (3)

where K is a conflict.

2.2 Negation of Basic Probability Assignment

Everything in nature has two sides, positive and negative. The negative method
provides a way to express the opposite of information, so that more information
can be obtained to express knowledge. In uncertainty modeling and knowledge
reasoning, how to determine the negation of belief structure is very important.
Several methods have been proposed to determine the negation of BPA, such
as the work by Dubois & Prade [25], Yin et al. [20], Gao & Deng [26], and
recent studies by Deng & Jiang [27]. Among these methods, the negation method
proposed by Yin et al. [20] takes into account the number of focal elements, and
the negation of a focal element is independent of other focal elements. The
calculation formula is as follows,

m̄(Ei) =
1 − m(Ei)

N − 1
, (4)

where Ei is the focal element, and N is the number of focal element. Note that
when the mass function contains only one focal element, for example, m(a) = 1.
The negation of the mass function is defined as,

m̄(a) = 0, m̄(φ) = 1 (5)

where φ is used to model the open world. The reason is that due to the lack of
complete knowledge, we don’t know what focus element can exist (occur), but
at least we know that it can’t be m(a) [20].

2.3 Belief Divergence Measure

The divergence measure of information theory is used to measure the discrepancy
between the two probability distributions. DST is a generalization of Bayesian
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inference. How to measure the difference between two BPAs in the DST frame-
work remains a problem. Xiao [6] proposed BJS divergence measure, but it can-
not well reflect the influence of different kinds of subsets. Wang et al. [7] proposed
a new BDM based on the belief and plausibility function of mass function, which
is calculated as follows,

D(m1,m2) =
1
2

[
I(PBlm1 ,

PBlm1 + PBlm2

2
) + I(PBlm2 ,

PBlm1 + PBlm2

2
)
]

(6)
where PBlm(θi) = Bel(θi)+Pl(θi)∑

θi∈Θ Bel(θi)+Pl(θi)
, which transforms BPA into a probabil-

ity distribution. I(PBlm1 , PBlm2) =
∑

θi∈Θ

PBlm1(θi)log2
PBlm1 (θi)

PBlm2 (θi)
, which is the

Kullback-Leibler (KL) divergence.

3 A New Multi-source Information Fusion Method

In this paper, we propose a new information fusion method by taking into
account not only the information in basic probability assignment (BPA) but
also the information contained in the negation of BPA. In the method, the belief
divergence measure is not only used to calculate the difference between BPA and
its negative BPA to reflect the information volume carried by its initial BPA,
but also to calculate the difference between BPA and other BPA to consider
the discrepancy between evidence. This method aims to reduce the influence of
low reliability information on the decision result in the process of multi-source
information fusion. The detailed process of this method is as follows.

Phase 1: Calculate the credibility weight of evidence
Suppose there are k evidences, represented by mi (i = 1, 2, ..., k), which have

the same FOD: Θ = {A1, A2, ..., An}.

Step 1: In this method, we use BDM to calculate the difference between
BPA and other BPAs to consider the discrepancy between evidence. The
BDM between mi and mj(i, j = 1, 2, ..., k), denoted as Dij , which can be
calculated by Eq. (6). The divergence matrix DMX is represented as

DMX =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · D1i · · · D1k

...
...

...
...

...
Di1 · · · 0 · · · Dik

...
...

...
...

...
Dk1 · · · Dki · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7)

Step 2: For the ith evidence, the average divergence D̃(mi) can be calculated
by

D̃(mi) =

∑k
j=1 Dij

k − 1
. (8)
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Step 3: Since there is a negative correlation between the support degrees of
evidence Sup(mi) with their divergences. Therefore, Sup(mi) can be calcu-
lated by

Sup(mi) =
1

D̃(mi)
. (9)

Step 4: Normalize the support degree to obtain the credibility weight of the
evidence Wc(mi).

Wc(mi) =
Sup(mi)∑k
i=1 Sup(mi)

. (10)

Phase 2: Compute the information volume weights of evidences

Step 5: This method considers not only the information in BPA, but also
the information contained in the BPA negation. The negation BPA m̄i can be
calculated by Eq. (4). The BDM between mi and m̄i, denoted as DM(mi),
can be calculated by Eq. (6).

DM(mi) = D(mi, m̄i). (11)

Step 6: Since the negation process is an entropy increasing process [20], the
greater the discrepancy between a BPA and its negation BPA, the smaller
the information volume carried by its initial BPA. Therefore, the information
volume of evidence IV (mi) is calculated as follows:

IV (mi) =
1

eDM(mi)
. (12)

Step 7: Normalize the information volume to obtain the information volume
weight of the evidence Wiv(mi).

Wiv(mi) =
IV (mi)∑k
i=1 IV (mi)

. (13)

Phase 3: Fuse the modified evidence

Step 8: The comprehensive weight of the evidence W (mi) is generated by
comprehensively considering the credibility weight and information volume
weight of the evidence.

W (mi) =
Wc(mi) × Wiv(mi)∑k
i=1 Wc(mi) × Wiv(mi)

. (14)

Step 9: The modified evidence can be calculated by the weighted average
method:

m̃(A) =
k∑

i=1

W (mi) × mi(A), A ⊆ Θ. (15)

Step 10: The final combination result m̃F is obtained by fusing the modified
evidence k − 1 times with Dempster’s combination rule.

m̃F = m̃ ⊕ m̃ ⊕ . . . ⊕ m̃︸ ︷︷ ︸
k−1 times

. (16)
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4 Experiment

4.1 Application in Fault Diagnosis

A case study from paper [28] is provided to demonstrate the effectiveness of this
method. In the case study, there are three kinds of sensors and four states, as
shown in Table 1. The objective is to determine what type of failure has occurred
in the case.

Table 1. BPAs after modeling from sensors [28].

F1 F2 F3 F4 Θ

S1 : m1(·) 0.06 0.68 0.02 0.04 0.20

S2 : m2(·) 0.02 0 0.79 0.05 0.14

S3 : m3(·) 0.02 0.58 0.16 0.04 0.20

First, the divergence matrix DMX can be calculated by Eq. (7) as follows:

DMX =

⎡

⎣
0 0.4149 0.0197

0.4149 0 0.2838
0.0197 0.2838 0

⎤

⎦

Then the parameter values as mentioned in Sect. 3 are shown in the Table 2.

Table 2. The parameter values in the calculation process

D̃(mi) Sup(mi) Wc(mi) DM(mi) IV (mi) Wiv(mi) W (mi)

m1 0.2173 4.6027 0.3274 0.2005 0.8183 0.3348 0.3232

m2 0.3493 2.8626 0.2037 0.2769 0.7582 0.3102 0.1862

m3 0.1517 6.5909 0.4689 0.1421 0.8675 0.355 0.4906

Finally, the modified evidence and the final combination result can be calcu-
lated by Eq. (15) and Eq. (16), respectively, as follows (Table 3):

Table 3. The modified evidence and the final combination result.

F1 F2 F3 F4 Θ

m̃(·) 0.0329 0.5043 0.2321 0.0419 0.1888

m̃F (·) 0.0102 0.7947 0.1652 0.0135 0.0164
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The fusion results of this method are compared with those of other methods,
as shown in Table 4. As can be seen from the results of the proposed method
in Table 4, the mass value of state F2 is higher than that of F1, F3 and F4, so
it can be determined that the hypothesis F2 has occurred. In Table 1, because
m2 in the original evidence is a conflicting evidence, the mass value of F2 in
the fusion results of DST is smaller than that of other methods as shown in
Table 4, which also indicates that the robustness of DST is poor. In addition,
the state F2 has a mass value of 0.7947 in the proposed method. However, the
belief degree of each sensor in state F2 does not exceed 0.7 before fusion, as
shown in Table 1. Compared with other methods, it can be seen that the state
F2 has the highest belief to the correct target in the proposed method, as shown
in Table 4. Besides, in order to better show the efficiency of the proposed method,
an ablation test for the method is presented. Namely, the combination results
just based on credibility weight Wc, the results just based on information volume
weight Wiv, and the results based on comprehensive weight are comprehensively
compared. In Table 4, it can be seen that the mass value of state F2 within the
results based on comprehensive weight is higher than that of results based on
credibility weight Wc or information volume weight Wiv. Through the above
analysis, it is proved that the proposed method is reasonable and effective in
information fusion.

Table 4. Comparison of the results of several existing methods.

Method F1 F2 F3 F4 Θ Target

DST [4] 0.0205 0.5230 0.3933 0.0309 0.0323 F2

Jiang et al. [28] 0.0111 0.7265 0.2312 0.0144 0.0168 F2

Song et al. [29] 0.0107 0.7855 0.1738 0.0137 0.0163 F2

Results based on Wc 0.0104 0.7770 0.1823 0.0138 0.0165 F2

Results based on Wiv 0.0111 0.6411 0.3158 0.0151 0.0169 F2

Proposed method 0.0102 0.7947 0.1652 0.0135 0.0164 F2

4.2 Application in Target Recognition

To better demonstrate the effectiveness of the proposed method, another case
study from paper [30] is provided. This is a target recognition problem based
on multi-sensors, which involves sensor reports collected by different types of
sensors. The BPAs modeled from sensors are given in Table 5.

Due to space limitations, the calculation results will be listed directly in this
case without the calculation process, as shown in Table 6. The calculation results
are calculated strictly in accordance with the calculation process in Sect. 3.

The fusion results of this method are compared with those of other methods,
as shown in Table 6. As can be seen from the results of the proposed method
in Table 6, the mass value of state A is higher than that of B, C, {A,B} and
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Table 5. BPAs modeled from sensors [30].

A B C {A, B} {B, C} Θ

S1 : m1(·) 0.8 0.1 0 0 0 0.1

S2 : m2(·) 0.5 0.2 0.1 0.2 0 0

S3 : m3(·) 0 0.9 0.1 0 0 0

S4 : m3(·) 0.5 0.1 0.1 0.1 0 0.2

S5 : m3(·) 0.6 0.1 0 0 0.1 0.2

{B,C}, so it can be determined that the hypothesis A has occurred. In Table 6,
expect for the DST method [4], all other methods can correctly recognize the
target A. The main reason is that m3 in the original evidence is a conflicting
evidence, while the DST method cannot handle the conflicting evidence well,
which leads to the wrong results. In addition, the state A has a mass value of
0.9624 in the proposed method. However, the belief degree of each sensor in state
A does not exceed 0.8 before fusion, as shown in Table 5. Compared with other
methods, it can be seen that the state A has the highest belief to the correct
target in the proposed method, as shown in Table 6. Besides, in order to better
show the efficiency of the proposed method, an ablation test for the method
is presented. In Table 6, it can be seen that the mass value of state A within
the results based on comprehensive weight is higher than that of results based
on credibility weight Wc or information volume weight Wiv. Through the above
analysis, it is proved that the proposed method is reasonable and effective in
information fusion.

Table 6. The results of several existing methods.

Method A B C {A, B} {B, C} Θ Target

DST [4] 0 0.9922 0.0078 0 0 0 B

Jiang et al. [28] 0.9567 0.0401 0.0015 0.0014 0.0002 0.0001 A

Song et al. [29] 0.9488 0.0488 0.0011 0.0011 0.0001 0.0001 A

Results based on Wc 0.9552 0.0424 0.0011 0.0011 0.0001 0.0001 A

Results based on Wiv 0.9064 0.0912 0.0012 0.0009 0.0001 0.0001 A

Proposed method 0.9624 0.0350 0.0011 0.0013 0.0002 0.0001 A

5 Conclusion

DST has been widely applied in information fusion. However, when the evidence
highly contradicts each other, it may lead to counter-intuitive results. In addi-
tion, the existing information fusion methods do not take the negation of BPA
into consideration, which can be improved. In this paper, we propose a new
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information fusion method by taking into account not only the information in
BPA but also the information contained in the negation of BPA. The major
contributions of this paper are that this study provides a new perspective for
information fusion by taking the negation of BPA into consideration. According
to the characteristic that the negative process is the entropy increasing process
[20], the greater the discrepancy between BPA and its negation BPA, the smaller
the information volume carried by its initial BPA. Therefore, in the proposed
method, we use BDM to calculate the difference between BPA and its negation
BPA to generate the information volume weight. In addition, both information
volume weight and credibility weight are used to generate the comprehensive
weight, in which the credibility weight is determined by calculating the differ-
ence between BPA and other BPAs to consider the discrepancy between evidence.
The effectiveness of the method is verified by case studies. The results show that
this method is reasonable and effective.

In our future work, we would like to extend the proposed method to the
framework of complex mass function [24,31] which is a generalization of DST,
so as to make a more complete and accurate information fusion method.
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Abstract. In this paper, an improvement of the quality of an evidential
source of information is proposed using contextual corrections depending
on partial decisions obtained from an interval dominance relation on the
source outputs. Numerical experiments with the EkNN classifier and
synthetic and real data allows us to illustrate the performances and the
interest of this method.

Keywords: Belief functions · Contextual corrections · Partial
decisions · Interval dominance

1 Introduction

In pattern recognition [1,9], the quality of the information provided by a source
(e.g. a sensor, a classifier, . . .) plays an important role in the success of the
pattern recognition task as the information may be false, biased or irrelevant.

The belief function framework (or Dempster-Shafer theory [18]) provides a
flexible mathematical framework for dealing with imperfect information. In this
theory, the quality of a source of information is classically managed by means
of the discounting operation introduced by G. Shafer in his seminal book [18,
chapter 11, page 251]. This method has since been refined using so-called contex-
tual correction mechanisms [12,16] taking into account more refined knowledge
about the quality of a source: its reliability (in the sense of its relevance, meaning
the capacity of the source to answer the question of interest) and its truthfulness
(meaning its capacity to tell what it knows; this capacity being possibly con-
scious - as a lie for example - or unconscious - as a bias for example) [15]. More
specifically, three mechanisms have been introduced. They are respectively called
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Contextual Discounting (CD), Contextual Reinforcement (CR) and Contextual
Negating (CN). They all can be mathematically derived [16] from these notions
of reliability and truthfulness: CD, which generalizes the discounting operation,
can adjust the output of a source in accordance with information about its reli-
ability, while CN, which generalizes the negation of a source [8], can adjust the
source according to its truthfulness, and at last, CR is the dual operation of CD,
it may reinforce a too cautious source [14,16].

In this paper, we propose to improve the quality of a source of information
outputting belief functions regarding a question of interest using contextual cor-
rections CD, CR or CN, and partial decisions computed from the outputs using
the relation of interval dominance [19,20], also called strong dominance in [6,11].
More specifically, the source is considered as a black box meaning we have no
access to the manner it works to make its evidential outputs. This situation
occurs for example when a company buys a sensor from another one to perform
a given task, and the decision making process (or the algorithm) used by this
sensor is protected [13]. A learning set is available. It is composed of outputs of
the source (as mass functions for example), regarding data the ground truth of
which is known. As a simple example [10], we may have in the learning set the
following information mS output by the source regarding the true class of an
object o, which belongs to a universe Ω = {ω1, ω2, ω3}

ω1 ω2 ω3 {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
Ground truth
of object o

mS{o} 0 0 0.5 0 0 0.3 0.2 ω1

Now, instead of learning a best possible correction among CD, CR and CN
from the whole learning set as proposed in [16], we would like to propose a
method that takes advantage of all the corrections, and so propose to regroup the
outputs leading to the same partial decisions to learn the best possible correction
between CD, CR and CN in each of these groups of outputs to reach better global
performances (certainly at the cost of learning more models). With this strategy,
an output is thus adjusted differently depending on the partial decision it leads
to.

This paper is organized as follows. In Sect. 2, the basic concepts and notations
on belief functions used in this paper are presented, as well as a reminder on
decision making with interval dominance with belief functions. Reminders on
contextual corrections are given in Sect. 3. Thereafter, in Sect. 4, the proposed
method to learn contextual corrections depending on partial decisions is exposed.
It is tested with synthetic and real data in Sect. 5. A discussion is also added in
this last Section to conclude the paper.

2 Belief Functions: Necessary Concepts and Notations

In this Section, necessary concepts and notations used in this paper are quickly
reminded. Further details can be found for example in [4,17,18].
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With Ω = {ω1, ..., ωK} the universe (or the frame of discernment) represent-
ing the finite set of answers to a given question of interest, a piece of evidence
regarding the answer to this question of interest induces a mass function (MF)
mΩ (or m if no ambiguity) defined from 2Ω to [0, 1], verifying

∑
A⊆Ω mΩ(A) = 1.

The focal elements of a MF m are the subsets A ⊆ Ω s.t. m(A) > 0. A MF having
only one focal element A is called a categorical MF and can be simply denoted
by mA.

A MF m is in one-to-one correspondence with belief and plausibility functions
Bel and Pl respectively defined for all A ⊆ Ω by Bel(A) =

∑
B⊆A m(B), and

Pl(A) =
∑

B∩A �=∅ m(B).
The contour function pl corresponds to the restriction of the plausibility

function to the singletons of Ω, it is defined for all ω ∈ Ω by pl(ω) = Pl({ω}).
If a source S provides an output mS , and if it is also known that this source

is reliable with a degree of belief β = 1 − α ∈ [0, 1], then this original MF mS

can be discounted into a MF m s.t.

m =
{

A �→ βmS(A) ∀A ⊂ Ω
Ω �→ βmS(Ω) + α

(1)

Equation (1) can also be simply rewritten as m = β mS + α mΩ , with mΩ

the categorical MF defined by mΩ(Ω) = 1, and it can also be shown (see for
example [16, Prop. 11]) that the contour function associated with the discounted
MF is defined for all ω ∈ Ω by pl(ω) = 1 − (1 − plS(ω))β, with plS the contour
function of mS . Derivations of this operation can be found in [12,16,17].

At last, when a decision has to be made [3,11], if we consider that the set
of possible decisions (or acts) is equal to Ω, we can use the following relation of
dominance between the singletons of Ω:

ω � ω′ ⇐⇒ Bel({ω}) ≥ Pl({ω′}), (2)

and make a partial decision composed of the non dominated singletons according
to relation (2).

Due to lack of space, details cannot be written, but Eq. (2) comes from for
example [6, Equation 43] or [11, Page 6, Strong dominance criterion] with 0–1
utilities and pieces of information represented by belief functions.

3 Contextual Corrections and Learning

In this section, the definitions of CD, CR and CN are recalled as well as the
possibilities to learn them from labelled data [16] composed of the outputs of a
source regarding objects whose true class is known.

The contour functions resulting from CD, CR and CN are recalled with
K parameters, K being the number of elements in Ω. These mechanisms can
indeed be used with more parameters [12,16] but as shown in [16], these config-
urations with K parameters for each corrections are expressive enough to reach
the lowest possible values (with these mechanisms) of the following measure of
discrepancy [12,16] between the source outputs adjusted with these corrections
and the ground truth:
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Epl(β) =
n∑

i=1

K∑

k=1

(pli(ωk) − δi,k)2, (3)

where n is the number of objects in the learning set, β = (βω, ω ∈ Ω) is the
vector composed of the K parameters of each correction, pli is the contour
function regarding the class of the object i resulting from a contextual correction
(CD, CR or CN) of the MF provided by the source for this object, and δi,k is
the indicator function of the truth of all the instances i ∈ {1, . . . , n}, meaning
δi,k = 1 if the class of the instance i is ωk, otherwise δi,k = 0.

The discrepancy measure Epl yields a linear least-squares optimization prob-
lem, which can be then efficiently solved using standard algorithms.

As for the discounting (1), we consider a source of information outputting a
MF mS regarding a question of interest. The corresponding contour functions of
each contextual correction of mS are summed up in Table 1.

Table 1. Contour functions of each contextual correction of a MF mS given for any
ω ∈ Ω. Each parameter βω may vary in [0, 1].

Corrections Contour functions

CD pl(ω) = 1 − (1 − plS(ω))βω

CR pl(ω) = plS(ω)βω

CN pl(ω) = 0.5 + (plS(ω) − 0.5)(2βω − 1)

4 Contextual Corrections Depending on Partial Decisions

In this paper, we propose to improve the previous learning method exposed in
Sect. 3, meaning we would like to reach better performances. For this, we will
consider, in the learning set, groups of distinct partial decisions the outputs of
the source lead to.

The idea is to consider that the quality of the source, and then the way
we have to adjust it, may depend on the outputs it gives regarding the objects
whose true classes are to be found. For example, the source may be quite right
when it decides a certain type of class, while having some bias when it decides
another class or a group of classes, and another bias for another class or group
of classes, etc.

Specifically we investigate the quality of the source depending on groups of
partial decisions according to relation (2). CD, CR and CN best parameters β
according to Epl (3) are then computed in each group. The correction with the
lowest value of Epl is kept in each group.

This learning procedure is summarized by Algorithm 1.

5 Numerical Experiments and Discussion

In this Section we present experiments made with the EkNN classifier [2,5] with
k = 5 as the source of information on synthetic and real data.
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Algorithm 1. Learning procedure
Input: A set I of instances (mi{oi}, ωi), i ∈ {1, . . . , n}, mi{oi} being the output of
the source regarding object oi whose true class is ωi.
Outputs: Groups G of partial decisions and best corrections for each group.

1: procedure LearningProcedure
2: G initially empty
3: for each instance i in I do
4: Compute the partial decision coming from mi using relation (2)
5: Add i to the group g in G associated with this partial decision.

6: for each group of partial decisions g in G do
7: Compute CD, CR and CN best parameters β according to Epl (3) restricted

to the instances in this group
8: Keep for this group the correction reaching the lowest value of Epl.

Synthetic data are composed of 5000 instances, 5 classes and 2 features,
which were generated from a multivariate normal distribution with means μ1 =
(0, 0), μ2 = (2, 0), μ3 = (0.2), μ4 = (2, 2), μ5 = (1, 1) for respectively class 1, 2, 3,
4 and 5, and the same covariance matrix Σ for each class:

Σ =
[

1 0.9
0.9 1

]

(4)

An illustration of a generated synthetic data set with these parameters is
given in Fig. 1.

The real data sets used from UCI [7] are described in Table 2.

Table 2. Descriptions of used UCI data sets.

Data sets # Instances # Features # Classes

Breast cancer 569 31 2

Glass 214 10 6

Haberman 306 3 2

Ionosphere 350 34 2

Iris 150 4 3

Liver 345 6 2

Lymphography 146 18 3

Pima 768 8 2

Red wine 1599 12 6

Sonar 208 60 2

Transfusion 748 3 2

Vehicles 846 19 4

Vertebral 310 6 3
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Fig. 1. Example of a generated data set.

For each data set, the following experiment is repeated 10 times: one half of
the data (L1) is used to learn the EkNN classifier; then a 10-fold cross validation
is performed on the second half of the data with 9 folds (L2) to learn the best
correction in each group of partial decisions using Algorithm 1, and 1 fold for
testing (meaning for the test phase).

Some possible partial decisions obtained from the outputs of the source (the
EkNN classifier) with the generated data set illustrated in Fig. 1 are given in
Fig. 2 for some points in the feature space. Note that these groups of partial
decisions are not necessary computed in the training phase L2. They are just
given here as an illustration. As exposed in Algorithm 1, only the points (and
their associated partial decisions) in the fold L2 are considered to learn the
corrections. That is why it may happen that during the test phase, a partial
decision did not happen in the learning phase. In this situation, we propose to
use the best correction for the whole set of L2. Note that in our experiments
presented here, this case very rarely occurred.

To measure the performances, we used the measure Epl (3) with which cor-
rections are learnt, and we also wanted to use another measure with which
corrections are not learnt. For this second choice, we opted for the u65 utility
measure, introduced by Zaffalon et al. [21], which allows one to take into account
the advantages of partial decisions concerning the fact of preferring imprecision
to being randomly correct. The u65 utility measure gives indeed a greater utility
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Fig. 2. Points in the feature space belonging to different groups of partial deci-
sions obtained from the generated synthetic data set composed of 5 classes and 2
attributes/features illustrated in Fig. 1. The legend for the partial decisions obtained
from the EkNN classifier and relation (2) are given above the figure. We can see that
for these points, 10 possible partial decisions have been obtained: 1 (meaning a decision
for class 1), 2, 3, 4, 5, 14 (meaning a partial decision in favor of class 1 or class 4),
15, 45, 145 (meaning a partial decision in favor of class 1 or class 4 or class 5), 12345
(meaning a partial decision in favor of all the classes - total uncertainty - each class
can be the good one).

to imprecise but correct partial decisions of size n (meaning decisions equal to
a set of n singletons one of them being the true class) than precise decisions (in
favor of one singleton) only randomly correct with probability 1

n .
Formally, the U65 value of a partial decision d, possibly in favor a set of

singletons, is defined by
U65(x) = 1.6x − 0.6x2 (5)

with x the so called discounted accuracy of d defined by I(ω∈d)
|d| , with I the

indicator function, ω the true class of the instance, and |d| the number of elements
in d.

Performances according to Epl (3) and the averages of the u65 utility mea-
sures [21] of the partial decisions obtained from the corrected outputs are
regrouped in Table 3.
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Table 3. Performances (Average Epl values, the lower the better, and average U65 util-
ities, the greater the better) obtained for EkNN learnt with L1 (denoted by EkNN),
EkNN learnt with groups L1 and L2 (denoted by EkNN+), EkNN learnt with L1

followed by corrections (CD, CR, CN) learnt with L2, and EkNN learnt with L1 fol-
lowed by the new method using groups of partial decisions learnt with L2. Standard
deviations are indicated in parenthesis.

Data EkNN EkNN+ CD CR CN Method

Average Epl values (the lower the better)

Synthetic 188.27 (26.48) 181.27 (16.23) 187.91 (26.56) 134.57 (9.83) 174.06 (21.38) 106.76 (7.29)

Breast cancer 3.74 (2.50) 3.59 (2.43) 3.65 (2.35) 3.64 (2.34) 3.56 (2.22) 3.56 2.21)

Glass 8.16 (3.61) 8.97 (3.19) 8.13 (3.57) 5.11 (1.40) 6.93 (2.04) 4.81 (1.49)

Haberman 8.59 (2.40) 8.79 (2.34) 8.57 (2.32) 5.97 (1.84) 6.61 (1.07) 5.87 (1.83)

Ionosphere 2.31 (1.66) 1.64 (1.18) 2.31 (1.62) 2.19 (1.49) 2.25 (1.52) 1.81 (1.49)

Iris 0.56 (0.87) 0.59 (1.02) 0.56 (0.85) 0.55 (0.82) 0.56 (0.84) 0.56 (0.86)

Lymphography 3.07 (1.44) 2.32 (1.27) 3.08 (1.44) 2.74 (1.24) 3.02 (1.18) 2.74 (1.40)

Liver 12.66 (2.08) 12.21 (1.56) 12.66 (2.02) 8.17 (1.08) 8.31 (0.64) 8.01 (1.12)

Pima 20.01 (3.32) 18.12 (3.21) 20.01 (3.32) 15.67 (2.20) 16.76 (1.57) 14.93 (2.40)

Red wine 162.09 (21.75) 140.60 (13.98) 162.09 (21.75) 48.62 (2.96) 116.83 (4.28) 45.92 (3.44)

Sonar 4.04 (1.43) 3.06 (1.33) 4.05 (1.43) 3.50 (1.08) 3.80 (1.05) 3.30 (1.37)

Transfusion 20.54 (4.91) 19.77 (4.37) 19.43 (4.19) 15.21 (3.45) 15.44 (2.21) 13.56 (2.85)

Vehicles 34.26 (5.66) 28.14 (4.74) 34.26 (5.66) 24.07 (2.35) 32.40 (4.20) 20.69 (2.96)

Vertebral 5.08 (2.29) 4.68 (2.05) 5.04 (2.19) 4.64 (1.89) 4.85 (1.89) 4.31 (1.81)

Average U65 values (the greater the better)

Synthetic 66.52 (2.68) 66.40 (2.63) 66.49 (2.73) 66.10 (2.69) 65.46 (2.89) 68.36 (2.59)

Breast cancer 91.77 (4.65) 93.74 (3.90) 92.76 (4.60) 92.75 (4.64) 92.80 (4.62) 92.76 (4.60)

Glass 61.51 (14.47) 63.38 (13.44) 61.56 (14.25) 64.53 (13.87) 45.93 (13.22) 66.24 (12.35)

Haberman 74.28 (8.12) 74.45 (8.57) 74.61 (7.97) 74.84 (9.80) 71.69 (8.04) 75.13 (9.26)

Ionosphere 93.02 (4.67) 94.71 (4.16) 93.02 (4.67) 93.12 (4.62) 92.98 (4.64) 93.86 (4.99)

Iris 96.78 (6.78) 96.51 (6.07) 96.78 (6.78) 96.84 (6.72) 96.78 (6.78) 97.06 (6.20)

Liver 66.74 (5.86) 67.14 (5.53) 66.73 (5.86) 66.64 (6.82) 64.70 (2.25) 65.45 (7.42)

Lymphography 80.23 (13.13) 83.84 (12.65) 80.21 (13.20) 79.42 (13.65) 79.26 (12.26) 79.11 (14.49)

Pima 72.64 (5.06) 73.00 (5.56) 72.64 (5.06) 73.34 (5.50) 71.97 (3.91) 73.38 (5.02)

Red wine 45.39 (4.17) 53.29 (4.23) 45.39 (4.17) 57.60 (4.14) 25.00 (0) 59.12 (4.12)

Sonar 78.34 (8.53) 84.50 (7.69) 78.27 (8.60) 78.96 (8.95) 78.00 (8.03) 79.32 (10.49)

Transfusion 72.76 (5.68) 72.87 (5.41) 74.20 (5.29) 74.39 (6.38) 72.63 (5.42) 75.91 (6.03)

Vehicles 61.20 (5.77) 63.46 (5.62) 61.20 (5.77) 60.56 (5.65) 58.11 (5.60) 63.61 (6.20)

Vertebral 80.40 (10.14) 82.09 (8.85) 80.29 (10.04) 79.95 (10.27) 80.36 (10.19) 81.78 (9.40)

As it can be seen in Table 3, the proposed method using the groups of par-
tial decisions obtains almost in each situation better results than the previous
learning using only CD or CR or CN.

Furthermore, the source was supposed to be a black box, but we were also
curious to see the performances of this source if we were able to improve its per-
formances by using the data we use to learn the corrections. These performances
are given in the column EkNN+ in Table 3. We can see that the new learning
method succeeds to even improve these results for some data sets.

As summarized in [11] by Ma and Denœux, relation (2) is only one among
others. First future works will then consist in testing these other possible rela-
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tions (s.t. weak dominance, maximality, . . .) to compute the groups of partial
decisions and see if better performances can be reached.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their constructive comments and suggestions that helped them to clarify parts of this
paper and will help them for future researches.
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Abstract. In the late 1990s, Philippe Smets hypothesizes that the more
imprecise humans are, the more certain they are. The modeling of human
responses by belief functions has been little discussed. In this context, it
is essential to validate the hypothesis of Ph. Smets. This paper focuses
on the experimental validation of this hypothesis in the context of crowd-
sourcing. Crowdsourcing is the outsourcing of tasks to users of dedicated
platforms. Two crowdsourcing campaigns have been carried out. For the
first one, the user could be imprecise in his answer, for the second one
he had to be precise. For both experiments, the user had to indicate his
certainty in his answer. The results show that by being imprecise, users
are more certain of their answers.

Keywords: Uncertainty · Imprecision · Belief functions ·
Crowdsourcing

1 Introduction

The theory of belief functions is well known for information fusion and for catch-
ing uncertainty and imprecision in machine learning, tracking and data associ-
ation. A simple mass function allows to represent uncertainty, imprecision and
ignorance at the same time. Of course, when asking someone a question, he or
she does not answer with a belief function.

Few works consider the modeling of uncertain and imprecise responses to
questionnaires. Some works have focused on questionnaires allowing probabilis-
tic [2,7,9,13] or fuzzy [12] answers, but very few allow belief answers. Diaz et
al. [5] have proposed a questionnaire to directly build a mass function, but it
remains very unintuitive for any user. Other works [1,3] have considered directly
generated mass functions without worrying about their construction.

In this work, we are interested in modeling the responses of users of a crowd-
sourcing platform, allowing them to express their uncertainty and imprecision.
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These responses will then be modeled by mass functions. However, it is necessary
to understand the links between uncertain and imprecise information provided
by humans.

Ph. Smets [11] presents in his paper different types of data imperfection and
methods to model them. In particular, he presents imprecision as an element
relative to an assertion, and uncertainty as the relationship between the infor-
mation provided by the assertion and the knowledge that the human has of the
subject. Ph. Smets then proposes that the more imprecise a person is, the more
certain he is, and conversely the more precise, the less certain. This assertion is
decomposed here into two hypotheses:

– H1: The more imprecise a person is, the more certain he is.
– H2: The more precise a person is, the less certain he is.

According to Dubois et al. [6], there are two types of uncertainty related to
human perception. The first one on the realization of an action presenting a
risk, the second on the truth of an assertion due to a lack of knowledge. In this
article, uncertainty is the consequence of a lack of knowledge that does not allow
man to define the truth of an assertion.

H1 and H2 are not the same hypotheses, H2 is the reciprocal of H1. Since the
reciprocal of a hypothesis is not always true we work in this paper on the inde-
pendent validation of H1 and H2. To our knowledge, there is no work to validate
these assumptions. In order to perform the experimental validation of the two
hypotheses, two crowdsourcing campaigns have been carried out. Crowdsourcing
consists in outsourcing tasks on dedicated platforms. The users of the platform
perform the tasks for a micro payment. The tasks are very diverse, but generally
do not require expertise, so the user profiles are very varied. In this study, the
user’s task consists of photo annotation through multiple choice questionnaires
(MCQs). In the first crowdsourcing campaign the user can be imprecise and
choose several answers of the MCQ, in the second one he has to give a precise
answer. For both campaigns, the certainty of the user in his answer is required.

The plan of the paper is as follows. Section 2 reviews the theory of belief
functions used for data modeling. Section 3 presents the defined crowdsourcing
campaigns, the results obtained for the validation of H1 and H2 and the answer
modeling. Section 4 concludes the paper.

2 Theory of Belief Functions

The theory of belief functions, introduced by Dempster [4] and formalized by
Shafer [10], models the imprecision and uncertainty of imperfect sources. The
user u of a platform is a source of information. Considering a question q asked
to this user u, the finite set of possible answers to q composes the frame of
discernment Ω. A mass function mΩ

uq : 2Ω → [0, 1] is defined such that:

∑

X∈2Ω

mΩ
uq(X) = 1,
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with 2Ω the set of the disjunctions of Ω.
Let X ∈ 2Ω , the mass mΩ

uq(X) characterizes the belief of the user u in the
answer X to the question q. When mΩ

uq(X) > 0, X is called the focal element.
A function mΩ

uq(X) = 1, X ∈ 2Ω , is a categorical mass function, the user is
absolutely certain of this answer which may be imprecise if X is an union of
elements of Ω. The set Ω ∈ 2Ω symbolizes ignorance, if mΩ

uq(Ω) = 1 then the
user is totally unaware of what the right answer is. The element ∅ ∈ 2Ω , under the
open world hypothesis, symbolizes a value outside Ω, in the case of normalized
mass functions mΩ

uq(∅) = 0.
The response X of u, can be modeled by a simple mass function (Xw):

{
mΩ

uq(X) = ω with X ∈ 2Ω \ Ω
mΩ

uq(Ω) = 1 − ω
(1)

This mass function allows to model: the uncertainty ω on the answer, the impre-
cision of u by the cardinality of X, and the remaining ignorance on the answer.
That is the simplest way to model uncertainty and imprecision of the answer of
the users. Consonant mass functions that can model different levels of impreci-
sion, have all the focal elements nested. A consonant mass function is a possibility
distribution.

In case of doubt about the reliability of a source, a weakening coefficient
α ∈ [0, 1] modeling this reliability can be introduced:

mΩ,α
uq (X) = α ∗ mΩ

uq(X),∀X ∈ 2Ω \ Ω
mΩ,α

uq (Ω) = 1 − α ∗ (1 − mΩ
uq(Ω)) (2)

If the user u is absolutely unreliable then α = 0 and the whole mass is assigned
to Ω concluding to total ignorance. Weakening allows to reduce the conflicts
occurring during the combination.

The main goal of crowdsourcing platforms is to fuse the answers of the users
and decide the best answer to the questions. In the theory of belief function,
many combination [8] operators exist. But the most used is the conjunctive rule
of combination, given by Eq. (3), which requires that the sources be reliable,
distinct and independent.

mΩ
Conj(X) =

∑

Y1
⋂

...
⋂

YN=X

N∏

u=1

mΩ
u (Yu) (3)

This operator reduces the imprecision on the focal elements and increases the
belief on the concordant ones. It can generate a non-zero mass on the empty
set, so, in order to stay in a closed world, the normalized Dempster operator is
preferred:

mΩ
D(X) =

1
1 − k

mΩ
Conj(X) (4)

with k = mΩ
Conj(∅) the global conflict from the sum of the partial conflicts. Once

the combination of information has been achieved, it is necessary to return to a
probabilistic framework to make a decision. To do this, it is possible to calculate
the pignistic probability [1,3] on the elements of Ω.



262 C. Thierry et al.

(a) Experiment 1 (b) Experiment 2

Fig. 1. Interfaces used for crowdsourcing campaigns

3 Experimental Validation of Hypotheses H1 and H2

This section presents the crowdsourcing campaigns conducted for data collection.
Data is then analyzed to validate hypotheses H1 and H2, and the responses are
modeled by the theory of belief functions.

3.1 Crowdsourcing Campaigns

Two crowdsourcing campaigns on the annotation of 50 bird photos have been
conducted. For both experiments, and each question, a photo is presented to the
user with five bird names as possible answers. The photos to be annotated are
the same for both campaigns, as well as the corresponding names in response.
All the proposed names are real and the 50 photos are only birds which can be
met in natural place in Metropolitan France.

The interfaces of the campaigns are given in Fig. 1. For both campaigns,
users specify their degree of certainty in their answer. The proposed degrees of
certainty are summarized in Table 1. The user is notified that it is not penal-
izing to be uncertain in his answers. In the first campaign, corresponding to
Experiment 1 in Fig. 1, the user is forced to choose a single answer by checking a
radio button. In the second campaign, corresponding to Experiment 2 on Fig. 1,
the user can be imprecise if he feels the need, by selecting 1 to 5 bird names
by checking a checkbox button. At the beginning of this campaign, the user is
informed that there is no penalty for selecting multiple names.

The campaigns were both carried out by 100 different users on the Crowd-
panel platform1, and a user who did the first campaign cannot do the second
one. This makes a total of 50 photos × 100 users = 5000 data for each crowd-
sourcing campaign. The following section analyzes the collected data in order to
validate Ph. Smets’ hypothesis.

1 https://crowdpanel.io/.

https://crowdpanel.io/
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Table 1. Numerical values associated to the certainty scale proposed to the user

Totally
uncertain

Uncertain Rather
uncertain

Neither
certain
nor
uncertain

Rather
certain

Certain Totaly
certain

0 1 2 3 4 5 6

3.2 Analysis of the Results

In order to validate H1 and H2, we recall that we conducted two experiments:
in Experiment 1, the user is required to be precise, whereas in Experiment 2 the
user can be imprecise. For both experiments, we associate to each answer of a
user u to a question q, a numerical certainty value cuq. The values of cuq are
taken in the interval [0, 6], with 0 corresponding to total user uncertainty and 6
to total certainty, as shown in Table 1. Moreover, for Experiment 2, we associate
an imprecision degree iuq to each answer, that takes its values in the interval
[1, 5] according to the number of selected bird names.

(a) GRR (Experiment 1) and average im-
precision (Experiment 2) per photo.

(b) Average certainty per photo for both
experiments.

Fig. 2. Comparison of experiments per photo - GRR, imprecision and certainty.

Task Difficulty. Certainty and imprecision of the user’s answer may depend
on the difficulty of the question according to the proposed bird names. In both
crowdsourcing campaigns, the questions are of varying difficulty relative to the
user’s knowledge of the domain. The more difficult the question is, the more
difficult it will be for the contributor to answer it. In order to evaluate the dif-
ficulty of each question for Experiment 1, one can calculate a good recognition
rate (GRR), given by the average of the photos correctly annotated by the users.
To compare the perceived difficulty of the questions by the users of the two cam-
paigns, the GRR of Experiment 1 and the average imprecision of Experiment 2
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are calculated for each question with 95% confidence intervals and presented in
Fig. 2a. On Fig. 2b, the average user certainty for each question cq is presented
with a 95% confidence intervals. On both figures, bird photos are ordered accord-
ing to the average certainty of the Experiment 1. The value cq is increasing for
Experiment 1 confirming a variable difficulty between questions. Comparing the
two blue curves, we note a link between difficulty and certainty. Experiment 1
users have a GRR between 9% and 91%. The higher the GRR, the simpler the
question.

Users who participated in Experiment 2 made good use of the opportunity to
be imprecise since the average imprecision varies between 1.4 and 3.7 on Fig. 2a
(with a minimum of 1 response to a maximum of 5 and an average of about
2 bird names selected). The more imprecise the user is, the more difficult the
question is.

Figure 2a shows that as GRR increases, the average imprecision of users
decreases, which means that users in both campaigns had difficulties with the
same questions. The users of both experiments therefore have varying levels of
knowledge about birds, which is usual in crowdsourcing platforms where the
profiles are diverse. Since in both experiments users have varying degrees of
knowledge, user confidence in their response will also vary.

Comparison of Certainty Between Precise and Imprecise Answers. In
Fig. 2b, the average user certainty is higher for users who had the opportunity
to be imprecise in Experiment 2 compared to Experiment 1. The difference
between the two curves is between 8.68% and 50.13% and on average 29.68%
which makes a significant increase in certainty. The value cq varies between 3.6
and 4.9 for Experiment 2, which is a certainty gap of 1.3, and between 1.2 and 4.4
for Experiment 1, making a difference of 3.2. The difference between the average
certainty values is smaller for Experiment 2. Users are therefore on average
always positively certain (cq > 3) of their answers for Experiment 2 contrary to
the Experiment 1 where they sometimes uncertain. By having the possibility to
be imprecise users are more certain of their answer and this certainty is more
constant according to the difficulty. The users to Experiment 1 who were required
to give a specific answer are less certain, which confirms hypothesis H2.

Analysis of the Use of Certainty and Imprecision for Experiment 2
Users. In order to understand the relations between certainty and imprecision
of the users of Experiment 2, we plot the average user certainty as a function of
user imprecision in Fig. 3a, and on the contrary in Fig. 3b, we plot the average
user imprecision as a function of user certainty. In these figures a point represents
a user positioned according to cu and iu.

In Fig. 3a, the values iu are discretized and the average of cu is realized for
the degrees of imprecision 1 to 5. The red curve is a reference value, it presents
the averages, on the answers, of the cuq values for the degrees of imprecision 1
to 5. The average certainty made on the answers is increasing for an imprecision
degree ranging from 2 to 5 selected answers. For precise answers, with only
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(a) Average certainty as a function of the
degree of imprecision.

(b) Average imprecision as a function of
the certainty.

Fig. 3. Relation between certainty and imprecision for Experiment 2.

one name chosen, the certainty is on average higher than for an imprecision
degree of 2, but remains lower or equal to the imprecision degrees 3 to 5. This
slightly higher certainty value for accurate responses is explained by the fact
that some users in the crowd have more knowledge about birds. These qualified
users manage to give accurate answers, while being certain. For the user curve,
the certainty increases with the imprecision, except for a degree of imprecision
of 4 where the certainty is lower than the reference value. This is due to three
users who have a very low certainty cu while they are on average very imprecise.

As in Fig. 3a, the cu values are discretized and the averages of ic is per-
formed for each certainty value to obtain the green curve Fig. 3b. The red curve
is a reference calculated by averaging the imprecision iuq of the answers for the
certainty values in Table 1. For positive certainty values, the average imprecision
of the data is increasing. Symmetrically, the average imprecision is also increas-
ing for negative certainty values, whereas one would expect the imprecision to
decrease. Nevertheless, the certainty values 0 to 2 are represented by only 16%
of the answers, so the variations in this part of the graph are less relevant than
for the certainty values 3 to 6. Likewise, for the majority of users cu ≥ 3, for
these values, the average imprecision of users increases with the certainty.

The obtained results show that allowing the user to be imprecise makes him
more certain of his answers and requiring him to be precise less certain. It is
notably observed that the more imprecise the user is, the more certain he is,
which validates hypothesis H1. When the user chooses a single answer, if he has
domain knowledge, he is certain, but if he does not have domain knowledge his
answer will be uncertain. Therefore, in the absence of a qualification for the task,
the more precise the user is the less certain he is, which validates H2. On the
basis of the validated hypotheses H1 and H2, one can model the imprecision and
uncertainty of the answers by belief functions.
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3.3 Modeling and Aggregation of Responses

Traditionally, certainty of user’s answer is not required in crowdsourcing plat-
forms. Also, it is generally not possible for the user to be imprecise. The answers
are aggregated by majority voting, which consist of selecting the answer given
by the majority of the crowd. However, as it has been shown in the section
above, when they can be imprecise, users are more certain. It is therefore inter-
esting for the employer to introduce the notions of imprecision and certainty
in the tasks in order to improve the quality of the answers obtained by crowd-
sourcing campaigns. Indeed, in crowdsourcing campaigns, sometimes the user
is in a situation of indecision but has to give a precise answer while hesitating
between different choices. The user is required to select an answer among all his
hesitations. This answer is then not very certain or even random which is not
desirable for the employer. On the contrary, by offering the user the possibility
to select the set of choices that he considers correct, the certainty of the latter is
higher. The collected responses can be modeled and aggregated using the theory
of belief functions that takes into account the imprecision and the certainty of
the answer.

For the conducted experiments, the user associates to his answer X to the
question q a certainty value cuq. In the case where the answer is imprecise (such
as in Experiment 2), the imprecision correspond to the selected bird names. We
therefore propose to model the answers thanks to belief functions by a simple
mass function Xωuq with ωuq = cuq

cMAX
, in this paper cMAX = 6 and with X the

subset of selected bird names. Hence, |X| is the number of selected bird names
and is equal to icq. With this mass function, the more certain the user is of his
answer, the higher the value of ωuq. The mass function is then weakened by a
coefficient α = 0.8 and aggregated by questions by the Dempster conjunctive
combination operator. Then, the decision on the answer is made by the pignistic
probability on the answer.

After the decision phase, a correct answer rate of 84% is obtained for Exper-
iment 1, while for Experiment 2, this value is 90%. This 6% increase in the
correct answer rate between the two experiments is interesting for the employer
because it shows an improvement in the quality of the data collected. Moreover,
when the data is aggregated by majority voting, the correct answer rate is 70%
for Experiment 1 and 83% for Experiment 2. Even with majority voting it is
interesting to allow the contributor to be imprecise in case of indecision. The
modeling and aggregation of the answers is even more interesting with belief
functions, because it offers better results than the majority vote. By allowing
users to be imprecise, the employer can be more confident that the data collected
is of good quality.

4 Conclusion

Ph. Smets hypothesizes that the more imprecise one is, the more certain one
is and reciprocally, the more certain one is, the less precise one is. We carried
out two crowdsourcing campaigns, one where the user is required to be precise
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(Experiment 1) and the other where he could be imprecise (Experiment 2). For
both campaigns, the certainty of the contributor in his answer is required.

The users in Experiment 2 made good use of the opportunity to be imprecise.
The analysis of the collected data shows that the average certainty per question is
quite stable and higher for users who were able to be imprecise compared to those
who had to be precise. In addition, when we plot the average of users’ certainty
according to the average of users’ imprecision, we find that certainty increases
with imprecision. The experimental analysis thus validates the hypothesis of Ph.
Smets.

In order to model the uncertainty and imprecision of responses, the theory
of belief functions is used. Currently we use simple support mass functions to
represent the user’s response. A mass equivalent to the user’s certainty is asso-
ciated to his answer. This gives more weight to answers that users are certain
of when aggregating the data. Modeling and aggregating responses using belief
function theory offers better results than the majority voting commonly used in
crowdsourcing platforms.

In future work we would like to offer the contributor the possibility to select
several sets of answers with different degrees of certainty in order to consider
more than two focal elements. Consistent mass functions can then be used to
model the responses.
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Abstract. Structured safety argument based on graphical representa-
tions such as GSN (Goal Structuring Notation) are used to justify the cer-
tification of critical systems. However, such approaches do not deal with
uncertainties that might affect the merits of arguments. In the recent
past, some authors proposed to model the confidence in such arguments
using Dempster-Shafer theory. It enables us to determine the confidence
degree in conclusions for some basic GSN patterns. In this paper, we
refine this approach and improve the elicitation method for expert opin-
ions used in previous papers.

Keywords: Safety cases · Goal Structuring Notation (GSN) ·
Dempster–Shafer theory (DST) · Belief elicitation · Confidence
assessment

1 Introduction

GSN (Goal Structuring Notation) is a graphical formalism used to represent
argument structures (assurance cases, dependability cases, etc.). Originally, GSN
structures do not include a representation of uncertainty in the arguments. Sev-
eral independent works, e.g., [2,13] proposed to augment this approach to argu-
mentation with confidence assessment methods. They design numerical confi-
dence propagation models for some GSN patterns. However, in [2,15], the data
collection method, that enable these mathematical models to be fed with ini-
tial confidence values, allowing the computation of the overall confidence in the
system, needs improvement. The previous elicitation methods also present some
technical defects. In this paper, after reviewing previous work in Sect. 2, we
introduce an extensive confidence propagation method in Sect. 3, starting with
a brief description of argument types. In Sect. 4, we present an improved expert
opinion elicitation method. Finally, in Sect. 5, we illustrate our approach on a
small example.

2 Related Work

The issue of confidence assessment in argument structures has been addressed
in multiple works. Safety cases, which represent one type of such structures, aim
c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 269–278, 2021.
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at proving the safety of a system by producing several pieces of documented
evidence. In this paper, we focus on safety cases modeled by the so-called Goal
Structuring Notation (GSN) defined in [9]. Safety argumentation is a core activ-
ity in safety critical systems development. Such an argumentation can be carried
out using structured notations. It decomposes the safety requirements of the sys-
tem into elementary pieces as presented in Fig. 1, called goals. Strategies are the
components that justify this decomposition. Each goal is supported by one or
multiple pieces of evidence called Solutions. The example of GSN in Fig. 1, is a
classical pattern of an argument that treats the hazards existing in a system,
and listed in the context box. However, many other patterns exist. This type of
representation does not consider the uncertainty that may pervade each premise
or the support relation between solutions and goals. Moreover, it is important
to note that GSN models are non formal, and no explicit formal logical relations
is expressed between elements.

In [6], we compared some works that deal with confidence assessment in
GSN and give some recommendation to improve these methods. For instance,
we showed why it is more adequate to use implication instead of equivalence
(used in [13–15]) to represent argument types. We also discussed why Dempster
rule of combination is more suitable for combining evidence, in our case, than
other methods used in [2] for instance. Building such a confidence model relies on
input values, usually provided by experts in qualitative form, and transformed
into quantitative values. Such an activity could be called “Expert opinion elicita-
tion”. This method is more often used with probabilistic models. For instance, in
[3], authors used an expert elicitation procedure in a risk assessment approach
in fault trees. However, it can also be used in evidence theory. Ben Yaghlane
et al. [16], generate belief functions from a preference relation between events
provided by experts. In relation to our framework, few authors augmented their
confidence assessment method by such a data elicitation procedure in order to

Fig. 1. GSN example adapted from Hazard Avoidance Pattern [10]
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provide quantitative values for their models. Only some authors such as [2,15]
used an elicitation method that transforms expert opinions given in the form of
qualitative values, into quantitative ones.

Uncertainty propagation can be addressed by standard existing belief func-
tion software based on results in [11] (e.g., the belief function machine imple-
mented in MatLab), but the GSNs we study have a particular tree-like structure
that enable an explicit symbolic calculation of the belief function on the conclu-
sion space. The explicit formulas, that can be obtained from approaches such as
the one we propose, make the calculation more efficient and we can predict the
effect of changing selected inputs, thus better explaining the obtained results,
and validating the approach.

3 Argument Types

In this section, we define the argument types used in our confidence assessment
method. Remember that an argument type represents the relationship between
premises and a conclusion. For instance, in Fig. 1, (G2) to (Gn) are the premises
of (G1) and they are all necessary to support it. This logical relation could be
assimilated to the strategy component in a GSN (e.g., S1). When adopting a
logical viewpoint [6], we then speak of a rule. Unlike the types of arguments
proposed in [14], which use the equivalence connective to model such rules, we
decided to break down this equivalence into two implications. Each implication
brings a single piece of information about the conclusion, given premises. For
instance, in the case of a single premise (P ) supporting one conclusion (C),
P ⇒ C (that we call direct rule) can only infer the acceptance of the conclusion
if the premise is true. On the other hand, the rule ¬P ⇒ ¬C (that we call
reverse rule) can only infer the rejection of the conclusion when the premise is
false. We believe that, when assessing uncertainty of the relationship between
P and C, this separate handling makes the resulting models more accurate and
easy to assess. We also decided to associate a simple support mass function
to each rule to avoid dependence in the confidence between premises. Below
are uncertainty propagation formulas for various argument types; all calculation
details are available in [7].

D-Arg (Disjunctive): In this situation, each premise can support alone the
whole conclusion. We formally define this argument by : ∧n

i=1(pi ⇒ C). Rules
that infer the rejection of the conclusion (¬C) can be deduced from this argument
type by reversing this rule to obtain : (∧n

i=1¬pi) ⇒ ¬C. To get formulas (1) and
(2), we first assign to each rule a simple support mass function (resp. mi

dir for
pi ⇒ C and mrev for the reverse rule). We also assign one mass function mi

p to
each premise pi. This function uses three masses on pi, ¬pi and the tautology
(�) summing to one. Then, we combine, using DS rule of combination, all masses
on premises together (mp = m1

p ⊕ m2
p ⊕ ... ⊕ mn

p ) and masses on rules together
(mr = [m1

dir ⊕ m2
dir ⊕ ... ⊕ mn

dir] ⊕ mrev). Finally, we combine the resulting
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masses on the rules and premises (m = mp ⊕ mr). We obtain degrees of belief
and disbelief in C:

BelC(C) = 1 −
n∏

i=1

[1 − Belip(pi)Beli⇒(pi ⇒ C)] (1)

DisbC(C) = Bel⇐(∧n
i=1[¬pi] ⇒ ¬C)

n∏

i=1

Disbip(pi). (2)

We can notice that (1) expresses a “Multivalued Disjunction”. To have maximal
belief in the conclusion, it is enough that the degree of belief in one single premise
equals 1 (assuming that the mass on the direct rule also equals 1). Formula (2), in
contrast, expresses a ‘ ‘Multivalued Conjunction”. To have a maximal disbelief
in the conclusion, all the disbelief degrees on premises should be equal to 1,
supposing that the mass on the reverse rule equals 1 too. We can also notice
that, when BelC(C) is maximal, DisbC(C) is minimal.

C-Arg (Conjunctive): This argument type describes the situation when two
premises or more are jointly needed to support a conclusion. Following the
same reasoning as in the previous type, we define it formally by two rules:
(∧n

i=1pi) ⇒ C and its reverse ∧n
i=1(¬pi ⇒ ¬C). Following the same calcula-

tion in the disjunctive type, we get the formulas below:

BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C)

n∏

i=1

Belp(pi) (3)

DisbC(C) = 1 −
n∏

i=1

[1 − Disbip(pi)Beli⇐(¬pi ⇒ ¬C)] (4)

We can notice that, in contrast with formulas obtained for D-Arg, (3) and
(4) respectively express a “Multivalued Conjunction” and “Multivalued Disjunc-
tion”.

H-Arg (Hybrid): This argument describes the case when it is difficult to
choose between the conjunctive or disjunctive types. Each premise supports the
conclusion to some extent, and the conjunction of the premises does it to a larger
extent. We obtain degrees of belief and disbelief in C:

BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C) ×

n∏

i=1

Belip(pi)[1 − Beli⇒(pi ⇒ C)]

+ {1 −
n∏

i=1

[1 − Belip(pi)Beli⇒(pi ⇒ C)]}. (5)
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DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ×

n∏

i=1

Disbip(pi)[1 − Beli⇐(¬pi ⇒ ¬C)]

+ {1 −
n∏

i=1

[1 − Disbip(pi)Beli⇐(¬pi ⇒ ¬C)]}. (6)

We can notice from (5) and (6) that these formulas subsume those in con-
junctive and disjunctive types. On the one hand, if masses on pi ⇒ C are zero,
it becomes the formula of the conjunctive type. On the other hand, if the mass
on [∧n

i=1pi] ⇒ C is zero, we get the disjunctive type formula.
This argument provides a general framework that allow as to calculate belief

and disbelief values in different situations. D-Arg and C-Arg represent extreme
cases where the value of some rules is null.

Note that moving away from these extreme cases may lead to encounter
situations of conflict. A contradiction may appear when we have opposite
opinion about two premises along corresponding direct and reverse rules. For-
mally, it always takes the form of a combination of four items of the form:
{pi, pi ⇒ C,¬pj ,¬pj ⇒ ¬C}. The sum (BelC(C) + DisbC(C)) is then greater
than 1. This may indicate something wrong in the GSN or in the way the experts
replied questions, or yet on the reported experiments. Equation (7) represents
the conflict calculation formula:

m(⊥) =
n∑

i=1,j �=i

[Belip(pi)Beli⇒(pi ⇒ C) × Disbjp(pj)Belj⇐(¬pj ⇒ ¬C)] (7)

To address this issue, we choose to subtract the mass of the conflict m(⊥)
from BelC(C) and DisbC(C) in (5) and (6), and get contradiction-free degrees
bel(C) = BelC(C)−m(⊥) and disbC(C) = DisbC(C)−m(⊥). We choose not to
normalize the results (dividing by 1−m(⊥)) as proposed in the usual DS rule of
combination because this operation will eliminate the conflict and proportion-
ally increase the contradiction-free degrees of beliefs and disbelief belC(C) and
disbC(C) in a misleading way in the case of strong conflict. On the other hand,
keeping m(⊥) and subtracting it from BelC(C) and DisbC(C) will legitimately
increase uncertainty (i.e., belC(C)+disbC(C) is small) and show that the system
is not that safe because of the presence of a conflict.

4 Expert Opinion Elicitation

In the previous section, we defined three argument types and proposed analytical
formulas to calculate the belief and disbelief degrees in conclusions. However,
using these models requires the presence of two types of information: belief
degrees in premises (e.g., Belip) and the belief degrees for rules (e.g., Beli⇒).
In this section, we are first going to see how we can transform an expert opinion
about a premise into belief, uncertainty and disbelief degrees. Then, in the second
part, we provide some hints on how we can identify masses on rules.
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4.1 Elicitation of Belief and Disbelief on Premises

In order to directly obtain belief and disbelief degrees in a premise p from an
expert, authors in [2] consider asking two pieces of information: one, called deci-
sion index Dec(p), describes which side the expert leans towards, acceptance
or rejection of p; the other, called confidence Conf(p), reflects the amount of
information an expert possesses that can justify his opinion. Namely Dec(p) = 1
(resp., 0) indicates the certainty that p is true (resp false), while Conf(p) = 1
(resp., 0) indicates the expert has full (resp. no) information supporting the
choice of Dec(p). This is represented on Fig. 2.

The problem is then to define the belief and disbelief degrees in a proposition
p in terms of Dec(p) and Conf(p). In [2], it is proposed to let Bel(p) = Dec(p) ·
Conf(p) and Disb(p) = (1 − Dec(p)) · Conf(p), which implies a natural result:

Conf(p) = Bel(p) + Disb(p). (8)

However, it also implies that Dec(p) = Bel(p)
Bel(p)+Disb(p) . Note that this formula,

presents a discontinuity in case of no information (Bel(p) + Disb(p) = 0). The
expression is then completed by assuming Dec(p) = 1 [2] or 0 [15], in this case,
which sounds arbitrary.

It is more convincing to use the Pignistic transform [12] that turns a mass
function m on a set Ω (the frame of discernment) into a probability, changing
the focal sets into uniform distributions. When Ω = {p,¬p} has two possible
states, Dec(p) is the midpoint between belief and plausibility of p, which reads:

Dec(p) =
1 + Bel(p) − Disb(p)

2
(9)

Note that when Bel(p) = Disb(p) = 0, we get Dec(p) = 1/2.
Some authors suggest to define Dec(p) by renormalising the pair

(Pl(p), P l(¬p), where Pl(p) = 1 − Bel(¬p), dividing them by Pl(p) + Pl(¬p)
(plausibility transformation method [1]). This method is in agreement with
Dempster rule of combination. However, we do not get the midpoint between
belief and plausibility, which is intuitively surprizing, and in case of more than 3
elements in the frame, such a transformation may give probability values outside
the range [Bel, P l] [5].

Using Eqs. (8) and (9) and the knowledge of Dec(p) and Conf(p), we can
calculate belief and disbelief values: Bel(p) = Conf(p)−1

2 + Dec(p), Disb(p) =
Conf(p)+1

2 − Dec(p). Viewing Bel(p) as a lower probability, the pignistic trans-
formation computes the center of gravity of the convex set of probabilities
{P : P ≥ Bel}.

However, the pignistic transform also presents one issue for the elicitation
procedure. Some values of the pair (Dec,Conf) provided by the expert may lead
to negative values of belief Bel(p) or disbelief degrees Disb(p), which makes no
sense. This is because there are constraints relating Conf(p) and Dec(p): (8)
and (9) imply 1 − Conf(p) ≤ min(2Dec(p), 2(1 − Dec(p)), which is known as
Josang triangle [8]. To fix this problem, we can express the range of Dec(p) for
a given confidence level as:
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Fig. 2. Expert opinion extraction matrix

G

G1 G2

P1 P2 P3

C-Arg

D-Arg

Fig. 3. GSN toy example

1 − Conf(p)
2

≤ Dec(p) ≤ 1 + Conf(p)
2

(10)

For instance, a strong decision (full acceptance or rejection) should only be
made when we have a very high level of confidence, since when Conf(p) = 1,
Dec(p) is not constrained and ranges on [0, 1]. In contrast, under ignorance
Conf(p) = 0 enforces Dec(p) = 1/2. So, when the pair (Dec(p), Conf(p)) is
situated outside the triangle, and Dec(p) < 1−Conf(p)

2 (rejection: black dots on
Fig. 2), we set Dec(p) = 1−Conf(p)

2 . On the other hand, when Dec(p) > 1+Conf(p)
2

(acceptance: grey dots on Fig. 2), we set Dec(p) = 1+Conf(p)
2 . Choosing scales

for (Conf,Dec) and translating such pairs into numerical degrees is not trivial,
we thus make the equidistance assumption for simplicity and to be comparable
to previous works.

4.2 Determination of Belief Weights for Rules

Now, consider the mass functions for rules. Unlike belief and disbelief degrees
in premises, belief degrees in rules are more difficult to obtain directly from
an expert. Remember that a rule is representing a support relation between a
conclusion and its premises. As a first approach, Wang et al. [14] proposed to
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exploit this relation so as to identify these masses. To this end, they propose
certain values of the pair (Dec,Conf) on premises, as inputs for the model, and
ask the expert his opinion about the conclusion using the matrix of Fig. 2. Then,
for each type of argument, they use a non-linear least square method to estimate
the values of parameters (belief in rules).

A second approach, which is under study, aims to determine these masses
and the argument type (C, D or H-Arg) through a series of questions, assuming
clear-cut knowledge for premises (Bel = 1 or 0 and Disb = 1 or 0). For example,
If decision and confidence on a premise are maximal (acceptable for sure), what
is your decision and confidence on the conclusion? When belief or disbelief in
premises are maximal, the mass on the conclusion is the mass of the rule. For
instance, if in (3) we let ∀i, Bel(pi) = 1, then BelC(C) = Bel([∧n

i=1pi] ⇒ C) is
obtained from the expert.

5 Toy Example

We apply our approach in this section to a simple GSN example presented in
Fig. 3, including two types of arguments. It presents a top goal (G) supported by
two sub-goals (G1) and (G2). (G1) is supported by two premises (P1) and (P2).
On the other hand, (G2) is supported by a single premise (P3). For simplicity,
we chose a C-Arg for the argument type used to calculate (G) and a D-Arg in
the calculation of (G1).

In order to see how the variation of belief and disbelief degrees in the premises
affect the conclusion, we show six different configurations in Table 1, where we
set for each premise (P1, P2 and P3) a qualitative pair (decision, confidence)
(and the corresponding pair (Bel, Disb)), and calculate the conclusion (G) by
means of formulas (1), (2), (3) and (4). We also set the values of the masses on
the rules to 1. As a result, the values of belief and disbelief in the conclusion will
depend only on the masses on the premises.

Table 1. Qualitative (decision, confidence) and quantitative (belief, disbelief) pairs for
the example (see Fig. 2 for the meaning of symbols)

1st 2nd 3rd 4th 5th 6th

P1 (R;C6) (A;C5) (A;C5) (T;C5) (A;C5) (T;C6)

(0 ; 1) (0.8 ; 0) (0.8 ; 0) (0.65 ; 0.15) (0.8 ; 0) (0.75 ; 0.25)

P2 (R;C5) (A;C6) (R;C5) (T;C6) (A;C6) (T;C1)

(0 ; 0.8) (1 ; 0) (0 ; 0.8) (0.75 ; 0.25) (1 ; 0) (0 ; 0)

P3 (R;C6) (A;C6) (A;C6) (O;C6) (A;C2) (T;C6)

(0 ; 1) (1 ; 0) (1 ; 0) (0.25 ; 0.75) (0.2 ; 0) (0.75 ; 0.25)

G (R;C6) (A;C6) (A;C5) (O;C6) (A;C2) (T;C4)

(0 ; 1) (1 ; 0) (0.8 ; 0) (0.23 ; 0.76) (0.2 ; 0) (0.56 ; 0)
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We can notice, on Table 1, that when we have either three rejectable or three
acceptable premises with high levels of confidence (1st and 2nd columns), the
models maintain the same decision with the same high level of confidence. On
the other hand, when we have divergent opinions on the premises, either by
opposite decisions (3rd and 4th columns) or opposite confidence levels (5th and
6th columns), the results will depend on the nature of the argument involved.
In the 3rd and 6th column, decision levels (resp. acceptable and tolerable) were
maintained because the divergence is located in a D-Arg. Due to its disjunctive
nature, this argument favors the propagation of the premises that maximally sup-
port the conclusion. However, confidence levels were slightly decreased because
of a C-Arg, which cumulates the uncertainty present in each premise and prop-
agates it to the conclusion. In the 4th and 5th columns the divergence is located
in a C-Arg. Unlike D-Arg, this argument favors the propagation of the premises
that support the conclusion with the least strength. Thus, we end up with a
mildly negative (“opposable”) decision level in the 4th column and a very low
level of confidence in the 5th column.

6 Conclusion

In this article, we propose a method for confidence assessment in GSN. It covers
both the definition of argument types (belief propagation formulas) and data
transformation (from elicited qualitative data to belief and disbelief pairs). We
also illustrate this approach on a toy example. First results show that it was pos-
sible to improve previous work on uncertainty propagation and elicitation issues.
We still need to conduct a full experiment for assessing beliefs in rules. We will
investigate the expert questionnaire. We also want to propose an approach for
automatic rule type identification. In the long range, we also plan to do away with
the qualitative to quantitative transformation that contains some arbitrariness,
by developing the purely qualitative approach to information fusion outlined in
[4], and compare it to the quantitative one.
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assessment. In: Vejnarová, J., Kratochv́ıl, V. (eds.) BELIEF 2016. LNCS (LNAI),
vol. 9861, pp. 190–200. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45559-4 20

14. Wang, R., Guiochet, J., Motet, G., Schön, W.: Modelling confidence in railway
safety case. Saf. Sci. 110, 286–299 (2018)

15. Wang, R., Guiochet, J., Motet, G., Schön, W.: Safety case confidence propagation
based on Dempster-Shafer theory. Int. J. Approx. Reason. 107, 46–64 (2019)

16. Yaghlane, A.B., Denœux, T., Mellouli, K.: Elicitation of expert opinions for con-
structing belief functions. In: Uncertainty and Intelligent Information Systems, pp.
75–89. World Scientific (2008)

https://doi.org/10.1007/978-3-030-58449-8_10
https://doi.org/10.1007/978-3-030-58449-8_10
https://hal.laas.fr/hal-03210201
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-3-319-45559-4_20
https://doi.org/10.1007/978-3-319-45559-4_20


Algorithms and Computation



Discussions on the Connectedness
of a Random Closed Set
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Abstract. This work studies the connectedness of a random closed set
in a Euclidean space. The well-known Choquet-Kendall-Matheron the-
orem states that a random closed set is characterized by its capacity
functional. Consequently, any topological property must be also deter-
mined by such functional. In this work we consider connectedness. Under
mild conditions, this property can be determined by taking into account
only the capacity functional valued on predetermined finite families of
compact and convex sets. The technique is based on the construction of
an abstract simplicial complex associated with a cover of the support
of the random closed set. We consider a new application in Probability,
where we are able to approximate some probability computations.

Keywords: Random closed set · Connectedness · Capacity
functional · Abstract simplicial complex

1 Introduction

Quite often data is vague, contains error or simply is imprecise. The random
closed sets are nice models to deal with this imprecision. Instead of an exact
output of the random experiment as in classical probability, now the output is
a set. In general lines, a random closed set is a random element with values on
the family of closed sets of the underlying space, [6,7].

The study of random closed sets has a long history, [6]. One of the main results
related to this topic is the Choquet-Kendall-Matheron theorem, that states that
a random closed set is characterized by its capacity functional -recall that the
capacity functional T of a random closed set ̂X is a map which associates each
compact set K with P

(

̂X ∩ K �= ∅
)

. As a consequence, any topological property
of the random closed set must be characterized by its capacity functional. In this
work we focus on connectedness.

Observe that the T is supported on a very large family, the class of compact
sets. We will not use the entire capacity functional T , but only some finite
evaluations of it. More precisely, the problem of determining connectedness can
be solved requiring that T is valued only on a predetermined finite family of

By project PGC2018-098623-B-I00.

c© Springer Nature Switzerland AG 2021
T. Denœux et al. (Eds.): BELIEF 2021, LNAI 12915, pp. 281–290, 2021.
https://doi.org/10.1007/978-3-030-88601-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88601-1_28&domain=pdf
http://orcid.org/0000-0001-5704-2197
https://doi.org/10.1007/978-3-030-88601-1_28


282 J. J. Salamanca

compact sets. Then, the characterization of the connectedness needs to be based
on a (simple) equation that such values must satisfy. In this framework, a suitable
characterization of the connectedness of a random closed set can be found in
[8] in the case of R

1 and in [9] for higher dimension. There, the main idea
is reducing the underlying topological space to a finite algebraic structure, an
abstract simplicial complex, [5]. Then, a set induces a sub-abstract simplicial
complex in a natural way, [5,9]. As a consequence, under certain assumptions on
the random closed set, the associated random sub-abstract simplicial complex
can describe the topology of ̂X, partially at least.

This work tries to clarify several mathematical aspects of [8] and [9]. More-
over, we provide a nice application of its theoretical results. More concretely, we
show how to compute P(d(X,Y ) ≤ δ), where X and Y are random points of a
metric space (Rn, d).

2 Preliminaries

Let us start with some basic definitions.

Definition 1 ([6]). A random closed set ̂X on R
n is a map from a complete

probability space (Ω, σ,P) to the class of closed sets of R
n such that for any

compact set K of Rn it holds:
{

w ∈ Ω : ̂X(w) ∩ K �= ∅
}

∈ σ .

The measurability assumption in the previous definition implies that the
map T that associates a compact set K with T (K) := P

(

w : ̂X ∩ K �= ∅
)

is

well-defined. This map is the capacity functional of ̂X. Note that this map can
be canonically extended to non-necessarily compact sets, [6]. According to the
Choquet-Kendall-Matheron theorem, the capacity functional characterizes the
random closed set, [6,7].

The main aim of this manuscript is to characterize the connectedness of a
random closed set. This notion is defined as follows:

Definition 2. Let ̂X be a random closed set of Rn. This random closed set is
connected if P

(

̂X is connected
)

= 1.

We need to require some topological considerations on the random closed
set ̂X. Let us say that ̂X is continuous if any open set O of the Fell topology
with ̂X−1(O) �= ∅ satisfies P( ̂X−1(O)) > 0, [6,9]. In particular, if the probability
space Ω is discrete, then the random closed set is continuous. The same occurs
when the probability space is a subset of a Euclidean space endowed with an
absolutely continuous probability measure P.

Assume further that the random closed set ̂X is contained in a convex and
compact set K (that is, P( ̂X ⊆ K) = 1). Actually, here we are assuming that
the random closed set is bounded (has compact support), [6,7]. The necessity
to enlarge this support to a convex set comes from topological considerations.
Following the literature, let us say that K is a good support of ̂X.
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2.1 Abstract Simplicial Complexes Associated with Convex
Coverings

Now, consider a convex covering on the previous convex set K, [5,9]. That is, a
finite covering U = {Ui}r

i=1 of K such that each Ui is a convex set. For example, a
square grid. That is, U = {Uj1,...,jn =

∏n
i=1[ai+h ji, ai+h (ji+1)]}(j1,...,jn)∈J⊂Zn ,

where each Uj1,...,jn is a (topological) n-cube.
Recall that a covering of a topological space induces an abstract simplicial

complex, which is an algebraic structure modelling the topology of the space,
[5]. The abstract simplicial complex has as vertices (or 0-simplex set) the sets
of the covering, U = {Ui}i∈I ; now, k + 1 vertices span a k + 1-simplex if their
corresponding Uj ’s have non-empty intersection (in such a case, the k+1-simplex
is identified with the corresponding intersection), [3,5]. For instance, the above
square grid in R

2 yields to an abstract simplicial complex. All the details for a
toy example are described below.

Fig. 1. A convex cover of [0, 3] × [0, 3].

Example 1. In Fig. 1 there are plotted 9 squares in R
2: U := {U1 = [0, 1] ×

[0, 1], U2 = [1, 2] × [0, 1], U3 = [2, 3] × [0, 1], U4 = [0, 1] × [1, 2], U5 = [1, 2] × [1, 2],
U6 = [2, 3]× [1, 2], U7 = [0, 1]× [2, 3], U8 = [1, 2]× [2, 3], U9 = [2, 3]× [2, 3]}. These
9 sets form a convex covering of [0, 3] × [0, 3]. These sets lead to the abstract
simplicial complex characterized as follows:
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– The 0-simplex set is U . There are 9 0-simplices.
– The 1-simplex set is the non-empty intersection of two sets of U . More pre-

cisely, the 1-simplex set has 20 elements:
{

U1 ∩ U2 = {1} × [0, 1], U1 ∩ U4 = [0, 1] × {1}, U1 ∩ U5 = {(1, 1)} ,

U2 ∩ U3 = {2} × [0, 1], U2 ∩ U4 = {(1, 1)}, U2 ∩ U5 = [1, 2] × {1},

U2 ∩ U6 = {(2, 1)}, U3 ∩ U5 = {(2, 1)}, U3 ∩ U6 = [2, 3] × {1},

U4 ∩ U5 = {1} × [1, 2], U4 ∩ U7 = [0, 1] × {2}, U4 ∩ U8 = {(1, 2)},

U5 ∩ U6 = {2} × [1, 2], U5 ∩ U7 = {(1, 2)}, U5 ∩ U8 = [1, 2] × {2},

U5 ∩ U9 = {(2, 2)}, U6 ∩ U8 = {(2, 2)}, U6 ∩ U9 = [2, 3] × {2},

U7 ∩ U8 = {1} × [2, 3], U8 ∩ U9 = {2} × [2, 3]
}

.

– The 2-simplex set is the non-empty intersection of three sets of U . More
precisely, the 2-simplex set has 16 elements:
{

U1 ∩ U2 ∩ U4 = {(1, 1)}, U1 ∩ U2 ∩ U5 = {(1, 1)}, U1 ∩ U4 ∩ U5 = {(1, 1)},

U2 ∩ U3 ∩ U5 = {(2, 1)}, U2 ∩ U3 ∩ U6 = {(2, 1)}, U2 ∩ U4 ∩ U5 = {(1, 1)},

U2 ∩ U5 ∩ U6 = {(2, 1)}U3 ∩ U5 ∩ U6 = {(2, 1)}, U4 ∩ U5 ∩ U7 = {(1, 2)},

U4 ∩ U5 ∩ U8 = {(1, 2)}, U4 ∩ U7 ∩ U8 = {(1, 2)}, U5 ∩ U6 ∩ U8 = {(2, 2)},

U5 ∩ U6 ∩ U9 = {(2, 2)}, U5 ∩ U7 ∩ U8 = {(1, 2)}, U5 ∩ U8 ∩ U9 = {(2, 2)},

U6 ∩ U8 ∩ U9 = {(2, 2)}
}

.

– The 3-simplex set is the non-empty intersection of four sets of U . More pre-
cisely, the 3-simplex set has 4 elements:

{

U1 ∩ U2 ∩ U4 ∩ U5 = {(1, 1)},

U2 ∩ U3 ∩ U5 ∩ U6 = {(2, 1)},

U4 ∩ U5 ∩ U7 ∩ U8 = {(1, 2)},

U5 ∩ U6 ∩ U8 ∩ U9 = {(2, 2)}
}

.

Note that with some changes on the initial convex cover we can find more
appropriate simplices:

Example 2. Consider also the sets plotted in the Fig. 1. But now, consider the
following convex cover of [0, 3] × [0, 3]:

V =
{
V1 = U1 ∪ U2 ∪ U4 ∪ U5 = [0, 2] × [0, 2], V2 = U2 ∪ U3 ∪ U5 ∪ U6 = [1, 3] × [0, 2]

V3 = U4 ∪ U5 ∪ U7 ∪ U8 = [0, 2] × [1, 3], V4 = U5 ∪ U6 ∪ U8 ∪ U9 = [1, 3] × [1, 3]
}
.

This new convex cover leads to the abstract simplicial complex characterized as
follows:
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– The 0-simplex set is U . There are 4 0-simplices.
– The 1-simplex set has 6 elements:

{

V1 ∩ V2 = [1, 2] × [0, 2], V1 ∩ V3 = [0, 2] × [1, 2],

V1 ∩ V4 = [1, 2] × [1, 2], V2 ∩ V3 = [1, 2] × [1, 2],

V2 ∩ V4 = [1, 3] × [1, 2], V3 ∩ V4 = [1, 2] × [1, 3]
}

.

– The 2-simplex set has 4 elements:
{

V1 ∩ V2 ∩ V3 = [1, 2] × [1, 2],

V1 ∩ V2 ∩ V4 = [1, 2] × [1, 2],
V1 ∩ V3 ∩ V4 = [1, 2] × [1, 2],

V2 ∩ V3 ∩ V4 = [1, 2] × [1, 2]
}

.

– The 3-simplex set has 1 element:
{

V1 ∩ V2 ∩ V3 ∩ V4 = [1, 2] × [1, 2]
}

.

Note that all the simplices of this example are formed by geometric rectangles.
Clearly, this example can be extended trivially to an arbitrary number of sim-
plices that are also geometric rectangles.

Under mild conditions, the topology of the abstract simplicial complex coin-
cides with the topology of the topological space, thanks to the nerve theorem
[2–5]. Since any compact, convex set in R

n is contractible to a point [5], the
abstract simplicial complex associated to a convex covering must also be topo-
logically equivalent to the trivial abstract simplicial complex (that is, the latter
contains a single vertex).

Now, we recall the Euler-Poincaré characteristic, [3,5]. This is a well-known
topological invariant which describes the holes of a topological space. It can be
proved that the Euler-Poincaré characteristic χ must be 1 for both, K and the
abstract simplicial complex, [3,5]. For an abstract simplicial complex, it is the
number of vertices (0-simplex) minus the number of edges (1-simplex) plus the
number of faces (2-simplex) minus the number of 3-simplices, . . ., [3,5].

A closed subset A induces a sub-abstract simplicial complex by restriction on
the original structure: a k-simplex V of the abstract simplicial complex belongs
to the sub-abstract simplicial complex if A ∩ V �= ∅.

The main topological problem is that the original abstract simplicial complex
cannot describe the topology of subsets of the covered space, in general (see [5,9]
for further details and examples). This is the main drawback with this approach.
We simplify R

n to a finite algebraic structure but we lose the topology of the
subsets of the original space. However, there exists a distinguished case when the
previous fact occurs. In [9], it is proved that, for a convex set A (with A ⊆ K), the
topology of the sub-abstract simplicial complex associated with a convex cover
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(of K) coincides with the topology of A. Moreover, if A is the union of r disjoint
convex components, then the Euler-Poincaré characteristic of the sub-abstract
simplicial complex must be between 1 and r.

3 Main Results

Now, let ̂X be a random convex closed set of Rn. The crucial step is to show how
̂X induces a random sub-abstract simplicial complex. Let us clarify this idea.
Let C denote an abstract simplicial complex. Denote also the set of sub-abstract
simplicial complexes of C by S(C). That is, S(C) is constituted by those abstract
simplicial complexes that are formed from C by restriction. Then, a random
sub-abstract simplicial complex is a map from a complete probability space to
S(C).

It can be proved the following key fact: if ̂X is connected, then the expected
Euler-Poincaré characteristic of the induced random sub-abstract simplicial com-
plex must be 1.

The collection of arguments in [8] and in [9] shows that the expectation of
the number of k-simplices of the induced random sub-abstract simplicial complex
coincides with

∑

v∈Sk T (v), where Sk denotes the finite collection of k-simplices
of the abstract simplicial complex (associated to the compact set K) and T is
the capacity functional of the random closed set.

The main result is the following:

Theorem 1 ([9]). Let ̂X be a continuous random closed set, bounded and convex
by components, with K a good support of ̂X. The random set ̂X is connected if
and only if the following equation holds for any convex cover of K:

∑

i

∑

v∈G(i)

(−1)i T (v) = 1 . (1)

Note that T (∅) = 0. This means that if some sets of the convex cover have
empty intersection, then the capacity functional valued on that intersection must
vanish identically. Therefore Eq. (1) can be written in a more tractable way: For

a convex conver U =
{

Ui

}m

i=1
of the good support K of ̂X, the following equation

must hold if ̂X is connected:
m

∑

i=1

∑

1≤j1<j2<...<ji≤m

(−1)i T (Uj1 ∩ Uj2 ∩ . . . ∩ Uji) = 1 . (2)

Example (Continuation of example 2). Let ̂X be a random closed set of
[0, 3] × [0, 3]. The Eq. (1) associated to the abstract simplicial complex adopts
the following form:
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T ([0, 2] × [0, 2]) + T ([1, 3] × [0, 2]) + T ([0, 2] × [1, 3]) + T ([1, 3] × [1, 3])
+2T ([1, 2] × [1, 2]) − T ([0, 2] × [1, 2]) − T ([1, 2] × [1, 3]) = 1 . (3)

If ̂X is connected, then the Eq. (3) must be satistied. Observe that Eq. (3)
coincides with the Eq. (2) applied to the same convex cover.

4 An Application to Probability

Let us apply the previous theoretical tools to a concrete problem. Let X and Y
be two independent random points of R2. Assume that there exists a convex set
K such that P(X ∈ K) = P(Y ∈ K) = 1. Endow R

2 with a distance map d. We
need to compute P(d(X,Y ) ≤ δ). This problem has different motivations and
applications. For instance, the well-known case of the travelling salesman prob-
lem. Other examples of application can be found in astronomy or in optimization
theory. For a nice reference discussing about these topics we may recommend [1]
and references therein.

If X or Y has a complex structure, sampling could not be a good option.
For instance, when there are known the marginal distributions and the cop-
ula has a complex analytic structure. Let see how the previous theoretical rea-
soning induces an algorithm to estimate this probability. Begin noting that
P(d(X,Y ) ≤ δ) coincides with the probability that the random closed set
̂Z := BX(δ) ∪ {Y } is connected, where Bp(r) denotes the d-ball with centre
p and radius r. It is easy to see that the random closed set ̂Z is convex by com-
ponents (under simple assumptions on d). Moreover, it has only two connected
components. Consequently, 1 + P( ̂Z is not connected) can be estimated by the
expectation of the Euler-Poincaré characteristic associated to a convex cover of
K. Consequently, from the Eq. (1), P(d(X,Y ) ≤ δ) can be estimated from a
convex cover of K by:

2 −
∑

i

∑

v∈G(i)

(−1)i+1 T (v), (4)

where T is the capacity functional associated to BX(δ) ∪ Y . Analytically, T
satisfies: T (K) = P(X ∈ Kδ ∨ Y ∈ K), where Kδ := {p ∈ R

n : ∃q ∈ K, d(p, q) ≤
δ}.

Let see briefly a more concrete example. Consider a Cartesian coordi-
nate system of R

2 and take the following distance map: d((x1, x1), (y1, y2)) =
max{|x1−y1|, |x2−y2|}. It is clear that ([a, b]×[c, d])δ = [a−δ, b+δ]×[c−δ, d+δ]
for any real numbers a, b, c, d with a ≤ b and c ≤ d.
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Let X and Y be two independent random points of R
2, such that P(X ∈

[A,B] × [C,D]) = P(Y ∈ [A,B] × [C,D]) = 1 (or ≈ 1). Here, [A,B] × [C,D]
plays the role of the support K as above. Fix two integers mx and my, the
number of vertices in the x-axis and the number of vertices in the y-axis. Define
the following covering U of [A,B]×[C,D]: U = {[A+(B−A)·(i−1)/mx, A+(B−
A) · i/mx]× [C +(D−C) · (j −1)/my, C +(D−C) · j/my]}i∈{1,...,mx},j∈{1,...,my}.
This covering induces an abstract simplicial complex. Due to limitations in the
page format, we left the full details to the reader. For instance, the 4-simplex
set is {(A + (B − A) · i/mx, C + (D − C) · j/my)}i∈{1,...,mx−1},j∈{1,...,my−1};
the elements of the 3-simplex set are the elements of the 4-simplex set with
multiplicity 4; the elements of the 2-simplex set are segments joint with the
elements of the 4-simplex set with multiplicity 2.

With these elements, the right side of the Eq. (4) reads as follows (we left
the details about J1, . . . , J4 below to the reader):

∑

(i,j)∈J2⊂Z2

T ({(A+ (B −A) · i/mx, C + (D − C) · j/my)})

+
∑

(i,j)∈J1⊂Z2

T ({A+ (B −A) · i/mx} × [C + (D − C) · (j − 1)/my , C + (D − C) · j/my ])

−
∑

(i,j)∈J3⊂Z2

T ({A+ (B −A) · i/mx} × [C + (D − C) · (j − 1)/my , C + (D − C) · j/my ])

−
∑

(i,j)∈J4⊂Z2

T ({(A+ (B −A) · (i− 1)/mx, C + (D − C) · j/my)}) ,

where the related capacity functional T satisfies

T ([a, b] × [c, d]) = P (X ∈ [a − δ, b + δ] × [c − δ, d + δ]) · P (Y ∈ [a, b] × [c, d]) .

Note.- It can be proved that the previous algorithm overestimates P(d(X,Y ) ≤
δ). In the underground machinery, the convex cover may not detect whether
BX(δ) ∪ {Y } is connected if d(X,Y ) is a little bigger than δ. For that cases,
the computation of the Euler-Poincaré characteristic leads to 1, instead of 2 as
corresponds. This fact tells how the different parameters should be configured:
mx and my such that (B − A)/mx � δ and (D − C)/my � δ. It can also be
proved that when mx and my tends to infinity, the previous algorithm tends to
P(d(X,Y ) ≤ δ). The details may be published elsewhere.

Let us close this application section providing explicitly a program in R to
compute P(d(X,Y ) ≤ δ), when X and Y are random points of R

2 endowed
with the maximum distance (that is, d((x1, x2), (y1, y2)) = max{|x1 − y1|, |x2 −
y2|} for any (x1, x2), (y1, y2) ∈ R

2). This program has been configured for easy
probability laws of the random points, because of clarity in the lecture.
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5 Conclusions

We have characterized the connectedness of a random closed set in R
n. We have

that if the random closed set is connected, then it must satisfy an equation asso-
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ciated to any convex cover of its support. We have computed that equation for a
concrete convex cover, illustrating the general procedure. Furthermore, we have
provided a nice application in Probability. More precisely, we have approximated
the probability that two random points distance less than a given number.

Note that other applications may arise in other contexts.
As a future work, it is worth to study the connectedness of a random closed

set in a more general space than R
n. For instance, in the n-dimensional sphere

S
n, the torus S

n × S
m or the cylinder R

n × S
m. In those spaces, an extra diffi-

culty appears, since the topology of the space must have distinguished from the
topology of the random closed set.

References

1. Bhattacharyya, P., Chakrabarti, B.K.: The mean distance to the nth neighbour in
a uniform distribution of random points: an application of probability theory. Eur.
J. Phys. 29, 639–645 (2008)

2. Cavanna, N.J., Sheehy, D.R.: The generalized persistent nerve theorem. arXiv
preprint arXiv:1807.07920 (2008)

3. Fritsch, R., Piccinini, R.: Cellular Structures in Topology. Cambridge University
Press, Cambridge (1990)

4. Govc, D., Skraba, P.: An approximate nerve theorem. Found. Comput. Math.
18(5), 1245–1297 (2018)

5. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2005)
6. Molchanov, I.: Theory of Random Sets. Springer, Heidelberg (2005)
7. Nguyen, H.T.: An Introduction to Random Sets. CRC Press, Boca Raton (2006)
8. Salamanca, J.J.: On the connectedness of random sets of R. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst. (2020)
9. Salamanca, J.J., Herrera, J., Rubio, R.M.: On the connectedness of a random

closed set in a Euclidean space (submitted)
10. Walley, P.: Peter: Statistical Reasoning with Imprecise Probabilities. Chapman and

Hall, London (1991)

http://arxiv.org/abs/1807.07920


An Efficient Computation
of Dempster-Shafer Theory of Evidence
Based on Native GPU Implementation

Noelia Rico1(B) , Luigi Troiano2 , and Irene Dı́az1

1 Computer Science Department, University of Oviedo, Oviedo, Spain
{noeliarico,sirene}@uniovi.es

2 Department of Innovation Systems, University of Salerno, Fisciano, Italy
ltroiano@unisa.it

Abstract. Interest in Dempster-Shafer’s theory of evidence has often
run up against problems associated with the inherently exponential com-
plexity of the calculation of the Belief and Plausibility measures. This
can be mitigated by looking at the technological possibilities offered by
GPU computing. Some preliminary attempts have been oriented towards
parallelization of the computation, but none of them natively use the
support offered by lower-level GPUs. In this paper, we introduce a set
of Python functions for operations related to the Dempster-Shafer the-
ory and outline its implementation based natively on GPU computing,
highlighting the speedup possibilities in relation to a CPU-based or CPU-
derived implementation.

Keywords: Parallel computing · GPU · Computational complexity

1 Introduction

The Dempster-Shafer theory of evidence (DST) [3,6] provides an expressive
framework for reasoning with uncertainty. It includes probability theory as a
special case and is able to express imprecise probabilities. Given a universe set
Ω, referred to as frame of discernment in the DST context, basic probabilities
are allocated to its subsets, instead of being allocated to single elements (on
the contrary to what happens in the case of probability theory). The derived
measures of Plausibility and Belief for a subset, which determine a probability
interval assigned to that subset, are calculated from the relationships between
the subset and the basic assignment of probabilities on all subsets of Ω. This
theory is broadly applied in many fields. For example, in [7,8] a reference model
is proposed to analyze the relationships between users and media content that is
based on Dempster-Shafer’s theory. In [4], it is studied the next word prediction
model based on Dempster-Shafer’s combination rule. This approach manages
high conflicting evidence.

For any application of this theory, the need to deal with the power set 2Ω ,
i.e., the collection of all potential subsets of a universe set Ω, poses significant
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problems in terms of scalability, being this a problem for the DST computation
and consequently its use in real contexts. It is well known [1] that it is not possible
to directly implement the computation of the Belief and Plausibility measures, as
the time complexity is exponential on the number of elements in Ω. In addition,
Dempster’s rule of combination is #P-complete [5]. Some studies have focused
on this issue proposing different solutions, mostly based on restrictions that
limit their practical use. In [2] it is proposed a parallel computing approach
for Dempster’s rule of combination based on the concept of conquer and divide
algorithms, inspired from the spawning technique of a single-celled bacterium.

In this paper we present Python functions for doing DST-related operations.
First of all, an implementation scheme to compute the Belief and Plausibility
measures defined by DST is given. Furthermore, a function to combine basic
probability assignments from different sets as defined by DST is also provided.
The functions of the package have been developed using parallel computing by
means of a GPU, which allows to guarantee execution time even for large num-
bers of elements. Experimental results to support the benefits of the approach
showing the tractability of the execution time are also given in this work. More-
over, these functions have been made open source so they can be used by anyone.

The remainder of this paper is organized as follows. In Sect. 2 the concepts of
the Dempster-Shafer theory that are implemented are detailed. Section 3 high-
lights the problem regarding the computation of the Belief and Plausibility
according to this theory and the parallel algorithm proposed to solve this prob-
lem is explained. In Sect. 4, the performance of the GPU functions is evaluated,
showing that the reduction of the execution time for computing the Belief and
Plausibility is such that, in some cases, goes from hours to less than one second.
In the last section, the advances proposed in this paper are summarized and
future research on this topic is outlined.

2 Preliminaries

In this section, the basic concepts related to Dempster-Shafer theory [3,6] are
presented. In the following we denote the frame of discernment (i.e. the set of
all the hypotheses) by Ω. Belief function represents the degree of belief to which
the evidence supports and Plausibility function refers to the degree of belief to
which a set is feasible.

Definition 1. A function m : 2Ω −→ [0, 1] over Ω is called a basic probability
assignment iff

m(∅) = 0 and
∑

S∈2Ω

m(S) = 1

Definition 2. Any S ∈ 2Ω is a focal element iff m(S) > 0. In addition, we name
focal set the collection of focal elements Fm(Ω) = {S ⊆ Ω | m(S) > 0} ⊆ 2Ω.
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Definition 3. The Belief measure of A ⊆ Ω induced by the basic probability
assignment function m is defined as

Bel(A) =
∑

S⊆A

m(S) (1)

Definition 4. The Plausibility measure of A ⊆ Ω induced by the basic probabil-
ity assignment function m is defined as

Pl(A) =
∑

S∩A �=∅
m(S) (2)

Definition 5. Let m1 and m2 be two basic probability assignments, the joint
basic probability assignment, i.e. the Dempster’s combination rule (DCR), is
computed as

m1,2(A) =
1

1 − Z

∑

B∩C=A

m1(B) · m2(C) (3)

where
Z =

∑

B∩C=∅
m1(B) · m2(C) (4)

is a measure of conflict between the two basic probability assignment sets. In
addition, m1,2(∅) = 0 by definition.

A reference algorithm to compute the Belief and Plausibility over all the
possible subsets of Ω is given by Algorithm 1. This algorithm explores the lattice
2Ω , which contains all the possible combinations of elements A ⊆ Ω for which
is necessary to compute the Belief and Plausibility. This operation is done by
checking the overlapping between the node and all the focal elements S ∈ Fm(Ω).

Algorithm 1: Compute Belief and Plausibility given Ω and Fm(Ω)
Result: Two arrays Belief Bel and Plausibility Pl with these values for each

element of the lattice A ∈ 2Ω .
Input: Set Ω. Fm(Ω) and their basic probability assignment.

1 Initialize an array Bel with one element Bel(A) = 0 for each node A ∈ 2Ω ;

2 Initialize an array Pl with one element Pl(A) = 0 for each node A ∈ 2Ω ;

3 foreach A ∈ 2Ω do
4 foreach S ∈ Fm(Ω) do
5 if S ∩ A �= ∅ then
6 Pl(A) = Pl(A) + m(S);
7 end
8 if S ⊆ A then
9 Bel(A) = Bel(A) + m(S);

10 end

11 end

12 end
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Notice that, if this algorithm is developed by means of a sequential imple-
mentation and executed in a CPU, the execution time is governed by both the
number of elements in Ω (which determines the size of the lattice of nodes to
explore, making the execution time growing exponentially) and the number of
focal elements.

The main aim of this work is to provide an alternative implementation that
takes advantage of the parallel execution in a GPU in order to reduce the exe-
cution time required to compute the Belief and Plausibility of all the nodes in
the lattice 2Ω . Moreover, we also provide a GPU implementation for the com-
bination of two different sets of focal elements in order to obtain a joint mass
assignment as described in Definition 5.

3 The Computation Problem of Belief, Plausibility
and Dempster’s Combination Rule

There are broadly two types of programming languages, compiled and inter-
preted. On the one hand, compiled programming languages translate a program
in a high-level language into a binary executable that contains instructions that
the machine can execute. On the other hand, interpreted programming languages
execute the code one line at a time as it is read from the source code. This makes
compiled programming languages to be usually faster, as the result is a file that
the operating system can run without further ado. For this reason, the execution
time of any implementation depends on the programming language chosen.

3.1 A Python Implementation

The increasing popularity of the Python programming language in the last years
makes it a suitable language for practitioners from all fields. Unfortunately, this
is an interpreted language that does not stand out for being fast, which have an
effect on the execution time of methods with heavy computation tasks. Numba
is a Just-in-Time (JIT) compiler that allows the translation of the Python code
to CPU efficient code by using the LLVM (Low Level Virtual Machine) com-
piler, which allows to speed up the execution time of the implementation. In
order to do so, first, it analyses the Python code and turns it into an LLVM
IR (intermediate representation), then it creates the corresponding bytecode for
the selected architecture in which the function is going to be executed, which
corresponds with the architecture where the host Python runtime is running on,
making its execution faster.

3.2 Parallelization Based on GPU Computing

In recent years, GPUs have moved from graphic processing purpose to general
purpose, as they have gain popularity for being powerful devices to execute paral-
lel computing algorithms. The architecture of the GPUs differ from CPUs, which
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requires the algorithms to be designed using a different philosophy depending
on how they are going to be executed.

In the last decade, CUDA has emerged as a tool for GPU code development,
as it includes full extensions for writing code suitable to be executed in a GPU
using classic programming languages such as C/C++ and Python.

In the previous section, we pointed out the drawbacks of a sequential imple-
mentation of Algorithm 1. The aim of this work is to improve the execution time
of such kind of implementation by providing a parallel implementation that can
be executed in a NVIDIA GPU.

In order to make the code efficient, for the GPU approach we represent
each node of the lattice by a unique integer number. Therefore, given a set Ω
containing n elements, the lattice formed by 2n elements to explore requires
numbers codified with n bits to represent all the possible combinations A ⊆ Ω.
Under this understanding, the element 0 represents for any number of bits the
empty set and, consequently, the number 2n − 1 represents the full set Ω. Then,
each node of the lattice is assigned exclusively to one of the threads in the GPU
that are executed in parallel, matching the index of the set with the integer
representing the node. The corresponding thread takes care of computing the
Belief and Plausibility associated with the node by exploring its overlapping
with all the focal elements S ∈ Fm(Ω). Therefore, following Algorithm1, in the
GPU implementation the loop in line 3 is parallelized in different threads, and
each thread takes care of the inner loop over Fm(Ω) to compute the Belief and
Plausibility associated with its corresponding node. By doing this, the execution
time is relaxed as now it relies only on the number of focal elements, because
the number of elements can be done in parallel whenever the GPU allows such
number of threads.

Fig. 1. Example of the parallel computation of the
belief and plausibility given the set of items Fm(Ω) =
A, B, C, D and the focal set Fm(Ω) = {C, BC, AD}
with corresponding basic probability assignments
m(C) = 0.5, m(BC) = 0.4, m(AD) = 0.1.

As an example, let us
define the set Ω = {A,B,C,
D} with a focal set Fm(Ω)
= {C,BC,AD} with basic
probability assignments {0.5,
0.4, 0.1}. Figure 1 shows the
binary representation asso-
ciated to each node, as well
as its corresponding integer
number, which is also the
identifier of its associated
thread. Each thread goes
individually over the set
of focal elements and com-
putes the Belief and Plausi-
bility of its associated node.
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3.3 The Computation of DCR

A function to compute the joint basic probability assignment obtained from two
focal set of elements Fm1(Ω) and Fm2(Ω) is also provided. This function has a
native implementation based on the following steps:

1. Each thread evaluates, in parallel, one of the different pairs of focal elements
{(B,C) |B ∈ Fm1(Ω) ∧ C ∈ Fm2(Ω)}, computing its intersection as well as
the corresponding result obtained from m1(B) · m2(C).

2. Then, one single thread goes sequentially over all the obtained intersections,
grouping the ones that represent the same focal element in order to create the
resulting focal set F3(Ω) and the corresponding basic probabilities assignment
of the focal elements.

3. The threads are again used to divide in parallel the summed masses obtained
for all A ∈ F3(Ω) by 1 − Z (see Definition 5).

4 Empirical Proof of Time Reduction Using a GPU

The functions described in this work can be found at https://github.com/
noeliarico/belief. The execution times shown in this section have been mea-
sured using a Google Colab, which is freely available and provides a Tesla T4
for GPU execution and an Intel(R) Xeon(R) CPU @ 2.20GHzm, and 13GB of
RAM memory.

In order to measure the execution time saved from using a GPU instead of
a CPU to solve the computation of the Belief and Plausibility, we have bench-
marked three different implementations of Algorithm1. All of them have been
developed using Python, although they differ in how they are compiled and
written depending on the target device where they will be executed:

– AlgIPy is an implementation in pure Python 3.7 as an interpreted language
and executed sequentially in a CPU.

– AlgCPy is the same implementation that AlgIPy but, in this case, it has been
compiled using the JIT compiler provided by Numba, and it is also executed
in a CPU.

– AlgGPU is the parallel implementation proposed in this work, which is com-
piled with Numba to be executed in a NVIDIA GPU with the considerations
explained in Sect. 3.2.

Combinations of different sizes of Ω (which determines the number of nodes
to explore in 2Ω) and number of focal elements have been tested in order to
observe the behaviour of the different implementations. Table 1 shows the exe-
cution times obtained for each combination and implementation.

https://github.com/noeliarico/belief
https://github.com/noeliarico/belief
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Table 1. Execution time (in seconds) of the different implementations tested in order
to compute the Belief and Plausibility for a set Ω given the focal elements Fm(Ω) and
their corresponding basic probability assignments.

AlgIPy

items/focals 22 24 29 214 219

5 0.0002 0.0006 – – –

10 0.0046 0.0182 0.5755 – –

15 0.1683 0.5773 17.9401 563.0568 –

20 4.7980 18.3787 549.6553 18136.5335 –

25 – – – – –

26 – – – – –

AlgCPy

items/focals 22 24 29 214 219

5 0.0000 0.0000 – – –

10 0.0000 0.0000 0.0015 – –

15 0.0003 0.0010 0.0477 1.5555 –

20 0.0069 0.0295 1.5593 50.3568 1667.2546

25 – – – – –

26 – – – – –

AlgGPU

items/focals 22 24 29 214 219

5 0.0033 0.0012 – – –

10 0.0025 0.0019 0.0015 – –

15 0.0022 0.0143 0.0148 0.0135 –

20 0.0015 0.0070 0.0149 0.2293 7.2960

25 0.0044 0.0106 0.2449 7.0875 239.0286

26 0.0076 0.0185 0.4457 14.1326 478.5815

The AlgIPy shows how the time is incremented both in terms of the number
of nodes to explore as well as the number of focal elements. The execution of this
algorithm becomes intractable as the number of nodes in the lattice increases.
Moving to the Numba1 compiled AlgCPy implementation, it can be observed
that it produces a reduction of the time in relation to AlgIPy implementation
for all the cases studied by means of the compilation of the code.

CPU implementations produce a memory outbound for lattices with size
greater than 220 nodes and even for that size when trying to use a high number of
focal elements. Table 1 shows that the maximum combination of number of nodes
and focal elements is achieved in this experiments with a lattice of 226 nodes and
a number of focal elements equal to 219 for the GPU. For the largest combination
reached by the CPU, with a lattice with 220 nodes and 214 focal elements, the
execution time of the original Python algorithm takes 5 h to complete the task.
This time is greatly reduced by the compiled version which takes about 50 min,
and extremely improved by the GPU version, which takes less than one second
to solve the same task.

The GPU algorithm shows how the number of focal elements dominates now
the execution time. For example, when the number of focal elements is 24, the
execution time can be done in milliseconds, no matter the number of elements
in the lattice. Up to 20 items and 214 focal elements, the GPU takes similar
execution times. The increase in bigger sizes is due to the need of reusing threads
when the number of combinations increases.

Notice how for a lattice size greater than 226 and a number of focal elements
equal to 219, the execution time of AlgGPU is even lower than the time taken by
the AlgIPy algorithm for a lattice of size 215 and 214 focal elements. This makes
another point about the remarkable advantage of the GPU implementation in
relation to the CPU versions.

Table 2. Execution time obtained with the pyds package (left) and speedup showing
how much faster the results obtained with the GPU proposed algorithm in this work
are (right).

nitems/nfocals 22 24 29 214

5 0.0005 0.0008 – –

10 0.0013 0.0097 0.2108 –

15 0.1572 0.4394 8.1160 268.4909

20 2.1417 16.8437 325.0773 –

nitems/nfocals 22 24 29 214

5 6.6% 1.49 % – –

10 1.93% 5.26% 142.86% –

15 71.45% 33.33% 1000% 20000%

20 1426.66% 2500% 1428.571% –

1 https://numba.pydata.org.

https://numba.pydata.org
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The execution time as well as the speed up of the GPU code proposed in this
work in relation to the current available Python package pyds2 that implements
functions for Belief and Plausibility are shown in Table 2. This implementation
suffers a memory outbound for 20 items when the number of elements is 214.

Fig. 2. Execution time of the method for com-
bining two focal sets. x axis shows the size of
each set of focal elements being combined.

In addition to the computation
of the belief and plausibility, the
execution times obtained for com-
bining two different sets of focal
elements given for a lattice of 220

nodes (i.e. a set of 20 items) is
given in Fig. 2 showing the time for
different number of focal elements
in the x axis. In order to test the
function, large numbers of focal ele-
ments have been tested. In practi-
cal problems, it is likely to assume
that the size of the focal set will not
be as large, and it is shown that for
focal sets smaller than 28 the prob-
lem can be solved in seconds.

5 Conclusion and Future Work

In this work we introduce a set of Python GPU functions to reduce the execu-
tion time of the operations related with the Dempster-Shafer Theory. Empirical
results show the advantage of this kind of computation, making the methods
feasible for large sets. Future work in this line will provide more functions to
compute the joint probability assignments and also to explore further reductions
of the execution time by the introduction of the equivalence classes concept into
the parallel algorithms.
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Abstract. For predicting the decision in prisoner’s dilemma game,
researchers have developed lots of models. However, the existing models
only consider the networks based on quantum probability amplitude and
the accuracy can still be improved. Thus, in this paper, quantum-like
evidential network (QLEN) is proposed, which is the evidential exten-
sion of the original quantum-like Bayesian network. A QLEN consists
of a directed acyclic graph associated with quantum mass function. In
addition, a full joint quantum mass function can be derived from QLEN
which can be applied in decision making and inference. Moreover, based
on QLEN, this paper presents a decision model for predicting the play-
ers’ decision in prisoner’s dilemma. The results show that, compared with
the existing models, the proposed model is more efficient and accurate
to make predictions in prisoner’s dilemma.

Keywords: Dempster-Shafer evidence theory · Prisoner’s dilemma
game · Bayesian networks · Quantum-like evidential networks ·
Quantum mass function

1 Introduction

Since Dempster-Shafer evidence theory (evidence theory) was firstly proposed
by Dempster in 1967 [4] and later developed by Shafer in 1976 [12], uncertain
information processing based on evidence theory becomes more and more pop-
ular, and many researchers have been promoting the development of evidence
theory. For example, Smets proposed Pignistic Transformation [13], which can
transform probability into mass function. Cuzzolin proposed a geometric app-
roach for dealing with the uncertainty in evidence theory [2]. For measuring
the uncertainty of mass function, Deng presented Deng entropy [6], which is a
generalization of Shannon entropy [8] and is further developed into information
volume [5,7]. Gao and Deng introduced quantum model of mass function [9],
which extends classical mass function into its quantum counterpart.
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The violation of Sure Thing Principle in prisoner’s dilemma is an interest-
ing phenomenon [11]. Various network models have been proposed for modeling
the mechanism of this phenomenon. In 2016, Moreira and Wichert proposed
quantum-like Bayesian networks (QLBN) [11], which replaces the classical prob-
ability in the classical Bayesian Networks model [10] by quantum probability
amplitude. In 2020, Dai et al. presented a heuristic model to determine the
interference effect in QLBN [3]. Apart from the network models, Benavoli et
al. proposed a quantum gambling system in 2017 [1], which provides a potential
model for explaining the violation of Sure Thing Principle in prisoner’s dilemma.

However, the existing network models still have room for improving the accu-
racy of modeling the decision in prisoner’s dilemma based on different techniques,
such as modifying the way to determine interference and introducing some novel
methods into the network. Moreover, how to predict the decision in prisoner’s
dilemma is still an open issue. To be specific, the existing network models only
take quantum probability amplitude into consideration, which can be further
generalized. By setting a connection between quantum theory and evidence the-
ory, quantum mass function is an efficient tool for representing uncertainty [9].
It is reasonable to introduce quantum mass function into the network model to
enhance the performance of predicting decision in prisoner’s dilemma.

To address the issues mentioned above, a novel network model, named as
quantum-like evidential network (QLEN), is proposed in this paper, which is
the quantum evidential extension of the original quantum-like Bayesian network.
A QLEN consists of a directed acyclic graph and its associated quantum mass
function. Besides, a full joint quantum mass function can be derived from QLEN
which can be applied in decision making and inference. In addition, based on
QLEN, we present a decision model for predicting the players’ decision in pris-
oner’s dilemma. The results show that the proposed model can make predictions
more efficiently and accurately than the existing models.

The rest of this paper is organized as follows. Section 2 briefly reviews some
preliminaries. In Sect. 3, we propose quantum-like evidential networks (QLEN).
In Sect. 4, a decision making model based on QLEN is presented for predicting
the decision in prisoner’s dilemma. Section 5 makes a brief conclusion.

2 Preliminaries

2.1 Dempster-Shafer Evidence Theory

Several conceptions about Dempster-Shafer evidence theory [4,12] are summa-
rized as follows. Frame of discernment (FOD) is an exhaustive nonempty set of
N hypotheses: Θ = {θ1, θ2, θ3, · · · , θN}, where N elements are mutually exclu-
sive. 2Θ denotes the power set of Θ. It has 2N elements which are all possible
subsets of Θ. Basic probability assignment (BPA), or mass function, is a map-
ping function m : 2Θ → [0, 1], which is constrained by

∑
A∈2Θ m(A) = 1 and

m(∅) = 0. For A,B ⊆ Θ, the conditional mass function is defined as [14]:

m (B||A) =
{∑

X⊆Ā m (B ∪ X) if B ⊆ A ⊆ Θ,

0 otherwise.
(1)
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Given two variables X,Y ⊆ Θ, the joint mass function is expressed as [14]:

mX∪Y (x, y) =
∏

y⊆Y

mX (x||y) =
∏

x⊆X

mY (y||x). (2)

2.2 Quantum Mass Function

Quantum mass function is a quantum extension of classical mass function [9].
Quantum frame of discernment (QFOD) is the set of N mutually exhaustive
events indicated by |Θ〉 = {|θ1〉 , |θ2〉 , |θ3〉 , · · · , |θN 〉}. The power set of QFOD
is given by 2|Θ〉 = {|A1〉 , |A2〉 , |A3〉 , · · · , |A2N 〉}, which contains all the possible
subsets of QFOD. On QFOD, quantum mass function (QMF) is defined as

M (|Ai〉 ) = ψie
jθi (3)

which is constrained by
∑

|Ai〉 ∈2|Θ〉 |M (|Ai〉 )|2 =
∑2N

i=1 ψ2
i = 1 and M(∅) = 0.

2.3 Quantum-Like Bayesian Networks

Quantum-like Bayesian Network is a directed acyclic graph [11]. Let the list of
variables be X = {X1,X2, ...,XN}. The full joint distribution of a quantum-like
Bayesian Network (QLBN) is defined as follows [11]:

Pr (X1,X2, ...,XN ) =

∣
∣
∣
∣
∣

N∏

i=1

ψ (Xi|πi)

∣
∣
∣
∣
∣

2

(4)

where ψ (Xi) = |ψ (Xi) |ejθi is the quantum probability amplitude and πi

represents all the parent nodes of Xi.

3 QLEN: Quantum-Like Evidential Networks

In this section, firstly, quantum-like evidential networks (QLEN) are proposed.
Next, the joint mass function and the marginal mass function derived from
QLEN are proposed.

Definition 1 (Quantum-like evidential networks). Let the list of variables
be X = {X1,X2, ...,XM}. All variables are defined on the quantum frame of
discernment |Θ〉 = {|θ1〉 , |θ2〉 , · · · , |θN 〉} and the value xi for each variable Xi

is in the power set 2|Θ〉 = {|φ1〉 , |φ2〉 , · · · , |φ2N 〉}. A quantum-like evidential
network (QLEN) is defined as:

QLEN = 〈G,M〉 (5)

where G = 〈X,E〉 is a directed acyclic graph, in which the nodes denote vari-
ables Xi and the edges denote dependencies from parent nodes to child nodes. M
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indicates a set of parameters for QLEN, and each element of M is a conditional
quantum mass function associated with each variable Xi:

MXi
(xi||πi) =

√
mXi

(xi||πi)ejθi (6)

where mXi
(xi||πi) is the classical conditional mass function and πi are all the

parent nodes of Xi.

Accordingly, the full joint quantum mass function and its corresponding full
joint mass function can be derived from QLEN:

M⋃M
i=1 Xi

(x1, x2, ..., xM ) =
M∏

i=1

MXi
(xi||πi) (7)

m⋃M
i=1 Xi

(x1, x2, ..., xM ) =
∣
∣
∣M⋃M

i=1 Xi
(x1, x2, ..., xM )

∣
∣
∣
2

(8)

For some query Xq = {Xq
1 ,Xq

2 , ...,Xq
Q} ⊆ X, the marginal mass function

can be calculated based on Born’s rule:

m⋃Q
i=1 Xq

i
(x1, x2, ..., xQ||e) = α

∣
∣
∣
∣
∣
∣

∑

y∈2|Θ〉

Q∏

i=1

MXq
i

(xi||πi, e, y)

∣
∣
∣
∣
∣
∣

2

(9)

α =
1

∑
x1...xQ∈2|Θ〉

∣
∣
∣
∑

y∈2|Θ〉
∏Q

i=1 MXq
i

(xi||πi, e, y)
∣
∣
∣
2 (10)

where e is the value of observed variables, y is the value of unobserved variables,
and α is the normalization factor.

Interference term will emerge by expanding Eq. 9 as follows:

m⋃Q
i=1 X

q
i

(x1, x2, ..., xQ||e) = α

⎛

⎜
⎝

∑

y∈2|Θ〉

∣
∣
∣
∣
∣
∣

Q∏

i=1

MX
q
i
(xi||πi, e, y)

∣
∣
∣
∣
∣
∣

2

+ 2 · INT

⎞

⎟
⎠ (11)

INT =

2N −1∑

a=1

2N
∑

b=a+1

∣
∣
∣
∣
∣
∣

Q∏

i=1

MX
q
i
(xi||πi, e, y = |φa〉 )

∣
∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

Q∏

i=1

MX
q
i
(xi||πi, e, y = |φb〉 )

∣
∣
∣
∣
∣
∣
· cos (θa − θb)

(12)

where INT is the interference term and cos (θa − θb) is the interference degree.

4 QLEN-Based Decision Making Model and Its
Application in Prisoner’s Dilemma Game

In this section, a decision making model is proposed based on QLEN. Then, the
proposed model is applied in prisoner’s dilemma for predicting the decision.
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Table 1. Results of prisoner’s dilemma from different literature summarized by [11]

Literature Known to
defecta

Known to
collaborateb

Observed
PrO(D)c

Classical
PrC(D)d

Shafir and Tversky, 1992 0.9700 0.8400 0.6300 0.9050

Li and Taplin, 2002e 0.8200 0.7700 0.7200 0.7950

Busemeyer et al., 2006 0.9100 0.8400 0.6600 0.8750

Hristova and Grinberg, 2008 0.9700 0.9300 0.8800 0.9500

Game 1f 0.7333 0.6670 0.6000 0.7002

Game 2 0.8000 0.7667 0.6300 0.7834

Game 3 0.9000 0.8667 0.8667 0.8834

Game 4 0.8333 0.8000 0.7000 0.8167

Game 5 0.8333 0.7333 0.7000 0.7833

Game 6 0.7767 0.8333 0.8000 0.8050

Game 7 0.8867 0.7333 0.7667 0.8100

The results summarized by [11] show the probability that the second player (X2)
chooses to defect under the condition of knowing the choice of the first player (X1)
is: to defecta, to collaborateb, and unknownc. In the rest of this paper, a is denoted
as Pr(X2 = D|X1 = D) and b is denoted as Pr(X2 = D|X1 = C). c Observed
PrO(D) is short for PrO(X2 = D). d Classical PrC(D) is short for PrC(X2 = D)
which is obtained based on total probability formula. e These results correspond to
the average results of Game 1 to 7. f Game 1 to 7 are seven experiments reported in
Li and Taplin, 2002.

4.1 Problem Statement

Prisoner’s dilemma game describes the problem of collaboration. In this game,
there are two players. Each player has two choices, namely, collaborating with or
defecting to the other player. There are different payoffs for the players depending
on the joint actions of the two players, which lead players to choose differently
when knowing different prior information. Sure Thing Principle is essential in
probability theory, which describes that if a person prefers to do X rather than
do Y under the situation S, and if the person also would rather do X than do
Y under the complementary situation S̄, then the person should always prefer
X to Y even when the situation is unspecified [11]. In 2016, Moreira et al. [11]
summarized the results of prisoner’s dilemma from different literature, which are
shown in Table 1. The experimental results indicate the violations of Sure Thing
Principle, which further lead to the violations of total probability formula, i.e.,
there are vast differences between observed PrO(D) and classical PrC(D) [11].
Various models have been developed to explore the underlying mechanism and
predict the observed PrO(D) by different techniques [3,11]. However, how to
model the decision in prisoner’s dilemma is still an open issue.
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Fig. 1. The constructed QLEN model of prisoner’s dilemma game and the associated
tables of conditional quantum mass function for all the nodes (X1 and X2).

4.2 The Proposed QLEN-Based Decision Making Model

In this subsection, a decision making model based on QLEN is proposed for
modeling the decision in prisoner’s dilemma game.

Let the list of variables be X = {X1,X2} where X1 and X2 respectively
represent the first and the second player in prisoner’s dilemma. Let the quan-
tum frame of discernment be |Θ〉 = {|θD〉 , |θC〉} where |θD〉 and |θC〉 respec-
tively denote the two choices of the players: Defect and Collaboration. The
value for each variable Xi is in the power set 2|Θ〉 = {∅, |φD〉 , |φC〉 , |φH〉} =
{ ∅, {|θD〉}, {|θC〉}, {|θD〉 , |θC〉} } where |φH〉 denotes Hesitancy which means
that the player is hesitant about the choices. It should be pointed out that,
since both mass function and quantum mass function of the empty set ∅ are
constrained by zero, the proposed model just focus on |θD〉 , |θC〉 , and |θH〉 . The
aim is to predict the observed probability PrO(X2 = D) based on QLEN. The
proposed model proceeds as the following steps.

Step 1: Construct QLEN based on the list of variables. Since there are two
players in prisoner’s dilemma, QLEN contains two nodes, namely X1 and X2,
which are illustrated in Fig. 1.

Step 2: Let m,n ∈ {D,C,H}. Input the probabilities in Table 1 and convert
them into their associated mass functions:

mX1 (|φm〉 ) =
{

wmPr (X1 = m) if m ∈ {D,C}
1 − ∑

i∈{D,C} wiPr (X1 = i) if m = H
(13)

mX2 (|φm〉 || |φn〉 ) =
{

xmnPr (X2 = m|X1 = n) if m ∈ {D,C}
1 − ∑

i∈{D,C} xinPr (X2 = i|X1 = n) if m = H

(14)

where Pr (X2 = m|X1 = H) �
∑

j∈{D,C} Pr (X2 = m|X1 = j)Pr (X1 = j) for
m ∈ {D,C} are the classical probabilities based on total probability formula, and
wm, xmn for m ∈ {D,C} , n ∈ {D,C,H} are eight parameters to be determined.

Step 3: Convert the mass functions into the quantum mass functions (QMF):
MX1 (|φn〉 ) =

√
mX1 (|φn〉 )ejθ1 ,MX2 (|φm〉 || |φn〉 ) =

√
mX2 (|φm〉 || |φn〉 )ejθ2 ,

and assign the quantum mass functions to QLEN as shown in Fig. 1
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Step 4: Inference based on constructed QLEN.

Step 4-1: According to Eq. 7, obtain the decision vectors for K ∈ {D,C,H}:
V K =

[
MX1∪X2 (|φD〉 , |φK〉 ) , MX1∪X2 (|φC〉 , |φK〉 ) , MX1∪X2 (|φH〉 , |φK〉 )

]T ,
where T means the transpose of the vector.

Step 4-2: Given a, b ∈ {D,C,H}, determine the interference degree in Eq. 12
by the following equations: cos (θa − θb) � − V T

a V b

|V a|·|V b| .

Step 4-3: Based on Eq. 11 and Eq. 12, calculate the marginal mass functions
for m ∈ {D,C,H}:

mX2 (|φm〉 ) = α

⎛

⎝
∑

n∈{D,C,H}
|MX2 (|φm〉 || |φn〉 ) · MX1 (|φn〉 )|2 + 2 · INT

⎞

⎠

(15)

where α and INT are respectively the normalization factor and the interference
term, which are as follows:

α =
1

∑
m∈{D,C,H}

(∑
n∈{D,C,H} |MX2 (|φm〉 || |φn〉 ) · MX1 (|φn〉 )|2 + 2 · INT

) (16)

INT =
∑

a,b∈{D,C,H}
a�=b

|MX1∪X2 (|φm〉 , |φa〉 )| · |MX1∪X2 (|φm〉 , |φb〉 )| ·
(

− V T
aV b

|V a| · |V b|
)

.

Step 5: Based on Pignistic Transformation [13], convert the marginal mass
functions into predicted probability for i ∈ {D,C}: PrP (X2 = i) = mX2 (|φi〉 )+

1
| |Θ〉 | mX2 (|φH〉 ) where | |Θ〉 | is the cardinality of |Θ〉 which is 2. Finally, output
PrP (X2 = i) for predicting the decision in prisoner’s dilemma.

4.3 Experiment and Discussion

In this subsection, the proposed QLEN-based model is applied in prisoner’s
dilemma for predicting the observed probability PrO(X2 = D).

Firstly, both Pr (X1 = D) and Pr (X1 = C) are assumed to be 0.5, since
the first player (X1) in QLEN has no parent nodes so that he/she can-
not receive any prior information. Then, to determine the eight parame-
ters wm, xmn for m ∈ {D,C} , n ∈ {D,C,H}, the proposed model is
trained on the data in Table 1 by minimizing the loss function: L =

1
#data

∑#data
k=1

[
PrP

k (X2 = D) − PrO
k (X2 = D)

]2. Next, calculate the fit error of
the predicted probability PrP (X2 = D) and the observed probability PrO(X2 =
D) based on |PrP (X2=D)−PrO(X2=D)|

PrO(X2=D)
. Finally, the predicted probabilities gen-

erated by the proposed model and their associated fit errors are respectively
summarized in the 7-th and 8-th column of Table 2.

Two models, namely Moreira et al.’s QLBN-based model (model 1) [11] and
Dai et al.’s heuristic model (model 2) [3], are selected to compare with the
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Table 2. Comparison of the results generated by different models

Literature Observed

PrO(D)

PrP (D)

model 1b
Fit errora

model 1

PrP (D)

model 2c
Fit error

model 2

PrP (D)

model 3d
Fit error

model 3

S.&T., 1992 0.6300 0.6408 0.0171 0.8001 0.2700 0.6302 0.0003

L.&T., 2002 0.7200 0.7122 0.0108 0.6504 0.0967 0.6761 0.0609

B. et al., 2006 0.6600 0.7995 0.2113 0.7426 0.1251 0.7491 0.1350

H.&G., 2008 0.8800 0.8968 0.0191 0.8749 0.0058 0.8820 0.0023

G. 1 0.6000 0.6313 0.0522 0.5820 0.0299 0.6001 0.0002

G. 2 0.6300 0.7011 0.1129 0.6399 0.0157 0.6684 0.0610

G. 3 0.8667 0.8113 0.0639 0.7529 0.1313 0.7687 0.1130

G. 4 0.7000 0.7341 0.0487 0.6709 0.0415 0.7002 0.0003

G. 5 0.7000 0.7006 0.0009 0.6411 0.0841 0.6764 0.0337

G. 6 0.8000 0.7169 0.1039 0.6598 0.1752 0.8006 0.0008

G. 7 0.7667 0.7159 0.0663 0.6688 0.1277 0.7670 0.0003

Average error – – 0.0643 – 0.1003 – 0.0371

a Fit error is calculated by
|P rP (X2=D)−P rO(X2=D)|

P rO(X2=D)
. Fit error in bold means the lowest.

b Model 1 is Moreira et al.’s QLBN-based model [11]. c Model 2 is Dai et al.’s heuristic model [3].
d Model 3 is the proposed QLEN-based model.

proposed QLEN-based model (model 3). Compared with model 1, the fit error
of the proposed model is the lowest in 8 out of 11 experiments. In comparison of
model 2, the proposed model’s fit error is the lowest in 9 out of 11 experiments.
This shows the stability of the proposed model is better than that of model 1 and
model 2, namely: with respect to most of the experiments, the performance of the
proposed model is the best compared with the other two models. Meanwhile, the
average error of the proposed model is 3.71% which is much lower than that of
model 1 (6.43%) and model 2 (10.03%). As a result, compared with the other two
model, the proposed model is more accurate and effective to make predictions
of the decision in prisoner’s dilemma.

5 Conclusion

For modeling the phenomenon of violation of Sure Thing Principle in prisoner’s
dilemma game, lots of models have been proposed. However, the existing mod-
els only consider the networks based on quantum probability amplitude, which
can be generalized into the networks based on quantum mass function. Besides,
the accuracy of the existing models can still be improved. Therefore, this paper
introduces quantum mass function into the original quantum-like Bayesian net-
works (QLBN) and proposes quantum-like evidential networks (QLEN). The
main contributions of this paper are summarized as follows.

(i) Quantum-like evidential network (QLEN) is proposed, which is the eviden-
tial extension of QLBN. A QLEN consists of a directed acyclic graph and
its associated quantum mass function.

(ii) A full joint quantum mass function can be derived from QLEN which can
be applied in decision making and inference.
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(iii) Based on QLEN, this paper presents a decision model for predicting the
players’ decision in prisoner’s dilemma.

(iv) The results show that the proposed model is able to make predictions in
prisoner’s dilemma more efficiently and accurately than the existing models.

In future work, we will focus on applying QLEN into other fields. Also, mod-
ifications of QLEN for better performance are also worth exploring.
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