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Abstract. We provide an overview of the GOAL-DTU system for the
Multi-Agent Programming Contest, including the overall strategy and
how the system is designed to apply this strategy. Our agents are imple-
mented using the GOAL programming language. We evaluate the perfor-
mance of our agents in the contest and, finally, we discuss how to improve
the system based on an analysis of its strengths and weaknesses.

1 Introduction

In 2020/2021 we participated as the GOAL-DTU team in the annual Multi-Agent
Programming Contest (MAPC). We are using the GOAL agent programming
language [1–4] and we are affiliated with the Technical University of Denmark
(DTU). We participated in the contest in 2009 and 2010 as the Jason-DTU team
[5,6], in 2011 and 2012 as the Python-DTU team [7,8], in 2013 and 2014 as the
GOAL-DTU team [9], in 2015/2016 as the Python-DTU team [10], in 2017 and
2018 as the Jason-DTU team [11,12] and in 2019 as the GOAL-DTU team [13].

In 2020/2021 we had the Agents Assemble II scenario; this scenario expands
upon the Agents Assemble scenario used in the 2019 contest. The Agents Assem-
ble II scenario is a highly dynamic environment. The simulations used for the
competition usually have a large number of agents that can move freely and even
cause changes to the environment, which further adds to its complexity. As a
new feature from the previous iteration, when an agent crosses the boundary of
the map it will instantly reappear on the opposite side. This transition appears
seamless to the agent and no triggers can be perceived. From the points of view
of agents, the map may appear to be infinite while, in reality, all maps have finite
dimensions. This means that agents may observe already known objects but con-
sider them to be new knowledge. Most agents can usually be observed carrying
blocks around the environment while clearing passages to enable their move-
ment. Furthermore, random clear events may occur sporadically. As opposed to
the clear actions of agents, which merely remove obstacles, the random clear
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events will both remove and add blocks in an area. Consequently, these random
events can rapidly change the environment.

A key characteristic of our agent system is that agents share the same code
base and knowledge. As such, the system has a single, universal type of agent.
However, the agents still exhibit different behaviours at execution time, as the
behaviour of an agent is determined by both its knowledge as well as its current
beliefs and goals; these factors dictate the flow of the agent through logic rules
and modules.

The paper is organized as follows:

– Section 2 covers the overall strategy of our agents.
– Section 3 describes the knowledge our agents acquire from the environment.
– Section 4 describes the movement of our agents.
– Section 5 describes how our agents communicate.
– Section 6 covers how our agents complete selected tasks.
– Section 7 evaluates our agents’ performance in the contest.
– Section 8 discusses improvements to our agent system.
– Section 9 makes some concluding remarks.

We assume basic knowledge of the GOAL agent programming language [1–
4]. Agents in GOAL are self-controlled independent entities, each interacting
with the environment and communicating with other agents. The environment
is continuously perceived to update each agent’s mental state: its beliefs about
the current state of affairs and its current goals. A mental state is implemented
as a Prolog knowledge base. Rule-based decision-making enables each agent to
continuously select an action based on its current mental state. GOAL advocates
that agents are programmed to react to changes in their environment rather than
executing predetermined plans. Such a reactive approach is not flawless either:
it can be difficult for programmers to come up with logical rules that produce
the desired behavior. However, overcoming this challenge often produces more
flexible agents.

2 The Strategy of Our Agents

The main strategy of our agents is both proactive and reactive: agents explore
the map to gather information and collect blocks while reacting to obstacles
they meet along their way. Our agents employ an A* path finding algorithm to
optimize short-term movement. Agents compose plans to solve available tasks
that describe how patterns are to be aligned.

The logic of our strategy is implemented in GOAL in the so-called main-
module. Here, the GOAL agent selects an action based on its knowledge, beliefs
and goals, according to a prioritized list of predefined logic rules.

At the top-level, the strategy of agents is divided into two sub-strategies: explo-
ration and task-solving. The only exception is a special task master agent that
delegates tasks. This will be discussed in more detail in Sect. 6. We can consider
the two sub-strategies to be the roots of a hierarchical goal network. Each of these
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goals branches into sub-goals that need to be achieved in order to complete the
higher-level goal. Consider as an example a goal of solving a task. In order to
achieve this goal, we first need to find and attach blocks needed for the task pat-
tern before the pattern can be assembled and submitted. Each of these sub-tasks
corresponds to sub-goals of the high-level goal of completing the task.

In the following section we will treat each of our two sub-strategies separately.
We provide descriptions of the implemented agent logic below.

2.1 Exploration of the Map

Initially, all of our agents will act upon their initial goal to explore the map. This
has two main purposes: to cover as much of the map as possible and to search for
blocks or dispensers. When an agent locates a block or dispenser, it will attempt
to attach two blocks on opposite sides; this in order to minimize the negative
effect on maneuverability of carrying blocks. The mechanics of exploration is
further explained in Sect. 4.

In the following, an action is selected based on the first applicable rule:

– If the agent does not have two blocks attached (which should be attached to
opposite sides of the agent) and there is a block or dispenser within the field
of vision of the agent:

• If the agent is next to the block/dispenser, but it needs to rotate in order
to attach a block:

– If it is possible for the agent to rotate, then rotate.
– If the agent can move in some direction, then move.

• If the agent is next to a block, then attach the block.
• If the agent is next to a dispenser, then request a block from that dis-

penser.
• If the agent can move towards the block/dispenser, then move.

– If there is a good direction for the agent to move and explore, then move.
– If there are no other good options for the agent, then skip.

Note that agents sometimes move in a random direction if they are next to
a block/dispenser and are required to rotate. The idea is that often just a few
moves enable the agent to perform the rotation.

2.2 Accepting and Submitting Tasks

The win condition for the scenario is to score the most points. Points are gained
by accepting tasks (at task boards) and submitting the required pattern. The cur-
rently available tasks are always perceivable by the agents. Based on the currently
collected blocks, and information about potentially collected blocks (via block dis-
pensers), we are able to compose so-called task plans. These delegate sub-tasks to
each agent required to ultimately submit the pattern and score points.

Task plans are created by a single agent that has the task master role. A
task plan delegates to the other agents the gathering and delivery of the required
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blocks. One of these agents is then selected to have the submit agent role: the
agent that submits the pattern and completes the task once the pattern is assem-
bled. All of this is explained more thoroughly in Sect. 6.1.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to gather blocks required for a task:

– If the agent does not have room for the (maximum two) blocks we should
deliver, then detach a block.

– If there is a dispenser or block of the required type within the agent’s field of
view:

• If the agent is next to the object of interest, but it needs to rotate in
order to attach the object:

– If it is possible for the agent to rotate, then rotate.
– If the agent can move in some direction, then move.

• If the agent is next to a block, then attach the block.
• If the agent is next to a dispenser, then request a block from that dis-

penser.
• If the agent can move towards the object of interest, then move.

– If true then move towards the dispenser from the plan.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to get to a task board:

– If the agent has a block attached that is not included in the plan and the
agent needs space to attach a block included in the plan, then detach the
block not included in the plan.

– If the agent is within a distance of two cells from the task board, then accept
the task from the plan.

– If true then move towards the task board.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to get to the specified goal cell and
submit the task:

– If the agent is the submit agent:
• If the pattern is blocked by an agent from the opposing team, try to

perform a clear action on that agent.
• If the agent is at the specified goal cell:

– If the agent can submit the task, then submit the task.
– If the agent can connect to a block in the task pattern, then connect

to the block.
– If the agent is in position and is simply waiting for other agents, and

there are agents from the opposing team nearby, try to perform a
clear action on one of them.

– If the agent is in position, then skip.
– If the agent needs to rotate, and it is possible, rotate.

• If true, move towards the goal cell.
– If the agent is not the submit agent:
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• If the agent has connected a block to another block, detach it.
• If a block/obstacle is blocking the pattern, then perform a clear action

on it.
• If the agent is in position:

– If the agent can connect a block to the task pattern, then connect the
block.

– If the agent is waiting for other agents:
• If there are enemy agents nearby, then try to clear them.
• If true then skip.

– If rotation is required to connect a block to the task pattern, then
rotate.

• If true, then move towards the goal cell.

3 Storing and Maintaining Information

In Sect. 2, we described how our agents operate based on a strategy that is imple-
mented as decision rules. Such decisions are based on the information available
to the agents: their mental states. Mental states of agents consist of their current
beliefs and goals as well as a knowledge base which contains (static) domain-
specific knowledge. All our agents have identical knowledge bases, as all agents
are initiated with identical knowledge.

Our GOAL agents connect to the environment using the environment inter-
face standard (EIS) [1]. This interface allows for communication between GOAL
and the environment via text messages using the JSON (JavaScript Object Nota-
tion) format. A JSON message consists of a collection of name/value pairs. Gen-
erally speaking, we maintain the structure of perceived values when storing them
as Prolog-like terms in the belief base. In some cases, we expand with additional
information that is not made available by the environment, such as the agent’s
own attached block which can be inferred by the agents.

Because the Agents Assemble II scenario features a highly dynamic envi-
ronment, our agents do not rely on creating a complete representation of their
environment—it is almost impossible to maintain an accurate picture. Instead,
our agents mostly rely on their current percepts. Agents only perceive objects,
including other agents, within a limited field of vision. This field of vision cor-
responds to a circle in the taxicab geometry, where the radius for the circle is
given by the environment, see Fig. 1.

3.1 Immutable Objects in the Environment

The highly dynamic environment implies that information perceived by agents
may become outdated quickly. However, there are a number of immutable objects
in the environment, namely the block dispensers, goal cells, and task boards. All of
these are unaffected by clear actions and are static throughout a simulation. Our
agents will therefore permanently store all known positions of these objects in their
belief bases. The fact that dispensers, goal cells, and task boards are immutable
facilitates our task planning algorithm which is explored further in Sect. 6.1.
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Fig. 1. This figure depicts two agents. The agent in the center of the picture (labeled
5) is surrounded by a blue diamond shape. This shape is a circle of radius five in
the taxicab geometry, and it represents the field of vision of the agent. The agent 5
can thus only percept objects within the blue shape, therefore, the two agents in the
picture cannot perceive one another. The picture is taken from the monitor that has
been developed for the contest. (Color figure online)

Because these immutable objects are static throughout a simulation, we are
able to store and share this information amongst our agents without worrying
about the information becoming outdated at a later point. The details of agent
communication are covered in Sect. 5. In fact, our decentralized planning is only
enabled because of our information sharing strategy.

3.2 Agreeing on Coordinates

Each of our agents maintain its own separate coordinate system. The origin of
this coordinate system is initialized as the agent’s starting position. The sep-
arate coordinate systems pose a challenge when agents share information that
is relative to their own coordinates. One solution to this problem would be to
have agents agree on a single coordinate system. This implies that whenever
agents meet and share their relative coordinates, they should decide on a com-
mon coordinate system. However, we found that this approach requires extensive
protocols to be developed in order to ensure connected agents always agree on
the same coordinate system. We have instead employed a solution in which each
agent stores the offsets of all other agents. This means that whenever an agent
receives information from another agent, the coordinates are easily translated.
One drawback to our approach is that agents need to maintain a synchronized
data set of offsets amongst all agents to avoid false information (such issues may
in turn propagate throughout the execution and cause beliefs to become increas-
ingly out of sync). How agents meet and share their coordinates is explained
more thoroughly in Sect. 5.1.
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3.3 Inferring the Map Dimensions

We previously described how, compared to the scenario of the 2019 contest, the
new scenario allows movement across the boundaries of the map. This poses
a challenge in terms of inferring the correct map dimensions and avoiding a
misrepresentation of the map. Another challenge posed by this is in relation
to path finding where an agent may select sub-optimal routes due to a lack of
knowledge, see Fig. 2.

Fig. 2. Here, an agent unknowingly moves across the border of the map and reappears
on the other side, represented by the black arrow. Once at the other the side, the agent
has to reach the resource represented by the blue rhombus. The agent falsely believes,
that the fastest way to reach this resource is by crossing the map again, and will then
traverse the entire map. This path is represented by the dashed red line. In reality, the
agent is very close to the resource, and the shortest path is shown by the dashed green
line. (Color figure online)

To avoid the mentioned misrepresentation of the map, agents employ a strat-
egy that intends to discover, and communicate to other agents, the dimensions
of the map. This plays a central role in estimating distances. If the dimensions of
the map are inferred, agents may knowingly decide to cross the edges of the map
when this is deemed beneficial. Thus, knowing the dimensions of the map not
only ensures that the agents do not flood their belief bases with false (or rather,
sub-optimal) locations of resources, but also optimizes the agent’s movement.

The dimensions of the map are inferred as an agent crosses the map and reap-
pears on the other side, unknowingly. When the agent meets another agent, to
which it was connected to prior to crossing the map, it infers the dimensions from
the stored agent offsets. If their shared information does not match, it can be
deduced that one of the agents must have crossed the map. The map dimensions
can then be inferred from this discrepancy and are shared with all other agents.
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4 Moving About in the Environment

In the following section, we touch upon the various movement strategies that
are employed by our agents, depending on their current goals. The use of move-
ment strategies can generally be divided into two cases: one for general map
exploration and one for movement towards a fixed position.

4.1 General Map Exploration

As previously described, all agents are initialized with the goal of exploring the
map. Here, an agent’s sole purpose is to reach unexplored regions of the map. The
efficiency with which any single agent reaches these unexplored regions is consid-
ered of low importance. However, we note that a more effective, collective explo-
ration could benefit our system by allowing for a quicker transition to task-solving.

Our design philosophy is that exploration should have a relatively low compu-
tational complexity, considering all agents are exploring initially. Furthermore,
from last year’s competition, we learned that a somewhat random approach to
exploration is adequate. We employ a simple pseudo-random heuristic, defined
in Eq. 1. The heuristic is based on expected benefits of moving in each possi-
ble direction and heavily favors cells that are unexplored. Here, d is the direc-
tion being evaluated, ΔS is the number of steps since the cell was visited, and
|Δx(d)|+ |Δy(d)| is the Manhattan distance to the cell from the current location
of the agent. The direction with the best value is then chosen.

h(d) =
∑

visited

⎧
⎨

⎩

|Δx(d)| + |Δy(d)|
ΔS2

if |Δx(d)| + |Δy(d)| ≤ 30 and ΔS > 0

0 otherwise
(1)

Our current implementation does not enable agents to share information
about visited cells. We note that doing so could potentially lead to faster and
more thorough exploration. This could be particularly beneficial on larger maps.

4.2 Movement Towards a Fixed Position

As explained in Sect. 3, the agents do not maintain a complete representation of
the map. Because of this, we cannot rely on classical route planning algorithms.
In the previous year’s contest, our agents employed a simple heuristic similar to
the exploration heuristic to determine a movement in each simulation step. In
terms of computational complexity, this is a lightweight solution compared to
heavy route planning algorithms and it is easy to implement. However, this naive
approach proved to be inefficient in cases where the agent encounters obstacles.
We observed that agents would spend a lot of steps trying to get around obstacles
and progress was often severely impacted by agents getting stuck.

To circumvent this issue, our current iteration of the system employs a solu-
tion that mixes the heuristics-based approach with local route planning. The
idea is to get the best of both worlds. In case the agent is moving towards a
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fixed location, it will thus first generate a move based on the simple movement
heuristics. In case the move is constructive (see below), it will simply perform
it. Otherwise, the agent will instead resort to route planning within its field of
vision. The optimal position in the field of vision, with regard to the target loca-
tion, is set as a way point. The path planning returns a sequence of actions that
will enable the agent to reach this way point. The agent will keep progressing
through the sequence as long as possible. In case the sequence becomes invalid
or the agent reaches its way point, the process starts over: a way point is found,
and the agent attempts to generate an action with the simple heuristic, other-
wise resorting to route planning. Once the fixed location is within the agent’s
field of vision, this location will be used as the final way point.

Any move that brings the agent strictly closer to the target position, while
avoiding recently visited positions, is considered constructive. We consider a
position to be recently visited if it was visited fewer than 3 steps ago. This
somewhat remedies situations where the agent might otherwise get caught in
dead ends, endlessly moving back and forth without making progress.

Our definition of constructive moves is quite restrictive. For instance, when-
ever an agent has to go around an obstacle, the move will always be considered
nonconstructive. To get the full benefits of the heuristics-based approach, the
definition of constructive moves is relaxed. The relaxation involves categorizing
all moves immediately next to obstacles as constructive as well. More precisely,
if an agent moves along an obstacle that is closer to the target position than
the agent, the move is constructive. This means that the agent can move around
obstacles without resorting to route planning. However, this may also poten-
tially lead to undesirable situations, as was observed during the competition:
if two agents try to move past each other, they could end up moving further
away from their respective target positions than desired. This specific problem
is illustrated in Fig. 3. This observed problem has us questioning whether the
described relaxation has been beneficial or not.

Fig. 3. This figure depicts two agents that wish to pass each other. Agent 2 wishes to
go north, and agent 1 wishes to go south. This is not possible though, as the agents
are in the way of each other. According to the relaxed heuristic, both agents can move
west though. But this will simply bring the agents to the same dilemma once more.
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In contrast to last year’s implementation, we are now also utilizing the clear
action with the introduction of local route planning. We expect that agents
should no longer get stuck. We also expect general improvements to the efficiency
of agent movement.

Route planning is implemented using the A* path finding algorithm. The
heuristic used for the A* algorithm is simply the sum of the step cost and the
distance to the target position. The search is terminated once a position at the
edge of the field of vision is chosen, or if the target position is reached. To ensure
effective route planning, the A* algorithm has been implemented in 2 versions.
One version does not consider clear actions, and one does. This is due to the
extra complexity introduced by the clear action. It was experimentally found
that in a lot of cases, searches including clear actions resulted in drastic impacts
to the running time. Consequently, our agents first initialize a search without
enabling clearing of obstacles. If this is not feasible, the agent skips the current
step to focus resources on computing a path that relies on clear actions as well.

5 Communication Between Agents

Solving any task in unison requires communication among agents. Agents need
to agree on a task to solve as well as a goal cell at which to deliver the task.
They also need to assign the collection and delivery of blocks required to solve it.
The challenge is that each agent has its own coordinate system and thus agents
cannot communicate about locations on a global level. Therefore, agents must
somehow merge their coordinate systems, and this process is what we describe
as connecting to other agents. The actual communication itself is facilitated by
the extensive communication scheme that is provided by the GOAL agent pro-
gramming language. The communication features of the GOAL programming
language facilitate communication between agents through direct messaging or
using channels. In general, the philosophy is to form communication channels
instead of direct messaging when multiple agents are involved. As an example,
our agents communicate via a channel explore, which is created during initial-
ization of the system, where they share information to infer the position of other
agents.

5.1 Connecting to Other Agents

For our agents, establishing connections equates to learning the origins of the
other agents, thus allowing for translation of coordinates between coordinate
systems. As a result, it enables agents to communicate the locations of resources.
Agents may establish a connection when they are inside each other’s field of
vision. Since agents do not know the identities of other agents they encounter,
the agents compare other perceivable objects in their (assumed) shared field of
vision. This is achieved by the agents broadcasting their current position along
with coordinates of the objects within their field of vision. In case another agent
identifies the same objects, including the broadcasting agent, the two agents
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will establish a connection. Once agents are connected, they will start sharing
information. Note that agents communicate coordinates relative to their starting
position. The agent receiving the information will use stored knowledge about
the offset between their starting positions to allow for an efficient translation
between coordinates.

Ensuring the Correctness of Connections
It is important to ensure that agents will not mistakenly establish connections
with agents which were not encountered. This may happen in rare cases where
multiple agents encounter each other with similar objects in the shared field
of vision. To remedy this, agents check whether there are multiple identical
broadcasts, in which case no connections are established. The fact that multiple
agents have similar broadcasts indicates that it will not be possible to distinguish
those agents from one another.

A further challenge is imposed by the fact that in GOAL, the delivery of
messages is not guaranteed in a certain step; it can merely be assumed that all
messages will be delivered eventually. As such, the delay in receiving a message
might be longer than a single step which can lead to situations where an agent has
not received all broadcasts, and thus cannot ensure that no identical broadcasts
are present. In our current implementation, all agents are required to broadcast,
even if there are no other agents within its field of vision, in which case an empty
broadcast is sent. Thus an agent will have to wait until it has received broadcasts
from all other agents, before it establishes any new connections. This means,
that there is a delay between encountering agents and establishing connections
to these agents.

Connection Networks
Up to this point, we have not yet considered cascading effects when establishing
connections. If agents can only connect to other agents within their field of
vision, all agents have to encounter each other in order to establish connections
between all agents. This is obviously not very efficient, especially for larger maps.
In many cases, the system might never reach such a state within the limited time
frame of a simulation. We are interested in optimizing this behaviour as our task
planning relies on connections being established between agents. Essentially,
having connections to other agents simply boils down to agents knowing the
starting positions of other agents relative to their own.

To explain the process of connection cascading, consider the situation
depicted in Fig. 4. The situation has three different networks of connected agents:
the first network is made up of Agent 1, 2 and 3, the second network is made
up of Agent 4 and 5, and the final network is just Agent 6. A network of con-
nected agents is a set of agents, each knowing the offset of all other agents
in the network. In the depicted situation, encounters between Agent 6 and 3,
and Agent 4 and 2 occur simultaneously. As such, there is a possibility to con-
nect the three networks. The challenge is now to ensure that all agents in each
network establish connections to all agents of the two other networks. In gen-
eral, this is achieved by having agents broadcast their connections. This allows
an agent to infer the resulting network by combining all new connections and
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Fig. 4. The figure depicts three existing connection networks symbolised by the solid
black lines—one network is the singular agent 6. Two new connections are established:
a connection between agent 3 and agent 6, and a connection between agent 2 and agent
4. The resulting network then connects all 6 agents, ensuring that all agents know the
offset of all other agents.

existing networks. To optimize the process, only a single agent of each network
will compute the resulting network. Once all information necessary to establish
new connections has been gathered, said agent will share this information with
its own network.

6 Constructing and Executing Task Plans

This section covers how task plans are constructed by the task master and exe-
cuted by the other agents.

A single agent is dynamically assigned to be task master. This agent is respon-
sible for creating task plans and assigning agents to different tasks. The choice
of having a single task master is to simplify resource assignment. With just a
single agent responsible for computing task plans, we avoid having to deal with
mechanisms for ensuring that resources are not allocated for multiple plans by
multiple agents—a thread with a single pool of resources makes this much eas-
ier to achieve. The main principle of our dynamic task master assignment is to
ensure that the chosen task master is connected to the majority of the agents.
This is done by delaying the task master assignment to when at least half of the
agents in the simulation have connected to each other, as described in Sect. 5.1.
Outside of the mentioned delay, we find that the only drawback to our centrali-
sation of task planning is the computational complexity. However, it is not clear
if and how this could potentially be improved by parallelization.

The task master keeps track of goal cells and agents that are allocated by the
currently active task plans. All cells of a goal zone are considered to be allocated
if an active task plan instructs agents to deliver the task in the said goal zone.
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The intent is to prevent agents from interfering with each other when solving
tasks. However, we note that our current implementation is overly restrictive.
One possible solution would be to allow for goal zones to be divided into subareas
that may then be allocated individually.

6.1 Construction of Task Plans

Our task planning is initialized by the task master, which orders all the tasks
that do not have an active task plan. Tasks are ordered by their reward and
deadline, and the most promising task is considered first. The task master will
ask all other agents in its network for their current attachments and beliefs
about the locations of various block dispensers. The agents will respond with
their beliefs about the resources needed for the task, whether the agent knows
the location of a task board, and finally an estimated delivery time. The task
master collects all responses to see if it is possible to compute a plan. A task
describes a specific pattern to complete, and based on the combined resources
of the agents, it is possible to search for an assignment of agents to blocks in the
pattern which also considers the constraints of the scenario, i.e. how blocks can
be attached as well as the positioning of agents for assembling the pattern and
submitting it. This assignment delegates specific blocks of the pattern to specific
agents and this cannot be changed without dropping the plan completely. While
this limitation makes the solution less flexible, we find that the greatest hurdle
is to have the agents reach a point where the pattern can be assembled. In case
it is not possible to compute a plan, the task master will consider alternative
tasks following the task order. In case a plan is created, each agent receives a
version of the task plan that is specifically tailored to its perspective: which part
of the pattern it should provide, how it should position itself for the assembly,
etc.

The task plans delegate the task of submitting to one agent. In doing so, the
submitting agent is also instructed to submit the task at a specific goal cell. While
the approach has a few drawbacks, there are also several advantages: each agent
knows exactly where to deliver its block and agents can easily identify blocks
and obstacles to clear that will otherwise obstruct the assembly of the pattern.
One drawback is that agents of opposing teams may obstruct the assembly. In
this case, our agents will try to perform clear actions on those agents, hopefully
leading them to move, but this is not guaranteed to succeed. A better solution
would likely be to have a more dynamic approach that uses a fixed goal cell
when possible, but with the ability to recompute a new goal cell if needed. As
of now, our agents simply give up submitting the task after some time if they
fail to make progress.
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6.2 Execution of Task Plans

As described above, agents assigned to a task receive a task plan that is local to
their perspective. For simplicity, an agent will only be assigned to deliver blocks
of a single type. Once assigned to a task, each agent sets out to gather the blocks
it is assigned to deliver. The submit agent is also tasked with accepting the task
from a task board, as well as submitting the task.

Our agents continuously re-evaluate whether it is still possible to complete
the task. For instance, it may happen that an agent loses a block that was to
be delivered due to a clear action or event. In such a case, the agent checks if
it is possible to re-acquire a block of the required type and deliver it within the
deadline. If this is not possible, it will broadcast to the task channel that the
task plan should be dropped, at which point all agents are unassigned from the
task.

Once the agents are assembled, they will build the pattern outwards from
the submit agent. Agents will connect one at a time to the submit agent and
then release the corresponding block. If the agent has no more blocks to deliver,
it will consider its task as fulfilled and be available to accept other tasks. When
the pattern is completed the submit agent will then submit it.

7 Evaluation of Matches

GOAL-DTU competed in four matches against four different opponents in the
Multi-Agent Programming Contest of 2020/2021. A match consisted of three
simulations, and a simulation started automatically when the previous simu-
lation finished. GOAL-DTU took part in two additional simulations after the
contest. In these two simulations, all teams competed against each other.

7.1 GOAL-DTU vs. LTI-USP

LTI-USP allows multiple agents to accept the same task, such that multiple
groups of agents could work on the same task. For each task, GOAL-DTU allows
only one agent to accept it and only one group of agents to assemble it. Having
multiple groups of agents to work on the same task didn’t make LTI-USP’s agents
more effective. It only made their points per resource ratio smaller. It was not
the best approach in the second simulation because agents of GOAL-DTU were
consistently faster in assembling patterns than LTI-USP’s agents. It is shown in
Fig. 13 that GOAL-DTU completed more tasks, but it does not show how many
of those tasks LTI-USP were trying to complete (Figs. 5, 6, 7, 8, 9, 10, 11, 12,
14, 15, 16, 17, 18 and 19).
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Fig. 5. Score: LTI-USP (1)
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Fig. 6. Blocks: LTI-USP (1)
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Fig. 7. Submits: LTI-USP (1)
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Fig. 8. Tasks: LTI-USP (1)
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Fig. 10. Score: LTI-USP (2)

0 150 300 450 600 750
0

100

200

300

400

500

Steps

A
tt
ac
he

d
bl
oc
ks

GOAL-DTU
LTI-USP

Fig. 11. Blocks: LTI-USP (2)
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Fig. 12. Submits: LTI-USP (2)
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Fig. 13. Tasks: LTI-USP (2)
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Fig. 14. Clear: LTI-USP (2)
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Fig. 15. Score: LTI-USP (3)
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Fig. 16. Blocks: LTI-USP (3)
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Fig. 17. Submits: LTI-USP (3)
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Fig. 18. Tasks: LTI-USP (3)
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GOAL-DTU had some problems throughout the simulations. The agents
moved in each other’s way, and sometimes clusters formed. We suspect a minor
bug in the explore algorithm is causing agents to move towards each other. The
intention is for agents not to interfere with the movement of other nearby agents.
This resulted in problems in goal zones where agents gave up on patterns that
were very close to being assembled. When giving up on tasks, the agents should
detach blocks and move on with only two blocks. This was not always the case,
since agents didn’t detach indirectly connected blocks. These agents didn’t seem
to be aware of the indirectly connected blocks when moving around afterward.
They tried to perform move actions that weren’t applicable with the indirectly
connected blocks.

7.2 GOAL-DTU vs. MLFC

We lost no matches against MLFC. This was also by fortune, as the second
match was a 0-0 draw.

MLFC spent a lot of resources clearing our agents, with some, albeit limited,
success. They did manage to clear GOAL-DTU agents waiting in the goal zones
on more than one occasion, which resulted in the GOAL-DTU agents dropping
their tasks. Our agents were not defending themselves as well as we intended.
This also explains why MLFC managed several critical clears.

As seen in Fig. 38 and Fig. 48, we solve a substantially higher number of tasks
than MLFC in the first and third simulation. But the one task that MLFC solves
in the third simulation has a very high reward.

In both the second and the third simulation we experience some techni-
cal issues, although the issues must be described as more severe in the second
simulation. To our luck, MLFC experience equally severe issues in the second
simulation, and we manage to get a draw. MLFC is therefore the only team we
did not lose a match against (Figs. 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47
and 49).

7.3 GOAL-DTU vs. FIT-BUT

FIT-BUT won two of the three simulations. Thus, FIT-BUT is the only team
against whom we won just a single match. Clearly, FIT-BUT has developed a
strong and effective system, and they manage to submit a very high number of
tasks. Even in the first simulation, which we won, FIT-BUT manages to solve
more tasks than we do, see Fig. 23. However, the tasks we solve have a higher
reward, either due to increased complexity, or because we manage to solve them
quite fast (Figs. 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34).
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Fig. 20. Score: FIT-BUT (1)
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Fig. 21. Blocks: FIT-BUT (1)

0 150 300 450 600 750
0

5

10

15

20

25

Steps

Su
bm

it
at
te
m
pt
s

GOAL-DTU
FIT-BUT

Fig. 22. Submits: FIT-BUT (1)
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Fig. 23. Tasks: FIT-BUT (1)
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Fig. 25. Score: FIT-BUT (2)
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Fig. 26. Blocks: FIT-BUT (2)
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Fig. 27. Submits: FIT-BUT (2)
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Fig. 28. Tasks: FIT-BUT (2)
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Fig. 29. Clear: FIT-BUT (2)
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Fig. 30. Score: FIT-BUT (3)
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Fig. 31. Blocks: FIT-BUT (3)
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Fig. 32. Submits: FIT-BUT (3)
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Fig. 33. Tasks: FIT-BUT (3)
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Fig. 34. Clear: FIT-BUT (3)
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Fig. 35. Score: MLFC (1)
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Fig. 36. Blocks: MLFC (1)
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Fig. 37. Submits: MLFC (1)
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Fig. 38. Tasks: MLFC (1)

0 150 300 450 600 750
0

40

80

120

160

200

Steps

C
le
ar

ev
en

ts

GOAL-DTU

Fig. 39. Clear: MLFC (1)
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Fig. 40. Score: MLFC (2)
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Fig. 41. Blocks: MLFC (2)
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Fig. 42. Submits: MLFC (2)
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Fig. 43. Tasks: MLFC (2)
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Fig. 44. Clear: MLFC (2)
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Fig. 45. Score: MLFC (3)
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Fig. 46. Blocks: MLFC (3)

0 150 300 450 600 750
0

5

10

15

20

25

Steps

Su
bm

it
at
te
m
pt
s

GOAL-DTU
MLFC

Fig. 47. Submits: MLFC (3)
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Fig. 48. Tasks: MLFC (3)
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Fig. 49. Clear: MLFC (3)
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Sadly, we experience our, by now common, total catastrophic failure in no
fewer than two of the matches. We do not manage to solve a single task in either
of the second or third simulations. Once our technical issues, errors, and bugs
have been resolved, another match against FIT-BUT that would allow a more
direct comparison of strategies would be interesting, as FIT-BUT seems to use
a vastly different strategy than we do.

7.4 GOAL-DTU vs. JaCaMo Builders

GOAL-DTU had perfect conditions to get a high score in this match up because
JaCaMo Builders seems to be using a defensive strategy without clearing GOAL-
DTU agents. The low number of attached blocks is telling us that something
went wrong for their agents in the two first simulations compared to the last
simulation, see Figures Fig. 51, Fig. 56 and Fig. 61 (Figs. 52, 54, 57, 59, 60, 61,
62, 63 and 64).
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Fig. 50. Score: JaCaMo Builders (1)
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Fig. 51. Blocks: JaCaMo Builders (1)
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Fig. 52. Submits: JaCaMo Builders (1)
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Fig. 53. Tasks: JaCaMo Builders (1)
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Fig. 54. Clear: JaCaMo Builders (1)
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Fig. 55. Score: JaCaMo Builders (2)
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Fig. 56. Blocks: JaCaMo Builders (2)
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Fig. 57. Submits: JaCaMo Builders (2)
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Fig. 58. Tasks: JaCaMo Builders (2)
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Fig. 59. Clear: JaCaMo Builders (2)
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Fig. 60. Score: JaCaMo Builders (3)
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Fig. 61. Blocks: JaCaMo Builders (3)
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Fig. 62. Submits: JaCaMo Builders (3)
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Fig. 63. Tasks: JaCaMo Builders (3)
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Fig. 64. Clear: JaCaMo Builders (3)

GOAL-DTU’s prioritization of tasks combined with the A* path finding algo-
rithm and static plans for tasks resulted in the highest score reached in the con-
test for all teams. Static plans work well in this case because agents of JaCaMo
Builders didn’t use much space in the goal zones and didn’t clear GOAL-DTU
agents in the goal zones.

GOAL-DTU received 22 points on average for the completed tasks in the first
simulation, and 21 points on average in the second simulation, see Figures Fig. 50,
Fig. 53, Fig. 55, Fig. 58. From step 456 until the end of the second simulation,
GOAL-DTU only completes one task, see Fig. 58. It seems like the agents are
out of sync and have wrong beliefs about the environment. This continues into
the third simulation.

7.5 Free for All

GOAL-DTU is not well suited for simulations with many agents, especially not
when the other agents are offensive and use clear actions. GOAL-DTU agents
tried to defend themselves with clear actions while waiting in goal zones. The
problem is that one agent can only defend against one other agent. If two agents
are attacking the same GOAL-DTU agent, its only tactic for dodging clear
actions is to move. It won’t move due to the use of a static plan. This results in
the agent being caught in the opposing agents’ clear actions.

The victory in the first simulation seems a bit lucky. GOAL-DTU agents
were attacked multiple times by agents from a second team while standing in
goal zones. Agents from a third team appear before the attackers succeed. They
try to clear the attackers such that the attackers have to move. The GOAL-DTU
agents use this opening to submit the tasks.

These openings were less present in the second simulation with thirty agents.
FIT-BUT assembles their patterns outside the goal zones such that agents are
constantly moving. It’s very hard to clear a moving agent, and FIT-BUT used
that well to defend themselves.
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8 Discussion

The following section sheds light on some of the issues we faced, both regarding
system design, program bugs and technical issues. Lastly, we consider some of
the further development work needed to improve our system.

8.1 System Robustness

During the contest, we experienced severe problems concerning robustness due
to false information. When the problem did not occur, we generally achieved
competitive scores. In fact, we won every match where we scored points. However,
we identified occurrences of this problem in five out of twelve matches.

False information is detrimental to our system. The current version relies
heavily on information being correct which is also the reason for our extensive
connection-protocol between agents. The assumption that all agent offsets are
correct allows the system to determine the dimensions of the map from the dis-
crepancies of the agent offsets (as touched upon in Sect. 3). If an agent somehow
incorrectly updates its location, this can lead to agents agreeing on incorrect
dimensions of the map. In this case, no coordinates in the belief base will reflect
their actual positions, and as a result the agents will be rendered useless. While
this suggests that the system is not robust enough, one could also argue that,
once false information is introduced into the system, we cannot expect coherent
behaviour.

8.2 Technical Issues

We now shed light on some of the technical issues we faced when deploying our
agent system.

Following the competition, we found a bug in the eismassim interface imple-
mentation. The bug caused agents to sometimes desynchronize with the server,
ultimately hampering our agents’ performance significantly. The root of the prob-
lem lies in the eismassim interface which connects the GOAL program to the
server running the simulation: when the eismassim interface receives a step
update from the server while still serving an agent response from the last step,
the response will wrongfully be marked as responding to this updated step, and
eismassim will then block the agent until the next request from the server. As a
result, the eismassim interface will forward an outdated response to the server,
and the agent is responding to a step before the agent has received the cor-
responding percepts from the server. In some cases, this synchronization error
caused discrepancies between the believed location of the agent and its actual
location, eventually leading the agents to infer the wrong map dimensions. Once
an agent is stuck in this out-of-sync state, it cannot recover by itself.

We experienced a connection problem in cases where an agent was located on
top of a task board or dispenser. While the agent would recognize this object,
other agents would not perceive the object on which the agent was standing.
This would potentially lead to non-matching connection requests, and in the
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worst case, wrongful connections. Ultimately, this would eventually paralyze the
system and require a complete reboot.

8.3 Further Work

The technical issues regarding server synchronization and the rare connection
problem have been fixed since the competition. However, there is still some
general bug fixing left before the system works as intended. In particular, our
implementation of a strategy using clearing was not working as intended during
the competition and needs some attention. We consider it a prerequisite for more
advanced improvements to fix most of these bugs.

We saw in the free-for-all simulations that our agents have a hard time assem-
bling the patterns in the goal zone when a lot of other agents are present. This
is due to the quite static approach our system takes when assembling tasks. An
obvious improvement would be to give agents the freedom to change the point
of assembly, without losing too much efficiency. This might allow the agents to
assemble the pattern outside goal zones, and then simply have the submit agent
move into the goal zone afterward.

Another observation we have made during the contest is that, especially in
larger maps with lots of agents, we have too many idle agents. Once the map
is explored and an agent has connected two blocks, the agent will simply roam
the map waiting to be assigned a task. We have ideas that could lead to the idle
agents being put to better use—for example by protecting goal zones.

Our system could be improved to better utilize a goal-driven approach, with
a proper goal-hierarchy. For now, our agents only rely on very high-level goals,
and the more intricate details are represented as beliefs. We intend to improve on
this aspect in the future where agents have more hierarchical goals, i.e. high-level
goals contain a number of sub-goals.

9 Conclusion

We have covered the main strategy of our agents. It is primarily based around
proactive (and reactive) collection of blocks while exploring the map. Our agents
reactively compose plans to solve available tasks that describe how patterns are
to be aligned. While solving tasks, our agents will react to obstacles they meet
along their way. When feasible, the agents employ the A* path finding algorithm
to optimize short-term movement.

We have described how our agents acquire knowledge from the map, mainly
as a result of an initial exploration strategy. We have further described how our
agents communicate and utilize this knowledge to move around the map and
complete tasks.

We have evaluated the performance of our system during the contest and
have found that the system performs well for maps with few agents. As the
number of agents increase, the system increasingly fails to assign all agents to
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tasks, and the assigned agents are less able to maneuver and assemble patterns
inside the goal zones.

Finally, we have discussed ideas for general improvements to the system
alongside a number of encountered issues. This includes both issues related to
the system implementation but also regarding server connections.

In conclusion, we are satisfied with our placement for the contest and with
the improvements we have made to the system compared to last year.

Acknowledgments. We thank Tobias Ahlbrecht, Asta Halkjær From and Benjamin
Simon Stenbjerg Jepsen for discussions.

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest? To work on
implementing a multi-agent system capable of competing in a realistic, albeit
simulated, scenario.

What is the history of your group? (course project, thesis, . . .) The name
of our team is GOAL-DTU. We participated in the contest in 2009 and 2010
as the Jason-DTU team, in 2011 and 2012 as the Python-DTU team, in 2013
and 2014 as the GOAL-DTU team, in 2015/2016 as the Python-DTU team,
in 2017 and 2018 as the Jason-DTU team and in 2019 as the GOAL-DTU
team. We are affiliated with the Algorithms, Logic and Graphs section at
DTU Compute, Department of Applied Mathematics and Computer Science,
Technical University of Denmark (DTU). DTU Compute is located in the
greater Copenhagen area. The main contact is associate professor Jørgen
Villadsen, email: ‘jovi@dtu.dk’

What is your field of research? Which work therein is related? We
are responsible for the Artificial Intelligence and Algorithms study line of the
MSc in Computer Science and Engineering programme.

A.2 Statistics

Did you start your agent team from scratch or did you build on your
own or someone else’s agents (e.g. from last year)? We used as starting
point our code from the MAPC 2019.

How much time did you invest in the contest (for programming, orga-
nizing your group, other)? We used approximately 160 h to qualify. From
January until the contest we used approximately 300 h.

How was the time (roughly) distributed over the months before the
contest? To qualify we used approximately 80 h in August and 80 h in
September. In January we updated GOAL—the new version of GOAL was
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not compatible with most of the old code, thus a lot had to be rewritten. We
also had to spend some time debugging GOAL itself. In February, the actual
programming of the agents started.

How many lines of code did you produce for your final agent team?
2000 lines of code.

How many people were involved? 5 people: Jørgen Villadsen, Alexander
Birch Jensen, Benjamin Simon Stenbjerg Jepsen, Erik Kristian Gylling and
Jonas Weile.

When did you start working on your agents? We started working on our
code from MAPC 2019 in August. As mentioned in the previous questions,
large parts of the existing code had to be rewritten, however. This began in
January.

A.3 Technology and Techniques

Did you make use of agent technology/AOSE methods or tools? What
were your experiences?

Agent programming languages and/or frameworks? We used GOAL. We
find that it is very intuitive and relatively easy for newcomers to learn which
is an advantage as the programming team changes.

Methodologies (e.g. Prometheus)? No.

Notation (e.g. Agent UML)? No.

Coordination mechanisms (e.g. protocols, games, . . . )? No.

Other (methods/concepts/tools)? We used the Eclipse IDE for program-
ming (it has a GOAL add-on).

A.4 Agent System Details

How do your agents decide what to do? The agents reactively decide on
their actions based on the current percepts, their beliefs and their goals.

How do your agents decide how to do it? By predetermined rules and
actions.

How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach? The team commu-
nicates via messages and channels to share information and agree on plans.
The approach is mostly decentralized, but certain planning tasks are currently
delegated to a single agent at a time.
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Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly. The agents use
planning to choose the tasks to pursue. A single agent is chosen to do the
planning, but this agent relies on input from all other agents, and the planning
agent is chosen dynamically at run time. The planning agent will search
through assignment combinations and choose the most promising.

Can your agents change their general behavior during run time? If so,
what triggers the changes? An agent will change its behaviour when it is
chosen to take part in solving a task.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest? We chose not to make changes during the contest.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience? We used log files
to record the agents belief base and percepts. We experimented with linear
temporal logic, but ultimately it did not make it to the final version.

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing? By logging
to the console. Admittedly, we could have done much more to improve this
aspect.

Did you invest time in making your agents more robust/fault-tolerant?
How? We spent some time on this, but not enough. This was one of our
problems at the competition.

A.5 Scenario and Strategy

What is the main strategy of your agent team? First, to explore, have
our agents find other agents, deduce the map dimensions and agree on a task
planning agent. Once this agent has been found, it will continuously inquire
the other agents about their available resources and try to create task plans.
The task plan is sent to all agents involved in the plan, and these will try to
solve it as efficiently as possible.

Please explain whether you think you came up with a good strategy or
you rather enabled your agents to find the best strategy. We defined
the strategy for our agents. Obviously, the agents have to find strategies for
solving tasks and some aspects are only loosely defined.

Did you implement any strategy that tries to interfere with your oppo-
nents? We worked on some clearing strategies to defend goal cells, but they
seemingly did more harm than good at the competition.

How do your agents decide which tasks to complete? Each task is ranked
based on a simple heuristic based on the reward and the delivery time. The
tasks are then checked based on their ranks in decreasing order, and the
agents will try to complete any tasks they deem solvable.
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How do your agents coordinate assembling and delivering a structure
for a task? The agents create structured plans on how to assemble the
structure. The plans are continuously checked to see if they remain feasible.

Which aspect(s) of the scenario did you find particularly challenging?
It was a challenge that the map was a torus and also that the environment
was dynamic.

A.6 And the Moral of it is . . .

What did you learn from participating in the contest? We learned a lot
about using GOAL to write multi-agent programs. We were reminded of the
care it takes to develop and test in multi-agent environments.

What advice would you give to yourself before the contest/another
team wanting to participate in the next? Start early, because unex-
pected problems will occur. Have a clear testing strategy.

What are the strong and weak points of your team? The coordination
between agents is working quite well and the A* path finding helps agents
to move directly. Agents could be more flexible in helping each other and
prioritizing other agents’ tasks over their own when it is better for the team.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms? GOAL has built-in functionality
that allows agents to communicate with one another and it has a predefined
agent-cycle that is suitable for the belief-desire-intention model. A* was used
by the agents to determine movement actions for short distances.

Which problems did you encounter because of your chosen technolo-
gies? We had problems with the EIS interface. These were most obvious dur-
ing transitions between simulations. We also had some problems with GOAL
and backwards compatibility.

Did you encounter previously unseen problems/bugs during the con-
test? We had a problem with our agents receiving false information and then
not being able to do anything meaningful. This problem was not experienced
beforehand—probably due to insufficient testing.

Did playing against other agent teams bring about new insights on
your own agents? Yes, our agents are vulnerable to clear actions when
they are waiting in the goal zones.

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)? If the
contest was a week from now, we would mainly focus on bug fixing and thor-
ough testing. If we had more time we would make better use of agents when
they are not partaking in solving tasks. Also, we might look into some better
defensive strategies and continuously revising plans to check if they could be
optimized.
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Which aspect of your team cost you the most time? We had major
problems with a lot of the code not being compatible with the newest version
of GOAL. Due to missing unit-tests, the problems were almost impossible to
locate, and a lot of code had to be rewritten. This was a major setback.
Furthermore, the A* algorithm used more CPU time than expected.

What can be improved regarding the contest/scenario for next year?
As has already been suggested, running the agent programs on the server
itself. If this was implemented, it would be interesting to decrease the time
available for the agents to decide on their actions.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did? The A* and coordination between
our agents made us fast at completing patterns. However, we had a large
setback during January, which meant we had to rewrite most of the additions
to the 2019 version, as well as spending some time on GOAL itself. This left
little time for debugging. We thus found a lot of bugs during the competition.

If you participated in the “free-for-all” event after the contest, did
you learn anything new about your agents from that? We had our
suspicions confirmed—that the current strategy will be a lot less effective if
there are many agents cluttering the goal zone. For such scenarios, we need
a more dynamic task-solving approach.
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