O
~N
#
o
e
=
=

XP 2021 Workshops
Virtual Event, June 14-18, 2021
Revised Selected Papers

72 Springer OPEN ACCESS

Lecture Notes
in Business Information Processing 426

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of lllinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Peggy Gregory - Philippe Kruchten (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming —

Workshops

XP 2021 Workshops
Virtual Event, June 14-18, 2021
Revised Selected Papers

@ Springer

Editors

Peggy Gregory Philippe Kruchten
University of Central Lancashire University of British Columbia
Preston, UK Vancouver, BC, Canada

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-88582-3 ISBN 978-3-030-88583-0 (eBook)

https://doi.org/10.1007/978-3-030-88583-0

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7891-6666
https://orcid.org/0000-0003-1359-4867
https://doi.org/10.1007/978-3-030-88583-0
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains papers from the research workshops at XP 2021, the 22nd
International Conference on Agile Software Development, held online during June 14—
18, 2021.

XP is the premier agile software development conference combining research and
practice. It is a unique forum where agile researchers, practitioners, thought leaders,
coaches, and trainers get together to present and discuss their most recent innovations,
research results, experiences, concerns, challenges, and trends. XP conferences provide
an informal environment to learn and trigger discussions and welcome both people new
to agile and seasoned agile practitioners.

The XP 2021 research papers were published in the conference proceedings
(LNBIP, volume 419). This companion volume, published after the conference, con-
tains selected revised workshop papers and workshop summaries.

The research workshops provide a highly relevant, friendly, and interactive platform
to share and discuss emerging and late breaking research findings as well as educational
experiments and experiences. They represent smaller, close communities of passionate,
emerging, and established researchers and a psychologically safe environment to
provide and receive feedback. The publication of the post conference proceedings
allows the researchers and educators to fold into their papers the feedback and lessons
learned from their participation in the conference and workshop sessions.

In 2021, the following five workshops took place:

4th International Workshop on Software-Intensive Business

9th International Workshop on Large-Scale Agile Development

3rd International Workshop on Agile Transformation

2nd International Workshop on Agility with Microservices Programming
Ist International Workshop on Agile Sustainability

In addition to the workshop papers and summaries, these post conference pro-
ceedings include abstracts from poster presentations. Finally, we include a summary
of the two panel discussions.

We would like to extend our sincere thanks to all the people who contributed to
XP 2021: the authors, reviewers, chairs, and volunteers. Finally, we would like to
express our gratitude to the XP Conference Steering Committee and the Agile Alliance
for their ongoing support.

July 2021 Peggy Gregory
Philippe Kruchten

Organization

Conference Chair

Peggy Gregory University of Central Lancashire, UK

Workshop Co-chairs

Ademar Aguiar University of Porto, Portugal
Eduardo Guerra Free University of Bolzen-Bolzano, Italy

Research Workshops Co-chairs

4th International Workshop on Software-Intensive Business

Karl Werder University of Cologne, Germany
Sami Hyrynsalmi Lappeenranta University of Technology, Finland
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

9th International Workshop on Large-Scale Agile Development

Abdallah Salameh Bambora AB, Sweden
Julian Bass University of Salford, UK

3rd International Workshop on Agile Transformation

Diane Strode Whitireia Polytechnic, New Zealand
Leonor Barroca The Open University, UK
Marius Mikalsen SINTEF, Norway

2nd International Workshop on Agility with Microservices
Programming

Filipe Figueiredo Correia University of Porto, Portugal

Florian Rademacher Dortmund University of Applied Sciences and Arts,
Germany

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA

Blagovesta Kostova Swiss Federal Institute of Technology, Switzerland

viii Organization

1st International Workshop on Agile Sustainability

Coral Calero
Juan Garbajosa
Jennifer Pérez
Agustin Yagiie

Universidad de Castilla—La Mancha, Spain
Universidad Politécnica de Madrid, Spain
Universidad Politécnica de Madrid, Spain
Universidad Politécnica de Madrid, Spain

Workshop Program Committees Members

Ville Alkkiomaki
Idun Backer
Gavina Baralla
Julian Bass

Hubert Baumeister
Stefan Biffl
Tingting Bi
Elizabeth Bjarnason
Finn Olav Bjornson
Justus Bogner

Jan Bosch

Nils Brede Moe
Sjaak Brinkkemper
Kyle Brown
Christoph Bussler
Sarah Beecham
Hong-Mei Chen
Ruzanna Chitchyan
Torgeir Dingseyr

Bettina Distel
Denniz Dénmez
Andreas Drechsler
Jutta Eckstein
Henry Edison

Christoph Elsner
Hendrik Esser
Fabian Fagerholm

Fabio Fagundes Silveira

Michat Gajda
Alfredo Goldman
Paul Griinbacher
Eduardo Guerra
Tomas Gustavsson
Robert Heinrich
Andy Haxby

F-Secure Corporation, Finland

Storebrand, Norway

University of Cagliari, Italy

University of Salford, UK

Technical University of Denmark, Denmark

Vienna University of Technology, Austria

Monash University, Australia

Lund University, Sweden

SINTEF, Norway

University of Stuttgart, Germany

Chalmers University of Technology, Sweden

SINTEF, Norway

Utrecht University, The Netherlands

IBM, USA

Google, USA

Lero, Ireland

University of Hawaii, USA

University of Bristol, UK

Norwegian University of Science and Technology,
Norway

University of Miinster, Germany

ETH Ziirich, Switzerland

Victoria University of Wellington, New Zealand

IT communication, Germany

Lero and National University of Ireland, Galway,
Ireland

Siemens AG, Germany

Ericsson, Sweden

Aalto University, Finland

Federal University of Sao Paulo, Brazil

MigaMake, Singapore

University of Sdo Paulo, Brazil

Johannes Kepler Universitit Linz, Austria

Free University of Bolzen-Bolzano, Italy

Karlstad University, Sweden

Karlsruhe Institute of Technology, Germany

Competa, The Netherlands

Georg Herzwurm

Helena Holmstrom Olsson
Bettina Horlach

Sami Hyrynsalmi

Sonja Hyrynsalmi

Slinger Jansen

Rick Kazman

Hans-Bernd Kittlaus
Eric Knauss

Dina Koutsikouri
Maarit Laanti
Ville Leppénen
Alexander Méadche
Andrey Maglyas
Carl Marnewick
Santiago Matalonga
Claudia Melo
Tommi Mikkonen
Suzanne Miller
Sunila Modi
Parastoo Mohagheghi
Jiirgen Miinch
Ingo Miiller

Stefan Naumann
Anh Nguyen Duc
Alexander Nolte
John Noll

Cesare Pautasso
Marco Peressotti
Andrea Pinna
Alexander Poth
Ken Power

Jan Pries-Heje
Rafael Prikladnicki
Jurka Rahikkala
Scarlet Rahy

Bala Ramesh

Seb Rose
Guenther Ruhe
Alceste Scalas
Helen Sharp
Abdallah Salameh
Kari Smolander
Jacopo Soldani

Organization ix

University of Stuttgart, Germany

Malmé University, Sweden

Hamburg University, Germany

LUT University, Finland

LUT University, Finland

Utrecht University, The Netherlands

Carnegie-Mellon University and University of Hawaii,
USA

InnoTivum Consulting, Germany

University of Gothenburg, Sweden

University of Gothenburg, Sweden

Nitor Delta, Finland

University of Turku, Finland

Karlsruhe Institute of Technology, Germany

Maglyas Consulting, Russia

University of Johannesburg, South Africa

University of the West of Scotland, UK

International Atomic Energy Agency, UN

University of Helsinki, Finland

Deloitte, USA

University of Hertfordshire, UK

Labour and Welfare Administration, Norway

Reutlingen University, Germany

Monash University, Australia

Trier University of Applied Sciences, Germany

University College of Southeast Norway, Norway

University of Tartu, Estonia

University of Hertfordshire, UK

University of Lugano, Switzerland

University of Southern Denmark, Denmark

University of Cagliari, Italy

Volkswagen, Germany

Independent Consultant, Ireland

Roskilde University, Denmark

PUCRS, Brazil

Vaadin Ltd, Finland

University of Salford, UK

Georgia State University, USA

Claysnow, UK

University of Calgary, Canada

Aston University, UK

The Open University, UK

Bambora AB, Sweden

LUT University, Finland

University of Pisa, Italy

X Organization
Jonas Sorgalla
Nuno Santos

Viktoria Stray
Katie Taylor
Roberto Tonelli
Pasi Tyrviinen
Siffat Ullah Khan
Stefan Wagner
Xiaofeng Wang
Hironori Washizaki
Hasan Yasar
Joseph Yoder
Olaf Zimmermann

Poster Track Chairs

Noel Carroll
Kashumi Madampe

Publication Chair

Philippe Kruchten

XP Steering Committee

Hubert Baumeister
Frangois Coallier
Jutta Eckstein

Steven Fraser

Juan Garbajosa (chair)
Peggy Gregory

Ellen Grove

Casper Lassenius
Michele Marchesi
Maria Paasivaara

Viktoria Stray
Xiaofeng Wang

Dortmund University of Applied Science and Arts,
Germany

Polytechnic Institute of Viana do Castelo and
ALGORITMI Research Center, Portugal

University of Oslo, Norway

Agile Business Consortium, UK

University of Cagliari, Italy

University of Jyviskyld, Finland

University of Malakand, Pakistan

University of Stuttgart, Germany

Free University of Bozen-Bolzano, Italy

Waseda University, Japan

Carnegie Mellon University, USA

The Refactory, USA

University of Applied Sciences of Eastern Switzerland,

Switzerland

Lero and National University of Ireland Galway,
Ireland
Monash University, Australia

University of British Columbia, Canada

Technical University of Denmark, Denmark

Ecole de technologie supérieure, Canada

IT communication, Germany

Innoxec, USA

Universidad Politécnica de Madrid, Spain

University of Central Lancashire, UK

Agile Alliance, USA

Aalto University, Finland

University of Cagliari, Italy

IT University of Copenhagen, Denmark, and Aalto
University, Finland

University of Oslo, Norway

Free University of Bozen-Bolzano, Italy

Sponsoring Organization

Agile Alliance

USA

Contents

3rd International Workshop on Agile Transformation

Agile Transformation at Scale: A Tertiary Study.
Suddhasvatta Das and Kevin Gary

Institutional Logics in Large-Scale Agile Software
Development Transformations. i
Tomas Gustavsson

9th International Workshop on Large-Scale Agile Development

Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons
When Hacking from Home
Rasmus Ulfsnes, Viktoria Stray, Nils Brede Moe, and Darja Smite

Impacts of COVID-19 Pandemic for Software Development in Nordic

Companies — Agility Helps to Respond
Petri Kettunen, Tomas Gustavsson, Maarit Laanti, Andreas Tjernsten,
Tommi Mikkonen, and Tomi Mdnnisto

The EFIS Framework for Leveraging Agile Organizations Within
Large Enterprisesot
Alexander Poth, Mario Kottke, Christian Heimann, and Andreas Riel

Managing Dependencies in Large-Scale Agile
Henrik Vedal, Viktoria Stray, Marthe Berntzen, and Nils Brede Moe

Summary of First International Workshop on Agile Sustainability

How Collective Intelligence Can Gear Agility with Sustainability
Juan Ochoa-Zambrano

Summary of 4th International Workshop on Software-intensive Business

SaaS Pricing Practices Typology: A Case Study
Andrey Saltan and Kari Smolander

Is Your Software Ecosystem in Danger? Preventing Ecosystem Death
Through Lessons in Ecosystem Health.
Robert Evertse, Abel Lencz, Tea Sinik, Slinger Jansen, and Lamia Soussi

Xii Contents

Genesis of a Wood Harvesting B2B Software Platform 106
Jaakko Vuolasto and Kari Smolander

Towards a Taxonomy of Impact Factors for Digital Platform Pricing. 115
Virginia Springer and Dimitri Petrik

Assessing the Health of the Dark Web:: An Analysis of Dark Web Open

Source Software Projects 125
Samuel Onyango, Emilie Steenvoorden, Joram Scholten,
and Slinger Jansen

Using Guilds to Foster Internal Startups in Large Organizations:

ACase Study 135
Tor Sporsem, Anastasiia Tkalich, Nils Brede Moe, Marius Mikalsen,
and Nina Rygh

Employee-Driven Innovation to Fuel Internal Software Startups:
Preliminary Findings 145
Anastasiia Tkalich, Nils Brede Moe, and Tor Sporsem

Towards a Framework to Guide the Creation of Development Practices
for Software Startups. 155
Jorge Melegati

2nd Workshop on Agility with Micro Service Programming

Towards Integrating Blockchains with Microservice Architecture Using
Model-Driven Engineeringt 167
Simon Trebbau, Philip Wizenty, and Sabine Sachweh

A Service Mesh for Collaboration Between Geo-Distributed Services:
The Replication Case.ttt 176
Marie Delavergne, Ronan-Alexandre Cherrueau, and Adrien Lebre

Implementation of a Microservice-Based Certification Platform. 186
Sebastian Copei, Manuel Wickert, and Albert Ziindorf

Poster Presentations

Multiple Roles of Middle Managers in Agile Project Governance:
An Activity Theory Perspective 195
Maduka C. Uwadi

Cherry Picking - Agile Software Development Teams Applying Design

Thinking Tools. 201
Franziska Dobrigkeit, Christoph Matthies, Philipp Pajak,
and Ralf Teusner

Contents Xiii

From Project to Product. 207
Matthew Philip and Yoan Thirion

Panels

The Stories We Tell: Experience, Research, or Patterns? 215
Dennis Mancl and Steven D. Fraser

The Future of Software Engineering: Where Will Machine Learning, Agile,
Dennis Mancl and Steven D. Fraser

Author Index e 231

3rd International Workshop on Agile
Transformation

®

Check for
updates

Agile Transformation at Scale: A Tertiary Study

Suddhasvatta Das®™ ® and Kevin Gary®™®

Arizona State University, Tempe, AZ 85287, USA
{sdas76,kgary}@asu.edu

Abstract. Due to the fast-paced nature of the software industry and the success
of small agile projects, researchers and practitioners are interested in scaling agile
processes to larger projects. Agile software development (ASD) has been growing
in popularity for over two decades. With the success of small-scale agile trans-
formation, organizations started to focus on scaling agile. There is a scarcity of
literature in this field making it harder to find plausible evidence to identify the
science behind large scale agile transformation. The objective of this paper is to
present a better understanding of the current state of research in the field of scaled
agile transformation and explore research gaps. This tertiary study identifies seven
relevant peer reviewed studies and reports research findings and future research
avenues.

Keywords: Large scale agile transformation - Tertiary study

1 Introduction

Transformation from a traditional software engineering process to an agile process is
not well understood. This area of agile transformation is relatively new, and researchers
are working on different aspects to gain new understanding. Industry organizations that
transformed from waterfall to agile implemented multiple strategies such as altering
quality assurance practices [1, 2] and training staff in agile methods [3, 4]. However,
organizations must consider additional factors when scaling such transformations.

In this paper, we present a tertiary study in scaled agile transformations. Our focus
is on large projects defined by the number of people working on the project team. We
are not aware of another tertiary study specific to scaled agile transformation. This
study identifies gaps in the literature of scaled agile transformation that will help the
community to identify potential research avenues in future.

We could not identify tertiary studies that present a meta-analysis of relevant sec-
ondary studies. Additionally, we observed there are not many secondary studies com-
pared with more mature research areas. The goal for this study is to collate instead of
synthesize; in this way we hope to identify gaps as opportunities for further study and
understanding. As a relatively new area, researchers have been trying to answer different
questions related to the scaled agile transformation. The contribution of this paper is to
assemble evolving early large-scale agile transformation evidence.

The main goal of this tertiary study is to synthesize the research goal and findings
of peer-reviewed secondary studies in scaled agile transformation. Under this goal, we
addressed two specific questions:

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 3—11, 2021.
https://doi.org/10.1007/978-3-030-88583-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_1&domain=pdf
http://orcid.org/0000-0002-9757-0434
http://orcid.org/0000-0003-0425-9928
https://doi.org/10.1007/978-3-030-88583-0_1

4

S. Das and K. Gary

RQ1: What success factors and challenges in scaled agile transforms have been identified
by prior secondary studies?

RQ2: What gaps exist in existing studies that should be prioritized by the research
community moving forward?

2 Research Methodology

We use [5] and [6] as guidelines for performing this tertiary study. The research
methodology was primarily conducted by the first author and reviewed by the second
author.

2.1 Search Process

The steps of the search process are shown in Fig. 1 and summarized as follows:

1.

Digital libraries from IEEE (29), ACM (12), SpringerLink (35), and ScienceDirect
(46) were searched for journal, conference, and workshop papers.

Duplicate studies were removed manually.

For a tertiary study, we only consider secondary studies for analysis. Specifically,
only systematic literature reviews (SLRs) were included beyond this step.

The abstracts from step 3 were read. Reviewers searched for keywords and for
verification that the study was an SLR on the topic of scaled agile transformation.
Manual review was necessary as an initial keyword scan on terms such as ‘agile’,
‘large’, ‘scale’, ‘change’ OR ‘transformations’ resulted in too many false positives.
The final set of papers was determined by a full-text manual review of the studies
from step 4, conducted by both authors, focusing on research questions and paper
quality. Paper quality review may be subjective [5]; we considered the publication
venue, date of publication, citations of the paper, and citation indices of the venue and
authors. Further, we also considered whether enough primary studies were included
in the secondary study to validate claims of significance. Disagreements between
the authors on inclusion or exclusion were resolved through discussion.

22
Database | Studies | Duplicates
Search Removed

10 7
Ful 'e) Studies, ('_V_-s ty Studies | F :a L\ of
Scar Assessment Studies

Fig. 1. Search process for identifying papers to include in the tertiary study.

2.2 Summary of Included Studies

Agile adoption has rapidly increased over the past two decades. A few preliminary
studies and calls for more research in scaled agile transformation started appearing in
the 2000s as practitioners in large organizations are moved towards large-scale agile

Agile Transformation at Scale: A Tertiary Study 5

Table 1. Final set of papers included in the study.

Study | Venue Num | Year | Research Goal
[12] Journal 52 2016 | Challenges/success factors in large scale
transformations

[13] Conference |73 2018 | Challenges in large scale agile development

[11] Journal 9 2018 | Challenges and success factors in large scale agile

[14] Journal 19 2019 | Supporting Software Product Line engineering in
large-scale agile transformation

[15] Conference |43 2019 | Challenges of scaling agile software projects

[16] Conference |51 2017 | Review of Success Factors for Scaling Agile in Global
Software Dev Environments

[17] Journal 20 2015 | Scaling approaches, frameworks, and limitations

adoption (cf. [7-10]). Scholarly study of this phenomenon largely started appearing
since 2015. Given the relatively small number of studies that met our inclusion criteria,
we summarize these papers here.

Dikert, Paasivaara & Lassenius [12] present an extensive secondary study of 52 pri-
mary studies on the challenges and success factors of agile transformation. The study
reported 35 challenges classified into 9 categories and 29 success factors classified into
11 categories. As per the authors, the most important success factors were management
support, choosing the right agile model, mindset, and alignment with the organization’s
value. The challenges included resistance to change, lack of training, and misunder-
standing agile. This study is very influential and a widely referenced work, however,
all of the primary studies used for evidence were from 2010 and earlier, and almost all
describe transformation from a waterfall-like process to an agile process.

Uludag et al. [13] conducted a structured literature review of 73 papers related to
the challenges of scaling agile from a stakeholder perspective. The study reported 79
challenges in 11 categories. The top 3 challenges were coordinating multiple teams
working on the same project, considering dependencies in integration, and coordination
among geographically distributed teams. This recent study reports new challenges in
scaled agile transformations. Notably, it claims the majority of challenges in large-scale
agile development (38 of 79) still exist and are “typical”. The stakeholder perspective
focuses on development team roles, with only a few higher-level roles included.

An action research approach to a meta-review was taken by Kalenda, M., Hyna, P., &
Rossi, B [11]. The authors identified 8 common features of scaling frameworks SAFe and
LeSS [10] and used this to drive a focused literature review. 12 papers were selected, 10
of which mapped to at least one of the § common features, and then described challenges
and success factors of each paper. The paper is influential due to its recency and use
of scaling frameworks (whose awareness and adoption are becoming more prevalent in
industry) as an organizing principle. However, the authors acknowledge this approach
is not comprehensive, so there may be more evidence in the literature not included in
the study. We also wonder if the approach of identifying common practices between

6 S. Das and K. Gary

SAFe and LeSS is appropriate, due to scaling agile not being a prescriptive formulaic
process, and also because multiple frameworks were excluded (notably DaD [10] and
SoS [10]). Nevertheless, this paper is highly influential and an ambitious action research
for understanding scaled agile transformation.

Kliinder et al. [14] answer 4 questions on large-scale agile transformations. On
the first question ‘Does any transformation model for large companies exist that-in
particular-preserves already existing SPLs?’ The authors state that no model can be used
to transform large organizations into agile. The second question ‘What preconditions
should be met before starting transformation toward in a large company?’ indicates
success factors reported by studies which are the same as [11], [12], and [17] such as
management commitment, training, knowledge, and one additional precondition that
is risk planning. Question 3 ‘What tasks are recommended to be fulfilled during the
agile transformation on development team and management level?’ reports that the
distribution of tasks and setting up the infrastructure are key steps that need to be done
by development teams and management during the transformation phase. Question 4
‘What tasks are required on organizational level to finalize the transformation in a large
company?’ reports that management should start the transformation with a pilot team so
they can get feedback to improve the pilot team’s transformation and also other teams.

A different set of challenges related to scaling agile software development has been
reported by Ozkan & Tarhan [15]. The study reports physical dependencies, fragmen-
tation, feudalism, narrow focus on product, construction, and bottlenecks from one to
many. This paper is relatively new, but reported some challenges that we could not find
any other studies we analyzed.

Shameem et al. [16] reports success factors for large scaled agile projects. The authors
report a set of 15 success factors grouped into six categories. The paper also classified
these into two major categories, client and vendor. This provides a broader picture of
agile processes and factors related to its respective success factors.

Saeeda et al. [17] reports that 24% of the research states that documentation is one
of the limitations of agile, 22% reported time period issues and 14% talks about budget
overflow. It also reports that 33% of studies report communication as a challenge and
25% report distributed teams as a challenge. The authors also report that researchers are
working to find the limitations of agile scalability and its remedial ways.

2.3 Data Extraction

We extracted detailed information from the 7 studies in Table 1 including research goals
and questions, findings, discussion, and limitations and reviewed this information for
our analysis. Our analysis focused on the success factors and/or challenges in scaled
agile transformation presented in each paper, though we note this was not always the
primary focus of every study. For example, study [14] presents literature review findings
from primary studies a bit differently; this paper identifies preconditions and tasks from
the primary studies that exist for large-scale agile transformation to be successful. We
mapped preconditions and tasks to success factors to facilitate analysis of these studies.
Tables 2 and 3 below shows 23 different challenges and 22 success factors reported by
the 7 studies from Table 1.

Agile Transformation at Scale: A Tertiary Study

Table 2. Challenges in Scaled Agile Transformations Reported by Prior Studies.

Challenges

Description

Resistance to change (CH1)

Employees not willing to work in a new way

Coordination/Communication (CH2)

Teams not working together. Stakeholders not
communicating leading to errors

Requirements engineering (CH3)

Vague/incorrect requirements

Quality assurance (CH4)

Quality of the S/W compromised

Integration (nonfunctional requirements)
(CHS)

Difficulty making everything work together

Management (CH6)

Non supporting leaders

Tech debt (CH7) Solution not serving the bigger creates issues
Difficult to implement (CHS8) Difficulty in executing agile
Training (CH9) Stakeholders have wrong or not enough

knowledge about agile

Lack of commitment (CH10)

Stakeholders not committed to a new way of
working

Too much workload (CH11)

Employees end up working more than required

Distributed team/ Physical dependencies
(CH12)

Teams in multiple geographic location

Measuring progress (CH13)

Difficulty in keeping track of the tasks

Different approaches among teams (CH14)

Different ways of interpreting agile

Lack of investment (CH15)

No budget to educate stakeholders in agile

Fragmentation feudalism (CH16)

Teams relying on directions from others

Short & static event (CH17)

Not able to work in a short amount of time

Narrow focus on products (CH18)

Focusing too much on the S/W Dev rather than
the solution to the problem

Narrow focus on construction (CH19)

Focusing too much on the S/W construction
rather than the solution to the problem

Bottle neck (one: many relations) (CH20)

Difficulty when in changing product backlog
when multiple teams work on one product

Documentation (CH21)

People either doing over or no documentation

Budget overflow (CH22)

Project costs exceeds budget

Human Resources (CH23)

Problems related to HR rules

We manually combined similar ideas with different verbiage into one for the purpose
of this study. For example, ‘Change Resistance’ from [12] and ‘Dealing with doubts in
people about changes’ [13] have been combined as ‘Resistance to change’.

8 S. Das and K. Gary

Table 3. Success Factors in Scaled Agile Transformations Reported by Prior Studies

Success Factors Description

Management support and Leadership (SF1) | Good support from management

Acquire knowledge (SF2) Learn from previous experiences

Requirement engineering (SF3) Requirements perfectly done before working

Communication (SF4) Stakeholders in sync with each other

Self-organizing teams (SF5) Teams don’t rely on anyone to guide them daily

Engaging people in events (SF6) Platform so people get to know their
co-workers

Tools and infrastructure (SF7) Technologies to support agile environment

Customer involvement (SF8) Customer in the loop from project start to end

Short iteration (SF9) Keep sprints short

Small team size (SF10) Involve a smaller number of people

Choosing/customizing agile approach (SF11) | Selecting and tailoring the right agile process

Piloting (SF12) Start with a one project rather than all

Project visibility (SF13) Stakeholders having the bigger picture

United views (SF14) Stakeholders sharing same ideas for the project
Training (SF15) Stakeholders should be trained in agile

Planning (including risk planning) (SF16) Plan the project and potential risks

Assessment of the S/W dev process (SF17) Constantly evaluate & improve the dev process

Budget (SF18) Keep a track of budget

Distributing tasks (SF19) Distribute tasks among all members

Continuous feedback (SF20) Get feedback from stakeholders in all the steps
of development

Experienced developers (SF21) Have senior developers to work efficiently

Motivating developers (SF22) Keep developers motivated

2.4 Limitations

There are challenges in conducting a tertiary review in a topic as recent and fluid as scaled
agile transformation. First, there is a lack of general agreement on what is scale. The
term can describe the size of an organization, the size of software projects, the breadth
of application and system domains, or the range of organizational roles participating
in the transformation. Second, the recency of industry adoption and published research
presented a challenge both for identifying relevant literature and for applying a systematic
process for analysis. Admittedly, we had to soften our inclusion criteria somewhat to
identify even the small number of recent studies due to this limitation. Analyzing the
papers from a common perspective was also difficult as often the studies focused on
different aspects. For example, [13] focused on stakeholder perspectives, [11] started

Agile Transformation at Scale: A Tertiary Study 9

with scaled agile frameworks (SAFe and LeSS), [14] focused on software product line
engineering, and [15] focused on a design perspective. Therefore, our identification of
common success and/or challenge factors is bounded by the perspectives of the included
secondary studies. Finally, this study was conducted by one Ph.D. student as the primary
researcher, and a single secondary researcher. In a situation where the research is sparse
and there is an above average reliance on subjective interpretation due to the subject
matter, a third researcher may have improved the arbitration process.

3 Analysis and Discussion
In this section we present the answers to the research questions.

RQ1: What success factors and challenges in scaled agile transforms have been
identified by prior secondary studies?

From Tables 2 and 3 we see that 5 out 7 studies identified challenges while 4 out 7
studies presented success factors in scaled agile transformations. Two studies [11] and
[17] reported transformation frameworks and limitations. We could find only one study
[14] that suggests organization support is a key factor in scaled agile transformation.

Figure 2 (left) shows the coverage of challenges by different studies as listed in Table
2. In this format, we can see there is not widespread agreement on the challenges, though
the few that are agreed upon include coordination, employee mindset, management
support, resistance to change and quality assurance.

CH23) . }SFH; 4
CH22 L4 5F21 *
cH3t M SF20 o
i : B $

o CH18 [{SF17; L

® (CH17 ° w RF16 4

& [hie H g gEs) H .

g (CHIS ° £ BFla .

g (CHId H ¥ G o

e« (CH13 L3 uw (SF12 L)

g (CHI2 . © . 7 }SFll;

$ Tehit M $ BFlo °

5 CH10 . o (SF9 .

o — : 3 & — —

5 (CHI . }SFSI . .
chie . . . 34 : H H
. IR :
([(3 L3 (3
S S SNSS

v T . . 0 1 3 a 6
q1) 2] 3] 95] 7] Sl .]Sludles @ e

Studies

Fig. 2. Challenges (left) and Success Factors (right) reported by previous studies

Figure 2 right shows the coverage of success factors by different studies listed in
Table 3. There is somewhat more agreement in factors here as compared to challenges,
though again there are still some (such as training, coordination, training and knowledge)
that are emphasized in most all, if not all, studies.

RQ2: What gaps exist in current studies that should be prioritized by the research
community moving forward?

10 S. Das and K. Gary

The answer to this question will shed light on the future research avenues. Scaled
agile transformation is a relatively new area so we could only identify a few relevant
studies. Most of the studies focus on challenges and success factors of scaled agile
transformation. Given the scarcity of literature and the answers from RQ1 these are the
research gaps we identified that the community needs to address to move forward.

There are some challenges to scale agile projects that have been reported by a signifi-
cant number of studies (Table 2). However, there are still many challenges that appeared
only in one of the seven studies in Table 1 (CH7, CHS8, CH10, CH11, CH13-CH22).
Success factors are similar; some were reported by multiple studies (Table 3) while
others (SF8-SF11, SF13, SF14, SF16-SF22) were reported by only one study.

In our opinion the identification of challenges and success factors by these studies
offer guidance to real-world practitioners and identify areas for future research. Fur-
ther research is needed to identify common perspectives as more software engineering
organizations go from “agile-in-the-small” to “agile-in-the-large” transformation. The
ultimate goal is to coalesce understanding into a reference framework for practitioners
such a machine learning or statistical model. The goal of the framework would be to
help practitioners to make decisions during scaling agile. These are the possible avenues
that we think need to be explored.

References

1. Huo, M., Verner, J., Zhu, L., Babar, M.A.: Software quality and agile methods. In: Pro-
ceedings of the 28th Annual International Computer Software and Applications Conference,
COMPSAC 2004, pp. 520-525. IEEE (2004)

2. Ambler, S.: Quality in an agile world. Softw. Qual. Prof. 7(4), 34 (2005)

3. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over process: key people challenges
in agile development (2011)

4. Da Silva, F.Q., Santos, A.L., Soares, S., Franca, A.C.C., Monteiro, C.V., Maciel, EF.: Six
years of systematic literature reviews in software engineering: an updated tertiary study. Inf.
Softw. Technol. 53(9), 899-913 (2011)

5. Kitchenham, B., et al.: Systematic literature reviews in software engineering—a tertiary study.
Inf. Softw. Technol. 52(8), 792-805 (2016)

6. Lindvall, M., et al.: Empirical findings in agile methods. In: Wells, D., Williams, L. (eds)
XP/Agile Universe 2002. LNCS, vol. 2418, pp. 197-207. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45672-4_19

7. Fry, C., Greene, S.: Large scale agile transformation in an on-demand world. In: Agile 2007
(AGILE 2007), pp. 136-142. IEEE (2007)

8. Beavers, P.A.: Managing a large “Agile” software engineering organization. In: Agile 2007
(AGILE 2007), pp. 296-303. IEEE (2007)

9. Lee, E.C.: Forming to performing: transitioning large-scale project into agile. In: Agile 2008
Conference, pp. 106-111. IEEE (2008)

10. Alqudah, M., Razali, R.: A review of scaling agile methods in large software development.
Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 828-837 (2016)

11. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: Practices, challenges,
and success factors. J. Softw.: Evol. Process 30(10), e1954 (2018)

https://doi.org/10.1007/3-540-45672-4_19

Agile Transformation at Scale: A Tertiary Study 11

Secondary Studies identified for this paper:

12.

13.

14.

15.

16.

Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: A systematic literature review. J. Syst. Softw. 119, 87-108 (2016)

Uludag, 0., Kleehaus, M., Caprano, C., Matthes, F.: Identifying and structuring challenges
in large-scale agile development based on a structured literature review. In: 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pp. 191-197.
IEEE (2018)

Kliinder, J.A.C., Hohl, P., Prenner, N., Schneider, K.: Transformation towards agile software
product line engineering in large companies: a literature review. J. Softw.: Evol. Process 31(5),
1-23 (2019)

Ozkan, N., Tarhan, A.K.: Investigating causes of scalability challenges in agile software
development from a design perspective. In: 2019 1st International Informatics and Software
Engineering Conference (UBMYK), pp. 1-6. IEEE (2019)

Shameem, M., Kumar, C., Chandra, B., Khan, A.A.: Systematic review of success factors for
scaling agile methods in global software development environment: a client-vendor perspec-
tive. In: 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW),
pp. 17-24. IEEE (2017)

. Saeeda, H., Khalid, H., Ahmed, M., Sameer, A., Arif, F.: Systematic literature review of agile

scalability for large scale projects. Int. J. Adv. Comput. Sci. Appl. 6(9), 63-75 (2015))

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Institutional Logics in Large-Scale Agile
Software Development Transformations

Tomas Gustavsson®D

Karlstad University, 651 88 Karlstad, Sweden
tomas.gustavsson@kau. se

Abstract. Transforming into agile ways of working in large organizations can be
performed in different ways. Many organizations choose a defined large-scale agile
software development framework but how the transformation is carried out could
be based on different sorts of logics. This paper investigates institutional logics
at play in large-scale agile transformations. By studying two case organizations,
the paper aims at improving our understanding of large-scale transformations by
viewing software development as an institution. The findings displays diverse
impacts due to two differing institutional logics when transforming into large-
scale agile software development by implementing the Scaled Agile Framework.
One contribution of this paper is to show the possibilities of using two institutional
logics, Agile toolbox logic and Agile rulebook logic, for analyzing impacts of agile
transformations.

Keywords: Agile software development - Agile transformation - Large-scale -
Institutional logics

1 Introduction

Agile software development methods are increasingly being implemented in larger orga-
nizations [1, 2]. More research on large-scale agile ways of working is called for, espe-
cially regarding organizational transformation [3, 4]. When transforming an organization
into large-scale agile ways of working, roles, routines, practices, and actions are added,
changed and adapted. This means that large-scale agile transformations of organizations
is more than agile software development. Transformations usually reaches far beyond
software development. Often, the purpose of the change is to implement strategic agility
in an organization [5]. This entails reducing frictions between autonomous agile teams on
one hand and traditional top-down organizational routines with annual planning cycles
on the other hand. Since large-scale agile ways of working contains symbols, roles,
routines, and actions taken for granted, it could be considered an informal institution
[6].

Many organizations choose a predefined large-scale agile framework such as the
Scaled Agile Framework (SAFe), Large-Scale Scrum (LeSS), or the Spotify Model
[2]. Implementing a large-scale agile framework implies a transformation of roles and
routines. Large-scale agile frameworks come with predefined structures and routines,

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 12-19, 2021.
https://doi.org/10.1007/978-3-030-88583-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_2&domain=pdf
http://orcid.org/0000-0002-1512-6592
https://doi.org/10.1007/978-3-030-88583-0_2

Institutional Logics in Large-Scale Agile Software Development 13

and implementing them within an existing organizational structure is challenging [7]. In
addition, large-scale frameworks often require changing the organizational structures.

There are different ways to implement roles and routines based on a framework.
When an agile framework is implemented, there is a tendency to measure agile transfor-
mation by adherence to that framework [7]. By using this measurement, the framework
becomes the rulebook where as much as possible should be implemented (otherwise, we
are not “following the rules”). Another way of implementation is by selecting roles and
routines based on the challenges in the organization [8]. In this approach, the framework
is seen as a toolbox, where parts of the framework are cherry-picked for the organi-
zation. Both of these approaches are common in framework implementations, but the
impacts on the organization are not much studied. Therefore, the purpose of this paper
is to improve our understanding of how differing institutional logics have an impact on
large-scale agile transformations.

2 New Institutional Theory

New institutional theory is a loosely coupled body of knowledge accumulated in several
streams of research [9] rather than a coherent theory.

Institutional logics is a concept in sociology and organizational studies which focus
on how broader belief systems shape the cognition and behavior of individuals [9]. Rather
than physical realities driving human action, institutions are enacted through reproduced
patterns of activities by individuals.

Friedland and Alford [10] identified several key institutions such as the nuclear
family and bureaucratic state, each guided by a distinct institutional logic. A set of goals,
values, and prescriptions associated with a specific institution form an institutional logic.
Therefore, to be able to understand both individual and organizational behavior, it must
be located in an institutional context which both regularizes behavior and, at the same
time, provides an opportunity for agency and change. An institutional logic could be
described in several dimensions, or elemental categories, such as with a root metaphor
and sources of legitimacy, authority and identity [11].

The concept of software development as an institution is not new, as Rowlands [12]
presents in his work. DoleZel [13] suggested that the software development institution
is driven by two disparate institutional logics: Traditional Software Engineering logic
and Agile Software Development logic. Attempts have been made to investigate dif-
fering logics within agile software development as an institutional logic. Berente et al.
[14] studied three agile software development projects and suggested three different
institutional logics based on differing contexts.

Another development of institutional logics in agile software development are two
dichotomous logics based on differing views, principles and preferences on implement-
ing a large-scale agile method or framework [15]. These logics can be presented based
on the differing dimensions, or elemental categories, as Thornton et al. [11] calls them
(see Table 1). Elemental categories specifies organizing principles that shape preferences
and interests [11].

One of these logics is called Agile rulebook logic [15]. The logic means that a proper
agile method is chosen and implemented in full as described. Smite et al. [8] calls this

14 T. Gustavsson

Table 1. Institutional logics in large-scale agile transformations [15].

Dimension Agile toolbox logic Agile rulebook logic

Root Metaphor Agile routines as tools Agile routines as rules

Sources of Legitimacy Unity of improvement needs Unity in interpretations,
standardization

Sources of Authority Commitment to team decisions Commitment to method
descriptions

Sources of Identity Attentiveness and responsiveness | Method knowledge

Basis of Attention Routine inefficiencies Level of method adoption

Basis of Strategy Implement, tailor and/or invent Implement the method of

routines choice

the all-or-nothing attitude. The method description becomes a rulebook which guides
the organization in how to implement roles, practices and routines. The commitment
to the method descriptions becomes the source of authority (see Table 1). The basis of
strategy for tailoring according to context is therefore based on which method to choose,
rather than to tailor the method itself (see Table 1).

Some advocates of this approach are the originators of Scrum, Schwaber and Beedle
[16], who argued that agile methods cannot be applied by cherry picking but must be
applied in their entirety to achieve the desired effect.

The other logic is called Agile toolbox logic which means that roles, routines, and
practices are selected and tailored based on challenges in the organization. Smite et al.
[8] calls this the a la carte approach. The basis of strategy is to construct a situationally
appropriate method out of existing method fragments or innovate based on context needs
(see Table 1). The commitment to team decisions on tailoring during transformation
becomes the source of authority, rather than method descriptions (see Table 1). Advocates
of this logic are, e.g., McBreen [17] and Fitzgerald et al. [18] who argue that parts of
the Agile methods can be cherry-picked, ignored or replaced.

3 Research Method

This case study is based on two cases, Case A and Case B, of large-scale agile software
development transformations. The case study approach [19] was deemed most suitable
for the purpose of the study, as a rich and in-depth understanding of the organizational
transformation was sought. Case A is a pilot transformation project where two depart-
ments at a large government agency merged into one unit with new roles and routines.
The aim of the pilot project was to find out best practices for transforming roles and
organizational routines. The next step would then be to use the experience from this
transformation to further transform the roles and routines within the whole agency. Case
B is a department responsible for the product development of a significant part of a
motor vehicle, both the software and the hardware. The department was organized into
twenty teams and, after experiencing coordination difficulties between the teams, they

Institutional Logics in Large-Scale Agile Software Development 15

decided to start an organizational transformation where new roles and routines were to
be implemented.

Semi-structured interviews were the most important source of information but were
supplemented with other data collected from participant observations and documents.
Several data sources were used for triangulation purposes (see Table 2).

Table 2. Data sources.

Data source Case A Case B

Hours of observation 113 h 196 h

Number of interviews 6 14

Hours of interviews 6 h, 12 min 11 h, 48 min
Interviewees and their roles | 1 Agile coach (A1) 1 Manager (B1)

1 Release Train Engineer (A2) | 2 Release Train Engineers (B2,
2 Scrum Masters (A3, A4) B3)

2 Developers (AS, A6) 2 Product Owners (B4, B5S)

2 Scrum Masters (B6, B7)

7 Developers (B8-B14)

Data were collected through observations consisted of photos and field notes. These
observations were conducted by on-site visits every second or third month and lasted
for two to five working days. During these visits, interviews were performed, and mem-
oranda from meetings were studied. In total, 20 interviews were performed with key
roles as well as team members who gave insights into multiple perspectives of the
transformation (see Table 2).

The analysis followed a two-stage process of inductive and deductive coding of data,
building upon the recommendations by Miles, Huberman, and Saldafia [20]. First, all
field notes, meeting memoranda and interview transcripts were scrutinized and coded for
the first time in an inductive manner. Initial codes were based on evidence of institutional
logics at play. Secondly, a deductive coding of data was performed based on the six
dimensions of Agile rulebook logic and Agile toolbox logic [15].

4 Findings

In this section, findings from Case A and Case B are presented. In each subsection,
experiences of implementation strategies and perceived impacts of the transformation
are displayed.

4.1 Case A

In Case A, five SAFe trained agile coaches helped in the transformation during the first
one-and-a-half year. The Release Train Engineer [21] explained the view on implement-
ing new methods: “/The agency] always want a uniform way of working, a standardized
way in the whole organization” (A2).

16 T. Gustavsson

Since SAFe was the baseline for all of them, the framework was, more or less,
implemented by the book. One developer expressed: “The agile coaches say ‘According
to SAFe..." or the reverse ‘That’s not something that SAFe says’ as an excuse for not
making decisions” (AS). Another respondent (A3) claimed that the agile coaches were
competing with each other regarding who knew the details of the framework best, rather
than discussing possible tailoring or if some things could be discarded.

Financially, Case A used annual budgets and one planning event occurred just before
the end of the year. Unfortunately, the annual budget process was delayed and, without
a definite budget, managers were not allowed to plan for more than a couple of months
into the new year. Still, the decided planning horizon of four sprints was kept, since
SAFe describes a planning period of four sprints [21]. This meant that several teams
were unable to plan for their final one or two sprints.

Several employees at Case A expressed a negative view towards the implemented
roles and practices in the agile transformation. Many expressed that too much time was
spent in meetings and that the agile way of working was not tailored to the work process.
Employees also expressed limitations to team autonomy since they could not choose
how to work as much as they had before the transformation. They also reported stress as
a drawback, especially due to added work by following the detailed practices in SAFe
forced on them by the agile coaches.

Despite the negative views, respondents expressed a better overview and transparency
due to joint planning sessions with other teams as well as improved coordination and
cooperation possibilities.

4.2 CaseB

At Case B, one manager explicitly stated in an interview that they decided to implement
roles, practices and routines suggested by SAFe based on their needs: “Instead of imple-
menting everything in SAFe, we decided to pick and choose practices that would help
us” (B1). Therefore, they did not ask consultants specializing in SAFe implementations
for help. Instead, they implemented roles and practices on their own.

Practices were added and tailored along the way during the transformation process.
PI planning was first implemented as suggested by SAFe, but was constantly tailored to
supply the best planning overview to the teams: “You get a much better understanding
of the work ahead of you... all [PI] planning focuses on that, to visualize what you need
to get done. You get a clear overview of what everyone is doing, and that is a huge
advantage” (B4).

A few of the employees expressed that too much time was spent in meetings and that
the agile way of working was not entirely tailored to the work process, but not many
compared to Case A. Instead, respondents expressed how the new way of working caused
an increase in motivation and stress relief for the employees. Also, the new practices
of joint planning sessions, PI planning and Scrum of Scrums [21], with several teams
improved their planning precision.

Respondents at Case B also expressed a better overview and transparency, as well as
improved coordination and cooperation possibilities. They also expressed that, although
going through a transformation, there was no real interference on teamwork.

Institutional Logics in Large-Scale Agile Software Development 17

5 Discussion and Conclusion

Paasivaara et al. [22] presented the problems of large-scale agile transformations without
the use of an agile framework. However, the study presented in this thesis shows that
there are also risks when frameworks are implemented. In particular, there is a risk
for suppressing tailoring if the framework becomes the norm by adhering to an Agile
rulebook logic. This might be the case when there is too much agile coach support when
all coaches are trained in a specific framework, as could be seen at Case A. According to
respondents, too much of the discussions between coaches related to whether something
was correct according to how it was described in SAFe. In Case A, commitment to
method descriptions became the source of authority and method knowledge became the
source of identity. Limitations to team autonomy and increased stress were reported
impacts, which might be due to the Agile rulebook logic prevailing in Case A.

In Case B, roles, practices and routines were implemented and tailored continuously,
piece by piece, along the way. Tailoring was based on the needs of the teams, such as PI
planning where overview and transparency was in focus. Attentiveness and responsive-
ness became the source of identity and commitment to team decisions became the source
of Authority. Increase in motivation and stress relief were reported impacts, which might
be due to the prevailing Agile toolbox logic in Case B.

This study shows how two dichotomous institutional logics can be used for ana-
Iytical purposes in large-scale agile transformation studies. The contribution of this
paper is to show the possibilities of using two institutional logics for analyzing agile
transformations.

There are, however, important limitations to this study. First of all, the study is con-
ducted on a small dataset with only two cases investigated. Further studies on more
organizations are necessary to confirm findings presented in this study. Especially, the
observed cause-effect relationships between the identified logics and their impacts needs
further confirmation. Also, it is important to remember that this is a case study of two
organization based on a certain time, place, and the current individuals attending. Cate-
gorizing an institutional logic does not mean that a case organization is always anchored
in that type [11]. Adherence to logics is fluid and changes over time. The changes may
be due to changes in the world, or a result of a strategic decision [11].

References

1. Laanti, M., Kettunen, P.: SAFe adoptions in Finland: a survey research. In: Hoda, R. (ed.)
XP 2019. LNBIP, vol. 364, pp. 81-87. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30126-2_10

2. VersionOne. 14th annual “State of Agile Development” survey. http://www.versionone.com.
Accessed 05 May 2021

3. Barroca, L., Dingsgyr, T., Mikalsen, M.: Agile transformation: a summary and research agenda
from the first international workshop. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 3-9.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_1

4. Moe, N.B., Holmstrom Olsson, H., Dingsgyr, T.: Trends in large-scale agile development:
a summary of the 4th workshop at XP2016. In: XP 2016 Workshops: Scientific Workshop
Proceedings of XP2016 (Article 1). ACM (2016)

https://doi.org/10.1007/978-3-030-30126-2_10
http://www.versionone.com
https://doi.org/10.1007/978-3-030-30126-2_1

18

10.

11.

12.

13.

14.

15.

16.

17.
18.

20.

21.

22.

T. Gustavsson

. Denning, S.: Strategic agility, using agile teams to explore opportunities for market-creating

innovation. Strategy Leadersh. 45(3), 3-9 (2017)

North, D.: Institutions, Institutional Change and Economic Performance. Cambridge Univer-
sity Press, Cambridge (1990)

Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44-50 (2019)

Smite, D., Moe, N.B., Agerfalk, P.J. (eds.): Agility across time and space: implementing
agile methods in global software projects. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12442-6

Thornton, P.H., Ocasio, W.: Institutional logics. In: Greenwood, R., Oliver, C., Sahlin, K.,
Suddaby, R.: The Sage Handbook of Organizational Institutionalism, pp. 99-128. SAGE
Publications, Thousand Oaks (2008)

Friedland, R., Alford, R.R.: Bringing society back in: symbols, practices and institutional con-
tradictions. In: Powell, W.W., DiMaggio, P. (eds.) The New Institutionalism in Organizational
Analysis, pp. 232-263. University of Chicago Press, Chicago (1991)

Thornton, P.H., Ocasio, W., Lounsbury, M.: The Institutional Logics Perspective: A New
Approach to Culture, Structure, and Process. Oxford University Press, Oxford (2012)
Rowlands, B.: Institutional aspects of systems development. In: Mills, A., Huff, S. (eds.)
Proceedings of the 19th Australasian Conference on Information Systems, ACIS 2008, pp. 55—
65. University of Canterbury (2008)

Dolezel, M.: Possibilities of applying institutional theory in the study of hybrid software
development concepts and practices. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS,
vol. 11271, pp. 441-448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-
7_35

Berente, N., Hansen, S.W., Rosenkranz, C.: Rule formation and change in information sys-
tems development: how institutional logics shape ISD practices and processes. In: Bui, T.X.,
Sprague Jr., R.H. (eds.) Proceedings of the 48th Annual Hawaii International Conference on
System Sciences, pp. 5104-5113. IEEE (2015)

Gustavsson, T.: Inter-team coordination in large-scale agile software development projects,
Doctoral dissertation, Karlstad University, Karlstad (2020)

Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River (2002)

McBreen, P.: Questioning Extreme Programming. Addison-Wesley, Boston (2003)
Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software practices at
Intel Shannon. Eur. J. Inf. Syst. 15(2), 200-213 (2006)

. Yin, R.K.: Case Study Research and Applications: Design and Methods, 6th edn. SAGE

Publications, California (2017)

Miles, M.B., Huberman, A.M., Saldafia, J.: Qualitative Data Analysis: A Methods Source-
book, 3rd edn. SAGE Publications, California (2014)

Scaled Agile Inc.: Scaled Agile Framework 5.0. http://www.scaledagileframework.org.
Accessed 06 June 2021

Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile transformation at
Ericsson: a case study. Empir. Softw. Eng. 23(5), 2550-2596 (2018). https://doi.org/10.1007/
s10664-017-9555-8

https://doi.org/10.1007/978-3-642-12442-6
https://doi.org/10.1007/978-3-030-03673-7_35
http://www.scaledagileframework.org
https://doi.org/10.1007/s10664-017-9555-8

Institutional Logics in Large-Scale Agile Software Development 19

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

9th International Workshop on Large-
Scale Agile Development

®

Check for
updates

Innovation in Large-Scale Agile - Benefits
and Challenges of Hackathons When Hacking
from Home

Rasmus Ulfsnes! ® @, Viktoria Strayl’2 , Nils Brede Moe! ®, and Darja Smite!-?

1 SINTEF, Trondheim, Norway
{rasmus.ulfsnes,nils.b.moe}@sintef.no
2 Department of Informatics, University of Oslo, Oslo, Norway
stray@ifi.uio.no
3 Blekinge Institute of Technology, Karlskrona, Sweden
darja.smite@bth.se

Abstract. Hackathons are events in which diverse teams work together to explore
and develop solutions, software, or even ideas. Hackathons have been recognized
not only as public events for hacking but also as a corporate mechanism for inno-
vation. Hackathons are a way for established large-scale agile organizations to
achieve increased employee wellbeing as well as being a curator for innovation
and developing new products. The sudden transition to the work-from-home mode
caused by the COVID-19 pandemic first put many corporate events requiring col-
location, such as hackathons, temporarily on hold and then motivated companies
to find ways to hold these events virtually. In this paper, we report our findings from
investigating hackathons in the context of a large agile company by first exploring
the general benefits and challenges of hackathons and then trying to understand
how they were affected by the virtual setup. We conducted nine interviews, sur-
veyed 23 employees, and analyzed a hackathon demo. We found that hackathons
provide both individual and organizational benefits of innovation, personal inter-
ests, and acquiring new skills and competencies. However, several challenges such
as added stress due to stopping the regular work, employees fearing not having
enough contribution to deliver, and potential mismatch between individual and
organizational goals were also found. With respect to the virtual setup, we found
that virtual hackathons are not diminishing the innovation benefits. However, some
negative effects surfaced on the social and networking side.

Keywords: Large-scale software development - Work-from-anywhere -
Innovation - Hackathon

1 Introduction

Innovation in large companies is essential but is often harder to implement than in
startups, where it is a natural and necessary part of the regular work. Large companies
have many employees, many of them creative, but teams and team members are often
bound to work only on the company strategy [1]. Creating an environment that fosters

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 23-32, 2021.
https://doi.org/10.1007/978-3-030-88583-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_3&domain=pdf
http://orcid.org/0000-0002-4966-8242
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-030-88583-0_3

24 R. Ulfsnes et al.

innovation and creativity requires employees to be motivated, and management needs to
provide time and space for innovation to occur [1]. Therefore, to address the challenge of
bringing new products to the market, many large software companies tend to approach
innovation in a systematic way [1]. One example of such an approach is implementing
an innovation program for internal startups [2]. For example, Google and Atlassian had
their 20% time program [3], where developers are given 20% of their time to work on
a project or initiative of their choosing. Another approach is to allocate days when all
software developers in a company work on delivering a software product improvement
of their choice. Innovation can be facilitated in a hackathon, a short and time-bound
event, where participants work together to develop solutions, software or explore ideas.
Large-Scale Agile organizations have increasingly utilized hackathons as a mechanism
for innovation in the last 20 years [3-5].

Due to Covid19, company activities such as hackathons had been first postponed and
eventually organized through virtual platforms such as MS Teams, Zoom, and Slack.
Further, as many companies (Twitter, Spotify, Facebook, Salesforce) have announced
their Work from anywhere (WFA) strategy, it is likely that structured innovative processes
like hackathons will continue to be organized virtually in the future.

This unique situation has provided an excellent opportunity to understand how
the shift from physical to a virtual hackathon affects the benefits and challenges of
hackathons, but a andrge-scale agile organizations can embrace a WFA future. Even
though there has been an increasing amount of literature on hackathons [7] and some lit-
erature on virtual hackathons [6], the literature regarding virtual hackathons for software
companies, and especially the shift from physical to virtual, is scarce.

Motivated by the importance of innovation in large-scale agile and how large-scale
agile organizations can embrace the WFA future, our research questions are:

RQ1: What are the benefits and challenges of hackathons?
RQ2: How are benefits and challenges affected by moving to a virtual hackathon?

Our chosen way to investigate this question was to perform a case study in a multi-
national software company utilizing large-scale agile methodologies. We observed the
company employees during their virtual hackathon demo and inquired about the recog-
nized benefits and challenges of hackathons for the company and their employees and
how the virtual hackathon compared to the previous physical hackathons.

2 Background

Hackathons have been around for over 20 years, first appearing with OpenBSD and
SUN microsystems in 1999 [8]. The word originates from the combination of the words
“hack” and “marathon” [8]. There are multiple alternative names for hackathons, such
as hackfest, jam, codefest, bug bash [5], as well as other more obscure names such as
Delivery Day [4] and FedEx Day [3]. These events all contain similar elements, such as
a limited and defined amount of time and the goal to create a minimum viable product
(or at least something to show at a demo). Hackathons can be open events organized by
universities, cities, municipalities, or internal corporate events.

Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons 25

Hackathons vary in how they are organized and executed, how ideas are structured,
where it takes place (physical or virtual), and whether or not it is a competition [6]. These
characteristics of hackathons provide different benefits and challenges. Falk Olesen and
Halskov [7] emphasize that hackathon organizers need to tune its characteristics in order
to achieve the wanted benefit for the target group.

Hackathons are not only a benefit for the organization, but also for the individual
participants, providing an opportunity for individual development, goals and learning
skills. There are also different categories of benefits identified in hackathons. Falk Olesen
and Halskov [7] provide three categories, structuring learning, structuring processes,
and enabling participation.

While hackathons provide benefits such as improving and fostering internal innova-
tion, expanding competencies, and networking [3, 4, 6, 9—12], several challenges have
been reported. Examples of challenges are prototypes that do not get sufficient follow-up
work [7,9, 11], stress by putting regular work aside [4] and issues associated with hacker
culture and low self-esteem reported by Paganini and Gama [12].

Contradictions and tradeoffs are something apparent in the hackathon phenomenon,
regardless of its formats. For example, diversification is both a benefit for learning and
networking and a potential hinder for effective work during the hackathon [9]. Another
contradiction is that the individual participants want to learn one specific technology or
skill, disregarding whether or not that is useful for the organization [13].

3 Research Methodology and Approach

Our exploratory case study was conducted in a multinational agile software company
identified here as “Ares” due to confidentiality. The company was founded in the early
2000s and develops content distribution software for mobile devices. Ares’s developers
are located in two locations and are utilizing agile methodologies. The number of com-
pany employees at the time of conducting the study was 39 people. Ares organizes a
voluntary hackathon every year and has done so for many years. Ideas are submitted and
put up for voting based on managerial input. The employees then vote for three ideas
they would like to work on. The hackathon teams are constructed based on the votes and
managerial input to ensure suitable team sizes and diversity. The hackathon lasts two
days, during which the teams self-organize, and at the end, all teams present a demo of
their work. There are no awards or jury involved.

In this case study, we first analyzed a demo from a recent hackathon in the company.
Based on the demo and previous research [3, 4], we developed an interview guide contain-
ing different areas for questions: Background, Motivation, Idea generation, Cooperation,
Hackathon organization, Expectations, Benefits, Challenges, and Virtual.

Seven semi-structured interviews with people from four different development teams
were conducted. They represented different skills and roles within the company, includ-
ing developers, lead architects, senior engineers, and an advertisements operations man-
ager, an overview of the informants can be seen in Table 1. The interviews were conducted
in Norwegian or English, recorded, transcribed and qualitatively coded using descriptive
coding, followed by a holistic overview and a thematic analysis [13].

The results were presented back to the company during an all-hands meeting to
validate the qualitative findings and potentially elicit more information. In addition,

26 R. Ulfsnes et al.

during the meeting a survey was administered to the attendees asking them to rank the
findings and add comments. Twenty-three persons responded to the survey.

Table 1. Informant overview

Role Attended previous Attended hackathons in | Years at company
hackathons in Ares | other companies

Android Developer Yes No 5

Data Scientist Yes Yes 3

Senior Developer Yes No 1

Android Developer Yes No 6

Software Architect No No 0.5

Advertisement Yes No 2

Operations manager

Developer No No 1

4 Results

4.1 Hackathon Characteristics

In this chapter, we present our results by starting with a general description of hackathons,
physical and virtual, which provide a context for understanding our findings.

How Often? — Once a Year. To our surprise, even though the participants were very
positive towards hackathons, they did not want to conduct them too often. One participant
explained, “It’s such a nice activity. It’s something like your birthday. If it would be every
month, it would become a bit more boring. It would be just another Hackathon.”

How Long? — Time Boxed. This is an inherent part of the hackathon, which often
means that participants do not have time to finish the project. Opinions about time
boxing differ. As one states, “You should stop working when you are finished with the
hackathon. Either you prove that something works, or you hopefully had fun.” This
contrasts with those who said that the continuation of the hackathon idea was essential
to them.

Which Ideas? — Whichever. The freedom to pitch and develop any idea gives a moti-
vational boost and incentive to participate. As one explains, “... with a more open app-
roach, you can create ideas which might sound cool, but you can’t really integrate it into
your company. However, on the other side, those ideas might be something new which
your company could work on.” Also, the opportunity to explore personal interests was
important, one example being the idea of developing a guitar tuner popular among guitar
players.

Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons 27

With Whom? — Whomever. The informants noted that the learning and teambuilding
across disciplines and skills was a vital aspect of participating in the hackathon, indicating
that a diverse team with different skill levels was good. However, this was contrasted
by the importance for the participants to succeed. For example, one of the participants
expressed, “If I constructed the teams, I probably would have chosen different people.”

What’s at the End? — Demo, no Competition. One informant explained, “The demo
is everything about the hackathon. The hackathon is not successful if you do not have
something to show at the demo.” That being said, the focus on the demo can also make
some people reluctant to join, as one stated: “/ haven’t participated in hackathons earlier.
I worried that I would not contribute enough because you need to deliver a product and
present it at the end.”

4.2 Benefits of Hackathons in Large-Scale Agile

Based on the interviews, we will now present the general benefits of hackathons cat-
egorized into individual and organizational. Finally, we report the benefits of most
importance, based on the rating provided by the survey respondents (see Table 2).

Table 2. Rated benefits of hackathons

Individual - Benefits Organizational - Benefits

1 Test new ideas fast Teambuilding

2 Break from ordinary work Ability to take advantage of emergent market
opportunities

3 Fun from being with colleagues Build a sense of belonging to the company

4 Build new stuff Employees with broader skills and expertise

5 Build a network with colleagues Increased marketability and talent attractiveness

6 Expand skills and expertise Knowing who knows what (build employee
network)

Our findings show that innovation is a key benefit both for the individuals and
the organization, recognized as the ability to test new ideas fast and take advantage
of emerging market opportunities. One informant said, “/t was a product idea 1 had
wanted to develop for a while, and finally there was a hackathon so I could check
if it worked.” Other interviewees also mentioned that given the proper business case,
hackathon products could be launched. One explained: “Tiwo years ago, we made a
feature that was put directly into production, actually four weeks later, it was done
properly. Hackathon proved it was possible, and it fits well into the existing product
line.”

Having a break from everyday work was highly valued by individuals. One intervie-
wee explained: “It’s kind of relaxing for the people, for the company. Well, for the team
itself because you are not doing exactly what you are paid for.”

28 R. Ulfsnes et al.

Teambuilding was rated as the top organizational benefit. Having fun from being
with colleagues was rated third as the individual benefit. One informant explained, “In
hackathons, what normally happens is that the main outcome, at least in our experience,
tends to be the social aspect of it, the teambuilding.” Another stated, “you will remember
other important parts of the hackathon than just the work or who was the winner, for
example, the fun you had with your colleagues and the knowledge you gained.”

Increased marketability and talent attractiveness are achieved due to the individual
benefits and because the hackathon in itself is a company practice that gives an edge dur-
ing the recruitment process. The individual expands their skills and expertise by working
on topics and technology where the participant did not have much prior knowledge and
thus utilizing the hackathon for learning, providing the organization with higher and
broader skilled employees. Building network among colleagues and having employ-
ees that know who knows what, increasing the inter-team communication, and give
employees new insights into and respect for one another’s role and work.

4.3 Challenges of Hackathons in Large-Scale Agile

Even though there are clear benefits of hackathons, employees also mentioned some chal-
lenges. Therefore, we mention the challenges corroborated by the survey. The complete
list of challenges is shown in Table 3.

The top individual challenge was related to hackathons adds stress. Even though
hackathons are mostly a welcomed break, the timing for running a hackathon is not
always good. As someone explained, “you have pressure during your workday, and you
need to get something finished and you look at the hackathon as something in the way
that is just disturbing you from important work.” The two organizational challenges
echo this challenge — stopped production for a time and increased employee stress.

Mismatch in skills and desires due to the team diversification was another top chal-
lenge. The optimal team structure was not always obvious. One participant described that
the team members did not always have the same desires and motivation for participating
in the hackathon. One interviewee explained, “It was challenging that we had different
goals we wanted to achieve. [wanted my product to be launched while the others wanted
to expand their skills on machine learning.”

Being unable to complete the hackathon projects is somewhat frustrating. Even
though the employees are well aware that the hackathon is timeboxed, they still desire
to finish their products. A participant explained, “I am not allowed to work on it, I have
other work tasks. That’s a downside with hackathons.” This results in developers feeling
dissatisfied as their goals remain unfulfilled. As someone explained, “You know, the worst
feeling you can have is when you write code and after some time it gets forgotten and
no one ever uses it.”

4.4 Virtual Hackathons — What Are the Changes?

A virtual hackathon does not impact the ability to take advantage of emerging market
opportunities achieved through hackathons. The idea generation and idea voting are
similar to the previous hackathons, the difference is that the teams work and collaborate
virtually. As one says, “But from a technical point of view, to just develop something, you

Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons 29

can always use Slack or whatever, or just Google meet and call.” In addition to this, our
findings show that the number of hours spent on virtual hackathon is less than when it is
held physically. “During the first hackathon we stayed in the office up until midnight.”
In contrast, in the virtual hackathon, the employees started by dividing the work, then
worked focused individually, continuously coordinating through Slack and using virtual
meeting rooms for discussions and planning: “We did the first meeting when we split
the work. So, after a few hours we met again. We have this approach, let’s just give it a
try. Then a few hours later, we had another meeting, and we tracked our progress quite
often.”

A break from everyday work through hackathons is especially welcome after stressful
periods such as migrations, or as one says in a pandemic,” Especially in these pandemic
times. You know we are working from home. So, we want to meet people in real life and
hackathons are one way to just, you know, meeting and collaborating”.

We see a reduction in the benefit of having fun with colleagues: “Ir was not as fun
as it used to, hackathons are usually more fun than over video during Covid, in my
own home.” In addition, most employees mentioned that they would prefer to have the
hackathon co-located in the same physical location in order to socialize and have a good
time. Lastly, disagreements due to mismatches in individual goals seem to be harder to
solve through virtual meetings.

Informants note that there is less tendency to work after hours during a virtual
hackathon. This was explained due to people logging off after their part of the project
was done, “Some years, when we had pizza and social interactions, I worked to midnight.
This year, I worked to 9 pm, other team members (designers) only worked to 4 pm, and
it did not make sense for them to hang around on Slack after they were finished. In the
office it’s different because you can be social”.

5 Discussion

Noting the lacking research on internal corporate hackathons [9], we will now discuss our
research questions. Our first research question was, “What are the benefits and challenges
of hackathons?” Consonant with [3] and [4], we found that providing dedicated days
for developers may lead to innovation and new product development and that there
are benefits both on the individual and company levels, as seen in Table 1. Developer
involvement, productivity, competence, and wellbeing are thus important factors for
large-scale agile companies that foster innovation. We also found that learning and
networking are important benefits, as corroborated by [7, 12]. In addition, just providing
time to take a break from regular work and having fun is important for the wellbeing
of the employees. In addition to the different levels of benefits, we also see a clear link
between the characteristics of hackathons and the benefits that emerge from them. We
also find tradeoffs between some of the benefits. For example, building new stuff vs.
teambuilding as our findings show that tailoring the teams for diversification might take
away the team’s ability to perform during the hackathon, corroborating Falk Olesen
and Halskov [7] where the skills wanted by the individual did not match that of the
organization. Our findings showed that some employees were frustrated when their
product was not continued. This confirms a challenge with hackathon continuation,

30 R. Ulfsnes et al.

as reported in previous research [5, 11]. We also found additional challenges such as
taking time away from everyday work, whether it was good timing or not, corroborated
by [4]. Personal desires and goals could also pose a challenge where teams could not
agree on common goals. Fear of not contributing to the team during the hackathon was
also found due to low self-esteem, this corroborates Paganini and Gamas [12] findings,
albeit our findings are provided by male developers with limited experience, showing
that low self-esteem is not only found with female participants but also in-experienced
participants.

Our second research question was, “How are benefits and challenges affected by
moving to a virtual hackathon?” Our results suggest that the shift from physical to
virtual hackathons in large-scale agile does not seem to change the innovation benefits
or worsen the challenges that much. We found that the number of hours spent on the
hackathon decreased compared to physical hackathons, and the work was more divided
and focused between the participants. The employees were producing good quality demo
prototypes and were happy with the outcome. The findings suggest that having fun
with colleagues has decreased in virtual hackathons since physical hackathons provide
more encouragement and room for socializing, which was not provided in the virtual
hackathon.

5.1 Limitations

This study only has one sample for physical to virtual hackathons. In addition, all the
interviewees were male, and we did not elicit information about female participants.
Qualitative studies are also subjective by nature, however, the survey we administered
provided some quality assurance of the validity of the findings.

6 Conclusion and Future Work

Our results suggest that virtual hackathons in large-scale agile organizations benefit
individuals’ opportunity to test new ideas, take a break from regular work and acquire
new skills as well as broader skillset. In addition, hackathons provide the organiza-
tion with new products, refreshed employees, and a more competent workforce. Virtual
hackathon teams develop good technical solutions; however, the social and fun aspects
are diminished compared to physical hackathons.

Practitioners should also be aware that challenges can include additional stress and
dissonance in hackathon teams due to differences in experience and personal goals.

Future research should focus on collecting more data about virtual hackathons
in other large-scale agile organizations to develop further insights into how virtual
hackathons can be organized and improved. When doing this, one could consider using
the SPACE framework for developer productivity suggested by Forsgren et al. [14].
The framework recognizes multiple productivity dimensions for large-scale agile orga-
nizations, both on an individual, team, and organizational level, that are similar to our
findings on hackathons.

Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons 31

References

10.

11.

12.

13.

14.

. Edison, H., Wang, X., Jabangwe, R., Abrahamsson, P.: Innovation initiatives in large software

companies: a systematic mapping study. Inf. Softw. Technol. 95, 1-14 (2018)

. Sporsem, T., Tkalich, A., Moe, N.B., Mikalsen, M.: Understanding Barriers to Internal Star-

tups in Large Organizations: Evidence from a Globally Distributed Company. ArXiv Prepr.
ArXiv210309707 (2021)

. Moe, N.B., et al.: Fostering and sustaining innovation in a fast growing agile company. In:

Dieste, O., Jedlitschka, A., Juristo, N. (eds.) PROFES 2012. LNCS, vol. 7343, pp. 160-174.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31063-8_13

. Barney, H.T., Moe, N.B., Dyba, T., Aurum, A., Winata, M.: Balancing individual and

collaborative work in agile teams, pp. 53-62 (2009)

. Komssi, M., Pichlis, D., Raatikainen, M., Kindstrom, K., Jarvinen, J.: What are Hackathons

for? IEEE Softw. 32(5), 60-67 (2015). https://doi.org/10.1109/ms.2014.78

. Kollwitz, C., Dinter, B.: What the hack?—towards a taxonomy of Hackathons, pp. 354-369

(2019)

. Falk Olesen, J., Halskov, K.: 10 Years of Research With and On Hackathons (2020). https://

doi.org/10.1145/3357236.3395543

. Briscoe, G., Mulligan, C.: Digital Innovation: The Hackathon Phenomenon, p. 13

Nolte, A., Pe-Than, E.P.P,, Filippova, A., Bird, C., Scallen, S., Herbsleb, J.D.: You hacked
and now what? -exploring outcomes of a corporate Hackathon. In: Proceedings of the ACM
Human-Computer Interaction, vol. 2, no. CSCW, pp. 1-23 (2018)

Flores, M., et al.: How can Hackathons accelerate corporate innovation? In: Moon, L., Lee,
G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 535, pp. 167—
175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99704-9_21

Nolte, A., Chounta, 1.-A., Herbsleb, J. D.: What happens to all these Hackathon projects?. In:
Proceedings of the ACM Human-Computer Interaction, vol. 4, no. CSCW2, pp. 1-26 (2020).
https://doi.org/10.1145/3415216

Paganini, L., Gama, K.: Engaging women’s participation in Hackathons: a qualitative study
with participants of a female-focused Hackathon. In: International Conference on Game Jams,
Hackathons and Game Creation Events 2020, Osaka Japan, pp. 8—15, August 2020. https://
doi.org/10.1145/3409456.3409458

Saldafia, J.: The Coding Manual for Qualitative Researchers, 2nd edn. SAGE, Los Angeles
(2013)

Forsgren, N., Storey, M.-A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.: The SPACE
of developer productivity. Queue 19(1), 2048 (2021). https://doi.org/10.1145/3454122.345
4124

https://doi.org/10.1007/978-3-642-31063-8_13
https://doi.org/10.1109/ms.2014.78
https://doi.org/10.1145/3357236.3395543
https://doi.org/10.1007/978-3-319-99704-9_21
https://doi.org/10.1145/3415216
https://doi.org/10.1145/3409456.3409458
https://doi.org/10.1145/3454122.3454124

32 R. Ulfsnes et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Impacts of COVID-19 Pandemic for Software
Development in Nordic Companies — Agility
Helps to Respond

1(x) 2

Petri Kettunen , Tomas Gustavsson? (®, Maarit Laanti®, Andreas Tjernsten4,

Tommi Mikkonen! ®, and Tomi Ménnisto!

1 University of Helsinki, Helsinki, Finland
{petri.kettunen, tommi.mikkonen, tomi.mannisto}@helsinki.fi
2 Karlstad University, Karlstad, Sweden
tomas.gustavsson@kau.se
3 Nitor Delta, Helsinki, Finland
maarit.laanti@nitor.com
4 Nitor Agile AB, Stockholm, Sweden

andreas.tjernsten@nitor.com

Abstract. In 2020, the global COVID-19 pandemic affected almost every com-
pany in some way also in the Nordic countries. Depending on the different indus-
try sectors of the companies, the impacts have varied from minor risks to severe
disruptions but also even booming businesses. In all, agility and resilience have
been required to continue and even to survive. In 2018, we started conducting
large-scale agile surveys in Finland and Sweden. For the 2020 survey round, we
included questions about the current pandemic situation impacts and how agility
has helped to respond. The respondents represented software professionals from
different industries, not limited to information and communication technology
(ICT) companies. The results indicate that although the perceived impacts have
mostly been negative (53%), it is not all so. One-third (33%) reported positive
impacts such as increased business and better well-being. The majority (55%) of
the responses indicated that agility has helped to respond to the pandemic situation.
Remarkably, 59% reported that their companies have improved agility during the
past year. Improved agility appears to be positively related to the ability to respond
to the pandemic. We did not discover significant differences between the Finnish
and Swedish respondent cohorts.

Keywords: Agility - COVID-19 - Digitalization - Agile - Scaled agile

1 Introduction

In 2020, the COVID-19 disease spread across the world and was declared a “Public
Health Emergency of International Concern” by the World Health Organization (WHO).
Governments enforced regulations and proposed recommendations to prevent further
spread of the virus. Technology companies all over the world locked down their offices
and made their employees work from home. Many businesses were suddenly disrupted.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 3341, 2021.
https://doi.org/10.1007/978-3-030-88583-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_4&domain=pdf
http://orcid.org/0000-0002-2928-5885
http://orcid.org/0000-0002-1512-6592
http://orcid.org/0000-0002-8540-9918
http://orcid.org/0000-0001-7470-5183
https://doi.org/10.1007/978-3-030-88583-0_4

34 P. Kettunen et al.

We investigated the pandemic phenomenon based on a recent survey. The survey
was conducted during October—-November 2020. The overall purpose of the survey was
to understand the state of agility in the Nordic countries. This study aimed at answering
how the current situation of the pandemic has impacted companies and how well agility
helps companies to respond to the situation.

2 Background

Current studies reflect impacts on software professionals during the first months of the
COVID-19 pandemic. Working from home at a scale never seen before under these
new conditions is very much different from normal working from home. In one survey
among software professionals, the results show evidence of declining productivity and
well-being [1]. They also found an indication of a disproportionately negative effect on
women, parents, and people with disabilities. Another investigation found that working
from home during the pandemic has different impacts on the productivity of software
professionals, depending on which metrics to use [2]. The impacts also differed based
on project type, size, and age of employees. A study of GitHub activities presents that
patterns of activity of software professionals might have implications for burnout [3]. In
addition, the study suggests that the cadence of work has changed since working days
have become longer by up to an hour a day, on both weekdays and weekends.

Overall, the pandemic has affected different industries and companies in different
countries in various ways, even within the core ICT industry, and different companies
have devised various ways to respond and adapt to the impacts (e.g., [4, 5]). The pandemic
year 2020 affected significantly and suddenly the work-life in Finland and Sweden too,
due to extensive telecommuting recommendations. Full-time remote working has not
been typical in either Finnish or Swedish companies in general.

Because agile companies and software organizations are by definition capable of
coping with and adapting to changes in their environments and operations, we expected
that they were able to respond to the impacts of the pandemic in fitting ways [6, 7].
Moreover, some companies may even have been able to deal with the disruptions as new
opportunities causing positive impacts. However, agile practices are based on dedicated
teams that interact closely with each other and the customer. Teams collaborating in close
proximity and communicating in daily face-to-face meetings are typical characteristic
of agile. But since remote working does not allow agile practices to be performed in the
previous way, practices and tools needed to be replaced. This significantly changed the
agile way of working [5].

3 Research Design and Method

The research effort started in Finland in 2018 from an industrial stance. The initial idea
of this survey research endeavor was to investigate the current state of agile software
development in Finnish companies. We were interested in refreshing how companies
currently use agile methods and how agile they really are. In 2018 and 2019, we con-
ducted two survey rounds, the first year in Finland and the second in Sweden. We have

Impacts of COVID-19 Pandemic for Software Development 35

reported those results in our prior publications [8]. The results in this paper do not include
answers from those earlier rounds.

Overall, the purpose of our survey research was to examine the current state of agile
development and enterprise agility. Different companies may approach agile develop-
ment and agility in different ways. Hence, we were interested in examining how agile
companies really are nowadays and how they currently practice agile software devel-
opment. We are interested in measuring how widely agile methods and practices are
currently applied in industrial practice and how that is evolving. Moreover, we want
to go beyond team levels to large-scale agile and enterprise agility. We seek to under-
stand why different companies want to change — even transform — with agile means and
how beneficial and successful their particular changes have been. In all, we targeted
to investigate not just ICT companies but industries in general. The target population
was intentionally not limited to software companies since we were also interested in
non-software companies (i.e., companies in other industries than IT) currently facing
digitalization and becoming more software-intensive. We were also interested in the
future. We aimed to investigate not only the current whereabouts but also the future
intentions of the companies.

The research method was a descriptive survey. The questions and the predefined
answer choices were compiled by referring to selected prior surveys and by deriving
from own experiences and research. Most of the questions were closed-type with an
open free-text choice. Certain questions depended on their preceding questions. The
draft questionnaire was first piloted both in our industrial and academic organizations.

In 2020, we revised the questionnaire based on the experiences of the 2018-2019
survey. We added some new questions, removed some of the previous ones, and refined
some. In particular, we introduced a section of the current situation of the pandemic,
which emerged during the questionnaire revision period. The revised version of the
questionnaire comprised in total 48 question items with Finnish, Swedish, and English
language variants (translated by the native Finnish and Swedish speaking authors of this
paper). Again, certain of them depended on the selector question answers. The content
questions (except the selector ones) were non-mandatory and had “I don’t know” and
N/A options. A pilot round was conducted.

For data collection, the survey was implemented with a web-based online question-
naire tool. We considered several potential distribution channels in order to reach a wide,
representative sample population. However, due to pragmatic constraints, we decided
to use convenience sampling. The questionnaire was distributed through a Finnish con-
sulting company newsletter to people (300) mainly in Finland and Sweden who are
interested in the company’s offering of software consultancy, training, and agile trans-
formation services, as well as shared through several social media channels, especially
by posting links to the survey in agile user-groups on LinkedIn and Facebook. In addi-
tion, we advocated it to certain software research interest groups. The survey was open
for seven weeks during October and November 2020. We received 137 responses.

4 Results

To address the research objectives described above, we analyzed the respondents’
answers to the following survey questions:

36 P. Kettunen et al.

e QO: How do you see that Your company’s overall agility has changed during the past

year?

e Q1: How much and in what way does the current situation of global pandemic impact

Your company?

Figure 1 illustrates the basic descriptive statistics of the respondents and organiza-
tions. 54% of the respondents were located in Finland, 43% in Sweden. Software devel-
opment and software process development were the most frequently reported roles. 66%
of the respondents are in large or very large companies. Notably, two thirds (67%) of
the respondents are in other sectors than core ICT businesses (computer programming,

Q2: How has the current situation of global pandemic impacted Your company?
Q3: How well does agility help Your company to respond to the situation?

consultancy, and related activities). Agile methods are widely used.

What is the primary sector (line of business)
of Your company?
(N=137)
= Other
u MISC.
INFORMATION AND COMMUNICATION:
Telecommunications
= WHOLESALE AND RETAIL TRADE

= FINANCIAL AND INSURANCE ACTIVITIES

= INFORMATION AND COMMUNICATION: Computer
programming, consultancy and related activities

N

What is your role in Your company?
(N=137) -- Multi choice allowed
TOP-10

= Operations, maintenance (e.g,, software
updates)
= Service design

= Business process development
= Training

= Supporting software development (e.g.
tools)
= Product management

Software development management
(R&D)
= Architecture and systems design

= Software process development,
organizational development (coach)

0% = Software development (including testing

and project management)

EE N

How widely does Your company use agile methods?
-- By company size

e Wedonotuseat I don'tknow N/A

unit)

= large (250 or more persons) or very large (more than 5000 persons) (n=90) m AL (n=137)

What agile methods and models are there in use in Your company?
-~ Multi choice allowed - By company size
0% 10% 20% 30% 40% SO% 60% 70% B80% 90%

Extreme Programming (XP) P
Scrum

Kanban
Scaled Agile Framework (SAFe) EE———
Large Scale Scrum (Less)

Disciplined Agile Delivery (DAD) ¥
In-house scaled agile development mode! EEGEGEGG——G_G-

Spotifymodel
Agile Modelling B
Leanmethods IEEEEGEG———
DevOps
Agile portfolio management T
Other
Idon'tknow [P
NA .

m large (250 or more persons) or very large (more than 5000 persons) (n=87) m ALL (n=132)

Fig. 1. Demographical information of the respondents and their organizations.

4.1 How Companies’ Overall Agility has Changed (Q0)

The results about how the respondents perceived that the company’s overall agility has
changed during the past year (i.e., at the time of the survey in October—-November 2020)
reported were as follows (n = 132 (87 of large/very large companies)): 59% (69%)
improved (42% (46%) a little, 17% (23%) significantly), 8% (6%) declined (a little
or significantly), and 23% (20%) remained the same. Notably, the majority reported
improved agility. The distribution in large/very large companies was similar to the all.

There appeared to be no significant differences between Finland and Sweden.

Impacts of COVID-19 Pandemic for Software Development 37

4.2 How Much and in What Way the Current Global Pandemic Impacts (Q1)

The purpose of this question is to probe, how positively/negatively the pandemic was
perceived to impact (answer scale [extremely neg., extremely pos.]). Aggregating the
results, about a half (53%) of the respondents (n = 135 (89 of large/very large compa-
nies)) reported negative impacts while one third (33% (34%)) reported positive impacts
(3% (2%) even extremely). The distribution in large/very large companies was simi-
lar to the all. In all the distribution was slightly more on the positive side in Finland
than in Sweden (Finland 51% negatively, 36% positively; Sweden 58% negatively, 29%
positively).

The ICT sector reported being impacted more negatively (50% negatively, 39%
positively) than the other main sectors of the respondents. Interestingly, the wholesale
and retail trade sector appear to have experienced more positive impacts (38% negatively,
63% positively), while the financial and insurance sector reported equally positive and
negative impacts (39% negatively, 39% positively).

4.3 How the Current Situation of Global Pandemic has Impacted (Q2)

Following the Q1 (Sect. 4.2), Table 1 displays how the pandemic situation affected
companies in practice. The responses to this question are open comments answered
by 80 of the respondents. The remaining respondents (Q1 n = 135) did not answer
this question. The replies (Finnish and Swedish translations into English) were coded
in twelve descriptive themes, and the themes were further grouped as positive (POS),
negative (NEG), and miscellaneous (MISC) ones, based on the impact on the company.
The percentages displayed in Table 1 are based on the number of answers coded for each
theme and should be seen as an indication of differences in reported impacts.

Notably, there are both positive and negative impacts reported on business and well-
being. A declining business was the most often reported impact both in Finland and in
Sweden, emphasized in Finland.

An increase in remote working was also reported noticeably more often in Finland.
One might expect answers relating to remote work (Remote working increased), and
this survey showed this theme with the second highest number of answers. The reported
negative impact of Cooperation difficulties was often perceived as an effect of being
forced to work from home, while a positive impact was that the situation has in several
organizations led to Improved digitalization.

Several answers categorized in the theme Declining business show different amounts
of lost customer projects and sales. Some answers show that one impact is an Impeded
development situation, implying that improvement activities have been halted. Also,
Layoffs and reduction of work hours were reported. However, the survey shows several
positive changes for some organizations. These include an Increased business situation
while some organizations perceived No big change, that business could continue as usual.

Some responses showed a notion of Declining well-being regarding problems of
lowered job satisfaction and well-being. It is clear that the experience differs, however,
since some respondents perceived Increased well-being.

38 P. Kettunen et al.

Table 1. (Q2) How has the current situation of global pandemic impacted Your company?

Themes Type % of responses
ALL (n = 80) | Finland (n =39) | Sweden (n =41)

Declining business NEG |18% 23% 12%
Cooperation difficulties NEG 8% 5% 10%
Impeded development NEG 8% 5% 10%
Layoffs and reduction NEG 6% 5% 7%
Declining well-being NEG 6% 3% 10%
Increased business POS 8% 8% 7%
Improved digitalization POS 5% 3% 7%
Increased well-being POS 4% 3% 5%
New insights POS 3% 3% 2%
Remote working increased | MISC | 15% 23% 7%
New work practices MISC | 15% 18% 12%
No big change MISC | 6% 3% 10%

The theme New work practices show how organizations have been forced to find
new solutions based on the pandemic. The answer “We had to plan new business con-
cepts” shows signs of profoundly affected organizations. Answers also showed a per-
ceived impact of New insights in the organization. One answer, for example, expressed
a “Demand for truly agile consultancy raising”.

4.4 How Well Agility Helps to Respond to the Situation (Q3)

Considering the perceptions of how well agility helps to respond to the pandemic situa-
tion (scale [not much, very well]), the majority (55% (56%)) of the responses (n = 134
(89 of large/very large companies)) was on the supportive side (from the scale midpoint
to “very well”), while 12% (13%) was from the scale midpoint to “not much”. The
distribution in large/very large companies was similar to the all. Notably, 16% (17%)
reported that they do not know (11% of the Finnish respondents (n = 71) and 24% of
the Swedish respondents (n = 59)).

4.5 Further Insights

Having presented the direct results of the survey, in this subsection, we take a deeper look
at the different questions Q0—Q3 and analyze them in combination. This also informs
further research (Sect. 5.4).

In order to investigate to which degree agility has helped organizations based on how
challenging their impact of the pandemic was, we cross-analyzed the two questions Q1
and Q3, i.e., the relationship between the direction the pandemic impacted companies and
how well agility has helped them to respond to the situation. It showed most respondents

Impacts of COVID-19 Pandemic for Software Development 39

perceiving agility to have been helpful regardless of how (NEG or POS) the pandemic
had an impact. To verify if there is a significant difference, we used the Kruskal-Wallis H
test which is a non-parametric alternative to One Way ANOVA. However, the Kruskal-
Wallis H test does not show a statistically significant difference (H = 13.112, df = 10,
Asymp. Sig. = 0.217). This means that the agile way of working has been considered
as helpful both in organizations where the impact of the pandemic has been negative as
well as positive.

By cross-analyzing the two questions QO and Q3, i.e., how companies’ overall agility
has changed during the past year and how well agility has helped them to respond to the
situation, we also investigate a possible relation. A majority of respondents perceived
agility to be helpful during the pandemic, and a majority have improved their companies’
overall agility. The Kruskal-Wallis H test confirmed a statistically significant difference
(H = 15.278, df = 4, Asymp. Sig. = 0.004), which means that respondents perceiving
agility to be helpful in this situation have also improved their agility during the last year.

To summarize the perceived impacts, although the respondents have expressed both
positive and negative impacts, a majority of the answers show negative perceived impacts
to the organization.

5 Discussion and Conclusions

We assess our study, derive recommendations, and conclude with further work plans.

5.1 Related Works

In comparison to our survey question Q3 (Sect. 4.4), a recent industrial study reported
that mature agile business units have been more successful (in terms of customer satis-
faction, employee engagement, operational performance) in coping with the impacts of
the pandemic crisis than non-agile ones [7]. Following established agile practices and
cross-functional ways of working, they were able to quickly reprioritize the business tar-
gets and continue. We found more negative impacts (53%) due to the pandemic reported
from our respondents than positive (33%).

The majority of our respondents were in large or very large companies. In contrast, in
a recent study, one software startup company faced many uncertainties and demands for
adaptation when it was forced to quickly change the previous co-located agile ways of
working to remote working at home [4]. The key challenges were maintaining the teams’
productivity and ability to continue delivering satisfying customer value. Furthermore,
the company paid attention to employee well-being. Well-being was also one of our
resulting themes in Q2 (Sect. 4.3).

An immediate impact of the pandemic for almost every company has been increased
remote work — even changing to full-time work at home due to governmental rulings.
[1]. An increase in remote working was also one of our observations (Sect. 4.3).

Considering agility development (QO, Sect. 4.1), a German management survey
discovered that perceived agility of projects during the early stages of the pandemic
remained high and, on average, slightly increased [5]. This concurs with our findings.

40 P. Kettunen et al.

5.2 Recommendations

Our study suggests that developing agility is useful both for and during turbulent times.
It is Important to discern the type of change (internal or external) and its dynamic nature
(factors increasing or decreasing, possibly even in both ways).

Business Agility is, by definition, an ability to sense and respond to changing business
conditions quickly. Agility is also a mindset to react and move faster. This may be
an explanation why the organizations that are agile and that have agile mindset have
been coping better with the changing conditions due to the pandemic: the organization’s
structures and decision-making already support reacting quickly to changing conditions.
The personnel is rather rewarded for taking action than punished for initiatives.

Furthermore, innovation is an inherent element of agile business and, under the
pandemic circumstances, its role may have been amplified in companies to continue
their businesses. However, such factors as extensive remote working and consequent
co-operation difficulties discovered in this survey data (Sect. 4.3) may have had negative
impacts on innovation performance.

5.3 Limitations and Threats to Validity

We did not ask directly about large-scale agile. However, 66% of our respondents were
in large/very large companies and scaled agile methods are often used (Fig. 1).

We have recognized the limitations and potential threats earlier [8]. Especially, a
limitation is that we did not ask the respondents to identify their organizations. Therefore,
we cannot tell the number of different organizations in our respondent population, and we
refrain from judging how representative our industrial sample is. Due to such statistical
validity limitations, we make no attempt at generalizing the findings.

A construct validity concern is whether all the respondents in different roles and
companies have interpreted all the terms in our questionnaire in the same way (e.g.,
‘agility’). We do not consider internal validity to be a significant concern since the
purpose of the survey is primarily exploratory rather than explanatory. We have thus
been cautious not draw decisive conclusions in this study. External validity judgement
is limited by the background information collected. Research comparisons with other
industrial surveys should consider possible biases. Due to the company-specific call-out
of the survey (see Sect. 3), sampling bias is a threat. With the social media distribution,
the response rate is unspecified. Considering reliability, the main concerns in this survey
are thus the formulation of the question items and the dissemination.

5.4 Further Research

The mindset and culture of the agile organization is a possible area for further research
based on our survey data. Related to that, one of our survey questions was: To what extent
is Your company culture supporting agile ways of working, methods and practices? This
question could give insights into whether a supporting company culture for agility has
helped in managing the pandemic.

Another area for future research, based on our survey data, is to investigate answers
to the survey question: Is the company as agile as it should be? Cross-analyzing this

Impacts of COVID-19 Pandemic for Software Development 41

question with the perceived impacts (Sect. 4.2) could bring further understanding to
whether the agile maturity has had an impact on managing the pandemic (Sect. 4.4).

Truly agile companies may have been more successful in continuous innovation.
In this questionnaire we had the following multi-choice question related to that: What
goals does the company attempt to achieve by agile means? One predefined answer
choice was: New business (product and service innovation). There may be new business
opportunities following the recovery of the pandemic to a “new normal”.

References

1. Ralph, P, et al.: Pandemic programming: how COVID-19 affects software developers and how
their organizations can help. Empir. Softw. Eng. 25(6), 4927-4961 (2020)

2. Bao, L., Li, T, Xia, X., Zhu, K., Li, H., Yang, X.: How does Working from Home Affect
Developer Productivity? A Case Study of Baidu During COVID-19 Pandemic. arXiv preprint
arXiv:2005.13167v2 (2020)

3. Forsgren, N.: Octoverse spotlight: an analysis of developer productivity, work cadence, and
collaboration in the early days of covid-19. https://github.blog/2020-05-06-octoverse-spo
tlight-an-analysis-of-developer-productivity-work-cadence-and-collaboration-in-the-early-
days-of-covid-19/. Accessed 9 March 2021

4. da Camara, R., Marinho, M., Sampaio, S., Cadete, S.: How do Agile Software Startups deal
with uncertainties by Covid-19 pandemic? Int. J. Softw. Eng. Applications (IISEA) 11(4),
15-34 (2020)

5. Schmidtner, M., Doering, C., Timinger, H.: Agile working during COVID-19 pandemic. IEEE
Eng. Manag. Rev. https://doi.org/10.1109/EMR.2021.3069940

6. Worley, C.G., Jules, C.: COVID-19’s uncomfortable revelations about agile and sustainable
organizations in a VUCA world. J. Appl. Behav. Sci. 56(3), 279-283 (2020)

7. Handscomb, C., et al.: An operating model for the next normal: lessons from agile orga-
nizations in the crisis. https://www.mckinsey.com/business-functions/organization/our-ins
ights/an-operating-model-for-the-next-normal-lessons-from-agile-organizations-in-the-crisis.
Accessed 13 Feb 2021

8. Kettunen, P., Laanti, M., Fagerholm, F., Mikkonen, T., Ménnisto, T.: Industrial agile transfor-
mations lacking business emphasis: results from a Nordic survey study. In: Klotins, E., Wnuk,
K. (eds.) ICSOB 2020. LNBIP, vol. 407, pp. 46-54. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-67292-8_4

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/2005.13167v2
https://github.blog/2020-05-06-octoverse-spotlight-an-analysis-of-developer-productivity-work-cadence-and-collaboration-in-the-early-days-of-covid-19/
https://doi.org/10.1109/EMR.2021.3069940
https://www.mckinsey.com/business-functions/organization/our-insights/an-operating-model-for-the-next-normal-lessons-from-agile-organizations-in-the-crisis
https://doi.org/10.1007/978-3-030-67292-8_4
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

The EFIS Framework for Leveraging Agile
Organizations Within Large Enterprises

Alexander Poth! ® @, Mario Kottke!, Christian Heimann!, and Andreas Riel?

1 Volkswagen AG, Berliner Ring 2, 38436 Wolfsburg, Germany
{alexander.poth,mario.kottke,christian.heimann}@volkswagen.de
2 Grenoble Alps University, Grenoble INP, G-SCOP, CNRS, 38031 Grenoble, France

andreas.riel@grenoble-inp. fr

Abstract. This article presents the design and application of the EFIS framework
that combines four pillars to foster agile and lean working in organizations within
large enterprises. These pillars constitute the empowerment of teams, the focus on
products, the integration of processes, and the scaling of knowledge. The frame-
work is designed to systematically address typical large enterprise challenges such
as governance of regulation requirements and product risks. By design, EFIS is
lean and nimble to make it easily adaptable to domain-specific demands within
large organizations. It can be used as a stand-alone approach to establish and con-
tinuously improve lean and agile organizations, as well as in combination with
existing approaches like SAFe®.

Keywords: Large-scaling agile - Agile transformation - Agile framework

1 Motivation, Context and Methodology

In the ongoing trend of the agile transformation of large companies, the set of established
large-scale lean and agile frameworks has grown to a considerable number. The most
established ones in practice are Scaled Agile Framework (SAFe®) [1], Large-Scale
Scrum LeSS [2], Nexus [3] and Spotify [4]. Domain-specific challenges have led to
specialized methodologies such as R-Scrum [5] and SafeScrum® [6] for safety. Addi-
tionally, agile organizations should address autonomy, mastery and purpose adequately
[7].

Analyzing these frameworks, we identified the following shortcomings:

(1) The governance in terms of a reliable chain of accountability, responsibility, shared-
responsibility, mastery and autonomy is only vaguely addressed.

(2) Measuring the progress of the adoption of framework practices by the teams and
the overall organization is not clearly covered by indicators and methods.

(3) Scaling of the framework practices without significant coaching and training efforts
is not explicitly addressed.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 42-51, 2021.
https://doi.org/10.1007/978-3-030-88583-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_5&domain=pdf
http://orcid.org/0000-0002-2868-5633
https://doi.org/10.1007/978-3-030-88583-0_5

The EFIS Framework for Leveraging Agile Organizations 43

This paper proposes the EFIS (Empower, Focus, Integrate & Scale) framework that
aims at addressing these shortcomings from a holistic perspective. It has been designed
with a bottom-up design science research approach [8] within the context of the Volkswa-
gen Group IT. Over a timespan of five years, several building blocks have been designed,
implemented, evaluated and improved. Their proven-in-use designs have been integrated
in a larger framework, paying close attention to the consistency between blocks in order
to ensure a holistic perspective when addressing the organizational challenges. The val-
idation of the entire framework has been done implicitly through the validation of each
building block in at least two different organizational units, as well as by measuring
several teams’ agile maturity progress over time.

Section 2 presents the literature and established agile frameworks. Section 3 elab-
orates on the architecture and application of EFIS, as well as its key characteristics.
Section 4 explains how EFIS helps implementing accountability at large-scale through
mastery within the scope of an agile team. Section 5 reports on how EFIS has been imple-
mented at the Volkswagen AG, and critically evaluates success. Section 6 discusses the
limitations. Finally, Sect. 7 concludes by summarizing the article’s key contributions to
research and practice and giving an outlook to the authors’ ongoing research activities.

2 Established Agile Frameworks and an Literature Overview

One of the SAFe® [9] core values is “Built-In Quality”, however, the focus is on product
quality that is achieved through testing and/or design for quality. The quality manage-
ment aspect of continuous improvement is part of the learning culture with a modified
PDCA cycle [10]: the A stands for adjust instead of act in the original plan-do-check-
act cycle. A core concept of LeSS [2] is to reduce organizational complexity. As part
of technical excellence, LeSS focuses on testing in terms of test-driven development,
thinking about testing, unit testing, as well as acceptance testing. LeSS explicitly elimi-
nates support groups like “quality and process” as potential bottlenecks [11]. Nexus [3]
is based on Scrum and defines additional accountabilities to the roles. However, it does
not explicitly address governance, compliance and quality. Nexus can be seen as the
enhancement of enterprise Scrum (eScrum). Scrum @ Scale™ [12]: It is an agile scaling
framework based on Scrum [13] and scales with the Scrum of Scrum (SoS) approach. It
does not explicitly address aspects of governance and quality either. The Spotify Model
is not a scaling framework by design, but rather an agile organizational building block kit
[4]. Accountability is realized by the product life-cycle and features end-to-end respon-
sibility. Furthermore, the concept of alignment enabling autonomy is used as a base for
different Squads to work cooperatively on features, infrastructures or client applications.
Recipes for Agile Governance in the Enterprise (RAGE) [14] are an approach focus-
ing on making decisions repeatable and transparent. It distinguishes project, program
and portfolio level. It uses Scrum and Kanban as a base for the governance extensions
called recipes. Recipes are built on roles, ceremonies, artifacts, metrics and governance
points. They can be combined with SAFe® on the program level. For implementation
RAGE offers a white paper [14] and blog posts [15]. Disciplined Agile™ (DA) [16] is a
framework supporting agile and lean ways of work. The outcome is focused on solutions
rather than on software only. It contains different blocks like Disciplined Agile Delivery

44 A. Poth et al.

(DAD) and DAE. The DAE focuses on enterprise aspects like legal and governance.
Furthermore, it addresses quality in the context of software development and technical
debt via the DAD process goals.

3 The Architecture and Characteristics of EFIS

Figure 1 shows an overview of the EFIS framework and the interaction of its individual
building blocks. Internal and external regulations (right-hand side) interact with a partic-
ular organization within the enterprise (Organization @Enterprise, center). The latter’s
autonomous value streams implement the business domain-specific regulations and rel-
evant standards the organization is accountable for. Stakeholders contribute knowledge
and tool libraries for their domains (bottom right), serving as means of governance inter-
action between the organization and the enterprise. Each value stream instantiates the
relevant library artifacts and enhances them if needed through its contributions via the
Scale pillar (bottom left).

Organization@Enterprise Enterprise Governance /
External Regulation

<@

R Iz

— Accountable

Empower

Compliance Requirements

Head of Organization

Independent
Compliance Checks

@ Business Domain Regulations &
(organizational) Standards Compliance &

@[
g
=]

V1.0 ©Volkswagen AG 2021

Governance

xpemse

oAae %%
@%@T—é % &%ﬁ“’x

Knowledge,
Practice & Tool Library

Autonomous Value Stream

Integrate

Scale

Knowledge,
Practice & Tool Library

EFIS Framework Overview

Fig. 1. The EFIS framework for autonomous value streams within an enterprise.

The operational core is the instantiation of the Focus and Integration pillars by iden-
tifying the specific product and service quality risks and integrate the related mitigation
actions into the value streams’ committed set of regulation and standard requirements.
Once the requirements are implemented and validated systematically they assure compli-
ant delivery outcomes. The Empower pillar (top left) continuously improves teamwork
quality, for more mastery which leads to more autonomy, limiting the need for regular
team supervision and evaluation.

Openness by design is a cross-cutting aspect for all pillars, and therefore not explic-
itly modelled. It is achieved by reducing the recommended practices to a minimum. This
reduces potential conflicts with other practices and methods that can be included.

The EFIS Framework for Leveraging Agile Organizations 45

Empower. Empowerment of product teams and their organization is achieved through
systematic team development that leads to mastery, which is the prerequisite for let-
ting them take over responsibility for their actions in an autonomous way. This, in
turn, is indispensable for governing the accountability for any shipped deliverables.
Empowered teams can build and improve their delivery procedures and processes inde-
pendently for fast and innovative solutions. The enabling building block for systematic
team empowerment is aTWQ (agile Team Work Quality) as introduced in [17].

Focus. Focus shall be set on each product/service by handling their specific risks for
high quality deliveries. Each product or service comes with its business chances that
also imply risks that need to be continuously investigated and updated. Systematic risk
mitigation actions need to be derived and the effectiveness monitored. At the same time,
the organization has to remain open for new innovative products and improvements and
associated new risks. EFIS provides the building block PQR (Product Quality Risk) as
introduced in [18] to address keeping focus.

Integrate. Integration of processes by interface-driven flows ensure that business
domain-specific regulation and governance requirements are implemented for reliable
value streams. Value streams need to be identified, including their interfaces and hand-
over points. Regulation requirements have to be identified and derived for these value
streams and their outcomes, and mapped to the hand-over points. Optionally, organi-
zational intellectual property artifacts related to the value stream can be added to the
hand-over points to ensure the property exploration within the value stream processing.
Controls associated with the hand-over points enable compliance checks. One assigned
individual assures the accountability for the implementation and the compliance gov-
ernance of the value stream. The EFIS building block to instantiate systematic process
integration is LoD (Level of Done) as introduced in [19].

Scale. Scaling of knowledge beyond individual experts and teams is achieved through
encouraging knowledge self-services for organizational learning through a prosumer
(producer and consumer) principle. Learning from self-services to become more mature
within the business, product or service domain is encouraged. As are the sharing of
any team learnings with others by building new knowledge self-services and updating
existing ones. EFIS adopts the SSK (Self-Service Kit) approach as introduced in [20].

The EFIS framework establishes accountability: mature teams master their deliveries,
hence they can take responsibility for their actions which enables autonomy.

4 Leveraging Compliance Governance with EFIS

In organizations, development and delivery processes are confronted with a growing
number of regulation requirements. To avoid process complexity becoming ever larger,
product- and service-related risks can be integrated into corporate governance. In an
agile organization, this is feasible since the product teams are responsible for both the
process and the product compliance. In EFIS, we integrated guidance and support for
this incorporation process through the Product Quality Risk (PQR) building block [18].

46 A. Poth et al.

EFIS builds on the shared responsibility commitment between the enterprise governance
and the local organizational governance for example of a subsidiary or unit. The enter-
prise governance is able to delegate risk management to the local organization within
a shared responsibility approach — however, the local organization risks are still part
of the enterprise risk. With this approach, the process and procedure complexity can
be reduced by focusing to the explicit process demands for compliance for the specific
product — complex one size fit all processes are simplified to the specific products.

All procedure- and process-related compliance aspects are guided by the LoD build-
ing block [19], with the topic tasks (t) derived from the regulations. The delivery of
relevant internal organizational structures like interfaces and handover-points are mod-
eled through the number of LoD levels. The LoD incorporates the product-specific PQR
mitigation actions. The LoD and PQR together make up the core of the lean compliance
approach, as depicted in Fig. 2.

Identify compliance aspects (§) Map § to levels Define LoD topics (t)

V1.0 ©Volkswagen AG 2021

Product A
Organization | I product N

LoD Approach Overview

Fig. 2. A domain-specific LoD and its product instantiation.

To reduce the amount and efforts for compliance checks, the organizations’ product
teams have to be enabled to build compliant deliverables (entire products or services or
parts of them as parts of their solutions) and assure their compliance continuously. To
realize this, the teamwork quality is key: a more mature teamwork leads to better out-
comes, as well as increased performance and quality of deliverables. The team maturity
and mastery grows with the teams’ skills and capabilities, and the organization can trust
and rely on the shared responsibility principle. A highly matured team can master their
products and services and work autonomously. To make team maturity transparent and
help improve it, the aTWQ approach [17] is part of the empowerment pillar of the EFIS
framework.

The EFIS Framework for Leveraging Agile Organizations 47

Scaling individuals’ and teams’ knowledge within large-scale organizations requires
encouraging employees, especially experts, to share their knowledge. In large organiza-
tions, however, not all employees know each other. Furthermore, they need to synchro-
nize information and knowledge because the teams’ product and service life-cycles are
mostly independent of each other. This leads to the demand of providing expert knowl-
edge independently of the experts’ current availability. In the EFIS framework, this was
realized through the SSK (Self-Service Kit) approach [20]. The essential idea behind
SSKs is to share several proven-in-use practices rather than enforce particular practices
as a one-size-fits-all approach. The organization and enterprise can further foster the
mindset of knowledge sharing and collaboration by establishing incentives such as gam-
ification concepts [21] for contributing to the creation and continuous improvement of
SSKs.

5 Instantiation, Evaluation and Improvement

The Volkswagen AG has instantiated and deployed EFIS and its building blocks at
different organizations and business areas. The Agile Center of Excellence (ACE) of
the Volkswagen Group IT provides it in the form of an Agile Toolbox that is available
to all Volkswagen Group employees. Additionally the ACE, Test & Quality Assurance
(TQA) including Quality innovation NETwork (QiNET) experts are providing coaching
and facilitation services.

Some organizational units focus on all pillars, e.g., in the finance domain as well as
smaller product delivery organizations such as a cloud service. Other units have been
adopting selected pillars to address specific product domain demands in combination
with other lean and agile methods. This is possible thanks to EFIS’ modular building
block architecture. Domain-specific SSK frameworks have been built to scale special
matter knowledge to decentralized expert competence fields. In the Spotify model, this
corresponds to a guild orchestrated by a squad of experts. However, while Spotify takes
a rather structural and organizational approach, EFIS relies on a more operational and
operations structuring one. Both can be fitted together, as shown in the example in Fig. 3,
visualizing the instantiation adopted for the transversal expert areas like ACE, Machine
Learning and Blockchain which are organized in line and virtual organizations. In this
example, the Tribe Lead is accountable for the compliance of the organization and owner
of the LoD. Furthermore, the Tribe Lead is interested in the continuous improvement
of the organization and accountable for the SSKs. The Squads and Chapters have built
and maintain both the LoD and the SSKs. They are responsible for fit for purpose in
their product or service domain and the operational instantiation. The Squad Leads are
accountable for the adequate instantiation of the PQR and aTWQ approach in the teams.
The teams are responsible for instantiating and maintaining the EFIS artifacts.

During the EFIS evaluation period, the authors accompanied EFIS instantiations
in the IT domain of finance and automotive. The acceptance and added value of EFIS
is indicated by the feedbacks of people for example to SSKs and contributions to the
enhancement of the EFIS framework like the LoD enhancement with LoD layers by
Audi AG and Volkswagen Financial Services AG. Additionally, explicit coaching and
facilitation demands are requested to the ACE. New insights and learnings were used to

48 A. Poth et al.

enhance the SSKs and delivery kit of the EFIS framework. Furthermore, the EFIS frame-
work was introduced via the Agile Community of the Volkswagen AG to the community
as the last step of the initial evaluation. To improve the EFIS framework continuously,
feedback is collected wherever possible. Currently, the LoD layer approach in the con-
text of shared responsibility with different governance units is under development and
evaluation. For the teamwork quality pillar, the refinement of aTWQ is in progress. Due
to complex IT projects, the teams need technical skills to build high quality products
and services. This is addressed by team maturity for specific technologies like cloud
computing.

In terms of limitations of this work, the currently known EFIS instantiations are
located on different sites and legal entities in Germany. Therefore, there is a lack of
information about the application of the EFIS framework in other geographical areas,
especially non-European ones. However, some of the investigated teams and organiza-
tions in the German sites are highly diverse and international. Furthermore, the SSK
approach fostering the autonomous instantiation of the framework and its individual
building blocks limits the completeness of measurements and observations related to the
actual spread and adoption levels across the entire enterprise group.

DO O LOD
Tribe Lead
@ @ @ ,Lead Link*

& =

A-Team* A-Team* | A-Team* | 8

- ©

A-Team* A-Team* | A-Team’ | | ?

___________ - - — S
1 A-Team* A-Team* A-Team I)
I“ . <G H
Chapter FLAVOUR A | L

] Competence backlog Focus A -3
PQR PQR PQR L H

L. L - -1

o

e

R aTwQ +--|| laTWwQ |--1||aTWQ *+, 5
) . w

I Chapter FLAVOUR B I " c
| competence backlog Focus B L ‘5_
1 1 - [=%
__________ [. - ©
- - - z

)

L L] - o
Q.

T I T T] [w

| S| | S [|

A-Team": Agile Team S\ Tribe Lead @ sL - Squad Lead @ CL - Chapter Lead 2
examples — Legal / corporate accountable ﬁ

design@Squard anchor

Fig. 3. Mapping of the EFIS practices to a Spotify model oriented organization.

6 Discussion and Limitations

EFIS is a methodology with a supporting set of tools. As SAFe® or Scrum call itself
a framework the authors decide to use the term framework, too — to indicate that EFIS

The EFIS Framework for Leveraging Agile Organizations 49

can be used stand-alone and as overlay framework on the same level as other established
frameworks. An added value for product teams to the generic description of compliance
integration like in SAFe® [1, 22] is that with the LoD explicit all relevant regulation and
compliance requirements to the specific product are made transparent. Furthermore, all
product relevant quality risks are explicit handled. Both together can be used to ensure the
product and process compliance of deliveries explicit in the context and responsibility of
the product team. Depending on the compliance requirements the teams can do checks
manually or automated (e.g. integrated into a continuous delivery chain [23]).

As a limitation of the evaluation the instantiation in the different legal entities is
that in all cases the IT applies EFIS — however this indicates that EFIS is applicable
to IT organizations and also can be applied outside of the Volkswagen Group. Further-
more, no large metric set about efficiency is established for systematic monitoring and
enhancement — only downloads or page views of EFIS SSKs are measured. The cur-
rently feedback driven development has to be developed to a more objective indicator
and metric driven set. An idea is to use the aTWQ maturity of teams as an long-term
indicator of evolvement.

7 Conclusion and Outlook

The EFIS framework proposed in this article provides a way to build a lean and agile
environment in large-scale organizations and different domains like automotive IT
or finance. Its open, modular design makes it combinable with other lean and agile
practices and approaches. In particular, EFIS addresses the needs of large enterprises
for systematic team development to facilitate autonomy through mastery. It achieves
this through product-specific quality risk management for continuous high quality
value delivery, as well as process integration for establishing delivery chains under
the enterprise-compliance-governance conditions. Its fundamental underlying lever is
knowledge scaling within the entire organization for continuous improvement.
The key contributions fo practice can be summarized by the following aspects:

The EFIS framework focusses on domain-specific governance in a lean and agile
way, with the LoD to ensure compliance requirements and aTWQ for fostering team
autonomy through mastery.

— The EFIS framework has a simple, modular structure based on four pillars and min-
imizes the amount of methods and practices. This is considered a key success factor
for the creation and adoption of specific organizational instantiations.

— The EFIS framework can be combined with other established practices and frame-

works like SAFe® to complement them and/or to leverage transitions.

The key contributions fo theory can be summarized by the following aspects:

— Identification of the gap of systematic governance and quality management by the
established lean and agile practices in the context of large enterprises.

— Identification of a way to handle the accountability required by regulations by
proposing a chain of accountability, responsibility, mastery and autonomy in large
enterprises.

50 A. Poth et al.

— Demonstration that framework openness and modularity contribute to a holistic yet
gradual adoption of agile and lean practices and mindset at a large scale.

Future research will address specific demands of various business domains. Further-
more, specific governance and compliance requirements have been selected for devel-
oping lean instantiation approaches and scalable patterns for the affected agile organi-
zations within the enterprise. Additionally, systematic measures have to be established
to indicate the effectiveness of the application of the EFIS framework.

References

SAFe®. https://www.scaledagileframework.com/. Accessed 09 July 2021
LeSS. https://less.works/less/framework/index. Accessed 09 July 2021
Nexus. https://www.scrum.org/resources/nexus-guide. Accessed 09 July 2021
Scaling Agile@Spotify. https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.
pdf. Accessed 09 July 2021
5. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: an industry case study. In 2013 35th International Conference on Software
Engineering (ICSE), pp. 863-872. IEEE (2013)
6. Hanssen, G.K., Stalhane, T., Myklebust, T.: SafeScrum®-Agile Development of Safety-
Critical Software. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-99334-8
7. Pink, D.H.: Drive: The Surprising Truth About What Motivates Us. Penguin, New York (2011)
8. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4
(2007)
9. SAFe® Core Values. https://www.scaledagileframework.com/safe-core-values/. Accessed 09
July 2021
10. SAFe® Continuous Learning Culture. https://www.scaledagileframework.com/continuous-
learning-culture/. Accessed 15 July 2021
11. LeSS Organizational Structure. https://less.works/less/structure/organizational-structure.
Accessed 15 July 2021
12. The Scrum@Scale Guide. https://www.scrumatscale.com/wp-content/uploads/2020/12/oft
icial-scrum-at-scale-guide.pdf. Accessed 15 July 2021
13. Scrum. https://www.scrumguides.org/. Accessed 15 July 2021
14. RAGE. https://www.cprime.com/rage/. Accessed 09 July 2021
15. Recipes for Agile Governance in the Enterprise. https://www.cprime.com/resources/blog/cat
egory/agile-articles/. Accessed 23 Apr 2021
16. Disciplined Agile™ (DA). https://www.disciplinedagileconsortium.org/. Accessed 09 July
2021
17. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Paasivaara, M.,
Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 101-110. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_11
18. Poth, A., Riel, A.: Quality requirements elicitation by ideation of product quality risks with
design thinking. In: 2020 IEEE 28th International Requirements Engineering Conference
(RE), pp. 238-249. IEEE (2020)
19. Poth, A., Jacobsen, J., Riel, A.: Systematic agile development in regulated environments. In:
Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R. (eds.) Systems, Software and Services Pro-
cess Improvement: 27th European Conference, EuroSPI 2020, Diisseldorf, Germany, Septem-
ber 9-11, 2020, Proceedings, pp. 191-202. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-56441-4_14

Rl

https://www.scaledagileframework.com/
https://less.works/less/framework/index
https://www.scrum.org/resources/nexus-guide
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://doi.org/10.1007/978-3-319-99334-8
https://www.scaledagileframework.com/safe-core-values/
https://www.scaledagileframework.com/continuous-learning-culture/
https://less.works/less/structure/organizational-structure
https://www.scrumatscale.com/wp-content/uploads/2020/12/official-scrum-at-scale-guide.pdf
https://www.scrumguides.org/
https://www.cprime.com/rage/
https://www.cprime.com/resources/blog/category/agile-articles/
https://www.disciplinedagileconsortium.org/
https://doi.org/10.1007/978-3-030-58858-8_11
https://doi.org/10.1007/978-3-030-56441-4_14

20.

21.
22.

23.

The EFIS Framework for Leveraging Agile Organizations 51

Poth, A., Kottke, M., Riel, A.: The implementation of a digital service approach to fostering
team autonomy, distant collaboration, and knowledge scaling in large enterprises. J. Hum.
Syst. Manag. 39(4), 573-588 (2020). https://doi.org/10.3233/HSM-201049

Festinger, L.: A theory of social comparison processes. Hum. Relat. 7(2), 117-140 (1954)
SAFe®. Achieving Regulatory and Industry Standards Compliance with SAFe. https:/www.
scaledagileframework.com/achieving-regulatory-and-industry-standards-compliance-with-
safe/. Accessed 14 July 2021

Kellogg, M., Schif, M., Tasiran, S., Ernst, M.D.: Continuous compliance. In: 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 511—
523. IEEE (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3233/HSM-201049
https://www.scaledagileframework.com/achieving-regulatory-and-industry-standards-compliance-with-safe/
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Managing Dependencies in Large-Scale
Agile

Henrik Vedal®, Viktoria Stray!2(®) Marthe Berntzen', and Nils Brede Moe?

! Department of Informatics, University of Oslo, Oslo, Norway
{henrikav,stray,marthenb}@ifi.uio.no
2 SINTEF Digital, Trondheim, Norway
{viktoria.stray,nils.b.moe}@sintef.no

Abstract. Delivering results iteratively and frequently in large-scale
agile requires efficient management of dependencies. We conducted semi-
structured interviews and virtual observations in a large-scale project
during the Covid-19 pandemic to better understand large-scale depen-
dency management. All employees in the case were working from home.
During our data collection and analysis, we identified 22 coordination
mechanisms. These mechanisms could be categorized as synchronization
activities, boundary-spanning activities and artifacts, and coordinator
roles. By using a dependency taxonomy, we analyzed how the mecha-
nisms managed five different types of dependencies. We discuss three
essential mechanisms for coordination in our case. First, setting Objec-
tives and Key Results (OKRs) in regular workshops increased trans-
parency and predictability across teams. Second, ad-hoc communication,
mainly happening on Slack because of the distributed setting, was essen-
tial in managing dependencies. Third, the Product Owner was a coordi-
nator role that managed both inter-team and intra-team dependencies.

Keywords: Product Owner + OKR - Slack - Distributed teamwork

1 Introduction

In large-scale agile software development, teams are surrounded by a larger devel-
opment context that is often characterized by a high number of dependencies
[1]. Teams, therefore, need to understand dependencies within their team as well
as to other teams, and to understand how to efficiently manage, or coordinate,
these dependencies [2]. A dependency occurs when the progress of one activity,
such as a development task, is dependent on the output of a previous activity
[3,4]. The more dependencies, the greater the coordination effort is required.
Additionally, agile development is the emergence of tasks and work structures
during the project [5], which implies that new dependencies will emerge during
the development process. Therefore, large-scale agile is characterized by a high
number of dependencies that is difficult to plan for up-front, and coordination
has been identified as a top challenge to successful large-scale agile [6,7].

© The Author(s) 2021

P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 52-61, 2021.
https://doi.org/10.1007/978-3-030-88583-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_6

Managing Dependencies in Large-Scale Agile 53

Table 1. Table of coordination strategy components [8]

Distinct Component Definition
component

Synchronization |Synchronization |Activities performed by all team members

activity simultaneously that promote a common
understanding of the task, process, and or expertise
of other team members

Synchronization |An artefact generated during synchronization
artefact activities. The nature of the artefact may be visible
to the whole team at a glance or largely invisible but
available. An artefact can be physical or virtual,
temporary or permanent

Structure Proximity This is the physical closeness of individual team
members. Adjacent desks provide the highest level of
proximity

Availability Team members are continually present and able to

respond to requests for assistance or information

Substitutability | Team members are able to perform the work of
another to maintain time schedules

Boundary Boundary Activities (team or individual) performed to elicit
spanning spanning activity | assistance or information from some unit or
organization external to the project

Boundary An artefact produced to enable coordination beyond
spanning artefact | the team and project boundaries. The nature of the
artefact may be visible to the whole team at a glance
or largely invisible but available. An artefact can be
physical or virtual, temporary or permanent

Coordinator role | A role taken by a project team member specifically to
support interaction with people who are not part of
the project team but who provide resources or
information to the project

Research within large-scale has addressed coordination at the organizational,
project, inter-team and team level in both distributed and co-located settings
[1,8-10]. While research-based knowledge on coordination in large-scale agile
is expanding, there are still unresolved questions, such as which coordination
mechanisms used in large-scale agile are more effective. Guided by the need for
more knowledge on coordination in large-scale agile, we address the following
research question: How are dependencies managed in large-scale agile projects?
To address this question, we report on a case study conducted in a distributed
development team in a large-scale organization.

1.1 A Framework for Coordination in Agile Teams

In this study, we rely on a theory of coordination for agile teams developed by
Strode and colleagues [8]. The theory is relevant in large-scale contexts because
it takes into account that organizational structure, project complexity, and

54 H. Vedal et al.

uncertainty influence coordination [8]. We chose this theory as a lens for inves-
tigating large-scale coordination because it captures both explicit coordination
(e.g., an insight report) and implicit forms of coordination (such as knowledge
sharing) [1,8].

Coordination mechanisms are specific activities and artifacts aimed at
addressing dependencies of three types [3]: 1) Knowledge dependencies is when
a form of information is needed for a project to progress and consist of four
sub-categories: expertise, requirement, task allocation, and historical. 2) Process
dependencies are defined through two categories, activity and business process,
which entails when a task must be completed before another task can be initi-
ated. 3) Resource dependencies are composed of entity and technical, which is
when an object is needed for a project to progress. For example, entity depen-
dency is when a person is not available and this affects project progress [3].

The theoretical framework proposes three categories of coordination mecha-
nisms to manage these dependencies (see Table 1): Synchronization mechanism
such as daily stand-up meetings and product backlog; structure mechanisms
referring to the proximity, availability, and substitutability of team members;
and boundary spanning mechanisms that connect interdependent teams [3,8].

The theory further proposes that agile coordination mechanisms lead to coor-
dination effectiveness, where agile team members have a shared understanding
of their goals and priorities as well as how each team member’s tasks fit together,
as well as the necessary tools and artefacts available at the right time and place,
thereby being able to sufficiently manage their dependencies [8]. The original
framework included typical agile coordination mechanisms, such as daily stand-
up meetings and the product backlog [3,8]. However, in large-scale settings, it is
common to also use other project management mechanisms [1], including goal-
setting frameworks [10]. One such framework that we will focus on in this study
is the Objectives and Key results-framework, described next.

1.2 Objectives and Key Results

Objectives and key results (OKR) is a goal-setting framework to define a certain
set of objectives in an organization and measure its progress. Instead of spending
months setting long-term goals, OKR is designed to help organizations achieve
their business goals much quicker in a structured manner. It is defined as “a
critical thinking framework and ongoing discipline that seeks to ensure employees
work together, focusing their efforts to make measurable contributions that drive
the company forward” [11, p. 6]. An objective describes in short terms what the
team wants to achieve, while key results allow the team to measure their progress
and show when the objective has been reached.

The OKR-framework focuses on balancing business value and measureabil-
ity [11]. This may explain why large-scale agile companies choose to adopt it.
Another attractive feature of OKR that is compatible with agile is the emphasis
on broad participation and collaboration across organizational levels [11], right
down to the development teams.

Managing Dependencies in Large-Scale Agile 55

2 Research Method

We chose to conduct a case study because it is an empirical research method
for investigating contemporary phenomena and because it is particularly fit
when the boundaries between context and phenomenons are ambiguous or not
apparent [12]. Our case is an agency within a sizeable Norwegian municipal-
ity with approximately 50,000 employees distributed among 50 organizational
units. Established as a project in 2017, but later organized as an agency in early
2020, the case comprises six departments and seven product areas, consisting of
11 permanent and three temporary teams structured with people from multiple
departments (Fig.1). These cross-functional agile teams deliver solutions such
as web solutions, mobile solutions, document-handling solutions, and business
systems. The work entails connecting existing systems in the municipality to
create a shared service platform for agencies and businesses. Considering the
amount of data the municipality holds, the objective is to facilitate the creation
of high-quality, valuable services for all citizens of the municipality.

Our primary data collection was from Team Alpha. Their goal was to create
a platform to facilitate easy access and sharing of data within agencies in the
municipality and ensure it is being put to use. This included making intuitive
and secure solutions, good documentation, and ultimately enabling the citizens
to have access to better solutions. The team had ten permanent members and one
part-time member (a UX designer). All permanent team members were inter-
viewed in December 2020. See Table2 for a description of the different roles.
We interviewed one team lead, one tech lead, one UX designer, four back-end
developers, two front-end developers, and one data scientist. The video confer-
encing tool Zoom was utilized, allowing easy access to record the interviews with

[Department

| Product area
Business

management " Product teams
Communication
and HR

Information
Design and change Product and Technology
management analysis

security
Product area | Productarea| Productarea Productarea| Productarea| Productarea| Product area

Team Team Team Alpha Team Team Team Team

Team Team Team Team Team

Team Team

Fig. 1. The large-scale set-up.

56 H. Vedal et al.

permission from the interviewee. The average interview length was 48 min, and
all interviews were transcribed.

We analysed the interview transcripts by systematically coding them in Nvivo
12. One analytical strategy proposed by Yin [12] is the reliance on a theoretical
proposition, and we chose to guide the data analysis by using the coordina-
tion framework outlined above [8]. Following this framework, the analysis was
organized and helped us point out relevant contextual conditions [12].

Table 2. Roles in team Alpha

Role Members | Description

Team lead 1 Ensures that the team is moving in the right
direction, communicating company goals, and
facilitating a good flow of information

Tech lead 1 Also referred to as the architect, performs
development work, coordination, and provides
technical guidance for the team members

UX designer |2 Works with illustration, design, and collection of
data and insight from other teams and agencies

Back-end 4 Management and operation of the existing
systems, as well as the continuous
implementation of new server-side features

Front-end 2 Development of new client-side functionality,
creating a user interface and coordination with
designers

Data scientist | 1 Acquires requirements, use cases, and proof of

concept for new features to be built

3 Results

We used the dependency framework [8] to categorize coordination mechanisms
and how they managed the different dependencies. Figure 2 gives an overview
of the identified coordination mechanisms and how they address relevant depen-
dencies. In addition to the components shown in the figure, we also identified
11 synchronization artifacts, such as Kanban boards showing the status of the
different tasks, and Github pages for documentation. In the following, we report
on three coordination mechanisms that addressed the most dependencies (five or
more) since these indicate to be the most important. These were OKR workshop,
ad-hoc communication and Product Owner (PO).

3.1 OKR Workshop

Working towards the same goals was identified as a critical success factor. To
achieve this, the project relied on the OKR framework. Every quarter the teams

Managing Dependencies in Large-Scale Agile 57

Strategy |Coordination Knowledge Process Resource
compon- | mechanisms Expertise Require- Task Histo- Activity Business Entity Tech-
ents ment allocation rical process nical
Synchro- |Daily standup
nization [pre_sprint planning v v v
activities Sprint planning v v v v
Sprint v v v v
Retrospective v v v
OKR workshop 4 v v v v
One-on-one meetings v v v v
Ad hoc communication v v v v v
Boundary |OKR training v v v
per iNg [|nter-team meetings v v
activity -
Team lead meetings v v v
Ad hoc communication v v v 4 v
Boundary |OKR tracker v v v v
a;tefactls KAl v v
Insight reports v v v v
Status reports from v
management
Support tickets v v v
Chat logs v v
Coordin- |Tech lead v v v
atorrole | Team lead v v v v
Product owner v v v v v
Data scientist v v v
UX designer 4 v v

Fig. 2. Coordination mechanisms and dependencies identified.

arranged OKR workshops to set the direction and linking to the overall objec-
tives of the project to the teams. Each team was encouraged to look at other
teams’ OKRs to understand the dependencies between teams. Team Alpha’s
OKR meeting handled internal team dependencies such as expertise, require-
ment, historical, business process, and entity.

Further, the OKR workshop managed expertise and requirement dependen-
cies because they relied on very specific knowledge to create optimal OKRs. The
workshop also managed entity dependencies as many individuals on the team
provided valuable knowledge to ensure the quality of the OKRs. The team mem-
bers stated how OKRs provided increased transparency, predictability, shared
goals and an increased sense of ownership to what was produced in the project.
The agency also utilized an OKR tracker, a tool which allowed any team to view
the progress of other teams. One of the hardest parts about using OKR that
was stated by several team members, was quantifying objectives through key
results and the corresponding choice of words. A member of team Alpha stated:
“I think OKR is difficult. It is useful to maintain focus, but it is hard to create
good, measurable key results which make sense.” This further emphasizes the
need for this workshop to manage the dependencies, as they are reliant on it to
improve their collective understanding and set better OKRs.

58 H. Vedal et al.

3.2 Ad Hoc Communication

Besides regular inter-team and intra-teams meetings, there was a substantial
amount of communication performed ad hoc, mainly using Slack. The ad-hoc
communication on Slack managed expertise (team members reached out to
other experts in the project), requirements (a team member located specific
product related domain knowledge), task allocation (discussions led to emerg-
ing tasks) and activity dependencies (a team member needed information to
continue work).

The Slack infrastructure provided public slack channels, dedicated team
channels and private messages. Private messages was used both internally in
the team and externally to communicate with others in the large-scale project.
While much information was sent as private messages, the project members were
encouraged to ask questions in open channels. When team members were unsure
about details of the domain or technology, they found it easy to reach out on
Slack to locate this information. The tech lead explained the following: “Our
team have a lot of experience with cloud technology and other project members
often ask for assistance. We have similarly reached out to other teams that have
specific knowledge which might be relevant for us”. This spontaneous commu-
nication often led to unscheduled meetings and positively benefitted the par-
ticipants. The communication also involved agreeing on pair programming and
discussing debugging. Because all project members were distributed, this coordi-
nation mechanism was probably more evident as the majority of communication
during work hours was digital.

3.3 Product Owner

The PO was a coordinator role that managed a total of five dependencies. The
role managed dependencies of types expertise, requirement, task-allocation, busi-
ness process, and entity, as shown in Fig. 2. The PO communicated stakeholder
interests, checked status, and pointed teams in the right direction. The major-
ity of the work performed by the PO was coordination related to both intra-
and inter-team coordination. Working tightly with the team lead and tech lead
of Team Alpha, the PO assisted in the discussion of which key results (related
to OKR) to prioritize throughout the quarter. This is what ultimately decides
many of the tasks which the team works with during any point in time, which
in turn manages requirement and task allocation dependency. It was not always
evident to the product teams what to prioritize. The PO managed much of the
inter-team coordination with the appropriate teams. This allowed the teams to
be aligned and focus on their product, enabling autonomy and avoiding potential
bottlenecks and misunderstandings.

4 Discussion

Understanding coordination in a distributed environment is critical to project
success [13]. We studied how dependencies were managed in a large-scale agile

Managing Dependencies in Large-Scale Agile 59

project that was forced to work from home due to Covid-19. We now discuss our
research question: How are dependencies managed in large-scale agile projects?.

The use of OKRs served as an essential mechanism for managing dependen-
cies because the approach was a foundation for setting direction for all teams.
We identified how the OKR workshop managed dependencies such as expertise,
requirement, historical, business process, and entity. The key to a successful
workshop was having an overview of past decisions and specific knowledge about
the product and project goals. In the workshop, team lead and tech lead man-
aged requirement dependencies, which enabled effective prioritization, which is
vital in high uncertainty complex projects [8].

The second most important mechanism to dependency management was ad
hoc communication, which addressed expertise, requirement, task allocation,
activity, and entity. For example, Team alpha often agreed to do pair program-
ming ad hoc, which was positive, since one of the main challenges of remote pair
programming is the initiation of pairing [14].

All scheduled and unscheduled communication was performed digitally. How-
ever, a high number of Slack channels resulted in challenges of getting an
overview of what was going on in the project. Our findings are in accordance
with [15], which found that coordination challenges are evident in distributed
teams. Our results further showed that it was hard to balance ad hoc communi-
cation on Slack and scheduled meetings. We found that some discussions could
go on for too long on Slack which created misunderstandings, instead of orga-
nizing a meeting to discuss the dependency and resolve the blocking of progress.
Our findings are consistent with the findings of [13], which showed that a lack of
guidelines when using Slack resulted in coordination being confusing and frus-
trating for team members. Another challenge with the use of Slack was that
it was expected that the project members answered reasonably quickly, which
some interviewees said led to increased interruptions and context switching in
the distributed teams.

The third most important mechanism for managing dependencies was the
PO role. The PO managed knowledge, process, and resource dependencies. Our
results confirm previous research, that the PO role is important in large-scale
agile for managing dependencies between and within the team [16-18]. In our
case, the PO worked in close collaboration with the team leader and tech lead,
thus managing process-related and technical dependencies. In accordance with
the findings of Bass [17], we found that the PO performed a wide set of different
functions. Our findings are also in line with Remta et al. [18]. In their study of
POs in a company that implemented the Scaled Agile Framework, they found
that the PO role entails responsibilities such as being a gatekeeper, motivating,
communicating and prioritising [18], addressing five types of dependencies.

5 Conclusion and Future Work

In conclusion, our study suggests that by discussing OKRs, the teams manage
dependencies both within the teams and also inter-team dependencies. We found

60 H. Vedal et al.

that ad-hoc communication mostly happened on Slack and that this communi-
cation made team members locate expertise in the large-scale project as well
as discussing requirements, task-allocation and activity dependencies. The PO
played an important role because it managed five different types of dependen-
cies. In this large-scale project, there was no dedicated role focusing on OKRs,
so discussions about them in the teams took time during meetings and required
much facilitation. Our findings indicate that large-scale projects would benefit
from having a dedicated “OKR master” to facilitate and follow up the OKR
process. Future work should further explore how OKRs can be used to align
teams in a large-scale distributed set-up.

References

1. Dingsgyr, T., Moe, N.B., Seim, E.A.: Coordinating knowledge work in multiteam
programs: findings from a large-scale agile development program. Proj. Manag. J.
49(6), 64-77 (2018)

2. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. (CSUR) 26(1), 87-119 (1994)

3. Strode, D.E.: A dependency taxonomy for agile software development projects. Inf.
Syst. Front. 18(1), 23-46 (2016).

4. Crowston, K., Osborn, C.S.: A coordination theory approach to process description
and redesign (1998)

5. Boehm, B., Turner, R.: Management challenges to implementing agile processes in
traditional development organizations. IEEE Softw. 22(5), 30-39 (2005)

6. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international
workshop on large-scale agile development. In: Hoda, R. (ed.) XP 2019. LNBIP,
vol. 364, pp. 75-80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30126-2_9

7. Bass, J.M., Salameh, A.: Agile at scale: a summary of the 8th international work-
shop on large-scale agile development. In: Agile Processes in Software Engineering
and Extreme Programming-Workshops, p. 68 (2020)

8. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile soft-
ware development projects. J. Syst. Softw. 85(6), 1222-1238 (2012)

9. Stray, V., Moe, N.B., Mikalsen, M., Hagen, E.: An empirical investigation of pull
requests in partially distributed BizDevOps teams. In: The 16th ACM /IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pp. 110-119 (2021)

10. Berntzen, M., Stray, V., Moe, N.B.: Coordination strategies: managing inter-team
coordination challenges in large-scale agile. In: Gregory, P., Lassenius, C., Wang,
X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 140-156. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78098-2_9

11. Niven, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment,
and Engagement with OKRs. Wiley, Hoboken (2016)

12. Yin, R.: Case Study Research and Applications: Design and Methods, 6 edn. SAGE
Publications, Upper Saddle River (2017)

13. Stray, V., Moe, N.B.: Understanding coordination in global software engineering: a
mixed-methods study on the use of meetings and slack. J. Syst. Softw. 170, 110717
(2020)

https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-78098-2_9

14.

15.

16.

17.

18.

Managing Dependencies in Large-Scale Agile 61

Smite, D., Mikalsen, M., Moe, N.B., Stray, V., Klotins, E.: From collaboration
to solitude and back: remote pair programming during Covid-19. In: Gregory, P.,
Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 3-18.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78098-2_1

Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Team knowledge and
coordination in geographically distributed software development. J. Manag. Inf.
Syst. 24(1), 135-169 (2007)

Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an
empirical study through the lens of relational coordination theory. In: Kruchten,
P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 121-136. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_8

Bass, J.M.: How product owner teams scale agile methods to large distributed
enterprises. Empir. Softw. Eng. 20(6), 1525-1557 (2015).

Remta, D., Dolezel, M., Buchalcevovéd, A.: Exploring the product owner role within
safe implementation in a multinational enterprise. In: Paasivaara, M., Kruchten,
P. (eds.) XP 2020. LNBIP, vol. 396, pp. 92-100. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-78098-2_1
https://doi.org/10.1007/978-3-030-19034-7_8
https://doi.org/10.1007/978-3-030-58858-8_10
https://doi.org/10.1007/978-3-030-58858-8_10
http://creativecommons.org/licenses/by/4.0/

Summary of First International
Workshop on Agile Sustainability

A Summary of the First International
Workshop on Agile Sustainability

Juan Garbajosa' @, Coral Calero®®, Jennifer Perez' @, and Agustin Yagiie'

! Research Center on Software Technologies and Multimedia Systems
for Sustainability (CITSEM), Universidad Politécnica de Madrid, Madrid, Spain
{juan.garbajosa, jenifer.perez,agustin.yague}@upm.es
2 Institute of Technology and Information Systems, University of Castilla-La Mancha,
Ciudad Real, Spain
Coral.Calero@uclm.es

Abstract. This is a summary of the First International Workshop on Agile
Sustainability. The workshop analysed sustainability from the agile per-
spective through research presentations and collaborative activity. The
keynote was focused on considering the world as a customer and the two
papers address really interesting and varied ideas about collective intelli-
gence and sustainability and how to increase the sustainability awareness in
the Agile community. The collaborative activity analysed the established
agile practices from the sustainability point of view.

Keywords: Agile - Sustainability - SDG

1 Introduction

For years, sustainability has been a concern for many communities, and this has been
the case for the Agile software development community. The definition of the UN 2030
Agenda for Sustainable Development has provided more concrete dimensions to sus-
tainability since at the heart of the Agenda are the 17 Sustainable Development Goals
(SDGs) [7]. Organizations are currently redefining the strategic objectives and pro-
cesses, so that all these can be better aligned with these 17 SDGs. The three main
dimensions of sustainability are Environmental, Social, and Economic [4, 5, 6]. The
Environmental dimension is related to the long-term effects that our actions will have
on the planet in terms of climate, primary resources, water, pollution, consumption, etc.
The Social is concerned with the communities of our society and those factors that
affect them in a positive or negative way. And finally, the Economic dimension is
focused on assets, capital, added value, and return on investment.

Society, industry, and research community is being aware of sustainability, even
refining this three dimensions in other more specific [3]. Therefore, the agile com-
munity cannot look the other way and it is required to study Agile and Sustainability in
depth and from a new and more fresh perspective, seeking a mutual benefit of both
Agile and sustainability. It should not be forgotten that Agile was born on top of a set
of values, principles, and practices and, in this respect, Agile is different from other

http://orcid.org/0000-0003-0161-3485
http://orcid.org/0000-0003-0728-4176
http://orcid.org/0000-0003-3192-7995
http://orcid.org/0000-0002-4761-0901

A Summary of the First International Workshop on Agile Sustainability 65

development paradigms. The relationship and impact that the Agile paradigm and the
agile software development approach have on the sustainability dimensions and on the
SDGs, require to be thoroughly considered. Issues such as resource optimization
(human, technical, ...), perdurability, and energy efficiency both from the process and
product perspectives are relevant.

Purvis et al. [8] stated the three-pillar conception of sustainability comprising
social, economical, and environmental are still far from clear. The Agile Manifesto [2]
could be a useful guide to build and to trace the footprint of products. How to map agile
values and principles is not new and some research has been conducted before.
However, in this workshop, we would like to take a step forward by researching on
different approaches and mapping the agile practices documented by the Agile Alliance
[1] with sustainability to create adoption roadmaps to build sustainable software. To
that end, the workshop was not only based on research presentations about sustain-
ability and agile, but also it provided a collaborative activity among attendants.

2 Workshop Development

As it has been mentioned before, the workshop was divided in two sessions: the session
of research presentations and the session of collaborative activity. The first one com-
prised a keynote and two additional papers. The keynote “Agile Sustainability: What if
the world is our customer?” by Jutta Eckstein presented a holistic perspective on who
our customer is (or could be) and how this can change our actions from the sustain-
ability point of view. She shared both ideas about possibilities and examples from
companies who make already attempts in implementing this holistic perspective. It was
an open-minded session on how the agile community can expand their responsibilities.

The first presentation was “How Collective Intelligence Can Gear Agility with
Sustainability”. It was presented by Juan Ochoa-Zambrano. He talked about how agile
methodologies and sustainability goals are somehow aligned, and that this alignment
can be advantageously used to implement new transformation approaches to implement
a more effective adoption of both agile and sustainably goals in organizations. He was
focused on “collective intelligence” which has proven to be a very powerful tool to
generate solutions to complex problems by combining the diversity of knowledge and
skills of different actors into better solutions or processes, which can be extended to
wider contexts. In addition, individuals participating in any collaborative process
benefit from the level of skills and new knowledge. Specifically, this paper points out
how the application of collective intelligence could be applied to support a transfor-
mation process to achieve the adoption of the Agile and Sustainability goals.

The second presentation “Increasing Awareness of Sustainability in the Agile
Community: A Focus Group Protocol” was presented by Claudia Melo. She described
her proposal for the focus group protocol to increase sustainability awareness in the
Agile community. The protocol was based on the usage of flashcards that allow both
being informational and propositional. With the flashcards’ focus on active recall, the
participants of the focus groups will increase their knowledge on sustainability and, at
the same time, explore options inspired by questions.

66 J. Garbajosa et al.

an g
Agile Sustainability Workshop XP2021 & /Ag]la

R Subway MaE)Mt(SLZgiIe Practices

Fig 1. Miro panel created during the workshop.

The second session was a collaborative activity with the main goal of identifying
the next steps to address sustainability in agile communities and development, and
working on an agile sustainability roadmap. It was based on analysing the established
agile practices [1] from the sustainability point of view. To that end, a board with the
subway map of Agile practices was used to drive the activity. The practice was con-
ducted as a world cafe' having three rounds and each round analyzed a pillar of Agile
Sustainability (economical, social, and environmental) in a time slot of 12 minutes.
A colour was assigned to each pillar: pink for social, green for economic, and blue for
environmental. Then, attendees added colored post-it notes to those practices that
considered could have an impact or be impacted by the analyzed pillar. After these
three rounds, the last time slot was focused on wrapping up conclusions and deter-
mining future works.

To support the world cafe, a Miro board was created and shared with the workshop
attendees. Figure 1 shows an overview of the generated board. Pink sticky notes
represent those practices that impact the social pillar. Green ones, those practices
impacting on the economical pillar and, finally, the environmental pillar is documented
by blue sticky notes. In the next section, the main concerns and conclusions are
presented.

! http://www.theworldcafe.com/key-concepts-resources/world-cafe-method/.

http://www.theworldcafe.com/key-concepts-resources/world-cafe-method/

A Summary of the First International Workshop on Agile Sustainability 67

3 Workshop Conclusions and Next Steps

After more than three amazing hours, some interesting results were obtained con-
cerning practices and agile sustainability pillars. Concerning the social pillar, 13 sticky
notes were added and can be summarized that most of the practices in the subway map
related to Teams have a great impact in this pillar. However, some other agile practices
like “Personas”, “Collective ownership” or “Daily meeting” were also labeled as
important for this pillar. In the case of “Persona”, it was highlighted the relevance of
capturing minorities and considering different cultural background.

Evaluating the impact of the agile “Economical” pillar, 24 sticky notes were col-
lected. Most of them were on the topic of “Product Management” and “Product defi-
nition” mainly addressing product estimation and backlog refinement. It was also
emphasized the relevance of the Scrum practices Timebox and Burndown chart,
because they help agile to reduce the waste generated by interruptions and to under-
stand better how value is created.

Finally, the “Environmental pillar” was analyzed based on 21 sticky notes. The
mass of the identified practices were in the “Testing” and “DevOps” areas. Considering
that both areas are highly dependent on technology where power consumption is
critical. It was also underlined the impact of those practices on the area of system
design and how to create sustainable architectures. Something that was also identified
is that, in most of the cases, the economical and environmental dimensions have an
inversely proportional relationship and in terms of sustainability some trade-offs are
required.

References

1. Alliance, A.: Subway map to agile practices (2021). https://www.agilealliance.org/
agile101/subway-map-to-agile-practices/

2. Beck, K.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

3. Becker, C., et al: Sustainability design and software: the karlskrona manifesto. In:
Proceedings - 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, ICSE 2015. vol. 2, pp. 467-476 (Aug 2015)

4. Calero, C., Piattini, M.: Puzzling out software sustainability. Sustain. Comput.
Informatics Syst. 16, 117-124 (2017). https://doi.org/10.1016/j.suscom.2017.10.011

5. ESCAP, U.: Integrating the three dimensions of sustainable development: A
framework and tools. Greening of economic growth series, UN, New York (2015)

6. Nations, U.: Report of the world commission on environment and development:
note, p. 374 (Aug 1987)

7. Nations, U.: Sustainable development goals (2015). https://sdgs.un.org/es/goals

8. Purvis, B., Mao, Y., Robinson, D.: Three pillars of sustainability: in search of
conceptual origins. Sustainability Science (September 2018). https://eprints.
whiterose.ac.uk/136715/

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1016/j.suscom.2017.10.011
https://sdgs.un.org/es/goals
https://eprints.whiterose.ac.uk/136715/
https://eprints.whiterose.ac.uk/136715/

®

Check for
updates

How Collective Intelligence Can Gear Agility
with Sustainability

Juan Ochoa-Zambrano®™

Universidad Peolitécnica de Madrid, 28031 Madrid, Spain
js.ochoa@upm.es

Abstract. Some emergent research works have identified that Agile methodolo-
gies and sustainability goals are, somehow, aligned. This alignment can be advan-
tageously used to implement new transformation approaches with the objective
of implementing a more effective adoption of both Agile and sustainably goals
in organizations. Studies claim that Agile and sustainability can be geared with
team collaboration and learning. Collective Intelligence has proven to be a very
powerful tool, to generate solutions to complex problems, because it is able to com-
bine the diversity of knowledge and skills of different actors into better solutions
or processes, which can be extended to wider contexts. In addition, individuals
participating in any collaborative process, benefit at the level of skills and new
knowledge. In this article, the application of the concepts of collective intelligence
to support a transformation process in which the combined adoption of the Agile
and Sustainability goals is described.

Keywords: Collective Intelligence - Agile - Sustainability - Team Diagnostic
Survey

1 Introduction

The UN in its Sustainable Development Agenda for 2030, mentions 17 Sustainable Goals
[1], those goals are a concern for our society, and, according to the position elaborated
in [2], it could happen that the journey to a more sustainable society is performed in
companion with Agile. In the software development world, agility was born to face a
needed change in the way software was developed. An emerging interest around agility
and sustainability is taking place and providing its first results. Agile, for the software
world, was established in the Agile Manifesto as a set of values, and principles, that would
guide the execution of practices [3]. Melo and Eckstein [4] have elaborated how, from
Agile software development principles and practices, sustainability can be comfortably,
and even, necessarily considered. It looks like Agile could not ignore sustainability.

It is interesting to see how this situation also stands in the case of Agile and sustain-
ability in other domains, different from software development. In the case of organiza-
tional culture values and agility [5], it happens that sustainability comes hand in hand
with agility. It is also the case project management in Engineering [6]. After analyzing
literature from different domains, even when a more in-depth research could be needed

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 69-77, 2021.
https://doi.org/10.1007/978-3-030-88583-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_7&domain=pdf
http://orcid.org/0000-0002-6527-4083
https://doi.org/10.1007/978-3-030-88583-0_7

70 J. Ochoa-Zambrano

to get more empirical evidence, it looks like agility and sustainability could supplement
with each other, one brings/needs the other.

Following [4], values and principles are a gate to sustainability and sustainable
development. To understand the relevance of values in Agile, Sommer [7] reports that
the adoption of Agile values has a very positive impact in the operation of the transformed
to Agile organization. Based on the alignment of Agile and sustainability discussed above
in this Section, it could make sense that transformations could consider both Agile and
sustainability.

To understand how this transformation, involving Agile and sustainability can be
reached, authors in [2, 3, 5, 6], provide us with some results of interest, especial men-
tion to [3], an empirical study. These papers agree that the journey towards Agile and
sustainability is supported by a common background, including learning and team col-
laboration as relevant activities. Learning and collaboration seem to gear agility with
sustainability.

Team collaboration and learning are regarded as central issues to Agile. Patterns
have been identified, nevertheless, a systemic approach that can be applied to support or
get advantage of them [8] does not seem to be feasible, at least in available literature.

Collective Intelligence (CI) is a paradigm that emerges naturally in groups of indi-
viduals who collaborate to solve a set of complex tasks or problems; and according to
Malone in [9], Collective Intelligence can be defined as the ability of a group of individ-
uals to act in an intelligent way. Collective Intelligence has been used in Agile software
development such as by Diegmann and Rosenkranz [10].

Within this current paper we claim that CI can be used to gear Agile and sustainability
because its application will help assess and improve team collaboration and learning.

The rest of the paper is as follows, Sect. 2 defines the concepts of Collective Intel-
ligence, Agility, Sustainability, and the relationship between them. Section 3 describes
the relationship between Collective Intelligence and Team Learning, providing a back-
ground on these subjects. Section 4 is a proposal on how Collective Intelligence could
be used to gear Agile with Sustainability. Finally, Sect. 6 include some conclusions and
future work.

2 Collective Intelligence, Agility, and Sustainability

Nowadays, ICTs plays an important role in achieving global sustainability goals, reduc-
ing not only their own carbon footprint, but also as a tool to find solutions to help reduce
the carbon footprint resulting from society’s production and consumption [11]. For this,
two terms should be considered, sustainable development and sustainable use. On the
one hand, sustainable development is based on creating goods and services that are more
sustainable during their life cycle, on the other hand, sustainable use is based on creating
and promoting sustainable patterns of consumption and production [11].

Therefore, at any stage of software development, we must be able to create solutions
with better performance that meet the new global needs of sustainability. In fact, Agile
methodologies must begin to consider these new requirements. A first approach is pre-
sented by Eckstein and Melo in [4], where they mention that sustainability is directly
related to the Agile Manifesto and more specifically to the Agile principles. Taking one

How Collective Intelligence Can Gear Agility with Sustainability 71

of the Agile values, which says “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software”, we can realize that nowadays the
definition of “valuable software” has evolved to pick up new needs of citizens con-
cerning global sustainability goals [4]. This means that developers in Agile teams will
find themselves in continuous learning considering the three pillars of sustainability [4]:
economic, environmental, and social.

And at this point, how Cl is related with sustainability? Collective Intelligence is not
anew term, naturally emerges from individuals working together, allowing to extend the
knowledge extracted locally to a global scale, since through it is possible to learn from
the experiences and diversity of other groups, which contributes to identify other ways
to solve the same problem or conflict from a completely different perspective [9]. Those
things that “works” can be transmitted from the local to the global context, in order
to obtain human systems (societies, governments, organizations) with a set of policies,
programs, behaviours, actions that produce good results [12]. Thanks to ICTs, new forms
of CI have emerged, allowing communities of individuals to use the new infrastructures
to transmit, create or exchange knowledge and resources [13]. In [13] the potential
of different CI techniques to address different social problems is shown. Although its
adoption has not been as widespread as desired, it is shown that the aggregation of
knowledge for decision making for the generation of solutions gives better results than
if it were done by a single individual. Collaboration seems to be the right strategy to
generate solutions that meet the new global objectives [13]. For example, in [14] the
authors apply CI through a Serious Game to help generate solutions in which citizens
and students participate. Typically, decisions on what to do in public spaces were made
by a small group of authorities, architects, engineers, etc. Through tools such as those
adopted in [14], with a bottom-up perspective, citizen participation is promoted while
improving students’ knowledge concerning sustainability by allowing the transfer of
knowledge to real contexts. In [15] a similar idea is presented, proposing a project
whose main objective is to use Cultural Heritage to create a collective decision-making
network to assist public and private entities and citizens. The reuse of Cultural Heritage
has allowed sustainable urban development, mitigation of the adverse effects of climate
change, waste reduction and much more. This, added to the new techniques in Collective
and Artificial Intelligence, allows the generation of richer information networks that
contribute to the creation of solutions with less development time and better resource
management [15].

As can be inferred CI, agility, and sustainability, have a lot to do in common and
are mainly related to the transfer of knowledge between individuals or diverse groups,
therefore directly correlated with team learning, which will be discussed in more depth
in the following section.

3 Collective Intelligence and Team Learning

Concerning problem-solving, there are various perspectives, such as technology-centric,
human-centric and CI centric, but the collective intelligence-perspective has proven to
be extremely useful when solving problems for the welfare of humanity [16]. Complex
problem solving in science, engineering and business has become a highly collaborative

72 J. Ochoa-Zambrano

effort, where the collaboration and expertise of individuals from different disciplines is
required. Teams of scientists or engineers collaborate together on projects using their
social networks to gather new ideas and feedback [17]. CI will also emerges from groups
of individuals collaborating together [18, 19], and according to Barlow in [20] CI is
the ability to perform consistently well in a wide variety of tasks. Such is the case
of Collaborative Innovation Networks (COINs) defined as the core of collaborative
knowledge. They are highly interdisciplinary collaborative networks, which combine a
large number of fields such as CI or crowdsourcing [21], driven by swarm creativity,
where people work together in a structure that allows the creation and fluid exchange of
new ideas [21]. The CoSpace, are spaces created as a collaborative work tool for the needs
of industry, which focuses primarily on creating collaborative engineering spaces to plan,
design and build new products for the automotive, space and construction industries [22].

Our capacity to generate better solutions depends on teams of scientists, engineers,
or knowledge workers and their networks [17], in fact, the interesting thing about these
collaborative networks, no matter what they are called or where they are applied, is
the group intelligence and the exchange of information and ideas. Within collaborative
groups, it has been determined that there is a “general intelligence” that arises from
correlations between people’s performance on a wide variety of cognitive tasks [23],
similarly, it has been shown that the structure of social interactions can enhance or
hinder the achievement of objectives [17]. In fact, the ability to solve complex problems
could be greatly enhanced by improving the instrumental and expressive links between
individuals [17].

Within Collective Intelligence, it has been found that individuals who participate in
groups benefit. In fact it has been found that groups with high CI develop greater shared
attention, transactive memory and a better problem-solving process [24, 25]. Thus, group
learning emerges from collaborative work [26]. Collaborative teaching or also called co-
teaching has been shown to be a pedagogical strategy of high value and potential as a
support tool in the classroom, or as a strategy for the professional improvement of the
individual’s skills and knowledge [27]. Edmondson et al. in [28] classifies team learning
into three distinct foci: performance improvement, or the speed at which groups improve
their performance; task mastery, or how team members coordinate knowledge and skills
to accomplish tasks; and group process, or what drives learning-oriented behaviours and
processes in teams.

In [29] it has been shown that groups with higher CI improve their performance
rapidly, indicating that they have learned faster than groups with low CI. It is also
suggested that even a moderate level of cognitive diversity helps to improve overall
group performance for different tasks, as high levels of cognitive diversity hinders the
transfer of information between members, thus hindering coordination and collaboration
per se [29].

4 How Collective Intelligence Could Be Used to Gear Agile
and Sustainability

In terms of Melo and Eckstein, continuous collaboration allows the self-organization of
teams and therefore the discovery of new market needs [4] and as we have already seen

How Collective Intelligence Can Gear Agility with Sustainability 73

in the previous sections, market needs have already changed and CI can be the gear that
helps the transfer of knowledge through team learning to Agile teams. In other words,
CI allows the introduction of a new Stakeholder which is the welfare of all citizens and
can promote the adoption of new global objectives within Agile Methodologies through
Team Learning, making Sustainability a new tacit or implicit requirement within any IT
or Software development. The Table 1 shows how Agile principles and values fit with
CIL

Table 1. Relation between Agile values/principles and collective intelligence

Agile value/principle Relation with collective intelligence

Transparency CI takes knowledge from the local context to the global context
Self-organization CI promotes self-organized teams

Continuous learning CI contributes to team learning

Constant customer focus | CI connects all the required stakeholders

Having new stakeholders and a new implicit requirement, it is possible to see that
CI can work not only as a tool, but also as another member of the team, collaborating as
Scrum Master/Coach regarding Team Learning, Organization and Values and as Product
Owner transferring and curing the knowledge of the new stakeholders, to transfer them to
the Agile Team. In this way the knowledge that is generated can be transferred from the
local to the global context, adapting those solutions and therefore the Agile methodolo-
gies that work in the different contexts with the goal of achieving the global objectives of
sustainability in the economic, environmental, and social axes, always keeping in mind
the terms of use and sustainable development (Fig. 1).

Collective Intelligence

Team Organization
(Scrum Master/Coach)

Team learning
(Scrum Master/Coach)

Team values

Curate Knowledge
(Scrum Master/Coach)

(Product Owner)

9
o
Q/.
O

)
%,

<z

N
&

Fig. 1. CI gearing Agility with Sustainability

Usually teams with better performance or with higher CI generate better solutions
and, in fact, CI is a good predictor of the performance that the group will have [29],
Therefore, assessing or measuring CI can be an indicator that Agile teams are adopting
sustainability goals.

74 J. Ochoa-Zambrano

Experiments can be made with Agile Teams to confirm that CI can effectively con-
tribute to Agile teams, the results of the experiments can be measured from several
dimensions: first, using the Team Diagnostic Survey (TDS), the collaborative work of
Agile teams can be evaluated, to determine how they work, how their workflow is and
how their internal processes can be optimized. Second, the TDS also allows to measure
the interpersonal process and collaborative learning, so it would be possible to eval-
uate the increase of skills and the quality of learning of new sustainability concepts,
as well as how these new concepts are transferred to the software during the develop-
ment and deployment stages. This whole process can help to understand how to extend
Agile methodologies so that they can be adjusted to the new sustainability goals. In the
following section how, CI can be measured is described more in depth.

5 Measuring Collective Intelligence

To evaluate Collective Intelligence in terms of group performance, Woolley et al. in [23]
applies a set of tasks extracted from the quadrants of “McGrath task Circumplex” [30],
which is an established taxonomy for group tasks; such tasks may include visual puzzle
solving, brainstorming, moral judgments and negotiating under limited resources. Engel
et al. in [24], uses the task battery used by Woolley et al. in [23] and also the MacGrath
[30] and Larson tasks [31]. In [25], psychological sensing is used to understand the
collaboration dynamics. This sensing provides a finer degree of understanding about the
participants’ experience during the collaboration process, facilitating awareness among
peers or partners [25]. Variables such as group satisfaction and cohesion have been con-
sidered as reliable indicators of the team’s level of rapport, even in online collaborations.
Furthermore, authors in [25], also propose measuring the group satisfaction, in order to
determine if there is some correlation between CI and the satisfaction perceived by the
members of the group, to achieve this, six items which reflects the quality of the group
collaboration through an adaptation of the “Team Diagnostic Survey” [32] are used.

The Team Diagnostic Survey or TDS, is a tool used for assessing the properties of
a team, and was specifically designed to be useful in scholarly research on teams and in
the practical diagnosis of teams’ strengths and weaknesses [32]. According to [32], the
team effectiveness is must accomplish these criteria’s:

e The productive output of the team meets or exceeds the standards of quantity, quality,
and timeliness of the team’s clients.

e The social processes the team uses in carrying out the work enhance members’
capability to work together interdependently in the future.

e The group experience contributes positively to the learning and well-being of
individual team members, rather than frustrating, alienating, or de-skilling them.

6 Conclusions and Future Work

Achieving sustainable goals, requires the highly collaborative effort and work of Agile
teams and stakeholders, to adjust to the new market’s needs, at this point Collective
intelligence has demonstrated its potential in many areas when generating solutions to

How Collective Intelligence Can Gear Agility with Sustainability 75

complex problems and extending local knowledge to a global scale, allowing the rapid
adaptation of processes and methodologies. Collective intelligence, sustainability and
Agility have a common point which is the transfer of knowledge, which can be measured
through team learning.

Agile and sustainability share a common ground: they can supplement each other
by an appropriate team collaboration and learning scheme. Collective intelligence can
be used as a framework to convey this transformation. Collective intelligence, besides,
can be of help; to understand how teams work, and how work processes can be changed
to get improved. All this, thanks to the use of tools such as TDS, that allow us to assess
team performance.

CI has proven to fit into the Agile manifesto and its values and principles, so CI
concepts can be applied and transferred to Agile methodologies to achieve the new
global goals concerning sustainability. CI allows to introduce Sustainability within Agile
methodologies as a new implicit requirement in software development, where the new
stakeholders are the whole humanity welfare.

As mentioned in the previous sections, sustainability in Agile teams has a lot to do
with group learning, where collective intelligence has proven to have tools that allow
to enhance group learning and not only evaluate group work, but also provide feedback
on those aspects that can be improved. All this in a framework of Collective Intelli-
gence among Agile teams can allow the adoption of sustainability goals, within Agile
methodologies, for subsequent adoption in a global context.

Finally, experiments are needed to confirm the potential of CI to engage the concept
of Agile in Sustainability and, perhaps, to help update the Manifesto.

References

1. Transforming our world: the 2030 Agenda for Sustainable Development—Department of
Economic and Social Affairs. https://sdgs.un.org/2030agenda

2. Melo, C.: Another purpose for agility: sustainability. In: Meirelles, P., Nelson, M.A., Rocha,
C. (eds.) WBMA 2019. CCIS, vol. 1106, pp. 3—7. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36701-5_1

3. Manifesto for Agile Software Development. https://Agilemanifesto.org/

4. Eckstein, J., Melo, C.O.: Sustainability: delivering agility’s promise. In: Calero, C., et al.
(eds.) Software Sustainability. Springer (2021, Submitted)

5. Felipe, C.M., Roldan, J.L., Leal-Rodriguez, A.L.: Impact of organizational culture values on
organizational agility. Sustain. 9, 2354 (2017). https://doi.org/10.3390/5u9122354

6. Obradovi¢l, V., Todorovi¢, M., Bushuyev, S.: Sustainability and agility in project man-
agement: contradictory or complementary? In: 2018 IEEE 13th International Scientific
and Technical Conference on Computer Sciences and Information Technologies, CSIT
2018 — Proceedings, pp. 160—-164 (2018). https://doi.org/10.1109/STC-CSIT.2018.8526666

7. Sommer, A.F.: Agile Transformation at LEGO Group: implementing Agile methods in multi-
ple departments changed not only processes but also employees’ behavior and mindset. Res.
Technol. Manag. 62, 20-29 (2019). https://doi.org/10.1080/08956308.2019.1638486

8. Hemon, A., Lyonnet, B., Rowe, E, Fitzgerald, B.: From agile to DevOps: smart skills and
collaborations. Inf. Syst. Front. 22(4), 927-945 (2019). https://doi.org/10.1007/s10796-019-
09905-1

https://sdgs.un.org/2030agenda
https://doi.org/10.1007/978-3-030-36701-5_1
https://Agilemanifesto.org/
https://doi.org/10.3390/su9122354
https://doi.org/10.1109/STC-CSIT.2018.8526666
https://doi.org/10.1080/08956308.2019.1638486
https://doi.org/10.1007/s10796-019-09905-1

76

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Ochoa-Zambrano

Malone, T.W., Bernstein, M.: Handbook of Collective Intelligence. MIT Press, Cambridge
(2015)

Diegmann, P., Rosenkranz, C.: Team performance in agile software development projects: the
effects of requirements changes, time pressure, team diversity, and conflict. Int. Res. Work.
IT Proj. Manag., 2 (2017). https://aisel.aisnet.org/irwitpm2017/2

Hilty, L.M., Aebischer, B.: ICT for sustainability: an emerging research field. In: Hilty, L.M.,
Aebischer, B. (eds.) ICT Innovations for Sustainability. AISC, vol. 310, pp. 3-36. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-09228-7_1

Letouzé, E., Pentland, A.: Towards a human articial intelligence for human development
(2019)

Elia, G., Margherita, A., Passiante, G.: Digital entrepreneurship ecosystem: how digital
technologies and collective intelligence are reshaping the entrepreneurial process. Technol.
Forecast. Soc. Change 150 (2020). https://doi.org/10.1016/j.techfore.2019.119791

Lameras, P., Petridis, P., Dunwell, I.: Raising awareness on sustainability issues through
a mobile game. In: Proceedings of 2014 International Conference on Interactive Mobile
Communication Technologies and Learning, IMCL 2014, pp. 217-221 (2015). https://doi.
org/10.1109/IMCTL.2014.7011135

Bonci, A., Clini, P, Martin, R., Pirani, M., Quattrini, R., Raikov, A.: Collaborative intelligence
cyber-physical system for the valorization and re-use of cultural heritage. J. Inf. Technol.
Constr. 23, 305-323 (2018)

Peeters, M.M.M., et al.: Hybrid collective intelligence in a human—AlI society. Al Soc. 36(1),
217-238 (2020). https://doi.org/10.1007/s00146-020-01005-y

De Montjoye, Y.-A., Stopczynski, A., Shmueli, E., Pentland, A., Lehmann, S.: The strength of
the strongest ties in collaborative problem solving (2014). https://doi.org/10.1038/srep05277
Malone, T.W.: Superminds: The Surprising Power of People and Computers Thinking
Together. Little, Brown, Boston (2018)

Fan, W., Wang, W., Xiao, T.: Multidisciplinary collaboration simulation optimization platform
for complex product design. In: 2007 2nd International Conference on Pervasive Computing
and Applications, ICPCA 2007, pp. 174-178 (2007). https://doi.org/10.1109/ICPCA.2007.
4365434

Barlow, J.B., Dennis, A.: Not as smart as we think: a study of collective intelligence in virtual
groups (2014)

Gloor, P.A., Riopelle, K., Gluesing, J., Lassenius, C., Paasivaara, M., Garcia, C.: Int. J. Organ.
Des. Eng. 2, 127-131 (2012)

Patel, H., Pettitt, M., Wilson, J.R.: Factors of collaborative working: a framework for a
collaboration model (2012). https://doi.org/10.1016/j.apergo.2011.04.009

Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a col-
lective intelligence factor in the performance of human groups. Science 80(330), 683—686
(2010). https://doi.org/10.1126/science.1193147

Engel, D., et al.: Collective intelligence in computer-mediated collaboration emerges in
different contexts and cultures. In: Conference on Human Factors in Computing Sys-
tems — Proceedings 2015-April, pp. 3769-3778 (2015). https://doi.org/10.1145/2702123.270
2259

Chikersal, P., Tomprou, M., Kim, Y.J., Woolley, A.W., Dabbish, L.: Deep structures of collab-
oration: physiological correlates of collective intelligence and group satisfaction. In: Proceed-
ings of ACM Conference on Computer Supported Cooperative Work and Social Computing,
CSCW, pp. 873-888 (2017). https://doi.org/10.1145/2998181.2998250

Giacomell, G.: Augmented collective intelligence: human-Al networks in a virtual future of
work (2020)

https://aisel.aisnet.org/irwitpm2017/2
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1016/j.techfore.2019.119791
https://doi.org/10.1109/IMCTL.2014.7011135
https://doi.org/10.1007/s00146-020-01005-y
https://doi.org/10.1038/srep05277
https://doi.org/10.1109/ICPCA.2007.4365434
https://doi.org/10.1016/j.apergo.2011.04.009
https://doi.org/10.1126/science.1193147
https://doi.org/10.1145/2702123.2702259
https://doi.org/10.1145/2998181.2998250

27.

28.

29.

30.

31.

32.

How Collective Intelligence Can Gear Agility with Sustainability 77

Cotrina Garcia, M., Garcia Garcia, M., Caparrés Martin, E.: Ser dos en el aula: las parejas
pedagdgicas como estrategia de co-ensefianza inclusiva en una experiencia de formacién
inicial del profesorado de secundaria. Aula Abierta 46, 57 (2017). https://doi.org/10.17811/
rifie.46.2017.57-64

Edmondson, A., Dillon, J., Roloff, K.: Three perspectives on team learning: outcome improve-
ment, task mastery, and group process. Acad. Manag. Ann. 1, 269-314 (2007). https://doi.
org/10.1080/078559811

Woolley, A.W., Aggarwal, L., Woolley, A.W., Aggarwal, I.: Collective intelligence and group
learning. In: Oxford Handbook of Group and Organizational Learning, pp. 490-504 (2020).
https://doi.org/10.1093/0xfordhb/9780190263362.013.46

McGrath, J.: Groups: Interaction and Performance. Prentice-Hall, Englewood Cliffs (1984)
Larson Jr., J.R.: In Search of Synergy in Small Group Performance. Psychology Press, New
York (2010)

Wageman, R., Hackman, J.R., Lehman, E.: Team diagnostic survey: development of an
instrument. J. Appl. Behav. Sci. 41, 373-398 (2005). https://doi.org/10.1177/002188630528
1984

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.17811/rifie.46.2017.57-64
https://doi.org/10.1080/078559811
https://doi.org/10.1093/oxfordhb/9780190263362.013.46
https://doi.org/10.1177/0021886305281984
http://creativecommons.org/licenses/by/4.0/

Summary of 4th International
Workshop on Software-intensive
Business

Fueling a Software-driven Economy: The 4th
International Workshop on Software-intensive
Business

Karl Werder' ®, Sami Hyrynsalmi>®, and Xiaofeng Wang®

! University of Cologne, 50969, Cologne, Germany
werder@wiso.uni-koeln.de
2 Lappeenranta University of Technology, 53850, Lappeenranta, Finland
Sami .Hyrynsalmi@lut.fi
3 Free University of Bozen-Bolzano, 39100, Bolzano, BZ, Italy
xiaofeng.wang@unibz.it

Abstract. The global pandemic has shown: thanks to advanced software
technologies, society and businesses were able to quickly respond to
environmental disruptions. Software-intensive businesses had to quickly
pivot their business models, and demands in software-based service offer-
ings facilitating remote work drastically increased and challenged control
modes of prior management practices. These example challenges cannot be
tackled by engineering or business discipline alone. The International
Workshop on Software-intensive Business (IWSiB) brought together dif-
ferent research communities working on topics relevant to software-
intensive businesses to jointly investigate these challenges. For example,
the keynote speaker Professor Dr. Guenther Ruhe took a return-on-
investment perspective on machine learning. The workshop facilitated
knowledge exchange through discussions related to software platforms,
software startups, software pricing, and the dark web. The feedback from
the wider community helped the authors of the eight papers presented at the
workshop to further develop and improve their research.

Keywords: Software-intensive business - Software platform - Software
startup

1 Introduction

The global pandemic has shown, thanks to advanced software technologies, society and
businesses were able to quickly respond to environmental disruptions. Demands in
software-based service offerings facilitating remote work drastically increased. For
example, the revenue for Check Point, a company specializing on VPN solutions,
increased by 4% in 2020 [1]. The revenue of Zoom, a video conferencing solution,
even jumped by 30% in 2020 [2]. The literature has widely acknowledged the positive
effects of an organization’s ability to use software technology in order to quickly react
to changes in its environment [3]. Consequently, software producing organizations face
increasing demands and evolving requirements from businesses that seek innovative
solutions for new realities that are enforced by physical distancing guidelines.

http://orcid.org/0000-0001-8481-1596
http://orcid.org/0000-0002-5073-3750
http://orcid.org/0000-0001-8424-419X

Fueling a Software-driven Economy 81

Society and businesses have learned they are less dependent on physical presence.
Rather, they experienced that software helped them in many novel ways that they had
not explored before. For example, software startups have shown their ability to quickly
pivot, thanks to the malleability of their product’s [4]. The german startup “rausge-
gangen” was a software-based startup to find venues and events in one’s area. Needless
to say that this startup was particularly hit by the COVID19 restrictions, so the com-
pany pivoted to “dringeblieben” a platform that let people connect to artists and
entertainers, so they can join their events through an online stream. This is only one of
many examples we all experienced in the last year, showing that software is increas-
ingly central to ever more business endeavours. Hence, this year’s International
Workshop on Software-intensive Business seeks to advance knowledge by “Fueling a
Software-driven Economy”’.

We also experienced how, many businesses “went online” and quickly sent their
employees to work from home. Many learned the upsides and downsides of this. Some
enjoyed the increased autonomy, others felt more pressured and stressed. In addition,
managers had to find new modes of control in order to check development progress and
project status. This was particularly challenging, as co-location is often associated with
positive performance implications for agile software development [5]. Both examples
show how software-intensive businesses have been affected by environmental changes.
Thus, they had to identify and develop adequate responses that assured their organi-
zation’s survival.

Overall, the software-intensive business community seeks to better understand and
explain these challenges, as they affect different aspects of software-intensive busi-
nesses: managing the technology, the people, and their interaction. First, software-
intensive businesses need to manage the technology. Nowadays, many software-
intensive businesses offer entire platforms that are increasingly complex. Architectural
and technological questions are important, as they have important cost and quality
implications. Second, people are involved and needed in the development and design of
software. Management challenges include organizational aspects, as development
organizations quickly consist of thousands of employees with many more being
involved in their ecosystem. Also, team and individual questions are important, as
development organizations often consist of multiple teams that need to communicate
and develop a shared mindset, but also individual needs are important in order to
guarantee well being and job satisfaction. Third, the relationship between organiza-
tional and technological aspects provide many challenges. For example during adop-
tion, users need to develop trust toward the systems, but also during the development,
where organizational and technical structure relate to each other.

Hence, the scientific community of software-intensive business researchers inves-
tigate “sustainable software-based value creation, capture, and delivery through
arrangements and methods 1) within organizations (e.g., product management, business
models, agility) and ii) between organizations (e.g. ecosystems, platforms, app stores,
OSS communities)” [6]. Given the unique characteristics of software and the important
implications it has toward business, The workshop brought together a heterogenous

82 K. Werder et al.

group of researchers from different research sub-fields such as software engineering
economics, software product management, software ecosystems, technology manage-
ment, software platforms, or software startups. This heterogeneity is the strength of this
community, as its challenges stem from prior work in fields.

The 4th International Workshop on Software-intensive Business (IWSiB) was co-
organized with XP 2021 with participants from the US and all over Europe. The
workshop had around 30 participants that joined in discussions on software platforms,
software startups, software pricing and the dark web. As such, it provided a venue for
members of the software engineering and business research communities to discuss
issues, exchange information and experiences. The workshop also encouraged partic-
ipants to share early work and work-in-progress to obtain feedback from the wider
community and strengthen the results and contributions of their research projects.
Additionally, the workshop provided a platform for researchers and practitioners to
meet and develop new project ideas.

2 The State of Software-intensive Business Research

This year’s workshop featured a keynote, followed by three sessions on software
platforms, software startups, and software pricing. Prof. Dr. Guenther Ruhe from the
University of Calgary gave the keynote on a return-on-investment perspective on
machine learning in software-intensive business. The talk highlighted the widespread
use of machine learning in software engineering and its potential to improve efficiency
and effectiveness. Yet, one challenge of machine learning is its need to make proper
adjustments to the solution approach. Prof. Ruhe suggested the need to take a financial
perspective on these efforts. He already applied a return-on-investment perspective to
prior instantiations of machine learning in the context of software requirements
dependency extractions. In particular, an open-source software dataset was analyzed for
decisions about dependencies. Based on the solutions accuracy and return-on-
investment analysis, Prof. Ruhe proposed recommendations for scholars that seek to
benefit from machine learning in the future.

Thereafter, the workshop facilitated discussions along three sessions. First, three
studies related to software platform research were discussed. Jaakko Vuolasto and Kari
Smolander presented their study on “Genesis of a Wood Harvesting B2B Software
Platform”. They conducted a qualitative study on the use of digital platforms in
business-to-business relationships in the context of Finland’s forestry industry. They
identified three insights: power shifts of different stakeholders as the platform evolved,
governance mechanisms need to be contextualized, and the evolution of the platform
needs to account for different roles of complementors in the ecosystem. Robert Evertse,
Abel Lencz, Tea Sinik, Slinger Jansen, and Lamia Soussi presented their work on “Is
your Software Ecosystem in Danger? Preventing Ecosystem Death through Lessons in
Ecosystem Health”. The study discusses four popular software ecosystem cases of the
mobile phone industry. As a result, the authors derive 7 demise principles with cor-
responding countermeasures. For example, competitors are often underestimated and to
counter this demise, organizations should increase their competitive advantage through
increased market awareness. Virginia Springer and Dimitri Petrik presented their work

Fueling a Software-driven Economy 83

on “A Taxonomy of Price Parameters for Digital Platforms”. The authors conducted a
literature review in order to develop a new taxonomy. The taxonomy consists of five
dimensions, 13 parameters with 2—4 characteristics each. For example, the dimension
revenue model consists of the parameters pricing model, subsidization and pie-
splitting. Following this session of software platforms, the workshop had a short break
before continuing.

Second, three studies related to software start-up research were discussed. Jorge
Melegati presented his work on “Towards a framework to guide the development of
practices for software startups”. The study reviews the literature on success of software
projects and success of startups to propose a framework that guides the creation of
practices for software startups. The use of the framework is demonstrated using dif-
ferent examples. Tor Sporsem, Anastasiia Tkalich, Nils Brede Moe, Marius Mikalsen
and Nina Rygh presented their work on “Using Guilds to Foster Internal Startups in
Large Organizations: A case study”. The authors conducted a single case study to
investigate the use of guilds in internal startups. The results identified three software
product innovation challenges and achievements of the guild. For example, when the
startup lacks knowledge on building and scaling products, the guild can help improve
the coordination with the software development unit. In a similar vein, Anastasiia
Tkalich, Nils Brede Moe and Tor Sporsem presented their work on “Employee-Driven
Innovation to Fuel Internal Software Startups”. The study investigated two cases
through interviews, meetings notes and other documents to understand what charac-
terizes employee-driven innovation in internal software startups. The results suggest
seven contextual characteristics, such as a dedicated product manager and innovation
coaching, that foster employee-driven innovation.

Third, two studies related to pricing practices and the dark web were discussed.
Andrey Saltan and Kari Smolander presented their work on “SaaS Pricing Practices
Typology: A Case Study”. The multi-case study investigates SaaS pricing practices to
propose a new typology. The resulting typology consists of four factors: Targeted types
of customers and market segments, Perceived value and WTP, The complexity of SaaS
purchase and usage and Level of SaaS nicheness. Samuel Onyango, Emilie Steenvo-
orden, Joram Scholten, and Slinger Jansen presented their work on “Assessing the
Health of the Dark Web: An Analysis of Dark Web Open Source Software Projects”.
The authors derived health assessment criteria and applied these to two open-source
communities that are associated with the dark web, i.e., tor and i2p. The results suggest
that both communities have seen an increase in user activities in recent years, sug-
gesting a positive health assessment. Following the third session, we had a closing
session that asked the participants for their feedback and potential future improvements
of the workshop.

84 K. Werder et al.

3 Future Challenges for Software-intensive Business
Research

While the workshop itself focused on topics related to software platforms, software
startups, and software pricing, we also discussed potential future challenges. Based on
these discussions and our own experience, we propose three challenges that require
more efforts by the software-intensive business research community:

— The AI workforce—Software-intensive business scholars focused on value-
creation, capture and delivery within the organization [6]. For example, prior
studies on organizational management in software development investigated emo-
tions [7, 8], agility [9, 10], or organizational failures [11]. We suggest that these
behaviorally anchored research topics need to be revisited in the uprising of Arti-
ficial Intelligence (AI). For example, Al shapes the way in which organizations
develop software, as bots, for example, assist in coordinating software projects (e.g.,
[12]). The interaction between developers and Al can range from reflexive or
supervisory behavior with limited decision making authority up to anticipatory or
prescriptive behavior in which the Al receives increasing autonomy within
decision-making processes [13]. This research area is still in a nascent stage and
requires more attention from software-intensive business scholars. Scholars can ask,
for example, how can people and Al collaborate in new business processes to
deliver value?

— Digital collectives—Digital collectives, that is, a cooperative enterprise facilitated
by digital technologies, received increasing attention in the past. Within the
software-intensive business community, scholars investigated open innovation
communities [14] and open source software communities [15]. More recently,
organizations were forced to send their employees into quarantine, having their
workforce operate from their homes. As vaccination rates increase and the spread of
the pandemic slows down, we already start seeing corporations asking their
employees to return to their offices. However, as the pandemic has so vividly shown
us, employees expect more freedom in working from home and we suggest that
digital collectives become increasingly important for organizations in their day-to-
day operations. As such, scholars could investigate how organizations and workers
find new configurations in digital collectives for their daily operations?

— Platform innovation—platforms have been a central research topic of the software-
intensive business community. Scholars investigated their architecture [16], health
[17], and management [18]. More recently, also ethical concerns have been taking
into consideration [19]. However, little research is available on the evolution of
these platforms. For example, how do we evolve platforms for continuous inno-
vation? Particularly competitive pressures and the diminishing value of software
that remains stable demand for continuous innovation of platforms.

Fueling a Software-driven Economy 85

References

10.

11.

12.

. Cohen, T.: Check Point profit tops estimates but uncertainty clouds outlook. https://

www.reuters.com/article/us-chk-pnt-sftwre-results/check-point-profit-tops-
estimates-but-uncertainty-clouds-outlook-idUSKCN24N1WV. Accessed 25 Jan
2021

. Malara, N., Nellis, S.: Zoom forecasts sales surge as video conferencing becomes a

daily routine. https://www.reuters.com/article/zoom-video-commn-results-int-
idUSKBN25R2QV. Accessed 25 Jan 2021

. Werder, K., Richter, J., Hennel, P., Dreesen, T., Fischer, M., Weingarth, J.: A

three-pronged view on organizational agility. IT Prof. 23, 89-95 (2021). https://doi.
org/10.1109/MITP.2020.3016488

. Teutenberg, J.: How a new venture identified digital opportunities in the COVID-

19 Cerisis to transform their business model. In: Hovestadt, C., Recker, J., Richter,
J., Werder, K. (eds.) Digital Responses to Covid-19, pp. 105-117. Springer
International Publishing, Heidelberg (2021). https://doi.org/10.1007/978-3-030-
66611-8_8

. Hummel, M., Rosenkranz, C., Holten, R.: The role of communication in agile

systems development: an analysis of the state of the Art. Bus. Inf. Syst. Eng. 5,
343-355 (2012). https://doi.org/10.1007/s12599-013-0282-4

. Abrahamsson, P., Bosch, J., Brinkkemper, S., Médche, A.: Software Business,

Platforms, and Ecosystems: Fundamentals of Software Production Research.
Dagstuhl, Germany (2018). https://doi.org/10.4230/DagRep.8.4.164

. Graziotin, D., Wang, X., Abrahamsson, P.: Happy software developers solve

problems better: psychological measurements in empirical software engineering.
Peer]. 2, €289 (2014). https://doi.org/10.7717/peerj.289

. Werder, K.: The evolution of emotional displays in open source software devel-

opment teams: an individual growth curve analysis. In: 2018 IEEE/ACM 3rd
International Workshop on Emotion Awareness in Software Engineering (SEmo-
tion), pp. 1-6. ACM Press, Gothenburg, SE (2018). https://doi.org/10.1145/
3194932.3194934

. Vidgen, R., Wang, X.: Coevolving systems and the organization of agile software

development. Inf. Syst. Res. 20, 355-376 (2009). https://doi.org/10.1287/isre.1090.
0237

Werder, K., Maedche, A.: Explaining the emergence of team agility: a complex
adaptive systems perspective. Inf. Technol. People. 31, 819-844 (2018). https://doi.
org/10.1108/1TP-04-2017-0125

Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lecture Notes in Business Information Processing,
pp. 27-41 (2014). https://doi.org/10.1007/978-3-319-08738-2_3

Hukal, P., Berente, N., Germonprez, M., Schecter, A.: Bots coordinating work in
open source software projects. Computer (Long. Beach. Calif). 52, 52-60 (2019).
https://doi.org/10.1109/MC.2018.2885970

https://www.reuters.com/article/us-chk-pnt-sftwre-results/check-point-profit-tops-estimates-but-uncertainty-clouds-outlook-idUSKCN24N1WV
https://www.reuters.com/article/us-chk-pnt-sftwre-results/check-point-profit-tops-estimates-but-uncertainty-clouds-outlook-idUSKCN24N1WV
https://www.reuters.com/article/us-chk-pnt-sftwre-results/check-point-profit-tops-estimates-but-uncertainty-clouds-outlook-idUSKCN24N1WV
https://www.reuters.com/article/zoom-video-commn-results-int-idUSKBN25R2QV
https://www.reuters.com/article/zoom-video-commn-results-int-idUSKBN25R2QV
https://doi.org/10.1109/MITP.2020.3016488
https://doi.org/10.1109/MITP.2020.3016488
https://doi.org/10.1007/978-3-030-66611-8_8
https://doi.org/10.1007/978-3-030-66611-8_8
https://doi.org/10.1007/s12599-013-0282-4
https://doi.org/10.4230/DagRep.8.4.164
https://doi.org/10.7717/peerj.289
https://doi.org/10.1145/3194932.3194934
https://doi.org/10.1145/3194932.3194934
https://doi.org/10.1287/isre.1090.0237
https://doi.org/10.1287/isre.1090.0237
https://doi.org/10.1108/ITP-04-2017-0125
https://doi.org/10.1108/ITP-04-2017-0125
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1109/MC.2018.2885970

86

13.

14.

15.

16.

17.

18.

19.

K. Werder et al.

Baird, A., Maruping, L.M.: The next generation of research on is use: a theoretical
framework of delegation to and from agentic is artifacts. Mis Q. 45, 315-341
(2021). https://doi.org/10.25300/MISQ/2021/15882

Munir, H., Wnuk, K., Runeson, P.: Open innovation in software engineering: a
systematic mapping study. Empir. Softw. Eng. 21, 684-723 (2016). https://doi.org/
10.1007/s10664-015-9380-x

Lindberg, A., Berente, N., Gaskin, J., Lyytinen, K.: Coordinating interdependen-
cies in online communities: a study of an open source software project. Inf. Syst.
Res. 27, 751-772 (2016). https://doi.org/10.1287/isre.2016.0673

Anvaari, M., Jansen, S.: Architectural openness: comparing five mobile platform
architectures. In: Software Ecosystems, pp. 138—158. Edward Elgar Publishing.
https://doi.org/10.4337/9781781955635.00016

Jansen, S.: Measuring the health of open source software ecosystems: beyond the
scope of project health. Inf. Softw. Technol. 56, 1508-1519 (2014). https://doi.org/
10.1016/j.infsof.2014.04.006

Foerderer, J.: Interfirm exchange and innovation in platform ecosystems: evidence
from apple’s worldwide developers conference. Manage. Sci. 66, 47724787
(2020). https://doi.org/10.1287/mnsc.2019.3425

Hyrynsalmi, S., Koskinen, J.S.S., Hyrynsalmi, S.M.: A review of ethical discus-
sions on platforms and ecosystems. In: CEUR Workshop Proceedings, pp. 9-19
(2019)

https://doi.org/10.25300/MISQ/2021/15882
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1287/isre.2016.0673
https://doi.org/10.4337/9781781955635.00016
https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/10.1287/mnsc.2019.3425

®

Check for
updates

SaaS Pricing Practices Typology: A Case Study

Andrey Saltan’-?®9 and Kari Smolander'

Lrur University, Lappeenranta, Finland
{andrey.saltan, kari.smolander}@lut.fi
2 HSE University, St. Petersburg, Russia

Abstract. Software-as-a-Service (SaaS) pricing addresses decisions of monetary
compensation and the conditions for the SaaS solution to the customer. Efficient
SaaS pricing requires sophisticated decision-making and analytics, as well as
coordination and compromises between the many business functions involved.
The decision-making includes integrated analysis of different perspectives and
streams of information. Like in many other product management areas, there is
no silver-bullet solution for pricing. We conducted a multiple case study using
fifteen SaaS companies with data collection primarily through semi-structured
interviews to assess SaaS pricing practices and identify major factors that affect
the way pricing is done. We identified four distinct types of SaaS pricing patterns
and detailed their main characteristics.

Keywords: Software-as-a-Service - Decision-making - Pricing - Case study

1 Introduction

Software-as-a-Service (SaaS) pricing refers to the entire scope of decisions, practices,
underlying conditions, and processes that determine the monetary compensation for
using SaaS solutions. It is an essential and challenging element of SaaS product man-
agement, with a significant impact on business success. Incorrect pricing can lead to
market failure, even for a technologically advanced SaaS solution. Pricing serves as an
essential bridge between different business functions (e.g., product planning and devel-
opment, revenue and cost management, and customer acquisition and retention) and
business units (e.g., R&D, product management, sales, and marketing). Recent studies
and reviews indicate the progress and sophistication in SaaS pricing and the growing
attention from practitioners. Multiple challenges for companies can still be identified
that require support from the research community [1].

Overwhelming and complex pricing-related processes and structures, the unclear
segregation of responsibilities for pricing between managers involved, premature
decision-making practices, and constantly changing objectives are often prime chal-
lenges. Efficient pricing requires developing sophisticated multi-layered structures with
many different mechanisms and options, considering the trade-offs, objectives, and out-
comes that pricing must meet. Informed SaaS pricing decision-making requires the
involvement of different stakeholders and the consideration of many factors that include
market characteristics, product and technology specifications, customers, and customer

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 87-95, 2021.
https://doi.org/10.1007/978-3-030-88583-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_8

88 A. Saltan and K. Smolander

needs and expectations. Taking into account these factors requires collecting a vast
amount of data and advanced analysis, tasks that are not trivial.

Existing publications by scholars and practitioners reveal the variety and complex-
ity of mechanisms available for SaaS companies while pricing their solutions [2-5].
They also provide an overwhelming number of recommendations concerning different
pricing aspects [1]. However, the repeated enumeration of possible pricing options and
fragmented recommendations does not bring the required clarity to SaaS companies,
and pricing remains one of the most under-managed functions in many of them. Lit-
tle evidence exists about the interconnection of different components of SaaS pricing,
typologies of overall pricing practices, or decision-making organization principles.

This paper aims to identify and evaluate patterns in SaaS pricing, identify the major
factors that affect it, and propose a typology of SaaS pricing practices. This study con-
tinues our inquiry into how SaaS companies design and deploy their pricing practices
and processes.

2 Background

2.1 Related Studies

SaaS pricing is a maturing and prominent area of research. Existing SaaS pricing studies
indicate the progress and sophistication in SaaS pricing practices and offer solutions
that can carry SaaS pricing state-of-the-practice to a higher level. Our recent multivocal
literature review [1] identified multiple challenges that require further support from the
research community.

Some studies have already adopted the case-study method to evaluate various pricing
aspects in SaaS and software companies. For example, based on interviews with software
professionals from multiple case companies, Ojala [6, 7] identified and assessed factors
that affect selecting revenue and pricing models in software companies. In another study
[8], Ojala and Laatikainen investigated the interrelation between SaaS architecture and
SaaS pricing practices.

2.2 SaaS Pricing

Existing pricing state-of-the-art and state-of-the-practice suggest distinguishing between
four main pricing strategies: value-based pricing, market-based pricing, competitor-
based pricing, and cost-based pricing. In short, they can be explained as follows in the
SaaS context. Value-based pricing assumes aligning prices with the value perceived by
the customer. Market-based pricing is grounded in an analysis of the market equilibrium
of all customers and SaaS providers. Competitor-based pricing assumes aligning prices
with the prices offered by competitors with the premium or discount depending on the
circumstances. Finally, Cost-based Pricing suggests setting prices based on the cost
structure of SaaS providers. In application to SaaS, researchers and practitioners have
repeatedly emphasized the advantages and importance of value-based pricing. However,
all four pricing strategies might exist in practice, and in many cases, the actual strategy
is a hybrid combination of these strategies.

SaaS Pricing Practices Typology: A Case Study 89

Several frameworks and structures exist to organize and systematize pricing in appli-
cation to SaaS and cloud solutions in general [1]. However, in our study, we adopted
a more generic, widely accepted, and comprehensive one called the Strategic pricing
pyramid [9, 10]. The framework has the following levels from the bottom up:

Value Creation: The logic of value generation for customers from using the SaaS
solution, including the metrics of impact of specific parameters on value.

Price Structure: The logic of structuring prices for a given SaaS solution, including
principles of price variability depending on the customer-specific parameters.

Price and Value Communication: The principles of price and value communication to
customers.

Pricing Policy: The principles of how prices may be altered, by whom, under what
circumstances, and to what degree.

Price Level: The actual charge within the price structure according to the pricing policy.

3 Research Method

The following research question drove our study: What types of SaaS pricing practices
can be identified in a real-life context? To address this question, we used a multiple case
study research design to compare existing SaaS pricing practices and processes [11]. The
case sampling strategy was guided by the diverse case approach with its primary objective
to achieve variance along the relevant dimensions. Our scope of companies includes two
major types of SaaS providers, “born-in-the-cloud” companies that usually have just one
flagship SaaS solution and large IT vendors or traditional enterprise software vendors
looking to expand into SaaS software markets. Other dimensions, including company
size and maturity, target market type, maturity, and location, were considered while
selecting case companies.

We selected a set of fifteen primary and secondary cases. Our primary cases include
companies whose pricing managers we interviewed. Most of them are “born-in-the-
cloud” small and medium-sized companies that usually have just one flagship SaaS
solution. We could not involve large US-based SaaS companies in our study, although
their presence is essential to understand and develop a comprehensive SaaS pricing
typology.

To remedy this situation, we decided to include cases that we did not interact directly
with. We assessed their pricing practices through available information and teaching
cases on their business strategies and operations. We referred to these cases as secondary
and found them in the Case Center', the largest repository of teaching cases. This allowed
us also to make assessments of pricing in large SaaS and digital companies as well as in
enterprise software vendors with SaaS solutions in their product portfolio. An overview
of the primary and secondary case companies is summarized in Table 1.

The goal is to identify decision-making practices and processes and understand the
logic behind them. A within-case analysis was conducted with the analytical strategy
of explanation-building based on case descriptions. The case analysis can be classified

1 https://www.thecasecentre.org/.

https://www.thecasecentre.org/

90 A. Saltan and K. Smolander

as exploratory. We developed patterns and categories and identified similarities and
differences in the data. The logical sequence followed the research goals, starting with
within-case analysis to establish themes and then continued by a cross-case comparison
to identify similarities and differences.

Table 1. Characteristics of case companies

Case | Case type Number of employees | Number of SaaS solutions | Market type
A Primary <10 1 B2B
B Primary <10 1 B2B
C Primary <10 1 B2B & B2C
D Primary 11-50 1 B2B & B2C
E Primary 11-50 1 B2B & B2C
F Primary 11-50 1 B2B
G Primary 11-50 1 B2B
H Primary 51-200 2 B2B
1 Primary 51-200 1 B2B
J Primary 51-200 2 B2B
K Primary 201-500 2 B2B
L Primary 201-500 3 B2B
M Secondary | 51-200 1 B2B
N Secondary | 1001-5000 5 B2B & B2C
o Secondary | 201-500 3 B2C

For primary cases, the data collection consisted of interviews with SaaS managers
responsible for pricing. The length of interviews varied from 1 to 2 h. The goal of
the interviews was to identify the pressure points of decision-making in SaaS pricing,
motivate companies to participate in the longitudinal study, and assess both the current
status quo and product managers’ perceptions of existing processes and practices. The
data we obtained covered the following topics:

General information about the company and SaaS solution: name, industry, market,
number of employees, number of customers, maturity level, business model, number of
SaaS solutions, SaaS solution type, maturity level, etc.

SaaS pricing practices and processes: Pricing frameworks used, product activities
allocation across business units, collaboration principles between business units, pricing
tools used, SPM performance assessment principle, etc.

SaaS pricing decision-making principles: formal regulation and written policies on
SaaS pricing activities, risks, and uncertainty identified, types of data collected for pricing
decision-making, models and tools used to process provided data, information system
support for pricing processes, etc.

SaaS Pricing Practices Typology: A Case Study 91

For secondary cases, the data collection consisted of content analysis of the
documented teaching cases and teaching notes to extract similar information.

4 A Typology of SaaS Pricing Practices

The qualitative research approach with semi-structured interviews allowed us to identify
four major factors that affected SaaS pricing. The factors were the following:

Factor 1: types of customers and market segments targeted. We can distinguish
between B2B, B2G, and B2C customers, as well as the size of targeted customers
(especially in the B2B market).

Factor 2: delivered value and willingness to pay (WTP) for the SaaS solution. Spe-
cific estimates based on a limited number of cases are difficult to make; still, conven-
tionally, we can distinguish between SaaS solutions with an average monthly usage fee
of up to 100 USD, SaaS solutions with an average fee of more than 5000 USD, and those
in between these two price levels.

Factor 3: the complexity of SaaS purchase and usage. We can distinguish between
self-service SaaS solutions, SaaS solutions that might require human assistance in the
purchase, customization, and maintenance, and SaaS solutions that require intensive
human involvement, including offering additional professional and training services.
Factor 4: the level of nicheness of the SaaS solution. We can distinguish between
mass-market SaaS solutions focused on solving problems typical for a wide range of
customers and SaaS solutions focused on solving issues specific for customers from the
same industry, country, or facing similar regulatory constraints.

Based on the analysis of these four factors, we developed a typology of four generic
SaaS pricing approaches that we labeled Mass-market SaaS pricing, Generalist SaaS

Table 2. Typology of SaaS companies based on pricing practices

Mass-market | Generalist SaaS Specialist SaaS High-rise
SaaS pricing | pricing pricing SaaS pricing
Case companies C,D,E,N,O LL,M A,B,F J,K G, H
F1: Targeted types | B2C and B2B | B2B B2B Large B2B,
of customers and B2G
market segments
F2: Perceived Low value and | Low or moderate | Moderate or high | High value
value and WTP WTP value and WTP value and WTP and WTP
F3: The Self-service Self-service Moderate human | High human
complexity of involvement involvement
SaaS purchase and
usage
F4: Level of SaaS | Mass-market | Mass-market Niche-market Niche Market
nicheness

92 A. Saltan and K. Smolander

pricing, Specialist SaaS pricing, and High-rise SaaS pricing. While typology was based
on our investigation of SaaS company pricing, it also appears reasonable from a gen-
eral business model perspective as it represents different business models and pricing
practices. These four pricing approaches are presented in Table 2 and described below.

Mass-market SaaS pricing refers to pricing practices often implemented in SaaS
companies that offer mass-market solutions and operate in the B2C market and B2B
market, focusing on small-sized companies. Such SaaS solutions might also be used
in large companies as a part of private initiatives by small teams and individuals. The
main pricing objectives for this type of pricing are customer acquisition, market share
maximization, and winning the competition. A value-based pricing approach, to a large
extent, is supplemented with market-based pricing. Companies of this type also often
adopt the freemium model and a free model with monetization other than charging
customers (i.e., advertisement). Adjusting for the level of company and SaaS solution
maturity, the pricing-related processes can be highly formalized, driven by data analytics,
and even automated.

Generalist SaaS pricing is often implemented in SaaS companies that offer mass-
market services for customers on the B2B market, serving both small, mid-sized, and
large companies. The main pricing objective for this type of pricing is customer acquisi-
tion, monetization and retention and winning the competition. Companies with this type
of pricing employ a hybrid pricing approach based on a combination of value-based
pricing and competitor-based pricing. While competing companies might evaluate and
structure perceived value differently, the average amount of money charged per customer
or account are quite similar. Instead of freemium in the case of mass-market SaaS pricing,
companies with generalist SaaS pricing often use penetration pricing and sophisticated
usage-based tiered pricing with multiple available options. Pricing-related processes are
often formalized and driven by data analytics. Pricing automation may be employed;
however, a sales team exists, and large companies can negotiate pricing individually.

Specialist Saa$ pricing refers to pricing practices implemented by B2B SaaS com-
panies that have a niche SaaS solution. The limited market requires more focusing on
monetization and retention of existing customers with a high-quality service rather than
acquiring new customers. Companies with this type of pricing implement value-based
pricing in its canonical understanding with a fair match of prices to the value perceived.
As a result, defining value metrics and assessing perceived value is crucial. However,
most pricing-related processes are not usually formalized. Decision-making data can
consist of direct feedback from customers. The basic pricing information might be pub-
licly available; however, purchase processes typically involve interaction with the sales
team.

High-rise SaaS pricing is implemented in companies aiming to serve large organi-
zations with their SaaS solution. The main pricing objectives are customer monetization
and retention along with sustainable business development. This type of SaaS pricing
involves combining value-based pricing with cost-based pricing. The complexity of
these SaaS solutions and the requirements for reliability and security means the asso-
ciated costs might be quite high. Therefore, it is essential for companies with this type
of pricing to ensure that revenue from a reasonably limited number of customers with
high charges per account will cover these costs. Most of the pricing-related processes

SaaS Pricing Practices Typology: A Case Study 93

are not formalized, pricing contract terms are discussed individually with all customers,
and the required supplementary services define the final price to a large extent. Pricing
information is not publicly available.

The literature discusses and proposes many factors that should be considered while
designing and implementing pricing. As part of the multivocal study, we revealed 24
factors and classified them into four categories: Market, Company, Consumers, Product
[1]. However, the impact of these factors and the aspects of pricing they affect remained
unclear. Factors 1-4 correspond with the most cited factors as specified in [1]. While
Factors 1 and 2 have a direct match, Factors 3 and 4 can be considered subfactors of a
broader factor “functions and features” in the Product category.

Besides these four factors, product/company maturity, cost structure, and type of
solution might affect and explain pricing practices in SaaS companies. However, our
qualitative analysis suggests that maturity and costs could explain pricing practices ex-
post rather than define them ex-ante. These factors set certain constraints and limitations
on companies and managers; however, various companies overcome these constraints
and limitations differently. As for the type of the solution, it was not clear how this could
be determined and generalized from the case study as we covered only several categories
of Saa$ solutions from the extensive hierarchy (i.e., G2 software category hierarchy?).
As a result, we decided not to incorporate these three factors in the typology.

S Discussion and Practical Implications

The results of our study contribute to the understanding of pricing practices. We aimed to
answer the research question of what types of SaaS pricing practices can be identified in
a real-life context. To answer this question, we adopted a case-study research approach
to explore pricing in fifteen SaaS companies. As a result, we developed a taxonomy of
pricing practices. This typology can serve as a foundation for designing and establishing
pricing practices in SaaS companies.

Our findings suggest that major factors of pricing in SaaS companies are the fol-
lowing: the targeted types of customers and market segments, the perceived value and
willingness to pay for the SaaS solution, the complexity of the SaaS solution and its
adoption by customers, and the level of nicheness of the SaaS solution. While the typol-
ogy was based on an assessment of SaaS pricing practices, it can also be interpreted
from the perspective of SaaS companies’ business models.

Several implications for SaaS companies can be derived from our study. Gaining a
clear understanding of pricing complexity for a given SaaS business model is essential
to its long-term viability. While certain types of SaaS pricing practices can be identified,
there is still no silver bullet. Within each recognized type, practices may vary depend-
ing on many different factors (i.e., product/company maturity) and circumstances (i.e.,
regulatory constraints). Constant evolution and analytical-based experimentation with
pricing might help to find the unique combination of pricing parameters that will allow
the company to reach its objectives and ensure its long-turn market success.

The findings should be considered in light of limitations that may have an impact
on generalizability. Our sample of SaaS companies was reasonably limited and not

2 https://www.g2.com/categories.

https://www.g2.com/categories

94 A. Saltan and K. Smolander

randomly selected. Within our study, we felt that we reached a saturation point where
the same patterns started recurring, and no new insights were obtained by performing
additional interviews. We included several secondary cases to have large, mostly B2C
SaaS companies in our sample for analysis. However, a more extensive and more diverse
selection of cases may have yielded different findings.

Although this study provides valuable insights into SaaS pricing, we call for further
research probing the question of designing and implementing SaaS pricing. Our quali-
tative study offered a taxonomy of SaaS pricing, but its generalizability is limited. With
our previous industry survey [12], this study provides some solid ground for further
research that could employ quantitative analyses based on a large industry survey.

References

1. Saltan, A., Smolander, K.: Bridging the state-of-the-art and the state-of-the-practice of SaaS
pricing: a multivocal literature review. Inf. Softw. Technol. 133, 106510 (2021)

2. Laatikainen, G., Ojala, A., Mazhelis, O.: Cloud services pricing models. In: Herzwurm, G.,
Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 117-129. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39336-5_12

3. Lehmann, S., Buxmann, P.: Pricing strategies of software vendors. Bus. Inf. Syst. Eng. 1,
452-462 (2009)

4. Kullar, P.: 25 Companies Show You Their Best SaaS Pricing Models as Examples. https://
blog.upscope.io/25-companies-show-you-their-best-saas-pricing-models/. Accessed 03 Oct
2020

5. Campbell, P.: The Anatomy of SaaS Pricing Strategy (2017)

6. Ojala, A.: Adjusting software revenue and pricing strategies in the era of cloud computing.
J. Syst. Softw. 122, 40-51 (2016). https://doi.org/10.1016/].jss.2016.08.070

7. Ojala, A.: Selection of the proper revenue and pricing model for SaaS. In: IEEE International
Conference on Cloud Computing Technology and Science (CloudCom) Proceedings, pp. 863—
868 (2014)

8. Laatikainen, G., Ojala, A.: SaaS architecture and pricing models. In: IEEE International
Conference on Services Computing (SCC) Proceedings, pp. 597-604 (2014)

9. Hogan, J., Nagle, T., Hogan, B.J., Nagle, T.: What is strategic pricing? (2005)

10. Kittlaus, H.-B., Fricker, S.A.: Software Product Management: The ISPMA-Compliant Study
Guide and Handbook. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-642-551
40-6

11. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2009). https://
doi.org/10.1097/FCH.0b013e31822dda%

12. Saltan, A., Smolander, K.: How SaaS companies price their products: insights from an industry
study. In: Klotins, E., Wnuk, K. (eds.) ICSOB 2020. LNBIP, vol. 407, pp. 1-13. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67292-8_1

https://doi.org/10.1007/978-3-642-39336-5_12
https://blog.upscope.io/25-companies-show-you-their-best-saas-pricing-models/
https://doi.org/10.1016/j.jss.2016.08.070
https://doi.org/10.1007/978-3-642-55140-6
https://doi.org/10.1097/FCH.0b013e31822dda9e
https://doi.org/10.1007/978-3-030-67292-8_1

SaaS Pricing Practices Typology: A Case Study 95

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Is Your Software Ecosystem in Danger?
Preventing Ecosystem Death Through
Lessons in Ecosystem Health

Robert Evertse, Abel Lencz, Tea Sinik, Slinger Jansen®, and Lamia Soussi

Department of Computer Science, Utrecht University, Utrecht, The Netherlands
s.jansenQuu.nl

Abstract. The health of an ecosystem is by definition the most basic
requirement for its survival. This paper aims to examine the driving
forces behind the health of software ecosystems, in a comparative manner
between four different ecosystems which have experienced a major down-
fall. We examine these ecosystems for similarities, from which demise
principles are derived. Consequently, countermeasures are proposed in
an attempt to combat these demise principles. The findings show that
the main demise principles are Underestimation of competitors, Lack of
innovation, and Incorrect management of the ecosystem. The proposed
countermeasures to address these demise principles are to Increase mar-
ket awareness to increase competitive advantage, Increase product qual-
ity, Increase platform quality, Adjust value propositions and Formulate a
partner-oriented strategy.

Keywords: Software ecosystem(s) - End-of-life - Software ecosystem
demise - Demise principles + Demise countermeasures

1 Introduction

Within a networked environment, the actions of actors cannot be viewed in
isolation. The actions have an effect on other parts of the network. A network
of organisations can be found in software ecosystems (SECOs). The following
definition that will be used throughout this paper: “A software ecosystem is a set
of actors functioning as a unit and interacting with a shared market for software
and services, together with the relationships among them. These relationships
are frequently underpinned by a common technological platform or market and
operate through the exchange of information, resources and artifacts” [9]. A
SECO is beneficial to all its stakeholders; as customers gain new functionalities,
software developers generate revenue and enable lucrative network effects for
the SECO’s owner. Hence, with the rise and fall of SECOs as more companies
adapt their businesses, understanding the mechanism behind the health of such
ecosystems has never been so crucial.

Success is not self-evident, as the health of SECOs is volatile to change. There
are examples of multiple SECOs that have not managed to survive. Soussi [14]

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 96-105, 2021.
https://doi.org/10.1007/978-3-030-88583-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_9

Is Your Software Ecosystem in Danger? 97

defines software ecosystem death as: “A permanent termination of an entity due
to a disturbance in the dynamic between actors where collaborations and links
are no longer occurring”. Soussi then proposes that the health and death of an
ecosystem are influenced by the actors themselves and collaborations between
actors. SECO health has been researched earlier [5,6,8,10-12]. E.g., three crit-
ical measures for assessing an ecosystem’s health are its productivity, robust-
ness, and niche creation [6]. In addition, the main components in the Software
Ecosystem Health Framework are actors, software, and orchestration [12]. While
current research is mostly focused on measuring SECO health, the academic
forum has not yet been able to generalise the flaws in the foundation on which
deceased ecosystems were built. The question arises as to which extent the lack
of these factors contributes to the demise of SECOs. The goal of this research
is to identify elements that negatively affect the health of SECOs. These ele-
ments are derived and generalised from examples of discontinued ecosystems,
leading to the following research question: How can the demise of software
ecosystems be prevented?. The relevance of this research lies foremost in find-
ing explanations of how several SECOs did not manage to survive. In addition,
insights are provided on how to address the identified demise principles.

In Sect. 2, the focus lies on four SECOs that have all ceased to exist: Black-
Berry OS, Windows Phone, Symbian and Palm OS. For each of the ecosystems,
a general outline is created to seek which contributing factors have led them to
their demise. The outline is constructed based on the obituaries and eulogies of
the SECOs. Year-end reports, blog posts, and other non-academic sources have
been used to substantiate the narrative. Consequently, the main contributing
factors of the demise is listed per SECO. In Sect. 3, the contributing factors of
the demise are specified as well as the countermeasures which SECOs can incor-
porate as guidelines to not face the same fate. Lastly, in Sect. 4 the main research
question will be answered whilst paying attention to the validity of this research
and suggestions for future research.

2 Four Case Studies of Demised Software Ecosystems

This section is dedicated to BlackBerry, Windows Phone, Symbian and Palm
OS. These cases have been specifically picked due to the similarities shared by
the SECOs and to fit a case selection criteria. Firstly, the SECOs were handheld
operating systems to enable a simpler comparison of demise factors later on.
Secondly, the SECOs have had to achieve a reasonable level of success in the
handheld market before experiencing a major decay in their ecosystem health.
This is to ensure the availability of data. Lastly, the SECOs have to be end-of-life
through official discontinuation.

2.1 Blackberry

BlackBerry Limited, formerly Research in Motion (RIM) used to produce pagers,
smartphones and tablets. In 2013, they changed their name to BlackBerry

98 R. Evertse et al.

Limited, hereinafter referred to as BlackBerry. Currently, BlackBerry is a soft-
ware company specialised in enterprise software.

Background - BlackBerry OS was first used for the BlackBerry 850 two-way
pager in 1999. RIM managed to sell multiple phones with a physical keyboard,
used mainly for business purposes. The keyboard was considered to be useful for
sending e-mails and staying connected. RIM’s peak worldwide market share was
around 20%.

BlackBerry World reached 60.000 available apps in February 2012. This
increased to 90.000 in August of 2012. The estimation is that BlackBerry World
reached more than 200.000 available apps. The question arises how such a leading
manufacturer did not maintain its market position. According to their respective
year-end reports!, from 2010 onwards the share of handheld revenue of RIM’s
total revenue started declining. Although the sales show an increasing amount
until 2011, RIM has put more focus to their other businesses. Currently, there
are several BlackBerry smartphones being sold with Android as their operating
system.

Inadequacy 1: Competition with Apple - There are indicators that the rise
of Apple and their iPhones was a main contributor to the demise of BlackBerry
[13]. Being screen-only devices, they were distinctive from other mobile phones.
“They all have these keyboards, and they are there whether you need them or not
to be there”, said Steve Jobs explaining that about 40% of the size of the device
was always occupied by the physical keyboard during the iPhone announcement
in 2007. BlackBerry deemed Apple yet another competitor into the smartphone
market, and was not considered a threat to RIM’s core business [13]. We can
conclude that one of the inadequacies of the SECO lies in its attitude towards
the market. Its underestimation of Apple has played a major role in BlackBerry’s
demise.

Inadequacy 2: Innovation - BlackBerry adapted the use of a touch screen
fairly late. They considered the touch screen to be inferior to a capacitive key-
board and stuck to their familiar design. As years passed by, Apple grew bigger
and bigger and even surpassed BlackBerry’s sales with the release after the
iPhone 4 in 2010. BlackBerry did not timely compete with innovations such as
the front-facing camera. By disregarding innovative features for their devices,
we can state that innovation was one of the factors why customers switched to
different operating systems.

2.2 Windows Phone

The Windows Phone can be seen as the successor of Windows Mobile, and was
released on November 8, 2010. It can be considered as a reboot of the Windows
Mobile, which used the Windows CE kernel, dedicated to devices with mini-
mal memory. Windows Mobile was first branded as Pocket PC, but from 2003
on, Windows Mobile was the denominator. It was possible to install messaging
services, streaming capabilities and even versions of the Office Suite.

! https://www.annualreports.com/Company /BlackBerry-Ltd.

https://www.annualreports.com/Company/BlackBerry-Ltd.

Is Your Software Ecosystem in Danger? 99

Background - Whereas Windows Mobile was more focused to the enterprise
market, the Windows Phone had consumers as a target audience. Four versions
have been released, namely Windows Phone 7, 8, 8.1 and Windows 10 Mobile.
Samsung, Sony Ericsson and LG have produced devices running on Windows
Phone, among many other manufacturers. The most notable manufacturer was
Nokia, which has led to a partnership between Nokia and Microsoft in 2011.
Windows Phone became the primary OS for Nokia devices, which were mostly
running on Symbian. The goal of this partnership was to compete with Android
and i0OS, which were the major mobile SECOs. In 2013, Microsoft acquired
Nokia’s mobile phone division, aimed to accelerate the growth of Microsoft’s
share in the smartphone market. However, Microsoft gave up on Windows Mobile
in 2017 due to its low market share.

The application store of Microsoft, Windows Phone Store, reached the
100.000 available applications after 20 months in June 2012. It had already
surpassed BlackBerry, but was still way behind iOS and Android. They reached
the 300.000 milestone in June 2014, whilst Apple’s App Store had surpassed the
1.2 million apps. Still, Windows Phone held a mere market share of 3%, which
showed how far Microsoft was behind Google and Apple.

Inadequacy 1: Market Entry - Microsoft entered the smartphone market two
years after Google’s Android was released, and three years after Apple released
their first iPhone. The market was starting to grow towards a duopoly, with
BlackBerry and Symbian rapidly losing their market share. Customers and devel-
opers started committing to either iOS or Android, and their commitment was
not as flexible as Microsoft assumed it would be.

Inadequacy 2: Ecosystem Configuration - Microsoft’s late release caused
developers to be already invested in iOS and Android. The developer interest
was relatively low, and the revenue from advertisements was less compared to
iOS, Android, BlackBerry and even Symbian, which did harm the enthusiasm of
potential developers. This resulted in a lower amount of apps being developed.
The appeal of Windows Mobile was not high, leading to a small user base. This
also contributes to a lower developer appeal, which results in a vicious cycle.
Subsequently, popular applications such as YouTube were not available.

Inadequacy 3: Dependencies - Microsoft adopted Apple’s idea of a closed
system, trying to maximise control over the developers. However, in the early
stages they were dependent on other manufacturers for the hardware. Google’s
Android, which was released 2 years before, was also dependent on others to
produce the hardware, but was a less closed platform. Microsoft’s acquisition of
Nokia’s mobile devices division in an attempt to gain market share and break
the duopoly, but this was without success. After writing off the assets, Microsoft
discontinued Windows Mobile in 2017.

2.3 Symbian

Background - Symbian was established in 1998, as a partnership between
Nokia, Ericsson, Sony, Motorola and Psion. Symbian hoped to achieve similar
results as Android by opening up the source code, however this did not save the

100 R. Evertse et al.

platform. With the rise of Apple and Android, all (potential) sponsors stopped
funding the Symbian Foundation and discontinued their partnership, leaving
only Nokia to support the Symbian Foundation and its R&D department. In
February 2010, the Symbian Foundation released their code, and shortly after
that Nokia announced that it would completely phase out Symbian in February
2011.

Inadequacy 1: Incorrect Management of the Ecosystem - Symbian faced
challenges whilst building their ecosystem; they attracted a number of poten-
tial ecosystem members who all had their own motives for joining. Symbian
transferred its knowledge to partners in three ways: (1) personalized techni-
cal support, (2) codified documentation, and (3) Symbian’s source code. Most
partners only had access to a subset of the source code, because 76.67% of the
ecosystem members were part of a competing (mobile phone) ecosystem. To bat-
tle these divided loyalties, Symbian introduced the ‘refrigeration period’. During
a six-month period, the ecosystem partners were prohibited from working for
competing platforms. Brusoni and Prencipe [3] mentioned that due to loose cou-
pling the entire ecosystem suffered from poor execution by one or multiple key
partners.

Inadequacy 2: Complexity of the Architecture and Code - According
to app developers, the problem lies within the user interface. The application
developers were faced with several challenge?. The first challenge was caused
by the customisable design of the OS, the different available versions led to
fragmentation, causing some software and apps to be incompatible. The sec-
ond challenge was that the programming model used by Symbian (in particular
memory management) was unlike the models used by iPhone OS, Android or
Windows Mobile [9]. Lastly, the third challenge was a result of divided platform
control between Symbian and the UI companies. This resulted in developers
encountering in hick-ups whilst trying to find documentation.

Inadequacy 3: Weak Defensibility Due to Lack of Resources - In 2008,
Symbian and its platform had attracted approximately 9,300 third-party soft-
ware applications and had been shipped in almost 200 million phones. Even
though Symbian managed to acquire a 49.3% of the worldwide smartphone mar-
ket, it still suffered from great losses. This was caused by the enormous invest-
ments into R&D, which were estimated to be more than 200 million from 1998
to 2004. Symbian managed to achieve its first profit in 2005.

Symbian faced difficulties whilst trying to penetrate the North American
market they only managed to acquire 3% of the smartphone sales. The entry was
predominantly blocked by three local platforms: iPhone (2007), Android (2008)
and BlackBerry (2002). Furthermore, the lack of financial resources limited the
continuation of projects. An example is that Symbian decided not to proceed in
creating its own app store in 2005, which is three years before Apple released
the iPhone App Store.

2 The complexity of the code, increased the average time spent on writing code and
thus increased the costs. Development took Nokia approximately 22 months com-
pared to the 12 months it took Windows Phone.

Is Your Software Ecosystem in Danger? 101

2.4 Palm OS

Background - Out of the four different operating systems examined in this
research, Palm OS is the first one to be highly commercially successful in the
handheld market [1]. The initial success in the PDA market of Palm OS can
be attributed to its user-friendliness and ease of synchronisation with desktop
computer. The company created a device and OS that complimented PCs instead
of attempting to replace them [4].

Inadequacy 1: Management - Palm Inc. spent $30 million to purchase the
Palm trademark and another $44 million for the keystone Palm software. Whilst
trying to ease the split between the product’s hardware and software compo-
nents, the company was not able to remain innovative next to the shifting mar-
ket trends and the increasing pressure from competitors such as Blackberry or
Windows Mobile.

After the failed product launch of HP Touchpad (running webOS), the Palm
hardware division was discontinued. As a last effort, the webOS software was
made open source but it did not halt the mass departure of key engineers working
for Palm. Without a strong backbone of a software team, webOS lost its strategic
heading.

Inadequacy 2: Innovation - PDA market sank quicker than Palm anticipated
as the first smartphones were already sold in the early 2000s. These advanced
mobile phones incorporated the same features that PDAs had. By the time
Palm reacted to the changing market trends by adding voice and improved
data capability to their new devices, the damage could be seen in its market
share, dropping from 10% in 2005 to 5% in 2006. Palm was unable to transfer
their success from PDAs to smartphones. Palm OS 5 was released in 2002 and
was shipped with Palm devices until 2007. During these five years, the OS was
drained, receiving no major updates and rapidly aged in terms of design and
functionality compared to other operating systems. In addition to being out-
dated, the Palm OS 5 was suffering from software issues. Palm was in a vicious
circle, dropping sales resulted in less revenue and hence lower budget for R&D,
however without an up-to-date OS it could not claim a major position in the
growing smartphone market.

Inadequacy 3: Ecosystem - Several OEMs (Original Equipment Manufac-
turer) sold Palm OS based devices however Palm itself viewed the other com-
panies as direct competitors who will reduce their revenue, and hence did not
manage to establish long-term and healthy relationships. Furthermore, Android
devices exploded in the market in 2009 with 50 different devices sold the first
year, made popular among OEMs due to its open-source license. In comparison,
Palm OS with its proprietary license was virtually non-existent among OEMs.
Palm Pre looked promising however HP was only able to sell the phone initially
through Sprint. This hurt sales of the phone as Sprint was third in the phone
carrier market and was financially struggling at that time. HP branded Palm
Pre Plus also had issues with carriers, namely Verizon refusing a shipment and
the negative advertising the device received. The applications for webOS were

102 R. Evertse et al.

extremely limited in comparison to Apple or Android. A lack of applications led
to fewer users adopting the platform, and fewer users meant that fewer develop-
ers produced applications.

Table 1 shows an overview of the SECO characteristics and the applicable
demise principles derived from the narrative. Notably, the demise principles do
not stand on their own, seeing as their presence enforces one another.

Table 1. SECO overview

BlackBerry | Windows | Symbian PalmOS
Phone

OS Birth year 1999 2010 1998 1996
OS Latest update 2018 2020 2012 2007
Estimated peak worldwide 22% (2009) | 4% (2012) | 73% (2006) | 10% (2005)
smartphone market share
Competitor underestimation | v’ v v
Late market entry v
Lack of innovation v v
Incorrect management of the v v v
ecosystem
Complexity of the v
architecture and code
Lack of resources v
Unsupportive partnerships v

3 Interpretation: Demise Principles and Countermeasures

Section 2 consists of a detailed research of the four SECOs regarding their back-
ground, weak points and the contributing factors which had led to their demise.
For each SECO the contributing factors of the demise are specified as well as the
countermeasures which SECOs can utilize as a guideline to not face the same
fate.

As illustrated earlier, there are some commonalities between the different
SECOs and how they did not manage to survive which is listed in Table 2.
The commonalities are phrased as demise principles, which are derived from the
sources of undesired situations which these SECOs have encountered. Similar
sources have been deduced to general SECO characteristics.

We conclude that the different demise principles are not standing on their
own, as the demise cannot be attributed to one sole factor. Some factors are tied
to each other or can be consequential of one another, as competitor underesti-
mation is some sort of market underestimation, which may result in lower sales
and therefore may cause financial issues.

Is Your Software Ecosystem in Danger? 103

Table 2. Contributing factors to the demise of the observed SECOs.

Demise principles Countermeasures

Competitor underestimation Increase market awareness to increase
competitive advantage

Late market entry Increase market awareness to increase
competitive advantage

Lack of innovation Increase product quality & Adjust value
proposition

Incorrect management of the Increase product quality & Increase platform

ecosystem (including incorrect quality & Formulate a partner-oriented

ecosystem configuration) strategy

Complexity of the architecture and | Increase product quality & Formulate a

code partner-oriented strategy

Lack of resources (resulting in a Formulate a partner-oriented strategy

weak defensibility)

Unsupportive partnerships Formulate a partner-oriented strategy

Formulate a Partner-oriented Strategy - The partner ecosystems are
responsible for a significant share of value creation within the ecosystem. There
are several ways to examine the partner ecosystem. Lessons can be learned from
Avila and Terzidis [2] and Jansen [7] among others. It is important to carefully
assess partners, their health and network.

Increase Product Quality - This research illustrated that some SECOs have
designed their OS to be too customisable, which led to fragmentation and
resulted in incompatible software and apps. Secondly, due to the complexity of
the code, the SECOs would spend too much of their resources such as manpower
(time) and finances, resulting in a lack of available resources to be allocated for
innovation. Possible actions could be to (1) initiate code checks, (2) highlight
the bugs and crashes of the code after release updates, (3) evaluations of the
accessibility, compatibility and maintainability of the code and User Interface
and (4) make use of the available internal and external developer community.
By making use of websites such as GitHub and Stack Overflow, the ecosystem
can easily monitor which questions are being raised. To increase the community
feeling within the developers, SECOs could organize workshops, hackathons and
seminars. This will not only promote your product, but it may also lead to
innovation which may decrease the development time.

Increase Market Awareness to Increase Competitive Advantages - Dur-
ing the “birth” and whilst growing the ecosystem, it is of importance to perform
a market analysis in which the competition is researched. The ecosystem should
be constantly aware of its competitors and of their innovations, in order for them
to be able to respond promptly and to not lose its customer base or market share.
Business and market oriented research has provided several methods to perform
market analysis.

104 R. Evertse et al.

Increase Platform Quality - Developers can either make or break a platform.
This should force the platforms to create an attractive environment for the devel-
opers. There are several ways for platforms to build their developer program.
Organisations should pay attention to their API, SDK, documentation among
other features. Developer Economics, the largest developer research program
across the globe states that platforms could improve the quality of their plat-
form by opting for: access to rich APIs and features, community support, ease
of coding and prototyping, low cost development, familiar development envi-
ronment, revenue potential, good documentation and tech support and large
installed base of devices.

Adjust Value Proposition - To address customer needs, one should carefully
look at the value ones product portfolio has. USPs (unique selling propositions)
are ways of a product to differentiate from other substantiating and competing
products. Customer needs are flexible, and change over time. Ideally, an organ-
isation should therefore adapt to the changing customer needs and ensure that
the products are continuously developing and adapting to contemporary wishes.

4 Conclusion and Future Work

By analysing four SECOs involved in handheld operating systems which have
experienced a downfall, demise principles have been identified. These demise
principles with their respective countermeasures are displayed in Table 2. Ideally,
by correctly applying these countermeasures, SECOs should be able to thrive.

The four investigated SECOs were similar in nature and market, being active
handheld operating systems with a reasonable level of (potential) success. The
question arises whether the handheld operating systems market can be com-
pared to other markets targeted by SECOs, and whether the different demise
principles and countermeasures are applicable to those. Whether the identified
demise principles and countermeasures are correct remains uncertain. They may
not be an accurate representation on their own, as they reinforce one another.
In addition, other markets may show different demise principles, which could
require different countermeasures to correctly solve them.

The authors’ recommendation lies foremost in expanding this research, both
in breadth as in depth. Including other categories of SECOs could further dis-
cover the drive behind SECO demise, and in-depth interviews could help sub-
stantiate the claims made in this research. Additionally, a study of a healthy
ecosystem where the absence of these demises is observed, could further enforce
our hypothesis. Lastly, the proposed countermeasures are hypothetical, and it is
important to identify whether the proposed countermeasures are effective. The
countermeasures could be applied in unhealthy ecosystems to turn the tide.

References

1. Allen, J.P.: Redefining the network: enrollment strategies in the PDA industry. Inf.
Technol. People 17(2), 171-185 (2004)

10.

11.

12.

13.

14.

Is Your Software Ecosystem in Danger? 105

Avila, A., Terzidis, O.: Management of partner ecosystems in the enterprise soft-
ware industry. In: International Workshop on Software Ecosystems (IWSECO),
pp. 39-55 (2016)

Brusoni, S., Prencipe, A.: The organization of innovation in ecosystems: problem
framing, problem solving, and patterns of coupling. In: Collaboration and Compe-
tition in Business Ecosystems. Emerald Group Publishing Limited (2013)

Butter, A., Pogue, D.: Piloting Palm: The Inside Story of Palm, Handspring, and
the Birth of the Billion-Dollar Handheld Industry. Wiley, Hoboken (2002)

Tansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard
Business Press, Cambridge (2004)

Tansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3), 6878 (2004)
Jansen, S.: A focus area maturity model for software ecosystem governance. Inf.
Softw. Technol. 118, 106219 (2020)

Jansen, S., Cusumano, M.A.: Defining software ecosystems: a survey of software
platforms and business network governance. In: Software Ecosystems. Edward
Elgar Publishing (2013)

Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar Pub-
lishing, Cheltenham (2013)

Mageau, M.T.: The development and initial testing of a quantitative assessment
of ecosystem health. Ecosyst. Health 1, 201-213 (1995)

Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems-a con-
ceptual framework proposal. In: Proceedings of the 5th International Workshop on
Software Ecosystems (IWSECO), pp. 33-44. Citeseer (2013)

Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294-1306 (2013)

McNish, J.: Losing the Signal : The Untold Story Behind the Extraordinary Rise
and Spectacular Fall of Blackberry, 1st edn. Flatiron Books, New York (2015)
Soussi, L.: Health vulnerabilities in software ecosystems: five cases of dying plat-
forms. Master’s Thesis, Utrecht University (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Genesis of a Wood Harvesting B2B Software
Platform

Jaakko Vuolasto® and Kari Smolander

Software Engineering, LUT University, Lappeenranta, Finland
{jaakko.vuolasto, kari.smolander}@lut.fi

Abstract. Digital platform research has focused mostly on global platforms,
where the users of the platform are consumers. Business-to-business (B2B) digital
platforms have received less attention. This study observes and provides an early
report on a digital platform for forestry, bringing together forest companies, con-
tractors, and forest machine manufacturers. The platform started in Finland, but
it has begun to extent its scope to international markets as well. We present some
early insights about the birth of the platform and the factors that have contributed
to its success in the beginning. We also describe some aspects present in B2B
platform governance and related forces. Finally, we provide a preliminary outlook
of possible future directions of the platform and its ecosystem.

Keywords: Digital platforms - Governance - Platform emergence -
Business-to-business platforms

1 Introduction

Digital platforms play an increasingly important role in the everyday life of consumers
and businesses. Ghazawneh and Henfridsson [7] define platforms as a codebase provid-
ing a set of core functions for modules interoperating with it. A platform becomes more
valuable both to its owner and its users when more and more users start using it. This
network effect [6] can be direct or indirect.

Platforms can be created with a plan or they can evolve over time. In either case,
a successful platform needs a coordinating party, a platform leader. This leadership is
about both technology and business [5]. A key task of the leader is to govern the platform,
keep it healthy, robust, growing, and offer niches for the parties involved [11]. The key
element of governance is decision-making, defining who can make and what decisions
[16]. A complementor then provides innovations and solutions that add value to the users
of the platform [6].

SDKs, APIs, and related documentation are typical tools that the platform owner
provides for application developers. These boundary resources [7] are the interface
of the platform for complementors and also users. Boundary resources can be further
classified into application, development, and social boundary resources [2].

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 106-114, 2021.
https://doi.org/10.1007/978-3-030-88583-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_10

Genesis of a Wood Harvesting B2B Software Platform 107

Existing research has various viewpoints to governance. For example, Parker et al.
[14] present laws, norms, architecture, and markets of as the elements of platform gover-
nance. Ghazawneh and Henfridsson [7] discuss boundary resources as methods of gov-
ernance. Wareham et al. [18] describe tensions and how they are addressed in ecosystem
governance. Wang and Burton-Jones [17] examine how static governance structures and
dynamic actions interact and even co-constitute each other. Huber et al. [9] present a pro-
cess theory of how rules and especially values of an ecosystem affect value co-creation
and governance costs. A systematic way of evaluating governance status in different
areas and a set of governance practices in the form of a maturity model is provided by
Jansen [10].

There is an abundance of studies on global platforms like Apple iOS and Google
Android. There are also many studies of business-to-business (B2B) platforms, for exam-
ple [15, 18]. A key characteristic of platforms in B2B world is separating the ownership
of aresource from the value it creates [14]. Another is the global vs. regional perspective;
a B2B platform operating in a certain geographic region may face limitations due to the
nature of the region or the industry it serves. These local, regional and ownership issues
are less studied.

This study approaches these issues with a case study of a digital platform for harvest-
ing and silviculture operations, ‘“Platform” from here on. The Platform connects forest
companies (acting as “Service Buyers”), contractors working for them (“Contractors”),
and forest machine manufacturers. Service Buyers require stable raw material flow for
their factories or business partners. To achieve this, they use Contractors that own the
forest machines and operate locally or regionally. Contractors aim to meet the require-
ments set by Service Buyers and optimize the usage of their forest machines. These two
stakeholder groups have tight business relationships and sometimes deviating interests.

The research is in its early phase; this paper delivers some initial results and describes
the case. Our research question is the following: what kind of aspects are present in
B2B platform governance during its first years. The rest of this paper is structured so
that Sect. 2 describes the research design and Sect. 3 the Platform participants and the
components of the ecosystem around it. First insights to the research are presented in
Sect. 4. Section 5 concludes the paper with an outlook of possible directions for future
research.

2 Research Design

The focus is in a single platform, its participants, their interactions, and its governance.
While the emphasis of this research is the Platform in Finland, the Platform itself is part
of the Software Company’s global portfolio.

We used Grounded Theory as the research method [4]. Our aim was to understand
the phenomenon in its natural environment, by using multiple sources of information:
interviewing platform stakeholders and observing publicly available documentation.
We targeted the first round of 29 interviews mainly towards the Software Company,
Service Buyers (SB), and Contractors (Table 1). The interviews were semi-structured
and performed remotely due to COVID-19 restrictions. The interviews were transcribed,
and the transcriptions were analyzed with coding.

108 J. Vuolasto and K. Smolander

Table 1. First round of interviews

Organization

Role

Consulting Firm

Project Manager

Contractor 1: harvesting, large, single SB

Account Manager

Contractor 2: silviculture, large, multiple SBs Manager
Contractor 3: harvesting, large, multiple SBs Manager
Contractor 4: harvesting, large, single SB CEO
Contractor 5: silviculture, small, single SB CEO
Contractor 6: harvesting, small, single SB CEO
Contractor 7: harvesting, large, single SB CEO

Educational Institution

Teacher, Harvesting

Machine manufacturer

Technical Customer Support Manager

Service Buyer A

Senior Vice President, Development

Service Buyer A

ICT Solution Designer

Service Buyer B

System Specialist

Service Buyer C

Development Manager

Service Buyer C

Development Specialist

Service Buyer C

Team Lead, Information Management

Service Buyer D

SVP, Innovation and Development

Service Buyer D

Solution Architect

Service Buyer D

Development Manager, Harvesting

Service Buyer D

Operations Manager

Service Buyer E

Manager

Service Buyer F

Manager

Software Company

Product Owner

Software Company

Service Manager

Software Company

Service Manager

Software Company

Product Owner

Software Company

General Manager

Software Company

Key Account Manager

Wood procurement R&D company

CEO

The observed documentation consisted of two communication standards [19, 20]
that provide the foundations for the Platform boundary resources, and a set of regula-
tions created by the Finnish Forest Industry [12] that provides the rules regarding forest
machine data ownership and usage.

Genesis of a Wood Harvesting B2B Software Platform 109

Grounded theory is about interacting with the data and comparing data, codes, and
emerging concepts [3]. In this study the comparison is still in its early phase: we per-
formed the first round of interviews during February and March of 2021. While the
analysis is in progress, some of the first emerging concepts are presented here.

3 Platform Description

3.1 Participants

There are about 25 Service Buyers using the Platform in Finland. These include publicly
listed large companies, a state-owned enterprise, and Forestry Management Associa-
tions. The number of Contractors using the Platform is currently around 800 in Finland.
For a Contractor it is mandatory to use the Platform when contracting with a Service
Buyer using the Platform. A special subgroup of Contractors are Educational institutions.
They train new forest machine drivers and use the Platform as part of the training.

Software Company is the platform leader. Additionally, it is also a Platform
Complementor while developing systems for the Service Buyers using the Platform.

Forest Machine Manufacturers make harvesters and forwarders. A harvester is used
to fell and cut trees in preferred lengths. A forwarder is used to transport the logs to
an intermediate storage. They have control systems that are integrated to the Platform.
About ten manufacturers have presence in the Finnish market.

Platform Complementors develop solutions for the Platform. This refers to the
makers of the information systems of Service Buyers or control systems of forest
machines.

There are two special organizations in the ecosystem. Finnish Forest Centre' is a
state-funded organization that collects and provides data about the forests in Finland,
advices forest owners, and enforces forestry legislation. It has a central role in forestry
related information systems in Finland, as it provides the Finnish Forest Data Standards
[19], open data sets, APIs, and related tools.

Metsiteho? is a R&D company owned by forest industry organizations Finland. It
has coordinated the creation of recommendation on the ownership, use and processing of
data in forest machines [12]. It is also the Finnish coordinator of the StanForD standard
[20].

3.2 Components of the Ecosystem

In the core of the Platform are features for planning, executing, and reporting harvesting
and silviculture operations. The features are divided into client applications, common
services for them, and an integration solution. Software Company has retained the devel-
opment of all client applications to itself, while providing an API for other ecosystem
participants, utilizing the Finnish Forest Data Standards [19]. Consumers of this API are
the ERP systems of the Service Buyers.

1 https://www.metsakeskus.fi/en.
2 https://www.metsateho.fi/briefly-in-english/.

https://www.metsakeskus.fi/en
https://www.metsateho.fi/briefly-in-english/

110 J. Vuolasto and K. Smolander

ERP systems of Service Buyers tap into the Platform using the API mentioned above.
There are Service Buyers whose ERP is provided by the same Software Company that
is the Platform Owner. Additionally, there are Service Buyers in the Ecosystem, whose
ERP is provided by another vendor. These complementing vendors were not interviewed
in the first round.

Each forest machine manufacturer has a control system that steers the hardware of
the machine. This control system interacts with the Platform client using the StanForD
standard [20], either a text based older version or a more recent XML version. Both use
files for information exchange.

The Ecosystem
Excavator
information
system

Service Buyer W
ERP The Platform

Browser Client
N N Forest Machine,
—
Windows Client nForD
Forest Machine,
brand B
Service Buyer Z XML Forest Machine,
ERP XML / text based brand C

Service Buyers Contractors

Service Buyer X
ERP

Service Buyer Y
ERP

Fig. 1. The Platform and the ecosystem around it

The components of the ecosystem are presented in Fig. 1. Integrations with Service
Buyer ERPs and forest machine control systems were implemented already during the
initial implementation project. A more recent addition is the integration with an excavator
information system used in planting of seedlings. The API based on Finnish Forest Data
Services and the StanForD file-based integration are currently the boundary resources
that the Platform offers. An example of a social boundary resource is a regular meeting
with the Machine Manufacturers, organized by the Software Company.

4 First Insights

4.1 Platform Genesis

The Platform started out as a joint project of three Service Buyers to optimize their
business processes with contractors. The companies created a common requirements
specification and through a public procurement chose the Software Company for design,
implementation and running the service.

Design specifications of the Platform were written in 2013 and the implementation
project started in 2014. The first production deployments were in 2016, and production
use gradually expanded during the following years, so that by 2019 all of the three
founding Service Buyers had their harvesting and silviculture operations running on the
Platform.

Genesis of a Wood Harvesting B2B Software Platform 111

The first years of the Platform have been a success. Most of the interviewees saw that
the Platform has fulfilled its purpose well or at least reasonably. The use of the Platform
has expanded both in Finland and internationally. While it is obligatory for a Contractor
of Service Buyers to use the Platform, several interviewed Contractors mentioned that
they would use it even if it was optional. The Platform has replaced the previous separate
Service Buyer specific systems with a single solution. This has helped in optimizing the
use of heavy machinery. For instance, Contractors are able to plan and execute their
work so that machines operating in a certain area can now be used in working sites for
different Service Buyers, which was very difficult or even impossible with the previous
separate systems.

The founders had a common interest in creating an outsourced service. Although
the founding Service Buyers are also competitors, they saw the benefits in developing a
solution to a pre-competitive area. Instead of trying to create an industry-wide solution
at once, two founding Service Buyers agreed first with each other and then a third one
joined the venture. It also helped that the information systems of Service Buyers serving
the same purposes as the Platform required renewal.

There were communication standards [19, 20] in place that helped creating the
boundary resources to ERP and control systems. The recommendations about the forest
machine data [12] and guidelines for following competitive legislation — created by the
founders — can be viewed as examples of self-governance in [8]. Finally, the founders
had positive experiences from a similar platform in wood logistics, also developed and
run by the Software Company.

The founding Service Buyers had a strong role in the beginning. Having created the
requirement specifications, they steered the development and governed the emerging
ecosystem. As part of the agreement there is a framework for governance. It specifies
rules for common development, decision-making structures, and for example the service
level agreement in Finland. It was initially presented in 2013 as a part of the procurement
documents. It was further developed during the implementation project and tested both
in the first deployments and during the first years in production.

4.2 Current Aspects to Governance

Joining the Platform is rather straightforward. For a Contractor to enter the Platform
two agreements are required: first with a Service Buyer about the contracting work, and
second with the Software Company about using the Platform. A new Service Buyer can
join the Platform by a negotiation with the Software Company. In this process it must
be made sure that the conditions specified in the guidelines are met.

Adding new features to the Platform is more problematic. It was mentioned in the
interviews that the needs of the Contractors should be the major driver of the Platform
development. It seems that the requirements coming from Contractors are not getting
through as well as expected. At least the following aspects have surfaced during the
initial analysis.

Service Buyers and Contractors. The founding Service Buyers are established large
companies with IT departments and routines for the customer-supplier dialogue. When
they need a new feature on the Platform, they are more qualified to argue for their case.

112 J. Vuolasto and K. Smolander

At the same time the Contractors are a heterogenous group. One-man company or a
company having a fleet of 30 machines can have very different interests and abilities to
influence the development of the Platform. The Contractors are the largest user group, but
they represent the minority in the decision-making structures. The Software Company
is expected to act as a balancer.

Slow Development. Day-to-day operation of the Platform is considered stable and satis-
factory. However, development of new features or improvements in the Platform receives
critique. Compared to exclusive software development, single vendor for a single cus-
tomer, Service Buyers saw the Platform development progressing slower. Complexity —
meaning a greater number of participants — was identified as one reason, but the shortage
of development resources of the Software Company was mentioned as well.

Finland and International. Although the focus of interviews was in Finland, the inter-
national aspect came also up. This is natural, as the potential market for the Platform
in Finland is limited by the amount of Service Buyers and Contractors. It is one of the
features of this B2B market: Contractor operates in a certain region and has a limited
number of Service Buyers as its customers. Although the Software Company recognized
the potential of the international market already in the very beginning, the implementa-
tion has not been without problems. There are differences in requirements and business
processes in different geographic regions.

4.3 Looking Ahead: Role of Complementors

The number and types of Complementors are currently somewhat limited. In spite of
that, the Software Company has clearly the leadership as described in [13] and it has the
critical mass in Finland. The possible directions from here are interesting: as the regional
market has its limits, geographic expansion is one way, which the Software Company
has already pursued. Another possibility is to open the ecosystem more, which means
emphasizing the role of Complementors. This will be a strategic decision for the Soft-
ware Company — while growing, it needs to maintain control and protect its business
interests. Understanding the value creation came up often in the interviews of the Soft-
ware Company, as a prerequisite to introducing new Complementors to the ecosystem.
However, controlling the ecosystem too tightly can result in lack of generativity and
innovations, as reported in [1].

5 Conclusions

The case provides a classical setting: a platform leader balancing governance actions.
The Service Buyers had a strong role in the beginning — a power shift to Software
Company is well on its way, but perhaps not yet complete. A key issue is hearing the
voice of Contractors.

Observing and analyzing B2B digital platform governance can help understanding
the transformation of the industry. As timber markets, actors, and their interplay are not

Genesis of a Wood Harvesting B2B Software Platform 113

the same everywhere, geographic expansion is not a trivial option. Introducing more
complementors to an existing ecosystem is not easy either.

The analysis of the results of the first interviews will continue, combined with a sec-
ond targeted round towards Contractors and Complementors. A potential future direction
for research is the role of the Software Company as both the leader and a Complemen-
tor; what kind of scenarios are possible with the current setting and with opening the
ecosystem more. Data economy as an enabler for ecosystem self-renewal deserves atten-
tion. Also, a possible research avenue is in demarcation within the ecosystem: what is
developed in the core of the Platform and what kind of features are implemented in the

periphery.

References

1. Bazarhanova, A., et al.: Love and hate relationships in a platform ecosystem: a case of Finnish
electronic identity management. Presented at the January 3 (2018). https://doi.org/10.24251/
HICSS.2018.187

2. Bianco, V.D., et al.: The role of platform boundary resources in software ecosystems: a case
study. In: 2014 IEEE/IFIP Conference on Software Architecture, pp. 11-20 (2014). https:/
doi.org/10.1109/WICSA.2014.41

3. Charmaz, K.: Grounded theory methods in social justice research. In: The SAGE Handbook
of Qualitative Research, pp. 359-380. SAGE (2011)

4. Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory. SAGE, Los Angeles (2015)

5. Gawer, A., Cusumano, M.: How companies become platform leaders. MIT Sloan Manag.
Rev. 49(2), 28-35 (2008)

6. Gawer, A., Cusumano, M.A.: Industry platforms and ecosystem innovation. J. Prod. Innov.
Manag. 31(3), 417-433 (2014). https://doi.org/10.1111/jpim.12105

7. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contribution in
third-party development: the boundary resources model. Inf. Syst. J. 23(2), 173-192 (2013).
https://doi.org/10.1111/j.1365-2575.2012.00406.x

8. Gorwa, R.: What is platform governance? Inf. Commun. Soc. 22(6), 854-871 (2019). https://
doi.org/10.1080/1369118X.2019.1573914

9. Huber, T.L., et al.: Governance practices in platform ecosystems: navigating tensions between
cocreated value and governance costs. Inf. Syst. Res. 28(3), 563-584 (2017). https://doi.org/
10.1287/isre.2017.0701

10. Jansen, S.: A focus area maturity model for software ecosystem governance. Inf. Softw.
Technol. 118, 106219 (2020). https://doi.org/10.1016/j.infsof.2019.106219

11. Jansen, S., Cusumano, M.: Defining software ecosystems: a survey of software platforms and
business network governance. In: Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, vol. 879, (2013). https://doi.org/10.4337/9781781955628.
00008

12. Metsiteho: Metsidkonetiedon omistusta, kdyttod ja késittelyd koskevat periaatteet. http://www.
metsateho.fi/metsakonetieto-suositus/. Accessed 14 Oct 2020

13. Moore, J.F.: Predators and Prey: A New Ecology of Competition (1993). https://hbr.org/1993/
05/predators-and-prey-a-new-ecology-of-competition

14. Parker, G.G., et al.: Platform Revolution: How Networked Markets Are Transforming the
Economy and How to Make Them Work for You. W. W. Norton & Company, New York
(2016)

https://doi.org/10.24251/HICSS.2018.187
https://doi.org/10.1109/WICSA.2014.41
https://doi.org/10.1111/jpim.12105
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.1080/1369118X.2019.1573914
https://doi.org/10.1287/isre.2017.0701
https://doi.org/10.1016/j.infsof.2019.106219
https://doi.org/10.4337/9781781955628.00008
http://www.metsateho.fi/metsakonetieto-suositus/
https://hbr.org/1993/05/predators-and-prey-a-new-ecology-of-competition

114 J. Vuolasto and K. Smolander

15. Shestakofsky, B., Kelkar, S.: Making platforms work: relationship labor and the management
of publics. Theory Soc. 49(5-6), 863-896 (2020). https://doi.org/10.1007/s11186-020-094
07-z

16. Tiwana, A., et al.: Research commentary—Platform evolution: coevolution of platform archi-
tecture, governance, and environmental dynamics. Inf. Syst. Res. 21(4), 675-687 (2010).
https://doi.org/10.1287/isre.1100.0323

17. Wang, G., Burton-Jones, A.: Rethinking IT governance structure and action. In: ICIS 2020
Proceedings (2020)

18. Wareham, J., et al.: Technology ecosystem governance. Organ. Sci. 25(4), 1195-1215 (2014).
https://doi.org/10.1287/orsc.2014.0895

19. Finnish Forest Data Standards. https://www.metsakeskus.fi/fi/avoin-metsa-ja-luontotieto/suo
rakayttoaineistot/metsatietostandardit. Accessed 09 Apr 2021

20. StanForD. https://www.skogforsk.se:443/english/projects/stanford/. Accessed 10 Apr 2021

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/s11186-020-09407-z
https://doi.org/10.1287/isre.1100.0323
https://doi.org/10.1287/orsc.2014.0895
https://www.metsakeskus.fi/fi/avoin-metsa-ja-luontotieto/suorakayttoaineistot/metsatietostandardit
https://www.skogforsk.se:443/english/projects/stanford/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Towards a Taxonomy of Impact Factors
for Digital Platform Pricing

Virginia Springer™ ® and Dimitri Petrik

Department VIII: Information Systems II, University of Stuttgart, Keplerstr. 17,
70174 Stuttgart, Germany
springervirginia@googlemail.com,
dimitri.petrik@bwi.uni-stuttgart.de

Abstract. Solving the chicken-or-egg problem and leveraging value contributing
actors on the platform is crucial to establish dynamic platform-based ecosys-
tems. A digital platform provider is challenged to manage multilateral platform
architecture and governance mechanisms to establish an attractive platform-based
ecosystem to foster third-party complementors to join. One of the key issues while
establishing a platform-based ecosystem remains the decision about an adequate
pricing model. Despite a large number of publications on platform governance,
detailed pricing model analyses remain rare. In this explorative paper, we conduct
aliterature review, studying 62 relevant papers to explore the pricing impact factors
to create a foundation for future research of price models in the under-researched
setting of the Industrial Internet of Things (IIoT). The most relevant pricing factors
and their distinctive characteristics are summed up in a multi-dimensional taxon-
omy. The developed taxonomy includes 13 impact factors and 38 characteristics
of platform pricing. Our findings enable the decomposition and understanding of
price models for their future improvement.

Keywords: Platform pricing - Pricing impact factors - Pricing taxonomy - IIoT
platforms - IIoT platform pricing - Literature Review

1 Introduction

The Internet of Things (IoT) and its industrial area of application (IloT) build a top-
priority topic in the digitization of products and processes. Digitized products erode the
established boundaries between the companies, e.g., by making the customer data avail-
able for sharing and processing, ultimately leveraging value-added services [1, 2]. Indus-
trial companies rely on digital industrial platforms, known as IIoT platforms, since they
operate as scalable middleware systems in digital infrastructure, integrating networked
subsystems and heterogenous third parties in the value creation process [3, 4]. Besides,
platforms offer a stable set of functionalities as an extensible technological foundation
for modular innovations to be built upon. Since the services can be co-created by multiple
actors, platforms also organize the interaction in an ecosystem, providing a transactional
base. Hence, IIoT platforms correspond simultaneously to the innovation and transaction
platform concepts [4, 5]. Similarly, indirect network effects and generativity are recog-
nized positive effects of platformization, requiring an innovation-contributing ecosystem

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 115-124, 2021.
https://doi.org/10.1007/978-3-030-88583-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_11&domain=pdf
http://orcid.org/0000-0001-7628-7683
http://orcid.org/0000-0002-0244-1235
https://doi.org/10.1007/978-3-030-88583-0_11

116 V. Springer and D. Petrik

of platform users [5]. Following the idea of ecosystem development, it is in the platform
providers’ interest to shift industrial supply relationships into platform-based transac-
tions and transform the supply chains into ecosystem participants [6]. The operation of
digital platforms incurs costs, and apart from the initial development of the platform
core, the variable cost of attracting new platform users can be high. This is caused by
subsidizing the actors, as one of the known platform launch strategies is to subsidize
certain user segments to engage them to join the ecosystem and solve the “chicken-
egg-dilemma” [7-9]. In the IIoT, attracting new actors is an even bigger challenge due
to the different functioning of indirect network effects, the non-standardized business
relationships, and the variety of complementary partner types [4, 6]. However, most IIoT
platforms on the market charge different platform-ecosystem participation fees, pursuing
different pricing strategies [10]. Pricing strategies are understood as strategic approaches
that “a firm adopts to determine what it will charge for its products and services [11]”.
In this context, pricing impact factors combine designable parameters and exogenous
characteristics (i.e., platform economics), determining the pricing strategy. Although
the platform research agrees on the importance of pricing models in ecosystem develop-
ment and categorizes pricing as a relevant pillar in software product strategy [12], there
are only a few research works [9, 13] that offer in-depth analysis of the existing price
strategies and impact factors in the context of platform-ecosystems. Inspired by this state
of research, our research goal for this preliminary paper is to identify the price impact
factors relevant for the pricing strategy of digital platforms by conducting a literature
review and discovering suitable price impact factors from the broad research field on
digital platforms.

2 Theoretical Background

The IoT paradigm integrates technology-enabled physical objects into a global cyber-
physical network that changes how to create added value. The concepts of IoT and IIoT
are often equated in theory due to their (technological) similarity. However, multiple
characteristics differ depending on the end-users, the industry focus, the underlying
service models, and the connected things. IIoT supports the emergence of digital and
smart manufacturing, aiming to integrate operation technology (OT) and IT domains
to create economic value. Therefore, industrial organizations are usually considered
the primary end-users. Thus, the IIoT aims to connect all industrial assets, including
machines and control systems, intra-organizational information systems (IS), and busi-
ness processes in a B2B environment [4, 14]. IIoT platforms can be seen as middleware
systems that orchestrate the heterogeneous landscape of connected assets and software
systems. Hence, the IIoT platform usually provides a technological infrastructure fos-
tering connectivity and interoperability between intelligent machines, control systems,
and software systems [3, 6, 14]. On top of the technological infrastructure, applications
enable data-driven services to the platform users. While traditional pipeline companies
operate within corporate boundaries, platform providers use an ecosystem of autonomous
parties to create shared value and exploit the potentials of generativity [15]. From a tech-
nical perspective, platforms offer an extensible technological foundation on top of which
third parties can build value-adding applications [13]. From an organizational view, plat-
forms act as multi-sided markets, acting between several user segments to bring them

Towards a Taxonomy of Impact Factors for Digital Platform Pricing 117

together in an overarching ecosystem [16]. Fostering users to join a platform-based
ecosystem, platform providers can operate different mechanisms within the architecture
and governance fields of action [13]. Pricing is recognized as one of the governance
mechanisms and a platform launch strategy since a platform provider can vary the price
model between different market sides and subsidize specific user groups [7]. Besides,
a platform provider can define the revenue sharing model to foster the complemen-
tors’ innovation activities [13]. Preliminary work considers multiple connection points
between the ecosystem participants and IoT platforms that can be charged for [17].
However, only a few studies offer a holistic overview of the existing platform price
impact factors, especially considering the enterprise instantiation of the platform in the
IIoT. As Schreieck et al. already mentioned, the price model for IoT platforms may
depend on heterogeneous factors determined by the inherent technological complexity
[17]. To sum up, the lack of knowledge on the IIoT platform pricing makes a literature
review necessary to reduce the complexity in the design of price models regarding their
underlying impact factors.

3 Research Methodology

We developed a three-stage research framework to guide the development of a pricing
taxonomy. Classification plays an important role, structuring knowledge on a particular
object of interest. Since many classification approaches lack a profound methodology,
we consequently adopted our overall procedure to the widely used iterative taxonomy
development approach presented by Nickerson et al. [18]. We opted for Nickersons’
approach since it is already evaluated and established in the IS research [19, 20].

According to the taxonomy development procedure, we identified meta-
characteristics as well as ending conditions first. Meta-characteristics help to define the
purpose of the taxonomy and address the interests of future research. We used the VISOR
framework according to [21] to define our meta-characteristics. As already shown in
Sect. 2, the characteristics of platform business models differ from traditional business
models primarily in terms of the exponential relationship between the value and the
number of users of a platform, the value creation in ecosystems, and the ability to inter-
operate with other services. Since the VISOR framework emphasizes the importance of
digital platforms’ central role, the need to orchestrate multiple actors in ecosystems, and
consider the multitude of interfaces (as customer touchpoints), it seems suitable to align
the derived impact factors with the dimensions of the framework. It hence composes
digital business models in the five dimensions of Value Proposition, Interface, Service
Platforms, Organizing Model, and Revenue Model. In line with Nickerson, the subjec-
tive ending conditions aim to ensure comprehensive, extendible, concise, robust, and
explanatory results. The ending conditions mainly include specifications on the objects’
classification, representativeness of the impact factors, changes in the taxonomy, and the
uniqueness of the impact factors and characteristics. Since the purpose of our taxonomy
is to provide a representative overview of the pricing impact factors for IloT platforms
in an emerging domain, we followed a conceptual-to-empirical approach.

Following the conceptional-to-empirical approach, we built our initial taxonomy
iteratively on existing literature. We screened the titles, abstracts, and — where neces-
sary — full-texts to conduct a rigorous literature analysis, which was summed up in a

118 V. Springer and D. Petrik

concept matrix. In particular, literature that refers to pricing or merely mentions it but
does not examine it was excluded. Our literature analysis mainly focused on economic
models on multi-sided markets and empirical or conceptional studies on platform gover-
nance investigating pricing impact factors. We used various keyword combinations like
“multi-sided platform pricing” or “platform governance pricing” in multiple iterations
to build an initial corpus consisting of 45 papers, building the first iteration (conceptual-
to-empirical). With exclusive forward and backward research (second iteration), the
corpus included 62 final papers for analysis, building the third iteration (conceptual-to-
empirical). The overview of the search details as well as the complete list of papers and
a concept matrix are available at the following URL: https://bit.ly/3g4PyG2.

In line with the concept of triangulation, we mainly focused our analysis in the first
iteration on economic models on multi-sided markets and identified eight impact fac-
tors. Our second iteration that mainly focused on empirical and conceptional studies on
platform governance identified three more impact factors. In the third and last iteration,
we identified in total 13 pricing impact factors encompassing 38 characteristics. Each
dimension is indicated by mutually exclusive (E) or non-exclusive (NE) characteristics.

4 Taxonomy

This section presents our taxonomy systematizing the derived price model impact factors
with their characteristics, structured according to the VISOR framework’s dimensions.

Table 1. Taxonomy of Price Impact factors for Digital Platforms

Di i Impact factor Characteristics E/NE
Pl Market structure Monopoly Duopoly Oligopoly E
Vahfe. P2 . Platform. Platform offer| Network size Bundling of services NE
Proposition differentiation
P3 Platform offer Specialized platform Platform offers industry solutions E
Interf: P4 Platform access Open Restricted E
nterface I ps |Boundary Resources| ABR | DBR SBR NE
Servi P6 Modularity Low modularity High modularity E
;[l::ll:le P7 _|Platform architecture Purists I Analysts Connectors | Allrounder E
P8 Platform lifecycle Emerging | Growth Maturity | Saturation E
Information
Organizing P9 availability transparent Not transparent E
odel P10 Network effects lndlrteicvtep 051" | Indirect negative| Direct positive | Direct negative | NE
P11 Pricing model Subls;rsls élon— Usage-based One-time-Payment NE
LA Asymmetric Symmetric
Wi) P12 Subsidization (subsidization) (no subsidization)
P13 Pie-Splitting Fix [Ssliding rising [No pie-splitting

Value Proposition: This dimension contains the three pricing impact factors market
structure (P1), platform differentiation (P2), and platform offer (P3). P1 is determined
by the supply and demand sides’ number and size and describes an economic market’s
structure and composition. Existing research focuses primarily on the ideal-typical case

https://bit.ly/3g4PyG2

Towards a Taxonomy of Impact Factors for Digital Platform Pricing 119

of a monopoly and partly on the case of a duopoly. Only in a few investigations, the
oligopoly case has been considered yet. Against this background, existing research shows
that monopolies generally have greater freedom to set prices and that pricing options
may decrease as competition increases [22, 23]. P2 subsumes those characteristics of
an ecosystem that are aimed at the heterogeneity of value creation ecosystems. This
non-exclusive impact factor shows how platform providers can differ from one another.
We distinguish the three characteristics platform offering, network size, or bundling of
services. In this context, recent research shows that the price can significantly depend on
the network size [24, 25]. According to research, product differentiation always leads
to higher welfare through better demand stimulation, which directly impacts price [26].
Also, bundling of services can lead to higher demand stimulation and thus significantly
influence pricing [27]. Whether combinations of these characteristics (e.g., platform
offer and bundling) are correlated and how they influence the price have not been inves-
tigated yet. Lastly, P3 distinguishes between platforms that focus on specialization or
platforms that offer industry-wide solutions. Against this background, specialization of
the platform offering is accompanied by higher demand stimulation for heterogeneous
markets since specialized platform providers are less substitutable and can respond better
to the specific customer demands [28].

Interface: This dimension contains the impact factors platform access (P4) and bound-
ary resources (BR) (P5). Both are closely related to providing services and access to the
underlying platform. The platform access may vary between openness and restrictions
set by the platform provider. Against this background, platform openness can signifi-
cantly influence the platform’s attractiveness, directly impacting the price [29, 30]. PS
indicates that payment barriers for the use of specific BRs may be set up [17]. BRs
represent different technical and non-technical resources for third-party access of the
platform that can be conceptually divided into application BR (ABR), development
(BR), and social BR (SBR) [31]. For instance, a platform provider can charge additional
fees for participation in the partner program or support.

Service Platform: This dimension describes the impact factors modularity (P6), plat-
form architecture (P7), and platform lifecycle (P8) that enable, shape, and support the
business processes and relationships in platform ecosystems. P6 subsumes characteris-
tics related to the platform modularity since they are hardly reversible later and, therefore,
influence orchestration and aligning price level [13]. P7 describes how the architecture of
platforms may differ, affecting the price due to the different levels of modularity and the
added value (i.e., generic development tools or specific use case analyses). For instance,
using an IoT platform may result in full-stack services or solely in high-end analytics,
which requires distinctive pricing [32]. Lastly, P8 subsumes those characteristics related
to the degree of performance or the degree of exploitation of competitive potential by the
platform. Against this background, it is crucial to consider how technologies and tech-
nological concepts such as digital platforms reach technical performance limits in their
further development potential [13]. Depending on the growth ambition of the platform
provider in different phases, subsidization may influence the price.

Organizing Model: This dimension addresses the fundamental organizational model
of digital platforms and describes how business processes, value chains, competition,

120 V. Springer and D. Petrik

and partner relationships need to be organized. We distinguish the two pricing impact
factors, information availability (P9) and network effects (P10). The P9 subsumes those
characteristics that relate to information transparency in the platform ecosystem. Infor-
mation transparency is crucial for a perfect market and is given when all actors in the
ecosystem possess all information about environmental states and their actions. This
also includes information about the uncertainty that can arise in a transaction (on a dig-
ital platform). The platform operator’s influence is indirect since the entire ecosystem
determines information availability and related uncertainties. Existing results show that
information transparency and the associated uncertainties directly impact price elastic-
ity [33]. According to [34], transparent (price) information leads to users’ expectations
being better met and thus to the effect of price reductions being strengthened. P10
summarizes the interdependent relationships between the various actors that determine
platform business models’ success in ecosystems. The four characteristics, including
indirect positive, indirect negative, direct positive, and direct negative, can be distin-
guished based on the literature analysis. Established research shows that the platform
operator’s optimal prices depend on how (new) participants influence the attractiveness
of the ecosystem [35]. Moreover, pricing should also take into account how strongly
participants in the ecosystem respond to network effects in general [36].

Revenue Model: This dimension includes the three impact factors: pricing model
(P11), subsidization (P12), and pie-splitting (P13). P11 subsumes non-exclusive fees
that may be incurred by ecosystem actors when using the platform. These are usually
linked to licensing and are either subscription-based, usage-based pricing models or
a one-time payment. P12 indicates whether the platform access fees hit all sides of
a platform or whether specific sides are subsidized. Accordingly, one can distinguish
between symmetric (no subsidization) and asymmetric (subsidizing a market side) rev-
enue models. According to [37], a subsidization interest for platform providers results
from indirect network effects. Against this background, [26] show that the side that is
more price-sensitive should be subsidized. Consequently, revenues for the platform oper-
ator are primarily generated on that side of the market that is more affected by network
effects. Therefore, this market side contributes to increased market participation [38].
Lastly, P13 relates to revenue sharing and associated pie-splitting conditions between
the platform provider and the platform users. Typically, complementors can be charged
for selling their platform-based solutions. Four types of pie splitting were already rec-
ognized: fixed, sliding, rising, and no pie-splitting [13]. Sliding refers to a decreasing
revenue share with increasing demand while rising forces an increasing revenue share
with increasing demand. Existing research by Rochet and Tirole shows that rising pie-
splitting conditions, in particular, are an effective means of increasing the attractiveness
of a platform for homogeneous products or services [16]. Although pie-splitting con-
ditions can directly contribute to ecosystem development, especially in the platform
life cycle’s early phases, blueprints for adequate pie-splitting models for heterogeneous
platform domains, such as IIoT, have not yet been considered in the literature.

Towards a Taxonomy of Impact Factors for Digital Platform Pricing 121

5 Discussion and Conclusion

This paper used a structured literature review to derive a multidimensional taxonomy of
price model impact factors for digital platforms. Our findings have implications for the
following three research discourses. Firstly, they contribute to clarifying possible pricing
impact factors by enabling a more differentiated understanding of pricing impact factors
at various levels of platform business models. Thus, our preliminary work responds to
current demands for more transparency and further research in this emerging area and
provides a grounding for domain-specific pricing research in the IIoT context. Secondly,
the derived impact factors move forward the research on the platform governance and
platform establishment strategies [7, 17] since the taxonomy creates transparency for the
pricing design and enables platform providers to adjust the prices more delicately. Con-
sequently, the price level for accessing the platform can be adjusted according to the par-
ticipation level differing between the ecosystem participants and supporting stakeholder-
specific platform governance [10]. Besides, our findings may support implementing the
so-called “goldilocks” rule considering the platform price level [13]. Thirdly, most of the
impact factors were extracted from the literature on multi-sided markets, being studied
less from the platform governance research stream. Accordingly, the results build one
of the early contributions to transfer the findings from the economic research field to
the platform governance stream within the platform research [39] since the platform
governance literature primarily classifies pricing as a governance mechanism without
going into much detail [17].

From a practical perspective, the taxonomy provides a foundation for pricing deci-
sions and may support platform providers in the creation of a price strategy blueprint.
However, regardless of the results obtained, we have to point out the current limitations of
the taxonomy. The current state of the taxonomy lacks empirical validation with market-
ready IoT platform providers. Therefore, additional empirical-to-conceptual validation
of the taxonomy is lacking. Consequently, the taxonomy also does not offer domain-
specific archetypes of pricing strategies for IoT platforms. Since there has been little
research to date on pricing impact factors in the context of IloT platforms, it is con-
ceivable that the impact factors and characteristics selected for the taxonomy will apply
only conditionally to (future) IIoT platforms. Motivated by these limitations, our future
research will focus on empirical validation of the taxonomy, with a subsequent clustering
to identify pricing strategies for IIoT platforms. Besides, with the addition of empiri-
cal studies, it is to be expected that the taxonomy may need to be adapted, as the IIoT
market itself is very dynamic, and so are the associated business models. Therefore, it
is likely that as new IIoT platform business models evolve, there may be new pricing
impact factors and that impact factors that are currently possibly underrepresented will
gain importance and relevance. Therefore, it is necessary to regularly update the taxon-
omy and extend it accordingly to ensure representative results. Due to this, the taxonomy
represents only a first step towards structuring possible pricing impact factors in the con-
text of the IIoT and reveals significant deficits that offer further research opportunities.
Besides, the analysis of the existing price impact factors forms the basis for composing
a research agenda on platform pricing in the context of platform ecosystems.

122

V. Springer and D. Petrik

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Porter, M., E., Heppelmann, J. E.: How smart connected products are transforming

competition. Harvard Bus. Rev. 92(11), 64-8 (2014)

Leminen, S., Rajahonka, M., Wendelin, R., Westerlund, M.: Industrial internet of things
business models in the machine-to-machine context. Ind. Mark. Manage. 84, 298-311 (2020)
Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things
platforms. Comput. Commun. 89-90, 5-16 (2016)

Pauli, T., Fielt, E., Matzner, M.: Digital industrial platforms. Bus. Inf. Syst. Eng. 63(2),
181-190 (2021). https://doi.org/10.1007/312599-020-00681-w

Gawer, A.: Digital platforms’ boundaries: the interplay of firm scope, platform sides, and
digital interfaces. Long Range Planning (appearing soon)

Petrik, D., Herzwurm, G.: Towards the IIoT ecosystem development — understanding the
stakeholder perspective. In: Proceedings of the 28th ECIS, pp. 1-17, Marrakesh, Morocco
(2020)

Stummer, C., Kundisch, D., Decker, R.: Platform launch strategies. Bus. Inf. Syst. Eng. 60(2),
167-173 (2018). https://doi.org/10.1007/s12599-018-0520-x

. Kenney, M., Rouvinen, P., Seppild, T., Zysman, J.: Platforms and industrial change. Ind.

Innov. 26(8), 871-879 (2019)

Cusumano, M.A., Gawer, A., Yoffie, D.B.: The Business of Platforms: Strategy in the Age of
Digital Competition, Innovation, and Power. HarperBusiness, New York (2019)

Wareham, J., Fox, P.B., Cano Giner, J.L.: Technology ecosystem governance. Organ. Sci.
25(4), 1195-1215 (2014)

Sammut-Bonnici, T., Channon, D.F.: Pricing Strategy. Wiley Encyclopedia of Management,
New York (2015)

Kittlaus, H.-B., Clough, B.: Software Product Management and Pricing. Springer, Berlin-
Heidelberg (2009)

Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy. Mor-gan
Kaufmann, Amsterdam (2014)

Wortmann, F., Fliichter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221-224 (2015).
https://doi.org/10.1007/s12599-015-0383-3

Hein, A., Weking, J., Schreieck, M., Wiesche, M., Bohm, M., Krcmar, H.: Value co-creation
practices in business-to-business platform ecosystems. Electron. Mark. 29(3), 503-518
(2019). https://doi.org/10.1007/s12525-019-00337-y

Rochet, J.-C., Tirole, J.: Platform competition in two-sided markets. J. Eur. Econ. Assoc. 1(4),
990-1029 (2003)

Schreieck, M., Hakes, C., Wiesche, M., Krcmar, H.: Governing platforms in the internet of
things. In: Ojala, A., Holmstrom Olsson, H., Werder, K. (eds.) ICSOB 2017. LNBIP, vol. 304,
pp. 32—46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69191-6_3
Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its
application in information systems. Eur. J. Inf. Syst. 22(3), 1-24 (2013)

Losser, B., Oberlidnder, A. M., Rau, D.: Taxonomy research in information systems: a system-
atic assessment. In: Proceedings of e 27t ECIS, pp. 1-17, Stockholm-Uppsala, Schweden
(2019).

Omair, B., Alturki, A.: An improved method for taxonomy development in information
systems. Int. J. Adv. Comput. Sci. Appl. 11(4), 535-540 (2020)

El Sawy, O.A., Pereira, F.: VISOR: a unified framework for business modeling in the evolving
digital space. In: Werder, K. (ed.) Business Modelling in the Dynamic Digital Space. SDS,
pp- 21-35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31765-1_3

https://doi.org/10.1007/s12599-020-00681-w
https://doi.org/10.1007/s12599-018-0520-x
https://doi.org/10.1007/s12599-015-0383-3
https://doi.org/10.1007/s12525-019-00337-y
https://doi.org/10.1007/978-3-319-69191-6_3
https://doi.org/10.1007/978-3-642-31765-1_3

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Towards a Taxonomy of Impact Factors for Digital Platform Pricing 123

Hagiu, A., Jullien, B.: Why do intermediaries divert search? Rand J. Econ. 42(2), 337-362
(2011)

Godes, D., Ofek, E., Sarvary, M.:. Content vs. advertising: the impact of competition on media
firm strategy. Market. Sci. 28(1), 20-35 (2009).

Cabral, L.: Towards a theory of platform dynamics. J. Econ. Manag. Strategy 28(1), 60-72
(2019)

Guijarro, L., Vidal, J.R., Pla, V., Naldi, M.: Economic analysis of a multi-sided platform for
sensor-based services in the internet of things. Sensors 19(2), 373 (2019)

Chakravorti, S., Roson, R.: Platform competition in two-sided markets: the case of payment
networks. Rev. Netw. Econ. 5(1), 118-142 (2006)

Amelio, A., Jullien, B.: Tying and freebies in two-sided markets. Int. J. Ind. Organ. 30(5),
436-446 (2012)

Hagiu, A.: Two-sided platforms: product variety and pricing structures. J. Econ. Manag.
Strategy 18(4), 1011-1043 (2009)

Tan, G., Zhou, J.: The effects of competition and entry in multi-sided markets. Rev. Econ.
Stud. 88, 1002-1030 (2021)

Schreieck, M., Hein, A., Wiesche, M., Krcmar, H.: The challenge of governing digital platform
ecosystems. Digital marketplaces unleashed, 527-538 (2018).

Dal Bianco, V., Mylldarniemi, V., Komssi, M., Raatikainen, M.: The role of platform boundary
resources in software ecosystems: a case study. In: 2014 IEEE/IFIP Conference on Software
Architecture, pp. 11-20, Sydney, Australia (2014).

Arnold, L., Johnk, J., Vogt, F., Urbach, N.: A taxonomy of industrial IoT platforms’ archi-
tectural features. In: Proceedings of 16th International Conference on Wirtschaftsinformatik,
Essen, Germany (2021)

Jullien, B., Pavan, A.: Information management and pricing in platform markets. Rev. Econ.
Stud. 86(4), 1666-1703 (2019)

Hagiu, A., Hataburda, H.: Information and two-sided platform profits. Int. J. Ind. Organ. 34,
25-35(2014)

Evans, D.S.: Some empirical aspects of multi-sided platform industries. Rev. Netw. Econ.
2(3), 191-209 (2003)

Gabszewicz, J.J., Laussel, D., Sonnac, N.: Does advertising lower the price of newspapers to
consumers? A theoretical appraisal. Econ. Lett. 87(1), 127-134 (2005)

Caillaud, B., Jullien, B.: Chicken & egg: competition among intermediation service providers.
RAND J. Econ. 309-328 (2003)

Bolt, W., Tieman, A.F.: Heavily skewed pricing in two-sided markets. Int. J. Ind. Organ. 26(5),
1250-1255 (2008)

Schiiler, F.,, Petrik, D.: Objectives of platform research: a co-citation and systematic literature
review analysis. In: Seiter, M., Griinert, L., Steur, A. (eds.) Management Digitaler Plattformen.
Z, vol. 75/20, pp. 1-33. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-311
18-6_1

https://doi.org/10.1007/978-3-658-31118-6_1

124 V. Springer and D. Petrik

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Assessing the Health of the Dark Web:
An Analysis of Dark Web Open Source Software Projects

Samuel Onyango, Emilie Steenvoorden, Joram Scholten, and Slinger Jansen®
Department of Computer Science, Utrecht University, Utrecht, The Netherlands
{s.o0.onyango,e.r.m.steenvoorden,e. j.scholten2}@students.uu.nl,
slinger. jansen@uu.nl

Abstract. A hidden part of the World Wide Web is known as the Dark
Web, featuring websites that cannot be indexed by traditional search
engines. Many open source software products are used to access and
navigate through the Dark Web. Together they form the Dark Web open
source software ecosystem. Research on this ecosystem is scarce and
research on the ecosystem health is non-existent, even though ecosys-
tem health is an useful indicator of the livelihood of an ecosystem. The
goal of this research is to evaluate the health of the ecosystem through an
assessment of Tor, I2P and GitHub. The Open Source Ecosystem Health
Operationalization framework is used to help perform this assessment.
Eight metrics from the framework are selected, which are measured using
the data collected. Analysis of Tor and I2P metrics suggest that there
has been an increase in Tor and I2P user activity in the recent past.
Added knowledge, spin offs and forks and usage indicate active partici-
pation and interest in Tor and I2P. There has also been an increase in
the number of active GitHub Dark Web projects. However, these GitHub
projects are not well-connected and only a small number of projects have
a large number of contributors. There is some variety among the GitHub
software projects. The framework proves to be adequately capable of
determining the health of the Dark Web open source ecosystem with the
available data.

Keywords: Dark web - Open source ecosystem - Software ecosystem
health - Open source ecosystem health operationalization framework

1 Introduction

“Whatever is done in the dark shall be brought to light” as the saying goes.
The Internet is versed and layered from the Surface Web to the Deep Web and
to the Dark Web. The deeper you go, the darker it becomes. The Dark Web is
known for illicit activities, including the distribution of pornography, hacking,
money laundering and selling guns and drugs on marketplaces [3]. However, the
Dark Web is also used by non-criminal user groups, such as political activists,
whistle-blowers, journalists, law enforcement agents and the military. Benefits
of the Dark Web range from operating in totalitarian regimes and protecting

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 125-134, 2021.
https://doi.org/10.1007/978-3-030-88583-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_12

126 S. Onyango et al.

sources to corporate spying and sharing confidential information [9]. In all layers
of the Internet actors are involved, who communicate, have networks and use and
produce software, thus making up a software ecosystem (SECO). Open source
software ecosystems (OSSECOs) are defined by Franco et al. [5] as: “A SECO
placed in a heterogeneous environment, whose boundary is a set of niche players
and whose keystone player is an OSS community around a set of projects in an
open-common platform”.

The Deep Web and particularly the Dark Web are still shrouded in mystery.
Therefore, more information is needed on the state of the Dark Web and the
activities that keep its “engine running”. A keen interest on special OSS such as
The Onion Router (Tor) and the Invisible Internet Project (I2P), that are used
to access the unindexed parts of the Internet, can provide insights on activity.
Due to the anonymity, information on the Dark Web users and overall traffic
is scarce [13]. However, even with published metrics, measuring the Internet by
accurately classifying content and traffic remains challenging.

The main goal of this work is to shed some light on the health of the dark
web ecosystem, by looking at the publicly available software that targets the
dark web.

1.1 Related Work

The networks Tor and I2P allow anonymous access to the Dark Web. Similar
anonymization software with significantly fewer users are Freenet, JonDonym,
JAP and ZeroNet. Tor, developed in 2002 by the U.S. Naval Research Labora-
tory, is the most widely used network to access the Dark Web [13]. Tor’s aim is
to create a private access to an uncensored web while respecting user’s privacy
by connecting them to websites through virtual tunnels.

The popularity of Tor is due to the ease of use and the reliable anonymous
access [10] resulting into 2 to 2.5 million users per day [8]. The I2P network is
similar to Tor and facilitates anonymous website hosting by means of encryption
and relays [3]. A difference is users of I2P automatically act as a “node” to trans-
fer information, whereas Tor users must actively decide to become a node [1].
A study in 2018 showed I2P has around 32K active users on a daily basis [6].
Note that I2P can also be used to access the Surface Web. Cilleruelo et al. [4]
analyzed the connection between the Tor and 12P networks by looking at the
darknet services. They found Tor and I2P operate as an ecosystem and there
are clear paths between them.

In 2014, Jansen [7] introduced the OSEHO framework. Contrary to other
frameworks, OSEHO offers a more granular description of metrics, divided over
three pillars, that can be used to establish the health of an OSSECO. The pro-
ductivity pillar deals with the ability of projects to add value within an ecosys-
tem. Robustness illustrates how well projects of an ecosystem can cope with
changes that may occur in the environment. Lastly, niche creation indicates an
ecosystem’s ability to reinvent itself to take advantage of new opportunities. The
metrics are applied at two levels. The project level consists of analyses of projects
within the SECO, while the network level puts into action different elements for

Assessing the Health of the Dark Web 127

this ecosystem domain. The framework is created with considerations of SECO
features, including licenses, code conventions, documentation, quality and public
support for the projects OSEHO is applied to various SECOs already. [2] con-
ducted research on the ecosystem health of cryptocurrencies, by focusing on the
highest-valued distinct cryptocurrencies.

1.2 Research Method

The aim of this research is to assess the health of the Dark Web OSSECO by
analysing two open source software projects. Tor and I2P are selected for this
research because they have the largest number of users [12]. To determine the
health of the ecosystem three metrics of the OSEHO framework, robustness,
productivity and niche creation, are used [7]. The OSEHO framework is suitable
for this study as it majorly involves analysis of quantitative data from the Dark
Web OSS project sources, which correlate well with the metrics described in
the framework. On top of that, the framework is designed for OSSECOs, which
makes it a good fit. Quantitative data analysis is performed to measure the met-
rics, as well as some descriptive data analysis to further support the measuring
of the metrics. The main research question of this paper is formulated as follows:
How can open source software ecosystem health be used as a proxy for measuring
activity on the Dark Web?. To answer this question a literature review on ecosys-
tem health, the OSEHO framework and Dark Web OSS is conducted. Thereafter,
quantitative data analysis is used to identify the productivity, robustness and
niche creation of the Dark Web OSSECO. Data is collected from the code host-
ing platform GitHub, as well as the ecosystem hubs of Tor and I2P. Tor and
I2P metrics identify the amount of users of the networks over the last twenty
years. GitHub data includes historical data on the number of Dark Web projects
and the number of developers. GitHub Dark Web project activity refers to the
number of projects that are actively being updated and maintained.

2 Applying the OSEHO Framework

This section covers the application of the OSEHO framework in five steps.

Step 1 & 2 - Set Goals and Select Ecosystem Scope

The aim of this research is to evaluate the health of the Dark Web OSSECO,
by conducting an analysis on GitHub Dark Web projects, as well as Tor and
I2P. First the scope of the ecosystem needs to be determined. The entire Dark
Web ecosystem is too broad to capture and a single OSS project is too limited to
draw meaningful conclusions about the Dark Web OSSECO. Therefore, the scope
of this study is limited to OSS projects in the Dark Web ecosystem retrieved
from GitHub. Data is easier to find on OSS projects due to their open nature.
Identification of the projects is done using the platform GitHub, which is the
most widely-used hosting service for software development projects. The focus
of the research is on ecosystem activity, as it is a clear indicator of health and
data on activity is openly accessible. The traffic of Tor is used as activity data

128

source because it is the most used network to access the Dark Web. For the OSS
projects the existing networks, users, forums developers and relationships under

S. Onyango et al.

these projects are analysed.

Step 3 - Select Metrics

The OSEHO metrics are distinctively categorized in the pillars: Productivity,
Robustness and Niche creation. To adhere to the scope of this study, a selection

of the most relevant metrics are shown in Table 1.

Table 1. Overview of selected OSEHO metrics and sources.

OSEHO pillar

Metrics network level

Metrics project level

Source

Productivity |Added knowledge Collaboration forum
about ecosystem (1) (StackOverflow,
Reddit and phpBB)
Spin-offs and forks (2) |GitHub
Usage (3) Tor and I2P metrics
Robustness Total number of active GitHub

projects (4)

Cohesion (5)

Programmable web
(API data)

Active contributors (6)

GitHub

Page views and search

Google Trends

statistics (7)

Niche creation GitHub

Variety in projects (8)

The selection and exclusion criteria for the metrics rely upon available data.
Besides that, understandability is a consideration. Therefore, the metrics that are
less complex, but yet simple and clear are selected. Thirdly, quantitative metrics
are more considered for analysis and interpretation reasons, thus eliminating
more quantitative metrics. The first metric Added knowledge about ecosystem
(1) considers the rate at which new and existing information is shared within
an ecosystem. On the project level, Spin-offs and forks (2) are relevant as it
indicates the interest of developers in the projects within the ecosystem, therefore
enhancing productivity and ultimately health. Usage (3), as a measure of health
through productivity, is taken from the end user perspective. The number of
users is an indicator of how well the ecosystem is doing. Moving on to Total
number of active projects (4). The greater the number of active projects, the
higher the survival chances of an ecosystem. For this metric, data on how often
projects are updated are an indicator of activity. Cohesion (5) is how well-
connected internally and externally the project network is. The “strength in
numbers” [7] relates to how a good number of active contributors/developers
(6) within an OSS project equates to health in that ecosystem. Page views and
search statistics (7) show the popularity of an OSSECO. The Variety in projects
(8) metric is the only niche creation metric. Assessment of project variety can
determine the number of projects collectively contributing to the extension of the

Assessing the Health of the Dark Web 129

OSS projects. Manifestation of a project in various technologies creates healthy
niches in the ecosystem.

Step 4 - Assess and Collect Data

This section covers an assessment of data requirements and the applied data
collection techniques for all metrics. Added knowledge about the ecosystem (1)
is measured using an analysis of collaboration forums like phpBB, Reddit and
StackOverflow. Indicators of added knowledge are aggregated information, blog
posts and manuals. Next, data on the metrics Spin-off and forks (2) are collected
through GitHub. Many software projects are an extension of other projects, as
mentioned in the project description on GitHub. This information is used for the
spin-off metric. The number of forks per software project are indicated on GitHub
as well. The Usage (3) metric is measured on project level. Usage is measured
through activity on the platform. Tor and I2P both publish anonymous user
traffic. Tor provides analysis of their users, servers, traffic, performance, onion
services as well as applications on the Tor Metrics website [14]. The I12P Metrics
website provides historical infrastructure data from the I2P network (https://
i2p-metrics.np-tokumei.net/). Total number of active projects (4) metric data
is obtained by analysing GitHub repositories and identifying the ones that are
involved in the Dark Web OSS projects. Cohesion (5) data is gathered from
ProgrammableWeb, which is a source of API data. The activity metrics provided
by Tor and I2P are both measures of all the activity on the networks, meaning
this is not limited to the activity of the Dark Web only. In 2017 it was estimated
by one of the founders of Tor that the Dark Web comprises only 3% of the Tor
traffic. In 2020 a research estimated that around 6.7% of Tor traffic was related
to the Dark Web [8].

For Active contributors (6) developers on GitHub are identified who con-
tribute to different projects related to the ecosystem. Page views and search
statistics (7) are measured using Google trends, which gives insight on how
many searches are made relating to Tor and I2P. Variety in projects (8) which
assesses the different kinds of projects that relate to the ecosystem are identified
by analysis of GitHub projects.

Many OSS projects on GitHub are intended to be used on the Dark Web.
The projects that are analyzed originate from several search terms, such as
“Darkweb”, “Dark Web”, “darknet”, “Tor” and “I2P”. A small amount of the
search results are actually related to the Dark Web and duplicate results are
filtered out. A number of GitHub projects are identified because they were linked
by other Dark Web OSS projects. This data is collected manually from GitHub.
In total, 260 repositories are included, with information such as the project’s
name, last update date, number of favorites, contributors and forks as well as
the type of software project. Through API endpoints from Stack Exchange,
Reddit, ProgrammableWeb and GitHub, data is obtained. Tools like Postman
are used to make HTTP requests.

Step 5 - Data Analysis and Results
Data on added knowledge about the ecosystem is presented in Table2. Data
from the forums StackOverflow (StO), Reddit (Rdt) and phBB (phpBB) show

https://i2p-metrics.np-tokumei.net/
https://i2p-metrics.np-tokumei.net/

130 S. Onyango et al.

interest in Tor and I2P. In StackOverflow alone, thirty different topics on Tor
are discussed provoking 31.783 responses. Data of I12P is mined from its own
dedicated forum phpBB. A total of 810 questions lead to 1194 responses, showing
the developers and users are actively involved in the projects.

Table 2. The productivity metrics data of Tor and I2P from different sources. The
number of questions raised by users on different issues relates to these OSS projects
on the forums and the number of corresponding responses. The usage represents the
highest (high) and lowest (low) number of users actively involved during a particular
period. The Tor data is collected as a total of users actively involved, while I2P is
determined per daily usage, with high being the day with the highest recording of
active users, while low representing the lowest recorded usage.

Productivity metrics | Tor 12p

Added knowledge | (5tO) | (RdT) | (phpBB) | (RdT)
Number of questions | 30 86 810 128
Number of responses | 31.783 | 3085 | 1194 1367
Spin offs and forks | 2590 803

Usage Total users Daily users
High 4.090.771 30.329

Low 1.300.000 12.400

" pate

Fig. 1. The fluctuations in the number Fig. 2. Cluster visualization of the
of Tor users compared to the increase GitHub Dark Web ecosystem. The
of GitHub Dark Web software projects, node sizes are representative for the

mapped over the past five years.

number of active contributors a project
has. Nodes with corresponding shades
belong to the same cluster as assigned
by the modularity algorithm.

Assessing the Health of the Dark Web 131

Spin-offs and forks show many instances of projects under Tor and I2P are
forked by other developers. Tor gained 2590 forks while I2P gained 803 from
January 2016 to January 2021. Tor usage data shows 4.090.771 is the highest
recorded number of concurrent users and 1.3 million the lowest [14]. Between
2019 and 2020 there was a sharp increase in number of users then a steady
drop. Major fluctuations in these numbers are seen between 2020 and 2021 as
depicted by Fig.1. Data on I2P daily concurrent users from January 2019 till
January 2021 show fluctuations with the major drops occurring between July
2019 and July 2020 with a low of 12.400 users. From November 2020 there was
a steady increase to a high of over 30.000 users daily in March 2021.

With regard to robustness, roughly 260 active projects are found to be active
and related to the Dark Web OSSECO. Figurel shows a comparison between
the fluctuations in the number Tor users and active GitHub Dark Web projects.
It seems like an increase in GitHub Dark Web project activity does not lead
to more Tor user activity. For example, in 2021 a surge in GitHub Dark Web
project activity appears, but barely any increase in Tor user activity is seen.

A Gephi network model maps the cohesion between GitHub projects in Fig. 2.
It shows the projects with the largest number of active contributors, with the
node size varying based on the total number of active project contributors. The
model also displays the interconnectivity between projects, by looking at the
edges that connect the nodes. Most of the nodes are isolated, or are connected
to only one other node. The average degree of the network is 0.685, indicating a
not well-connected and unhealthy network, based on the assumption that a well-
connected network is healthier than networks that are not well-connected [7].
Furthermore, Tor projects appear to have far more active contributors than the
I2P projects. The total number of contributors in the dataset, 1549, are not
divided evenly over the projects. Out of the 260 projects that were analyzed,
only 33 projects had ten or more contributors.

Google trend analysis shows Surface Web searches about Tor and I2P are
significant, suggesting users are interested in the ecosystem projects Tor and
12P. From January 2016 till March 2021 major fluctuations in the number of
searches are seen with the highest number being 100 and the lowest being zero.

Lastly, we analyze the variety of GitHub projects. 19 different types of soft-
ware projects are identified. Most software projects are associated with crawling,
networking, and security, while only a small number of projects are associated
with blockchain technology, hosting, and web browsers. We conclude that there
is some variety in the dark web ecosystem, but that the visible part is mostly
about analyzing the dark web itself.

3 Discussion

Results show the OSSECO projects are productive, as two of the most signifi-
cant contributors to health represent the productivity metric. According to [11]
the productivity of OSS projects tends to be directly proportional to growth,
which would validate the phenomenon observed here. Robustness is most evi-
dent through cohesion, suggesting there is some potential. Contrary to this, the

132 S. Onyango et al.

number of active contributors, the page view statistics and the number of active
projects weakens this pillar. Finally, niche creation is portrayed by the variety
in projects. As there is some variety in the projects, we assess niche creation as
moderately healthy. The results suggest an adequate amount of project variety
and growth potential. Only four metrics meet the threshold required to suggest
that the ecosystem is healthy, while the other four do not provide a convincing
argument against a healthy ecosystem. Generally, the health of the Dark Web
ecosystem is not steady at any given time. These mixed results suggest volatility,
making it difficult to tell what can shift to turn the tide.

This research is subject to several validity threats. The GitHub data is col-
lected manually, due to the choice of GitHub search terms it is possible some
Dark Web OSS projects are not found. This means the used dataset could be
incomplete, and should be interpreted as such. On top of that, GitHub is the only
used source for OSS projects. Also, other code hosting platforms with reposito-
ries exist. The metrics that are answered using the dataset are thus only partially
answered. Aside from that, Fig. 1 features Tor user data published by Tor. The
metrics-timeline Git repository can be consulted to try and explain the fluctu-
ations in the data. However, some odd peaks in the data cannot be explained
by events. For example, on January 28th the user count peaked to 4.1 million,
and dropped the next day to 2 million. There are no events listed in the Git
repository that could possibly explain this large peak. This brings question to
the legitimacy of the data. However, no good alternative for collecting data on
the number of Tor users exists, due to anonymization.

3.1 Conclusion and Future Work

This paper provides an analysis of Dark Web related OSS projects determining
the Dark Web OSSECO health. The OSEHO framework metrics are applied to
assess the activities in this ecosystem in terms of productivity, robustness and
niche creation. The study takes a unique approach by applying the framework
to investigate activity on the Dark Web through the analysis of health metrics.
Overall, results suggest a moderate amount of project variety and the potential
to grow. All of the metrics suggest ecosystem activity but it is hard to ascertain
to what percentage this represents the Dark Web as a whole. Furthermore, the
health of the Dark Web ecosystem is not steady at any time.

Further research encompassing more metrics of the OSEHO framework would
increase the effectiveness of the framework. The framework is implemented suc-
cessfully to yield significant results showing there is activity. However, a myriad
of challenges were to overcome to make this successful. First, the anonymous
nature of the web made a comprehensive collection of data an uphill task leading
to exclusion of some relevant metrics. Secondly, scoping the Dark Web ecosystem
remains a challenge and requires future work to be done. It is ideal to have a
more inclusive scope to be able to apply the framework adequately to assess Dark
Web projects. Generally, the framework is practically applied to yield results that
adequately answer the research question, despite the aforementioned challenges.

Assessing the Health of the Dark Web 133

The OSEHO framework itself was simple to apply in practice, with many differ-
ent combinations of metrics possible. Other combinations of metrics would also
likely have worked, which is the real strength of the framework.

Moreover, further research is needed with the inclusion of more active OSS

projects in order to measure the metrics that rely on manually collected data
more accurately. This could be done by including more code hosting platforms
as project sources. Additionally, more research should be done on the developers
of the software project on the Dark Web to better understand who enable it.

References

1.

2.

10.

11.

Astolfi, F., Kroese, J. Van Oorschot, J.: I2P-the invisible internet project. Leiden
University Web Technology report (2015)

Berkhout, M., van den Brink, F., van Zwienen, M., van Vulpen, P., Jansen, S.:
Software ecosystem health of cryptocurrencies. In: Wnuk, K., Brinkkemper, S.
(eds.) ICSOB 2018. LNBIP, vol. 336, pp. 27-42. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-04840-2_3

Bradbury, D.: Unveiling the dark web. Netw. Secur. 2014(4), 14-17 (2014)
Cilleruelo, C., De-Marcos, L., Junquera-Sanchez, J. Martinez-Herraiz, J.J.: Inter-
connection between darknets. IEEE Internet Comput. (2020)

Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Open source software
ecosystems: a systematic mapping. Inf. Softw. Technol. 91, 160-185 (2017)
Hoang, N.P., Kintis, P., Antonakakis, M., Polychronakis, M.: An empirical study
of the I2P anonymity network and its censorship resistance. In: Proceedings of the
Internet Measurement Conference 2018, pp. 379-392, October 2018

Jansen, S.: Measuring the health of open source software ecosystems: beyond the
scope of project health. Inf. Softw. Technol. 56(11), 1508-1519 (2014)

Jardine, E., Lindner, A.M., Owenson, G.: The potential harms of the Tor
anonymity network cluster disproportionately in free countries. Proc. Natl. Acad.
Sci. 117(50), 31716-31721 (2020)

Kavallieros, D., Myttas, D., Kermitsis, E., Lissaris, E., Giataganas, G., Darra, E.:
Using the dark web. In: Akhgar, B., Gercke, M., Vrochidis, S., Gibson, H. (eds.)
Dark Web Investigation. Security Informatics and Law Enforcement, pp. 27-48.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55343-2_2

Negi, N.: Comparison of anonymous communication networks-tor, I12P, Freenet.
Int. Res. J. Eng. Technol. 4(07), 2542-2544 (2017)

Scholtes, 1., Mavrodiev, P., Schweitzer, F.: From Aristotle to Ringelmann: a
large-scale analysis of team productivity and coordination in Open Source Soft-
ware projects. Empir. Softw. Eng. 21(2), 642-683 (2015). https://doi.org/10.1007/
$10664-015-9406-4

Grey literature

12.

13.

14.

Brown, B.: 2016 state of the dark web (2017). https://www.akamai.com/it/it/
multimedia/documents/state-of-the-internet /akamai-2016-state-of-the-dark-web.
pdf. Accessed 31 July 2021

Finklea, K.: Dark web, special report for congressional research service (2015).
http://www.fas.org/sgp/crs/misc/R44101.pdf. Accessed 23 Feb 2021

Tor: Tor Metrics (n.d.). https://metrics.torproject.org/. Accessed 22 Mar 2021

https://doi.org/10.1007/978-3-030-04840-2_3
https://doi.org/10.1007/978-3-030-04840-2_3
https://doi.org/10.1007/978-3-030-55343-2_2
https://doi.org/10.1007/s10664-015-9406-4
https://doi.org/10.1007/s10664-015-9406-4
https://www.akamai.com/it/it/multimedia/documents/state-of-the-internet/akamai-2016-state-of-the-dark-web.pdf
https://www.akamai.com/it/it/multimedia/documents/state-of-the-internet/akamai-2016-state-of-the-dark-web.pdf
https://www.akamai.com/it/it/multimedia/documents/state-of-the-internet/akamai-2016-state-of-the-dark-web.pdf
http://www.fas.org/sgp/crs/misc/R44101.pdf
https://metrics.torproject.org/

134 S. Onyango et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Using Guilds to Foster Internal Startups
in Large Organizations: A Case Study

Tor Sporseml(g) , Anastasiia Tkalich! @, Nils Brede Moe! @, Marius Mikalsen! @,
and Nina Rygh?

I SINTEF Digital, 7034 Trondheim, Norway
tor.sporsem@sintef.no
2 DNV, 1361 Hgvik, Norway

Abstract. Software product innovation in large organizations is fundamentally
challenging because of restrained freedom and flexibility to conduct experiments.
As a response, large agile companies form internal startups to initiate employ-
driven innovation, inspired by Lean startup. This case study investigates how
communities of practice support five internal startups in developing new software
products within a large organization. We observed six communities of practice
meetings, two workshops and conducted ten semi-structured interviews over the
course of a year. Our findings show that a community of practice, called the Inno-
vation guild, allowed internal startups to help each other by collectively solving
problems, creating shared practices, and sharing knowledge. This study confirms
that benefits documented in earlier research into CoPs also hold true in the context
of software product innovation in large organizations. Henceforth, we suggest that
similar innovation guilds, as described in this paper, can support large companies
in the innovation race for new software products.

Keywords: Software Product Innovation - Communities of Practice (CoP) -
Guilds - Employee-driven innovation - Large Organizations - Lean Startup -
Maritime sector

1 Introduction

Software product innovation is challenging in large organizations because they often
lack the freedom to experiment and have established routines that limit flexibility [4].
Therefore, they need to find strategies to foster innovation [10]. One way is to establish
a parallel organizational structure — like an Innovation Guild — to support employees
innovating. Parallel structures perform functions that the regular organization does not
or is ill-suited to perform well [13]. Some examples of parallel structures include quality
circles [8] and Communities of Practices (CoP) [18]. Although some studies indicate
that such parallel structures can boost innovation [16], their role in software product
innovation is not well-examined.

Large organizations are currently trying Lean startup approaches to give internal
startups the freedom to create new software products and experiment with customers,

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 135-144, 2021.
https://doi.org/10.1007/978-3-030-88583-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_13&domain=pdf
http://orcid.org/0000-0002-5230-7480
http://orcid.org/0000-0001-7391-4194
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0003-0882-7427
https://doi.org/10.1007/978-3-030-88583-0_13

136 T. Sporsem et al.

much like a standalone startup [4]. Innovation frameworks such as The corporate startup
[17], design sprints in Google [21], “FedEx Day” and “20% Time” in Atlassian [10] are
increasingly gaining attention as a way of giving guidelines and standardizing inno-
vation processes to help organizations track and support software product innovation.
Simultaneously, frameworks like these do state which practices or tools internal startups
should leverage to drive innovation. However, internal startups are left to explore such
practices and dig up needed knowledge themselves.

To shed light on this topic and recognizing that innovation in large agile companies
may be particularly challenging, we ask the following research question: How does a
large organization use CoP to support internal startups in software product innovation?
To answer, we report on a case study of software product innovation at DNV Maritime,
where a CoP —based on what Spotify call “Guilds” — was successfully applied to facilitate
innovation processes inspired by Lean startup.

2 Related Work

Parallel organizational structures, such as Communities of Practice (CoP), are commonly
applied within software-intensive companies to support employees as problem-solving
knowledge workers [13]. A community of practice is a group of people who share a
concern, a set of problems, or a passion about a topic, and who deepen their knowledge
and expertise in this area by interacting on an ongoing basis [18]. CoPs can take on
different functions within an organization and evolve over time [11]. To an organization,
a CoP can provide an arena for problem solving, drive strategic work, share best practice,
onboard newcomers, develop professional skills, and start new lines of business [19]. To
individuals, it can provide help in overcoming challenges, enabling contributing to your,
improve professional reputation, provid a professional identity, and (most essential in
our opinion) having fun.

In our case, DNV experimented with a CoP to support their employee-driven inno-
vation. Without sufficient support, employee-driven innovation will fail [1]. Employees
constantly need to improve their skills, share knowledge, and coordinate across the
organization if they are to succeed.

Empirical studies of CoPs in software engineering are far between. Paasivaara and
Lassenius [11] summarized some; [6, 7, 9]. Recently, research on the use of CoPs in
Spotify (known as “guilds”) have emerged [14]. This study identified four archetypes of
CoPs:

e Book clubs focus on "learning instead of doing", where better working methods are
discussed, but decisions are rarely made.

e Open source societies focus on members-owned components, maintaining them,
improving, and finding strategies for them.

e Support lines focus on onboarding, providing answers to technical issues, and
facilitating solutions discussions. Core experts guide less-experienced employees.

e Standardizing committees align practices across the organization by creating artifacts
like toolset recommendations and standards.

Using Guilds to Foster Internal Startups in Large Organizations 137

Communities of practice are well-researched parallel structures. However, Paasi-
vaara and Lassenius [11] argue that researchers need to study CoPs in new contexts to
understand the concept further. In this study, we answer this call and examine CoPs in
the context of software product innovation.

To understand how CoPs can support organizations as a parallel structure in DNV’s
case, we need to present some additional literature on innovation. Software product
innovation is defined as the creation and introduction of novel software products to the
market.

Lean startup is a popular approach to software product innovation where software
is developed and validated through continuous experiments with customers to minimize
development costs and increase customer satisfaction [12]. It is argued that the applica-
tion of the Lean startup principles (e.g. Build-Measure-Learn and validated learning)
increases the speed of product development [5] and improves product-market fit [3], but
also faces challenges in large organizations [15].

So, how does a large company make use of Lean startup approaches? Large orga-
nizations foster internal startups [4] by encouraging new corporate efforts in their own
environment to enter new markets and explore new business strategies [3]. One sug-
gested solution is The corporate startup [17] which offers guidelines for software prod-
uct innovation in an existing organizational environment. Innovation frameworks like
Lean startup and The corporate startup are based on employee participation. People pitch
their ideas, and the ones with the highest potential are prioritized.

3 Case Description and Research Approach

Our case is the Maritime division of DNV, a large worldwide provider of business-to-
business classification, certification, verification, risk management, training, and techni-
cal advisory services. DNV sets standards for ships and offshore structures that vessels
in international waters must comply with, known as Class Rules. These rules comprise
safety, reliability, and environmental requirements. DNV is operating globally and con-
siders software products crucial for offering value to its worldwide customers. Hence,
software product innovation has been part of the company’s strategy to shift towards dig-
ital products and services. With 3 700 employees and headquarters in Hamburg, DNV
Maritime has been using agile methods to develop software since 2008.

In 2018, the company established an innovation program based on the stage-gate
innovation framework named The corporate startup [17]. Employees were invited to
pitch ideas for new software products and created internal startups to develop them.
These internal startups participated in a CoP, called the Innovation Guild, to support
their innovative work, which is the focal point of this study.

We chose a case study [20] because we closely followed five internal startups in
the between June 2020 and March 2021. We collected data in 3 different ways. First,
we conducted seven interviews, asking internal startups how they work and their atti-
tude towards guild meetings (two of them were interviewed twice). Then we did three
interviews with managers on how they support the internal startups. Interviews were
recorded and transcribed into 61 pages of text. Second, we collected observations from

138 T. Sporsem et al.

guild meetings and workshops by recording them and taking notes. Third, we used doc-
umentation on the innovation framework, such as strategic documents, status reports,
and emails. Table 1 summarize our gathered data.

Table 1. Data sources

Data source Description
Interviews 10 semi-structured interviews (7 with internal startups, 3 with
managers)

Meeting notes and transcripts | Guild (CoP) meetings (6 meetings, 90 min each), workshops (2
workshops, 2 days), venture board meetings (4 meetings)

Documents Internal documents on organization, strategies and
documentation of innovation framework implementation

Data analysis was performed in three steps. First, textual data was entered into
the qualitative data analysis tool NVivo. Two researchers coded the data inductively,
which means that phenomenon and concepts rise from the textual data and make up
themes/categories. Subsequently, we compared our categories with existing literature.
We constructed codes separately followed by a comparison and discussion, ending up
with a total of 150 codes. One example of a code: “Guild meetings helped me estab-
lishing contact to others with competence I needed.” Further, we arranged the codes
into 31 themes, e.g., “Cross functional cooperation contribute positively to internal star-
tups” (which include the example-code above). As a last quality check, we presented
our findings back to the informants. Comments were duly noted and cleared up small
misconceptions.

The themes were grouped according to their impact on software product innovation.
Which issue they addressed and how they supported internal startups is presented in
Table 3.

4 Results

DNV created and launched new products through the Innovation framework mentioned
previously to facilitate software product innovation. The framework was based on a
stage-gate model described in The corporate startup [17] and guided internal startups
through six stages (Table 2) from ideation (Customer insight) to maturity (Sustain). Each
product idea was suggested by an employee who became an idea owner and responsible
for their own internal startup. They had to fulfill gate criteria to proceed from one stage
to another (e.g., present evidence of the customer problem or customer intent). A group
of business and domain experts (Venture board) evaluated whether the idea owners’
evidence was sufficient to fulfill the criteria and progression. Operational line managers
decided what amount of worktime idea owners could take out of their original job to
work on the internal startups, varying from week to week — usually between 20-100%.

Using Guilds to Foster Internal Startups in Large Organizations 139

Being originally operative specialists, the idea owners were unexperienced in
entrepreneurship. It soon became evident that all internal startups faced common chal-
lenges and could draw on each others’ knowledge to overcome them. Together with the
innovation program manager, they decided to form a CoP — called Innovation guild — to
share knowledge and find common solutions to the startups’ shared problems. Besides,
there was a need to establish connections to domain experts in other departments whom
the internal startups had to rely on to develop their products.

Table 2. Stages of the innovation framework, criteria to proceed to next stage and key activities

| Stage Criteria Key activities
1 | Customer insight | Evidence of the customer Conduct customer interviews
problem
2 | Viability Evidence of the customer intent | Build and test simple prototypes
Proof of concept Evidence of feasibility for Build and test prototypes

building, hard evidence of the
customer intent

4 | Build Evidence of possibility for Build MVP
scaling

5 | Scale Evidence for favorable market | Marketing and sales campaigns,
conditions resource planning

6 | Sustain Product

improvement/sustain/retire

A mandate was made in collaboration between idea owners and managers to justify
the guild’s existence: “sharing experiences, solving challenges, increasing competen-
cies, providing access to expertise and finding new ways to interact with customers.*
Membership was primarily open for all internal startups. In addition, line managers and
stakeholders from other units were invited to participate in guild meetings (depending
on the topic of interest).

The idea owners chose topics based on shared challenges they were facing at the
time and what they perceived valuable to discuss together. The guild gathered biweekly,
with meetings approximately 1,5 h long. Usually, the first 30 min were dedicated to
idea owners sharing experiences since the last meeting, followed by the topic of interest
(often presented by an invited external expert) before discussing what practices and
knowledge were needed to drive innovation forward. A guild facilitator was in charge
of planning the agenda and invited participants as the idea owners were far too busy
handling their internal startups while juggling their departmental duties. Some weeks
they worked full time on the startup, while some almost none, depending on how much
their origin department allowed them.

The following subsections describe three distinct challenges that the Innovation
guild was essential in solving (summarized in table 3). They are structured as a timeline,
following the sequence of real-life events.

140 T. Sporsem et al.

Table 3. Software product innovation challenges and achievements of the Innovation guild

Challenge

Achievements of the Guild

Impact

Idea owners lacked customer
contacts and know-how to
approach customers

Acquiring common practices
to approach customers in
exploring customer-problems

Higher quality on feedback
from customers and reduced
time acquiring them

Lack of guidelines on pricing
digital products, need to map
the existing financial expertise

Increasing expertise in
pricing digital products

Obtaining a pricing solution
in line with the organization’s
existing strategy in less time

Insufficient knowledge on
building and scaling products

Improving coordination with
software development unit

Managers committed to
dedicating developer

resources earlier

4.1 Acquiring Common Practices to Approach Customers

The first activity encouraged by the innovation framework was customer interviews
(Table 2, stage 1). However, customer insight was not an established practice among the
idea owners. There was no systematic way of choosing or approaching the customers,
and some did not even know who to contact. One idea owner commented: “It is the gut
feeling that decides which company to approach. But how do we get a systematic way to
get an insight on whom to approach?” In a Guild meeting, it was deciced to involve the
marketing team to find a way, and in the following marketing and sales intelligence were
invited to discuss the challenge. Three participants from the marketing team presented an
overview of the tools they applied to communicate with customers and analyze markets
(e.g., digital marketing and sales intelligence tool, customer segment, email templates).
The idea owners found the meeting helpful; one of them commented: “For me the meeting
was good. The customer matrix will help me to tune my email campaign. In this way,
the guild assisted idea owners in acquiring new practices to approach customers by
leveraging the marketing experts’ existing knowledge and discussing ways of using it in
the startups. As a result, they were enabled to achieve higher quality customer feedback
in a reduced amount of time.

4.2 Building Competence in Pricing Digital Products

According to the innovation framework, idea owners had to present evidence of cus-
tomers’ intent to buy the new products (table 2, stages 2 and 3). How exactly such
evidence could be collected was nonetheless unclear. One proposal was to demonstrate
the customers’ intent by collecting their feedback on tentative pricing models. However,
idea owners held no expertise in pricing. The guild initiated a series of meetings inviting
representatives from finance, digital sales, and line managers to address this challenge.
Finance managers realized the need to identify what possibilities the existing payment
mechanisms offered concerning the new digital pricing. He expressed: “Idea owners
should suggest an idea on how their products can be priced, but it is important for us to
find out which pricing models we can offer for them to choose from.* In collaboration
with digital sales experts, the finance managers created a list of available pricing models

Using Guilds to Foster Internal Startups in Large Organizations 141

with instructions on how they fit different types of offerings. One idea owner explained:
“A list of what pricing models are possible and not, is great. I am really happy to see that
it is happening.” In sum, the Innovation guild supported the internal startups by finding
ways of pricing digital products through acting as a collaboration arena for idea owners
and pricing experts. Henceforth, they saved time obtaining a pricing solution in line with
the organization’s existing pricing strategy.

4.3 Finding Ways to Collaborate with Software Developers

Entering the Build-stage (Table 2, stage 4), the prototype of an internal startup was
handed to the software unit for subsequent development. However, until this stage, the
idea owners had focused only on exploring the business potential. Further, most idea
owners did not hold sufficient knowledge on building and scaling products. They lacked
documents that software developers needed to start developing, like feature lists and
user stories. One idea owner stated: “You expect to give your idea to the IT guys and
then come back in two weeks or a month, and everything is ready. But this is not how
it turns out to be.”“ After discussions in the guild, idea owners decided to include and
coordinate with the software unit earlier in the innovation process. Software developers
were invited to the following guild-meeting where they described their agile practices
of working with new products in other business areas of DNV, followed by a discussion
among idea owners on how they can fit this way of working into their innovation process.
A second guild meeting was held on the topic where one idea owner and the head of
the software department had successfully collaborated. As a result, other idea owners
acquired knowledge of the software development process and found inspiration on how
to make this collaboration work.

The line management also acknowledged that earlier involvement of software devel-
opers should be practiced whenever possible. They committed to dedicate software
developers earlier. A line manager said: “We must avoid handover to IT and build as one
team.*

To summarize, the Innovation guild allowed internal startups to standardize practices
to tackle shared challenges, build and share competence together, and create collabo-
ration practices with other units. According to themselves, the Innovation guild helped
internal startups to understand how to best practice innovation within DNV.

5 Discussion and Conclusions

To innovate like startups, large agile companies need to develop strategies to foster
software product innovation internally [10]. However, the application of ready-available
guidelines are not sufficient alone to drive internal startups to excellence. One possible
solution is to engage in Communities of practice [16] or other parallel structures that
improve organizational problem-solving [11, 13]. To answer our research question —
How does a large organization use CoP to support internal startups in software product
innovation? — we described how a large agile company applied a CoP to foster internal
starups. In the following discussion we summarize how the CoP succeeded and compare
it to the types of guilds found in Spotify.

142 T. Sporsem et al.

Although innovation frameworks like The corporate startup [17] give step-by-step
guidance on going from idea to product, we found that a parallel structure was needed
to support it. Employees that usually carry out specialized tasks are an excellent source
for new ideas. However, they typically lack experience in innovating software products.
Idea owners needed to work together and draw on expertise from each other to solve
problems that arose during developing collectively. The Innovation guild evolved into an
arena where new practices emerged through sharing knowledge (e.g., how to develop and
scale products), expand idea owners’ skills (e.g., designing pricing models), improving
coordination (with the software unit), and standardizing practice (such as how to work
with the customers). In this way, CoPs can be seen as a prerequisite for succeeding with
employee driven software product innovation that employees.

Our study’s innovation guild holds similarities to communities of practice described
by Wenger et al. [18], Paasivaara and Lassenius [11], and Smite et al. [14], who found
that guilds support knowledge sharing, networking, and standardization. According to
the archetypes identified in Spotify [14] (described in chapter 2), the innovation guild can
be labeled as a standardizing committee. It helped idea owners create common practices
and ways forward. Also, starting every guild meeting, idea owners shared their latest
experiences, and guests were invited to share knowledge and inspire. This is typical for a
book club. A mix between a book club and standardizing committee provides the startups
with the best of two worlds: they can control what practices to standardize and acquire
knowledge without committing to any decisions. From this, we can learn what type of
guilds functions as a lubricant for innovation frameworks to work in large organizations,
thus becoming a powerful organizational structure when innovating software products.
Our study confirms that benefits documented in earlier research into CoPs [11, 16, 18]
also hold true in the context of software product innovation in large organizations.

Despite large organizations struggling in reaching the same level of success as star-
tups [4], they hold massive assets in terms of expertise, resources, and an established
customer base. Innovation guilds activate these assets to support internal startups, hence
contributing to their innovation process. In contrast, standalone startups have to establish
inter-organizational alliances to access similar assets while risking their partners’ oppor-
tunistic exploitation [2]. Thus, whereas startups ultimately face challenges alone, large
organizations can become powerful allies for their internal startups when supported by
parallel structures like an innovation guild.

Our study holds implications for innovation frameworks — and those using them —
by describing how CoPs, like the Innovation guild, can supplement such frameworks in
supporting internal startups. Simply implementing an innovation framework was insuf-
ficient in a large agile organization, while combining it with a parallel organizational
structure like an Innovation guild drove innovation capability.

References

1. Aasen, T.M. et al.: In search of best practices for employee-driven innovation: Experiences
from Norwegian work life. In: Employee-Driven Innovation. pp. 57-74 Springer (2012).

2. Baum, J.A.C., et al.: Don’t go it alone: alliance network composition and startups’ perfor-
mance in Canadian biotechnology. Strateg. Manag. J. 21(3), 267-294 (2000). https://doi.org/
10.1002/(SICI)1097-0266(200003)21:3%3¢267:: AID-SMJ89%3e3.0.CO;2-8

https://doi.org/10.1007/978-3-030-88583-0_2
https://doi.org/10.1002/(SICI)1097-0266(200003)21:3%3c267::AID-SMJ89%3e3.0.CO;2-8

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.
21.

Using Guilds to Foster Internal Startups in Large Organizations 143

. Edison, H., et al.: Innovation Initiatives in Large Software Companies: A Systematic Mapping

Study. Inf. Softw. Technol. 95, 1-14 (2018). https://doi.org/10.1016/j.infsof.2017.12.007

. Edison, H., etal.: Lean Internal Startups for Software Product Innovation in Large Companies:

Enablers and Inhibitors. J. Syst. Softw. 135, 69—-87 (2018). https://doi.org/10.1016/].jss.2017.
09.034

. Edison, H., et al.: Lean startup: why large software companies should care. In: Scientific

Workshop Proceedings of the XP2015. pp. 1-7 Association for Computing Machinery, New
York, NY, USA (2015). https://doi.org/10.1145/2764979.2764981.

. Gongla, P., Rizzuto, C.R.: Evolving communities of practice: IBM Global Services experi-

ence. IBM Syst. J. 40(4), 842-862 (2001). https://doi.org/10.1147/5j.404.0842

. Kahkonen, T.: Agile methods for large organizations-building communities of practice. In:

Agile development conference. pp. 2-10 IEEE (2004).

. Lawler, E.E., III., Mohrman, S.A.: Quality circles: After the honeymoon. Organ. Dyn. 15(4),

42-54 (1987)

. Mestad, A. et al.: Building a Learning Organization: Three Phases of Communities of Practice

in a Software Consulting Company. In: 2007 40th Annual Hawaii International Conference
on System Sciences (HICSS’07). pp. 189a—189a (2007). https://doi.org/10.1109/HICSS.200
7.115.

Moe, N.B., et al.: Fostering and Sustaining Innovation in a Fast Growing Agile Company. In:
Dieste, O., Jedlitschka, A., Juristo, N. (eds.) PROFES 2012. LNCS, vol. 7343, pp. 160-174.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31063-8_13

Paasivaara, M., Lassenius, C.: Communities of practice in a large distributed agile software
development organization — Case Ericsson. Inf. Softw. Technol. 56(12), 1556-1577 (2014).
https://doi.org/10.1016/j.infsof.2014.06.008

Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Currency (2011).

§mite, D., Moe, N.B., Wigander, J., Esser, H.: Corporate-level communities at Ericsson:
parallel organizational structure for fostering alignment for autonomy. In: Kruchten, P., Fraser,
S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355. pp. 173-188. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19034-7_11

Smite, D., et al.: Spotify Guilds: How to Succeed With Knowledge Sharing in Large-Scale
Agile Organizations. IEEE Softw. 36(2), 51-57 (2019). https://doi.org/10.1109/MS.2018.288
6178

Sporsem, T., et al.: Understanding Barriers to Internal Startups in Large Organizations: Evi-
dence from a Globally Distributed Company. Presented at the Preprint 2021 ACM/IEEE 16th
International Conference on Global Software Engineering (ICGSE) (2021).

Swan, J., et al.: The Construction of ‘Communities of Practice’ in the Management of
Innovation. Manag. Learn. 33(4), 477-496 (2002). https://doi.org/10.1177/135050760233
4005

Viki, T. et al.: The corporate startup. How established companies can develop successful
innovation ecosystems. (2017).

. Wenger, E., et al.: Cultivating communities of practice: a guide to managing knowledge.

Harvard Business School Press, Boston, Mass (2002)

Wenger, E., Snyder, W.: Communities of practice: The organizational frontier. Communities
of Practice: The Organizational Frontier. 139—-145 (2000).

Yin, R.K.: Applications of Case Study Research. SAGE (2011).

The Design Sprint — GV, http://www.gv.com/sprint, last accessed 2021/01/08.

https://doi.org/10.1016/j.infsof.2017.12.007
https://doi.org/10.1016/j.jss.2017.09.034
https://doi.org/10.1145/2764979.2764981
https://doi.org/10.1147/sj.404.0842
https://doi.org/10.1109/HICSS.2007.115
https://doi.org/10.1007/978-3-642-31063-8_13
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1007/978-3-030-19034-7_11
https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1177/1350507602334005
http://www.gv.com/sprint

144 T. Sporsem et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Employee-Driven Innovation to Fuel Internal
Software Startups: Preliminary Findings

Anastasiia Tkalich® @, Nils Brede Moe®), and Tor Sporsem

SINTEF Digital, 7034 Trondheim, Norway
anastasiia.tkalich@sintef.no

Abstract. To keep up with the pace of innovation, established companies are
increasingly relying on internal software startups. However, succeeding with such
startups is a challenging task because internal startups need to find a balance
between the interests of the company and the interest of the innovator. One app-
roach that is argued to strengthen innovation in existing companies is employee-
driven innovation (EDI). This study explores this argument by examining two
internal software startups in companies aligned with the principles of EDI and
with a strong focus on innovation. The preliminary findings indicate that startups
with EDI are characterized by commitment towards innovation, cooperative ori-
entation, and autonomy. The findings suggest that internal software startups may
be strengthened when the parent companies practice EDI.

Keywords: Internal Software Startup - Internal Startup - Software Product
Innovation - Employee-Driven Innovation - Software-Intensive Business

1 Introduction

Building a successful software startup is difficult, and very few can copy the success
stories of companies like Uber, Airbnb, Spotify, and Zoom. Many software startups fail
before they reach their commercial potential [1]. In order to aggressively grow and scale,
they need to balance high-speed innovation in extreme uncertainty with issues such as
building entrepreneurial teams, acquiring a customer base, and operate in a sustainable
way [2]. Innovation is also the key for established software-intensive companies. To
stay competitive, they are increasingly adopting startup approaches within their own
environment, thus challenging the traditional view of startups as being independent.
Such internal startups [3] offer big companies flexibility and growth that can potentially
boost their software product innovation. 82% of respondents in 170 large companies
reported using some elements of the startup approach to accelerate their innovation [4].

However, driving internal software startups is challenging. Comparing to regular
startups, the leaders of internal startups do not always have a personal stake in the
final results, which makes it hard to maintain their motivation [3]. The startups may be
disconnected from other crucial parts of the organizations, such as software development
units, something that may hinder coordination and thus render the development process
unstable [5]. Finally, being a part of a larger corporation typically reduces the innovator”s

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 145-154, 2021.
https://doi.org/10.1007/978-3-030-88583-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_14&domain=pdf
http://orcid.org/0000-0001-7391-4194
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0002-5230-7480
https://doi.org/10.1007/978-3-030-88583-0_14

146 A. Tkalich et al.

autonomy because they need to take into account not only external customers but also
the corporate management [6]. In such a situation, the innovators may lose the freedom
to pivot and experiment, which is considered crucial for all startups [3].

One approach that is argued to strengthen innovation within existing companies
is known as employee-driven innovation (EDI) [7]. EDI assumes that all employees
have skills and experience that can increase the organization’s overall capacity to inno-
vate under favorable conditions, which is also aligned with one of the principles of Lean
Startup “Entrepreneurs are everywhere” [8]. Today s practices in software product inno-
vation imply that employees take an active role in driving new products [9]. One can
thus expect that companies with the increased role of employees in innovation will also
be more successful in internal software startups. Despite the seeming potential of EDI to
strengthen internal software startups, research on this topic is only starting to emerge in
software engineering. We, therefore, ask the following research question: How do com-
panies with employee-driven innovation (EDI) drive their internal software startups?
To answer, we are reporting preliminary findings from data collected in two Norwegian
companies with EDI and with a strong focus on innovation.

2 Related work

Traditionally, startups are understood as temporary organizations focused on innovative
products with little or no operative history, aiming to grow by aggressively scaling their
businesses [10]. With the increasing availability of software usage and the influence of
Lean Startups, software startups have become more and more widespread [11]. They
rapidly find scalable business models, build new products, and pivot if necessary, which
creates pressure for established software-intensive companies.

As aresponse, the established companies are increasingly adopting so-called internal
software startups. Just as regular (external) startups, internal software startups are risk-
taking and proactive initiatives that develop software under highly uncertain conditions
by constantly searching for repeatable and scalable business models [11, 12]. The main
difference is, however, that internal software startups are nested within the existing parent
companies [6]. Unlike external startups that rely on limited resources, internal startups
benefit from several existing resources (e.g., salary) [13]. Further, if the external startups
are mainly driven by the needs of their external customers, the internal startups also must
consider their corporate management [13]. However, various types of internal startups
may differ in how much they depend on their parent company. For example, internal
ventures are typically entirely supported by the resources from the parent company. In
contrast, spin-offs are based on the technology from the parent company but do not
entirely rely on it for the resources and eventually become independent new companies
[6].

To fuel the development of new products and businesses through internal software
startups, companies often rely on specific innovation strategies [14]. For example, Google
relies on practices like design sprints [9], where developers are given one day to showcase
a proof of concept they believe should be part of the product, whereas Atlassian applies
the method “20% Time” to allow more ambitious innovation projects to be undertaken
[14]. One common trait in the practices described above is that the employees’ own

Employee-Driven Innovation to Fuel Internal Software Startups: Preliminary Findings 147

initiative and entrepreneurial skills play a central role for the internal startups, which is
characteristic of employee-driven innovation (EDI) [7]. EDI is seen as an informal inno-
vation process [15], meaning that the employees are not formally assigned to innovation
tasks. Therefore the EDI approach is different from traditional research and develop-
ment (R&D) when novel products are developed by a dedicated formalized unit [7]. In
contrast, the EDI approach allows the innovation to be driven by employees from any
unit, and it is up to the employee whether to engage in the process or not.

Organizations that systematically engage in EDI seem to share a set of cultural char-
acteristics. Based on a study of 20 companies, Aasen et al. [15] have identified nine
shared features: commitment, cooperative orientation, pride, trust, tolerance, feeling of
security, development orientation, openness, and autonomy. In this study, we specifi-
cally focus on the three features that were central in our data: commitment, cooperative
orientation, and autonomy (see Table 1 for the definitions).

Table 1. Cultural characteristics of employee-driven innovation [15]

Cultural characteristics Description
Commitment High commitment towards innovation among employees
Cooperative orientation Basic assumption that there is agreement to cooperate between

management and employees

Autonomy Employees have a high degree of influence in relation to the
execution of various tasks

Even though it has been described how EDI is practiced in other contexts [15] and
the term has been adopted by the field of Information Systems [16], it is not sufficiently
studied in software engineering. Our study seeks to address this knowledge gap by
examining the companies that are both aligned with the principles of EDI and focus on
innovating through internal software startups.

3 Methods

To answer the RQ, we collected data from two cases of internal software startups in two
Norwegian companies (Table 2). We selected companies with internal software startups
and where employees were first involved in the innovation process by taking an informal
innovator role on their own initiative (EDI). Both companies are technology-intensive
with a strong focus on innovation. The first company is Iterate that was listed among the
100 best workplaces for innovators in 2020 [17]. The second company is MarComp (real
name suppressed for anonymity), which has since 2018 been actively training personnel
and management in software product innovation. In both companies, we conducted semi-
structured interviews and collected documents and meeting notes between September
2020 and April 2021. Different sets of questions were used to interview product man-
agers comparing to interviewing other stakeholders (e.g., CEO, innovation facilitators).
Examples of the questions for product managers (employees in charge of the startups)

148 A. Tkalich et al.

are “Please, tell us about your innovation project and how it arose,” “Who has been
the most important collaboration partner?”, “What has been the biggest challenge, and
how did you solve it?”. The interview guide for the other stakeholders consisted of ques-
tions like “How does your company captures ideas for new internal startups?”, “How
do you decide which ideas are good enough?”. In terms of the documents, we collected
slides, emails, and websites that reflected the nature of the startups, their history, and the
organizational context they operated in.

Table 2. Data sources

Parent firm Industry Startup Data sources # Details
Interviews 4 Product manager, CEO, Designer,
Customer
Iterate Venture- . . .
(Norway) builder/IT CalcTool Meeting notes 2 Informal meetings with CEO
Documents Website, product strategies

(slides), emails
Product manager (two times),

Intervi . . -
terviews 3 innovation facilitator
MarComp Maritime ShipDash ~ Meeting notes 5 Community of practice
Innovation program’s slides
Documents prog ’

emails

For the current analysis, we first created an overview of the cases based on the
contextual characteristics that could be compared across the cases. Then we identified the
data instances that had to with how the parent companies drove the startups. Finally, we
grouped the innovation strategies thematically in an attempt to categorize different types
of strategies. The data were analyzed by the first author, who continuously consulted the
other authors to validate the emerging results. The earlier version of the paper was also
shared with the key interviewees to collect their feedback, which was later incorporated
in the final version.

4 Results

We will describe the internal software startups and how the parent companies drove them
(innovation strategies). Key contextual characteristics of the case startups are presented
in Table 3.

Employee-Driven Innovation to Fuel Internal Software Startups: Preliminary Findings 149

Table 3. Overview of the internal software startups

Contextual characteristics CalcTool | ShipDash

Size of the parent company S L

Beginning of the startup job Q3,2020 | Q42019

Type of internal startup Spin-off | Internal venture
Dedicated employee (product manager) v v

The startup job is financed by the parent company Partially | v/

The product manager validates strategic decisions with the parent v

company

Size of the startup team 5 6

Innovation coaching v 4

Note. v/ = the characteristic is identified in the startup

CalcTool. The aim of the startup is to create a new software-enabled online tool
for construction engineers. Iterate (the parent company) functions as a venture builder
investing in software startups and additionally provides IT consultancy services. Apart
from the product manager, the CalcTool team consists of two software developers and two
designers from the same company who volunteered to join the initiative. Interested in the
idea, the team members agreed to use their own hour-budget sponsored by Iterate (“Iterate
time”) to work on the startup. The product manager expressed: “I tried to recruit others
and convince them to donate their Iterate time to me.” The team closely collaborates with
potential users (construction engineers) who provide input on the desired functionality.
The product manager emphasized: “It is very beneficial to be a part of the construction
engineernetwork.” The team’s intention is to create an independent spin-off where Iterate
can potentially become an investor. The team has full autonomy about the technical and
strategic decisions with no influence from Iterate. The startup’s product manager is a
full-time employee at the parent company and works with the startup only 10 hours per
month in addition to his spare time. He commented: “I am willing to invest my time in
this because I can get a share in the company that can come out.” Although Iterate is
only partially financing the startup job through “Iterate time,” this job is very encouraged
by the CEO. The startup receives support from Iterate in the form of:

e coaching - whenever the product manager requests it, the top manager acts as a coach.
This is a way for the managers to be involved in the startup without taking too much
control. The CEO commented: “If people feel that they have to validate things with
us [...] it will go too slow. But when there is something to show, we are glad to be in
a dialog”;

e networks — there is an external Slack channel on product management that is actively
used by many other employees inside and outside the company and is part of the
informal project management school driven by the executive manager. Earlier, the
product manager worked in another startup team in the parent company, which gave

150 A. Tkalich et al.

him experience in the startup work. He emphasized the importance of collaborating
with other employees: “It gives me confidence in being as I am.”;

e ceremonies - examples of the ceremonies are 1) breakfast meetings (employees meet
from 7.30 to 8.30 on certain days for pitching their entrepreneur ideas); 2) “While we
wait” conference on Wednesdays (11-12) where most experienced employees present
their current startups; 3) “Ship-it day” — A 24-hour hackathon that can (once per year)
be used for delivery in one’s own project;

e culture —innovation mindset is part of the organizational culture. Individual employees
are encouraged to create their own software startups and collaborate with each other to
spur creativity, experience, and motivation. A designer from another project expressed:
“In Iterate, we have a shared culture that helps us collaborate even if we never worked
with each other before.”

ShipDash is developing an algorithm-enabled tool for insight into ships’ emissions
based on various data sources (e.g., AIS, reported fuel data from vessels). The startup
is a part of an internal innovation program, and in November 2020, moved to the oper-
ational department for scaling. Since the startup is entirely supported by the resources
from the parent company, it can be categorized as internal venture [6]. Key strategic
decisions (e.g., scaling, extra financing, brand name) are validated with the parent com-
pany, which can slow down the development process. The product manager confessed:
“It is so challenging sometimes, because there are so many [managers] who have an
opinion on what we are building should be.” However, the innovation facilitators are
constantly working on expanding the product manager’s autonomy in the firm, thus
enabling faster user testing and pivoting. For example, sub-branding was introduced
to lower the threshold for the product managers to test their solutions with the existing
customers without harming the main company brand. The product manager of ShipDash
said: “Sub-branding is cool; it makes me want to innovate more [...]. Now I can have a
label [towards customers] that I am just testing this and learning”. Since August 2020
(building and scaling), the product manager is working on the startup most of her time
(85% on average), but in the past, the workload varied from 20% to 50%). This became
possible because her line manager accepted her working less on the main position in
favor of the startup. The parent company supports the startup by:

e coaching — provided by both in-house and external innovation coaches and internal
mentors (experienced leaders, domain experts, innovation facilitators); The coaches
and innovation facilitators also function as problem-solvers when the product man-
agers are stuck. One product manager commented during a meeting: “If we said, oh
we need to have more customer contacts, then the coach said Ok, I will ask this person,
and he will organize something”;

e networks — 1) customer relations managers gave access to test-users during the exper-
imentation phase; 2) stakeholders from marketing, customer relations, finance, oper-
ations, and software were frequently invited to take part in strategic and technical
decisions on both periodic (ceremonies) and non-periodic arenas (meeting requests):
3) informal networks with other product managers who shared their experience from
similar startups were also crucial. The product manager emphasized: “I relied so much

Employee-Driven Innovation to Fuel Internal Software Startups: Preliminary Findings 151

on my good colleagues who have been through similar projects. [...] I asked one of
them so many questions that he is now calling himself my mentor”;

e ceremonies — 1) Periodic “innovation board” meetings where domain experts evaluate
the startup’s progress; 2) “innovation guild” — meetings of a community of practice
driven by other product managers and innovation coaches to share experiences and
drive the internal startups;

e processes - using a stage-gate innovation process based on the Lean Startup approach,
the company encourages the employees to suggest ideas (Call for ideas) and then
develop a minimal viable product with high potential for scalability. The innovation
process also implies that the product managers have the freedom to conduct user
testing with the customers as part of the product development.

5 Discussion and Practical Implications

To answer the research question How do companies with employee-driven innovation
(EDI) drive their internal software startups? we have presented preliminary findings
from two cases of startups in companies with EDI. In both cases, the employees were
working with the startups only part-time, but the workload seemed to vary and generally
increased along with the startup’s maturity. Both parent companies were relying on a set
of innovation strategies to motivate their employees to engage in internal startups, such as
coaching, networks, and ceremonies. Whereas the larger company had a stronger focus
on how to structure the innovation processes, the smaller company focused more on
shared innovation culture. We will now discuss our findings against the cultural features
of EDI and earlier research on internal startups to understand the differences between
internal startups with and without EDI. Due to the limited format of the workshop paper,
we focus only on the three cultural features of EDI that were particularly central in our
findings: commitment, cooperative orientation, and autonomy [15].

Our case startups were characterized by a strong commitment to the innovation pro-
cess and outcome. The product manager of CalcTool was willing to work on the startup
in his spare time. The startup team contained other employees that were committed to
due to the shared innovation mindset in the company. In ShipDash the line managers
showed their commitment to the innovation process by reducing the product manager
workload, which freed them for the startup work. As a result, the product manager was
willing to take up a new role in the company, as the startup was gradually occupying
most of her work time. Earlier research on internal startups demonstrated that main-
taining the motivation of employees to innovate is limiting for internal startups [3]. Our
findings indicate that this problem can be solved by EDI that creates conditions where
both employees and managers are motivated to contribute to internal software startups.

Our results suggest that companies with EDI are actively promoting cooperation not
only between employees and management (as described earlier [15]) but also between
employees of different departments and externally with customers. Iterate was using a
plethora of ceremonies to promote networking among the employees where they could
pitch their ideas, receive feedback from more experienced innovators and recruit others
to the startup team. In ShipDash the parent company was also promoting the product
managers” networks with key customers, domain experts (marketing, finance, software),

152 A. Tkalich et al.

and more experienced product managers. Earlier research indicated that access to existing
networks of experts internally in the company is enabling for the internal startups [3].
External networks with customers or corporate partners are also important for startups
in general because they tend to depend on the innovation ecosystem around [2]. Based
on our findings, we can thus conclude that organizations with EDI can have a positive
effect on internal startups by promoting networks both internally and externally.

Finally, our findings indicate that achieving autonomy is central for internal soft-
ware startups in EDI-oriented companies but that it can also be challenged. Specifically,
CalcTool enjoyed high autonomy and did not have to validate the strategic decisions
with the management, whereas in ShipDash the product manager’s autonomy was lower.
However, MarComp was systematically working to increase the autonomy of the inno-
vators (e.g., freedom to experiment, introduction of sub-branding). Autonomy in the
decision-making process is crucial for internal startups because it speeds up develop-
ment and learning through experimenting [3]. Even though EDI-companies can differ in
the degree of the startups” autonomy (due to differences in the companies” size, financial
or legal concerns), such companies still acknowledge the importance of it and actively
work to increase it by different means.

6 Conclusions, Limitations, and Future Work

To gain more knowledge on internal software startups in companies with employee-
driven innovation (EDI), we have reported preliminary findings from two startups in
different companies. We found that both startups were characterized by high commit-
ment towards innovation, cooperative orientation, and autonomy, which we argued is
positive for internal software startups in general. One of the central limitations of this
preliminary study is that the data originates from Norwegian companies where the tra-
dition of employee involvement is historically strong [15]. In future work, we intend to
collect data from other countries and conduct an even more rigorous analysis of a larger
number of startups to acquire additional insight into the effect of EDIL

Acknowledgments. This research was supported by the 10xTeams project and the Research
Council of Norway through grant 309344.

References

1. Crowne, M.: Why software product startups fail and what to do about it. Evolution of software
product development in startup companies. In: IEEE International Engineering Management
Conference. pp. 338-343. IEEE (2002).

2. Abrahamsson, P., Bosch, J., Brinkkemper, S., Midche, A.: Software Business, Platforms,
and Ecosystems: Fundamentals of Software Production Research (Dagstuhl Seminar 18182).
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany
(2018).

Employee-Driven Innovation to Fuel Internal Software Startups: Preliminary Findings 153

11.

12.

13.

14.

15.

16.

17.

. Edison, H., Smgrsgard, N.M., Wang, X., Abrahamsson, P.: Lean Internal Startups for Software

Product Innovation in Large Companies: Enablers and Inhibitors. J. Syst. Softw. 135, 69-87
(2018). https://doi.org/10.1016/j.jss.2017.09.034

. Kirsner, S.: The Barriers Big Companies Face When They Try to Act Like Lean

Startups, https://hbr.org/2016/08/the-barriers-big-companies-face-when-they-try-to-act-like-
lean-startups, (2016).

. Sporsem, T., Tkalich, A., Moe, N.B., Mikalsen, M.: Understanding Barriers to Internal Star-

tups in Large Organizations: Evidence from a Globally Distributed Company. In: Proceedings
of 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE). ,
Virtual conference (2021).

. Edison, H., Wang, X., Jabangwe, R., Abrahamsson, P.: Innovation Initiatives in Large Software

Companies: A Systematic Mapping Study. Inf. Softw. Technol. 95, 1-14 (2018). https://doi.
org/10.1016/j.infsof.2017.12.007

. Hgyrup, S.: Employee-driven innovation and workplace learning: basic concepts, approaches

and themes. Transf. Eur. Rev. Labour Res. 16, 143—154 (2010). https://doi.org/10.1177/102
4258910364102

. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Currency (2011).

. The Design Sprint — GV, http://www.gv.com/sprint, last accessed 2021/01/08.
. Giardino, C., Wang, X., Abrahamsson, P.: Why Early-Stage Software Startups Fail: A Behav-

ioral Framework. In: Lassenius, Casper, Smolander, Kari (eds.) ICSOB 2014. LNBIP, vol.
182, pp. 27-41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08738-2_3
Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: A systematic mapping study. Inf. Softw. Technol. 56,
1200-1218 (2014). https://doi.org/10.1016/j.infsof.2014.04.014

Melegati, J., Guerra, E., Wang, X.: Understanding Hypotheses Engineering in Software Star-
tups through a Gray Literature Review. Inf. Softw. Technol. 133,(2021). https://doi.org/10.
1016/j.infsof.2020.106465

Edison, H., Wang, X., Abrahamsson, P.: Lean startup: why large software companies should
care. In: Scientific Workshop Proceedings of the XP2015. pp. 1-7. Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2764979.2764981.

Moe, N., et al.: Fostering and Sustaining Innovation in a Fast Growing Agile Company. In:
Dieste, Oscar, Jedlitschka, Andreas, Juristo, Natalia (eds.) PROFES 2012. LNCS, vol. 7343,
pp. 160-174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31063-8_13
Aasen, T.M., Amundsen, O., Gressgard, L.J., Hansen, K.: Employee-driven innovation in
practice - Promoting learning and collaborative innovation by tapping into diverse knowledge
resources. LifeLong Learn. Eur. 4, (2012).

Opland, L., Jaccheri, L., Pappas, 1., Engesmo, J.: Utilising the innovation potential - a system-
atic literature review on employee-driven digital innovation. In: 29th European Conference
on Information Systems (2021).

Fast Company: Best Workplaces for Innovators 2020, https://www.fastcompany.com/905
27870/best-workplaces-for-innovators-2020, last accessed 2021/07/08.

https://doi.org/10.1016/j.jss.2017.09.034
https://hbr.org/2016/08/the-barriers-big-companies-face-when-they-try-to-act-like-lean-startups
https://doi.org/10.1016/j.infsof.2017.12.007
https://doi.org/10.1177/1024258910364102
http://www.gv.com/sprint
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1016/j.infsof.2014.04.014
https://doi.org/10.1016/j.infsof.2020.106465
https://doi.org/10.1145/2764979.2764981
https://doi.org/10.1007/978-3-642-31063-8_13
https://www.fastcompany.com/90527870/best-workplaces-for-innovators-2020

154 A. Tkalich et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Towards a Framework to Guide
the Creation of Development Practices
for Software Startups

Jorge Melegati(®™)

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
jorge@jmelegati.com

Abstract. The research on software startups has increased lately, focus-
ing on describing how these companies’ unique context influences devel-
opment practices. The next step for research is the creation of specific
practices for these companies grounded in scientific results. An obsta-
cle in this path is which dependent variable these novel practices should
improve. A natural answer is these companies’ success. This position
paper reviews the literature on new ventures and startups’ success to
show that telling if a startup is successful or not is a complex issue.
As a solution to this problem, this paper proposes a conceptual frame-
work, suggesting that novel practices should improve success determi-
nants or reduce inhibitors rather than focusing on the startups’ suc-
cess. Three examples illustrate the framework’s use: hypotheses engi-
neering, microservices, and BizDev. The identification of contributors
and inhibitors for success of software startups could enrich the framework
and indicate possible avenues for the creation of development practices
specific tailored for these companies.

Keywords: Software startups - Startup success - Software success -
Software engineering practices

1 Introduction

Recently, the research in software startups has increased in number and rigor [4],
focusing on describing the consequences of this unique context to software engi-
neering [15]. For instance, Giardino et al. [11] proposed the Greenfield Startup
model to describe software development in startups as a sped up process leading
to the consequence of accumulated technical debt. However, the creation of spe-
cific development practices tailored to the unique context these companies face is
still in its infancy [15]. A natural question towards this goal is what the dependent
variable is, i.e., which aspects these novel practices should improve to be consid-
ered useful. Besides guiding the creation of novel practices, a better definition of
what is a successful startup allows the investigation of what makes some startups
achieve better results allowing others teams to replicate practices employed.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 155-164, 2021.
https://doi.org/10.1007/978-3-030-88583-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_15&domain=pdf
http://orcid.org/0000-0003-1303-4173
https://doi.org/10.1007/978-3-030-88583-0_15

156 J. Melegati

Software startups are companies searching for a scalable business model for
a new software-intensive product [19]. Hence, a logical answer to the dependent
variable question is success. However, this answer leads to at least two other
questions: what is success for a software startup and to which extent it could be
influenced by software development.

This paper explores possible answers to these two questions using results
from the literature and examples of failed startups. Based on a review of the
literature about success of new ventures and startups, and its determinants, I
argue the complexity to define and to assess what a successful startup is, but
acknowledge the existence of several contributors and inhibitors to success. Thus,
I propose a conceptual framework to guide the creation and evaluation of specific
software development practices to startups. According to the framework, instead
of focusing on success, studies should aim to improve a contributor or reduce
an inhibitor without negatively contributing to other aspects. To illustrate the
framework use, I employ it to propose the evaluation of practices that, although
not specifically proposed for software startups, could be employed in this context:
hypotheses engineering, microservices, and BizDev.

2 Success of Software Projects

A logical approach to guide the creation of development practices for software
startups is to distinguish the software project, or “technical,” success from the
business outcomes. However, this dichotomy is contrary to the literature on soft-
ware success. The discussion of software project success and failure is a complex
argument and to present it in detail would not fit this paper. Nevertheless, an
overview, presented below, is essential to the flow of argument.

Ralph and Kelly [17] investigate the success concept in the software engineer-
ing context. First, they observe how the understanding of this concept evolved in
project management literature. They acknowledge that, for a long time, a model
used to describe such a phenomenon was the Iron, or Project, Triangle [3]. This
metaphor postulates that the quality of a product (inner of the triangle) is con-
strained by three vertices: scope, budget, and schedule [1]. Then, the authors
describe a more comprehensive taxonomy proposed by Shenhar et al. [18], which
characterizes success through four dimensions: project efficiency, impact on the
customer, business success, and preparing for the future. Finally, they inter-
viewed 191 design professionals, where 68 were in the software industry, to
investigate the practitioners’ perceptions on success. The results indicated that
professionals understand software engineering success “as a multidimensional
variable comprising project efficiency, artifact quality, market performance, and
stakeholder impacts over time.”

Therefore, software project success does not concern only the quality, scope,
and schedule of the delivered software system. Following Shenhar et al.’s tax-
onomy, other measures that seem especially important for software startups,
are, for instance, fulfilling customer needs, commercial success, and creating a
large market share. As Ralph and Kelly [17] observe, practitioners perceive the

Towards a Framework to Guide the Development of Practices for Startups 157

existence of a client who has problems to solve or needs to be fulfilled. Software
startups face an even harder challenge: they must find not only the problems but
even the customers. Some types of pivots, strategical changes on a startup’s busi-
ness model or product [2], support such an argument. For instance, a customer
segment pivot is a shift from one customer segment to another [2]. Zoom-in piv-
ots occur when a single feature becomes the whole product and zoom-out pivots,
when a product becomes only a feature of a bigger solution.

In summary, the success of a software system goes beyond developing a set
of features in a determined period of time using a prescribed budget. It also
means fulfilling customer needs and reaching commercial success. Therefore, in
the context of software startups is natural to expect the company success. The
next section presents a review on this aspect.

3 Success of Startups

Some studies in the literature focused on the success of startups, either to learn
from them, e.g. [21], or to predict them, e.g., [7]. To do so, researchers had to
define what a successful startup is. Zaheer et al. [21] considered companies that
had achieved one or more of the following: continued survival, a high sales volume,
a stock exchange listing, or acquisition. For Dellermann et al. [7], it was sufficient
to have received a series A funding, that is, “a venture capital backed funding that
allows angel investors to exit the startup.” A quick search on specialized media
shows that these criteria for success are spread among practitioners.

However, these aspects are problematic in two ways. First, it is hard to pre-
cisely assess them either by the time needed or by the levels distinguishing different
outcomes. For instance, how long should a startup run to be considered success-
ful? Or what is a high volume of sales? Second, and most important, there are
several companies that featured these criteria but were considered failures at the
moment of assessment or later. A criterion based on stock exchange listing does
not work, for instance, when analyzing startups that failed during the dot-com
bubble. Another issue with adopting this rule is a recent trend to stay private
rather than becoming public [9]. Startups can decide to not run an Initial Pub-
lic Offering (IPO) to, among other reasons, wait for a better moment or to avoid
the compliance required as a public company. Regarding the acquisition criterion,
a counterexample is the concept of acquihire, defined by the Cambridge Dictio-
nary! as: “to acquire (= buy) a company in order to use its employees’ skills or
knowledge, rather than for its products or services.” Thus, a startup whose prod-
uct failed might still be acquired by a larger company as a way to hire all team
members at once. With respect to investments received, a piece of evidence against
the criterion comes from a study by Cantamessa et al. [5], that investigated the
failure of 214 startups based on postmortems. Among these companies, 14% failed
after more than five years operating and, in this cohort, startups closed an average
of 2.16 round of investments, receiving, in average, 16.39 million dollars.

! https://dictionary.cambridge.org/dictionary /english /acquihire.

https://dictionary.cambridge.org/dictionary/english/acquihire

158 J. Melegati

It is beyond the scope of this paper to thoroughly define what a successful
startup is. However, this brief discussion showed the complexity of the success
concept for startups. A reliable assessment of this aspect requires a thorough,
holistic inspection of the company, combining several aspects of the business
and the product, to overcome the deficiency of employing a single criterion [12].
Besides the difficulty to reliably judge which startups are successful, there is an
even major concern to software engineering research in this context: to which
extent development techniques could influence the success of these companies.

Some studies focused on identifying determinants of success in high-tech new
ventures. Based on a survey with 27 venture capitalists, Kakati [12] concludes
that the critical determinants are entrepreneur quality, resource-based capabil-
ity, and competitive strategy. Besides that, an interesting result is the distinc-
tion between winning and qualifying criteria. Winning aspects are those “which
directly and significantly contribute to wining business,” while qualifying criteria
may not be “major determinants of success,” but “any reduction |...] will be par-
ticularly serious if it drops below the critical level.” The authors also performed
a principal component analysis to identify factors that could explain the vari-
ance from success and failure, finding nine factors. The first factor, “incapability
risk,” is related to the capabilities needed to succeed. The second, “inexperience
risk,” captures the lack of track record and market knowledge. The third, “prod-
uct risk,” is the first that could be associated to software development. In the
case of novel ideas, as the case of software startups, the authors acknowledge
that “there is a risk of whether the product can be produced and commercial-
ized” and even “technically elegant products may fail to exploit the untapped
market.”

A similar result comes from the investigation of startups’ failures. These
studies focus on failures rather than success since, by making these issues evi-
dent, their mitigation is easier, and more startups could be successful. In their
investigation of startup failures, Cantamessa et al. [5] observed a “typical failure
pattern related to the Business Development process.” The authors analyzed 214
postmortems and identified one or more reasons to failure. The first two aspects
were wrong business model and the lack of business development, occurring in
35% and 28% of the cases, respectively. Behind these issues, the authors observe
“a high focus on the product or service by the management and founders, but
an insufficient attention to commercial development.” After the third position
being running out of cash, happening in 21% of the cases, the fourth aspect
is lack of product/market fit, in 18% of the cases, another issue related to the
business development.

A natural reaction to this conclusion is that founders should focus on improv-
ing the business development process and the software engineering team should
care after the business elements are set. However, experimentation, the basis of
the business development usually advocated for startups, where product assump-
tions are taken as hypotheses and tested, represents a unique problem for soft-
ware engineering, since currently available methods for software development
revolve around requirements obtained with varying degrees of customer contact

Towards a Framework to Guide the Development of Practices for Startups 159

frequency [15]. This uniqueness means several consequences to software develop-
ment. First, since experiments are based on hypotheses and not in requirements
as conventional practices, requirements engineering practices might not be the
most suitable to the this context. Second, the heavy use of experiments and the
probable consequence of the implemented features influence the software sys-
tem’s architecture and design. Bad choices could contribute to technical debt
accumulation and compromise the system capacity to handle larger loads or
the team ability to maintain the code or add new features during scaling the
product. Third, startups are characterized by small teams where members often
perform multiple and diverse tasks. A software developer in a startup has a
higher probability to be involved in other tasks than programming.

In summary, defining whether a startup is successful or not is a complex
endeavor and represents a challenge to studies aiming to either learn from these
companies or to create novel techniques to improve these companies’ chance of
success. A more viable option is to focus on improving (or detecting the existence
of) determinants of success and reducing aspects that increase the risk of failure.
To summarize this idea, the next section proposes a conceptual framework to
guide the research on practices specific for software startups.

4 Conceptual Framework

Based on the review above, it is complex and, often, dubious to assess if a startup
is successful or not. This section presents a conceptual framework to support
researchers, or practitioners, interested in developing, or evaluating, practices to
software startups. It is essential, though, to highlight that this framework does
not aim to answer what success is for these companies.

Research has identified many contributors and inhibitors to success, that
is, aspects influencing the success of a startup either positively (contributors)
or negatively (inhibitors). Similarly, several other aspects, including software
engineering practices, could influence positively (or negatively) these antecedents
of success. Clearly, not all of them could be influenced by software development
practices. For instance, changes on legal or economical frameworks might derail
a startup’s business model. To simplify the framework, I did not explicitly model
aspects that could act as a contributor or inhibitor depending on the level. These
aspects could be modeled in a way to fit this framework without losing generality.

Figure 1 depicts the framework using arrows to represent the influence of
several aspects, represented by boxes, including software development practices
to guide the creation of practices specific to software startups. The labels asso-
ciated with the arrows tells if the influence is positive (represented by the ‘+’
arrow), negatively (‘—’ arrow), or not (‘0’ arrow).

To use the framework, a researcher, aiming to create a novel technique, should
identify which aspects associated, either positively or negatively, to startup suc-
cess that activity could influence. Then, the researcher should demonstrate that
the new technique improves contributors, reduce inhibitors, or both. The pro-
posed technique should also lead to no, or limited, negative consequences or the

160 J. Melegati

Software Engineering

Activity N

Contributor 1

Inhibitor 1

Success

| Other aspect 1

Inhibitor N

| Other aspect N

Fig. 1. A conceptual framework to guide the creation of practices for software startups.

researcher should, at least, acknowledge this issue and point out this problem
as an issue to be solved. In this initial version of the framework, I do not list
possible contributors and inhibitors to success but, in future work, this addition
could be achieved by reviewing the literature on new ventures and inspecting
failure cases. This list creation process should also consider the different stages
a startup faces [13]: inception, stabilization, growth, and maturity. Some con-
tributors and inhibitors could be associated with goals of specific stages. For
instance, in the stabilization stage, the startup should prepare for scaling in the
next stage. If a technique is proposed to be used in this stage, it should not have
negative consequences to this goal.

5 Some Examples of the Framework Use

To exemplify the framework use, this section describes how researchers could
evaluate if three proposed practices from different areas of software engineering
are useful for software startups based on their influence on a contributor and on
an inhibitor to success. Based on the review presented in Sect.3, the business
development speed is a contributor, an aspect positively associated to startup
success. On the other hand, the accumulated technical debt could act as an
inhibitor, that is, negatively associated, to success, especially when a startup
reaches the scaling stage.

Hypotheses Engineering [16] is a proposal to support experiment-driven
software development, as a parallel to Requirements Engineering in the con-
ventional, requirements-driven software development. Rather than describing
features to be implemented, hypotheses define uncertain questions about the
business model or other software product aspects that the team could assess
with an experiment. Since Requirements Engineering’s goal is to precisely define
the problem the software should solve [6], software startups represent a unique
challenge to development. A customer on whom to rely to elicit requirements, a

Towards a Framework to Guide the Development of Practices for Startups 161

feature present in traditional and agile methodologies alike [15], lacks in the con-
text of software startups. Therefore, Hypotheses Engineering could be a valuable
practices for software startups.

Following the framework, an evaluation of the Hypotheses Engineering for
software startups could assess, for instance, the speed with which startups adjust
their plans based on information about the customer and market rather than
the companies’ success.

However, although the use of experiments can reduce technical debt by not
building unnecessary features, it could also increase the technical debt [20]. For
instance, one type of experiment is a prototype to deliver features as soon as pos-
sible to get customers’ feedback. However, these quick solutions probably lead
to high levels of technical debt. Therefore, an evaluation of Hypotheses Engi-
neering for software startups should also assess the influence of these practices
to technical debt.

Microservices is “an approach to developing a single application as a suite
of small services, each running in its own process and communicating with
lightweight mechanisms” [14]. It could be useful for a fast changing product
as a way to isolate features, remove them if not useful, facilitate the software
modularization, and scale. Using the framework, rather than assessing success,
the employment of microservices should facilitate business experimentation while
keeping technical debt low.

BizDev is a role proposed by Fitzgerald and Stol [10], as a closer inte-
gration between business and software development functions, a parallel to the
well-known DevOps phenomenon. DevOps is “an organizational shift in which
[...] cross-functional teams work on continuous operational feature delivery” by
employing “automated development, deployment, and infrastructure monitor-
ing” [8]. That is, instead of separated teams, development and operations work
together in the delivery of features. Similarly, BizDev proposes collaboration
between development and business strategy [10]. This new role could be an
answer for the biggest issue for professionals in software startups: the mindset
shift from strictly developing a feature defined by customers or other stakehold-
ers to an active participant in the business development. For instance, several
pivots mean partial or total modifications to software [2]. To evaluate the effec-
tiveness of this new role, a researcher could evaluate if it indeed increases the
speed on which the startup performs business development.

Figure2 summarizes how the framework could be used to evaluate these
three proposals when applied in software startups. Rather than measuring the
companies’ success, using or not these techniques, researchers could test, for
instance, if they improve the speed of business development without increasing
the technical debt.

162 J. Melegati

Software Engineering

Hypotheses + N
Enginnering Business
10/ development speed
+
.
Success
10/ -

Fig. 2. Three examples applying the framework.

6 Conclusions

Researchers focused on improving software engineering practices for startups
depend on clearly defining which dependent variable to improve. Although suc-
cess is a natural answer, to tell if a software startup is successful or not is a com-
plex task, requiring an holistic analysis of the company. This issue also hinders
research aiming to learning from successful cases. To support these researchers,
this paper reviews the literature to argue that success is complex and studies
should focus on improving determinants and reducing inhibitors of success. To
operationalize this argument, I propose a conceptual framework and, to illus-
trate its use, I gave three examples of how it could help the evaluation of novel
practices from diverse areas of software engineering in startups.

The argument presented in this paper is not essentially new and a simi-
lar one has been implicitly employed in software engineering research. That is,
researchers evaluate proposed techniques against diverse aspects rather than
software project success. However, the uniqueness of software startups induces
the use of success as a final goal, or a reference, to the development of new
practices. This paper argued that this choice is not practical. Besides that, it
showed that focusing on diverse aspects than those generally used in software
engineering research might be useful as the case of business development. This
paper is an initial proposal and, in future work, we will develop the framework
further identifying contributing factors from the literature and inhibitors from
failed startup cases which are abundantly available in Internet.

References

1. Atkinson, R.: Project management: cost, time and quality, two best guesses and
a phenomenon, its time to accept other success criteria. Int. J. Project Manag.
17(6), 337-342 (1999)

2. Bajwa, S.S., Wang, X., Nguyen Duc, A., Abrahamsson, P.: “Failures” to be cel-
ebrated: an analysis of major pivots of software startups. Empirical Softw. Eng.
22(5), 2373-2408 (2017)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Towards a Framework to Guide the Development of Practices for Startups 163

Bano, M., Zowghi, D., da Rimini, F.: User satisfaction and system success: an
empirical exploration of user involvement in software development. Empirical
Softw. Eng. 22(5), 2339-2372 (2017)

Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, 1.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144, 255-274
(2018)

Cantamessa, M., Gatteschi, V., Perboli, G., Rosano, M.: Startups’ roads to failure.
Sustainability 10(7), 2346 (2018)

Cheng, B.H.C., Atlee, J.M., Joanne, M.: Research directions in requirements engi-
neering. In: Proceedings of the 2007 Future of Software Engineering, FOSE 2007,
pp- 285-303 (2007)

Dellermann, D., Ebel, P.; Lipusch, N., Popp, K.M., Leimeister, J.M.: Finding
the unicorn: predicting early stage startup success through a hybrid intelligence
method. In: ICIS 2017: Transforming Society with Digital Innovation (2018)
Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94-100 (2016). https://doi.org/10.1109/MS.2016.68

Ewens, M., Farre-Mensa, J.: The Evolution of the Private Equity Market and the
Decline in IPOs (2017)

Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176-189 (2017)

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: the greenfield startup model. IEEE
Trans. Softw. Eng. 42(6), 585-604 (2016)

Kakati, M.: Success criteria in high-tech new ventures. Technovation 23(5), 447—
457 (2003)

Klotins, E., et al.: A progression model of software engineering goals, challenges,
and practices in start-ups. IEEE Trans. Softw. Eng. 47(3), 498-521 (2021)

Lewis, J., Fowler, M.: Microservices (2014). https://martinfowler.com/articles/
microservices.html. Accessed 30 June 2021

Melegati, J., Chanin, R., Sales, A., Prikladnicki, R.: Towards specific software
engineering practices for early-stage startups. In: Paasivaara, M., Kruchten, P.
(eds.) XP 2020. LNBIP, vol. 396, pp. 18-22. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58858-8_2

Melegati, J., Wang, X., Abrahamsson, P.: Hypotheses engineering: first essen-
tial steps of experiment-driven software development. In: IEEE/ACM Joint 4th
International Workshop on Rapid Continuous Software Engineering and 1st Inter-
national Workshop on Data-Driven Decisions, Experimentation and Evolution
(RCoSE/DDrEE), pp. 16-19 (2019)

Ralph, P., Kelly, P.: The dimensions of software engineering success. In: Proceed-
ings of the 36th International Conference on Software Engineering - ICSE 2014,
no. 1, pp. 24-35. ACM Press, New York (2014)

Shenhar, A.J.; et al.: Project success: a multidimensional strategic concept. Long
Range Plan. 34(6), 699-725 (2001)

Unterkalmsteiner, M., et al.: Software startups - a research agenda. e-Inform. Softw.
Eng. J. 10(1), 1-28 (2016)

Yli-Huumo, J., et al.: The Relationship Between Business Model Experimentation
and Technical Debt, vol. 210, pp. 17-29 (2015)

Zaheer, H., Breyer, Y., Dumay, J., Enjeti, M.: Straight from the horse’s mouth:
founders’ perspectives on achieving ‘traction’ in digital start-ups. Comput. Hum.
Behav. 95, 262-274 (2019)

https://doi.org/10.1109/MS.2016.68
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-030-58858-8_2
https://doi.org/10.1007/978-3-030-58858-8_2

164 J. Melegati

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

2nd Workshop on Agility with Micro
Service Programming

®

Check for
updates

Towards Integrating Blockchains
with Microservice Architecture Using
Model-Driven Engineering

Simon Trebbau®™), Philip Wizenty®, and Sabine Sachweh

IDiAL Institute, University of Applied Sciences and Arts Dortmund,
Otto-Hahn-Strafie 27, 44227 Dortmund, Germany
{simon.trebbau,philip.wizenty,sabine.sachweh}@fh-dortmund.de

Abstract. Blockchain presents a feasible method to persist immutable
information in a distributed ledger to improve the level of authentication
and trust. Moreover, smart contracts enable the automated execution of
any contract concluded between participants of the Blockchain network.
On the other hand, Microservice Architecture (MSA) is a novel approach
towards service-based scalable applications. In our paper, we present an
approach based on Model-Driven Engineering (MDE) that aims to facil-
itate the integration process of Blockchains into MSA-based applications
in order to benefit from the advantages attributed to Blockchains.

Keywords: Microservice Architecture - Model-Driven Engineering -
Code generation - Distributed ledger - Blockchain + Smart contract

1 Introduction

Blockchain constitutes a technology for information exchange and transactions
that require a specific level of authentication and trust [17]. Additionally, a
blockchain reduces the risk of data manipulation, system failure, and dependency
at a single system component [9]. In recent years, blockchains emerged as an
important and influential technology for businesses and society [9].

Moreover, modern blockchain technologies like Ethereum' also supports the
usage of smart contracts [17]. Smart contracts act as autonomous agents in the
blockchain network and contain program code that executes by a specific message
from a user’s transaction or another smart contract. Typical use cases for smart
contracts are financial payments or contractual agreements.

Microservices Architecture (MSA), in which services are used as
autonomously software building blocks, shares several similarities with the con-
cept of smart contracts [16]. Both provide their functionalities over a specific
interface. Also, they manage their own data and have an isolated deployment
environment, e.g., a Kubernetes? pod or an Ethereum Virtual Machine (EVM).

! https://ethereum.org/.
2 https://kubernetes.io/.
© The Author(s) 2021

P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 167-175, 2021.
https://doi.org/10.1007/978-3-030-88583-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_16&domain=pdf
http://orcid.org/0000-0002-3588-5174
https://ethereum.org/
https://kubernetes.io/
https://doi.org/10.1007/978-3-030-88583-0_16

168 S. Trebbau et al.

MSA as well as smart contracts represent complex distributed systems. Further-
more, smart contracts can provide similar functionalities similarly to microser-
vices, e.g., individual data storage and API [4]. Therefore, they can be used in
a MSA application to increase authentication and trust [17].

This paper introduces an Model-Driven Engineering [2] (MDE)-based app-
roach to ease the integration of blockchain technology into MSA-based appli-
cations. By using models as first class citizens in the development process, we
abstract from implementation details to reduce the overall complexity. Addition-
ally, the presented approach includes the usage of code generators to support the
development process and increase code quality.

The remainder of this paper is structured as follows. Section 2 gives a brief
introduction to blockchain technology and MDE of MSA. Section 3 introduces
our MDE-based approach for the integration of blockchain technology into MSA.
We validate the approach in Sect. 4. Section 5 provides related work. This paper
concludes and outlines future work in Sect. 6.

2 Background

Blockchain. A blockchain is a shared digital and distributed ledger [10], which
stores transaction data on multiple network nodes without a central party and
according to an agreed policy. The involved nodes connect directly over a peer-to-
peer network. Executed transactions are combined into blocks, which are linked
together using cryptographic hash values [8]. For contributing a transaction to
the blockchain, it is necessary to build consensus among all participants. The
consensus is formed via a consensus algorithm [17] that synchronizes the dis-
tributed ledger on the different participant nodes.

Generally, a smart contract is an automated transaction protocol, which exe-
cutes the terms of a contract [17]. Therefore, a smart contract represents a
fragment of source code that could be executed automatically on a dedicated
environment on the blockchain and perform various functionalities, e.g., a finan-
cial transaction or report at the end of an electric vehicle charging process.

Model-Driven Engineering of Microservice Architecture. A well researched app-
roach to enable MDE for MSA is the Language Ecosystem for Modeling Microser-
vice Architecture® (LEMMA) [11]. LEMMA provides a set of modeling languages
and model transformations that are built using the Eclipse Modeling Framework
(EMF) [15]. LEMMA utilizes methods and techniques from MDE to reduce
the complexity of MSA engineering for various stakeholder groups, e.g., domain
experts and microservice developers. The modeling languages provide the pos-
sibility to create models as an artifact in the software engineering process for
enabling code generation and reasoning about microservice architectures.
LEMMA’s Domain Data Modeling Languages (DDML) [13] enables the mod-
eling of domain concepts and addresses the domain viewpoint on microservice

3 https://github.com/SeelabFhdo/lemma.

https://github.com/SeelabFhdo/lemma

Integrating Blockchain with MSA Using MDE 169

architectures. DDML is used by domain experts and service developers to cap-
ture domain concepts in models and supports Domain-Driven Design (DDD) [5]
patterns such as Entity, Aggregate, and Repository.

The Technology Modeling Language (TML) [13] provides a means for ser-
vice operators and developers to construct models targeting technology-specific
information for service implementation and operation. Therefore, TML allows
capturing and modularization of information regarding programming languages,
frameworks, and deployment technologies. Additionally, technology aspects [11]
are supported as a concept for the integration of technology-specific metadata,
e.g., database mappings or microservice interaction configuration, into the mod-
els.

LEMMA’s Service Modeling Language (SML) [13] focuses on the service
viewpoint on MSA. SML enables service developers to construct models for
specifying the APT of a microservice. In detail, the SML allows to specify inter-
faces including their data structure as well as interface dependencies on other
microservices. To this end, SML models are able to import previously defined
DDML models as well as other SML models.

The Operation Modeling Language (OML) [13] of LEMMA addresses the
operation viewpoint on MSA and is used by service operators. OML encapsu-
lates concepts for service deployment, e.g., deployment technologies, operation
environments, service-specific configurations, and dependencies to infrastructure
components.

In addition to the modeling languages, LEMMA also provides means to pro-
cessing resulting models. Firstly, LEMMA contains intermediate metamodels and
intermediate model transformations [7] to facilitate the processing of the con-
structed models. Based on these intermediate models, LEMMA includes a Model
Processing Framework to ease the development of model processors like code
generators, model analyzers, and model visualization.

3 A Model-Based Approach to Integrate Blockchain with
Microservice Architecture

Our approach focuses on the research context of supporting the integration pro-
cess of blockchain technology for MSA. For this purpose, we use MDE to abstract
from implementation details to reduce the overall complexity by using microser-
vice architecture viewpoint-specific modeling languages. Precisely, our approach
provides the functionalities to realize the integration process of blockchain tech-
nology utilizing LEMMA’s modeling languages.

With a view to MSA and blockchains as well as their potentially combi-
nation, some challenges arise. A specific challenge in MSA is the deployment
and operation of the microservices [1], which also applies to blockchain because
of their similarities. Furthermore, the handling of smart contracts also can be
a challenging process because they need to be integrated into the application
and blockchain [3]. Based on these challenges, the question is how can MDE be
used in suitable places to abstract frequently occurring and possibly complex
processes.

170 S. Trebbau et al.

LEMMA-Based Integration of Blockchain Functionality into Microservice Archi-
tecture. Our approach uses LEMMA’s modeling languages (cf. Sect.2) to
abstract from implementation details in MSA development to support the devel-
opment process. Moreover, we use code generators to generate multiple artifacts,
e.g., Java classes and configuration files. The presented approach focuses on the
generation of blockchain-related artifacts like implementing the connection to
the blockchain network. Figure 1 depicts our approach and the relation between
the different LEMMA models, the code generators, and generated artifacts.

Service Operator

Domain Expert Microservice Developer Service Operator/

Developer
4

ol 4 Lo M 2

| Domain Model ———-I Service Model |———>|Techno|ogy Model ~——-| Operation Model
imports /:L\ imports imports i
- imports
input
input

v Ethereum
@ Java Codegenerator and Generator
Web3j Genlet

Blockchain Microservice Data Structures Blockchain Connection
Configuration Interfaces Properties

Fig. 1. LEMMA-based approach for integration of blockchain functionality into MSA.

The presented approach divides into three consecutive stages. Stage 1 com-
prises an agile modeling process by the stakeholder groups of MSA engineering.
They collaborate to construct the models, which describe the MSA [11]. This
approach considers all groups and their models, but with an increased focus on
the models dealing with blockchain aspects of the application. It includes the
Domain Model for data structures, the Service Model for configuration aspects
or API definitions, the Operation Model for blockchain connectivity property
initialization, and a Technology Model that defines Ethereum specific aspects
like network properties.

Integrating Blockchain with MSA Using MDE 171

Stage 2 utilizes the created models from Stage 1 as an input for the model
processing. The Java Base Generator and Web3j Genlet use the Domain and
Service Model to generate Java source code. Genlets are code generation mod-
ules introduced by LEMMA to generate individual source code for passed domain
model and service model [12]. Additionally, the Ethereum Generator utilizes
the Operation Model to derive blockchain service configuration properties for
establishing the connection to a blockchain. Both the Web3j Genlet and the
Ethereum Generator represent defined extensions of the LEMMA framework,
which also could be extended by additional generation functions in the further
if necessary.

Stage 3 shows the code generators created artifacts for the development pro-
cess of the MSA application. The Blockchain Configuration configures com-
munication with the blockchain network using the Web3j* library. It is generated
as a separate artifact by the Web3j Genlet. It includes predefined java methods
for connection establishment, transaction management, and adjustable methods
for deployment and loading of smart contracts. Additionally, the Microservice
Interfaces and Data Structures are generated based on the Domain Model
and Service model to support the development process. The Microservice
Interfaces can be used to trigger a smart contract by using the methods pro-
vided via the blockchain configuration artifact. Moreover, to enable the deploy-
ment process of the microservice in association with blockchain, the Ethe-
reum Generator creates service-specific Blockchain Connection Properties
for connecting the microservice to the blockchain.

4 Validation

This section validates the presented LEMMA-based approach for the integration
of blockchain for MSA. For this purpose, we first introduce a case study as a
basis for validation, followed by the results of our approach.

Case Study. To validate our approach, we introduce the PuLS® Park and Charge
platform as a case study. The platform is being developed using LEMMA and a
model-first approach and aims, among other things, to demonstrate the feasibil-
ity of our approach to ease the integration of blockchain functionality and MSA
technologies in the context of MDE. The PulLS Park and Charge platform itself
is being developed as part of an ongoing research project that aims to increase
the availability of charging infrastructure for electric cars in inner-city areas.
For this purpose, the platform allows citizens to share their private charging
infrastructure with others. The architecture of the platform, which provides the
sharing functionalities, is depicted in Fig. 2.

* https://github.com/web3;j.
5 https://parken-und-laden.de/.

https://github.com/web3j
https://parken-und-laden.de/

172 S. Trebbau et al.

PuLS Microservice Application)

Infrastructure Microservices

«Microservice» E «Microservice» E «Microservice» E «Microservice» E
API Gateway Service Discovery Kafka KeyCloak
/N

«uses»
6 «Microservice» E «uses» «uses» «uses»
Ul-Service
Legend:
«Microservice» E «Microservice» E «Microservice» E
ParkAndChargeService EnvironmentService BookingService

@ «Database» E
Database
«uses» «uses»
i) E «uses» «uses»
«Microservice»
Infrastructure

. . E «Database» E «Database» E «Microservice» E
CF>«Microservicen MongoDB MariaDB thereumBlockchain

Functional

Fig. 2. Microservice Architecture of the PuLS case study application.

The PuLLS platform consists of three functional microservices. The ParkAnd-
ChargeService is responsible for sharing and managing the charging infrastruc-
ture for the citizen. To monitor the city’s environmental data, the Environment
Service collects data from IoT devices to keep track of particulate matter pol-
lution. Bookings of the charging stations are realized via the BookingService.
For ensuring the integrity of the bookings, the information is persisted in a
blockchain. Storing the bookings increases citizens’ trust, as the information
can no longer be changed in the blockchain, ensuring that the process of using
the charging stations is secured. The intention to incorporate blockchain at this
point builds on the interest of PulLLS project partners, who have proposed a cor-
responding integration in this context. Accordingly, a research context in the
PuLS project is to find out how and for which possible use cases blockchain
technology can be integrated into the Park and Charge platform. Our use case
illustrates a corresponding opportunity.

To provide a better understanding regarding the possible modeling of block-
chain-specific aspects using LEMMA, Listing 1.1 presents an excerpt of the book-
ing operation model used by the Ethereum Generator to create the Blockchain
Connection Properties for microservice deployment. Lines 1 to 6 describe the
general deployment of the BookingService. The blockchain-specific configura-
tion is defined via a technology aspect (cf. Sect.2) in Lines 7 to 15. Depending
on the use case, the technology model referenced here can be extended by any
other specific aspects that also can be used in context of service and operation
models. The shown EthereumNetwork aspect initializes a hostName and port
for communicating with an Ethereum network node. Additionally, a gasLimit
and gasPrice, which are necessary for transaction management are defined in
the model. Furthermore, the privateKey associates an attribute for accessing an
Ethereum wallet available on the addressed network node to execute or receive
transactions.

Integrating Blockchain with MSA Using MDE 173

500 1
@technology (container_base) 2
@technology (ethereum) 3
container BookingContainer 4
deployment technology container_base::_deployment.Kubernetes 5
deploys bookingService: :v01l.de.fhdo.BookingService 6
depends on nodes ethereumOperation::Ethereum { 7
aspects { 8
ethereum: : _aspects.EthereumNetwork (9
privateKey="...", 10
hostName="http://localhost", 11
port=8545, 12
gasLimit=4712388, 13
gasPrice=20000000000 14
)} 15

Listing 1.1. Excerpt of BookingService Operation Model.

Results. For our approach we provide a model representation of the PuLS archi-
tecture using LEMMA’s modeling languages. Based on the resulting models, the
Ethereum Generator and Web3j Genlet (cf. Fig.1) create the code artifacts
needed for the integration of basic blockchain functionality. In this context, the
Web3j Genlet and the generation of the Blockchain Configuration demon-
strate, that it is possible to support the integration of blockchain technology for
MSA using MDE. Moreover, utilizing the Ethereum Generator, it was possible
to abstract the deployment of microservices in association with blockchain. We
use a basic lines-of-code metric to gain a first estimate of the efficiency of our
approach by comparing the manually created models with the generated arti-
facts. This shows that the number of lines of generated code is higher than the
number of lines of code needed to define the models. However, it should be noted
that the metric refers to Java code. This may well produce different results for
other programming languages. For replicability purposes, all artifacts for the
approach are provided in a GitHub repository®. In addition to the LoC com-
parison, current research is working on other comparisons that provide a better
idea of the generators efficiency. For the presented case study, the integration of
the blockchain for MSA works successfully and is used in the presented PuLS
research project in the development process.

5 Related Work

De Sousa et al. [14] presents an approach to constructing a prototype based on
microservices and blockchain technology. It enables the integration and inter-
action between notary offices and other institutions, ensuring security and high
speed in exchanging information between parties. As a case study, microservice
architecture has been developed in which external institutions such as a hospi-
tal and post office and a notary’s office interact with an Ethereum blockchain to
manage a birth registration. In contrast to our approach, the integration of MSA
and blockchain is related to a specific scenario and spares the usage of MDE.

5 https://github.com/SeelabFhdo/xp2021.

https://github.com/SeelabFhdo/xp2021

174 S. Trebbau et al.

Gorski and Bednarski [6] propose modeling support from the perspective
of deploying distributed ledger solutions. Their approach uses MDE for trans-
forming distributed ledger models into source code, e.g., deployment scripts or
deployment configuration. Like in our approach, MDE is used to facilitate the
development process of a distributed ledger. However, our approach addresses
the integration of blockchain for MSA and focuses on blockchain as distributed
ledger solutions.

6 Conclusion and Future Work

This paper has shown by means of a concrete example that it is feasible to inte-
grate blockchain technology into MSA to increase authentication and trust (cf.
Sect. 1) by using MDE. To this end, Sect. 2 introduced background information
about blockchain and MDE of MSA. To support the integration of blockchain
in MSA, we presented our MDE-based approach in Sect. 3. This approach uti-
lizes LEMMA to generate Service-specific blockchain configurations. We validate
the approach through a case study in Sect.4. Additionally, we provide a brief
overview of related work regarding MSA and blockchain (cf. Sect. 5).

For future research, we plan to diverge smart contracts program code from
LEMMA'’s domain models. Additionally, we want to extend the existing code
generators to provide better support for different blockchain technologies. More-
over, the code generator should also create blockchain deployment-related arti-
facts to enable the deployment process of blockchain components and its various
network nodes. Another topic we will address relates to the compatibility of
MDE with verification technologies. Also, a challenge which we are going to
address in the future is the abstraction and modeling of relationships between
microservices, the various blockchain network nodes and their user wallets.

References

1. Alshugayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 44-51. IEEE (2016)

2. Combemale, B.: Engineering Modeling Languages. Taylor & Francis, CRC Press,
Boca Raton (2017)

3. Dannen C.: Solidity programming. In: Dannen, C. (ed.) Introducing Ethereum
and Solidity, pp. 69-88. Springer, Berkeley (2017). https://doi.org/10.1007/978-1-
4842-2535-6_4

4. Esposito, C., Castiglione, A., Choo, K.K.R.: Challenges in delivering software in
the cloud as microservices. IEEE Cloud Comput. 3(5), 10-14 (2016)

5. Evans, E.: Domain-Driven Design Reference, 1st edn. Dog Ear Publishing, Indi-
anapolis (2015)

6. Gorski, T., Bednarski, J.: Applying model-driven engineering to distributed ledger
deployment. IEEE Access 8, 118245-118261 (2020). https://doi.org/10.1109/
access.2020.3005519

https://doi.org/10.1007/978-1-4842-2535-6_4
https://doi.org/10.1007/978-1-4842-2535-6_4
https://doi.org/10.1109/access.2020.3005519
https://doi.org/10.1109/access.2020.3005519

10.

11.

12.

13.

14.

15.

16.

17.

Integrating Blockchain with MSA Using MDE 175

Jézéquel, J.M., Combemale, B., Derrien, S., Guy, C., Rajopadhye, S.: Bridging the
Chasm between MDE and the world of compilation. Softw. Syst. Model. 11(4),
581-597 (2012)

Malik, S., Dedeoglu, V., Kanhere, S.S., Jurdak, R.: TrustChain: trust manage-
ment in blockchain and IoT supported supply chains. In: 2019 IEEE International
Conference on Blockchain (Blockchain). IEEE, July 2019. https://doi.org/10.1109/
blockchain.2019.00032

QDlnes, S., Ubacht, J., Janssen, M.: Blockchain in government: benefits and impli-
cations of distributed ledger technology for information sharing (2017)

Quiniou, M.: Blockchain?: The Advent of Disintermediation. Wiley, Hoboken
(2019)

Rademacher, F., Sachweh, S., Ziindorf, A.: Aspect-oriented modeling of technology
heterogeneity in microservice architecture. In: 2019 IEEE International Conference
on Software Architecture (ICSA), pp. 21-30. IEEE (2019)

Rademacher, F., Sachweh, S., Zundorf, A.: Deriving microservice code from under-
specified domain models using DevOps-enabled modeling languages and model
transformations. In: 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, August 2020. https://doi.org/10.1109/
seaab1224.2020.00047

Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Ziindorf, A.: Graphical and
textual model-driven microservice development. In: Bucchiarone, A., et al. (eds.)
Microservices, pp. 147-179. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-31646-4_7

de Sousa, P.S., Nogueira, N.P., dos Santos, R.C., Maia, P.H.M., de Souza, J.T.:
Building a prototype based on microservices and blockchain technologies for
notary’s office: an academic experience report, March 2020. https://doi.org/10.
1109/ICSA-C50368.2020.00031

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

Tonelli, R., Lunesu, M.I., Pinna, A., Taibi, D., Marchesi, M.: Implementing a
microservices system with blockchain smart contracts. In: 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 22-31.
IEEE (2019)

Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352-375 (2018)

https://doi.org/10.1109/blockchain.2019.00032
https://doi.org/10.1109/blockchain.2019.00032
https://doi.org/10.1109/seaa51224.2020.00047
https://doi.org/10.1109/seaa51224.2020.00047
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1109/ICSA-C50368.2020.00031
https://doi.org/10.1109/ICSA-C50368.2020.00031

l‘)

Check for
updates

A Service Mesh for Collaboration
Between Geo-Distributed Services:
The Replication Case

Marie Delavergne®™), Ronan-Alexandre Cherrueau, and Adrien Lebre

LS2N, Inria, Nantes, France
{marie.delavergne,ronan-alexandre.cherrueau,adrien.lebre}@inria.fr

Abstract. Edge computing is becoming more and more present, with
sites geo-distributed around the globe. Applications on these infrastruc-
tures must be able to manage the latency and disconnections inherent
to their distribution. One way to deal with these concerns could be to
deploy one entire instance of the application per site and use a service
mesh to manage the collaboration between the geo-distributed instances.
More precisely, we propose to reify the location of application instances
in REST requests and allow redirections between these requests thanks
to a dedicated language and a service mesh allowing three types of col-
laborations. This paper focuses on the replication of a resource between
multiple instances. Though it is still a work in progress, we demonstrated
the relevance of our approach in the OpenStack ecosystem.

1 Introduction

Edge computing is getting more important, with more and more small datacen-
ters at the edge of the network. Nonetheless, lots of applications do not benefit
from the geo-distribution of wide-area networks and are not designed to han-
dle the high latencies and disconnections implied by these distributions [8]. To
deal with these concerns, we advocate for the placement of an instance of the
application on each site. This way, each site is autonomous and can fully work if
disconnected from the rest of the network [2]. Unfortunately, the collaboration
is still missing: instances are able to function by themselves, but they cannot
collaborate between each other and so do not benefit from the geo-distribution.

To provide such a collaboration without changing the code, we propose to
leverage the service mesh concept. Service meshes help cloud computing appli-
cations solve different problems with their built-in functionalities. For example,
to improve overall performance, load-balancing is provided. More largely, by
intercepting communications, they provide functionalities to ease different oper-
ations, like traffic monitoring, access control, fault tolerance [3]. In general, they
are implemented with proxies as sidecars for the services, without interfering
with their code as they only work on requests passing from services to services.
Their ability to intercept and redirect communications offers an opportunity to
orchestrate requests between endpoints of any instance of the same application.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 176-185, 2021.
https://doi.org/10.1007/978-3-030-88583-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_17

Replication for Geo-Distributed Services 177

In this paper, we propose Cheops, a service to use in combination with a
service mesh to program on-demand collaborations between multiple instances
of an application. To specify where a request will be executed at a fine-grained
level, Cheops relies on the scope-lang proposal we initially developed [2].

Scope-lang extends applications API and allows the user to specify where
(on which services) the request is executed. The language has been designed
to provide different types of collaborations between application instances. For
example, sharing is when a resource needed by a service has been created on
another instance. This is the basic collaboration which allows to share resources
between the instances. Replication allows operations on identical resources on
different sites, to deal with availability of these resources in case of network
partitioning or to improve overall performance. Finally, cross allows a resource
to span across different sites. In this paper, we focus on replication (sharing has
already been discussed [2]|, while cross is let as future work). By resources, we
mean every entities managed by services, whether it is an entry in the database
or something has complex and low-level as a network.

It is noteworthy that other frameworks or languages [4,7] have been proposed.
However, they are invasive as they require to entangle geo-distribution in the
business code. Non-invasive approaches generally follow the brokering approach:
an entity is in charge of redirecting requests between the different instances.
However, instances are not aware of the others. The goal of this proposal is to
allow the instances to collaborate on-demand as if they were a single entity.
Another way to see it is to allow the users to operate changes on resources on
different sites through the APIL.

In this paper, we focus on how replication is interpreted and executed thanks
to Cheops. We first explain scope-lang and how our general model works to
allow DevOps to specify the location of a request execution. Then, we dive into
the replication collaboration between different instances of the same service. In
particular, how we manage replicas of a resource on different sites and how we
handle disconnections, partitions or faults.

2 Scope-Lang, A Language to Reify the Geo-Distribution
of Requests

In this section, we dive deeper into how scope-lang, Cheops' and our general
model work together to allow collaborations outside of the application, and so
keep a clear separation of concerns.

2.1 General Model

As a reminder, we have entire instances of the application on each site. Scope-
lang parameters Cheops on a per-request basis in order to orchestrate collabo-
rations between instances.

! https://gitlab.inria.fr/discovery/cheops.

https://gitlab.inria.fr/discovery/cheops

178 M. Delavergne et al.
App [4 ¢
O |@
O] 1

(a) Application App made of two
services s and t and four endpoints
e, f,g,h. The s.e — t.h represents
an example of a workflow.

Appr [, N Appa ﬂ t
ool TTaNe

(b) Two independent instances App; and
App2 of the App application. The e repre-
sents a client that executes the s.e — t.h
workflow in Appo.

Fig. 1. Microservices architecture of a cloud application.

To explain collaboration between each instance of different services, let us take
a look on how microservices based applications work. Each service composing the
application exposes endpoints to communicate with other services. These end-
points are linked to a specific part of the business they achieve. When calling
endpoints of other services, they form a workflow between services. For example,
Fig. 1a shows an application App composed of two services s and ¢ that expose
endpoints e, f, g, h and one example of a workflow s.e — ¢.h. Figure 1b shows the
instantiation of the application App on two different sites and their correspond-
ing service instances: s; and t; for App; so and to for Apps. A client (o) triggers
the execution of the workflow s.e — t.h on Apps. It addresses a request to the
endpoint e of so which handles it and, in turn, contacts the endpoint A of ¢5.

2.2 Scope-Lang

To parameter collaborations, we developed a domain specific language called
scope-lang. A scope-lang expression (referred to as the scope or o in Fig.2a)
contains location information that defines, for each service involved in a work-
flow, in which instance the execution takes place. The scope “s : App;,t: Apps”
intuitively means that the request must be achieved on the service s from App,

App;, App; ::= application instance

s,t service

si,tj service instance

Loc App; single location

Loc&Loc multiple locations
s: Loc,o scope
s: Loc

R[s: Appi] = s:
R[s : Loc&Loc'] = R[s : Loc] and R[s : Loc']

o=s:Appi,t: Appi

(b) Scope o interpreted by the geo-
distribution service mesh geo during the ex-
ecution of the s.e = t.h workflow in App;.
Reverse proxies perform requests forward-
ing based on the scope and the R function.

(a) scope-lang expressions ¢ and the
function that resolves service instance
from elements of the scope R.

Fig. 2. A service mesh to geo-distribute a cloud application

Replication for Geo-Distributed Services 179

i

and ¢ from Apps. The scope “t : App; & Apps” specifies to execute the request
on the service t of App; and Apps. Users set the scope of a request to specify the
collaboration between instances they want for a specific execution. The scope
is then interpreted by a dedicated module entitled Cheops during the execution
of the workflow to fulfill that collaboration. The main operation it performs is
request forwarding. To be more precise, reverse proxies in front of each service
instance (geos and geo; in Fig. 2b) intercept the request and interpret its scope
to forward the request. “Where” exactly depends on locations in the scope.
The reverse proxy uses a specific function R (see Fig.2a) to resolve the
service instance at the assigned location. R uses an internal registry. Building
the registry is a common pattern in service mesh using a service discovery [3].
In summary, scope-lang effectively parameters how Cheops will redirect the
request. In the next section, we discuss how the replication is achieved.

3 Replication in Cheops

Replication is the ability to create and maintain identical resources on different
sites: an operation on one replica should be propagated to the others, dealing
with faults and disconnections and maintaining consistency based on our even-
tual model. Other consistency policies [1,10] could be envisioned, but let as
future work as they do not change the general concept of scope-lang/Cheops. To
get a better understanding of the point of replication, imagine a user who needs
a huge resource (like an ISO image) both at home and at work. The resource
can be replicated at creation on both sites and it will be the only time when the
entire resource will go through the network. This saves a lot of bandwidth, and
is especially useful if there is a partition between both sites.

3.1 Replication Model

Modular applications based on microservices usually follow a RESTful HTTP
API. In most cases, they generate an identifier for each resource, which will be
used by the API to retrieve, update or delete it. When receiving a request to
create replicas, Cheops unify these identifiers with a data model called replicant.

A replicant is simply a meta-identifier we generate along with a mapping
site — local_identifier. A replicant can thus be implemented for example as:
meta_identifier : [site, : local_identifiery,,...]. We only store the location (site)
of the replica and not the service used since it is possible to deduce the service
with the incoming request. This is subject to change depending of the evaluation
of our prototype. We could store also the involved service and/or the type of
resource involved.

These replicants are stored in a database co-located to the Cheops agents.
A copy of the replicant is stored on each site where its replicas are (the sites
involved in the replication). Cheops has an API of its own to allow the user to
check the state of operations, sites and inspect replicants.

180 M. Delavergne et al.

3.2 Architecture Overview

Cheops agents are located on each instance site, with a reverse proxy besides
every service transfering their requests to the agents. Agents communicate
between each other and check each other status via heartbeats. Our imple-
mentation of Cheops uses Consul service mesh? and Envoy® as reverse proxy
to intercept and redirect, when needed, the requests. It is also worth noting
that Envoy intercepts inbound and outgoing requests from services except for
requests coming from Cheops agents.

In Fig. 3, we represented the reverse proxy and Cheops as one single entity
that intercepts the request as it is in Fig. 2b to ease the comprehension.

Appy =TT T : Appy ' T TTTTTTTT T !

| geor t1 i | geos i |

V- R[t: Appi] : i~ R[t: Apps] :

ag . 1 1 - 1

Tl LAl

u A ! - NI 1

RN (Ol [P B A @|

Il 777777777(::7777 //(7:27777/7 77777777777
B

o=1t:App: &Apps

Fig. 3. Modelling of the replication by forwarding on multiple instances. ¢; arrows
represents Cheops agent on App; updates to the databases, c2 arrows the one from
Cheops agent on Appa.

3.3 CRUD Execution Workflow

First, to define what is the creation, update or delete workflow, we have to
define what they do in our consistency model and what are their boundaries.
The creation of resources replicated in an eventual consistency implies that every
replicas are identical at creation and will be created eventually. The update of
resources created with the replication in an eventual consistency implies that all
replicas will be updated eventually, whether the user specifies a scope or not in
its request. It is the same for deletes.

The operation obviously begins when the user makes the request. But for the
end, we could consider that an operation ends either when there is one response
and is returned to the user, or when the operation is executed on every sites.
In an eventual consistency model, the latter end can come a lot later than the
first response. It is important to know what happens in case of failure (partition,
disconnection, server failure) during the execution until the first response, but
also after, because the operation must be executed on our replicas at some point.

In eventual consistency, since the first response to arrive goes to the user
before it might be applied everywhere, it is the responsibility of the user to

2 https://www.consul.io/.
3 https://www.envoyproxy.io/.

https://www.consul.io/
https://www.envoyproxy.io/

Replication for Geo-Distributed Services 181

check with a request to Cheops or directly to involved services to know where
the creation or updates are already applied. Users cannot assume because they
received the answer the operation as already been applied everywhere.

Creation. The replication process to create a resource on App; and Apps hap-
pens as follows:

1. A request for replication is addressed to the endpoint of a service of one
application instance. For example in Fig. 3: e LAppikedprs, t.g , where g is the
endpoint for the creation of the resource managed by the service t.

2. The scope is extracted in the Cheops agent and the R function (from scope-
lang) is used to resolve the endpoints that will store replicas. In Fig. 3: R[¢ :
App1& Apps] is equivalent to R[t : App1] and R[t : Apps]. Consequently, ¢,
and to will be used for the resource creation.

3. The meta-identifier is generated and the replicant created using the meta-
identifier and the location of execution. For example, if the generation yielded
72, we have: { 72 : [App; : none, Appy : none|}. The replicant on App; (where
the request was made) becomes the leader of the replicants. A log is created
for future operations on replicas, as well to make sure the creation will be
applied on every involved sites.

4. Each request is forwarded to the corresponding Cheops agent on involved
sites and a copy of the replicant is stored in the database on those sites
simultaneously. In Fig. 3: geo, forwards the request to ¢;.¢g and t2.¢g and stores
the replicant {72 : [App; : none, Apps : none]} in App; and App, databases.
In the figure, this is represented by the ¢; arrows going to the cylinders.

5. Each contacted service instance executes the request and returns the results to
their local Cheops agent, which updates the replicant with the local identifier.
In Fig. 3: t; and t5 return their local identifier, e.g., 42 and 6.

6. Cheops agents then proceed to propagate the updated information to other
agents involved. In parallel, they send the entire response to the Cheops agent
that stores the leader replicant. In Fig. 3: the replicant is now {72 : [App; :
6, Apps : 42]} on App; and Apps sites databases, thanks to the updates
represented by c¢; and co arrows.

7. When the agent where the leader is receives the first creation response, it
transfers it to the user who asked for the replication, replacing the local ID
with the replicant meta ID.

Read. The process of reads is straightforward; to access a specific resource,
users must either be on a site where one of its replicas is or specify in the scope
on which location a replica of the resource to read is.

Update. From now on, every request made to update (or delete) is filtered
to check if the id given corresponds either to a replicant meta identifier or a
local replica identifier. The process is quite similar to the creation, but does not
generate a new replicant or change an existing one. It only applies an update to
replicas.

182 M. Delavergne et al.

1. A request for an update of a previously created replica is addressed to the
endpoint of a service of one application instance.

2. Cheops checks if the ID in the request exists in a replicant. If not, the request
is sent back to the service to be executed. If it is, the requests is transferred
to the Cheops agent storing the replicant leader. It gets the corresponding
replicant to find every replicas (and thus sites) involved. The operation is
stored in its log.

3. The request is copied as many times as necessary (with the corresponding
local identifier) and sent to the Cheops agent of involved sites.

4. Local Cheops agents send the request to the corresponding service on their
site, which executes the request normally.

5. Each Cheops agent sends back the response to the Cheops agent where the
replicant leader is.

6. This agent sends back the response to the user, once again, with the meta-
identifier where the local-identifier would be expected to notify the user that
the replicas were updated.

Delete. As for the update, a delete on replicas can be identified either by a
local identifier or the meta identifier. The process is identical as the update’s.

3.4 Dealing with Faults

We define a fault as: a partition of an involved site, or a failure from this site,
whether it is shut down, out of order, or if the request cannot be executed for
any reason (not enough memory to create a resource for example).

It is also important to mention that if the site where the user sent its request
is faulty (does not work in any way), the request obviously cannot be executed.
The user can make the request to a more distant site.

Moreover, the “during an operation” can refer to two distinct phases. As we
discussed before, the end of an operation can be seen as: when a replica has been
created /updated/deleted and the user has been notified, and when the operation
is applied to all replicas. So “during an operation” is between the request of the
user and before one of these end. In our consistency model, this conveys no
difference to the process.

If a site fails where a replica is supposed to be, other Cheops will be informed
due to its heartbeat (or rather lack of). Any other operation received by the
leader will then be retried according to the log when the site comes back
again. Therefore, a site is considered to be eventually available again unless
it is removed. If a site is removed from the system, every replicant that were
hosting a replica on this site must delete the site from their mapping (from the
replicant). The leader will be in charge of this particular task.

Faults during operations The operation will be applied eventually on all
involved sites. This eventual consistency uses a consensus protocol, and in
our case, an implementation of Raft [6]. For example, the leader’s log allows

Replication for Geo-Distributed Services 183

to replay operations that are not yet applied. It is the responsibility of the
Cheops agent where the leader is to ensure that operations are applied even-
tually.

Faults while there are replicas When a site fails while there are replicas
somewhere without any particular operation running, no heartbeat is received
by other Cheops agent and the replica is considered unavailable temporarily.

If a site where a replica is was partitioned at some point but could be used
locally, only read queries can be made, and these reads might be stale. When
rejoining the cluster, operations will be applied on the site so it is up-to-date
thanks to the leader’s log.

4 Discussion

In this paper, the service mesh and proxy mentioned were respectively Consul
and Envoy, but this approach could work with other proxies or services meshes
available such as Istio or Open Service Mesh®. The approach differs from using
a service mesh to redirect the requests with load-balancing or in case of failures
by giving the users the ability to chose where their requests will be executed
per-demand.

The users are thus responsible to trigger the request based on their needs
and the availability of sites. In the case of a infrastructure such as OpenStack,
this means that it gives back the DevOps the ability to decide where a request
will be available. But for more common applications, the user might not need as
much information about the execution of their request. In this case, it is then
totally possible to apply usual quality of service techniques available in a service
that would execute the request by adding a relevant scope itself.

4.1 Proof of Concept

Though Cheops is still a work in progress, we demonstrated the relevance of
sharing a resource in a proof of concept (PoC) on OpenStack [2]. This PoC
gives DevOps the ability to make multiple independant instances of OpenStack
collaborative. Using our approach with OpenStack would allow to manage a
geo-distributed infrastructure as a usual IaaS platform. This is a breakthrough
as several initiatives tried to propose a framework to manage edge infrastruc-
tures and processes [5,9], but due to the difficulty of delivering a software as
complex/complete as OpenStack, the work to be redone would be colossal.

4.2 Limitations

There are of course some limitations to our approach. First, it requires
microservices-based applications that exposes an API for services communica-
tions. These applications need to be able to work on a single site since we will

* https://istio.io/.
5 https://openservicemesh.io/.

https://istio.io/
https://openservicemesh.io/

184 M. Delavergne et al.

deploy them autonomously on every sites. Moreover, every instance of the appli-
cation should have the same version for identical resources.

This approach ensures consistency at the service-level, but for the resources
they manage. The only operations available to manipulate these resources are
therefore the ones exposed by the API. Thus, the resources are maintained as
identical as the APT allows it, but nothing less. For example, nothing can be said
about the consistency of two VMs booted through this process; their internal
state will probably diverge, as expected.

5 Conclusion

In this paper, we presented the replication mechanisms of Cheops and how scope-
lang allows its parametrization. The ultimate goal of this project is to allow
generic collaborations between multiple instances of the same application with-
out applying intrusive changes in the business code. We presented especially the
different workflows for the replication collaboration.

As future work, we identified other collaboration mechanisms that could be
relevant. For example, our replication strategy could be extended in order to
include a controller and propose an abstraction similar to the ReplicaSet and
its controller in the Kubernetes ecosystem®. The point would be to add control
loop capabilities into Cheops in order to maintain the desired number of replicas
according to the infrastructure changes. We could also propose different ways
to keep the consistency between replicas, giving more choice for the users (e.g.,
giving them the choice to change the location of a replica if its site fails).

Besides replication, additional collaborations can also be envisioned (such as
an otherwise operator that will ask for a request to be executed on a specific
site and if this one is unavailable, execute on the other specified). Any future
implementation will depend on the needs observed when deploying this solution.

Acknowledgments. We would like to thank Matthieu Juzdzewski and Arnaud Szy-
manek for their work on Cheops.

References

1. Akkoorath, D.D., et al.: Cure: strong semantics meets high availability and low
latency. In: 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS). IEEE (2016)

2. Cherrueau, R.A., Delavergne, M., Lebre, A., Rojas Balderrama, J., Simonin,
M.: Edge Computing Resource Management System: Two Years Later! Research
Report RR-9336, Inria Rennes Bretagne Atlantique (2020)

3. Li, W, et al.: Service mesh: challenges, state of the art, and future research oppor-
tunities. In: 2019 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pp. 122-1225 (2019)

5 https:/ /kubernetes.io/docs/concepts/workloads/controllers/replicaset /.

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

10.

Replication for Geo-Distributed Services 185

Martin, B., Prosperi, L., Shapiro, M.: An environment for composable distributed
computing. In: EuroDW 2020-14th EuroSys Doctoral Workshop (2020)
Mortazavi, S.H., Salehe, M., Gomes, C.S., Phillips, C., de Lara, E.: CloudPath: a
multi-tier cloud computing framework. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, pp. 1-13 (2017)

Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 {USENIX} Annual Technical Conference, {USENIX}{ATC} 2014 (2014)
Safina, L., Mazzara, M., Montesi, F., Rivera, V.. Data-driven workflows for
microservices: genericity in Jolie. In: 2016 IEEE 30th International Conference
on Advanced Information Networking and Applications (AINA). IEEE (2016)
Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30-39
(2017)

Wang, N., et al.: ENORM: a framework for edge node resource management. IEEE
Trans. Services Comput. 13, 1086-1099 (2017)

Zhu, Y., Wang, Y.: SHAFT: supporting transactions with serializability and fault-
tolerance in highly-available datastores. In: 2015 IEEE 21st International Confer-
ence on Parallel and Distributed Systems (ICPADS), pp. 717-724 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Implementation of a Microservice-Based
Certification Platform

Sebastian Copei'®™), Manuel Wickert?, and Albert Ziindorf!

! Kassel University, Kassel, Germany
{sco,zuendorf }Quni-kassel.de

2 Fraunhofer IEE, Kassel, Germany

manuel.wickert@iee.fraunhofer.de

Abstract. Interoperability between edge devices and backend systems
plays an important role for a successful digital transformation of the
energy system. To provide interoperability, edge devices as well as back-
end systems use standardized communication protocols. Vendors of such
systems often certify their products to verify compatibility to a certain
version of communication protocol standard. Since standardization and
certification processes are classically very time consuming, they seem to
be incompatible with agile software development. Therefore we proposed
an agile standardization and certification approach. Here we will present
a basic implementation of a microservice based certification platform
that supports certification as a service. The platform allows software
vendors to integrate certification of their products directly in their con-
tinuous delivery pipeline. This will lay the ground for the evaluation of
certification as a service in a concrete scenario.

Keywords: Microservices - Standardization - Certification - Agile

1 Motivation

The transformation of the energy system is becoming a key driver of the digital-
ization of the energy sector. On the one hand, digitalization supports a real-time
view of all producers and consumers of the complete energy system. Therefore
smart meters will play an important role. On the other hand, digitalization will
enable the compensation of fluctuations, caused by wind and photovoltaic (PV)
feed-in, by aggregating huge numbers of controllable consumers and energy stor-
ages, e.g. electrical vehicles (EVs).

One big challenge in digitalization is the connectivity to such edge devices.
In contrast to the end-consumer sector, the energy sector uses edge devices with
significantly longer planned lifetimes. Furthermore, backend systems and edge
devices are often built from different vendors. Therefore interoperability between
these devices and backend systems is very important. To provide interoperabil-
ity, standardized communication protocols (e.g. IEC 61850 [3], IEC 60870-5-104

S. Copei and M. Wickert—These two authors contributed equally.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 186-191, 2021.
https://doi.org/10.1007/978-3-030-88583-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_18

Caas 187

[2], OPC UA [5]) are common for such communication scenarios. Edge devices
will typically be certified to verify that they are compliant with a given version of
the standard. However, standardization and certification processes are classically
very time-consuming tasks and therefore not compatible with agile development
processes. In our last work [1] we proposed a new standardization and certifica-
tion approach that can be integrated into agile development workflow for edge
devices as well as for backend systems.

In Horizon 2020 project Interconnect the communication between edge
devices as well as backend systems shall be enabled by SAREF. SAREF is an
ontology to enable interoperability between smart devices in the energy sector.
The SAREF Standard will be extended and used during the project to pro-
vide a connection between EV-charging stations, home energy management sys-
tems (including smart meters), and superordinate operation systems. To enable
agile development of the standard extensions as well as all the edge devices and
backend components, we implemented a certification as a service platform. This
platform should be used within the project to verify that each component is
compliant with a certain version of the SAREF standard.

In Sect. 2 we give a short introduction to our agile certification approach from
[1]. The Sect. 3 describes our certification as a service platform. The evaluation
and the next steps are described in Sects. 4 and 5.

2 Agile Certification

In contrast to the state-of-the-art standardization and certification process, we
proposed an agile standardization and certification approach. The basic idea
is to make small adaptions to existing versions of a communication standard.
The small adaptions lead to newly published versions of the standard. This
will increase the number of standards but also decrease the time to integrate
new requirements into a communication standard. With a new communication
standard version, a few conformance tests should be adapted or created. The
conformance tests will be used to verify that components are compliant with the
adapted version of the standard. In Fig. 1 the agile process is shown by two inter-
winded cycles. On the left side, the standardization process is shown. The right
side shows the implementation of a conformant component like an edge device.
The certification of the component builds the bridge between both cycles.

From the perspective of the software development process of edge devices
or backend systems, the certification should be part of a continuous integra-
tion or deployment process (CI/CD). Therefore the certification has to be fully
automated, including conformance tests, evaluation, and the issuance of the cer-
tificate. A certification body may offer all these functionalities by a certification
service. The software vendor by themselves may use this service by calling it
from a CI/CD Pipeline (see Fig. 2).

188 S. Copei et al.

TR

Protocol Protocol
Standardization Certification Requirements
Standard Users

& TG D

Requirements
Implementation

Fig. 1. Agile Standardization Process

Conformance
Tests

|:>‘ Repository ‘ N

)l

r*}[Integration][_>[Certification]I_>{ Deployment }

Product "
‘ Sources ’r_> Repository

Fig. 2. Continuous certification pipeline

3 Certification Platform

To support certification bodies and to provide certification services, we developed
a certification platform. The platform is implemented based on our proposed
microservice architecture in [1]. We implemented five backend services in NestJS
and a frontend service in Angular. The platform is developed as open-source and
is available on GitHub'. For the communication between the backend services,
we used Apache Kafka. The user management is realized with Keycloak. As
mentioned in [1] the certification platform takes a software artifact during the
test phase of a build process and performs compliance tests of a standard.

For our implementation, we used Docker images to provide an artifact. So a
smart energy device, e.g. an electrical charging station control software, could be
delivered as a container to our platform. Therefore we provide a Docker image
to exchange software artifacts between the CI Pipeline and the Certification
platform. During the test phase of the CI Pipeline, the certification platform
is called via a REST API. Besides the Docker image the version of the com-
munication standard is provided to declare which compliance tests should be
performed. The artifact service starts a Docker container of the provided image.
Afterward, the test suite service runs the containers for certification. All running
and started containers are managed by the job runner service. If all tests passed,
the certification services signs the provided Docker image from the CI Pipeline
with a signature to ensure the correctness of the certificate. Finally, the signed
container is provided back to the pipeline. This enables an agile certification
during agile software development.

In Fig.3 we summarize the current platform and services. As mentioned
before, there are services for managing artifacts, tests, certificates, and runnable
test environments. The latter service also provides the API for the CI integration.

! https://github.com /sekassel-research/caas-platform.

https://github.com/sekassel-research/caas-platform

Caas 189

User

Kubemetes

web-frontend

PostgreSaL

m"

&
)

Keycloak

A B
0 o ? ?%é
o &

testenvironment-senice I rifact I N I
B B s

MongoDB MongoDB MongoDB MongoDB MongoDB

Fig. 3. CaaS platform

4 Evaluation

The current implementation allows providing artifacts, test suites, certificates,
and runnable test environments. These features are tested with integration tests.
In addition, it is possible to start a single artifact with a single test-suite to
achieve a certificate. For the evaluation of this workflow, we created a simple
scenario from the context of the interconnect project.

The GoodEnergy AG wants to implement a new service for the interconnect
project. The be interoperable with the other system components, our SAREF com-
munication extension has to be implemented. After the developer of the Good-
Energy AG provides a version of their service, they want to use the certification
service to test and certify their service for usage in the interconnect project.

The certification service is provided by a project internal certification body.
The certification body will use our platform and a test suite with all conformance
tests to provide this service. Figure4(a) shows the newly created test-suite. To
use this test-suite in the further process, the certification body needs to map the
standard version number to the first created test-suite. This is shown in Fig. 4b.

After the certification body creates a test suite and maps it to a version num-
ber, the GoodEnenrgy AG can use the certification service. Figure 5a shows how
software can be uploaded via Ul, instead of using the REST API directly from
the CI/CD Pipeline. In the next step, you choose the version number, for which
certification has to be performed. Figure 5b shows a created test environment for

190 S. Copei et al.

CertAsAService

Edit Certificate i

Edit Test T

(a) Add a test-suite (b) Add a certificate

Fig. 4. Actions as a standardization committee

the uploaded software and version number. Finally, the conformance tests can be
performed, tests will be evaluated and the certificate can be issued. Here a certi-
fication corresponds to a signed Docker image. The certification service signs the
image, so it is possible to verify that the current image content is compliant with
a certain standard version.

CertAsAService
CertAsASenvice

Edit Artifact Tl

(a) Add an artifact (b) Add a test environment

Fig. 5. Actions as GoodEnergy AG

The UI certificate download is currently a work in progress. Therefore the
development of a process can not completely be evaluated for the charging sta-
tion. However, the scenario shows how the developed platform will support agile
certification of communication standards by charging stations as an example.

5 Future Work

The current implementation does not contain a relevant number of test cases for
the charging station certification. Therefore we plan to implement these tests
and evaluate the certification platform during the further development of smart
components. Furthermore, we want to implement the possibility to provide a
system or a composition of multiple services as an environment to test a service
interaction within a system. Finally, we want to evaluate the tool within an
industry case study from the energy domain.

Caas 191

6 Acknowledgement and Disclaimer

This Publication is part of a project [4] that has received funding from
the European Union’s Horizon 2020 research and innovation programme
under grant agreement N°857237. The sole responsibility of this publi-
cation lies with the author. The European Union is not responsible for
any use that may be made of the information contained therein.

References

1. Copei, S., Wickert, M., Zindorf, A.: Certification as a service. In: Paasivaara, M.,
Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme Program-
ming - Workshops, pp. 203-210. Springer, Cham (2020)

2. TEC 60870-5-104 - Telecontrol equipment and systems. Standard, International Elec-
trotechnical Commission, Geneva, CH (2006)

3. IEC 61850 Standard Series, Communication networks and systems in substations.
Standard, International Electrotechnical Commission, Geneva, CH (2020)

4. Interconnect project - homepage. https://interconnectproject.eu/. Accessed 20 Apr
2021

5. OPC Unified Architecture, IEC 62541, Standard Series. Standard, OPC Foundation,
International Electrotechnical Commission, Scottsdale, USA (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://interconnectproject.eu/
http://creativecommons.org/licenses/by/4.0/

Poster Presentations

®

Check for
updates

Multiple Roles of Middle Managers
in Agile Project Governance: An Activity
Theory Perspective

Maduka C. Uwadi®)

School of Psychology and Computer Science, University of Central Lancashire,
Preston, UK

mcuwadi@uclan.ac.uk

Abstract. Project governance (PG) is an important activity in agile
software development (ASD) projects. Middle managers (MMs) are part
of the governance structure in ASD projects. PG and middle manage-
ment phenomena in ASD projects are under-researched and not fully
understood. This ongoing study aims to fill a gap by investigating the
roles of MMs in agile PG through the lens of Activity Theory. The study
adopts a qualitative and interpretive case study approach. To date, the
study has identified 24 roles that MMs perform during agile PG.

Keywords: Agile project governance - Middle managers - Agile
software development - Activity Theory - Case study

1 Purpose

Project governance (PG) is an important but complex activity performed dur-
ing agile software development (ASD) projects, and encompasses the necessary
oversight, processes, tools, manpower, and support for project accomplishment.
It is the “framework, functions, and processes that guide project management
activities in order to create a unique product, service, or result to meet organi-
zational strategic and operational goals” [14, p. 4]. In relation to agile projects,
PG is under-researched and not fully understood [7,11].

Middle managers (MMs) occupy the middle-level position in an organisation’s
governing structure and they link senior management (SM) with the lower-level
workforce [2]. In ASD projects, MMs function within agile teams [6]. The MMs
are expected to work alongside agile teams and play their role to ensure deliv-
ery of ASD projects, hence they are part of the project governance structure
therein. However, there is evidence that the role of MMs in ASD projects is not
clearly defined and not fully understood [3,6,12]. Agile projects are considered
lightweight, self-organising, and flexible, therefore practitioners question how
‘management’ and ‘governance’ fit in. Middle management role uncertainty is
one of the top ranked challenges affecting agile teams [3]. Such uncertainty pro-
vokes tensions within agile teams during task execution [6], thereby threatening
team stability and project congruity.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 195-200, 2021.
https://doi.org/10.1007/978-3-030-88583-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_19

196 M. C. Uwadi

This ongoing study (part of a wider PhD study) seeks to answer the question:
What are the roles of middle managers in agile project governance?
The study is investigating the PG activity in an ASD project in order to deter-
mine the roles of MMs in agile PG within a selected organisation. Presentation
of the organisation’s agile PG practices is not within the scope of this article.

2 Research Design

This research employs a qualitative and interpretive case study design, which is
well-suited because it puts the researcher in the world of the participants living
the PG and middle management experience, thereby allowing him to interpret
their views and experiences [16].

Due to the complex and multifaceted nature of agile PG, given that it involves
multiple actors, processes, mechanisms, tools, and socio-technical interactions
[11], the research demanded a flexible socio-technical theoretical framework with
expansive analytical and interpretive power to aid analysis of agile PG and mid-
management. Activity Theory (AT) lends itself to these demands [4,8,9].

According to AT [9], an activity is comprised of six main components, viz.,
subject, tools, object, rules and norms, community of significant others, and divi-
sion of labour. By considering these components, AT enables analysis of activities
in breadth and depth [4]. In the present study, AT was used as the principal the-
ory to develop an Activity-oriented Project Governance (APGov) theoretical
framework to support the research (Fig.1). The APGov framework!, which also
incorporates other theories and studies [5,10,11,13,15], was developed to aid
case study data collection, analysis, and interpretation of findings. The unit of
analysis for this study is the PG activity, which has ASD project as the main
governance object, and middle management as one of the activity actors.

A single case study (a research limitation) involving a Nigerian fintech holding
company (HOLDCOQY) was undertaken. Data was collected between February
and March 2020, comprising nine semi-structured interviews, three team meet-
ing observations, company documentation, and questionnaires for collection of
company and project profile information. The company and its participants were
selected using convenience and stratified sampling. The company was selected
because (a) it is a technology-enabled organisation that practices PG, (b) it
has used agile methods to execute and govern software development projects for
eight years, and (c) its organisational structure includes middle management.
Participants included SM, MMs, and lower-level workforce, with agile methods
experiences ranging from 8 months to 11-12 years?. The researcher limited the
study to analysis of the PG activity and middle management in one of HOLD-
COY'’s divisions; TECHCOY division, which is the agile team executing the ASD
project under examination.

Six interviews out of the nine transcribed interviews in HOLDCOQOY, as well as
organisational structure document, email and instant messaging correspondence,

! Description of framework components is available at https://bit.ly/3ijFCcx.
2 For more sample population and data sources details, visit https://bit.ly/3ijFCcx.

https://bit.ly/3ijFCcx
https://bit.ly/3ijFCcx

Multiple Roles of Middle Managers in Agile Project Governance 197

Tools:
Physical project governance tools, e.g.,
agile methods" artifacts (Kanban board, burn-down
charts), workplace software applications, documented
procedures, other project documentation

Abstract project governance tools, e.g.,
Job-specific competences, product vision, project
goals, team goals

1
: Job-specific competences 1 | Action and operation
| I | categories
I | Input competences Output competences Personal competences : * Monitoring
: * Knowledge and skills * Demonstrable performance * Personal attributes 1 | * Coordination
b - L. T _—-—_—__XMX|* coalsetting
* Identification, definition,
and assignment of roles
and responsibilities
* Decision-making
* Capability building
* Incentives
Project ernance
actiojns angd operations iect: Transformation .
Motivation: Subject: Object: process Outcome:
Reason(s) forthe — Project governance T _ Project governance focus, ———» .EXpECKEd results frorn‘
project governance individual or group e.g., Governing and project governance activity,
activity actor(s), e.g., middle completing €8 a govemed' and
management, senior ASD project completed.ASD project that
management, agile meets busmess targets and
project team, achieves senior
developers management objectives
Rules & Norms: Community of Significant Others: Division of Labour:
Project governance policies, rules, Other internal and external actors Roles, responsibilities, and hierarchy
agile methods, principles, associated with project of actors e.g., roles and
procedures, methods, processes, governance activity, e.g., responsibilities of middle managers,
standard practices customers senior management, developers

Fig. 1. APGov framework

and profile questionnaire responses, have been analysed thus far using thematic
network analysis (TNA) for thematic analysis [1]. The six interviews produced
192 pages of transcripts, which were read several times and coded by applying a
coding framework in line with the TNA process [1]. NVivo software was used to
organise text segments into codes, which later formed themes for the construction
of a thematic network interpreting various roles of MMs in agile PG.

3 Findings

Preliminary findings are presented as a thematic network (Fig.2) comprised of
(a) basic themes, which are the lowest-order premises contained in the data,
(b) organising themes, which are higher-order themes (categories of grouped
basic themes) summarising main discoveries contained in the data [1], and (c)
global theme, which is the superordinate theme that encapsulates “the principal
metaphors in the data as a whole” [1, p. 389]. In the thematic network, 24 basic
themes, which represent MM roles in the agile PG activity’s division of labour,
are grouped into five organising themes (role categories), which are linked to the
global theme - Roles of middle managers in agile project governance. Participants
affirm that MMs play pivotal roles in agile PG practice, thereby helping to
accomplish their project. Findings will be of benefit to agile teams with MMs.

198 M. C. Uwadi

Supervisor

Goal Definerand Interpreter

Decision-Maker Resource

Maximiser Auxiliary

Resource

Project Manager

i i Motivat
Adviser and Negotiator otivator

Stakeholder Representative Product Owner

Strategist Planningand Coordination Subject Matter Expert . 5
for Project Alignmentand Eoreseer rocess Owner
Coordinator Execution and Improver

Coach

Continuous Improvement

Capability Buildingand
and Organisational Change

Empowerment

ROLES OF
MIDDLE MANAGERS IN
AGILE PROJECT GOVERNANCE

Innovator

Capability Building
Advocate Rule-Maker
Agile and Technical

Monitoring Tagarsiin

Pastoral Care Provider Gatekeeper

Agile Leader
Goaland Task Inspector Technical Leader

Examples of Interview Quotes:

Motivator role: “...So those are things | try putting in place as incentives for, so even apart from promotion, these are just things
that within our division we're trying to do to ensure that yes the team is always happy, and the team is always motivated week
in, week out to achieve results” (MM).

Coordinator role: “...their role is actually very critical...the project middle managers are responsible to work closely with all the
internal teams and the contacts at the external team to ensure that every single deliverable as stated in the business
requirement documentation...are completed, tested and delivered” (SM).

Strategist role: “...| find every strategic way to ensure that we achieve this go live at the shortest time possible through
incremental delivery...which the agile methodology gives us the permission to do” (MM).

Fig. 2. Thematic network of MM roles in agile PG and interview quote examples

4 Research and Practice Implications

This research exemplifies and advances the use of AT in agile research, and adds
to studies on agile PG and MMs in ASD projects, which are limited. Organisa-
tions that use agile methods and have MMs can use the model of MMs’ roles as
a tool for (a) creating job descriptions and person specifications for recruitment
of MMs, (b) education and training, and (c) ensuring MMs maintain acceptable
levels of job performance when governing and delivering ASD projects.

5 Contributions

This study introduces an APGov theoretical framework by applying AT to agile
PG and middle management. The study is also developing a model of MMs’ roles
in agile PG. The model will describe multiple roles that MMs perform when
working alongside agile teams and governing ASD projects. The model will help
SM, MMs, aspiring MMs, agile teams, and researchers to better understand the
roles of MMs in agile PG practice, which may lead to stronger organisation-
project strategic connections and project success, better working relationships
between MMs and teammates in agile teams, and further research.

Multiple Roles of Middle Managers in Agile Project Governance 199

Acknowledgements. I would like to thank my PhD supervisors, Dr. Peggy Gregory,
Prof. Tan Allison, and Prof. Helen Sharp, for their continued support. We thank the
Agile Research Network (ARN) for funding this study.

References

10.

11.

12.

13.

14.

15.

16.

. Attride-Stirling, J.: Thematic networks: an analytic tool for qualitative research.

Qual. Res. 1(3), 385-405 (2001)

Balogun, J.: From blaming the middle to harnessing its potential: creating change
intermediaries. Br. J. Manag. 14(1), 69-83 (2003)

Barroca, L., Dingsgyr, T., Mikalsen, M.: Agile transformation: a summary and
research agenda from the first international workshop. In: Hoda, R. (ed.) Agile
Processes in Software Engineering and Extreme Programming — Workshops. XP
2019. LNBIP, vol. 364, pp. 3-9. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30126-2_1

Crawford, K., Hasan, H.: Demonstrations of the Activity Theory framework for
research in Information Systems. Australas. J. Inf. Syst. 13(2), 49-68 (2006)
Crawford, L.: Senior management perceptions of project management competence.
Int. J. Proj. Manag. 23(1), 7-16 (2005)

Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87-108 (2016)

Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges
that challenge: engaging with agile practitioners’ concerns. Inf. Softw. Technol.
77, 92-104 (2016)

Iyamu, T.: A case for applying Activity Theory in IS research. Inf. Resour. Manag.
J. (IRMJ) 33(1), 1-15 (2020)

Karanasios, S.: Framing ICT4D research using Activity Theory: a match between
the ICT4D field and theory? Inf. Technol. Int. Dev. 10(2), 1-17 (2014)

Kujala, J., Aaltonen, K., Gotcheva, N., Pekuri, A.: Key dimensions of project
network governance and implications to safety in nuclear industry projects. In:
EURAM 2016: Manageable Cooperation? (2016)

Lappi, T., Karvonen, T., Lwakatare, L.E., Aaltonen, K., Kuvaja, P.: Toward an
improved understanding of agile project governance: a systematic literature review.
Proj. Manag. J. 49(6), 39-63 (2018)

Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
XP2019. In: Hoda, R. (ed.) Agile Processes in Software Engineering and Extreme
Programming — Workshops. XP 2019. LNBIP, vol. 364, pp. 13—19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_2

Nyandongo, K.M., Khanyile, K.: Governance arrangements for agile projects. In:
Proceedings of the International Conference on Industrial Engineering and Oper-
ations Management, pp. 23-26 (2019)

PMI: Governance of Portfolios, Programs, and Projects: A Practice Guide. Project
Management Institute (2016)

Vlietland, J., van Vliet, H.: Towards a governance framework for chains of Scrum
teams. Inf. Softw. Technol. 57, 52-65 (2015)

Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J.
Inf. Syst. 4(2), 74-81 (1995)

https://doi.org/10.1007/978-3-030-30126-2_1
https://doi.org/10.1007/978-3-030-30126-2_1
https://doi.org/10.1007/978-3-030-30126-2_2

200 M. C. Uwadi

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Cherry Picking - Agile Software
Development Teams Applying Design
Thinking Tools

Franziska Dobrigkeit®™, Christoph Matthies, Philipp Pajak, and Ralf Teusner

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
franziska.dobrigkeit@hpi.de

Abstract. Design Thinking (DT) is an established approach to con-
ceptualize software products before starting the product development
work. Research suggests that software development can benefit from a
continuous integration of DT throughout Agile development processes.
However, practitioners and researchers lack an in-depth understanding
of which tools from the ever-growing DT toolbox are suited to support
software development teams and their processes and how these tools can
be applied to the teams’ daily work. As initial steps towards closing this
knowledge gap, we present our experiences from testing five different
DT tools from a previously developed toolbox with four Agile software
development teams. Each team chose three tools to apply to their prod-
uct, problem, and context during a workshop. We present summarised
findings regarding the use cases, benefits, and challenges of these tools
as experienced by the participants. Overall, the teams welcomed the DT
tools and were able to independently apply them to achieve the desired
effects, e.g., to highlight user needs, find product issues, and discover
team challenges.

Keywords: Design Thinking - Agile - Software development teams

1 Purpose

Research on Design Thinking (DT) indicates that it can positively impact soft-
ware development activities, e.g., by facilitating a deeper understanding of the
product, the users, and their needs [1,2,15,16], and increasing team collab-
oration [2,4]. Accordingly, various researchers propose integrating aspects of
DT with modern Agile software development [9,11,17]. While the research is
often focused on DT as an approach to support initial software design phases,
some researchers suggest continuous use through all stages of software devel-
opment [7,17]. Within such approaches, DT tools benefit Agile teams in later
process stages, aiding during their ongoing development activities [5]. However,
there is still a lack of understanding of which DT tools can support agile devel-
opment teams. Accordingly, our research focuses on empowering Agile team
members and DT novices with suitable DT tools and evaluating their experi-
ences and collected perceptions (cmp. [5,6]). Towards this goal, we developed

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 201-206, 2021.
https://doi.org/10.1007/978-3-030-88583-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_20

202 F. Dobrigkeit et al.

the DT@IT Toolbox in previous research [8,13]: a collection of 12 DT tools tar-
geted at supporting software development teams in their work (freely available
for download at https://hpi-epic.github.io/dt-at-it-toolbox/).

2 Research Method

Within this study, we employ a convergent mixed method research design [3] to
collect empirical evidence for a total of 5 of the tools from the DTQIT Toolbox.
We evaluate the tools with four teams from German Small and Medium Enter-
prises (SMEs). We selected the teams based on company size, self-reported use
of an Agile development process, low self-reported knowledge of DT, and co-
location to allow for an in-person workshop at the company site. We met with
each teams’ lead to introduce our toolbox and research and asked them to select
three of the twelve tools for their team based on what made the most intuitive
sense for their current use cases and problems. Next, we met at the team’s site
and conducted a three-and-a-half-hour workshop, in which the teams applied
each of the three chosen DT tools to issues or topics relevant to their project.
We introduce the tools with the help of the worksheets from the DT@QIT Tool-
box. Each worksheet includes information on required prerequisites, the time
needed, an explanation of the tool, and examples from a software development
context. The workshops were structured as follows:

1. 15 min introduction to Design Thinking and our research
2. 60 min Application of first DT Tool
(a) Handing out the worksheet from our toolbox
(b) Answering comprehension questions
(¢) Application of the DT tool to a problem or topic of the teams choice
(d) Filling out a tool evaluation survey
3. 60min Application of second DT tool (detailed steps see 2. a—d)
4. 60 min Application of third DT tool (detailed steps see 2. a—d)
5. 15min Group interview.

During the workshops, we took part as participant observers and employed
four forms of data collection to capture the participants’ experience with the DT
tools: The facilitating researcher took field notes on the teams’ process including,
use-case chosen, discussions in the team, results, challenges. Additionally, the
researcher took pictures of the resulting artifacts, e.g., sketches or whiteboards.
At three points of the workshop, we asked participants to fill out a survey to
evaluate the DT tool they had just experienced. Items in the survey asked for
the general experience with the tool, what they liked and disliked, further pos-
sible and impossible use-cases, and feedback on the worksheet. At the end of
each workshop, we conducted a semi-structured group interview asking them
to provide feedback on the workshop, the worksheets, and the tools. Thus, we
carried out four semi-structured group interviews lasting between 15 to 20 min.
The facilitating researcher took notes during each interview. After conducting
all workshops, we analyzed our notes from observations and interviews and the
survey answers. We iteratively coded and clustered the observation notes, the

https://hpi-epic.github.io/dt-at-it-toolbox/

Agile Software Development Teams Applying Design Thinking Tools 203

interview notes, and the survey responses to derive connections, patterns, and
juxtapositions [10]. Thus we derived the perceived benefits, perceived challenges,
and use cases presented in Sect. 3.

3 Findings

We evaluated five of the twelve toolbox tools, namely A Beginners Mind, the
Customer Journey Map, 30s Sketch, 5 Whys, and Five Finger Feedback. Table 1
depicts the use cases, benefits, and challenges we identified for each tool from
our empirical data. Overall the participating teams welcomed the additional
tools and the different working styles. The toolbox worksheets enabled the par-
ticipating teams to independently apply the tools and achieve the desired out-
comes, e.g., discovering product issues, generating and discussing ideas, or learn-
ing something about their product, users, and team members. These findings
are in line with similar research on UX methods [14] and suggested benefits of
DT [1,2,4,12,15,16].

Table 1. Summarized findings for each DT tool evaluated as part of this study

Use cases ‘ Benefits Challenges

A beginner’s mind

too abstract for some

e feature design explaining things simply

e UI design

better understanding of

a beginner is required
e framework choice problem or topic

e architecture choice

abstraction of problem &

e algorithm understanding technical knowledge

Customer journey map
e find & tackle UX issues

e document features perspective

easy to take the user’s

personas are required

finding the right scope

e document acceptance

helps uncover flaws in Ul

required time

tests and process flow
30 second sketch
o GUI-focused problems

keeping artifacts updated

easy to do low confidence in drawing

e searching for different

easy to dispose skills might be a barrier

perspectives fast results

Five whys

e finding core problem

allows to dig deeper than

might feel invasive to the

during bug fixing intuitive first answer questioned person

sensitizes for simplified

answers & root causes

Five finger feedback

e personal feedback

easy to do accepting feedback

e with managers

easy to remember

distinguishing feedback

feedback on different categories can be hard
difficult with broad topic

e on a task or project

e group feedback aspects

e in retrospectives

not suitable for large

e after longer meetings groups

204 F. Dobrigkeit et al.

4 Research and Practice Implications

The results from this study support our hypothesis that DT tools can benefit
Agile teams during later stages of their development process, as they are aiding in
their ongoing development activities and challenges. However, we were only able
to evaluate five selected DT tools with a limited number of teams. Accordingly,
further research with additional tools and teams is necessary to provide more
evidence. Additionally, we only evaluate the direct effects of DT tool usage, and
more research is required to collect and assess long-term results.

For Agile practitioners, we provide a low-friction possibility to get acquainted
with suitable tools with our DT toolbox and the accompanying materials. The
use cases and benefits identified within this research can guide the selection of
fitting tools for a given situation, and the identified challenges provide hints
of what to prepare beforehand or what to be aware of during the application
of a specific tool. Our toolbox can serve as a stand-alone support for software
development teams. In this case, teams that want to further their DT knowledge
beyond the application of single tools will require additional in-depth explana-
tions on DT and the associated concepts and background. Alternatively, our
toolbox can support more holistic integration approaches (cmp. [9,11,17]) by
providing DT use cases and tools to apply in later development stages.

5 Contributions

We contribute empirical evidence on how and when a selection of five DT tools
can support Agile software development teams in their daily work. We summa-
rize the employed use cases and the benefits and challenges experienced by the
groups for each tool. The participating teams independently and successfully
applied the introduced DT tools with the help of worksheets from the DTQIT
Toolbox [8]. Thus, our findings suggest that DT novices can benefit from apply-
ing single DT Tools without extensive introduction or training in DT concepts.
Furthermore, our results indicate that one-time use of the DT tools already
provided the reported benefits. However, these are most likely not permanent
without repeating similar activities. Additionally, the use of single DT tools only
provides a limited perspective on DT as it does not support developing a DT
mindset or an understanding of the DT process. Nonetheless, we conclude that
the evaluated worksheets from the DTQIT toolbox and the identified use cases
provide a low-barrier entry-point to DT, allowing agile development teams to
gain first-hand experiences with DT tools and experiencing their benefits.

Agile Software Development Teams Applying Design Thinking Tools 205

References
1. Brown, T.: Design thinking. Harvard Bus. Rev. 86(6), 84 (2008)
2. Clark, K., Smith, R.: Unleashing the power of design thinking. Des. Manag. Rev.

10.

11.

12.

13.

14.
15.

16.

17.

19(3), 8-15 (2008)

Creswell, J.W., Clark, V.L.P.: Designing and Conducting Mixed Methods Research.
Sage Publications, Thousand Oaks (2017)

De Paula, D., Dobrigkeit, F., Cormican, K.: Design thinking capability model
(DTCM): a framework to map out design thinking capacity in business organi-
sations. In: 15th International Design Conference, pp. 557-566 (2018)

Dobrigkeit, F., de Paula, D.: Design thinking in practice: understanding manifesta-
tions of design thinking in software engineering. In: Proceedings of the 27th ACM
Joint Meeting-ESEC/FSE 2019, pp. 1059-1069 (2019)

Dobrigkeit, F., de Paula, D., Carroll, N.: InnoDev workshop: a one day introduc-
tion to combining design thinking, lean startup and agile software development.
In: 2020 IEEE 32nd Conference on Software Engineering Education and Training
(CSEE&T), pp. 1-10. IEEE (2020)

Dobrigkeit, F., de Paula, D., Uflacker, M.: InnoDev: a software development
methodology integrating design thinking, scrum and lean startup. In: Meinel, C.,
Leifer, L. (eds.) Design Thinking Research. Understanding Innovation, pp. 199—
227. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97082-0-11
Dobrigkeit, F., Pajak, P., de Paula, D., Uflacker, M.: DTQIT toolbox: design think-
ing tools to support everyday software development. In: Meinel, C., Leifer, L. (eds.)
Design Thinking Research. Understanding Innovation, pp. 201-227. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-28960-7-13

Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. Lead. Des. 18, 815-829 (2012)

Harding, J.: Qualitative Data Analysis from Start to Finish. Sage, Thousand Oaks
(2013)

Hildenbrand, T., Meyer, J.: Intertwining lean and design thinking: software product
development from empathy to shipment. In: Maedche, A., Botzenhardt, A., Neer,
L. (eds.) Software for People. Management for Professionals, pp. 217-237. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31371-4_13

Holloway, M.: How tangible is your strategy? How design thinking can turn your
strategy into reality. J. Bus. Strategy 30(2/3), 50-56 (2009)

Pajak, P., Dobrigkeit, F.: DTQIT toolbox: initial release. Version v1.0 (2021).
https://doi.org/10.5281/zenodo.4602920

Pedersen, T.0.: UX toolbox for software developers. Ph.D. thesis (2016)

Porcini, M.: Your new design process is not enough-hire design thinkers! Des.
Manag. Rev. 20(3), 6-18 (2009)

Ward, A., Runcie, E., Morris, L.: Embedding innovation: design thinking for small
enterprises. J. Bus. Strategy 30(2), 78-84 (2009)

Ximenes, B.H., Alves, [.LN., Aragjo, C.C.: Software project management combining
agile, lean startup and design thinking. In: Marcus, A. (ed.) Design, User Expe-
rience, and Usability: Design Discourse. LNCS, vol. 9186, pp. 356—-367. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20886-2_34

https://doi.org/10.1007/978-3-319-97082-0_11
https://doi.org/10.1007/978-3-030-28960-7_13
https://doi.org/10.1007/978-3-642-31371-4_13
https://doi.org/10.5281/zenodo.4602920
https://doi.org/10.1007/978-3-319-20886-2_34

206 F. Dobrigkeit et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

From Project to Product

Matthew Philip' ® and Yoan Thirion?

I'St. Louis, USA
2 Luxembourg, Luxembourg

Abstract. As technical advances have enabled organizations to deliver software
to the market faster, in turn shortening the feedback loop for new ideas and spurring
innovation, legacy organizations need to update their mindset from a project-driven
to a product-driven approach or risk being displaced by product-native organiza-
tions. This poster shows the high-level principles that represent our experience
guiding organizations with a project-to-product approach.

Keywords: Product - Project - Outcomes - Experimentation - Value - Flow -
Vision

1 History and Background

Organizations that are product-native — that is, product-oriented from their beginning —
typically do not need to take a project-to-product journey, inasmuch as they have never
known a time when IT was considered anything but integral to the organization’s suc-
cess. On the other hand, organizations who have inherited a legacy approach to infor-
mation technology such that they have traditionally regarded IT as a cost center and
separate from the business often experience the existential threat of being disrupted (or
worse) and therefore choose to orient or reorient themselves toward products and product
development, resulting in a more or less intentional rethinking of their ways of working.

For example, one of the organizations in our experience had a highly matrixed,
globally distributed IT group of more than 12,000 people that optimized for project-
management concerns rather than its customers and the flow of value to them. This
organization had a history of so-called “Agile” and “DevOps” transformations, but none
of them clearly dealt with moving from project to product. These transformations yielded
some gains but ultimately, because they were internally oriented, did not focus on true
customer and user outcomes.

2 Defining “Product”

A digital product (and therefore product management) is fundamentally different from
a project (and project management). According to Jez Humble, some assumptions of
projects can include:

e Once we’ve built it, it doesn’t change much

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 207-212, 2021.
https://doi.org/10.1007/978-3-030-88583-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_21

208 M. Philip and Y. Thirion

e In the course of building it, we don’t learn much significant information
e You must complete it because you can start using it.

In contrast, digital products [3]:

e Will change a lot over their lifecycle

e Allow us, in the course of building them, to discover large amounts of information
that can inform decisions and directions

e Can be used and provide value before they are “complete”.

A working definition of product is (adapted from the Scrum Guide):

A product is a vehicle to deliver value. It has a clear purpose, functional boundary,
stakeholders, users and customers. A product could be a single or a group of
services, physical products, applications, platforms, systems, and data.

3 Principles for Moving Toward Product-Orientation

As technical advances have enabled organizations to deliver software to the market faster,
in turn shortening the feedback loop for new ideas and spurring innovation, legacy
organizations need to update their mindset from a project-driven to a product-driven
approach or risk being displaced by product-native organizations.

This change in mindset is significant, covering a wide range of concerns from psy-
chological safety to budgeting to success measures. This poster shows the high-level
principles that represent our experience guiding organizations with a project-to-product
approach.

In moving toward product-orientation, we prefer the following principles:

3.1 Outcomes over Outputs

Outputs can be defined as delivering features, user stories or other work item types with-
out respect to whether they are the right things to build or make a difference in user
success or perceived value. A project mindset prioritizes outputs with metrics such as
conformance to plan and feature delivery. A feature delivered that does not produce a
desired outcome may still be considered a success in a project-oriented approach. How-
ever, by preferring outcomes — that is, measurable impact toward user and/or customer
goals — we will acknowledge that not every feature we plan will necessarily achieve what
we hoped it would but instead optimize for user success. It is the difference between
simply doing work and doing the right work.
As Barry O’Reilly writes [4]:

An outcome-based approach... demands that you clarify the success you seek—in
quantifiable terms—by crisply defining what you’re trying to achieve so people
know why it matters... Clarity of destination allows people to explore different
options to discover if the investments you make are moving you in the direction you
desire... An outcome-based approach allows you to be accurate, more adaptive,
and take action to course-correct and own the results you gather relative to the
final destination.

From Project to Product 209

3.2 Solving Problems over Building Solutions

Solving problems orients the team toward the user/customer. In particular, a product-
orientation enlists engineers and cross-functional teams in generating the ideas for fea-
tures rather than merely carrying out the solutions of a single product owner. John Dewey
wrote that “a problem well put is half solved” [5]. Product-minded teams should build
competency in and spend time identifying the problems they’re trying to solve, as this
will improve their chances of building the right things.

3.3 Options over Requirements (and Optionality over Linearity)

By framing potential work as options rather than requirements (which carry the connota-
tion that they must be done), product teams emphasize their ability to discard unhelpful
work in the face of new information. Teams make plans when they have less information
than they will discover, so even the language of “requirement” can inhibit the ability to
change course.

As Donald Reinertsen writes [6]:

Fast feedback loops give us the ability to truncate unproductive paths quickly,
which unlocks resources for other purposes ... In contrast, the traditional approach
to development focuses on up-front planning rather than adaptation. We tried to
forecast everything and failed to do this accurately.

3.4 Experiments over Backlogs (and Hypotheses over Features)

Ultimately, product or service development is a process to test an hypothesis about system
behaviour in the environment or market it is developed for [12]. Project-minded teams
start planning with feature ideas, whereas product-minded teams plan with hypotheses.
The language of experimentation expresses the uncertainty inherent in software devel-
opment and changes the definition of success from features that are implemented but
not validated (and therefore uncertain progress) to validated learning and true progress.

3.5 Customer-Validated Learning over PO Assumptions

This is why it is important to take a user-centered approach. We found that the vast
majority of project-oriented teams did not use experience-design and design-thinking
techniques such as personas; product-oriented teams did.

According to Daniel Vacanti, “True business value can be determined only after
delivery to the customer. Choices about what to work on and when, then, are really just
you placing bets on what you think the customer will find valuable” [11]. This statement
emphasizes the limitation on a single product owner’s knowledge and ability to forecast
the future.

210 M. Philip and Y. Thirion

3.6 Measuring Value over Measuring Cost

Project-oriented organizations often prioritize measurements such as scope, cost and
time. However, we have found, like Humble, that these concerns are fundamentally
unsuited for product management inasmuch as the success of a productisn’t dependent on
these factors. Or, as Humble says, "How much it costs doesn’t matter if people don’t send
you money” [3]. Additionally, Douglas Hubbard found that the concern is unwarranted
and can actually mislead: “Even in projects with very uncertain development costs, we
haven’t found that those costs have a significant information value for the investment
decision... The single most important unknown is whether the project will be canceled.
... The next most important variable is utilization of the system, including how quickly
the system rolls out and whether some people will use it at all” [1]. An obsession with
cost undermines a focus on outcomes and experimentation.

3.7 Flow over Utilization

Reinertsen found that “Capacity utilization increases queues exponentially” and that
“operating at high levels of capacity utilization increases variability”. As a result, he
recommends that product teams control queue size and not capacity utilization [7].

3.8 Product Vision, Strategy, Personas and Principles over Product Roadmaps

Product vision, strategy, personas and principles (aka product manifesto) enable the
experimentation and problem solving referred to earlier, whereas roadmaps connote a
fixed scope-and-time-based approach. In a product-oriented team, we use the former —
which typically don’t change as much — to guide development.

3.9 Small-Batch Delivery over Big-Batch Delivery

Reducing batch size has many quantifiable benefits that support product thinking, includ-
ing reduced cycle time, faster feedback, increased employee motivation and reduced
variability in flow [7].

3.10 Optimizing for Assumptions Being Wrong over Optimizing for Assumptions
Being Right

Product-oriented teams embrace the reality that most of their ideas will not work. One of
the reasons we de-emphasize traditional feature-based roadmaps is because “at least half
of our ideas are just not going to work™ [2]. Kohavi found that “evaluating well-designed
and executed experiments that were designed to improve a key metric, only about one-
third were successful at improving the key metric!” [9]. Additionally, “Netflix considers
90% of what they try to be wrong” [8]. This reality requires a strategy to deliver and
validate as quickly as possible.

From Project to Product 211

3.11 Teams of Missionaries over Teams of Mercenaries

Product-team culture is perhaps best described by John Doerr’s “missionaries and mer-
cenaries” metaphor. “Mercenaries are driven by paranoia; missionaries are driven by
passion... Mercenaries focus on their competitors and financial statements; mission-
aries focus on their customers and value statements ... missionaries are obsessed with
making a contribution ... and... are fundamentally driven by the desire to make meaning”
[10].

3.12 Business-Driven over IT- or PMO-Driven

The movement from project to product requires not only business involvement and
collaboration, but business orientation, subordinating IT and the Project-Management
Office, which are often driven by project-management concerns that undercut product
success discussed earlier.

References

. Douglas Hubbard. https://www.cio.com/article/2438748/the-it-measurement-inversion.html

. Cagan, M.: Inspired: How to Create Tech Products Customers Love. Wiley, Hoboken (2017)

. Jez Humble. https://lectures.leanagile.pm/

. Barry O’Reilly. https://barryoreilly.com/explore/blog/your-mission-is-to-produce-outcomes-
not-outputs/

. Dewey, J.: Logic, the Structure of Inquiry. Henry Holt & Co, New York (1938)

. Reinertsen, D.: Towards Developing Accelerators in Half the Time. https://accelconf.web.
cern.ch/ipac2011/papers/weib02.pdf

. Reinertsen. http://lpd2.com/sample-page/the-principles-of-flow/

Moran, M.: Do it wrong quickly: how the web changes the old marketing rules (2007)

Kohavi, R., et al. http://ai.stanford.edu/~ronnyk/2013%?20controlledExperimentsAtScale.pdf

Doerr, J.: Two Kinds of Internet Entrepreneurs, UPenn. https://knowledge.wharton.upenn.

edu/article/mercenaries-vs-missionaries-john-doerr-sees-two-kinds-of-internet-entrepren

eurs/

11. Vacanti, D.: Actionable Agile Metrics For Predictability: An Introduction Kindle Edition

(2105)
12. Barry O’Reilly. https://barryoreilly.com/explore/blog/how-to-implement-hypothesis-driven-
development/

BN —

AN W

S©ow N

https://www.cio.com/article/2438748/the-it-measurement-inversion.html
https://lectures.leanagile.pm/
https://barryoreilly.com/explore/blog/your-mission-is-to-produce-outcomes-not-outputs/
https://accelconf.web.cern.ch/ipac2011/papers/weib02.pdf
http://lpd2.com/sample-page/the-principles-of-flow/
http://ai.stanford.edu/~ronnyk/2013%2520controlledExperimentsAtScale.pdf
https://knowledge.wharton.upenn.edu/article/mercenaries-vs-missionaries-john-doerr-sees-two-kinds-of-internet-entrepreneurs/
https://barryoreilly.com/explore/blog/how-to-implement-hypothesis-driven-development/

212 M. Philip and Y. Thirion

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Panels

®

Check for
updates

The Stories We Tell: Experience, Research,
or Patterns?

11(=) 2

Dennis Manc and Steven D. Fraser

I MSWX Software Experts, Bridgewater, NJ 08807, USA
dmancl@acm.org
2 Innoxec, Santa Clara, CA, USA

Abstract. Several “story” formats are used by software researchers and practi-
tioners to document research results and share best practices. Research papers
are the staple of software conferences and journals: papers report the results of
research projects and a wide range of empirical experiments. Experience reports
and software patterns are two alternative formats to share results and propagate
knowledge and best practices. Experience reports relate experience and cautionary
tales while software patterns distill experience into a compact form. An XP2021
panel session orchestrated by Steven Fraser — featuring panelists Ademar Aguiar,
Casper Lassenius, Mary Lynn Manns, Ken Power, and Rebecca Wirfs-Brock — dis-
cussed how “story” formats each have a role to advance the practice of software
engineering.

Keywords: Innovation - Experience reports - Research papers - Software
patterns

1 Stories Relating Research and Practitioner Experience

Throughout the 75-year history of software research and development, researchers and
practitioners have advanced the field by sharing key learnings and best practices. Shar-
ing is achieved through written documents: books and papers that document academic
research, industrial experience, successes, failures, and retrospectives on the application
of new methods and tools. Recently, sharing has also included internet-accessible audio
and video recordings such as podcasts and YouTube videos. In both cases (oral and writ-
ten), the software community’s goal is to contribute knowledge that others may leverage
and extend.

The panel discussed three formats for sharing best practices: experience reports,
research papers, and patterns. Each of the three formats is characterized by its own
stylistic guidelines. Experience reports are personal stories written in the first person
to document a personal journey. Research papers are accounts of researchers applying
the scientific process to a specific technical investigation. Patterns are descriptions of
problem and solution pairs within a general framework. Practitioners and researchers
select an appropriate style to share their ideas and results with the software community.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 215-221, 2021.
https://doi.org/10.1007/978-3-030-88583-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_22&domain=pdf
http://orcid.org/0000-0002-4418-6324
http://orcid.org/0000-0002-3958-6585
https://doi.org/10.1007/978-3-030-88583-0_22

216 D. Mancl and S. D. Fraser

2 Research Papers: Validating Research

Each academic field and many technical conferences have “guidelines” for research
papers [1]. Casper Lassenius (Aalto University) related an informal set of guidelines for
effective research papers. Casper (XP2021 academic track co-chair) shared his “COVID-
D” research reporting model:

Context and Contribution
Objectivity

Validation

Interesting

Depth

Delightful

Each element of the model is an essential piece of a successful research paper’s
content and structure. The Context and Contribution of a research paper explain the
essential elements of the research work; Objectivity requires that both successes and
failures are reported; Validation references data to support the paper’s claims and con-
clusions; a paper should be Interesting to both researchers and practitioners; Depth
means that the paper contains enough detail for understanding and insight; Delightful
means that the authors use an engaging style to attract and sustain readership.

In Casper’s opinion, the Context of a research paper should include both academic
context and practitioner relevance. Authors hope to interest readers in the acceptance
(and possible adoption) of their paper’s results, so the “academic context” is a matter
of illustrating how results complement work reported by other researchers. Industry
practitioners are motivated to read papers based on contextual research applicability.

Casper also noted that originality is an essential ingredient of a research paper.
Authors must explain, identify, and distinguish (as unique) their contributions to the
field. To validate research claims, the authors should include supporting data, from
experiments — based on either new or community results. It was also observed that
research papers generally focus on a very narrow set of questions. The requirements of
validation and depth make it almost impossible for a paper to answer complex questions
within journal or conference page limit constraints.

When we write research papers in the field of software engineering, we hope that
our papers are interesting enough that others will build on our work. It is a continuing
challenge to find an audience for research. The panel moderator, Steve Fraser (Innoxec),
reflected on this issue. He recalled a complaint from Fred Brooks at an OOPSLA 2007
panel session on software engineering [2]. Brooks was worried that we don’t under-
stand enough about others’ successes and failures. His point: “I know of no other field
[software] where people do less study of other people’s work.”

3 Experience Reports: Personal Stories

Rebecca Wirfs-Brock (Wirfs-Brock Associates) and Ken Power (Independent Soft-
ware Engineer) explained that experience reports are not as objective as a research

The Stories We Tell 217

paper, because an author relates their personal story — rather than reporting validated
experimental results. Experience reports may also share emotional perspectives and
feelings.

Ken believed that practitioners should write more experience reports. Ken noted,
however, that all of us are challenged “finding the time to write down our stories and get
them clear in our heads.” While the community benefits from experience reports, authors
are often inexperienced writers, and they depend on conference assigned “shepherds” to
relate and document their story. Shepherds are the authors’ guides though the storytelling
challenges at conferences such as ACM SPLASH, XP, and Agile [3][4]).

A shepherd or writing coach is an essential catalyst as Ken explained, “As an author,
[the shepherd is] somebody in your corner who wants you to succeed, who wants you
to tell your story in the best possible way — so you’re not staring at that blank page on
your own.”

4 Patterns: Distilling Many Stories

Mary Lynn Manns (Fearless Change) and Ademar Aguiar (University of Porto) explained
the writing process for patterns. Patterns are short one- to two-page documents focused
on practical solutions to a problem. A well-written pattern takes time to develop, and the
writing task can be quite difficult. Mary Lynn observed, “A good patterns author will
take years to get one good pattern written on a particular topic.” A draft pattern needs
to be verified, and a solid process to check a pattern is to interview other experts and
collect more stories. As a draft pattern evolves, it becomes more general and addresses
a wider range of contexts.

Patterns are best if they are short and simple. Ademar emphasized two more important
properties in telling good stories — Accessibility and Reusability — and in good patterns,
both beginners and experts will have access to knowledge that is reusable.

A pattern is not based on novelty. Ademar quoted Brian Foote: “Patterns are a blatant
disregard of originality.” A pattern author does not create new knowledge, rather their
goal is to record existing knowledge in a useful and reusable way. The pattern writer’s
role is to extract implicit knowledge from experts —and convert the knowledge into a
short, useful document.

5 Pattern Evolution

The panelists discussed the challenges of updates to previously published narratives.
Once a collection of patterns is published, these patterns become difficult to revise, even
when a patterns update is needed to add new stories, new context, or new and improved
approaches.

Everyone agreed that “out of date research papers” are a lesser problem, not the
major crisis that out of date patterns could be. Casper noted that research papers are
much lazier about updating their theories than pattern writers — he explained that “I
think the half-life of a pattern is probably shorter than the half-life of an academic
theory.” Rebecca observed that research papers contain their data and references, but
patterns don’t. Rebecca explained her view of the difference: “When I write a research

218 D. Mancl and S. D. Fraser

paper, it can stand on its own, it cites other things. When I write patterns, they go out
in the wild. They are used by other people, they are misinterpreted by people, they are
adapted by people.” So you never submit a “recall” of a research paper, you just write
a new one. But a pattern needs to evolve to incorporate better techniques and better
understanding.

Mary Lynn believed that good pattern writers must try to be humble. A pattern is
never “final” and should not be “etched in stone.” A pattern must be open to revision by
its author or by others.

Rebecca agreed, explaining that many patterns are frequently revised, and that pat-
terns “... cannot stand without a curation and a community. Curation is something that
takes time, energy, and passion.”

Mary Lynn added that the patterns community has the concept of a “proto-pattern,”
a trial pattern that needs more validation. She explained that when you call your idea a
proto-pattern, you indicate “I think this is true, and I’d like to open it for discussion.”

6 The Stories We Tell: The Agile Manifesto

The panel moderator, Steve Fraser (Innoxec), prompted the panelists to discuss the
Agile Manifesto [5]: “Where does the Agile Manifesto fit into the stories we tell?”” His
question triggered several interesting comments, after he reminded panelists that Steve
McConnell (Construx) was scheduled for a keynote talk the following day to advocate
for revision and modernization of the Agile Manifesto.

Rebecca responded, “The authors [of the Manifesto] aren’t going to change it.” She
added that the Manifesto captured the spirit of what agile was trying to do 20 years ago,
but it should not be considered a set of unchanging principles for today. She admired the
bravery of the pioneers of Agile because they decided to tell a bold story as a way to gain
attention. She said, “How many times do you write a manifesto when you want to do
something in research?”” She compared the Manifesto authors to members of the early
XP community who were gutsy enough to rally around the controversial name “Extreme
Programming” coined by Kent Beck to describe a lightweight small-team development
process incorporating many practices that we now consider “Agile.”

Ken shared his opinion on the Agile Manifesto: “It is a wonderful historical artifact,”
and he suggested that many are unaware of the Manifesto and its values. Ken thought
the most important part of the Manifesto’s “story” is its first line: “We are uncovering
new and better ways of doing things.”

Ademar weighed in about the changing context of the agile world. “Maybe the
generality [of the Manifesto] is too general today, we may need to be more specific.”
Ademar related this to the problem of writing good patterns — patterns that are too
generic fail to give useful advice, but patterns that are too specific may age quickly as
developers move to new systems and new contexts. To this point, Steve McConnell’s
XP 2021 keynote gave specific recommendations for updating the Manifesto. Steve
indicated several Manifesto principles that should be updated in the light of 20 years of
software engineering research and experience.

Mary Lynn thought that “getting your ideas out” for public discussion is the most
important lesson from the Manifesto: “The important thing is that people just write.”

The Stories We Tell 219

Mary Lynn gives the Manifesto authors credit for saying what they thought. We should
do the same — put out our opinions and let people discuss them.

Casper opined that he was ready to move on from the Agile Manifesto. “I’m interested
in what works, what makes the software industry better. We shouldn’t start focusing on
this like it’s a kind of sacred text. It should not be a test of your faith.”

7 The Future of Storytelling

Ken believed that social media tools are useful for sharing stories and information. He
cited Discord, Twitch, and Twitter as tools to disseminate informal communications. Ken
postulated that video, augmented reality, and virtual reality tools may become useful.
Ken related how some agile teams record short videos to explain certain architecture
decisions or to share other key information with teammates.

Casper observed that video is somewhat imperfect and inefficient. Developers can
share information on StackOverflow which could be complemented by video chat.
Casper thought that similar sites may emerge for patterns or organizational innovations.

Mary Lynn emphasized that short communications will be effective in the future.
“We say that their [developer’s] attention span is shorter. I don’t know if I believe that.
I just think we are being pulled in too many directions.” She advocated short videos,
short blog entries, and other kinds of short presentations will be more valuable than
full research papers and experience reports of 10 pages or more. Short presentations are
more likely to be read and discussed, so they will have a greater impact.

Rebecca believed that all forms of storytelling will be relevant in the future. “I think
that no form of communication is going to go away. We are just going to add to our
storytelling bag of tricks. The challenge we have is picking the right mix.”

8 Other Insights from the Panel

Ademar shared the FAIR principles [6] from the Research Communications and e-
Scholarship community: knowledge should be Findable, Accessible, Interoperable, and
Reusable. E-Scholarship and patterns have communities that are advocates for efficient
dissemination of information. Ademar believed that the FAIR principles apply to the
creation of good patterns.

Casper asked some probing questions about the pattern writing process. He was
curious how a pattern writer could use one or two stories to “abstract the context” of
the problem well enough to write a good pattern. Casper asked, “How deep is your
understanding?... to me, the patterns look kind of like witchcraft.”

Mary Lynn disagreed, explaining that if you could write a pattern from one story,
that would be witchcraft. She explained that for years, the patterns community followed
the “Rule of Three” — whatever you discovered might not really be a pattern until you
hear it three times. She recommended that a pattern author record the sources of the
stories that were incorporated into a pattern, because maintaining a pattern is easier if
the author can say “this is where I heard this.”

The number of references to outside papers and experts should be much lower in
experience reports than for research papers, according to Rebecca. “In a story about an

220 D. Mancl and S. D. Fraser

agile experience, some people feel that they need to cite all the experts who have written
the books.” For an experience report, the emphasis should be on what the authors have
experienced and learned. “Be very direct about successes or failures, ‘aha moments’ you
might have had... that’s what makes an interesting story.”

9 Summary

All storytelling formats are useful for sharing experiences and transferring knowledge
and technology in the software community.

Ademar recommended trying to write patterns: “It’s not harder or easier than a
research paper, it’s just different.”

Ken was quite willing to expand storytelling beyond the three main forms: “I find
the practice of writing — whether it’s experience reports, research papers, tweets, blog
posts, patterns, or anything else — to be a very useful exercise in coordinating my own
thoughts, and in helping other people to coordinate and articulate their thoughts.”

Casper found that sharing stories, whether in written form or face-to-face over a
beverage, can make a positive contribution, even if the stories talk about our problems:
“So people don’t need to do the same mistakes, and at least we can laugh together.”

Mary Lynn and Rebecca both advocated writing as a good “thinking tool,” even
for people who are ashamed of their own writing style. “You don’t have to classify
yourself as a writer, just go out there and write,” Mary Lynn exhorted. Rebecca was also
encouraging: “Not all of us are doing revolutionary things. But you can still seize the
moment.”

Effective writing will continue to be a means for software professionals to document
and share results to continue and advance innovation and technology.

References

1. Johnson, R.E., Beck, K., Booch, G., Cook, W., Gabriel, R., Wirfs-Brock, R.: How to get a
paper accepted at OOPSLA (panel). ACM SIGPLAN Notices 28(10), 429-436 (1993). https://
doi.org/10.1145/167962.165934

2. Fraser, S., Mancl, D.: No Silver Bullet: Software Engineering Reloaded. IEEE Softw. 25(1),
91-94 (2008). https://doi.org/10.1109/MS.2008.14

3. Agile Alliance Experience Reports Initiative website. Available at https://www.agilealliance.
org/resources/initiatives/experience-report-program. Accessed 3 Jul. 2021

4. XP 2021 Call for Experience Report Submissions website. Available at https://www.agilealli

ance.org/xp2021/call-for-submissions/experience-reports. Accessed 3 Jul. 2021

. Agile Manifesto website. Available at http://agilemanifesto.org. Accessed 3 Jul. 2021

6. Guiding Principles for Findable, Accessible, Interoperable and Re-usable Data Publishing
version b1.0. Available at https://www.forcel 1.org/fairprinciples. Accessed 3 Jul. 2021

W

https://doi.org/10.1145/167962.165934
https://doi.org/10.1109/MS.2008.14
https://www.agilealliance.org/resources/initiatives/experience-report-program
https://www.agilealliance.org/xp2021/call-for-submissions/experience-reports
http://agilemanifesto.org
https://www.force11.org/fairprinciples

The Stories We Tell 221

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

The Future of Software Engineering: Where
Will Machine Learning, Agile,
and Virtualization Take Us Next?

Dennis Mancl! ® @ and Steven D. Fraser?
I MSWX Software Experts, Bridgewater, NJ 08807, USA
dmancl@acm.org
2 Innoxec, Santa Clara, CA, USA

Abstract. Software has become the lifeblood of the 21st century, enabling a broad
range of commercial, medical, educational, agricultural, and government appli-
cations. These applications are designed and deployed through a variety of soft-
ware best practices. With the onset of the COVID-19 pandemic, developers have
embraced virtualization (remote working) and a variety of strategies to manage
the complexity of global development on multiple platforms. However, evolving
hazards such as network security, algorithm bias, and the combination of careless
developers and deliberate attacks continue to be a challenge. An XP2021 panel
organized and chaired by Steven Fraser debated the future of software engineer-
ing and related topics such education, ethics, and tools. The panel featured Anita
Carleton (CMU’s SEI), Priya Marsonia (Cognizant), Bertrand Meyer (SIT, Eiffel
Software), Landon Noll (Independent Consultant), and Kati Vilkki (Reaktor).

Keywords: Agile - Al - Applications - Collaboration - Education - Machine
learning - Professionalism - Remote working - Societal needs - Software
engineering

1 Introduction: The Panelists Share Their Views of the Future

Software development has evolved over the past seventy-five years to meet the chang-
ing challenges of software product development. Software development has embraced
many innovations in technical and business practices: structured programming, waterfall
development processes, OO design, automated testing, outsourcing, open source, net-
working, offshoring, and Agile methods. New programming languages, SDKs (software
development toolkits), and code management tools have improved productivity. Today,
there is hope that emerging technologies such as machine learning, virtual communi-
cation, and remote working tools will improve the reliability and resilience of software
systems.

Technology needs to address a crisis of complexity. Yesterday’s batch-oriented main-
frame systems were relatively simple, but today’s software developers face more com-
plexity. Developers work in a global environment targeting multiple platforms while

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 222-230, 2021.
https://doi.org/10.1007/978-3-030-88583-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_23&domain=pdf
http://orcid.org/0000-0002-4418-6324
http://orcid.org/0000-0002-3958-6585
https://doi.org/10.1007/978-3-030-88583-0_23

The Future of Software Engineering 223

managing ubiquitous networks, petabyte datasets, and emergent hazards. New tech-
nology could be useful in this complex environment. For example, some of work of
developers might be replaced by automated development and machine learning [1, 2].
In this panel session, the panelists expressed a wide spectrum of opinion on the future.

The panelists focused less on technology and more on the ongoing challenges of
the software industry. Software teams everywhere must face issues connected to quality,
education, outsourcing, ethics, a push to democratize development, and more connec-
tions between computing and non-technical fields. The panelists expressed their antici-
pation for the benefits of cloud technology, ubiquitous computing, smarter development
environments, and systems that leverage natural language processing. The panelists
expressed concern about two missing pieces in the software industry. First, there is a
need for better-trained software professionals who understand the discipline of product
development in light of the challenges of security, safety, and ethical economic viability.
Second, industry needs an incentive system that not only rewards innovation — but also
penalizes companies that knowingly deliver systems that fail or worse yet cause bodily
harm.

1.1 AI and Machine Learning

Two panelists, Anita Carleton (Software Engineering Institute) and Priya Marsonia (Cog-
nizant), embraced the adoption of new technologies, including artificial intelligence and
machine learning, to extend the capacity of software developers. Anita is Director of
SEI’s Software Solutions Division, and Priya is a Senior Client Partner at Cognizant.

Anita anticipated that Al will support the development of software systems. She
expected that the combination of human and machine intelligence will enable the
software industry to keep ahead of a dynamically changing environment. Al-based
development tools will help meet increasing quality requirements.

Priya was convinced that we will see more natural language programming and better
tool support for developers. She explained, “In the agile world, I see the infrastructure
as helping us more,” with humans collaborating with intelligent agents and machine-
identified “digital twins.” A future software development environment might be able
to analyze the programming styles of team members, then assign pair programming
partners based on similarity of programming style. In an agile environment of the future,
a developer may pair program with an intelligent agent-selected partner, or even an Al
instead of a human partner.

Priya anticipated that another fruitful area for automation is to provide support for
large multi-team projects. Systems could scan enormous volumes of complex subsys-
tems, assessing code similarities and offering suggestions of where teams may need to
collaborate. Inter-team communication can avoid duplication, discover useful lessons
from the past, or improve the testing process. Priya added, “The whole notion of getting
suggestions and spotting trends would be embedded in our environment, and we would
have to do fewer and fewer rudimentary operations.”

224 D. Mancl and S. D. Fraser

1.2 Conventional Technology with Better Failure Analysis

Bertrand Meyer (Schaffhausen Institute of Technology and Eiffel Software), agreed with
the positive assessment of the future, but believed that more conventional technology
and processes will continue to advance.

Bertrand asserted that there are reasons to be proud of what software has done
(including virtual conferences). “Imagine the depth of the stack just to have this [this
panel session].” But we have also seen big failures. He referred to the 7-hour outage of
emergency services telephone service in France in the first week of June 2021 [3]. “This
was a software bug. Why don’t we have the same kind of analysis we have for airplane
accidents?” One of software engineering’s biggest challenge is “correctness” — and a
public airing of significant bugs will help developers to understand the root causes of
future software failures.

1.3 Need to Address Software Failures

Landon Noll (Landon Noll and Associates) was more pessimistic. He warned that we
are already in a software crisis, and we need major changes to improve the education
and management of software professionals to increase future “readiness.”

Landon explained his views — and why he believes that skills and best practices are
not improving. “So many companies and developers use the term software engineer —
yet [they] lack any formal training or certification to understand even basic engineering
principles.” This is a view shared by software engineering thought leaders, such as
David Parnas and Mary Shaw [4][5][6]. Landon complained that companies in non-
critical industries don’t care, and he blamed the limits on legal liability for software that
fails — and users accustomed to accepting poor quality software. Landon claimed that we
need to address these skill deficits and fix these economic incentives to make progress.

1.4 Less Outsourcing in Data-Driven Industries

Kati Vilkki (Reaktor) shared her consulting experience in digital transformations based
on her years as an agile technology leader at Nokia. Kati observed that many banks and
insurance companies have gradually “outsourced” many of their information technology
functions. At the time, company executives felt that I'T was not part of the company’s
core business. But today, the pendulum is swinging the other way. These companies
have found that their businesses have evolved and that “data is king.” Kati reported: “I
see them desperately trying to in-source, to hire software developers.”

2 Democratization of the Software Industry?

Priya noted that there is an increased “democratization” of software development, with
the rise of many new low-code or no-code environments that can be used by non-
programmers to build applications. She talked about Cognizant’s think tank “Center
for the Future of Work,” which was launched to study the influences of globalization,
virtualization, Al, and the cloud [7]. That future for software engineering, according to

The Future of Software Engineering 225

Priya, may be “founded on natural and spoken language, where we don’t have to be as
conversant in an arcane coding language, or the vagaries of a very specific environment
that’s complex to manipulate.”

Anita added her observations on the evolution of the software industry. She described
significant advances in the past 30 years of software development, such as a better focus
on architecture, improved practices and tools, agile processes, and “DevSecOps” which
have combined to make product development better.

Landon voiced concerns. He noted that, “Agile practices have a potential for helping,”
but observed that developers are often attracted by the glitter of new programming
languages. He would prefer developers to spend less time on the “language of the month”
or “current design fads” and more on engineering principles, best practices, and good
algorithm design.

3 Can AI and Machine Learning Help?

The panel was split on the question of the potential effectiveness of Al-centric tools.

In 2020, Anita was one of the guest editors of the July/August 2020 issue of /IEEE
Computer [8], which contained several articles that explored future interactions between
Al and software engineering. Anita expected that AI will be part of “societal-scale sys-
tems.” However, she worried that we still aren’t sure where Al research will take us.
Priya believed that future programming infrastructure will incorporate machine learning
technology. But Bertrand was skeptical about the potential impact of machine learn-
ing on software development. He explained that the development of correct programs
requires logic and reasoning, not heuristic search. “Machine learning works on statisti-
cal principles. Program correctness works on a different kind of mathematics — which is
logic. It’s not so easy to see how we can apply statistical techniques. What does it mean
to say the programs in the world are going to be 2% more correct?”.

4 Companies May Need to Do More In-Sourcing

Kati worried about the consequences of “out-sourcing followed by in-sourcing.” When
companies outsourced most of their development, many of them were seeking to reduce
costs, so they collected many applications from different vendors. “I don’t think it’s a
wonder that the whole thing is a mess.” The process of in-sourcing and hiring software
developers is difficult and costly.

Kati shared her experience in Finland — developers are expensive, they can choose
where they want to work, and the companies do not have much experience leading and
managing software projects. Some accommodation is needed on all sides. “For this to
work,” according to Kati, business specialists need to know more about software and
software people need to know more about business. She mentioned the increased demand
for her consulting services, where leadership teams frequently request her introductory
seminar course on software management.

226 D. Mancl and S. D. Fraser

5 Do We Need to Reform the Software Industry?

Three areas of evolutionary or revolutionary change were on the minds of the panelists:
reform of the industry’s commercial incentives (including product liability), the future
of free and open source software, and general improvements in software engineering
education.

5.1 The Software Industry and Commercial Incentives

Landon believed the failure of modern software engineering is rooted in commercial
incentives. He called for reform: a specific list of actions to change the economic model
for software development to reduce company incentives to ship software systems and
applications that crash. Landon’s list:

e Invalidate EULAs (End User License Agreements) for software or software-based
services that attempt to avoid responsibility for the software and services they sell

e Penalize companies with triple damages if they willfully disregard software best prac-
tices, lack adequate testing, ignore reported defects, or employ unqualified software
developers

e Require certification and continuing education for software developers

e Empower regulatory panels to study software failures and make recommendations
e.g., patterned after those that reviewed the Challenger or Titanic incidents

o Identify and adopt “best practices” widely, including for non-critical software systems
like games

Other panelists pushed back on these suggestions.

Anita claimed that the software industry has improved steadily and it will continue to
advance in many areas, such as better instrumentation of the development process. She
went on, “I don’t think tools are the only answer. But humans, tools, and Al, working
together to address issues of scalability, composability, and complexity” will continue
to make progress.

Priya was also more positive about the software industry than Landon. She recog-
nized potential quality issues with the “democratization” of software engineering. While
systems may be designed and built by experts, some applications may be developed by
end users — so we must be aware of the relative quality differences. In the end, ongoing
abstraction and the continuation of original agile principles will mean more people can
solve problems using software principles appropriate to their own level of expertise.

Landon was critical of the “fail hard, fail fast” culture often found in the software
industry, noting that this emphasis on failure has been an excuse for delivering poor
quality software. It will be tragic if the “fail hard, fail fast and throw it out there and see
what happens” culture is pervasive, and influences negatively (life threatening results)
critical systems such as medical, avionics, and security systems.

Bertrand defended “fail fast” by explaining the agile thinking behind it. “When they
say ‘fail fast,” it’s not that it is OK to fail. It’s a different approach to program verification.”
He explained that agile development emphasizes frequent testing: “Their way of getting
things correct is to test it all the time.” Bertrand preferred other approaches like careful

The Future of Software Engineering 227

up-front design and programming by contract, but he insisted that XP and other agile
methods can build quality software with an iterative approach combined with a rigorous
testing process: “I’m not ready to cast stones at the agile people... It’s not my approach,
but it’s completely reasonable, and it is possible to combine it will other approaches.”
Bertrand referred the audience to his recent book (Agile: The Good, the Hype, and the
Ugly) for more details.

Kati explained that the software industry will need to address future issues that cannot
be solved within software engineering alone. “We need to have a much better connection
to psychology, sociology, neuroscience, environmental sciences, and so on.” In the past,
when UX (user experience) was a new concept, “it brought a whole new perspective to
many software developers.” Kati expressed that the broader view is critical: “to widen
our horizons, think about the impact of software, and make conscious choices.” She
explained, “I’m all for good engineering practices and teaching that as a science. But I
don’t think it’s enough.”

5.2 The Future of Open Software

Bertrand questioned whether free software and open source software will continue as a
major source of future innovation. He knew that criticism of the open source economic
model is not a popular point of view. He warned that if you are too critical, “you appear
to be a horrible representative of the powers of mercantile capitalism.” He admitted that
the world has gained a lot from open source, but he pointed out that the experience of
other engineering fields is unanimous: “there is no example of an engineering discipline
which has gotten better in a context where there was no money to be made.” Bertrand
was willing to consider open source to be “a different business model” that that is useful
in some contexts, but the software engineering community needs to be realistic about
its limitations.

Some economists view “free” software and services as a “barter” system — free
products in exchange for user data. As a recent Harvard Business Review article [9]
explained, “The business strategy of companies such as Facebook, Google, and numerous
others is partly an exchange that does not entail money: Consumer data is being collected
in exchange for the provision of internet services, just as berries might be swapped for
meat.” The economics of open source may evolve along a similar path to the economics
of social media websites and “free” online services such as Dropbox and Google Docs.

5.3 The Future of Software Engineering Technology and Education

Panelists suggested topics for inclusion in software engineering education and future
software engineering technologies.

Landon advocated an approach to focus developers on building applications with
an attention to correctness and reliability. “You have to start with the simplest cases
[in education and industry]: trivial ‘Hello World’ programs, games, social media, and
things that are not critical.” In computer science courses, it is better “to have assignments
graded on whether they put in the appropriate amount of documentation and testing, not
just on whether the program worked.” Landon advocated assessing assignments based
on both development process and operational function.

228 D. Mancl and S. D. Fraser

Kati believed that ethical considerations are a fundamental consideration, particularly
in Al applications and surveillance systems. She noted that society is exceptionally
vulnerable since so much of our life is heavily reliant on software. “We need to start to
think about the impact of what we do [with software] to others.”

Anita mentioned a study launched by SEI last year to anticipate the future of software
engineering. That study, the National Agenda for Software Engineering Research &
Development, proposed research focus areas and collected ideas on the importance of
ethics in software. Other key observations included increases in automation, scalability,
evolvability, and rapid deployment, as well as more applications of Al (such as Al-
augmented software development).

Priya believed that the future of software engineering will need to combine techno-
logical advances with social components —technologies such as AI/ML and virtualization
will assist in the democratization of development, build systems that incorporate empa-
thy, and create software that embodies the characteristics of its users and makers. Priya
saw this as a natural evolution of the path software engineering was already on.

Bertrand reflected on four influential technology areas that have been making their
mark on software engineering over the last 30 years: object-oriented programming, open
source, agile development, and cloud-related technologies (which includes microser-
vices and DevOps). Bertrand saw the cloud-related technologies as positive so far (“it’s
recent and the jury is still out”), but these techniques are changing how we do software
engineering. The technologies cross some boundaries, because cloud, microservices, and
DevOps are a blend of software engineering, networking, and systems administration,
and they are likely to trigger big changes in application development. Bertrand’s view
was that “traditional software engineering wisdom, principles, and modes of reasoning
about the world do not completely transpose to that new world.”

6 Summary: Goals for the Future

The panelists shared their disagreements about the future of software engineering, but
they agreed that technology, education, and markets will bring new challenges. The
software community will find new ways to use Al, machine learning, remote working,
cloud technology, natural language processing, and new software engineering tools to
meet those new challenges.

Anita: The future will bring us smart automation, Al-inspired automation, evolving
systems, composability and scalability of systems, and the architecture of new types of
systems.

Priya: We will have a more inclusive software engineering ecosystem where everyone
contributes. Building and integrating new software will be interdisciplinary, it will be
ubiquitous, and it will be applied at different skill levels with varying ranges of expertise.

Landon: How the software industry integrates with society is key. We need continuing
education —just because you are a software developer doesn’t mean you can stop learning.
Practitioners will need to have certification and recertification — similar to other safety-
critical medical and engineering fields.

Bertrand: Developers need make the right choices as they develop software technolo-
gies. Many choices of technology at all levels of the stack are influenced by extraneous

The Future of Software Engineering 229

criteria: company policies, a priori tool selection, the color of the marketing brochure,
or whatever.

Kati: Everybody needs to understand something about software development fun-

damentals, and about “good” software development. Fundamentals need to be part of
every single curriculum at the university, especially for future leaders and managers.

Steve Fraser, the panel impresario, offered a pointer to a 2006 OOPSLA panel that

had explored the “Future of Agile” [10]. Steve concluded the panel with the observation:
“We need to remember the past in order to forge the future.”

References

. Ré, C.: Software 2.0 and Snorkel: beyond hand-labeled data. In: KDD 2018 ACM International

Conference on Knowledge Discovery & Data Mining, p. 2876. https://doi.org/10.1145/321
9819.3219937 (2018)

. Karpathy, A.: Software 2.0. https://karpathy.medium.com/software-2-0-a64152b37c35.

Accessed 3 Jul. 2021 (2017)

. France emergency service number disrupted after network outage, 3 Jun 2021. https://www.

bbc.com/news/world-europe-57341526. Accessed 3 July 2021

. Parnas, D.L.: Software engineering: a profession in waiting. IEEE Comput. 54(5), 62—-64

(2021). https://doi.org/10.1109/MC.2021.3057685

. Shaw, M.: Research toward an engineering discipline of software. In: Proceedings of FOSER

2010: FSE/SDP Workshop on Future of Software Engineering Research, pp. 337-341. https://
doi.org/10.1145/1882362.1882431 (2010)

. Shaw, M.: Progress toward an engineering discipline of software. Video of a talk for the

SATURN 2015 conference, https://www.youtube.com/watch?v=S03bsjs2YnQ. Accessed 3
July 2021 (2015)

. Cognizant: The future of work website. https://www.cognizant.com/future-of-work. Accessed

3 July 2021 (2021)

. Carleton, A.D., Harper, E., Menzies, T., Xie, T., Eldh, S., Lyu, M.: The Al effect: working at

the intersection of Al and SE. IEEE Softw. 37(4), 26-35 (2020). https://doi.org/10.1109/MS.
2020.2987666

. Tett, G.: The data economy Is a Barter economy. Harvard Business Review, 6 Jul 2021 (2021)
. Fraser, S., Rising, L., Ambler, S., Cockburn, A., Eckstein, J., Hussman, D., Miller, R.,

Striebeck, M., Thomas, D.: A fishbowl with piranhas: coalescence, convergence, or diver-
gence? The future of Agile software development practices. In: Companion to OOPSLA ‘06,
pp- 937-939. https://doi.org/10.1145/1176617.1176750 (2006)

https://doi.org/10.1145/3219819.3219937
https://karpathy.medium.com/software-2-0-a64152b37c35
https://www.bbc.com/news/world-europe-57341526
https://doi.org/10.1109/MC.2021.3057685
https://doi.org/10.1145/1882362.1882431
https://www.youtube.com/watch%3Fv%3DS03bsjs2YnQ
https://www.cognizant.com/future-of-work
https://doi.org/10.1109/MS.2020.2987666
https://doi.org/10.1145/1176617.1176750

230 D. Mancl and S. D. Fraser

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Berntzen, Marthe 52

Cherrueau, Ronan-Alexandre 176
Copei, Sebastian 186

Das, Suddhasvatta 3
Delavergne, Marie 176
Dobrigkeit, Franziska 201

Evertse, Robert 96
Fraser, Steven D. 215, 222

Gary, Kevin 3
Gustavsson, Tomas 12, 33

Heimann, Christian 42
Jansen, Slinger 96, 125

Kettunen, Petri 33
Kottke, Mario 42

Laanti, Maarit 33
Lebre, Adrien 176
Lencz, Abel 96

Mancl, Dennis 215, 222
Mainnistd, Tomi 33

Matthies, Christoph 201
Melegati, Jorge 155

Mikalsen, Marius 135

Mikkonen, Tommi 33

Moe, Nils Brede 23, 52, 135, 145
Ochoa-Zambrano, Juan 69

Onyango, Samuel 125

Author Index

Pajak, Philipp 201
Petrik, Dimitri 115
Philip, Matthew 207
Poth, Alexander 42

Riel, Andreas 42
Rygh, Nina 135

Sachweh, Sabine 167
Saltan, Andrey 87
Scholten, Joram 125
Sinik, Tea 96

Smite, Darja 23
Smolander, Kari 87, 106
Soussi, Lamia 96
Sporsem, Tor 135, 145
Springer, Virginia 115
Steenvoorden, Emilie 125
Stray, Viktoria 23, 52

Teusner, Ralf 201

Thirion, Yoan 207
Tjernsten, Andreas 33
Tkalich, Anastasiia 135, 145
Trebbau, Simon 167

Ulfsnes, Rasmus 23
Uwadi, Maduka C. 195

Vedal, Henrik 52
Vuolasto, Jaakko 106

Wickert, Manuel 186
Wizenty, Philip 167

Ziindorf, Albert 186

	Preface
	Organization
	Contents
	3rd International Workshop on Agile Transformation
	Agile Transformation at Scale: A Tertiary Study
	1 Introduction
	2 Research Methodology
	2.1 Search Process
	2.2 Summary of Included Studies
	2.3 Data Extraction
	2.4 Limitations

	3 Analysis and Discussion
	References

	Institutional Logics in Large-Scale Agile Software Development Transformations
	1 Introduction
	2 New Institutional Theory
	3 Research Method
	4 Findings
	4.1 Case A
	4.2 Case B

	5 Discussion and Conclusion
	References

	9th International Workshop on Large-Scale Agile Development
	Innovation in Large-Scale Agile - Benefits and Challenges of Hackathons When Hacking from Home
	1 Introduction
	2 Background
	3 Research Methodology and Approach
	4 Results
	4.1 Hackathon Characteristics
	4.2 Benefits of Hackathons in Large-Scale Agile
	4.3 Challenges of Hackathons in Large-Scale Agile
	4.4 Virtual Hackathons – What Are the Changes?

	5 Discussion
	5.1 Limitations

	6 Conclusion and Future Work
	References

	Impacts of COVID-19 Pandemic for Software Development in Nordic Companies – Agility Helps to Respond
	1 Introduction
	2 Background
	3 Research Design and Method
	4 Results
	4.1 How Companies’ Overall Agility has Changed (Q0)
	4.2 How Much and in What Way the Current Global Pandemic Impacts (Q1)
	4.3 How the Current Situation of Global Pandemic has Impacted (Q2)
	4.4 How Well Agility Helps to Respond to the Situation (Q3)
	4.5 Further Insights

	5 Discussion and Conclusions
	5.1 Related Works
	5.2 Recommendations
	5.3 Limitations and Threats to Validity
	5.4 Further Research

	References

	The EFIS Framework for Leveraging Agile Organizations Within Large Enterprises
	1 Motivation, Context and Methodology
	2 Established Agile Frameworks and an Literature Overview
	3 The Architecture and Characteristics of EFIS
	4 Leveraging Compliance Governance with EFIS
	5 Instantiation, Evaluation and Improvement
	6 Discussion and Limitations
	7 Conclusion and Outlook
	References

	Managing Dependencies in Large-Scale Agile
	1 Introduction
	1.1 A Framework for Coordination in Agile Teams
	1.2 Objectives and Key Results

	2 Research Method
	3 Results
	3.1 OKR Workshop
	3.2 Ad Hoc Communication
	3.3 Product Owner

	4 Discussion
	5 Conclusion and Future Work
	References

	Summary of First International Workshop on Agile Sustainability
	En
	1 Introduction
	2 Workshop Development
	3 Workshop Conclusions and Next Steps
	References

	How Collective Intelligence Can Gear Agility with Sustainability
	1 Introduction
	2 Collective Intelligence, Agility, and Sustainability
	3 Collective Intelligence and Team Learning
	4 How Collective Intelligence Could Be Used to Gear Agile and Sustainability
	5 Measuring Collective Intelligence
	6 Conclusions and Future Work
	References

	Summary of 4th International Workshop on Software-intensive Business
	Fueling a Software-driven Economy: The 4th International Workshop on Software-intensive Business
	1 Introduction
	2 The State of Software-intensive Business Research
	3 Future Challenges for Software-intensive Business Research
	References

	SaaS Pricing Practices Typology: A Case Study
	1 Introduction
	2 Background
	2.1 Related Studies
	2.2 SaaS Pricing

	3 Research Method
	4 A Typology of SaaS Pricing Practices
	5 Discussion and Practical Implications
	References

	Is Your Software Ecosystem in Danger? Preventing Ecosystem Death Through Lessons in Ecosystem Health
	1 Introduction
	2 Four Case Studies of Demised Software Ecosystems
	2.1 Blackberry
	2.2 Windows Phone
	2.3 Symbian
	2.4 Palm OS

	3 Interpretation: Demise Principles and Countermeasures
	4 Conclusion and Future Work
	References

	Genesis of a Wood Harvesting B2B Software Platform
	1 Introduction
	2 Research Design
	3 Platform Description
	3.1 Participants
	3.2 Components of the Ecosystem

	4 First Insights
	4.1 Platform Genesis
	4.2 Current Aspects to Governance
	4.3 Looking Ahead: Role of Complementors

	5 Conclusions
	References

	Towards a Taxonomy of Impact Factors for Digital Platform Pricing
	1 Introduction
	2 Theoretical Background
	3 Research Methodology
	4 Taxonomy
	5 Discussion and Conclusion
	References

	Assessing the Health of the Dark Web:
	1 Introduction
	1.1 Related Work
	1.2 Research Method

	2 Applying the OSEHO Framework
	3 Discussion
	3.1 Conclusion and Future Work

	References

	Using Guilds to Foster Internal Startups in Large Organizations: A Case Study
	1 Introduction
	2 Related Work
	3 Case Description and Research Approach
	4 Results
	4.1 Acquiring Common Practices to Approach Customers
	4.2 Building Competence in Pricing Digital Products
	4.3 Finding Ways to Collaborate with Software Developers

	5 Discussion and Conclusions
	References

	Employee-Driven Innovation to Fuel Internal Software Startups: Preliminary Findings
	1 Introduction
	2 Related work
	3 Methods
	4 Results
	5 Discussion and Practical Implications
	6 Conclusions, Limitations, and Future Work
	References

	Towards a Framework to Guide the Creation of Development Practices for Software Startups
	1 Introduction
	2 Success of Software Projects
	3 Success of Startups
	4 Conceptual Framework
	5 Some Examples of the Framework Use
	6 Conclusions
	References

	2nd Workshop on Agility with Micro Service Programming
	Towards Integrating Blockchains with Microservice Architecture Using Model-Driven Engineering
	1 Introduction
	2 Background
	3 A Model-Based Approach to Integrate Blockchain with Microservice Architecture
	4 Validation
	5 Related Work
	6 Conclusion and Future Work
	References

	A Service Mesh for Collaboration Between Geo-Distributed Services: The Replication Case
	1 Introduction
	2 Scope-Lang, A Language to Reify the Geo-Distribution of Requests
	2.1 General Model
	2.2 Scope-Lang

	3 Replication in Cheops
	3.1 Replication Model
	3.2 Architecture Overview
	3.3 CRUD Execution Workflow
	3.4 Dealing with Faults

	4 Discussion
	4.1 Proof of Concept
	4.2 Limitations

	5 Conclusion
	References

	Implementation of a Microservice-Based Certification Platform
	1 Motivation
	2 Agile Certification
	3 Certification Platform
	4 Evaluation
	5 Future Work
	6 Acknowledgement and Disclaimer
	References

	Poster Presentations
	Multiple Roles of Middle Managers in Agile Project Governance: An Activity Theory Perspective
	1 Purpose
	2 Research Design
	3 Findings
	4 Research and Practice Implications
	5 Contributions
	References

	Cherry Picking - Agile Software Development Teams Applying Design Thinking Tools
	1 Purpose
	2 Research Method
	3 Findings
	4 Research and Practice Implications
	5 Contributions
	References

	From Project to Product
	1 History and Background
	2 Defining “Product”
	3 Principles for Moving Toward Product-Orientation
	3.1 Outcomes over Outputs
	3.2 Solving Problems over Building Solutions
	3.3 Options over Requirements (and Optionality over Linearity)
	3.4 Experiments over Backlogs (and Hypotheses over Features)
	3.5 Customer-Validated Learning over PO Assumptions
	3.6 Measuring Value over Measuring Cost
	3.7 Flow over Utilization
	3.8 Product Vision, Strategy, Personas and Principles over Product Roadmaps
	3.9 Small-Batch Delivery over Big-Batch Delivery
	3.10 Optimizing for Assumptions Being Wrong over Optimizing for Assumptions Being Right
	3.11 Teams of Missionaries over Teams of Mercenaries
	3.12 Business-Driven over IT- or PMO-Driven

	References

	Panels
	The Stories We Tell: Experience, Research, or Patterns?
	1 Stories Relating Research and Practitioner Experience
	2 Research Papers: Validating Research
	3 Experience Reports: Personal Stories
	4 Patterns: Distilling Many Stories
	5 Pattern Evolution
	6 The Stories We Tell: The Agile Manifesto
	7 The Future of Storytelling
	8 Other Insights from the Panel
	9 Summary
	References

	The Future of Software Engineering: Where Will Machine Learning, Agile, and Virtualization Take Us Next?
	1 Introduction: The Panelists Share Their Views of the Future
	1.1 AI and Machine Learning
	1.2 Conventional Technology with Better Failure Analysis
	1.3 Need to Address Software Failures
	1.4 Less Outsourcing in Data-Driven Industries

	2 Democratization of the Software Industry?
	3 Can AI and Machine Learning Help?
	4 Companies May Need to Do More In-Sourcing
	5 Do We Need to Reform the Software Industry?
	5.1 The Software Industry and Commercial Incentives
	5.2 The Future of Open Software
	5.3 The Future of Software Engineering Technology and Education

	6 Summary: Goals for the Future
	References

	Author Index

