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Preface

In this volume, we present the fifteenth edition of the annual Multi-Agent Programming
Contest.

The first paper gives an overview of the competition, describes the current scenario,
summarises this year’s participants and their approaches, and analyses some of the
matches played and the contest as a whole.

For the second part, each team contributed a paper describing their approach and
experiences with creating a team of agents to participate in the contest.

The review process was single blind and on average three reviews were conducted
per contribution. Each team was able to pass the review process without problems.

July 2021 Tobias Ahlbrecht
Jürgen Dix

Niklas Fiekas
Tabajara Krausburg
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The 15th Multi-Agent Programming
Contest

Assemble with Care

Tobias Ahlbrecht1(B) , Jürgen Dix1 , Niklas Fiekas1 ,
and Tabajara Krausburg1,2

1 Department of Informatics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany

{tobias.ahlbrecht,dix,niklas.fiekas}@tu-clausthal.de
2 School of Technology, Pontifical Catholic University of Rio Grande do Sul,

Porto Alegre, Brazil
tabajara.rodrigues@edu.pucrs.br

Abstract. The Multi-Agent Programming Contest, MAPC, is an
(almost) annual competition with international participants. The con-
testants develop a multi-agent system that has to compete against each
other team in a series of games, requiring cooperation, collaboration,
planning capabilities and much more. The contest goals are twofold: We
try to find scenarios, where it pays off to use the tools of agent-oriented
software engineering, and we try to encourage people to learn about or
even refine those tools. We present the contest’s 15th edition, its partic-
ipants and results.

Keywords: multi-agent systems · agent-based simulation ·
decentralized computing · cooperation · artificial intelligence ·
simulation platforms

1 Introduction

Multi-agent systems is a field in Artificial Intelligence that focuses on the cooper-
ation, coordination and social abilities of software entities (hereby called agents).
Much work has been done in the last three decades to formally define con-
cepts and their relationships to express the behavior of agents; in particular
autonomous agents. As an example, one of the best known models is the approach
based on Belief-Desire-Intention (BDI) [15]. In the light of those efforts, multi-
agent programming has become a popular research topic in which researchers
aim at providing useful tools to express the behavior of agents. The Multi-Agent
Programming Contest (MAPC) has been created to evaluate and compare agent
systems [2].

For the 15th MAPC, which was held in 2020/2021, we improved the Agents
Assemble scenario [3] in order to make it challenging for former participants,
and as simple as possible for teams wanting to join the current contest. In total,
five teams participated in the 15th MAPC; three teams located in Europe, and
c© Springer Nature Switzerland AG 2021
T. Ahlbrecht et al. (Eds.): MAPC 2021, LNAI 12947, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-88549-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88549-6_1&domain=pdf
http://orcid.org/0000-0002-4652-901X
http://orcid.org/0000-0002-8528-1440
http://orcid.org/0000-0002-8369-4890
http://orcid.org/0000-0002-8252-4099
https://doi.org/10.1007/978-3-030-88549-6_1


4 T. Ahlbrecht et al.

two in South America. All teams but one chose specifically designed agent pro-
gramming tools to develop their agents. Interestingly, that team was declared
the winner of this edition.

1.1 Related Work and Competitions

Many competitions similar to the MAPC have been held, although in most of
them the focus is not explicitly on multi-agent systems. We discuss some of the
ones that are related to MAPC and still active.

Directly involving agents, the (Power) Trading Agent Competition1 [13] pro-
vides a trading-related scenario in the energy market. However, each team only
consists of a single “broker” agent, requiring no cooperation or coordination.
The brokers compete with each other to attract more customers, in which they
offer special tariffs for groups of customers. The goal here is to see how agents
can autonomously solve supply-chain problems [14].

Probably the best-known are the various RoboCup Simulation Leagues2.
RoboCup ranges over a variety of different domains like soccer, disaster response,
assisting robots, and industrial logistics. Each league focuses on a specific prob-
lem that must be addressed by competitors. For instance, in RoboCupRescue
two major leagues are organized on: (i) robots; and (ii) agent simulation. The
first centers around (virtual) robots and less around abstract agents. For exam-
ple, agents have noisy virtual sensors or may be subjected to complex physics,
focusing on realism. The agent simulation league provides virtual agents placed
on a map of a city that has been damaged by an earthquake event. Competitors
focus on different self-isolated AI problems (e.g., task allocation) provided by the
contest [17]. In addition, all teams have to give a presentation on their solution,
which counts towards their final score.

We also mention a new challenge, the Intention Progression Competition3 [7],
which focuses on a specific issue within agent systems: the Intention Progression
Problem, i.e. the decision of agents about how to proceed with their given inten-
tions and plans in order to reach their goals. Thus, a solution for the MAPC (e.g.
an agent) could be seen as a specific input challenge in the IPC, while solutions
for the IPC could be used in agent platforms that participate in the MAPC.

When the focus comes to communication, we refer to the Automated Negoti-
ating Agent Competition4 [4]. In this competition, a participating team develops
negotiation protocols and strategies and chose between a set of different flavors of
competitions including agent-agent and human-agent negotiation. In this direc-
tion, HUMAINE5 (Human Multi-Agent Immersive Negotiation Competition)
focuses on multiple simultaneous negotiations between a human and competing
agents [8].
1 www.powertac.org.
2 www.robocup.org.
3 www.intentionprogression.org.
4 http://ii.tudelft.nl/nego/node/7.
5 https://cisl.rpi.edu/research/projects/humaine-human-multi-agent-immersive-

negotiation.

www.powertac.org
www.robocup.org
www.intentionprogression.org
http://ii.tudelft.nl/nego/node/7
https://cisl.rpi.edu/research/projects/humaine-human-multi-agent-immersive-negotiation
https://cisl.rpi.edu/research/projects/humaine-human-multi-agent-immersive-negotiation
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There is also a number of challenges targeting specific problem domains. The
International Planning Competition [16], has planning in the limelight, while in
our contest it is only one possible component of an agent team. At the other
end, the General Game Playing [9] competitions do not focus on one particular
feature but on the ability of general AI systems to play an arbitrary game upon
receiving its rules.

Finally, there are more than a few challenges focusing on finding
(autonomous) solutions for existing commercial games, like the Student StarCraft
AI tournament6, or specifically designed games like BattleCode7. The goal here
is usually to benchmark game AI techniques and algorithms. Not a competition
but definitely worth mentioning is the Blocks World for Teams (BW4T) [12]
environment, which has some relations to the current MAPC scenario. There,
agents have to coordinate to deliver sequences of color-coded blocks.

1.2 Outline

This paper is organized as follows. Section 2 introduces the current setting for
the Agents Assemble II scenario. In Sect. 3, we introduce how the 15th MAPC
was organized. We present all participating teams as well as an overview on their
performances. Section 4 aims at introducing some lessons we learned throughout
the contest, regarding the overall organization and matches. Finally, in Sect. 5,
we look at the future directions for the next MAPC.

2 The Current Setting

Our current scenario, titled Agents Assemble II, is an evolution of the previous
one, played in the MAPC 2019 [3]. Each simulation is divided into a number of
discrete steps. The primary elements of the game are agents and blocks situ-
ated in a two-dimensional grid environment. Each agent and each block inhabit
exactly one cell of the grid. An agent can pick up a block from an adjacent cell
and attach it to one of its four sides. The agent and the block then move together
as one unit, whenever the agent moves. Two agents carrying blocks can connect
these blocks if they are next to each other. Now one of the agents could discon-
nect from its block, leaving the other agent with two blocks to carry. Repeating
this process a number of times, more complex two-dimensional shapes can be
assembled out of blocks (see Fig. 1). Assembling specific shapes and delivering
them to certain places on the grid is the main goal of both agent teams. The
bigger the shape and the faster it is delivered, the more reward is paid out to
the agent team. The simulation randomly generates tasks, i.e. the shapes that
can be delivered at any point in time up to a deadline.

6 www.sscaitournament.com.
7 www.battlecode.org.

www.sscaitournament.com
www.battlecode.org
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Fig. 1. Examples of different shapes and sizes required by tasks in the Agent Assemble
scenario. The blue square represents an agent carrying all the blocks. (Color figure
online)

2.1 Challenges

The central challenge of the scenario is how the agents can coordinate to com-
plete a task. They need to determine which blocks to get and from where, how
to assemble them into shapes with synchronized actions, and distribute these
subtasks among themselves8. Blocks can be retrieved from dispensers, which are
placed in randomized locations on the grid in each simulation. Similarly, the
starting position of each agent and the shapes that need to be assembled are
randomized.

Another challenging aspect of the scenario is each agent’s perception or vision
range. The agents only perceive things that are at most five blocks away, mea-
sured in Manhattan/taxicab distance. In addition, the agents do not perceive
the team of other agents they encounter. Thus, if two agents meet, they need
to ensure that they “know” each other. This is important for collaboration and
also to merge their relative knowledge about the environment. All agents from
one team can communicate freely (over any distance), though.

Each cell of the grid can also contain an obstacle, which prevents anything else
from being at the same location. The obstacles are generated at the beginning
of each simulation, forming a series of island-like structures on the grid. On the
one hand, the obstacles complicate pathfinding, while on the other hand, they
can serve as landmarks for agents to find their bearings. Additionally, agents
may find themselves trapped if they are surrounded by obstacles. In such a

8 The complete scenario description with all action and percept descriptions
can be found at https://github.com/agentcontest/massim 2020/blob/master/docs/
scenario.md.

https://github.com/agentcontest/massim_2020/blob/master/docs/scenario.md
https://github.com/agentcontest/massim_2020/blob/master/docs/scenario.md
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case, they would have to use the clear action to remove single obstacles. In a
similar fashion, clear events randomly occur in the environment. They remove
all obstacles in a certain area and scatter new obstacles around, dynamically
changing the environment. This makes it harder for agents to know for certain
if they are in a position where another agent of their team had already been
before.

Finally, not to be underestimated, the presence of another agent team can
have a huge impact, as those agents are usually highly unpredictable. In the
basic case, the two teams at least compete for the same tasks. Any task that is
completed immediately becomes unavailable for the other team as well. But the
other agents might implement a strategy that aims to disturb their opponents.
For example, they could try to hit them with clear actions, which would disable
them for a couple of steps. More generally, the goal zones are likely points of
contention. If an agent can be kept out of the goal zone, it cannot deliver its
task in time.

2.2 Modifications

As we use the Agent Assemble scenario for the second time in a row, we consid-
ered the following in order to modify the previous setting for the new edition:

1. how can we improve the scenario, possibly mitigating major advantages of
winning strategies; and

2. how do we keep the scenario as simple as possible so that we make it easier
for new teams to participate.

Given that, we designed and implemented some modifications and, as usual,
iterated over it a few times to reach a mature and stable setting. The changes
were as follows:

– The grid’s bounds were removed. Now, if an agent were to move off the grid,
it would just appear on the opposite side, making it harder for the agents to
find out their absolute positions.

– Task boards where introduced, were agents have to go to accept a task. Each
agent can only accept one task at a time and an agent can only submit a task
that it has accepted itself. We made this change to keep agents from staying
in a goal zone (where tasks are to be delivered) all the time: a behavior that
could often be seen in the previous Contest. It may also give some insight into
the agent’s intentions.

– Previously, the reward of a task only depended on its size. To be precise, let
treq be the number of blocks a task t requires, then its reward rt is given by
rt = 10 × (treq)2. Now, to give to faster agents an advantage, the reward of
each task decreases in each step according to a decay rate. For instance, if
the reward decay rate is set to 50% and the current reward for a given task t
is rt = 10, in the next step, it decreases to rt = 5. This process continues
for any given task t until some predefined percentage of its original reward is
reached; for instance, 10% of the original value.
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– To speed up the start of the game, agents are now very likely to start close to
one or more agents from their team. Doing so, they might immediately start
working in smaller groups.

– To ensure fairness in the beginning of a simulation, agents of different teams
share the same cell on the grid. That is, let m be the number of teams, then
any cell that is a starting location for an agent will contain exactly m agents;
one agent of each team. This is only allowed in the beginning of a simulation
as in the remaining steps no agent can share a cell with any other agent;
regardless if they are teammates.

3 The Tournament

The actual Contest, originally planned for the end of the year 2020, had to be
delayed due to various reasons; the main one probably is the pandemic. Thus,
the 15th MAPC (formerly titled MAPC 2020) took place on the 15th and 16th
March 2021.

3.1 Overall Organization

As always, the contest is organized into 3 phases: (1) registration; (2) qualifica-
tion; and (3) the contest itself. The registration aims at introducing the teams
one to the other, in which each team briefly describes itself to the general public
pointing out the technologies they intend to use.

In the qualification phase, a team of agents play two subsequent simulations
alone in the contest scenario. The team must submit at least one task in each
of the two simulations and send most of their actions in time (i.e., 70% of all
actions must arrive at the contest server in which the deadline per action is set
up at 4 s). Both simulations last for 300 steps, and the tasks require 2 or 3 blocks
to be assembled together. In the first simulation, the team coordinates 15 agents,
and in the second 50 agents.

Finally, in the contest each team plays one match against each other partici-
pating team. One match consists of three simulations with different parameters.
The simulations mainly differ in the number of agents and the size of the grid.
In the first simulation of each match, every team has 15 agents, in the second 30
and in the final simulation 50 agents at their disposal. During a match, both
teams are allowed to monitor only action results (e.g., action completed success-
fully). That means the teams cannot observe the grid itself, and hence, what the
opponent agents are doing. Also, they may reconnect their agents in any case
of bugs and connection failures, although the simulation never stops increasing
steps after a deadline (4 s). After the contest is finished, all teams come together
to watch how they performed during the matches.

Ultimately, five teams were able to pass the qualification and participate in
the Contest.
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3.2 Participants

We give a brief overview of each team and their agent solution in alphabetical
order.

FIT BUT. The team from Brno University of Technology from Czech Republic
consists of three members. They already participated in the MAPC 2019 and
built on their earlier team, which is written entirely in Java. This makes them
the only team, this time, that did not use a dedicated agent programming
language or platform. Their solution is comparable to BDI agents, though.
They invested approximately 130 h to upgrade their previous solution to the
new scenario, producing 7461 lines of code, up almost 2000 lines from 2019.

GOAL-DTU. The team from the Technical University of Denmark, one of
the most regular MAPC contenders, consists of five members, two of which
made up the 2019 GOAL-DTU team. As their name suggests, they made use
of the well-known GOAL agent programming language [10]. GOAL is based on
the notions of beliefs and goals and supports rule-based decision making. The
team’s code base roughly doubled in size, to a still compact 2000 lines. About
460 h were spent updating and improving their agents, a lot of which fell to
updating to a new version of GOAL.

JaCaMo Builders. The team from Federal University of Santa Catarina, Santa
Catarina State University and Federal Institute of Santa Catarina, Brazil,
and Ume̊a University, Sweden, consists of nine members, who were new to
the scenario, however, many of which already participated in earlier editions
of the Contest. Their agents were created with the JaCaMo agent platform [6].
JaCaMo combines multiple agent techniques in a single framework. The preva-
lent agent platform Jason is used for programming the agents. CArtAgO is
included to deal with environments, while Moise handles the organizational
level. The team invested about 1000 h into creating their agent team. This
is the most time spent of any team in this MAPC, but as this team also has
the most members, and didn’t have a previous solution to build on, it is not
surprising. The size of their code, 5914 lines of Jason, 947 lines for CArtAgO
and another 1258 lines of Java code, is comparable to the solution of FIT
BUT and about four times that of GOAL-DTU .

LTI-USP. The team from University of São Paulo, Brazil, is the smallest team
with only two members. They spent about 400 h developing 1985 lines of
Jason code, a solution as compact as the one of GOAL-DTU . LTI-USP
was the other newcomer besides JaCaMo Builders, creating their agent team
entirely from scratch.

MLFC. The team from University of Manchester and University of Liverpool,
UK, University of Genova, Italy, Lancaster University Leipzig, Germany, and
Maynooth University, Ireland, consists of six members, three of which already
participated in the previous Contest (one among them who also participated
a couple of times even before). They built on their previous JaCaMo entry,
resulting in approximately 3000 more lines of code and 9805 in total, even
more than that of JaCaMo Builders. Their Java part grew more than the
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Jason part, though. They invested around 200 h this time.
An important part of their system is still the Fast-Downward planner, which
they use to plan long distance movement.

All teams this time more or less programmed some sort of BDI agents. They
either directly used a BDI agent platform or adopted a BDI-like programming
style. In addition, we only saw approaches that took a more or less decentralized
perspective, the difference being that some agents subscribe to a (dynamic) group
and follow their chosen group leader’s orders, while other agents make up their
own goals and ask for help, e.g. via auctions.

3.3 Final Ranking

Each simulation awarded three points to the winner (the team that earns the
highest sum of task rewards), or one point to both teams in case of a draw.
With each team playing four matches of three simulations each, this makes a
maximum achievable score of 36 points.

After taking home the second place in 2019, FIT BUT achieved first place
in the 15th MAPC with a clear lead of 30 points. The second place is shared
by GOAL-DTU and MLFC , who were both able to score 22 points. The third
place went to LTI-USP with 9 points and fourth place to JaCaMo Builders with
6 points. The results are again summarized in Table 1.

Table 1. The ranking of the 15th MAPC

Place Team Points Wins Draws
FIT

BUT

GOAL-

DTU
MLFC LTI-USP

JaCaMo

Builders

1 FIT BUT 30 10 — — 6:3 6:3 9:0 9:0

2 GOAL-DTU 22 7 1 3:6 — 7:1 6:3 6:3

MLFC 22 7 1 3:6 1:7 — 9:0 9:0

3 LTI-USP 9 3 — 0:9 3:6 0:9 — 6:3

4 JaCaMo Builders 6 2 — 0:9 3:6 0:9 3:6 —

We note that no team was completely undefeated and no team ended up
without any victory.

3.4 Team Performance

Given the results above, we analyze how the teams reached their scores. To do
so, we consider the tasks submitted by each team during a match alongside the
number of noActions, which might indicate bugs on the team’s side or poor
connection. A noAction means that an agent failed to submit an action in time
for the current step. The numbers are given in detail in Table 2.
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Table 2. Performance of the participating teams in each match. The columns R1, R2,
R3, and R4 mean the number of submitted tasks containing 1, 2, 3, and 4 requirements
respectively.

FIT BUT vs. JaCaMo Builders

Score R1 R2 R3 R4 noActions

Sim. 1 38 : 0 6 : 0 1 : 0 1 : 0 0 : 0 1770 : 375

Sim. 2 113 : 8 4 : 0 1 : 1 3 : 0 1 : 0 2100 : 836

Sim. 3 98 : 0 15 : 0 4 : 0 2 : 0 0 : 0 5642 : 4364

GOAL-DTU vs. LTI-USP

Score R1 R2 R3 R4 noActions

Sim. 1 65 : 16 0 : 4 3 : 1 1 : 0 0 : 0 0 : 7

Sim. 2 100 : 14 0 : 3 6 : 1 1 : 0 0 : 0 30 : 493

Sim. 3 0 : 38 0 : 3 0 : 4 0 : 0 0 : 0 105 : 689

FIT BUT vs. MLFC

Score R1 R2 R3 R4 noActions

Sim. 1 0 : 48 0 : 1 0 : 1 0 : 2 0 : 0 306 : 75

Sim. 2 53 : 44 9 : 0 4 : 1 0 : 2 0 : 0 465 : 5450

Sim. 3 90 : 18 11 : 0 4 : 0 2 : 1 0 : 0 1676 : 8684

JaCaMo Builders vs. LTI-USP

Score R1 R2 R3 R4 noActions

Sim. 1 8 : 0 4 : 0 0 : 0 0 : 0 0 : 0 57 : 125

Sim. 2 10 : 20 5 : 2 0 : 2 0 : 0 0 : 0 576 : 298

Sim. 3 10 : 18 5 : 1 0 : 2 0 : 0 0 : 0 1480 : 264

GOAL-DTU vs. MLFC

Score R1 R2 R3 R4 noActions

Sim. 1 187 : 26 0 : 0 6 : 1 3 : 1 1 : 0 15 : 41

Sim. 2 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 88 : 3889

Sim. 3 105 : 48 0 : 0 2 : 0 4 : 1 0 : 0 363 : 12314

FIT BUT vs. GOAL-DTU

Score R1 R2 R3 R4 noActions

Sim. 1 62 : 181 7 : 0 2 : 4 0 : 1 1 : 2 124 : 11

Sim. 2 104 : 0 8 : 0 7 : 0 1 : 0 0 : 0 437 : 30

Sim. 3 282 : 0 13 : 0 13 : 0 4 : 0 1 : 0 780 : 209

GOAL-DTU vs. JaCaMo Builders

Score R1 R2 R3 R4 noActions

Sim. 1 353 : 10 0 : 5 8 : 0 4 : 0 4 : 0 0 : 80

Sim. 2 235 : 12 0 : 6 5 : 0 4 : 0 2 : 0 35 : 107

Sim. 3 0 : 8 0 : 4 0 : 0 0 : 0 0 : 0 398 : 1951

FIT BUT vs. LTI-USP

Score R1 R2 R3 R4 noActions

Sim. 1 185 : 16 9 : 0 1 : 2 7 : 0 0 : 0 136 : 6

Sim. 2 148 : 10 10 : 1 8 : 1 0 : 0 2 : 0 487 : 123

Sim. 3 314 : 0 7 : 0 13 : 0 4 : 0 3 : 0 3242 : 636

JaCaMo Builders vs. MLFC

Score R1 R2 R3 R4 noActions

Sim. 1 10 : 60 5 : 1 0 : 1 0 : 1 0 : 1 69 : 82

Sim. 2 10 : 26 5 : 0 0 : 1 0 : 1 0 : 0 745 : 1499

Sim. 3 10 : 148 5 : 0 0 : 3 0 : 3 0 : 1 1376 : 5684

LTI-USP vs. MLFC

Score R1 R2 R3 R4 noActions

Sim. 1 12 : 160 2 : 1 1 : 0 0 : 4 0 : 1 102 : 60

Sim. 2 38 : 195 7 : 2 3 : 5 0 : 2 0 : 2 283 : 2650

Sim. 3 8 : 235 0 : 0 1 : 2 0 : 3 0 : 3 734 : 5529
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We see that the number of missing actions generally increases with the num-
ber of agents the teams had at their disposal (15, 30 and 50 per simulation).

By total counts, we see MLFC in the lead, as they had to battle with connec-
tion problems a number of times. FIT BUT follows and then JaCaMo Builders.
LTI-USP and GOAL-DTU had rather few noActions, while GOAL-DTU even
managed to play two entire simulations without any action missing.

FIT BUT usually showed the sharpest rise in noActions from the second to
the third simulation. Though, the only simulations they lost were the first ones
against GOAL-DTU and MLFC , where they only had a moderate amount of
noActions.

GOAL-DTU on the other hand saw also saw their biggest percentage increase
from the second to the third simulation and these were also the simulations that
GOAL-DTU lost against both JaCaMo Builders and LTI-USP , suggesting a
bigger disadvantage with 50 agents for GOAL-DTU .

In the direct comparison of JaCaMo Builders and LTI-USP , we see that the
JaCaMo Builders won the first simulation where they usually had a very low
count of noActions. While they increased in the next simulations, LTI-USP had
a less severe rise in the second simulation and even a decrease again in the third.

While the number of noActions may indicate problems the teams had with
certain team sizes, we are happy to see that this was for many matches, maybe
all, only one of many factors deciding how the match concluded.

Regarding the submission of tasks, we see, in general, the number of sub-
mitted tasks is proportional to their complexity. That means, tasks of lower
complexity are more likely to be submitted by the teams. JaCaMo Builders and
LTI-USP took it one step further and use it as their underlying strategy. They
worked only on tasks of low complexity (namely containing 1 or 2 requirements),
which did not pay off in the end (see Table 1). However, it was sufficient to reach
victories when the opponent team was in difficulties. For instance, in the third
simulation of the match GOAL-DTU versus JaCaMo Builders, the latter won
the simulation by submitting 4 single-block tasks while GOAL-DTU did not sub-
mit anything. Moreover, when it comes to the first simulation, we can see that
no team was a match for GOAL-DTU , as they won all of their first simulations.

3.5 Selected Matches

Given the overall results introduced above, we discuss how the teams approached
the challenging problem of this edition of the MAPC. Our overview provides only
a viewpoint from outsiders. For more details about all matches, we refer the
reader to the description paper of each participating team.

MLFC vs. FIT BUT. In this match, MLFC took the first simulation from the
champion-to-be FIT BUT , for a score of 3:6. After a short exploration phase,
both teams preemptively started picking up blocks. FIT BUT was the first
to have an agent accepting a task, in step 111/750. 50 steps later, that agent
met another agent in order to complete the desired pattern. However, with the
deadline approaching, at step 182, they could not find and reach a goal zone in
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time. Shortly after, two FIT BUT agents appeared to be stuck in a navigation
conflict that would persist throughout the simulation (see Fig. 2). The remaining
agents still tried to pursue other goals.

Fig. 2. Heavily packed FIT BUT agents are stuck between unusually close task boards.

In the meantime, MLFC had selected one goal zone to defend and another
to submit tasks. After accepting a task, one agent waited for deliveries in the
dedicated goal zone, while agents holding blocks waited in a formation next to
the goal. The first task was accepted in step 227 and completed in step 260.

In the two following simulations, FIT BUT agents were able to carry out
their strategy much more effectively. In general, they aggressively accepted more
concurrent tasks and completed them more quickly. MLFC on the other hand
was the most robust team in this contest, considering the number of simulations
with at least one completed task, but could not quite keep pace with FIT BUT .

JaCaMo Builders vs. LTI-USP. This match-up went 6:3 to LTI-USP .
JaCaMo Builders showed very consistent performance over all three simulations,
completing four to five tasks in every simulation, each one with a size of 1 and
reward 2. LTI-USP wasn’t able to complete any tasks in the first simulation.
In the second and third games, LTI-USP completed fewer tasks (4 and 3) than
JaCaMo Builders (5 each), but in both simulations, two of the tasks were of
size 2 and reward 8, yielding the decisive lead. The JaCaMo Builders showed
different behavior in the second simulation, attaching multiple blocks at once
to the same agent. Overall though, the LTI-USP agents seemed to be carrying
more blocks around. Interestingly, in the third simulation, LTI-USP completed
their third and final task in step 245, while JaCaMo Builders completed their
first task more than 300 steps later, in step 568 (and followed with four more
tasks).
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Fig. 3. Situation in step 510 of the 2nd simulation JaCaMo Builders vs. LTI-USP
(Color figure online)

In Fig. 3, we can see an implicit interaction of both teams in their second
simulation. Three agents from LTI-USP (green diamond shapes) each have one
block of type b1 attached and occupy a small goal zone (colored in red) so that
four of the five cells belonging to the goal cannot be used by the approach-
ing JaCaMo Builders agent number 5 (the blue square shape). This agent has
accepted task 22, which requires a single b0 block to be delivered. The LTI-USP
agents continue working in the goal zone almost until the task’s deadline in step
595, making it nearly impossible for their opponent to complete its task. The
JaCaMo Builders agent also stops sending any actions. Only after the deadline
has passed, it gives up on its block and task and moves on.

FIT BUT vs. GOAL-DTU. This match opened up the second day of matches
for the MAPC. At that time FIT BUT was leading the contest (15 points)
followed closely by GOAL-DTU (13 points). Therefore, the outcome of this
match could seal off the fate of the 15th MAPC.

In the first simulation, FIT BUT scored first and seemed to be dominat-
ing the game. For instance, at step 121 (see Fig. 4), agent GOAL-DTU 13 had
finished assembling a set of blocks in the required shape to submit a task and
hence earn a reward of 19 for it. However, agent FIT BUT 1 managed to clear
all blocks from GOAL-DTU 13 right before the submission take place, which
resulted in a failed action for GOAL-DTU 13. However, it turned out that FIT
BUT could not keep the pace with clearing the opponent’s blocks at the goal
zone. As a result, GOAL-DTU won the first simulation by scoring 181 against 62
from FIT BUT .

Quite interestingly, GOAL-DTU had problems during the second and third
simulations to submit tasks; in fact, they submitted none. However, that was
not a problem for FIT BUT who was declared the winner with a large lead:
104:0 in the second simulation and 282:0 in the third simulation. Although
we notice an increase in missed actions from GOAL-DTU in the two last
simulations (11 actions in the first, 30 in the second, and 209 actions in the
third), connection issues were not the main reason for GOAL-DTU ’s behavior.
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Fig. 4. First simulation of the match between FIT BUT vs. GOAL-DTU . GOAL-
DTU ’s agents (numbers 13, 14, and 11, in green), at the goal zone in red, are assembling
the required ‘L’ shape for a task submission while a FIT BUT agent (number 1, in
blue) performs a clear action on them at step 122. (Color figure online)

According to them [11], during those simulations they encountered serious bugs,
which they were not able to manage in the remaining of that match.

3.6 Free-for-All

After the contest we invited all teams to participate in two experimental simu-
lations, where all teams would play at the same time in the same environment.
Four out of the five teams showed up for the games. The parameters were com-
parable to those of the tournament simulations, only with slightly bigger maps
(from 70 × 70 cells to 80 × 80 in the first, and from 80 × 80 to 90 × 90 in the
second) to account for much more agents. Two simulations were run with 15 and
30 agents per team.

In the first simulation, FIT BUT completed some tasks early on, but was
soon overtaken by GOAL-DTU , who were able to submit two tasks of size 4 con-
secutively. During the following phase of around 250 steps, GOAL-DTU com-
pleted four tasks and JaCaMo Builders one, while FIT BUT did not submit
anything. In the remaining 250 steps, FIT BUT completed another nine jobs
(unlike everyone else), but the tasks were only of sizes one or two, which in the
end did not suffice to pull ahead of GOAL-DTU .

It appears that FIT BUT ’s aggressively working on small tasks made it also
very difficult for JaCaMo Builders. In the second simulation, FIT BUT showed
more consistent performance, leaving less opportunities for the other teams.
They completed 25 tasks, while GOAL-DTU submitted three and JaCaMo
Builders two. Unfortunately, the MLFC agents were not able to score. In the
first simulation, one group of their agents was interrupted by GOAL-DTU clear
actions (returning the favor to GOAL-DTU afterwards). In the second simula-
tion, they showed rather defensive behavior around some of the goal zones.

Asking the teams about their experiences, they note that disruptive strategies
are probably not so efficient anymore, as they cannot interfere with all other
teams at the same time. Also, more (adversarial) agents in the same environment
raises new issues. Specific to the current scenario, the goal zones have become
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even more contested areas with four teams trying to hold their ground. The
overall takeaway from our experiment is that the teams’ strategies were not as
effective, now that multiple different strategies were being played in the same
grid. This points out an interesting direction to be adopted in future contests.

4 Lessons Learned

After organizing each contest, we always conduct a survey among the partici-
pants to collect information about all aspects of the contest. In particular about:
the team itself, the effort needed to get the team of agents running, technolo-
gies and strategies, and finally, general questions about the contest. The reader
will find the teams’ responses to the questionnaire in the corresponding team
description paper.

All teams pointed out that the MAPC is an opportunity to learn more about
agent programming, get some hands-on experience or even evaluate their own
scientific work related to agent programming.

As the 15th MAPC is the second version of the Agents Assemble scenario, we
discuss in the following how our modifications to the previous setting affected
the new contest. Then, we discuss the overall lessons learned from the current
setting.

4.1 A New Version of the Agents Assemble Scenario

Given the modifications introduced in Sect. 2.2, we discuss how they have affected
the teams’ plays and therefore the matches.

An endless grid proved to be challenging for all teams, regardless whether
they participated in the previous edition or not. In the survey responses, those
teams, namely GOAL-DTU , FIT BUT and MLFC , stated they had to adapt
their exploration strategies accordingly. A task board addressed a naive strategy
of keeping an agent always in the goal zone for submitting tasks. While forc-
ing agents to explicitly commit to a task with the accept action, it remains
unclear which agents are actually cooperating in any given moment to submit a
particular task.

Regarding the reward decreasing, it aimed at posing decision making chal-
lenges to the agents. However, after asking the teams directly about this feature,
whether they have considered it or not, we found out that most of them ignored
it and worked on new incoming tasks only. GOAL-DTU takes it into account
while deciding which task to accept (based on an estimation of steps needed to
accomplish it), and once accepted, they intend to submit it unless the deadline
is reached. On the other hand, FIT BUT always evaluates the tasks’ current
rewards at every step, which leads them to consider the reward decay feature
indirectly.
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4.2 The 15th MAPC

Regarding the MAPC as a whole, from an observer perspective, understanding
the joint behavior of the agents is still challenging. Even though we have imple-
mented this year an agent view in which only a selected agent is in focus in the
monitor, it is not enough to fully understand what is going on. While in the
newest game (i.e., agents assemble scenario), it is easier than in other scenarios
to see what actually happens (e.g. in the earlier City scenario [1]), the increase in
the number of agents this time made it much more difficult, again, to get a clear
picture of the agents’ cooperation and coordination. Therefore, it is not only the
characteristics of a given scenario that poses difficulties for understanding the
joint approach of the agents.

In the same direction, we noted that debugging agent systems is still consid-
ered by many teams one of the most time consuming and difficult task. This has
been the case in all contests since the very beginning [2]. The lack of sophisticated
tools often leaves no other choice than to use logging statements to understand
what went wrong. Debugging is particularly important in this edition because,
for the second contest in a row, we prevented the team members from observing
the environment during the matches. Instead, they get insights only from the
information their agents receive. In case a team needs more than logging state-
ments, they are left to implement some sort of custom monitor to keep up with
the agents’ status. Debugging is even harder if multiple languages and tools are
combined, as mentioned by MLFC . Fortunately, Jason added recently a new
feature to address such a problem: assertions, which is mentioned by JaCaMo
Builders.

Moreover, if the teams had more time, most would have spend it on fixing
bugs first instead of developing new features. Testing a multi-agent system is
very challenging, and thus, new or previously undiscovered issues can arise at
any point. The Contest is usually a new situation for all participating agents, as
they cannot have been possibly tested in the same environment with the other
agent team(s).

5 Outlook

In Sect. 4, we noticed that coordination and cooperation are still difficult tasks
to monitor during the matches. The characteristics of a scenario affect them
directly. For instance, in the cow herding scenario it is easy to realize which
agents are cooperating as they push the cows towards a corral [5]. On the other
hand, in the agents assemble scenario, it is not easy to determine which agents
cooperate at all (from a simple observer perspective). In the end, one can safely
assume teamwork if the agents managed to successfully cooperate on a task, but
if they failed in between, there is barely no outside indication of that attempt.
In future work we aim at addressing this issue.
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It has been for a long time a desire to organize a contest in which many teams
play at the same time and in the same environment. In Sect. 3.6, we described our
experiment towards this goal. While we did not plan this in a very detailed way,
rather we decided ad hoc to do it, we believe it has been a success. Therefore,
matches containing many teams playing together is a feasible direction that we
are strongly considering. For one, we could see all teams playing at once under
similar circumstances, which could save considerable time, both in running the
competition and analyzing it. Then again, the scenario needs to be very carefully
designed to account for more than two direct competitors: this cannot be just
an afterthought. Imagine two teams “battling” each other while a third team
manages to play the game mostly undisturbed in a separate location. In this
case, the success of the third team could be more ascribed to chance, and so, a
very good scenario would need to prevent such things. As we can see, the current
scenario would need considerable changes. Additionally, it would be even more
interesting to see dynamic coalitions among agents from many different teams.
As of now, we are not sure how to build such a mechanism into a scenario, that
would still be competitive and fair to all parties.

For its very first edition, the participants of the MAPC had to submit their
agent code, which was run by the organizers. This had the benefit that all agents
were running on the same hardware and there was no additional delay due to
networking. Unfortunately, this proved to be quite difficult and time-consuming,
as the organizers had to know exactly how to run each agent team. Now however,
with containerization and new methods of virtualization being a hot topic, it
appears reasonable to think about this approach again. The teams could submit
their agents in some kind of container or prepare them inside a virtual machine
directly on the contest server. For one, this would be the only way to ensure
that agents are running in almost the same conditions in terms of hardware
and network. History has shown that the delay can be quite extensive for some
teams.

We might need to adapt the scenario to be a bit more forgiving, since the
agent operators would not be able to intervene during a simulation (mostly by
restarting the agents if they get stuck due to a previously undetected bug or just
an unforeseen situation). This is also a new challenge in terms of autonomy, that
has not been required as much so far. It would certainly be interesting to see
how the participants deal with this, how they improve stability and robustness
and which methods of repair and recovery they come up with.

Additionally, we are quite limited in what kinds of simulations we can run
using the current approach, as the presence of the organizers and competing
teams is required during the whole match. If this could be automated, we could
have the agents play many more and also much longer games. At the same time,
we would then need better (i.e. more automated) means of analysis, as there
would be many more simulations to analyze.
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Abstract. The 2020 Multi-Agent Programming Contest introduced a
modified scenario from last year - Agents Assemble II. Teams of agents
compete against each other in completing tasks that consists of assem-
bling blocks into desired structures. In this paper, we describe our strat-
egy, system design, and improvements we made over last year. This paper
also contains a description of the tournament matches from our point
of view.
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1 Introduction

The Multi-Agent Programming Contest (MAPC)1, which has been organized
since 2005, aims to stimulate research in the area of multi-agent systems. The
contest is divided into phases for which it releases new scenarios. These scenarios
are released for each phase, modified every year, and specify the entire contest.

Contestants must identify key problems and create a multi-agent system to
score as many points as possible. In each match, two teams compete against
each other in three rounds/simulations. Teams can build their systems on any
framework/programming language they want. These systems communicate with
the server using JSON messages. Each simulation has a certain number of steps.
For each step, agents can send the required action to the server within a certain
time interval. At the beginning of the next step, they receive the result of the
action and new percepts.

The scenario for this year was named “Agents Assemble II”. In this scenario,
agents must face limited local vision and ignorance of the global position (they
only perceive objects at a certain distance to their relative position). The envi-
ronment is a rectangular grid which loops horizontally and vertically. Thus, if an
agent moves off the right edge of the map, it will appear on the left side and this
situation is not detectable by the agent. The environment is dynamic - during
1 https://multiagentcontest.org/.
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the course of the simulation, events can occur that destroy or create obstacles
and can disable agents and/or strip them of their cargo.

Agents must complete certain tasks to score points. Tasks appear randomly
during the simulation. Each agent can hold only one accepted task, and only an
agent holding a specific task can submit it. Each task defines a complex structure
made of blocks that must be assembled and delivered to a goal area. An agent
can retrieve a block of a certain kind from a dispenser of said kind. Agents must
cooperate to be able to assemble nontrivial structures and additional synchro-
nization and cooperation is critical for agents effectiveness. The implementation
of effective cooperation is the core of the contest.

Our team has already gained experience from last year’s contest, where we
achieved second place. We created two systems [5]. The first of the systems was a
proactive system that worked with pre-specified scenarios and tasks agents with
generated goals designed for individual agents according to assigned role. The
second system was designed as more reactive and employed layered architecture
with highly dynamic behaviour, where agents chose their action based on their
perception of the usefulness of said action. This architecture is similar to Sub-
sumption architecture [1], but it also deals with the symbolic representation of
environments and plans.

We chose the second system as more suitable for the contest. This year,
we fixed some bugs we discovered during last year’s competition. And we have
improved and adapted the system for this year’s scenario. With these modifica-
tions and improvements of the system, we were able to achieve first place in this
year’s competition.

This paper is organised in sections focused on the parts of system design –
more specifically: strategy 2.1, agent synchronization 2.2, map construction 2.3,
agent reasoning cycle 2.4, goals and plans 2.5 and the action reservation system
2.6. This will be followed by an analysis of the matches, a discussion of the limits
and possible improvements to the system.

2 System Design

This section describes the key ideas on which our system was built. As mentioned
above, we decided to improve our system that we developed for last year’s com-
petition. The basic idea on which our system is based is described in the last
year’s article [5], but this paper will summarize all important parts for the sake
of coherent system description.

As some members of our research group focus on BDI [4] agent systems, we
considered whether to build our solution on top of an existing BDI solution. In
the end, we decided to create our own system. The environment of last year’s
and this year’s scenario is highly dynamic. We realized that implementing a
complex agent with specific roles and long term plans might not be the right
choice in such environment. And a simpler more reactive agent would be more
appropriate for this type of scenario.
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For the implementation of the system, we chose the Java language and used
BasicAgent template to create our own agent system platform. There were sev-
eral reasons for choosing this. Most of the team members already had experience
with Java language. It has a good ratio between performance and development
time and it is also easy to synchronize threads in Java. Each agent and other
elements of the system runs in its thread, so it would be possible to expand
the system to run on multiple machines, but as our system performed good
enough on single machine, this option remains on possible future enhancements
if needed.

2.1 Strategies

Our system is based on a relatively simple strategy of use of multitasking to
achieve as many goals as possible at once. While exploring the environment,
agents may find dispensers or blocks of various types. At the same time, the
most complex (and time-consuming) task would be to acquire blocks only when
an agent has an active task. In this case, it would be necessary to plan exactly
which agent gets which block. And given the dynamics of the environment,
where the terrain could change at any moment and an agent would have to
find another way, it would be difficult to synchronize all the agents so that the
necessary blocks are safely collected as soon as possible.

We have decided to merge these processes. We base our system on the
assumption that the vast majority of tasks can be completed only using blocks
that agents collect while exploring the environment. More complex tasks are less
likely to be completed this way. However, if our agents are able to complete
a large number of simple tasks in a short time, they would earn more points
than by completing complex tasks at length – fast completing of simpler task
also lowers the chance of enemy intercepting our agents or submitting the task
faster.

This is achieved by agents gradually attaching blocks of different types to
their bodies – these block can be either picked up from the environment or
requested from dispensers. When an agent accepts a task, other near agents
with required missing blocks are contacted and agents create plans for the fastest
meeting point to hand off and attach blocks.

As described in the introduction, agents do not know their global position
and only know the position of other near objects relative to their position in
the environment. In this state, no multi-agent planning, even this simplistic, is
possible. Therefore the first step must be to synchronize the agents and their
positioning systems. However, the environment does not provide a way of doing
this in just one step as agents must travel to reach each other at their limited
vision distances or employ some sort of environment position recognition.
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However, it is not necessary to wait until all the agents in the team are
synchronized to perform tasks. Therefore, agents will be divided into synchro-
nized groups which are created naturally as the agents meet and synchronize
amongst each other. Within these groups, agents can cooperate. It is also use-
ful to check that agents are not planning to perform certain actions that would
lead to conflict and unsuccessful action result. Therefore, within each group, all
actions which can create conflict will first have to be approved by the group’s
reservation system.

Planning of actions that will lead to the completion of tasks can be done
within groups. However, the agent should still be able to plan its own actions.
Moreover, due to the dynamics of the environment, plans may not be up-to-date
or applicable after only one simulation step. Therefore, group and local planning
at every step seems to be the most appropriate way. Planning is divided into
several levels. First, high-level goals, which we call options, will be calculated.
Based on these options, goals and plans will be generated. The agent then selects
a plan according to predetermined priorities and submits it to the reservation
system. If a plan is approved by the reservation system, then agents submit the
first action of the plan as their action for the current step. This will lead to
our agents being reactive, but at the same time fulfilling the planned tasks and
cooperating with other agents.

The whole synchronisation work is centralised. There is a register class for
this purpose. The agents will send their report at each step and it will evaluate
and inform group managers accordingly. Main function of the agent’s report is
letting the Register class know that agent has finished evaluating percepts and
his map is up to date with current step.

The previous paragraph described the basic ideas of the strategy that was
used to control the agents in this contest. For better clarity, the sequence diagram
of one step in the simulation is shown in Fig. 1. The following subsections will
describe each part of the strategy in more detail.

2.2 Synchronization

Agent synchronization is essential in this contest. As already addressed, agents
do not know their absolute position on the environment grid. Hence, they are
not even able to simply deduce each other’s relative difference. So without syn-
chronisation, no meaningful group actions can be planned. Agents cannot even
pass map information to each other as not to explore the same very recently
already explored cells.
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Fig. 1. Sequence diagram of one step in the simulation.

However, there are several aspects in the scenario that we can use to syn-
chronize the agents. All agents have the same order of the coordinate axes. The
agent in step perception sees other agents and knows their affiliation to the team
and relative position to itself. The last and probably most helpful aspect is the
fact that agents are not limited in communication in any way.

By combining these aspects, we are already able to get enough information
to synchronize the agents. By exchanging messages, agents can compare their
perceptions. If two agents see other agent at the same distance but in the oppo-
site direction, and no other agent sees another agent at the same distance and
direction, the two agents can be sure that they see each other.
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Fig. 2. Example of using distance difference for agent recognition. In this example
there are three agents, F3, F6 and F7. Lets consider the situation in the figure from
the perspective of agent F3. The difference of positions between it and agent F6 is
[2;−2]. The distance difference between the objects seen by agent F3 and F7 is [−3; 2].
From the perspective of agents F6 and F7, the distance differences are opposite.

As an example, consider one pair of agents. One sees a friendly agent relative
to it at position dx, dy. And the other agent sees the first agent at position
−dx, −dy. Then these agents can be sure that they can see each other and can
synchronize. This way agent is able to compute their relative position difference
and as long as agents maintain a correct log of their movement, they are then
able to compute their position for the rest of the simulation. A practical example
of agent-relative difference is shown in Fig. 2.

As already mentioned, our strategy is to form synchronized agents into
groups. At the beginning of the simulation, n groups are created for n agents (so
each agent has its own group). If two agents meet each other and each belongs
to a different group, then the two groups can be merged and from now on, all
agents from both previous groups are synchronized together.

This synchronization in our system is not performed by the agents them-
selves, but by the register. Once all agents have submitted their reports, the
register builds a set of positions and their corresponding set of agents. If it finds
two agents that see each other according to the rule described above, it merges
their groups so that agents from one group are added to the second group.

For clarity, this process is demonstrated by Algorithm 1.
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Algorithm 1: Synchronization of agents
seeingAgents ← (agentA, agentB, dxAB , dyAB) for all the pairs of agents
who see each other;

foreach ( agent1, agent2, dx, dy) in seeingAgents do
if there is only one pair ( agent3, agent4, -dx, -dy) then

assume that agent1 == agent4 and agent2 == agent3;
if the agents are not in the same group then

add all agents from the second group to the first;
end

end
end

2.3 Constructing a Map

The second important aspect that is necessary for proper planning is the creation
of an environment map. Each agent starts with their own map. Since the agent
does not know its absolute position in the grid, its initial position in its local
memory is at position [0, 0]. As the agent explores the environment, all objects
obtained from percepts are added to its map. A timestamp is also added to these
objects and even all history is recorded for sake of additional data compilation
and future algorithm expansion possibilities. Since the environment changes fre-
quently, it is necessary to recheck the already discovered cells periodically. Cells
with an older timestamp take precedence over those recently discovered when
agents are deciding which part of the grid to explore. When exactly specific
exploring action is used will be described in more details in Sect. 2.4, but map
percepts are recorded throughout all actions and agents.

The previous section described how agents are synchronized. The moment a
new agent is added to the group, the map can also be synchronized. Each group
has shift vectors stored that determine the shift of the agent’s initial position
from the group’s founder initial coordinate. The group’s first agent (agent that
was originally in this group by itself) has this vector [0, 0] which means that
his map is on the group level interpreted without shift. The difference vector
obtained during synchronization is used to compute this vector. The position of
the agent is added to the group is first subtracted from this vector. And then the
position of the agent who met the new agent is added. This calculates the shift
vector, which is then used to synchronize the maps. All members still retain their
own maps and in case of critical de-synchronization (some event which results in
unexpected and/or unknown coordination shift), an agent can be expelled and
his data are automatically no longer used in group map view.

For each round, the group constructs a group map snapshot. It is constructed
from the local maps of the agents in the group using shift vectors by adding cells
to the group map. If it occurs that there is already a cell at a position in the
group map, the one with the newer timestamp will be added. This constructed
map is then used for action planning. If two agents report different objects on
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the same spot at the same time, then both agents are marked for additional
investigation. For that reason, their data viewed as unreliable until the problem
is resolved.

Handling Grid Looping. In this scenario, constructing the map is more com-
plicated because the grid loops both horizontally and vertically. So if two agents
are already synchronized (they are in the same group) and one of them has
moved, for example, off the left edge of the map then it will appear on the right
side. If the agent meets the other agent again their distance difference will not
match.

Unfortunately, we have found no other way to determine if this situation has
happened other than when the agents meet again as at that point it is no longer
possible to find out exactly where the edge of the map is. But we can at least
estimate the size of the map.

Ideally, the agent would be able to recognize on its own (or with the help of
a group map) that it is in a different location on the map. However, we consider
this to be impossible due to the dynamics of the environment and could also be
unreliable in the case of maps with repeating patterns.

Algorithm 2: The principle of finding the map edges
limitX ← null;
limitY ← null;

if agents agent1 and agent2 have different distance differences to each
other then

loopPoint ← (agent1.position - agent2.position) - distanceDifference;
if loopPoint.x �= 0 then

newLimitX ← |loopPoint.x| ;
if limitX == null then

limitX ← newLimitX;
else if limitX �= newLimitX then

limitX ← min(limitX, newLimitX, abs(newLimitX- limitX);
end
do the same for position Y;

end

The principle of our edge finding method is shown in Algorithm 2. At the
beginning of the simulation, the edges of the map are unknown. The agents
explore the environment, and if they meet again and their distance difference
vectors are not as expected, we know that one of them has crossed a map edge
at least once. Now we can arbitrarily assign the edge and calculate how many
times agents have crossed it.

For the calculation, we use an auxiliary point, which we called loopPoint.
This point is computed as the difference of the agent’s positions and the differ-
ence of the distance difference vectors. If one of the coordinates is 0, we know
that the agent has not crossed the map’s edge in this axis (or both agents have
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crossed it the same number of times). If the edge has not yet been found, the
coordinates of this auxiliary point will be used as the new point representing
map length. Otherwise, the map length is set as the minimum of the old value,
new value or the positive remainder of their difference. (This efficiently detects
the size of the map, in cases such as if the first point was found after three border
crossing and the second meeting point after two.)

In our system, this logic is implemented in the same section as agent syn-
chronization. Thus, the edge computation is taken care of by the register when it
receives reports from all agents. If the register finds unexpected distance differ-
ence vectors during agent synchronization, it calculates an auxiliary point and
stores it in a separate list. After synchronization is complete, all these points are
processed.

The found edge (limit) is then used to calculate the position in the map using
the modulo operation. In case when the coordinate is less than 0, the found limit
is added to its value. In this way, if the agent has crossed the edge, we can obtain
its correct distance to other objects on the map.

2.4 Agent Reasoning Cycle

In the agent’s reasoning cycle, for each step of the simulation, the previous action
is evaluated (for example, updating the map or changing the position on the map
in case of movement) and the action for the current simulation step is selected. In
Sect. 2.1 describing the strategy, we stated that since the environment is highly
dynamic, planning at the local and group level should be done for each step of
the simulation.

Last year, we already introduced a system of options. Each option represents
an option available to the agent at the current step. Their computation takes
place both at the local level, where the agent considers its options given its
capabilities and the information in the local map, and at the group level. To
calculate the group options, a group map is constructed as described in Sect. 2.3.

Agents have to perform an action within a limited time, if they do not, they
would needlessly lose that action and the enemy team would gain an advantage.
For this reason, the actions are calculated in a predetermined order. During the
calculations, the watchdog monitors the time and if the calculation takes too
long it will stop calculating more possible actions and the agent will have to
choose from those actions that have managed to be calculated within the time
limit. The options and their order of calculation are shown in Fig. 3.

Local options calculation is computationally less demanding, there are the
following five local options in our system:

– Dodge it is one of the simplest options, it will check if it is necessary to
perform an evasive maneuver. For example, when an agent or some attached
block is occupying space with a clearing marker, the agent has to find the
shortest path to safety. This action is intended to protect an agent’s integrity,
especially when it is carrying blocks.
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Fig. 3. Order of calculating of agent options.

– HamperEnemy is another simple option as it only checks immediate vicinity
for enemy agents and creates clearing action on their position.

– GoNearSubmit finds the nearest goal cell and the path to it. This option
intends to bring agents close to submit areas to reduce their collective distance
difference and possibly to find other friendly agents to enable synchronization
on a larger scale.

– GoGetTask is the most complicated local option. If the agent has no assigned
(and current) task and carries some blocks, it tries to find a task for which it
has the most potential. If such a task is found it then plots the path to the
nearest task board.

– Dig finds a way to the nearest terrain and, if in range, performs a clear action.
This is intended as a last resort in case the agent is blocked by terrain and
does not know the way to any useful location.

The purpose of the Dodge and HamperEnemy options is clear for competitive
or hazardous environment. The GoGetTask option is essential for fulfilling tasks
and earning points in the contest. Whereas the GoNearSubmit and Dig options
are intended as backup options if there is a problem with pathfinding or a group
event planning.
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Group options calculation starts when the last agent sends its report. This
report is sent when the agent evaluates the previous action. There are three
group options:

– AssembleTasks searches for blocks and paths for active tasks.
– Hoard option is designed for getting blocks (both existing in the environment

and requesting new blocks from dispensers) and attaching them the agent’s
body. This option is very important because, as already mentioned, agents
assemble structures to complete a task only from those blocks that are already
attached to an agent.

– Explore sends agents to explore unknown or long-unvisited parts of the envi-
ronment. The goal of this option is to discover new goal cells, dispensers, task
boards, blocks and other agents. The unexplored area is divided among the
agents and each agent explores its assigned part of the environment. This is
usually the area to which the agent is closest. If there are no unexplored parts
in the map, the parts that have been unvisited for the longest time will be
explored again.

The most important option in terms of earning points is AssebleTasks. This
option is also very computationally intensive, but if the other two options are
not calculated, it is not as critical a situation as if this option had not been
calculated.

2.5 Goals and Plans

Our agents have one persistent goal and that is to collect as many points as
possible by completing tasks. In the previous section we described the system
of options. These options are in fact sub-goals of the mentioned persistent goal.
For these goals, plans are created in the form of a stack of actions during the
calculation of options. These actions correspond to the actions available to agents
in the contest.

The names of the plans usually correspond to the goals for which they were
created. The exception is the AssembleTasks goal/option, for which GoConnect
and GoSubmit plans can be created. A Roam plan is created for the Explore
target. There is also a Split plan that is created immediately as the connect
action is successfully executed.

The plan to be executed is selected according to its priority, the order of the
plans by priority is shown in Fig. 4.

The plan with the highest priority is GoSubmit and is adopted when an agent
is able to submit a task by the blocks it has attached to its body. If no task can be
submitted and the agent is connected to another agent, it will choose to execute
the Split plan. This ordering is intended to eliminate unintentional changes in
the position of agents that drag each other by movement actions.

Next in the order is the GoSubmit plan again, but only if the length of the
plan is less than 3. In this case, this plan is preferred over the Dodge plan. The
reason for this order is that the submission of tasks can probably be completed
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Fig. 4. Priority order of plan selection.

before the clear action is performed. Which is more advantageous for the agent.
If there is more than one movement action in the plan, it will be executed after
the dodge plan.

Then follows the rest of GoSubmit and GoConnect plans and only if none
of the above plans are possible, then there is selection of HamperEnemy plan.
By trial and error, we found this order most effective as increasing the priority
of HamperEnemy leads to our agents too often chasing enemy agents and not
scoring enough points.
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If none of the plans described above is available or executable, the rest of
the plans are selected in the order shown in Fig. 4. In fact, there also a one
DoNothing plan at the top and also the bottom of priority order. However, this
plan is only used when the agent is disabled (the top order one) or when the
agent has no other action available to perform, so it was not included in the
order among the other plans.

As already mentioned, the agent must have certain actions approved by the
reservation system before the action is taken to avoid collision with other agents.
For this reason, new plans are created even when higher priority plans are already
present. These plans have to be approved by the reservation system in their
entirety (or reasonable length in case of a very long plans), if the reservation
system finds any conflicts with plans from the other agents, plan will be rejected
and other plan has to be selected. After the reservation system approves a plan,
the first action is selected by the agent for the execution.

Finding the suitable structures for task selection and submission is a crucial
part of our system. Assembling these parts is only possible with the cooperation
of multiple agents who already have some blocks attached to their body. The
finding of suitable structures and the creation of sub-goals is performed within
the AssembleTasks option calculation in the following steps:

1. Insert all agents into Connection Candidates Set (CCS).
2. If an agent already carries a structure to complete a task and is able to plot

a path to a goal area, create a new Submit plan for this agent and remove it
from the CSS.

3. Sort the structures carried by the agents in order from most complete to least
complete and relative to the value of the task.

4. For all active tasks and all agents in the CSS, generate combinations of agent
pairs and structures that fulfil a task, respecting the order from the previous
step. All generated combinations must be connected and must not overlap in
any block.

5. Sort the generated structures according to the steps needed to assemble them
and the reward for the corresponding task.

6. While there is a suitable pair of agents in CSS to join their blocks into a
structure:

– Select a generated structure according to the order from the previous step
for which both agents are in CSS.

– Create corresponding GoConnection plans for these agents.
– Remove these agents from CCS.

Generating a combination for each task, each agent, and each block would
be very resource intensive, so sorting and option pool trimming is implemented
in multiple places in the algorithm.
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2.6 Action Reservation System

As mentioned in the section describing the strategy and in the previous section,
an action must be approved by the reservation system before it can be executed.

Each group has its own reservation system. Its principle is simple. The reser-
vation system creates a map that represents the expected environment in future
steps. When an agent is selecting its intended plan, the reservation system tries
to insert the intended changes for every step into the map of that future step. If
there are no collisions, the plan and its first action can be approved. However, if
there is a collision, the plan is rejected and the agent must choose another plan.

The principle will be demonstrated with an example for clarity. Since this
system was carried over from last year’s system, the logs from last year’s contest,
shown in Fig. 5, will be used as an example.

(a) Agent 7 reserving block request. (b) Agent 3 reserving step to the right.

(c) Initial step state. (d) Resulting next step.

Fig. 5. An example of a successful actions reservation. Agents are represented by their
numbers. If the map is shown from the perspective of one agent, other friendly agents
may be represented by F. The dispenser is represented by D, the block by b and its
type. Map origin point is denoted by X and marker cell by M.

This example starts in a situation where two agents with numbers 3 and 7
successfully join blocks in a structure and are disconnected. Agent 7 wants to
reserve an action to request a new block from dispenser below (Fig. 5a). At the
same time, agent 3 wants to move right towards some goal area (Fig. 5b). There
will be no conflict between these actions and therefore both will be approved.
Figure 5c shows the map before executing reserved actions and Fig. 5d at the
beginning of the next step.
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3 Summary of Matches

This year, in addition to us, four other teams took part in the tournament, and
our team played three matches with each of them. We achieved a good result
and in the end, to our delight, we won the competition. Of course, not all of
our matches were victorious. Out of a total of twelve matches, we won ten, in
two cases our opponent won. Our best score was 314 points, which is the second
best score played during the tournament. Each of the teams finished the game
in at least one case with zero points. In the following paragraphs we will try to
summarize the highlights of the individual matches we participated in.

Round 1, Against JaCaMo Builders. Our first opponent was the JaCaMo
Builder team. In three games we got full points. In all games, we scored several
dozen points, with a low of 38 and a high of 113. Early on, we had connectivity
issues and our team was down for the first 120 steps. After that, it was woken
up and completed a total of eight tasks. Six of them were two-point tasks where
the agent delivered only one block, one task was for eight points where the agent
managed to deliver a two-block task and our team received eight points with
this. We got the most points, eighteen, with a three-block task, which was our
biggest achievement in this game. Here we managed to do what our system is
prepared for. Two agents with partial block structures met and learned that
they were able to piece together from their parts the structure that is currently
required. This too was then delivered to the target area within the time limit.
For most of the games, the opponent did not show significant activity to meet
the goals.

In the second game, it seemed at first that the opposing team came into the
game hard. They performed clear actions on our players, but mostly just to block
them and not when our agents were carrying blocks. It also happened that the
opposing team’s agents would temporarily perform clear actions on our agents,
but then they would run away from them, making the clear action meaningless.
Our team works the same way as always, agents pick up blocks and wait for
an opportunity to either score or connect the block into the desired shape. It is
also evident in the game that our agents are accepting many actual tasks. Since
there is no penalty for not completing a task, they can afford to do so and it
is a rational action on their part. Overall, we scored 113 points in this game,
scoring nine times in total. In four cases for a simple two-point task for one block.
However, we also managed to construct larger shapes. A total of four times they
submitted a shape consisting of three blocks and once even a four-block shape
for 29 points. This was also our team’s highest scoring achievement in this game.
The opponent was able to tackle the task at the beginning of the third hundred
steps when he handed in a two-block shape for eight points.

The third game took place in a similar way and brought nothing new. The
opponents failed to score, and at certain stages, their agents seemed to be stuck
or walking without a goal. Our team scored a total of 98 points, scoring 20
times. On fourteen occasions scoring only two points with one block, the greatest
success was scoring a three-block shape for eighteen points, which they did twice.
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Round 2, Against MLFC. The next opponent was already known to us from
the last year, where it was the winner [2]. The first game against MLFC is more
interesting because of what the opponent did than what our team did, which
was unable to score. Probably in this case the right circumstances did not occur
or there was some mis-synchronization and our team was not able to score in
either case. The opponent did not attack us and there were no interventions
that would have prevented us from scoring. Watching the opponent line up
around the crease with individual blocks as team members stacked them up
and submit them was entertaining. Everything was going smoothly on their
part until step 610, when all the reps who were previously ready to set up their
assignments started acting strangely, leaving their blocks, taking obvious actions,
and scattering to the surrounding area. Otherwise, however, their team seemed
very organized, which in this case led to their victory. However, we will comment
on the level of organization and the degree of independence of the agents later
in the tournament summary. The match meant our loss and the score was 0:48
for the opposing team.

We then won our next two games against the MLFC team. Here again, we
will focus on our team. The second game started more briskly with our team
trying to grab some blocks right from the start. Neither team attacked the clear
actions of the opponent. Almost all the time our team scored, mostly single
blocks, eight times in total and in four cases double blocks. The agents waited
for their opportunity, and only on rare occasions did the blocks come together
in the desired shape. All this brought us a total score of 53 points. This game
was the most interesting and tightest of all the games we played during the
tournament in terms of score development. The opposing team did not get to
their strategies until the end but then were able to score often. In this case, we
won with luck, and if the game had gone on a few more steps, the opposing team
would have been happy with the victory.

The third game was in a similar vein. The opponent failed to score, although
he started to form his formation already around step 400. After that, they started
to cautiously accept tasks, while ours again accepted tasks quite often. But the
opponent failed to score and our team scored a total of 90 points. So again, a little
bit of statistics to finish, our team scored a total of eighteen times, but eleven
of those times with only one block. Just like the last game against the JaCaMo
Bulders, our high was scoring twice with three blocks for eighteen points.

Round 3, Against GOAL-DTU. Our next opponent was the GOAL-DTU
team. Another traditional participant of this competition deployed a system
similar to the one they used in last year’s competition [3]. In the first match,
they did better than us. In this case, both teams started to collect blocks. While
last year the opponent connected one block on each side of their agents, this year
they only connected two blocks opposite each other, i.e. they moved around the
area in the shape of satellites. We could only see how the opponent performed
the tasks in this first game. The moment they accepted the task, they tried to
transport the appropriate blocks to the goal area and connect them there in the
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desired shape before submitting. This they did quite abundantly and the final
score came out in their favour with a ratio of 181:62. The biggest achievement of
the opponents was to submit a four-block for 64 points. Our team scored more
modestly, mostly for two or eight points, but was also able to submit a four-block
shape once, but only for 32 points.

The next two games, however, did not confirm this relatively good score and
they did not score in either case. Their agents again made some moves with stuck
blocks in the shape of a satellite and shot clear actions without any major effect
on our team. Our team scored as usual mostly with one or two block shapes and
scored a total of 104 points in the second game. Our best score so far was in
the third game against GOAL-DTU, where we were able to deliver assignments
for 282 points. Statistically, on thirteen occasions a one-block shape for two
points, on twelve occasions a two-block shape for eight points, twice three-block
shapes for eighteen points, and then one scoring each for fifteen, twenty-seven,
thirty-eight and forty-four points. In the last case, it was a four-block shape.

Round 4, Against LTI-USP. The last opponent was the LTI-USP team.
Again, our opponents sporadically tried to use clear actions, probably as a hostile
act towards our agents. Again, however, these actions did not have much effect
and rather resulted in the opponent’s agents shooting their own blocks. Thus, the
functioning of our team proceeded as in the previous cases. Agents would pick
up blocks and wander around until there was an opportunity to connect blocks
with another agent or to hand over blocks to complete a task. Our opponents,
as observed, tried to stack tasks up in the target area and hand them off right
there. In the first game, they succeeded twice and the two-block tasks earned a
total of sixteen points. Our team fared better and scored 185 points thanks to
five eighteen-point and two thirty-plus point successes.

The second game was similar and the score 148:10 is also similar to the previous
game. The last game with this team and the last game in the whole MAPC was the
biggest success for us in terms of the score. While our agents delivered larger than
two-block assignments on only seven occasions, and even four-block assignments
on three of those occasions, they often completed smaller assignments with one or
two blocks. They received 116 points for these easier tasks alone. The remaining
points were for the larger tasks, and they scored the most points around the one
hundred and thirtieth move, with 46 points for a three-block task.

4 Conclusion

After watching these matches, we drew several conclusions. Firstly, the environ-
ment in which they were played this year. It seems that it was not as rugged
and the agents did not have to deal with collisions with impassable areas. While
the assignment promised that getting out of confined areas would be necessary,
this was not the case in the end.

Another interesting thing was that, as far as we could see, no team took
advantage of the ability to increase movement speed when multiple agents from



40 V. Uhlir et al.

the same team were attached to blocks. This seems rational, as organizing and
synchronizing agents for this would overall result in delays rather than speeding
up task delivery.

Also, in general, agents did not significantly attack other teams. While there
were occasional clear actions directed against other agents, this did not produce
an effect. Therefore, we could say that the scores in each game were determined
by the abilities of the individual teams and not by the level of attacks from the
opposing team.

As for our team and the good results it achieved, we would see it in several
aspects as follows. First, our agents are more reactive and less social than the
agents of other teams were. They do not organize themselves around the target
area based on the task at hand, but wait for the opportunity and deliver often
simple tasks. Further, they accept all possible tasks and do not decide which one
they really mean to complete. This may be against the spirit of the rules, but
it shows that if there is no penalty for incomplete tasks, then there is no reason
not to accept the task. They also took advantage of the fact that to complete
a task, it was not necessary to submit the exact shape required, but additional
blocks could be attached to that shape, which then dropped off on their own
after the required shape was delivered.

Overall, all the teams were able to perform the task and the outcome often
depended on luck. We conclude, however, that even less organized groups of
multiple independent agents are capable of performing tasks in a dynamic multi-
agent environment, and that for some cases such multi-agent system design can
yield an efficient and rational system.

5 Limitations and Possible Improvements

Our map coordination system was taken from last year solution and adapted to
accommodate basic needs for the looping environment. While mostly working,
this adaptation produces occasional errors while handling agents with attached
blocks in certain locations. Unfortunately, we were unable to find the source of
this error and it is suggested to revise the coordination system from the ground
up to better handle looping maps.

Acknowledgment. This work was supported by the project IT4IXS: IT4Innovations
Excellence in Science project (LQ1602).

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest?
Our group is related to artificial agents and multi-agent systems, and we
wanted to compete in an international contest to test our skills. Last year we
took second place, this year we wanted to achieve the same or better result.
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What is the history of your group? (course project, thesis, . . .)
Members of our research group have been teaching artificial intelligence at our
faculty for nearly 20 years. Most of the projects or theses in our group concern
the topic of artificial intelligence, multi-agent systems, soft-computing and
machine learning.

What is your field of research? Which work therein is related?
Vaclav Uhlir: Ecosystems involving autonomous units (mainly autonomous
cars).
Frantǐsek Zboril: Artificial agents, BDI agents and prototyping of wireless
sensor networks using mobile agents.
Frantǐsek Vidensky: BDI agents (mainly intention/action selection problems).

A.2 Statistics

Did you start your agent team from scratch or did you build on your
own or someone else’s agents (e.g. from last year)?
Our system is built on the system we developed last year.

How much time did you invest in the contest (for programming, orga-
nizing your group, other)?
About 10 h of planning and organizing, 20 h of implementing new features
and roughly 100 h of bug hunting.

How was the time (roughly) distributed over the months before the
contest?
Due to the other unrelated time constrains our work was mainly done in
weeks just before contest.

How many lines of code did you produce for your final agent team?
7461 lines of code (about 5000 of them from were from last year)
1273 comment lines (797 from last year)
59 still active “TODO’s” (last year we had 42 left)

How many people were involved?
3

When did you start working on your agents?
We used our system from contest year 2019 and mainly did only adaptation
for new system changes and improvements in agents performances.

A.3 Technology and Techniques

Did you make use of agent technology/AOSE methods or tools? What
were your experiences?

Agent programming languages and/or frameworks?
No
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Methodologies (e.g. Prometheus)?
No

Notation (e.g. Agent UML)?
No

Coordination mechanisms (e.g. protocols, games, . . . )?
No

Other (methods/concepts/tools)?
Our agents are in some ways similar to BDI agents but they also use the idea
of hierarchical models of behavior. They have their own plans, but at the
same time they have to fulfill plans that were planned centrally.

A.4 Agent System Details

How do your agents decide what to do?
Agents are divided into synchronized groups and those groups create plans
that are assigned to individual agents. Simultaneously, agents can create some
simple plans themselves (for example, clear actions). Resulting plan is then
selected for fulfillment by the agent according to priorities and (non)conflicts
in group.

How do your agents decide how to do it?
Agents only decide what to do based on ability to do it so they generate all
reasonable possibilities of actions resulting in achievement of some goal.

How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach?
Our approach for higher functions is strongly centralized and agents wait for
group decision which is triggered by the slowest agent in the group. Individual
agents are capable of communicating with the system and by themselves only
performing simple tasks (like digging, exploring or attacking enemies).

Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly.
Our agents are creating plans, but those plans are mainly used for avoiding
future conflicts and only one step of the plan is actually used before new plan
is generated.

Can your agents change their general behavior during runtime? If so,
what triggers the changes?
New plans for agents are generated for each simulation cycle. So every action is
dependent only on the current state of the environment. From macro perspec-
tive behavioral changes can be observed upon system changes (like sudden
availability of new tasks) of when agent experiences desynchronization and
will perform only simple tasks (see answer for de/centralization question).
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Did you have to make changes to the team (e.g. fix critical bugs) dur-
ing the contest?
Yes, due to connection issues we had to modify our run cycle and we discov-
ered bug in one of our routines allowing us to increase performance between
first and second day of contest.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience?
We have custom logging system allowing us to review most of the performed
actions and decisions. Unsolved issues remained with identifying actual step
in simulation (packaging or marking percepts and actions with step number
would solve most of the issues we had in debugging).

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing?
We implemented status line where for every step we had step number, our
score and counter for each type of plan agents where performing. So we could
see for example that 6 agents were working on connecting blocks and just be
anticipating every next step where only 4 agents would be connecting and 1
would be carrying objective to the submit area.

Did you invest time in making your agents more robust/fault-tolerant?
How?
Yes, in a case of desynchronization with others agents from a group or for
agents with conflicting information - those agents where banned from group
decisions and where effectively assigned to clearing out terrain and harassing
enemy.

A.5 Scenario and Strategy

What is the main strategy of your agent team?
Aiming for closest achievable and possibly high valued tasks.

Please explain whether you think you came up with a good strategy
or you rather enabled your agents to find the best strategy.
We think we came up with a good strategy. Our strategy was already tested
last year and has been improved this year.

Did you implement any strategy that tries to interfere with your oppo-
nents?
Yes, we did. Desychronized agents or “bored” agents (with low priority plans)
could sabotage the opponent’s agents by attacking them or their blocks.

How do your agents decide which tasks to complete?
Agents selected task based on mach with currently already held blocks.
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How do your agents coordinate assembling and delivering a structure
for a task?
In group decision process agents are assigned meeting coordinates. But mainly
it can be viewed as “master” agent acquiring task and using “slave” agents
to connect other blocks before master goes to submit finished task.

Which aspect(s) of the scenario did you find particularly challenging?
Adapting existing engine to the cyclic map proved to be far more challenging
then we expected (this was due to large number and types of access and to
internal grid coordination system).

A.6 And the Moral of it is . . .

What did you learn from participating in the contest?
A relatively simply looking scenario can present a far greater challenge than
expected.

What advice would you give to yourself before the contest/another
team wanting to participate in the next?
Start implementing as soon as possible. Create small functioning iterations
and let them play against each other to see what and how much improves
overall behaviour.

What are the strong and weak points of your team?
Our team has expertise in multiple different languages and coding approach
techniques and mainly in rapid development using whatever means necessary.
Unfortunately this has begun to be known and members of our team are used
for other tasks limiting their time availability.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms?
Good ratio between development speed and performance.

Which problems did you encounter because of your chosen technolo-
gies?
Java stack trace bug hunting and git server fault - unexpectedly disabling
team synchronization.

Did you encounter previously unseen problems/bugs during the con-
test?
Yes, percepts decoding became far more unpredictable and harder to manage.
(Sometimes steps percepts would be incomplete or missing entirely for some
agent.)

Did playing against other agent teams bring about new insights on
your own agents?
Not especially.



FIT BUT: Rational Agents in the Multi-Agent Programming Contest 45

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)?
Internal grid system, desynchronization management (with recovery options)
and implementing agent mobility update.

Which aspect of your team cost you the most time?
Bug hunting problems inherited from last year.

What can be improved regarding the contest/scenario for next year?
Running matches in virtual environment on server and in repeated rounds in
span of weeks.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
We think our agent are more versatile in having ability to immediately adapt
to changing conditions, but this will be better assessed after release of all
papers from contest participants.

If you participated in the “free-for-all” event after the contest, did
you learn anything new about your agents from that?
Yes, in that scenario our agents where effectively outnumbered by enemy
agents so strategy of investing one agent to harass one enemy is no longer
effective.
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Abstract. We provide an overview of the GOAL-DTU system for the
Multi-Agent Programming Contest, including the overall strategy and
how the system is designed to apply this strategy. Our agents are imple-
mented using the GOAL programming language. We evaluate the perfor-
mance of our agents in the contest and, finally, we discuss how to improve
the system based on an analysis of its strengths and weaknesses.

1 Introduction

In 2020/2021 we participated as the GOAL-DTU team in the annual Multi-Agent
Programming Contest (MAPC). We are using the GOAL agent programming
language [1–4] and we are affiliated with the Technical University of Denmark
(DTU). We participated in the contest in 2009 and 2010 as the Jason-DTU team
[5,6], in 2011 and 2012 as the Python-DTU team [7,8], in 2013 and 2014 as the
GOAL-DTU team [9], in 2015/2016 as the Python-DTU team [10], in 2017 and
2018 as the Jason-DTU team [11,12] and in 2019 as the GOAL-DTU team [13].

In 2020/2021 we had the Agents Assemble II scenario; this scenario expands
upon the Agents Assemble scenario used in the 2019 contest. The Agents Assem-
ble II scenario is a highly dynamic environment. The simulations used for the
competition usually have a large number of agents that can move freely and even
cause changes to the environment, which further adds to its complexity. As a
new feature from the previous iteration, when an agent crosses the boundary of
the map it will instantly reappear on the opposite side. This transition appears
seamless to the agent and no triggers can be perceived. From the points of view
of agents, the map may appear to be infinite while, in reality, all maps have finite
dimensions. This means that agents may observe already known objects but con-
sider them to be new knowledge. Most agents can usually be observed carrying
blocks around the environment while clearing passages to enable their move-
ment. Furthermore, random clear events may occur sporadically. As opposed to
the clear actions of agents, which merely remove obstacles, the random clear
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events will both remove and add blocks in an area. Consequently, these random
events can rapidly change the environment.

A key characteristic of our agent system is that agents share the same code
base and knowledge. As such, the system has a single, universal type of agent.
However, the agents still exhibit different behaviours at execution time, as the
behaviour of an agent is determined by both its knowledge as well as its current
beliefs and goals; these factors dictate the flow of the agent through logic rules
and modules.

The paper is organized as follows:

– Section 2 covers the overall strategy of our agents.
– Section 3 describes the knowledge our agents acquire from the environment.
– Section 4 describes the movement of our agents.
– Section 5 describes how our agents communicate.
– Section 6 covers how our agents complete selected tasks.
– Section 7 evaluates our agents’ performance in the contest.
– Section 8 discusses improvements to our agent system.
– Section 9 makes some concluding remarks.

We assume basic knowledge of the GOAL agent programming language [1–
4]. Agents in GOAL are self-controlled independent entities, each interacting
with the environment and communicating with other agents. The environment
is continuously perceived to update each agent’s mental state: its beliefs about
the current state of affairs and its current goals. A mental state is implemented
as a Prolog knowledge base. Rule-based decision-making enables each agent to
continuously select an action based on its current mental state. GOAL advocates
that agents are programmed to react to changes in their environment rather than
executing predetermined plans. Such a reactive approach is not flawless either:
it can be difficult for programmers to come up with logical rules that produce
the desired behavior. However, overcoming this challenge often produces more
flexible agents.

2 The Strategy of Our Agents

The main strategy of our agents is both proactive and reactive: agents explore
the map to gather information and collect blocks while reacting to obstacles
they meet along their way. Our agents employ an A* path finding algorithm to
optimize short-term movement. Agents compose plans to solve available tasks
that describe how patterns are to be aligned.

The logic of our strategy is implemented in GOAL in the so-called main-
module. Here, the GOAL agent selects an action based on its knowledge, beliefs
and goals, according to a prioritized list of predefined logic rules.

At the top-level, the strategy of agents is divided into two sub-strategies: explo-
ration and task-solving. The only exception is a special task master agent that
delegates tasks. This will be discussed in more detail in Sect. 6. We can consider
the two sub-strategies to be the roots of a hierarchical goal network. Each of these
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goals branches into sub-goals that need to be achieved in order to complete the
higher-level goal. Consider as an example a goal of solving a task. In order to
achieve this goal, we first need to find and attach blocks needed for the task pat-
tern before the pattern can be assembled and submitted. Each of these sub-tasks
corresponds to sub-goals of the high-level goal of completing the task.

In the following section we will treat each of our two sub-strategies separately.
We provide descriptions of the implemented agent logic below.

2.1 Exploration of the Map

Initially, all of our agents will act upon their initial goal to explore the map. This
has two main purposes: to cover as much of the map as possible and to search for
blocks or dispensers. When an agent locates a block or dispenser, it will attempt
to attach two blocks on opposite sides; this in order to minimize the negative
effect on maneuverability of carrying blocks. The mechanics of exploration is
further explained in Sect. 4.

In the following, an action is selected based on the first applicable rule:

– If the agent does not have two blocks attached (which should be attached to
opposite sides of the agent) and there is a block or dispenser within the field
of vision of the agent:

• If the agent is next to the block/dispenser, but it needs to rotate in order
to attach a block:

– If it is possible for the agent to rotate, then rotate.
– If the agent can move in some direction, then move.

• If the agent is next to a block, then attach the block.
• If the agent is next to a dispenser, then request a block from that dis-

penser.
• If the agent can move towards the block/dispenser, then move.

– If there is a good direction for the agent to move and explore, then move.
– If there are no other good options for the agent, then skip.

Note that agents sometimes move in a random direction if they are next to
a block/dispenser and are required to rotate. The idea is that often just a few
moves enable the agent to perform the rotation.

2.2 Accepting and Submitting Tasks

The win condition for the scenario is to score the most points. Points are gained
by accepting tasks (at task boards) and submitting the required pattern. The cur-
rently available tasks are always perceivable by the agents. Based on the currently
collected blocks, and information about potentially collected blocks (via block dis-
pensers), we are able to compose so-called task plans. These delegate sub-tasks to
each agent required to ultimately submit the pattern and score points.

Task plans are created by a single agent that has the task master role. A
task plan delegates to the other agents the gathering and delivery of the required
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blocks. One of these agents is then selected to have the submit agent role: the
agent that submits the pattern and completes the task once the pattern is assem-
bled. All of this is explained more thoroughly in Sect. 6.1.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to gather blocks required for a task:

– If the agent does not have room for the (maximum two) blocks we should
deliver, then detach a block.

– If there is a dispenser or block of the required type within the agent’s field of
view:

• If the agent is next to the object of interest, but it needs to rotate in
order to attach the object:

– If it is possible for the agent to rotate, then rotate.
– If the agent can move in some direction, then move.

• If the agent is next to a block, then attach the block.
• If the agent is next to a dispenser, then request a block from that dis-

penser.
• If the agent can move towards the object of interest, then move.

– If true then move towards the dispenser from the plan.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to get to a task board:

– If the agent has a block attached that is not included in the plan and the
agent needs space to attach a block included in the plan, then detach the
block not included in the plan.

– If the agent is within a distance of two cells from the task board, then accept
the task from the plan.

– If true then move towards the task board.

In the following scenarios, an action is selected based on the first applicable
rule, if the current step in the task plan is to get to the specified goal cell and
submit the task:

– If the agent is the submit agent:
• If the pattern is blocked by an agent from the opposing team, try to

perform a clear action on that agent.
• If the agent is at the specified goal cell:

– If the agent can submit the task, then submit the task.
– If the agent can connect to a block in the task pattern, then connect

to the block.
– If the agent is in position and is simply waiting for other agents, and

there are agents from the opposing team nearby, try to perform a
clear action on one of them.

– If the agent is in position, then skip.
– If the agent needs to rotate, and it is possible, rotate.

• If true, move towards the goal cell.
– If the agent is not the submit agent:
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• If the agent has connected a block to another block, detach it.
• If a block/obstacle is blocking the pattern, then perform a clear action

on it.
• If the agent is in position:

– If the agent can connect a block to the task pattern, then connect the
block.

– If the agent is waiting for other agents:
• If there are enemy agents nearby, then try to clear them.
• If true then skip.

– If rotation is required to connect a block to the task pattern, then
rotate.

• If true, then move towards the goal cell.

3 Storing and Maintaining Information

In Sect. 2, we described how our agents operate based on a strategy that is imple-
mented as decision rules. Such decisions are based on the information available
to the agents: their mental states. Mental states of agents consist of their current
beliefs and goals as well as a knowledge base which contains (static) domain-
specific knowledge. All our agents have identical knowledge bases, as all agents
are initiated with identical knowledge.

Our GOAL agents connect to the environment using the environment inter-
face standard (EIS) [1]. This interface allows for communication between GOAL
and the environment via text messages using the JSON (JavaScript Object Nota-
tion) format. A JSON message consists of a collection of name/value pairs. Gen-
erally speaking, we maintain the structure of perceived values when storing them
as Prolog-like terms in the belief base. In some cases, we expand with additional
information that is not made available by the environment, such as the agent’s
own attached block which can be inferred by the agents.

Because the Agents Assemble II scenario features a highly dynamic envi-
ronment, our agents do not rely on creating a complete representation of their
environment—it is almost impossible to maintain an accurate picture. Instead,
our agents mostly rely on their current percepts. Agents only perceive objects,
including other agents, within a limited field of vision. This field of vision cor-
responds to a circle in the taxicab geometry, where the radius for the circle is
given by the environment, see Fig. 1.

3.1 Immutable Objects in the Environment

The highly dynamic environment implies that information perceived by agents
may become outdated quickly. However, there are a number of immutable objects
in the environment, namely the block dispensers, goal cells, and task boards. All of
these are unaffected by clear actions and are static throughout a simulation. Our
agents will therefore permanently store all known positions of these objects in their
belief bases. The fact that dispensers, goal cells, and task boards are immutable
facilitates our task planning algorithm which is explored further in Sect. 6.1.
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Fig. 1. This figure depicts two agents. The agent in the center of the picture (labeled
5) is surrounded by a blue diamond shape. This shape is a circle of radius five in
the taxicab geometry, and it represents the field of vision of the agent. The agent 5
can thus only percept objects within the blue shape, therefore, the two agents in the
picture cannot perceive one another. The picture is taken from the monitor that has
been developed for the contest. (Color figure online)

Because these immutable objects are static throughout a simulation, we are
able to store and share this information amongst our agents without worrying
about the information becoming outdated at a later point. The details of agent
communication are covered in Sect. 5. In fact, our decentralized planning is only
enabled because of our information sharing strategy.

3.2 Agreeing on Coordinates

Each of our agents maintain its own separate coordinate system. The origin of
this coordinate system is initialized as the agent’s starting position. The sep-
arate coordinate systems pose a challenge when agents share information that
is relative to their own coordinates. One solution to this problem would be to
have agents agree on a single coordinate system. This implies that whenever
agents meet and share their relative coordinates, they should decide on a com-
mon coordinate system. However, we found that this approach requires extensive
protocols to be developed in order to ensure connected agents always agree on
the same coordinate system. We have instead employed a solution in which each
agent stores the offsets of all other agents. This means that whenever an agent
receives information from another agent, the coordinates are easily translated.
One drawback to our approach is that agents need to maintain a synchronized
data set of offsets amongst all agents to avoid false information (such issues may
in turn propagate throughout the execution and cause beliefs to become increas-
ingly out of sync). How agents meet and share their coordinates is explained
more thoroughly in Sect. 5.1.
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3.3 Inferring the Map Dimensions

We previously described how, compared to the scenario of the 2019 contest, the
new scenario allows movement across the boundaries of the map. This poses
a challenge in terms of inferring the correct map dimensions and avoiding a
misrepresentation of the map. Another challenge posed by this is in relation
to path finding where an agent may select sub-optimal routes due to a lack of
knowledge, see Fig. 2.

Fig. 2. Here, an agent unknowingly moves across the border of the map and reappears
on the other side, represented by the black arrow. Once at the other the side, the agent
has to reach the resource represented by the blue rhombus. The agent falsely believes,
that the fastest way to reach this resource is by crossing the map again, and will then
traverse the entire map. This path is represented by the dashed red line. In reality, the
agent is very close to the resource, and the shortest path is shown by the dashed green
line. (Color figure online)

To avoid the mentioned misrepresentation of the map, agents employ a strat-
egy that intends to discover, and communicate to other agents, the dimensions
of the map. This plays a central role in estimating distances. If the dimensions of
the map are inferred, agents may knowingly decide to cross the edges of the map
when this is deemed beneficial. Thus, knowing the dimensions of the map not
only ensures that the agents do not flood their belief bases with false (or rather,
sub-optimal) locations of resources, but also optimizes the agent’s movement.

The dimensions of the map are inferred as an agent crosses the map and reap-
pears on the other side, unknowingly. When the agent meets another agent, to
which it was connected to prior to crossing the map, it infers the dimensions from
the stored agent offsets. If their shared information does not match, it can be
deduced that one of the agents must have crossed the map. The map dimensions
can then be inferred from this discrepancy and are shared with all other agents.
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4 Moving About in the Environment

In the following section, we touch upon the various movement strategies that
are employed by our agents, depending on their current goals. The use of move-
ment strategies can generally be divided into two cases: one for general map
exploration and one for movement towards a fixed position.

4.1 General Map Exploration

As previously described, all agents are initialized with the goal of exploring the
map. Here, an agent’s sole purpose is to reach unexplored regions of the map. The
efficiency with which any single agent reaches these unexplored regions is consid-
ered of low importance. However, we note that a more effective, collective explo-
ration could benefit our system by allowing for a quicker transition to task-solving.

Our design philosophy is that exploration should have a relatively low compu-
tational complexity, considering all agents are exploring initially. Furthermore,
from last year’s competition, we learned that a somewhat random approach to
exploration is adequate. We employ a simple pseudo-random heuristic, defined
in Eq. 1. The heuristic is based on expected benefits of moving in each possi-
ble direction and heavily favors cells that are unexplored. Here, d is the direc-
tion being evaluated, ΔS is the number of steps since the cell was visited, and
|Δx(d)|+ |Δy(d)| is the Manhattan distance to the cell from the current location
of the agent. The direction with the best value is then chosen.

h(d) =
∑

visited

⎧
⎨

⎩

|Δx(d)| + |Δy(d)|
ΔS2

if |Δx(d)| + |Δy(d)| ≤ 30 and ΔS > 0

0 otherwise
(1)

Our current implementation does not enable agents to share information
about visited cells. We note that doing so could potentially lead to faster and
more thorough exploration. This could be particularly beneficial on larger maps.

4.2 Movement Towards a Fixed Position

As explained in Sect. 3, the agents do not maintain a complete representation of
the map. Because of this, we cannot rely on classical route planning algorithms.
In the previous year’s contest, our agents employed a simple heuristic similar to
the exploration heuristic to determine a movement in each simulation step. In
terms of computational complexity, this is a lightweight solution compared to
heavy route planning algorithms and it is easy to implement. However, this naive
approach proved to be inefficient in cases where the agent encounters obstacles.
We observed that agents would spend a lot of steps trying to get around obstacles
and progress was often severely impacted by agents getting stuck.

To circumvent this issue, our current iteration of the system employs a solu-
tion that mixes the heuristics-based approach with local route planning. The
idea is to get the best of both worlds. In case the agent is moving towards a
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fixed location, it will thus first generate a move based on the simple movement
heuristics. In case the move is constructive (see below), it will simply perform
it. Otherwise, the agent will instead resort to route planning within its field of
vision. The optimal position in the field of vision, with regard to the target loca-
tion, is set as a way point. The path planning returns a sequence of actions that
will enable the agent to reach this way point. The agent will keep progressing
through the sequence as long as possible. In case the sequence becomes invalid
or the agent reaches its way point, the process starts over: a way point is found,
and the agent attempts to generate an action with the simple heuristic, other-
wise resorting to route planning. Once the fixed location is within the agent’s
field of vision, this location will be used as the final way point.

Any move that brings the agent strictly closer to the target position, while
avoiding recently visited positions, is considered constructive. We consider a
position to be recently visited if it was visited fewer than 3 steps ago. This
somewhat remedies situations where the agent might otherwise get caught in
dead ends, endlessly moving back and forth without making progress.

Our definition of constructive moves is quite restrictive. For instance, when-
ever an agent has to go around an obstacle, the move will always be considered
nonconstructive. To get the full benefits of the heuristics-based approach, the
definition of constructive moves is relaxed. The relaxation involves categorizing
all moves immediately next to obstacles as constructive as well. More precisely,
if an agent moves along an obstacle that is closer to the target position than
the agent, the move is constructive. This means that the agent can move around
obstacles without resorting to route planning. However, this may also poten-
tially lead to undesirable situations, as was observed during the competition:
if two agents try to move past each other, they could end up moving further
away from their respective target positions than desired. This specific problem
is illustrated in Fig. 3. This observed problem has us questioning whether the
described relaxation has been beneficial or not.

Fig. 3. This figure depicts two agents that wish to pass each other. Agent 2 wishes to
go north, and agent 1 wishes to go south. This is not possible though, as the agents
are in the way of each other. According to the relaxed heuristic, both agents can move
west though. But this will simply bring the agents to the same dilemma once more.
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In contrast to last year’s implementation, we are now also utilizing the clear
action with the introduction of local route planning. We expect that agents
should no longer get stuck. We also expect general improvements to the efficiency
of agent movement.

Route planning is implemented using the A* path finding algorithm. The
heuristic used for the A* algorithm is simply the sum of the step cost and the
distance to the target position. The search is terminated once a position at the
edge of the field of vision is chosen, or if the target position is reached. To ensure
effective route planning, the A* algorithm has been implemented in 2 versions.
One version does not consider clear actions, and one does. This is due to the
extra complexity introduced by the clear action. It was experimentally found
that in a lot of cases, searches including clear actions resulted in drastic impacts
to the running time. Consequently, our agents first initialize a search without
enabling clearing of obstacles. If this is not feasible, the agent skips the current
step to focus resources on computing a path that relies on clear actions as well.

5 Communication Between Agents

Solving any task in unison requires communication among agents. Agents need
to agree on a task to solve as well as a goal cell at which to deliver the task.
They also need to assign the collection and delivery of blocks required to solve it.
The challenge is that each agent has its own coordinate system and thus agents
cannot communicate about locations on a global level. Therefore, agents must
somehow merge their coordinate systems, and this process is what we describe
as connecting to other agents. The actual communication itself is facilitated by
the extensive communication scheme that is provided by the GOAL agent pro-
gramming language. The communication features of the GOAL programming
language facilitate communication between agents through direct messaging or
using channels. In general, the philosophy is to form communication channels
instead of direct messaging when multiple agents are involved. As an example,
our agents communicate via a channel explore, which is created during initial-
ization of the system, where they share information to infer the position of other
agents.

5.1 Connecting to Other Agents

For our agents, establishing connections equates to learning the origins of the
other agents, thus allowing for translation of coordinates between coordinate
systems. As a result, it enables agents to communicate the locations of resources.
Agents may establish a connection when they are inside each other’s field of
vision. Since agents do not know the identities of other agents they encounter,
the agents compare other perceivable objects in their (assumed) shared field of
vision. This is achieved by the agents broadcasting their current position along
with coordinates of the objects within their field of vision. In case another agent
identifies the same objects, including the broadcasting agent, the two agents
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will establish a connection. Once agents are connected, they will start sharing
information. Note that agents communicate coordinates relative to their starting
position. The agent receiving the information will use stored knowledge about
the offset between their starting positions to allow for an efficient translation
between coordinates.

Ensuring the Correctness of Connections
It is important to ensure that agents will not mistakenly establish connections
with agents which were not encountered. This may happen in rare cases where
multiple agents encounter each other with similar objects in the shared field
of vision. To remedy this, agents check whether there are multiple identical
broadcasts, in which case no connections are established. The fact that multiple
agents have similar broadcasts indicates that it will not be possible to distinguish
those agents from one another.

A further challenge is imposed by the fact that in GOAL, the delivery of
messages is not guaranteed in a certain step; it can merely be assumed that all
messages will be delivered eventually. As such, the delay in receiving a message
might be longer than a single step which can lead to situations where an agent has
not received all broadcasts, and thus cannot ensure that no identical broadcasts
are present. In our current implementation, all agents are required to broadcast,
even if there are no other agents within its field of vision, in which case an empty
broadcast is sent. Thus an agent will have to wait until it has received broadcasts
from all other agents, before it establishes any new connections. This means,
that there is a delay between encountering agents and establishing connections
to these agents.

Connection Networks
Up to this point, we have not yet considered cascading effects when establishing
connections. If agents can only connect to other agents within their field of
vision, all agents have to encounter each other in order to establish connections
between all agents. This is obviously not very efficient, especially for larger maps.
In many cases, the system might never reach such a state within the limited time
frame of a simulation. We are interested in optimizing this behaviour as our task
planning relies on connections being established between agents. Essentially,
having connections to other agents simply boils down to agents knowing the
starting positions of other agents relative to their own.

To explain the process of connection cascading, consider the situation
depicted in Fig. 4. The situation has three different networks of connected agents:
the first network is made up of Agent 1, 2 and 3, the second network is made
up of Agent 4 and 5, and the final network is just Agent 6. A network of con-
nected agents is a set of agents, each knowing the offset of all other agents
in the network. In the depicted situation, encounters between Agent 6 and 3,
and Agent 4 and 2 occur simultaneously. As such, there is a possibility to con-
nect the three networks. The challenge is now to ensure that all agents in each
network establish connections to all agents of the two other networks. In gen-
eral, this is achieved by having agents broadcast their connections. This allows
an agent to infer the resulting network by combining all new connections and
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Fig. 4. The figure depicts three existing connection networks symbolised by the solid
black lines—one network is the singular agent 6. Two new connections are established:
a connection between agent 3 and agent 6, and a connection between agent 2 and agent
4. The resulting network then connects all 6 agents, ensuring that all agents know the
offset of all other agents.

existing networks. To optimize the process, only a single agent of each network
will compute the resulting network. Once all information necessary to establish
new connections has been gathered, said agent will share this information with
its own network.

6 Constructing and Executing Task Plans

This section covers how task plans are constructed by the task master and exe-
cuted by the other agents.

A single agent is dynamically assigned to be task master. This agent is respon-
sible for creating task plans and assigning agents to different tasks. The choice
of having a single task master is to simplify resource assignment. With just a
single agent responsible for computing task plans, we avoid having to deal with
mechanisms for ensuring that resources are not allocated for multiple plans by
multiple agents—a thread with a single pool of resources makes this much eas-
ier to achieve. The main principle of our dynamic task master assignment is to
ensure that the chosen task master is connected to the majority of the agents.
This is done by delaying the task master assignment to when at least half of the
agents in the simulation have connected to each other, as described in Sect. 5.1.
Outside of the mentioned delay, we find that the only drawback to our centrali-
sation of task planning is the computational complexity. However, it is not clear
if and how this could potentially be improved by parallelization.

The task master keeps track of goal cells and agents that are allocated by the
currently active task plans. All cells of a goal zone are considered to be allocated
if an active task plan instructs agents to deliver the task in the said goal zone.
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The intent is to prevent agents from interfering with each other when solving
tasks. However, we note that our current implementation is overly restrictive.
One possible solution would be to allow for goal zones to be divided into subareas
that may then be allocated individually.

6.1 Construction of Task Plans

Our task planning is initialized by the task master, which orders all the tasks
that do not have an active task plan. Tasks are ordered by their reward and
deadline, and the most promising task is considered first. The task master will
ask all other agents in its network for their current attachments and beliefs
about the locations of various block dispensers. The agents will respond with
their beliefs about the resources needed for the task, whether the agent knows
the location of a task board, and finally an estimated delivery time. The task
master collects all responses to see if it is possible to compute a plan. A task
describes a specific pattern to complete, and based on the combined resources
of the agents, it is possible to search for an assignment of agents to blocks in the
pattern which also considers the constraints of the scenario, i.e. how blocks can
be attached as well as the positioning of agents for assembling the pattern and
submitting it. This assignment delegates specific blocks of the pattern to specific
agents and this cannot be changed without dropping the plan completely. While
this limitation makes the solution less flexible, we find that the greatest hurdle
is to have the agents reach a point where the pattern can be assembled. In case
it is not possible to compute a plan, the task master will consider alternative
tasks following the task order. In case a plan is created, each agent receives a
version of the task plan that is specifically tailored to its perspective: which part
of the pattern it should provide, how it should position itself for the assembly,
etc.

The task plans delegate the task of submitting to one agent. In doing so, the
submitting agent is also instructed to submit the task at a specific goal cell. While
the approach has a few drawbacks, there are also several advantages: each agent
knows exactly where to deliver its block and agents can easily identify blocks
and obstacles to clear that will otherwise obstruct the assembly of the pattern.
One drawback is that agents of opposing teams may obstruct the assembly. In
this case, our agents will try to perform clear actions on those agents, hopefully
leading them to move, but this is not guaranteed to succeed. A better solution
would likely be to have a more dynamic approach that uses a fixed goal cell
when possible, but with the ability to recompute a new goal cell if needed. As
of now, our agents simply give up submitting the task after some time if they
fail to make progress.



The 15th Edition of the Multi-Agent Programming Contest 59

6.2 Execution of Task Plans

As described above, agents assigned to a task receive a task plan that is local to
their perspective. For simplicity, an agent will only be assigned to deliver blocks
of a single type. Once assigned to a task, each agent sets out to gather the blocks
it is assigned to deliver. The submit agent is also tasked with accepting the task
from a task board, as well as submitting the task.

Our agents continuously re-evaluate whether it is still possible to complete
the task. For instance, it may happen that an agent loses a block that was to
be delivered due to a clear action or event. In such a case, the agent checks if
it is possible to re-acquire a block of the required type and deliver it within the
deadline. If this is not possible, it will broadcast to the task channel that the
task plan should be dropped, at which point all agents are unassigned from the
task.

Once the agents are assembled, they will build the pattern outwards from
the submit agent. Agents will connect one at a time to the submit agent and
then release the corresponding block. If the agent has no more blocks to deliver,
it will consider its task as fulfilled and be available to accept other tasks. When
the pattern is completed the submit agent will then submit it.

7 Evaluation of Matches

GOAL-DTU competed in four matches against four different opponents in the
Multi-Agent Programming Contest of 2020/2021. A match consisted of three
simulations, and a simulation started automatically when the previous simu-
lation finished. GOAL-DTU took part in two additional simulations after the
contest. In these two simulations, all teams competed against each other.

7.1 GOAL-DTU vs. LTI-USP

LTI-USP allows multiple agents to accept the same task, such that multiple
groups of agents could work on the same task. For each task, GOAL-DTU allows
only one agent to accept it and only one group of agents to assemble it. Having
multiple groups of agents to work on the same task didn’t make LTI-USP’s agents
more effective. It only made their points per resource ratio smaller. It was not
the best approach in the second simulation because agents of GOAL-DTU were
consistently faster in assembling patterns than LTI-USP’s agents. It is shown in
Fig. 13 that GOAL-DTU completed more tasks, but it does not show how many
of those tasks LTI-USP were trying to complete (Figs. 5, 6, 7, 8, 9, 10, 11, 12,
14, 15, 16, 17, 18 and 19).
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Fig. 5. Score: LTI-USP (1)
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Fig. 6. Blocks: LTI-USP (1)
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Fig. 7. Submits: LTI-USP (1)
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Fig. 8. Tasks: LTI-USP (1)
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Fig. 9. Clear: LTI-USP (1)
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Fig. 10. Score: LTI-USP (2)
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Fig. 11. Blocks: LTI-USP (2)
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Fig. 12. Submits: LTI-USP (2)
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Fig. 13. Tasks: LTI-USP (2)
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Fig. 14. Clear: LTI-USP (2)
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Fig. 15. Score: LTI-USP (3)
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Fig. 16. Blocks: LTI-USP (3)
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Fig. 17. Submits: LTI-USP (3)
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Fig. 18. Tasks: LTI-USP (3)
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GOAL-DTU had some problems throughout the simulations. The agents
moved in each other’s way, and sometimes clusters formed. We suspect a minor
bug in the explore algorithm is causing agents to move towards each other. The
intention is for agents not to interfere with the movement of other nearby agents.
This resulted in problems in goal zones where agents gave up on patterns that
were very close to being assembled. When giving up on tasks, the agents should
detach blocks and move on with only two blocks. This was not always the case,
since agents didn’t detach indirectly connected blocks. These agents didn’t seem
to be aware of the indirectly connected blocks when moving around afterward.
They tried to perform move actions that weren’t applicable with the indirectly
connected blocks.

7.2 GOAL-DTU vs. MLFC

We lost no matches against MLFC. This was also by fortune, as the second
match was a 0-0 draw.

MLFC spent a lot of resources clearing our agents, with some, albeit limited,
success. They did manage to clear GOAL-DTU agents waiting in the goal zones
on more than one occasion, which resulted in the GOAL-DTU agents dropping
their tasks. Our agents were not defending themselves as well as we intended.
This also explains why MLFC managed several critical clears.

As seen in Fig. 38 and Fig. 48, we solve a substantially higher number of tasks
than MLFC in the first and third simulation. But the one task that MLFC solves
in the third simulation has a very high reward.

In both the second and the third simulation we experience some techni-
cal issues, although the issues must be described as more severe in the second
simulation. To our luck, MLFC experience equally severe issues in the second
simulation, and we manage to get a draw. MLFC is therefore the only team we
did not lose a match against (Figs. 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47
and 49).

7.3 GOAL-DTU vs. FIT-BUT

FIT-BUT won two of the three simulations. Thus, FIT-BUT is the only team
against whom we won just a single match. Clearly, FIT-BUT has developed a
strong and effective system, and they manage to submit a very high number of
tasks. Even in the first simulation, which we won, FIT-BUT manages to solve
more tasks than we do, see Fig. 23. However, the tasks we solve have a higher
reward, either due to increased complexity, or because we manage to solve them
quite fast (Figs. 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34).
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Fig. 20. Score: FIT-BUT (1)
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Fig. 21. Blocks: FIT-BUT (1)
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Fig. 22. Submits: FIT-BUT (1)
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Fig. 23. Tasks: FIT-BUT (1)

0 150 300 450 600 750
0

40

80

120

160

200

Steps

C
le
ar

ev
en

ts

GOAL-DTU

Fig. 24. Clear: FIT-BUT (1)
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Fig. 25. Score: FIT-BUT (2)
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Fig. 26. Blocks: FIT-BUT (2)
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Fig. 27. Submits: FIT-BUT (2)
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Fig. 28. Tasks: FIT-BUT (2)
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Fig. 29. Clear: FIT-BUT (2)
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Fig. 30. Score: FIT-BUT (3)
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Fig. 31. Blocks: FIT-BUT (3)

0 150 300 450 600 750
0

5

10

15

20

25

Steps

Su
bm

it
at
te
m
pt
s

GOAL-DTU
FIT-BUT

Fig. 32. Submits: FIT-BUT (3)
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Fig. 33. Tasks: FIT-BUT (3)
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Fig. 34. Clear: FIT-BUT (3)
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Fig. 35. Score: MLFC (1)
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Fig. 36. Blocks: MLFC (1)

0 150 300 450 600 750
0

5

10

15

20

25

Steps

Su
bm

it
at
te
m
pt
s

GOAL-DTU
MLFC

Fig. 37. Submits: MLFC (1)
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Fig. 38. Tasks: MLFC (1)
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Fig. 39. Clear: MLFC (1)
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Fig. 40. Score: MLFC (2)
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Fig. 41. Blocks: MLFC (2)
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Fig. 42. Submits: MLFC (2)
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Fig. 43. Tasks: MLFC (2)
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Fig. 44. Clear: MLFC (2)
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Fig. 45. Score: MLFC (3)
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Fig. 46. Blocks: MLFC (3)
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Fig. 47. Submits: MLFC (3)
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Fig. 48. Tasks: MLFC (3)
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Fig. 49. Clear: MLFC (3)
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Sadly, we experience our, by now common, total catastrophic failure in no
fewer than two of the matches. We do not manage to solve a single task in either
of the second or third simulations. Once our technical issues, errors, and bugs
have been resolved, another match against FIT-BUT that would allow a more
direct comparison of strategies would be interesting, as FIT-BUT seems to use
a vastly different strategy than we do.

7.4 GOAL-DTU vs. JaCaMo Builders

GOAL-DTU had perfect conditions to get a high score in this match up because
JaCaMo Builders seems to be using a defensive strategy without clearing GOAL-
DTU agents. The low number of attached blocks is telling us that something
went wrong for their agents in the two first simulations compared to the last
simulation, see Figures Fig. 51, Fig. 56 and Fig. 61 (Figs. 52, 54, 57, 59, 60, 61,
62, 63 and 64).

0 150 300 450 600 750
0

100

200

300

400

500

Steps

Sc
or
e

GOAL-DTU
JaCaMo Builders

Fig. 50. Score: JaCaMo Builders (1)
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Fig. 51. Blocks: JaCaMo Builders (1)
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Fig. 52. Submits: JaCaMo Builders (1)
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Fig. 53. Tasks: JaCaMo Builders (1)



The 15th Edition of the Multi-Agent Programming Contest 71

0 150 300 450 600 750
0

40

80

120

160

200

Steps

C
le
ar

ev
en

ts

GOAL-DTU

Fig. 54. Clear: JaCaMo Builders (1)
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Fig. 55. Score: JaCaMo Builders (2)
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Fig. 56. Blocks: JaCaMo Builders (2)
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Fig. 57. Submits: JaCaMo Builders (2)
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Fig. 58. Tasks: JaCaMo Builders (2)
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Fig. 59. Clear: JaCaMo Builders (2)
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Fig. 60. Score: JaCaMo Builders (3)
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Fig. 61. Blocks: JaCaMo Builders (3)
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Fig. 62. Submits: JaCaMo Builders (3)
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Fig. 63. Tasks: JaCaMo Builders (3)
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Fig. 64. Clear: JaCaMo Builders (3)

GOAL-DTU’s prioritization of tasks combined with the A* path finding algo-
rithm and static plans for tasks resulted in the highest score reached in the con-
test for all teams. Static plans work well in this case because agents of JaCaMo
Builders didn’t use much space in the goal zones and didn’t clear GOAL-DTU
agents in the goal zones.

GOAL-DTU received 22 points on average for the completed tasks in the first
simulation, and 21 points on average in the second simulation, see Figures Fig. 50,
Fig. 53, Fig. 55, Fig. 58. From step 456 until the end of the second simulation,
GOAL-DTU only completes one task, see Fig. 58. It seems like the agents are
out of sync and have wrong beliefs about the environment. This continues into
the third simulation.

7.5 Free for All

GOAL-DTU is not well suited for simulations with many agents, especially not
when the other agents are offensive and use clear actions. GOAL-DTU agents
tried to defend themselves with clear actions while waiting in goal zones. The
problem is that one agent can only defend against one other agent. If two agents
are attacking the same GOAL-DTU agent, its only tactic for dodging clear
actions is to move. It won’t move due to the use of a static plan. This results in
the agent being caught in the opposing agents’ clear actions.

The victory in the first simulation seems a bit lucky. GOAL-DTU agents
were attacked multiple times by agents from a second team while standing in
goal zones. Agents from a third team appear before the attackers succeed. They
try to clear the attackers such that the attackers have to move. The GOAL-DTU
agents use this opening to submit the tasks.

These openings were less present in the second simulation with thirty agents.
FIT-BUT assembles their patterns outside the goal zones such that agents are
constantly moving. It’s very hard to clear a moving agent, and FIT-BUT used
that well to defend themselves.
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8 Discussion

The following section sheds light on some of the issues we faced, both regarding
system design, program bugs and technical issues. Lastly, we consider some of
the further development work needed to improve our system.

8.1 System Robustness

During the contest, we experienced severe problems concerning robustness due
to false information. When the problem did not occur, we generally achieved
competitive scores. In fact, we won every match where we scored points. However,
we identified occurrences of this problem in five out of twelve matches.

False information is detrimental to our system. The current version relies
heavily on information being correct which is also the reason for our extensive
connection-protocol between agents. The assumption that all agent offsets are
correct allows the system to determine the dimensions of the map from the dis-
crepancies of the agent offsets (as touched upon in Sect. 3). If an agent somehow
incorrectly updates its location, this can lead to agents agreeing on incorrect
dimensions of the map. In this case, no coordinates in the belief base will reflect
their actual positions, and as a result the agents will be rendered useless. While
this suggests that the system is not robust enough, one could also argue that,
once false information is introduced into the system, we cannot expect coherent
behaviour.

8.2 Technical Issues

We now shed light on some of the technical issues we faced when deploying our
agent system.

Following the competition, we found a bug in the eismassim interface imple-
mentation. The bug caused agents to sometimes desynchronize with the server,
ultimately hampering our agents’ performance significantly. The root of the prob-
lem lies in the eismassim interface which connects the GOAL program to the
server running the simulation: when the eismassim interface receives a step
update from the server while still serving an agent response from the last step,
the response will wrongfully be marked as responding to this updated step, and
eismassim will then block the agent until the next request from the server. As a
result, the eismassim interface will forward an outdated response to the server,
and the agent is responding to a step before the agent has received the cor-
responding percepts from the server. In some cases, this synchronization error
caused discrepancies between the believed location of the agent and its actual
location, eventually leading the agents to infer the wrong map dimensions. Once
an agent is stuck in this out-of-sync state, it cannot recover by itself.

We experienced a connection problem in cases where an agent was located on
top of a task board or dispenser. While the agent would recognize this object,
other agents would not perceive the object on which the agent was standing.
This would potentially lead to non-matching connection requests, and in the
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worst case, wrongful connections. Ultimately, this would eventually paralyze the
system and require a complete reboot.

8.3 Further Work

The technical issues regarding server synchronization and the rare connection
problem have been fixed since the competition. However, there is still some
general bug fixing left before the system works as intended. In particular, our
implementation of a strategy using clearing was not working as intended during
the competition and needs some attention. We consider it a prerequisite for more
advanced improvements to fix most of these bugs.

We saw in the free-for-all simulations that our agents have a hard time assem-
bling the patterns in the goal zone when a lot of other agents are present. This
is due to the quite static approach our system takes when assembling tasks. An
obvious improvement would be to give agents the freedom to change the point
of assembly, without losing too much efficiency. This might allow the agents to
assemble the pattern outside goal zones, and then simply have the submit agent
move into the goal zone afterward.

Another observation we have made during the contest is that, especially in
larger maps with lots of agents, we have too many idle agents. Once the map
is explored and an agent has connected two blocks, the agent will simply roam
the map waiting to be assigned a task. We have ideas that could lead to the idle
agents being put to better use—for example by protecting goal zones.

Our system could be improved to better utilize a goal-driven approach, with
a proper goal-hierarchy. For now, our agents only rely on very high-level goals,
and the more intricate details are represented as beliefs. We intend to improve on
this aspect in the future where agents have more hierarchical goals, i.e. high-level
goals contain a number of sub-goals.

9 Conclusion

We have covered the main strategy of our agents. It is primarily based around
proactive (and reactive) collection of blocks while exploring the map. Our agents
reactively compose plans to solve available tasks that describe how patterns are
to be aligned. While solving tasks, our agents will react to obstacles they meet
along their way. When feasible, the agents employ the A* path finding algorithm
to optimize short-term movement.

We have described how our agents acquire knowledge from the map, mainly
as a result of an initial exploration strategy. We have further described how our
agents communicate and utilize this knowledge to move around the map and
complete tasks.

We have evaluated the performance of our system during the contest and
have found that the system performs well for maps with few agents. As the
number of agents increase, the system increasingly fails to assign all agents to
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tasks, and the assigned agents are less able to maneuver and assemble patterns
inside the goal zones.

Finally, we have discussed ideas for general improvements to the system
alongside a number of encountered issues. This includes both issues related to
the system implementation but also regarding server connections.

In conclusion, we are satisfied with our placement for the contest and with
the improvements we have made to the system compared to last year.

Acknowledgments. We thank Tobias Ahlbrecht, Asta Halkjær From and Benjamin
Simon Stenbjerg Jepsen for discussions.

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest? To work on
implementing a multi-agent system capable of competing in a realistic, albeit
simulated, scenario.

What is the history of your group? (course project, thesis, . . .) The name
of our team is GOAL-DTU. We participated in the contest in 2009 and 2010
as the Jason-DTU team, in 2011 and 2012 as the Python-DTU team, in 2013
and 2014 as the GOAL-DTU team, in 2015/2016 as the Python-DTU team,
in 2017 and 2018 as the Jason-DTU team and in 2019 as the GOAL-DTU
team. We are affiliated with the Algorithms, Logic and Graphs section at
DTU Compute, Department of Applied Mathematics and Computer Science,
Technical University of Denmark (DTU). DTU Compute is located in the
greater Copenhagen area. The main contact is associate professor Jørgen
Villadsen, email: ‘jovi@dtu.dk’

What is your field of research? Which work therein is related? We
are responsible for the Artificial Intelligence and Algorithms study line of the
MSc in Computer Science and Engineering programme.

A.2 Statistics

Did you start your agent team from scratch or did you build on your
own or someone else’s agents (e.g. from last year)? We used as starting
point our code from the MAPC 2019.

How much time did you invest in the contest (for programming, orga-
nizing your group, other)? We used approximately 160 h to qualify. From
January until the contest we used approximately 300 h.

How was the time (roughly) distributed over the months before the
contest? To qualify we used approximately 80 h in August and 80 h in
September. In January we updated GOAL—the new version of GOAL was
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not compatible with most of the old code, thus a lot had to be rewritten. We
also had to spend some time debugging GOAL itself. In February, the actual
programming of the agents started.

How many lines of code did you produce for your final agent team?
2000 lines of code.

How many people were involved? 5 people: Jørgen Villadsen, Alexander
Birch Jensen, Benjamin Simon Stenbjerg Jepsen, Erik Kristian Gylling and
Jonas Weile.

When did you start working on your agents? We started working on our
code from MAPC 2019 in August. As mentioned in the previous questions,
large parts of the existing code had to be rewritten, however. This began in
January.

A.3 Technology and Techniques

Did you make use of agent technology/AOSE methods or tools? What
were your experiences?

Agent programming languages and/or frameworks? We used GOAL. We
find that it is very intuitive and relatively easy for newcomers to learn which
is an advantage as the programming team changes.

Methodologies (e.g. Prometheus)? No.

Notation (e.g. Agent UML)? No.

Coordination mechanisms (e.g. protocols, games, . . . )? No.

Other (methods/concepts/tools)? We used the Eclipse IDE for program-
ming (it has a GOAL add-on).

A.4 Agent System Details

How do your agents decide what to do? The agents reactively decide on
their actions based on the current percepts, their beliefs and their goals.

How do your agents decide how to do it? By predetermined rules and
actions.

How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach? The team commu-
nicates via messages and channels to share information and agree on plans.
The approach is mostly decentralized, but certain planning tasks are currently
delegated to a single agent at a time.
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Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly. The agents use
planning to choose the tasks to pursue. A single agent is chosen to do the
planning, but this agent relies on input from all other agents, and the planning
agent is chosen dynamically at run time. The planning agent will search
through assignment combinations and choose the most promising.

Can your agents change their general behavior during run time? If so,
what triggers the changes? An agent will change its behaviour when it is
chosen to take part in solving a task.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest? We chose not to make changes during the contest.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience? We used log files
to record the agents belief base and percepts. We experimented with linear
temporal logic, but ultimately it did not make it to the final version.

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing? By logging
to the console. Admittedly, we could have done much more to improve this
aspect.

Did you invest time in making your agents more robust/fault-tolerant?
How? We spent some time on this, but not enough. This was one of our
problems at the competition.

A.5 Scenario and Strategy

What is the main strategy of your agent team? First, to explore, have
our agents find other agents, deduce the map dimensions and agree on a task
planning agent. Once this agent has been found, it will continuously inquire
the other agents about their available resources and try to create task plans.
The task plan is sent to all agents involved in the plan, and these will try to
solve it as efficiently as possible.

Please explain whether you think you came up with a good strategy or
you rather enabled your agents to find the best strategy. We defined
the strategy for our agents. Obviously, the agents have to find strategies for
solving tasks and some aspects are only loosely defined.

Did you implement any strategy that tries to interfere with your oppo-
nents? We worked on some clearing strategies to defend goal cells, but they
seemingly did more harm than good at the competition.

How do your agents decide which tasks to complete? Each task is ranked
based on a simple heuristic based on the reward and the delivery time. The
tasks are then checked based on their ranks in decreasing order, and the
agents will try to complete any tasks they deem solvable.
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How do your agents coordinate assembling and delivering a structure
for a task? The agents create structured plans on how to assemble the
structure. The plans are continuously checked to see if they remain feasible.

Which aspect(s) of the scenario did you find particularly challenging?
It was a challenge that the map was a torus and also that the environment
was dynamic.

A.6 And the Moral of it is . . .

What did you learn from participating in the contest? We learned a lot
about using GOAL to write multi-agent programs. We were reminded of the
care it takes to develop and test in multi-agent environments.

What advice would you give to yourself before the contest/another
team wanting to participate in the next? Start early, because unex-
pected problems will occur. Have a clear testing strategy.

What are the strong and weak points of your team? The coordination
between agents is working quite well and the A* path finding helps agents
to move directly. Agents could be more flexible in helping each other and
prioritizing other agents’ tasks over their own when it is better for the team.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms? GOAL has built-in functionality
that allows agents to communicate with one another and it has a predefined
agent-cycle that is suitable for the belief-desire-intention model. A* was used
by the agents to determine movement actions for short distances.

Which problems did you encounter because of your chosen technolo-
gies? We had problems with the EIS interface. These were most obvious dur-
ing transitions between simulations. We also had some problems with GOAL
and backwards compatibility.

Did you encounter previously unseen problems/bugs during the con-
test? We had a problem with our agents receiving false information and then
not being able to do anything meaningful. This problem was not experienced
beforehand—probably due to insufficient testing.

Did playing against other agent teams bring about new insights on
your own agents? Yes, our agents are vulnerable to clear actions when
they are waiting in the goal zones.

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)? If the
contest was a week from now, we would mainly focus on bug fixing and thor-
ough testing. If we had more time we would make better use of agents when
they are not partaking in solving tasks. Also, we might look into some better
defensive strategies and continuously revising plans to check if they could be
optimized.
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Which aspect of your team cost you the most time? We had major
problems with a lot of the code not being compatible with the newest version
of GOAL. Due to missing unit-tests, the problems were almost impossible to
locate, and a lot of code had to be rewritten. This was a major setback.
Furthermore, the A* algorithm used more CPU time than expected.

What can be improved regarding the contest/scenario for next year?
As has already been suggested, running the agent programs on the server
itself. If this was implemented, it would be interesting to decrease the time
available for the agents to decide on their actions.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did? The A* and coordination between
our agents made us fast at completing patterns. However, we had a large
setback during January, which meant we had to rewrite most of the additions
to the 2019 version, as well as spending some time on GOAL itself. This left
little time for debugging. We thus found a lot of bugs during the competition.

If you participated in the “free-for-all” event after the contest, did
you learn anything new about your agents from that? We had our
suspicions confirmed—that the current strategy will be a lot less effective if
there are many agents cluttering the goal zone. For such scenarios, we need
a more dynamic task-solving approach.
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1 Introduction

In this paper, we focus on the strategies used by our team, the Manchester and
Liverpool Formidable Constructors (MLFC). We provide some context and basic
concepts of the scenario and the simulation environment; however, we assume the
reader has some prior knowledge about the Multi-Agent Programming Contest
(MAPC)1 in order to better understand our contributions.

The 15th edition of the MAPC2 is part of an annual competition in the area of
multi-agent programming. This latest edition extended the “Agents Assemble”
scenario from the 14th MAPC [1]. The main goal of the scenario remained the
same: two teams of agents compete in a 2D grid to fulfil tasks that are randomly
generated by the simulation server, and those teams that complete tasks suc-
cessfully receive some currency, with the aim of maximising this currency. These
tasks comprise assembling and delivering complex block structures of random
size, and possibly requiring blocks of different types. A match starts once both
teams have connected to the server, and then it proceeds synchronously with
each simulation step having a 4 s timeout for agents to submit their actions for
that step. A match has 3 rounds, with each round having a random configuration
of the servers parameters (different grids, task size, etc.).

The most notable changes to the latest edition of the MAPC include:

1. A circular (i.e., borderless and continuous) grid map; e.g., in a 50 × 50 grid,
if an agent at cell 0,0 (i.e., in the top left corner) moves up, it would arrive
in cell 0,49 (i.e., the bottom left corner);

2. An increase in the number of agents for each round: 15, 30, and 50 for rounds
1, 2, and 3 respectively (previously this was 10 for all rounds);

3. The addition of a new type of facility called taskboards, such that an agent is
required to be near a taskboard to accept a task. The same agent must also
submit the completed task to the server (previously tasks did not need to be
accepted and any agent could submit the task).

Our team, MLFC3, achieved second place in the 15th MAPC. A prior incar-
nation of the team, Liverpool Formidable Constructors (LFC), had participated
in the previous edition of the competition and won first place. We therefore
recapitulate the main strategies used in that edition that were also useful in the
new edition of the contest, although for a more comprehensive explanation we
refer the reader to [9], which has a complete description of the approach taken
by LFC. The main contribution of this work is in the description of the new
strategies that were developed specifically for the 15th MAPC. These strategies
include: cartography – this tackles extension (1) to make our agents capable of
discovering the size of the map (information that is unknown during a match);
verification of map merging – in order to increase the confidence that our previ-
ous strategy for merging map information works well when scaling the number
1 https://multiagentcontest.org/.
2 https://multiagentcontest.org/2020/.
3 The source code for MLFC is available and can be downloaded from the following

URL: https://github.com/autonomy-and-verification-uol/mapc2020-lfc.

https://multiagentcontest.org/
https://multiagentcontest.org/2020/
https://github.com/autonomy-and-verification-uol/mapc2020-lfc
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of agents, we performed a formal verification of our protocol (thus addressing
extension (2)); plan cache – our previous strategy of using automated planners
to plan the movement of our agents in the grid had to be adapted to cope with
extension (2); achieving tasks – small changes were necessary to address exten-
sion (3), but a number of more significant modifications were required to make
efficiency improvements necessary due to extension (2); and bullies – the addi-
tional agents from extension (2) allowed us to focus some of them to the task of
disrupting the activities of the opposing team.

The remainder of the paper is organised as follows. Section 2 lists the lan-
guages, tools, and IDEs used during the development of our team. In Sect. 3
we summarise the main strategies that were imported from our previous par-
ticipation as team LFC, which is followed by Sect. 4 where we describe the new
strategies that tackle the main extensions of the scenario. Section 5 contains a
brief account of our performance in the matches, and in Sect. 6 we present the
responses to a questionnaire created by the contest organisers. Finally, Sect. 7
concludes the paper with an overview of our participation in the 15th MAPC.

2 Languages and Tools

For our submission to the 15th edition of the MAPC, we used the same set of lan-
guages, tools, and IDEs to develop MLFC as when we developed LFC with one
exception; an additional tool for formal verification. The agents, environment,
and organisation were all developed in the JaCaMo framework for multi-agent
oriented programming. The IDE used was Eclipse with the JaCaMo Eclipse plu-
gin, whereas the automated planner used was the Fast Downward (FD) planning
system. To facilitate the formal verification of the protocol used for map merg-
ing. The Communicating Sequential Processes (CSP) formal language was used
to verify the correctness of the protocol used for map merging; this involved
using a new tool—the Failures-Divergences Refinement (FDR) model checker.

JaCaMo4 [3,4] is a framework for developing multi-agent systems based on
the multi-agent oriented programming paradigm. Unlike the more traditional
agent-based languages and tools, JaCaMo models both the environment and the
organisation as first class abstractions at the same level as agents, through the use
of three complementary approaches: Jason, CArtAgO and Moise. Jason [5] is the
language used to program the agents based in the Belief Desire Intention (BDI)
model [6,17,18]; CArtAgO [19] is used to program the environment in the Java
programming language through the representation of artifacts; and Moise [14] is
used to model the organisation into three different dimensions: structural (roles
and groups), functional (goals, missions, and schemes), and normative (norms
and obligations). JaCaMo combines these three technologies seamlessly into one
integrated framework.

The base structure of our code remained unchanged from our participation
as team LFC in the previous edition. Each agent has its own artifact which acts
as a client to communicate with the competition server. Additionally, we have a
4 http://jacamo.sourceforge.net/.

http://jacamo.sourceforge.net/
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team artifact that is used as a blackboard to share specific information with all
of the agents in our team. Although we are only using the structural dimension
of Moise, we expanded the roles used in MLFC and added automated plans for
changing roles without losing track of what the agent was doing in its previous
role.

Fast Downward5 [11,12] is a well known automated planner that is still
being used as a base planning system for many teams that participate in the
International Planning Competition6. The planner takes as input a domain and
a problem specification, written in the Planning Domain Definition Language
(PDDL) [16], and generates a solution as output. Our representation remains
the same as last time: the domain is created at design time and remains static at
run-time, whereas the problem is compiled at runtime and includes only those
61 cells that are observable by the agent that invokes the planner.

CSP [13] is a formal language designed for specifying concurrent communi-
cating systems. A CSP specification is built out of processes, which describe the
sequence of events that occur as the system evolves. An event is a communication
on a channel which may declare typed parameters, such that the events occur-
ring on the channel must be composed of parameters matching the channel’s
type(s). Processes can be offered in sequence, as a choice, or in parallel. Parallel
processes may cooperate on a set of channels; they are said to synchronise on the
events on these channels, meaning that the events must occur simultaneously in
both processes. This is how CSP processes communicate with each other, but
it is important to note that a process that is not in parallel with another may
perform events without requiring another process to ‘receive’ them. We used
CSP to model our protocol for merging the map information of our agents.

FDR [10] is a model checker for CSP specifications, which contains various
built-in assertions such as deadlock and divergence (livelock) freedom. FDR also
includes the Probe tool, which allows the user to step through the available
events in the specification. We summarise how we used FDR to formally verify
the map merge protocol in Sect. 4.2, and a full description can be found in [15].

3 Main Strategies Taken from the 14th MAPC

In this section we summarise the three main strategies that we previously used as
team LFC in the 14th MAPC and that are broadly used (mostly unchanged) in
the 15th MAPC. These three main strategies comprise: 1) agent identification, for
identifying other teammates when they are encountered in the grid; 2) building a
map, how to mutually build and share map information between the team; and
3) planning, using an automated planner to perform optimal planning based
on the observable environment of the agent. Other simpler/smaller strategies
continue to be used (for example, exploration strategies and their termination
conditions); however, they are not relevant to the new strategies discussed in the

5 http://www.fast-downward.org/.
6 https://www.icaps-conference.org/competitions/.

http://www.fast-downward.org/
https://www.icaps-conference.org/competitions/
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next section and thus have been omitted here. Full details of all of the strategies
used in the 14th MAPC can be found in [9].

3.1 Agent Identification

As agents do not possess information regarding the identity of other agents
at the beginning of each round, they first need to identify their teammates in
order to cooperate. Thus, as each agent observes another, it can only recognise
whether that agent is a member of its own team (i.e., it does not know which
agent it is). One of the first challenges each agent faces, therefore, is one of agent
identification: when an agent meets another member of its team, it has to try
to determine exactly which of its teammates the agent is.

Fortunately, the identification process is not influenced by having a circular
map; in fact, the agents only require local information to identify the other
members of their team. As all of the information used falls within the agent’s
observable environment, all coordinates used can be relative to the agent. Thus,
it does not matter if some of the positions span across the edges of what would
normally be a border. This allows us to reuse the same identification process that
we previously used in [9]. In the following, we summarise the main aspects and
features of this process, and then provide a simple example of agent identification
in practice.

At the beginning of a step, each agent perceives its environment, through the
receipt of a set of perceptions from the server. These perceptions are checked by
the agent to recognise if there are any observed unknown entities which could
be part of its team. If this is the case, a broadcast message is triggered by the
agent to ask all of the other agents in its team to communicate the details of
what they can currently observe in their respective local environments during
that time step. Each agent that receives such a broadcast message has to reply
with a list containing all the thing perceptions it has (i.e., the objects seen by
the agent). This list of things is then used by the agent to understand if some
agent that it currently observes is the same as that which sent the reply.

This can be done in two steps. First, by determining if the replying agent
observes an unknown entity in some position that would correlate with the
requesting agent; in which case, the agents may be looking at each other. To
verify this, the second identification step consists of checking if there is also a
correlation with all of the other things observed by the requesting agent (and
their relative positions) with those observed by the responding agent. If this is
the case, it means that not only the two agents are seeing each other, but that
all of the things in their local environment coincide. This allows the agent to
conclude the identification of another team member. Note that this process may
generate false positives; for example if multiple agents are in the same exact for-
mation (seeing the same objects, etc.). When this happens, the unknown entity
is identified with multiple identifiers (i.e., where one of them is the right one,
but it is unclear which of these it is); thus, the identification process fails and
the agent is not identified. Because of this, the identification process needs to be
constantly reapplied in subsequent simulation steps until all agents are identified.
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b2

A3A5

Fig. 1. Identification example with two agents A5 and A3, a dispenser of type ‘b2’, and
black shaded cells representing obstacles.

To better illustrate how the identification process works, we give a simple
example (Fig. 1), where we have two agents on the same team: A5 and A3. For
the sake of simplicity, we focus on the identification process on A5’s side (for A3

it is symmetric). In this example, we assume that A5 has not identified A3 yet,
and when the belief thing(4, 0, entity, ‘‘A’’) is added to its belief base, it
broadcasts an identification request to each agent in its team. When A3 receives
this request, it sends to A5 the list of things it is currently seeing: [thing(-4, 0,
entity, ‘‘A’’), thing(-3, -2, dispenser, b2)]. With this information,
A5 first checks whether there is an entity in the list with coordinates (X, Y), and
a corresponding entity in its belief base with symmetric coordinates (-X, -Y).
In this example, this is satisfied since thing(-4, 0, entity, ‘‘A’’) is indeed
in the list returned by A3. Moreover, in A5’s belief base we find thing(4, 0,
entity, ‘‘A’’) in the corresponding symmetric position. Thus, it is possible
that the agent in A5’s local observable environment is in fact A3. In order to
be sure that this is the case, A5 needs to check that each entity thing(W, Z,
Type, Name) in the list, corresponding to the other observed entities in its local
environment defined by (|W+X| + |Z+Y| ≤ 5), is also present in its belief base. This
means we can find thing(W+X, Z+Y, Type, Name) in the belief base for each
thing in the list (where X and Y are the relative coordinates of A3 from A5’s
viewpoint).

In this example, we have X = 4, Y = 0 and the list containing only one other
entity; thing(-3, -2, dispenser, b2). Since |-3+4| + |-2+0| = | 1 | + | -2 | =
3 ≤ 5, the dispenser should also be in A5’s field of vision, and it is. In fact, we
find thing(1, -2, dispenser, b2) in A5’s belief base. Assuming that there are
no other teammates at the same distance, A5 can safely conclude that the agent
in its field of vision is A3. The same process is done by A3, which will identify A5

as the agent in its own field of vision.
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3.2 Building a Map

In order to move purposefully within the map and to perform tasks efficiently,
agents dynamically build a map storing information of the environment that
they observe. The map is built following an approach based on the one used in
the previous year’s scenario [9], where each agent considers its starting position
as the (0, 0) coordinate of its local map, and stores in this map all the relevant
information collected while moving and perceiving entities it observes in its local
environment. Thus, the coordinate system of each map will be relative to the
starting position of each agent. Functionally, these maps are stored in a CArtAgO
artifact as HashMaps where the key is the name of the owner of the map and
the elements are sets of points representing cells. Furthermore, local maps are
merged when meeting other agents.

The main challenges that needed to be addressed in migrating our agents
from the 14th to the 15th MAPC are: (1) do the agents need to store more (or
conversely less) information regarding entities encountered in the environment,
than in the previous year’s scenario; and (2) how should the new borderless and
continuous map be managed.

The environment consists of a number of entities, some of which are
immutable (i.e., the location of the entities remains static throughout a full
round), and some of which are dynamic. Whilst some entities are highly dynamic
(for example, the agents themselves), other entities can be affected by agent
behaviour, such as the movement of a block or the result of a clear event7.
Thus, as the agent moves, it observes its local environment at each time-step,
and updates its local map with the location of the following static entities: dis-
pensers, goal positions and taskboards. Whilst there could be utility in retaining
information about dynamic entities such as the position of obstacles, blocks
and agents, this information may become stale over time and thus is unreliable.
Planning (Sect. 3.3) therefore only takes into account knowledge of previously
observed static entities, and currently observed entities within the local environ-
ment.

Due to the fact that the grid map in this version of the scenario differs from
the previous one in that the map is now circular, the map that we store with
our previous strategy could appear infinite in scale, with each entity appearing
multiple times with different coordinates (i.e., multiples of the actual size of the
map itself). Thus there is the risk that an agent may perceive multiple instances
of the same entity. To address this problem the cartographers compute and
broadcast the size of the map (see Sect. 4.1 for details). Once the information
about the size of the map is received by the agents, the maps are normalised
accordingly, thus facilitating the easy identification of potential repetitions. The
normalisation of the map is not only important to avoid repetitions of elements,
but it also allows agents to establish the shortest distance to potential points
7 Clear events occur randomly, but agents have access to a clear action which has a

reduced area of effect but otherwise functions the same. A clear event/action will
remove any obstacles or blocks and disable any agents that are inside its area of
effect.
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of interest (e.g., dispenser or goal positions) by going around (of what would
normally be) the edges of the map.

The discussion so far has focused on how local maps are built, but the col-
lected information also need to be shared when agents from the same team meet
each other. This is when the process of merging maps happens. To start with, all
local maps are already stored in the TeamArtifact, meaning that in theory each
agent could have access to the other agents’ maps. This, however, would not be
beneficial if the maps are not merged, as the coordinate system of each agent
differs. The full details of the merging process is described in [9], but it is based
on the following intuition: suppose that there are two distinct groups of agents
G1 and G2, where all agents in G1 have already merged their maps, and likewise,
all agents in G2 have also merged their maps. The map merging process starts
when an agent A1 from G1 meets an agent A2 from G2. The two involved agents,
A1 and A2, communicate all the relevant information (e.g., their positions and
the position of the agent they are seeing) to the respective leaders of the groups;
let us call them L1 and L2, and the merging process is delegated completely to
the leaders. The leaders decide who is going to be the new leader of the group
G1 ∪ G2, and merge the information by taking care that no repetition occurs
and that all the agents in G1 ∪ G2 share the same coordinate system.

3.3 Planning

As mentioned in the previous section, the dynamic nature of the map and agents
moving blocks can make the planning of a route challenging. For this reason,
our agents plan their next few actions based on what is observable in their
current environment and the static entities stored in the merged map. We use
task planning as opposed to path planning for the movement of the agents, as
we also need to consider other actions (such as the clear action) that can alter
the way our agents move. Furthermore, since we are dealing with a 2D grid, the
problem is simplified as the cells can be modelled as states, and there is no need
to use advanced path planning algorithms (due to the fact that we do not have
live noisy sensors, nor do we care about collisions).

Planning is not utilised during the initial phase, whereby agents explore the
map and compute the map’s size. However, once the agents start collaborating
with each other, they have sufficient information for planning tasks regarding
the existence and location of dispensers, goal positions and taskboards, based on
destination information retrieved from the merged maps. The process of reach-
ing the desired destination is an iterative process composed of three stages: 1)
selection of a proximal destination that falls within the agents local, observ-
able environment (en route to the actual destination); 2) invocation of the FD
planner; and 3) managing the planner’s result.

When an agent has a task assigned to it (e.g., heading towards a taskboard
or dispenser), it retrieves the global coordinates of the closest cell satisfying its
requirements, and translates them into relative coordinates. Then, the agents
selects a good cell within its observable environment which minimises the overall
distance to the actual destination. Such a cell is considered good provided that
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it does not contain any agent or block (more details on the procedure for the
selection of a good cell can be found in [9]). If no good cell can be found, then
the agent behaves as if the FD planner has returned an empty plan, which is
described later in this section.

Once the agent has selected a good cell, it calls the FD planner via the
EISArtifact. In order to invoke the planner, several pieces of information need
to be provided: what elements are currently observable by the agent, and how
they are represented; what actions are allowed; the goal itself; and whether or not
the agent has a block attached to it. First, the details of the agent’s observable
local environment are already present in the EISArtifact. This allows for the
creation of a problem file composed of 61 cells (all the currently observable cells)
where the agent is in the centre, dispensers and taskboards are not represented
(i.e., they do not constitute obstacles to movements), obstacles are considered
obstacles, and blocks and other agents are modelled as blocks. The latter is due
to a conservative approach where the planner is not allowed to clear any block,
and it is hard to know on-the-fly whether or not the perceived blocks belong
to the enemy team (furthermore, this prevents the possibility of us clearing
our own blocks by mistake). Second, movement and rotation actions are always
permitted, but the clear action is allowed only if the agent has enough energy.
From a modelling point of view, allowing or not allowing a clear action is based
simply on using a PDDL domain file with or without the definition of the action.
Finally, the remaining information (i.e., what the goal is, and whether the agent
has a block attached) is provided to the EISArtifact by the agent. Once the
EISArtifact has collected all the required information, it produces the problem8

and domain files used by the FD planner; the planner is then invoked and the
results are collected.

Any returned solution (empty or not) is processed by the agent. If a sequence
of actions is returned, then the agent blindly executes them in the same order
as that within the solution, despite the fact that this can result in some of
the actions failing. In this scenario, we adopt a forgiving approach whereby the
failure of an action does not necessarily imply that the planner should be called
again.9 The rationale here is that, provided that not all of the actions fail, the
agent will still approach the destination, and it reduces the amount of required
resources.

The situation is different when the returned plan is empty, or if the agent
was unable to locate a good cell in its local environment. In this case, the agent
is required to make its own decision regarding its next action. Our approach is
for the agent to look for a one-step movement action, which brings the agent
closer to its destination, and then to re-invoke the planner. The idea here is that
given the dynamic nature of the environment, by making a move towards the

8 An example of a problem file that was generated dynamically during one of
the matches can be found at: https://github.com/autonomy-and-verification-uol/
mapc2020-lfc/blob/master/planner/example problem.pddl.

9 Failures of a movement action are tracked for the agent to have an up-to-date idea
of the distance to its destination.

https://github.com/autonomy-and-verification-uol/mapc2020-lfc/blob/master/planner/example_problem.pddl
https://github.com/autonomy-and-verification-uol/mapc2020-lfc/blob/master/planner/example_problem.pddl
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destination, knowledge of the local environment will improve, possibly resulting
in the generation of a valid plan. Such a heuristic has so far resulted in good
performance of our system, but it is clearly not optimal yet.

It is easy to see how the whole process of planning via the use of the external
FD planner does not scale well with an increasing number of agents. To address
this issue, our new strategy employs the use of a plan cache, which is described
in Sect. 4.3.

4 New Strategies for the 15th MAPC

In this section we describe the details of the main strategies that were developed
specifically for the 15th MAPC. These include: cartography, to discover the size of
the map; verification of map merging, to provide assurances about the reliability
of the map merging protocol; plan cache, to allow up to 50 agents to use the
planners efficiently; bullies, these are agents that focus solely on disrupting the
opposing team by trying to clear their blocks; and achieving tasks, to use the
new taskboard facility and decentralise task assembly into multiple groups.

4.1 Cartography

One of the main objectives of our implementation is to maintain a map that is
common across all of our agents that have identified each other at some point
in the simulation. In the 14th MAPC, we were able to identify suitable goal
positions and block dispensers by their relative position to the borders of the
map. Furthermore, in the initial exploration phase agents randomly chose a
direction to explore, and only changed this direction when they approached the
border of the map. Since the scenario of this year used a spherical or circular
map, where the map “wraps-around” on the sides, we can no longer rely on the
existence of borders.

Having explored the underlying issues, we realised that the main information
we were missing to re-use the previous strategies was the size of the map. To
obtain the size of the map, we introduced a new role for agents: cartographers.
The aim of this new role is to find the exact size of the map, in both horizontal
and vertical directions (which can be different, for example, we can have grids
that are 60 × 50). The size determination occurs in a preliminary phase, before
the agents can start with the identification of suitable building sites and assem-
bling blocks for tasks. Cartography is always approached by two agents at once
for either horizontal or vertical direction. It is necessary that these two agents
have identified each other, and in fact this is what triggers their desire to become
cartographers. Only two pairs of cartographers are required; one pair for each
dimension (i.e., vertical and horizontal). As soon as two agents adopt the car-
tographer role for one dimension, they will start to move into opposite directions
along that dimension, counting the successful steps they make, until they meet
again. For example, if A1 and A2 start to work as a pair of cartographers for
discovering the size of the horizontal axis, one of them, say A1 will start to move
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to the left, while the other, A2 will move to the right. Since the map folds onto
itself, they will necessarily meet again, and can add the number of steps they
took to compute the size of the map along that horizontal dimension10. This
information is then broadcast to all of the other agents in the team.

The cartographers also need to be able to maintain their movement along
the axis that they are responsible for exploring. Blocks and obstacles can be
cleared by using the clear action. At this stage we do not have to worry about
clearing our own blocks, since our other agents are tasked with exploring the grid
and will not collect any blocks until the cartography phase has concluded. The
only remaining impediment in the path of our cartographers are other agents
(friendly and enemy). Friendly exploration agents already avoid other agents
they meet on their path by moving around them (e.g., if the are moving south
and encounter another agent, they will shift to either east or west, and then
continue moving south for a few steps before realigning themselves). We ini-
tially planned a similar behaviour for our cartographers in order to avoid enemy
agents, tracking the number of cells that the agent moved to ensure that the
final calculation remained correct, but due to time constraints this implemen-
tation was not finalised in time for the contest. Instead, during the contest if
our cartographers were to meet enemy agents along their path that would block
their movements, they would simply keep trying to move in the same direction
until successful.

Two exploring agents will assume the cartographer role under the following
conditions:

– They have just identified each other (as described in Sect. 3.1).
– The size of the map in at least one dimension is unknown by the team.
– There is at least one dimension that has no assigned pair of cartographers

that are actively determining its size.

The first condition ensures that the agents can identify each other and thus
determine when they meet again having covered the whole length of the map.
The other conditions ensure that we have exactly one pair of cartographers for
each dimension, while allowing all other agents focus on either exploring the map
or disrupting the opposing team (see Sect. 4.4 for the latter). Due to the nature
of the maps in the 15th MAPC, agents often start in clusters, which means that
the assignment of the four cartographer roles typically occurs during the first
step of the simulation.

4.2 Formal Verification of Map Merging

The map merging protocol – which controls how to merge individual agent’s
maps – was built for the 14th MAPC, and our team reused it for this new
edition of the contest. Section 3.2 summarises the protocol, which is described in
detail in [9]. In brief, the protocol allows a map used by a group (one or more)

10 When A1 and A2 first adopt the role of cartographers, they need to retain the
distance between them, as this initial distance has to be added to the final sum.
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agents to be merged into another map, pooling the information in both maps
and unifying the coordinate system, which enables the group to cooperate. This
involves message-passing between several agents (at least 2 and at most 4 per
instance of the merge protocol) to coordinate the merge (messages to more agents
can be sent after the merge has been completed to update their information).

Having a unified map is critical to the team being able to assemble and
deliver tasks, which is why we chose to apply formal verification to the map
merging protocol. The protocol had worked well in the 14th MAPC, but testing
the protocol was difficult because of the changing environment and interference
from the other team in the match.

Verification by Formal Methods encompasses a wide range of mathematically-
defined techniques for describing how a system should behave or how it will
operate on data, and tools for reasoning about the correctness of these specifi-
cations. As mentioned in Sect. 2, we specified the map merging protocol in the
formal language CSP and used the model checker FDR for both validation and
verification, as described below. A complete description of the specification and
verification effort is presented in [15].

The specification was built manually, from careful examination of the agent
plans and the description of the protocol in [9]. The specification kept close
architectural correspondence with the agent program and protocol: each agent
was represented by its own process and given an agent ID, and the agent plans
involved in the merge process were represented by events of the same name.
This helped with tracing parts of the specification back to their source in the
program. The formal specification made some abstractions from the implemented
protocol, for example we did not model the agent reasoning cycle. Furthermore,
the specification contained three agents; the merge protocol happens between
two agents, and the third lets us check that the protocol performs correctly
when there is interference.

The protocol specification was also validated and verified. Borrowing Boehm’s
descriptions [2], validation answers the question “Am I building the right prod-
uct?” whereas verification answers the question “Am I building the product
right?”. Validating our specification involved checking that it matched the
behaviour of the implementation. To verify our specification we checked that
it was itself correct and could perform the protocol’s behaviour without errors.

Simple validation checks were performed using FDR’s Probe tool, which
allows a user to step-through the specification. This was invaluable for speci-
fication debugging. For more complicated and repeatable checks, we used FDR’s
built-in [has trace] assertion, which checks that the specification can perform
a given trace of events without divergence (livelock), without refusing any of
the events in the trace. This assertion was used to check the specification’s
behaviour in six different scenarios, which were based on the protocol imple-
mentation’s behaviour during the 14th MAPC. The [has trace] checks were per-
formed automatically by FDR, which made them easy to rerun after updates to
the specification (similar to performing regression testing).

For verification of the specification, we checked that it was free from
divergence and non-determinism (where the specification may perform several
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different events, after a given prefix), and that the specification could reach a
done state—where a done event occurs when there is only one map, shared by
all the agents. The divergence and non-determinism checks use FDR’s built-in
assertions, but the done check was added to the specification manually. Reaching
the done state shows that the protocol has behaved correctly and implies that
the specification did not deadlock along the way.

We found that CSP was well suited to specifying the map merging protocol,
because its features focus on communication and concurrency. FDR provides
features that are helpful during specification debugging and verification. The
verification effort helped provide additional confidence that the merge protocol
worked correctly, and showed how CSP could be applied to Multi-Agent System
(MAS) communication protocols. In our previous work we applied CSP to one
module of a single autonomous robotic system, as part of a suite of formal
verification approaches [7,8]. This verification work shows the utility of applying
CSP (and formal verification approaches more generally) to aspects of MAS as
well.

4.3 Plan Cache

Using automated planning at runtime is far from being an easy task. The entire
process, from encoding the state of the agent as a problem file, to solving it with a
planner, is computationally demanding. This can be reasonable for small/simple
applications, but can become an issue when applied to large and complex sys-
tems, such as a MAS. Indeed, even though the planning problem for a single
agent is feasible, it might not be for a coalition of agents where each agent has
to perform its own planning as well. Assuming that we had N agents, this would
require us to call the planner N times (one per agent). Furthermore, given the
MAPC scenario, this could happen for every step of the simulation. Even though
individually the problems to be solved are relatively small (remember that we
only consider the 61 cells that an agent can observe), calling up to 50 instances
of planners (e.g., assuming every agent needs to call the planner in the same
step) consumes too many resources. This may not have been a problem if the
only thing an agent was required to do in a step was to plan its movement, but in
reality there are many operations that every single agent needs to do each step
(updating belief base with the dozens of perceptions coming from the server,
communicating with other agents, etc.). Of course, more computation power
could have also solved (or alleviated) the problem, but we were limited to using
laptops (with powerful specifications, but not at the level of high performance
computing).

Since physical resources (CPU, memory) and time (how long an agent can
wait) are finite, it is always possible to pick a number N of agents for which it
is not possible to solve the planning problem in less than a certain amount of
time (4 s for each simulation step in the contest). In particular, as we mentioned
previously, the 15th edition of the contest extended the scenario to have 15 agents
in round 1, 30 agents in round 2, and 50 agents in round 3. Through testing,
we noticed that our previous strategy managed to hold up for 15 agents, but it
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did not work for 30 and 50 agents. Because of this, alternatives to speed up the
planning process had to be considered.

We investigated alternatives to speed up the process, and found out that we
could make the planning process faster by caching the plans. By caching, we refer
to the act of storing previously generated plans, instead of simply executing and
then forgetting about them. When an agent asks the planner to solve a problem,
if such a problem has been already solved in the past, it would be more efficient
to retrieve the solution found for this problem, than to generate it again using the
planner, resulting in redundant work. This can be achieved by keeping a mapping
between Problem → Plan, which given a problem file, returns its corresponding
plan (if present in the cache). When a problem file does not find a match in the
cache, it means that it has never been solved before (i.e., a cache miss), in which
case the execution continues by calling the planner and then updating the cache.
Note that this cache is saved independently of the size of the grid, number of
agents, or any other parameter. This means that the cache can be used for any
configuration to speed up the planning process.

The first aspect we have to consider for plan caching is how to encode a
problem file, so that its retrieval from the cache can be straightforward. Such an
encoding must uniquely identify a problem file. Thus, all the information which
characterises the agent’s local environment needs to be considered.

Given details of an agents local environment, a possible numerical encoding
can be obtained by unrolling the grid as a one-dimensional array. This unrolling
starts from the upper most cell, and then all rows are appended one by one from
left to right. The encoding works as follows: empty spaces are mapped11 to 0
(dispensers and the agent current position are considered empty), obstacles to
1, blocks to 2, and the movement target (plan goal) to 3. After the contest we
realised that since blocks are considered as obstacles for the planner, we could
have set their value to 1, which would have decreased the number of cached plans
by at least a small margin.

Once the encoding has been created, it can be used to query the cache. Since
we want to reuse the cached plans across different executions, the cache is stored
in the secondary memory; specifically, each cached plan is stored in a separate
file, where the encoding of the agent’s local environment is used to name such
a file. Consequently, to check if a certain planning problem has already been
solved, it is sufficient to check to see if a file exists that is named as the encoding
of the problem. If such a file exists, there is no need to call the planner since the
corresponding plan is already available within the file; otherwise, the planner is
called and a new file is stored (named after the encoding of the problem).

As we have seen previously, it is possible to call the planner in two different
settings. The first one corresponds to the generation of a plan by the agent
itself; the encoding of which is discussed above. The second occurs when the
agent possesses a block (i.e., a block is currently attached to that agent), and
requires a plan. The encoding for this is almost identical, except that in this case

11 The mapped values are not semantically relevant, as long as is preserved for all
mappings.
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we append the local environment coordinates of the block that is attached (note
that our planning domain only supports movement with no more than a single
attached block). For example, if there is a block attached to the agent and the
block is located one cell below the agent, then we would append the string ‘01’
to the beginning of the encoding.

4.4 Bullies

For the 15th MAPC we decided to add attack strategies for our agents. We
created a new role for this called bully, whereby a bully is an agent with a single
and specific purpose: to clear the blocks used by the enemy team. In our solution,
two typologies of bullies were used: bouncer bullies and hunter bullies. One of the
disadvantages of the strategies adopted by our team for the 15th MAPC was that
time was spent during the initial phase to determine the dimensions of the map,
prior to building blocks and achieving tasks, whereas other, faster teams could
use this time to complete the tasks, thus gaining an advantage. To counter this,
we developed bouncer bullies, which had the task of slowing down the enemy
team in the initial phase of the match (i.e., until our agents were ready to start
building tasks), by disrupting their ability to complete and submit tasks. To
achieve this, when a bouncer bully finds a goal position, instead of moving away
as normally the explorers would do, it starts patrolling such a goal position and
the ones close to it. Every time the bully sees an enemy agent with a block,
it tries to clear the block. Since clearing requires three steps, the bully does
not always succeed. Nonetheless, by being close to a goal position it puts itself
in an advantageous position with respect to any approaching enemy agent; to
deliver the task the enemy agent has to approach the bully, which increases the
possibility of a clear action succeeding.

Once our agents have finished the initial phase and can commence task build-
ing, we no longer require bouncer bullies, as agents with the bouncer bully role
could be better employed performing another task, rather than staying at a sin-
gle goal position. For example, it might be possible that a bully agent selected
a goal position which is never used by the enemy team. If that is the case, then
the bully agent would just waste time patrolling endlessly a goal position where
no blocks would ever be cleared. Because of this, in the remaining steps of each
simulation (after the cartography phase has concluded), we need a different kind
of bully, the hunter bully. These agents behave similarly to the bouncer ones;
however a key difference is that they move amongst different goal positions.
Specifically, a hunter bully starts patrolling a goal position for a finite number
of steps, after which, if no enemy agent with a block was observed, it moves to
a different goal position (usually in a different goal cluster). In this way, if the
agent initially picked a bad goal position, it will eventually arrive in a good one
(i.e., one occupied by the enemy team).

For both bouncer and hunter bullies, the policy to defend a goal position
is the same. The agent moves in a circle around the goal position (similar to a
shark behaviour). In this way, with respect to staying put, the agent has more
possibilities to intercept an enemy agent and clear its blocks.
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4.5 Achieving Tasks

Our strategy for assembling block structures and achieving tasks remains similar
in principle to our previous participation [9]. Before we explain our strategy, we
give a couple of reminders about how the scenario works in regards to tasks: to
deliver a task, an agent must be inside a goal cell; it is always the case that block
structures must be delivered from the position below the agent, i.e., blocks need
to be attached south of the agent for them to be delivered.

The previous strategy included the following agent roles:

– origin agent : moves to a unoccupied goal position in the bottom-most cell of
a goal cluster;

– retriever : goes to a dispenser, obtains one block of a type of block required,
and moves to one of the available positions around the origin agent.

Once the exploration phase ends, our agents would form one group consisting of
1 origin agent and 9 retrievers (in the previous edition of the MAPC all three
rounds had 10 agents).

Due to the inclusion of taskboards in the 15th MAPC, we created a new role
called deliverer. The deliverer waits next to the closest taskboard in relation to
the expected goal position of the origin agent. Once enough agents are in place,
an appropriate task will be accepted by the deliverer, and retrievers will start
moving towards the origin agent to build the block structure required by the
accepted task. At the same time, the deliverer will make its way to the position
on top of the origin agent, or if that is not possible then any position around the
origin that is not below it. Once the building phase is complete, the origin will
detach from the block structure and change places with the deliverer, which will
then attach to the block structure and deliver the task and will become the new
origin. The first retriever to bring its block to the origin will become the new
deliverer and will move to the taskboard. This allows us to speed up the time
spent between tasks. The previous origin will then become a retriever and go to
fetch a new block from a dispenser. An example of such configuration is shown
in Fig. 2.

Finally, to make use of the increase in the number of agents, we divided the
team into multiple groups. Since each round varies the number of agents (15,
30, and 50), we calculated the number of groups based on the current size of
the team in the round: GroupSize = RoundSize ÷ 15. Thus, for rounds with
15 agents we have one group, for 30 we have two groups, and for 50 we have
3 groups (with 5 remaining agents as leftovers). Since we have the addition of
two new roles (deliverer and bullies), we also had to plan how many of these
roles would be available within a group. A group of 15 agents (agents can join
a group later, and in doing so follow this list of priority) has 1 origin agent, 1
deliverer, 12 retrievers, and 1 bully. In the third round (i.e., 50 agents), the last
5 remaining agents will become bullies that are not affiliated with any group.
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Fig. 2. A 13×13 part of the grid from an execution. Red shaded cells are goal positions,
taskboards are cyan shaded cells, blocks of type ‘b1’ are red squares (dispenser has bold
lines), ‘b2’ blocks are green squares (dispenser has bold lines), enemy agents are green
diamonds, and our agents are blue circles. A line between an agent and a block indicates
that the block is attached to the agent. (Color figure online)

5 Match Analysis

In this section we provide a brief summary of our performance in the 15th MAPC.
We divide our matches into two groups: the first corresponds to the matches
played in the first day of the competition, and the second to the matches played
in the second day. Each of the five teams had two matches per day.

During the first day, our solution did not perform very well, out of 6 rounds
we had 1 win, 1 tie, and 4 losses. This was even more evident in the scenarios with
more agents (teams of size 30 and 50, rounds 2 and 3 resp.). The reason for this
was due to the computation power required to run the 30 (resp. 50) agents on our
machine. Since our solution requires a lot of coordination amongst the agents,
when one agent died, it caused a knock-on effect on the other agents, forcing us
to restart the whole team. When many agents had to be handled by the machine,
sometimes it happened that not all the computations were finished before the
deadline (4 s). Specifically, this would happen when a lot of agents were calling
the planner, which is the most time demanding component of our solution. As
this happened many times during the first day, our solution performed poorly
and we lost most of the rounds. For instance, many times our agents were almost
ready to start submitting tasks when one of the agents died (lost synchrony with
the steps from the server), which caused us to have to restart the whole team.
Consequently, restarting the team meant starting from scratch, including doing
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all of the cartography and exploration again. The overall score obtained by each
team in the first day is shown in Table 1.

Table 1. Total score of each team for the first day, with each round being the sum of
the two matches that happened in that day. Our team is shown in bold.

Team Round 1 Round 2 Round 3 Total Score

FIT BUT 38 166 188 392

MLFC 74 44 66 184

GOAL-DTU 252 100 105 457

LTI-USP 16 34 56 106

JaCaMo Builders 0 18 10 28

During the second day, our solution performed much better, achieving 6 wins
out of the 6 rounds, despite the fact that no changes had been made in the code
of our solution between the two days. The reason for this improvement in per-
formance is due to the planner’s cache. During the first day of the competition,
we found that the application did not have enough data from previous matches
to build an efficient plan cache; particularly for the two rounds where there were
larger numbers of agents (30 and 50 agents respectively), as most of the tests
performed prior to the competition were conducted using only 15 agents. Con-
sequently, almost all of the calls to the planner resulted in a cache miss and had
to be fully evaluated. Since the planner is the most time demanding component of
our solution, by having to compute too many plans, the risk of taking more than
4 s was high (and if this happened, the agent would lag behind and eventually
become useless). Because of this, our solution performed poorly in the first day.
Nonetheless, we recovered in the second day by having a richer cache of previously
computed plans, and our solution outmatched most of the other teams. By having
a richer cache, most of the requests for a plan could be satisfied without actually
calling the planner. In this way, the computations were lighter, and the risk for an
agent to fall behind reduced considerably, which in turn meant we had to restart
our team much less often, allowing tasks to be completed successfully (Table 2).

Table 2. Total score of each team for the second day, with each round being the sum
of the two matches that happened in that day. Our team is shown in bold.

Team Round 1 Round 2 Round 3 Total Score

FIT BUT 247 252 596 1095

MLFC 220 221 383 824

GOAL-DTU 534 235 0 769

LTI-USP 28 48 8 84

JaCaMo Builders 20 22 18 60
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Except for the reasons reported above, the performance of our solution has
not been influenced greatly by the presence of an enemy team. The only case
where our solution had some issues was when the enemy team used agents to
clear our blocks. For instance, there was a match where an enemy agent was
patrolling a goal cluster and was clearing all the blocks in its local environment.
In such scenario, our origin agent failed to build and deliver the tasks because of
this. Another peculiar situation happened in a match where an enemy agent was
moving around one of our origin agents and managed to steal the block structure
that we were building. This happened because at some point our origin agent
detaches from the structure to switch places with the deliverer (the agent that
accepted the task in the taskboard and thus must be the one to deliver the task).
At this exact moment the enemy agent managed to attach to the structure,
whereas normally it is not possible to attach to a block if there is any agent
from the other team connected to it or to any other block that is connected to
the first block.

6 Team Overview: Short Answers

6.1 Participants and Their Background

What was your motivation to participate in the contest?
Three of our members participated in the 14th Multi-Agent Programming
Contest as team LFC. We decided to participate in the 15th MAPC because
the scenario was the same (with some extensions), so we could use most of
our existing code and then focus on improving it.

What is the history of your group? (course project, thesis, . . .)
We had three new members for the 15th edition of the contest. Even though
at that time most of us were postdoctoral researchers at the University of
Liverpool, many of us have changed affiliations since then, but decided to
continue to collaborate and participate in the latest MAPC.

What is your field of research? Which work therein is related?
Our members have worked in many different areas of research, but at the
moment the intersection of the knowledge in our group relates to formal
verification and logical reasoning. Some of our members also have a strong
background on agent programming and agent-based tools, while for others
they were aware of it but did not have much experience.

6.2 Statistics

Did you start your agent team from scratch or did you build on your
own or someone else’s agents (e.g. from last year)?
Our code is based on our participation (team LFC) in the 14th MAPC.
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How much time did you invest in the contest (for programming, orga-
nizing your group, other)?
Approximately 200 h.

How was the time (roughly) distributed over the months before the
contest?
Some of the months we were able to dedicate more time to it, but there was
a spike in activity in the month before the qualification and then another one
in the month before the contest.

How many lines of code did you produce for your final agent team?
A total of 9,805 lines of code, with 3,570 lines in Java (including test files and
environment artifacts) and 6,235 lines in Jason agent code.

How many people were involved?
Our team had six members.

When did you start working on your agents?
We started working on April 7th 2020, but implementation was limited to a
couple of days during some of the months that followed.

6.3 Technology and Techniques

Did you make use of agent technology/AOSE methods or tools? What
were your experiences?

Agent programming languages and/or frameworks?
We used the Eclipse IDE with the JaCaMo plugin. Some of our members
were already familiar with it and it has performed very well in past contests.

Methodologies (e.g. Prometheus)?
We did not use any AOSE method.

Notation (e.g. Agent UML)?
We used normal UML sequence diagrams for specifying some of the protocols
we created, but without any agent notation. The sequence diagrams were
sufficient to specify what we needed.

Coordination mechanisms (e.g. protocols, games, . . . )?
Moise (part of JaCaMo) was used for the coordination of agents, especially for
task coordination. Some of our communication protocols were implemented
ad-hoc just using message passing in Jason (based on the sequence diagrams).

Other (methods/concepts/tools)?
We used the Fast-Downward planner for performing efficient AI task planning.
The planner was used off-the-shelf with no modifications required.
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6.4 Agent System Details

How do your agents decide what to do?
Our agents evaluate the beliefs coming from the server at any given step, and
based on this information they decide what is the best course of action. Their
decision can change in the middle of a step from incoming messages of other
agents in the team (e.g., requesting for help).

How do your agents decide how to do it?
Most actions are straightforward, but for long distance movement we call
an AI task planner that will plan the best route for the agent (it does so
iteratively, based on the observations of the agent on the local environment).

How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach?
Relevant team information is shared on a blackboard (CArtAgO team arti-
fact) to save communication time, but for the most part everything is decen-
tralised.

Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly.
Our agents use an AI task planner for planning their movement for any phase
that comes after the exploration phase. A Moise organisation is used to help
to coordinate the agents during task assembly and delivery.

Can your agents change their general behavior during runtime? If so,
what triggers the changes?
Our agents can be explorers, cartographers, deliverers, task origins, retrievers,
and bullies. All agents start as explorers but upon meeting certain conditions
they will swap to another role/behaviour.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
No, some small changes were attempted to improve the amount of no actions
being sent to the server, but they were unsuccessful.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience?
Due to the use of several separate tools, debugging the system proved to
be quite hard. More time spent in debugging rather than implementing new
ideas may provide better results.

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing?
We generated some useful logs that could give us an indication of what was
happening, however this should be improved in future versions of our team
as the logs used were not very intuitive.
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Did you invest time in making your agents more robust/fault-tolerant?
How?
We have formally verified the protocol we made to merge map informa-
tion [15]. Other than this we did not invest much time apart from the last few
days before the contest when we tried to make the team more fault-tolerant
towards task failures.

6.5 Scenario and Strategy

What is the main strategy of your agent team?
Three main new strategies were developed for this edition of the contest: (a) a
cartography system that can scout the map and determine the size of the grid;
(b) using cached plans that are automatically generated by an AI planner so
that our agents can efficiently move through the map; and (c) bully agents
that can disrupt the enemy team.

Please explain whether you think you came up with a good strategy
or you rather enabled your agents to find the best strategy.
There is a mix of both. For movement the agents find the best strategy, but
the strategy for task assembly remained similar to the 14th edition forming
groups of agents around a goal cluster, but this time with more groups of
agents.

Did you implement any strategy that tries to interfere with your oppo-
nents?
Yes, we had a dedicated role (called bully) that would pursue goal clusters
that were unoccupied by our team and clear any blocks from the opponents.

How do your agents decide which tasks to complete?
Our agents decide which task to complete based on the available blocks that
are positioned around an active goal cluster.

How do your agents coordinate assembling and delivering a structure
for a task?
Assembling is coordinated by an agent with the role of task origin which
orchestrates and calls the retrievers (agents with blocks) to help it assemble
a block structure. Deliverer agents are assigned to a goal cluster and remain
next to a taskboard nearby, which upon receiving a signal from the task origin
that a task has been selected it will accept the task at the taskboard and move
to the origin position to switch places with the origin agent and deliver the
task.

Which aspect(s) of the scenario did you find particularly challenging?
Because we were using an external tool for AI task planning, the most chal-
lenging aspect was to maintain good computation performance in rounds 2
and 3 (with 30 and 50 agents respectively).
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6.6 And the Moral of it is . . .

What did you learn from participating in the contest?
Caching the plans was a really interesting solution, but to be effective we
should have executed it a lot more times with 30 and 50 agents.

What advice would you give to yourself before the contest/another
team wanting to participate in the next?
Debugging and testing the code as much as possible is better than adding
new features.

What are the strong and weak points of your team?
The automated task planning component is both the strong and weak point
of our team. When we can call the planner and remain inside the deadline for
sending an action it works perfectly (e.g., round with 15 agents), but when
the necessary plans are not cached some agents do not send their actions on
time and that crashes our team (e.g., rounds with 30 and 50 agents).

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms?
Coordination was very simple to achieve with Moise, and agent programming
in Jason is straightforward if there is some previous knowledge of Belief-
Desire-Intention systems. The planner was essential for reducing the reason-
ing load of the agents.

Which problems did you encounter because of your chosen technolo-
gies?
Debugging our system was hard due to the use of multiple languages and
tools.

Did you encounter previously unseen problems/bugs during the con-
test?
Running it locally, even for 30 and 50 agents would work most of the time.
During the contest it mostly did not work, and we believe this could have
been caused by the extra latency with the communication to the server.

Did playing against other agent teams bring about new insights on
your own agents?
Yes, mostly to show us where our bugs were happening. For the most part we
tested only with a single team, since testing with two would be very strenuous
to the computer running them, and running it remotely was not feasible for
long testing sessions.

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)?
If the number of agents is this high again we would have to extensively test
the cache strategy or stop trying to use external tools, since the deadline is
too short to make proper use of them.

Which aspect of your team cost you the most time?
Adapting our past strategies to work with a large number of agents.
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What can be improved regarding the contest/scenario for next year?
More actions that support interactions between opposing teams would be
interesting (either in the next version of this scenario, or in a new scenario).

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
Our team improved in performance on the second day, despite no changes to
the code. This happened because we were able to populate the cache of plans
with real data from the previous matches.

If you participated in the “free-for-all” event after the contest, did
you learn anything new about your agents from that?
The more agents there are in the map the more problems and bugs we find.

7 Conclusion

In this paper we have described the new strategies that we developed to handle
the extensions of the “Agents Assemble” scenario in the 15th MAPC. These
strategies all contributed to our performance and resulted in our team (MLFC)
obtaining 2nd place in the contest. The increase in the number of agents made
it particularly hard to adapt our strategies, namely the use of the automated
planners, since instead of up to 10 agents calling an instance of the planner
(potentially in the same step), now we had to cope with up to 50 agents. The
use of a plan cache was a very effective solution for this problem; however, we
underestimated how much the cache could differ depending on the parameters
of the round (15, 30, and 50 agents). The use of the new ‘bully’ role contributed
a lot to keeping the score of opposing teams in check by delaying and sometimes
even annulling their attempts at assembling blocks and delivering tasks.

Most of our tests were with 15 agents, which did not build a sufficient pool
of cached plans for rounds with 30 and 50 agents. This was demonstrated by our
poor performance in the first day, when many of our agents could not access a
cached plan and had to call a new instance of the planner, and thus, overload the
processor and subsequently missing its deadline to send an action to the server.
A known issue of our base code is that if our agents miss their deadline (i.e.,
server registers no action), then it is very likely that they will stop responding
and will require to be restarted. This in turn is cascaded into another known
issue, which is that in order to restart one agent we have to restart the whole
team. Therefore, future extensions of our team for this scenario should consider
more extensive testing in rounds with 30 and 50 agents to build a better plan
cache, add fault tolerance so that agents can recover if they miss their deadline
for sending an action, and add a feature that allows individual agents to be
reconnected in case they are not able to recover.
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Abstract. This paper presents the main features and strategies of the
LTI-USP which has participated in the 2020/2021 Multi-Agent Program-
ming Contest. The team was developed using Jason programming lan-
guage, and its main feature is that agents switch between three different
behaviors during the game. We discuss the strengths and weaknesses of
our team, particularly using data from the matches that we have partic-
ipated in the Contest.
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1 Introduction

According to [1], the Multi-Agent Programming Contest (MAPC) is an annual
event whose initial objective is to provide a platform for comparing and evalu-
ating systems based on computational logic, developed primarily for knowledge
representation. This objective is achieved through a contest, where teams of
researchers design intelligent agents that must act in a given non-trivial sce-
nario. This scenario, which typically changes every two years, runs on a server
where two adversarial teams of agents connect both to receive information from
the environment in the form of perceptions and to perform actions that transform
this environment. This process of receiving perceptions and taking an action is
called a step’. Each simulation takes place over a specified number of steps, and
at the end the team that has achieved most points wins the match.

The LTI-USP has been regularly participating in the MAPC1, more partic-
ularly in 2009 (jointly with UFSC and UFRGS), 2010 [4], 2012, and 2013 [3]. In
this 2020/2021 edition, the LTI-USP team obtained the fourth place with one
victory and three losses. In this paper, we describe our strategy, our successes,
and our mistakes.

1 In 2016, our team has withdrawn.
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This paper is organised as follows. Section 2 contains the contest scenario
description, including the differences from the previous contest. We present our
team’s strategy and the agents behaviors in Sect. 3. In Sect. 4, we detail the
contest results, as well as the situations that arised during the matches. Section 6
contains the answers to the questionnaire created by the contest organisers.
Finally, we present our conclusions in Sect. 5.

2 The 2020/2021 Scenario: Agents Assemble II

The 2020/2021 edition of MAPC maintains the scenario of MAPC 2019 called
Agents Assemble, but adds new elements. In the scenario, agents on a grid must
collect blocks from dispensers and assemble them in formats defined by the
simulator to earn points.

The simulator consists of a 2D environment with a dimension not informed
to the agents. In this environment, intelligent agents can move freely and find
obstacles that block the passage. As a change in this year’s edition, there is
no longer an external limit where agents cannot pass. An agent who moves to
the edge of the environment circulates to the other side without any indication.
This change adds a new layer of complexity to the movement of the agent. If the
agent can not perceive the environment’s circularity, it can spend all the steps
exploring an environment of seemingly infinite size.

In this scenario, agents are responsible for self-organizing. They need to per-
form tasks that aim to build structures of different shapes and sizes using con-
nected blocks. These tasks can vary from one to four connected blocks. In addi-
tion, there are three different types of blocks. Each type of block is available in a
specific dispenser. Multiple dispensers are present throughout the environment,
but each dispenser only provides one kind of block. Tasks also inform how the
agents should assemble the blocks. These tasks have a limited number of steps,
where if this time passes, the task expires and can no longer be submitted.

Agents can only submit tasks within regions of the map that are called goals.
An agent must be within one of these areas connected to the correctly assembled
blocks and perform a submission action. If the task has not timed out and the
opposite team has not submitted it, the team earns points that vary according
to the number of blocks needed and the number of steps since the task started.

Another change in this year’s contest was the addition of task boards.
Although they can consult all the available tasks, an agent can only submit
a task after accepting it on one of the task boards. To do this, it must move to a
task board and perform an action of accepting a task. As each agent can handle
just one task at a time, the addition of task boards means that agents need to
move around the map to find a new task when necessary. Moreover, an agent
cannot submit a task without moving from the task board to the goal.

The challenge is therefore to design teams of agents that must organize them-
selves to accept the tasks, collect the correct blocks, assemble them, move to the
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goals and submit these tasks in order to achieve the highest number of points
within a limited number of steps2.

3 System Design

We implemented our team’s agents in Jason, that is an open-source interpreter
implemented in the Java language for an extended version of the AgentSpeak
language, developed by [2]. Jason implements the operational semantics of the
language and provides a platform for the development of multi-agent systems.
Since it is a platform designed for developing multi-agent systems, many of the
capabilities needed by agents are built into the architecture. These capabilities
include exchanging messages between agents and converting JSON messages
received from the server into perceptions. Using Jason allowed us to focus our
development on the agents’ behavior instead of technical aspects, such as com-
munication with the server. In addition to these capabilities presented, our team
members already had previous experience with Jason. Combining these capabil-
ities with our expertise has allowed us to develop the agents much faster.

In the following sections, we describe the behaviors of the agents and how
we implemented them.

3.1 Exploration

Our agents have three possible behaviors, and each agent is always performing
one of these behaviors in a particular step. These behaviors are exploration, task
achievement, and aid. The agents that are playing these behaviors are called
explorer, owner, and auxiliary, respectively.

At the beginning of the simulation, all agents start as explorer agents, as they
do not know where they are or where the other agents on the team are; they
have a limited vision over a distance of five cells. Agents do not have information
either on the locations of task boards, goals, and dispensers, as these have their
positions generated at random.

Another interesting detail of this scenario is how the agents perceive the
environment. The agents always perceive the surrounding objects with the coor-
dinates relative to the agents’ current position. As an example, in Fig. 1, the
lighter area around the agent indicates the range of its vision. In this example,
this agent perceives the task board at (−1, 0) coordinates (horizontal and verti-
cal) and does not perceive the enemy team’s agent, as it is not within its vision
range.

As the agents have a restricted view, the agent must remember what it has
already found so it can return to points of interest when necessary. As the agent
receives perceptions with coordinates related to its current position, we have
created a new coordinate system for each agent, called absolute coordinates.
This coordinate system is different for each agent, as it’s origin coordinate (0, 0)

2 In the 2020/2021 competition, this limit was 750 steps.
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Fig. 1. An agent perceiving a task board.

is the cell in which the agent started the simulation. The agent then stores a
belief that symbolizes its current coordinate, and each time it moves, the agent
updates this belief.

Thus, we adopted a memory strategy where each agent stores the position of
the elements it has already found (dispensers, task boards, goals) according to
the distance from its initial position. As an example, suppose that the agent has
an absolute position belief (5, 8). This belief indicates that the agent is five cells
to the east and eight cells to the south from where it started the simulation. In
the case of Fig. 1, this agent receives from the simulator a perception that there
is a task board in relative coordinates (−1, 0), that is, one cell to the west of
where it is now. This agent then creates a persistent belief that there is a task
board at absolute coordinate (4, 8). With that, in the future, it will always be
possible to return to this task board.

The agents’ exploration strategy then consists of moving around the map
recording the perceptions regarding task boards, dispensers, and goals. We
decided to store the positions of these three points of interest because they
do not move during the simulation. Obstacles, on the other hand, are created
and removed randomly during the simulation. Also, there is no reason in our
strategy for an agent to move to an obstacle. Therefore, we decided not to store
the obstacle positions.

Each agent, when started, randomly chooses a direction (north, south, east,
and west). The agent then starts moving in that direction in a straight line and
only changes direction in three cases. The first case is when this agent finds
something in its path that prevents it from continuing (i.e., another agent or an
obstacle). The second case is a random change of direction. At each step, the
agent has a 1% chance to change direction randomly. We inserted this behavior to
prevent agents from exploring the same place indefinitely since the environment
is circular. The third case is when the agent exceeds the exploration limit. As a
second way to avoid an infinite exploration of the environment, we define that
each agent cannot explore cells that would be more than 100 cells away from
its point of origin. In any of the three cases, the agent randomly chooses a new
direction and continues to explore.
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3.2 Agent Identification

As described in Sect. 3.1, each agent stores information about the environment
through an absolute coordinate system based on its point of origin. As each agent
starts the simulation in a different cell, the same dispenser will be in a different
coordinate for each agent. Despite this, agents need to inform each other the
location of the dispensers, task boards, and goals that they have discovered,
since this exchange would speed up the process of exploring the environment.
To do such a knowledge exchange, we have designed a mapping system. In this
system, an agent can translate positions to the coordinate system of the other
agent.

This task is more difficult because when an agent perceives another agent
within his view range, the only information it receives about that agent is to
which team it belongs. In other words, an agent has no way of knowing through
its perception which one is the other agent that it is perceiving. This identifica-
tion is needed so that the agent can make the mapping calculations.

To solve both the problem of identifying agents and generating the necessary
mapping to transfer knowledge, we developed a strategy for communicating per-
ceptions. Whenever an agent receives a perception informing that it is seeing
another agent on the same team, this agent communicates to all other agents
that it is perceiving an agent in the respective position and also communicates
its current absolute position.

Let us take as an example the situation presented in Fig. 2. In this figure, we
can see that agent12, which is in the center of the image, receives a perception
that there is an agent in the coordinates (−2, 1), that is, two cells to the west and
one to the south. As soon as the agent receives this perception, it permanently
stores the information that, in the current step, it was in a certain absolute
position and noticed an agent in the coordinates (−2, 1). If we assume that this
is step number 40 and the agent has an absolute position belief (5, 8), the agent
generates a belief entity(-2,1,5,8,40). Likewise, the agent sends a message to all
other agents with this information. In our example, all other agents would receive
a message entityMessage(agent12, -2,1,5,8,40).

Fig. 2. Two agents recognize each other.
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Agent6, who in our example perceived and was perceived by agent12, per-
formed the same procedure as agent12. With this, each agent now has two beliefs
related to the agents’ position in step 40. One of the beliefs generated by itself
and the other was received by a message from the other agent. In the same
example, we can assume that agent6 has an absolute position belief (13,−2),
meaning that agent6 is thirteen cells to the east and two cells to the north of
its initial position. After exchanging messages, agent12 would have the following
beliefs in his belief base:

entity(−2, 1, 5, 8, 40)
entityMessage(agent6, 2,−1, 13,−2, 40)

Similarly, agent6 would have the following beliefs in its belief base:

entity(2,−1, 13,−2, 40)
entityMessage(agent12,−2, 1, 5, 8, 40)

Notice that the positions are shifted because agent12 perceives agent6 two
cells to the west and one to the south, while agent6 perceives agent12 two cells
to the east and one to the north. Based on this information, each agent can
create a position mapping for the other agent’s coordinate system. The agents
calculate this mapping through Eq. 1.

XMapper = XSenderPos − (XAgPos + XDistance)
YMapper = YSenderPos − (YAgPos + YDistance)

(1)

In our example, for agent12, XSenderPos and Y SenderPos are the absolute
position of agent6, whose value is (13,−2). XAgPos and Y AgPos are the abso-
lute position of agent12, whose value is (5, 8). Lastly, XDistance and Y Distance
are the relative position of agent6 that was perceived, which equals (−2, 1).
Applying the formula, we have XMapper = 10 and YMapper = −11.

After calculating the mapping values, agent12 can inform agent6 of the posi-
tion of the task board that it is perceiving. As we can see in Fig. 2, the task board
is three cells north of agent12. Therefore, it is in the relative position (0,−3).
As described in Sect. 3.1, the agent stores the task board position using absolute
coordinates. Since in the example, agent12 is in the absolute coordinate (5, 8),
this task board will be in the coordinate (5, 5). In order to communicate the
position of this task board to agent6, agent12 sends the absolute position (5, 5)
and adds the calculated mapping values (5 + 10, 5 + (−11)), that is, (15,−6).
This calculated value, when received by agent6, will correspond to the absolute
position of the task board in its coordinate system. One may verify that this
calculation is correct by calculating this value for agent6. Knowing that the cur-
rent absolute coordinates of agent6 in the example are (13,−2) and that the
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task board is two cells to the east and four cells to the north (2,−4), we have
that the task board coordinate is (13 + 2,−2 + (−4)), which corresponds to the
value (15,−6) communicated by agent12.

It is through this calculation that agents exchange all coordinates. Each time
an agent finds a new place of interest, it communicates its position to all agents
whose mapping it knows. Similarly, when the agent calculates a new mapping,
it sends the coordinates of all points that it knows to the recognized agent.

All these calculations, however, are not useful if the agent is unable to iden-
tify which agent it is currently perceiving. In order to be able to identify which
agent was perceived, the agent searches among the received messages if any
messages are containing the reverse position to which it has perceived. In the
example above, agent12 perceived an agent at (−2, 1) and received a message
from agent6 that perceived an agent at (2,−1). A problem that can occur dur-
ing this identification is that multiple agents may perceive each other in similar
positions simultaneously. It is possible, for example, that there are other agents
in another area of the environment that are perceiving themselves in the coordi-
nates (−2, 1) and (2,−1). If this happened in our example, agent12 would have
received two messages with the coordinates (2,−1) and would have no way of
knowing which of the two agents it was perceiving. For this reason, the map-
ping is calculated only if the agent receives exactly one message with the reverse
position that it has perceived.

This behavior generates a second problem, which occurs due to the function-
ing of Jason’s architecture. In Jason’s architecture, only one message is evaluated
per reasoning cycle. Due to the abundance of exchanged messages, the agent can
take several reasoning cycles to process messages from all agents. For this rea-
son, after empirical experiments, we defined that a 5-step delay of the simulator
would be necessary before starting the mapping process. This delay means that
when the agent receives information from the simulator that a new step initi-
ated, the agent analyzes its position and the messages received from other agents
referring to five steps before. In our example, the agents perceived and commu-
nicated in step 40, but they would only analyze this information and calculate
the mapping in step 45 of the simulator.

3.3 Task Owners and Auxiliary Agents

As defined in Sect. 3.1, our agents have three behaviors. All agents start the sim-
ulation as explorer agents to find task boards, dispensers, and goals, as described
in Sect. 3.1 and to identify other agents and calculate mappings, as defined in
Sect. 3.2.

This behavior changes when the agent gets enough information from the
environment. At this point, the agent becomes an owner agent. We present the
code section responsible for this verification in Algorithm 1. As soon as the agent
has in its belief base the positions of at least one dispenser of each type (lines
3, 4, and 5), a task board (line 6), a goal (line 7), and a mapping to at least
two free agents (lines 10 and 11), it is eligible to become an owner agent. We
fixed, however, a limitation on the maximum number of owner agents, which
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is one-third of the total number of agents on the team. This limitation serves
to have enough auxiliary agents to complete the tasks since owner agents are
responsible for coordinating auxiliary agents for the task achievement.

When conditions are true, and the agent executes the plan, it informs the
other agents that it is now an owner agent (line 14) and stores that same infor-
mation in its belief base (line 15). Then, the agent verifies the number of owner
agents. If it is greater than one-third of the total number of agents, the agent
sends a message to all agents, creating a belief informing them that no other
agent can become an owner agent.

During the development, we first tried to count the number of owner agents,
similarly to lines 16 and 17, in the preconditions. However, we noticed that
this verification was computationally very expensive. As the agents’ belief base
increased, counting how many agents were owners became more and more costly.
As the simulation reached about 200 steps, the agents could not execute any
actions anymore before the pre-defined time limit. We then implemented a small
change moving the agent verification to the plan (lines 16 and 17) and added a
belief the agent could quickly access in line 2. By making this small change, we
drastically reduced the agents’ response time.

Algorithm 1. Role switching algorithm (from Explorer to Owner).
1: +!randomWalk :
2: not noMoreOwners&
3: dispenser( , , b0)&
4: dispenser( , , b1)&
5: dispenser( , , b2)&
6: taskboard( , )&
7: goal( , )&
8: .all names(AllAgents)&
9: .length(AllAgents,AgentAmount)&

10: .count(mapper(AgentName, , )&
not taskowner(AgentName)&
not auxiliar(AgentName, ), AvailableAgents)&

11: AvailableAgents > 1&
12: .my name(MyName)&
13: not auxiliar(MyName, )
14: < −.broadcast(tell, taskowner(MyName));
15: +taskowner(MyName);
16: .count(taskowner(Owner), TaskOwnerAmountNew);
17: if(TaskOwnerAmountNew >= (AgentAmount/3)){
18: .broadcast(tell, noMoreOwners);
19: .print(”noMoreOwners”);
20: }
21: !!achieveTask.
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Once an agent becomes an owner agent, it moves to the nearest task board
and accepts a task. We detail the task selection method in Sect. 3.4. Depending
on how many blocks are needed to submit the task, the agent executes a different
strategy.

In the simplest case, only one block is needed in the task. The owner agent
then moves to the nearest dispenser that provides the necessary block, takes the
block, moves to the nearest goal area, and tries to submit the task. If the owner
agent succeeds, it restarts the process by going to the nearest task board. If this
task has already been completed by the opposing team, the agent destroys the
block with a clear action and restarts the process.

In cases where more than one block is required in the selected task, the owner
agent requests assistance from explorer agents with whom it has a calculated
mapping. Once these agents agree to help, they become auxiliary agents. For
each additional block, the owner agent asks an agent for help. Therefore, if a
task needs two blocks, the owner agent collects one block and an auxiliary agent
the other block. In tasks with three blocks, the owner agent asks for help from
two auxiliary agents, where each one is responsible for collecting a block.

When the agent owner confirms the agents’ assistance, it chooses the nearest
goal and calculates the position of the blocks according to the selected task.
Aiming to reduce collisions among agents, we defined that owner agents can
only occupy the corners of the goal area. We illustrate this concept in Fig. 3,
where agent26, who is the owner agent, is occupying a cell in the corner of the
goal area.

The owner agent, through the use of the mapping, communicates to the
auxiliary agents three pieces of information: (i) which block they should collect,
(ii) where they should position themselves, and (iii) where they should position
the block.

Fig. 3. Two agents preparing the blocks for submission.

At this point, all agents involved in the task (owner and auxiliaries) search
for the designated blocks in the nearest dispenser and go to the defined place.
When the owner agent positions itself, it sends messages to the auxiliary agents
to connect the blocks in the correct order, and once assembled, the owner agent
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submits the task. Regardless of the success or failure of the task submission,
auxiliary agents become explorer agents again and communicate to all agents
that they are free to assist in new tasks. In tasks with multiple blocks, the owner
agent destroys all the blocks if the task fails. The owner agent then restarts the
achieving cycle.

3.4 Task Selection

One of the characteristics of the tasks is the existence of a deadline for their
submission. Each task has a step limit, after which it is no longer possible to
submit it to earn points. During development, our agents frequently exceeded
this limit. The greater the number of needed blocks, the greater the chance of a
problem occurring and, consequently, the greater the risk of the agents exceeding
the deadline. Also, as the opposing team seeks to achieve the same tasks, the
older the task, the greater the chance of the opposing team submitting it. For
these reasons, we decided to prioritize tasks based on their creation step and
how many blocks are needed. We present the code section responsible for the
task selection in Algorithm 2.

We consider “a task of size n” as a task that needs n blocks to be delivered.
We found during development that agents were able to submit tasks of size 2
consistently. Tasks of size 3 failed occasionally. On the other hand, tasks of size 4
constantly failed. For this reason, we decided that our agents would not attempt
to achieve tasks of size 4, as it would be more beneficial if the four required
agents were seeking to accomplish two different tasks of size 2, which would
have a much greater chance of success.

When an agent arrives at the task board, it analyzes the task list from the
most recently created task. This analysis is possible because task names have a
sequential index. The first task created by the simulator is called “task1”, the
second “task2”, and so on. When analyzing the list, the owner agent creates
its own list of tasks (Lines 2 to 7). This new list is created by removing from
the task list received all the tasks that other owner agents are already trying to
achieve (Line 3) and all tasks of size 4 (Line 7). Removing the tasks selected by
other agents is important so that there are not multiple agents trying to achieve
the same task. The owner agent then searches in the three most recent tasks
(with the highest index) for a task of size 2 (Lines 25 to 36). If such a task
exists, the most recent task of size 2 is selected (Line 33). In case there are no
tasks of size 2 among the three most recent tasks, the agent chooses the most
recent task available (Lines 23 and 39). If there are no tasks that the agent can
select, the agent waits on the task board until one appears (Lines 8 to 11). Once
performed the selection, the owner agent communicates to all other agents the
selected task.

We illustrate this concept in Fig. 4. When Agent1 needs to choose a task,
it consults the three most recent tasks with a size smaller than 4 that are not
selected by other agents. In the example, these would be tasks with names task3,
task5, and task6 (task4 is not evaluated due to its size). As one of these tasks
has a size of 2 (task3), the agent accepts this task and communicates to the



118 M. F. Stabile Jr. and J. S. Sichman

Algorithm 2. Task selection algorithm.
1: +!getTask
2: < −.findall(IntTaskNumber, task(TaskName, , , TaskRequirements, )&
3: not acceptedTask( , TaskName)&
4: .delete(”task”, TaskName, TaskNumber)&
5: .term2string(IntTaskNumber, TaskNumber)&
6: .length(TaskRequirements, TaskReqLen)&
7: TaskReqLen < 4, TaskNameList);
8: if(.empty(TaskNameList))
9: {

10: !performAction(skip);
11: !getTask;
12: }
13: else{
14: .sort(TaskNameList, SortedTaskNameList);
15: .reverse(SortedTaskNameList, ReversedTaskNameList);
16: !getNthTask(0, TaskNameList, SelectedTask);
17: !performAction(accept(SelectedTask));
18: .term2string(SelectedTaskTerm, SelectedTask);
19: !verifyAccepted(SelectedTaskTerm);
20: }.

21: +!getNthTask(3, TaskNameList, Task)
22: < −.print(”Size 2 task not found”);
23: .max(TaskNameList, TaskNumber);
24: .concat(”task”, TaskNumber, Task).

25: +!getNthTask(N,TaskNameList, Task)
26: : .length(TaskNameList, Len)&Len > N
27: < −.nth(N,TaskNameList, TaskNumber);
28: .concat(”task”, TaskNumber, TaskName);
29: .term2string(TaskNameTerm, TaskName);
30: ?task(TaskNameTerm, , , TaskRequirements, );
31: if(.length(TaskRequirements, TaskLen)&TaskLen == 2){
32: .print(”Size 2 task found”);
33: Task = TaskName;
34: }else{
35: !getNthTask(N + 1, TaskNameList, Task);
36: }.

37: +!getNthTask(N,TaskNameList, Task)
38: < −.print(”Size 2 task not found− insuficcient length”);
39: .max(TaskNameList, TaskNumber);
40: .concat(”task”, TaskNumber, Task).
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Fig. 4. Task selection strategy.

other agents that it will try to achieve it. At a later time, Agent2 also needs to
choose a task. The agent then consults the three most recent tasks excluding
either task4, due to its size, and task3, as there is already an agent working on
it. The agent, therefore, evaluates the tasks named task6, task5, and task2. As
none of them are size 2, the agent selects the most recent task, which is task6.

3.5 Path Planning

As explained in Sect. 3.3, agents must constantly move to specific locations on
the map. If an agent needs to collect a block, it must move to the exact place
where the dispenser is. Likewise, an owner agent needs to be within a goal area
to submit a task. The efficient movement of agents is a factor of great importance
as it increases the chances of successfully submitting a task.

We created two movement strategies. The first strategy is for situations when
the agent is not carrying a block and the second for when it is. Having two
strategies is necessary because when the agent moves with a block, the agent
needs to constantly check if something will prevent the movement of the block
and if there is enough space to move.

Moving Without a Block
The agent movement when it does not carry a block is straightforward. The first
step is to verify if the agent needs to move horizontally. The agent needs to move
when its current coordinate on the horizontal axis is different from the destina-
tion’s horizontal coordinate. If it is different, the agent moves horizontally until
its horizontal coordinate is equal to the destination’s horizontal coordinate. An
example would be an agent in coordinate (7, 8) that needs to move to the Task
Board in coordinate (14, 6). The agent’s first step is to move east to coordinate
(14, 8). If there are not any obstacles, the agent will execute a sequence of move-
ment actions to the east until reaching the position (14, 8). There are, however,
a lot of obstacles, agents, and blocks in the environment that can prevent an
agent from moving. For this purpose, we implemented a detour mechanism in
the agents, where it diverts from any cells in which it can not pass. This mech-
anism works by maintaining a memory of which direction the agent wanted to
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move. In the previous example, the agent wants to move east from coordinate
(7, 8) to the coordinate (14, 8).

We illustrate one of the most troubling movement cases in Fig. 5. In the
example, the cells colored in black are obstacles, and as soon as the agent goes
through the opening in coordinate (9, 8), it can not simply divert north or south
to arrive at its destination. The only way the agent can move east is by returning.
In this type of situation, a movement memory is valuable. We can describe our
agents’ movement strategy through three behaviors:

– When the agent can not move to the desired direction, it adds the
direction to the Direction Stack and changes its orientation clockwise.

– When the agent can move to the desired direction, and there is
something in the direction stack, it removes the topmost direction in the
Direction Stack and changes orientation to the removed direction.

– When the agent can move to the desired direction, and the Direc-
tion Stack is empty, the agent moves to the destination.

Fig. 5. Movement strategy.

We detailed in Table 1 the steps performed by the agent to complete the
deviation shown in Fig. 5. When our agents need to move in a direction and
find an obstacle, the agents push to the Direction Stack, a stack data structure,
the information on which direction they were following. This behavior is visible
in Line 5, Line 7, Line 8, among others. Then the agent tries to move to the
next direction clockwise. When the agent manages to move, it removes from
the Direction Stack the topmost information and tries to move in that direction
again. This behavior is present in Line 6, Line 9, and Line 12, for example. When
Direction Stack is empty, and there are no obstacles, the agent moves in the
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original direction. In this example, direction east. We can see this movement on
Lines 1 to 4 and Lines 21 to 26. Notice that the agent did not finish its movement
in coordinate (14, 8), as was the initial objective, but in the coordinate (14, 11).
This discrepancy, however, is not problematic. As stated earlier, the agent’s
goal is to reach a cell where its horizontal coordinate is the same as the final
destination. Once the agent has arrived, it applies the same method to arrive
at the destiny vertical coordinate. In Fig. 5, this movement corresponds to the
dashed portion of the path. We do not detail this section of the path as the agent
performs it in the same way as the horizontal movement.

Table 1. Agent moving strategy for Fig. 5 scenario.

Line Coordinate Verification Result Direction Stack Action Next Direction

1 (7,8) move(east)? true [] move(east) east

2 (8,8) move(east)? true [] move(east) east

3 (9,8) move(east)? true [] move(east) east

4 (10,8) move(east)? true [] move(east) east

5 (11,8) move(east)? false [east] - south

6 (11,8) move(south)? true [] move(south) east

7 (11,9) move(east)? false [east] - south

8 (11,9) move(south)? false [east,south] - west

9 (11,9) move(west)? true [east] move(west) south

10 (10,9) move(south)? false [east,south] - west

11 (10,9) move(west)? false [east,south,west] - north

12 (10,8) move(north)? true [east,south] move(north) west

13 (10,8) move(west)? true [east] move(west) south

14 (9,8) move(south)? false [east,south] - west

15 (9,8) move(west)? true [east] move(west) south

16 (8, 8) move(south)? true [] move(south) east

17 (8,9) move(east)? false [east] - south

18 (8,9) move(south)? true [] move(south) east

19 (8,10) move(east)? false [east] - south

20 (8,10) move(south)? true [] move(south) east

21 (8,11) move(east)? true [] move(east) east

22 (9,11) move(east)? true [] move(east) east

23 (10,11) move(east)? true [] move(east) east

24 (11,11) move(east)? true [] move(east) east

25 (12,11) move(east)? true [] move(east) east

26 (13,11) move(east)? true [] move(east) east

27 (14,11) - - [] - -

Moving with a Block
When the agent needs to move while carrying a block, the basis of the strategy
remains the same. The agent moves first horizontally and then vertically, also
using the detour mechanism with the Direction Stack. The difference is in the
care that the agent needs to have with the block. When an agent moves, it needs
to check if the position for which it will move is free and also if the position for
which the block will move is free. Another interesting situation is when the agent
needs to move in the same direction as it is holding the block. In cases where the
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agent is not carrying a block, attempting to move to a cell that contains a block
would fail. In cases where the agent moves to the cell where the carried block is,
the movement is valid because the block will also move. We had to modify the
movement mechanism to take these differences into account.

The first modification aims to allow the agent to know where is the block
it is carrying. As soon as an agent connects to a block, it creates a belief that
informs it where this block is. If an agent connects to a block in its north, the
agent generates the belief carrying(0, -1), for example. This belief is updated
when the agent performs a rotation action, to reflect the new orientation of the
block.

Having the information of the exact position of the block, we modified the
movement behaviors of the agents. We can describe our agents’ movement strat-
egy when carrying blocks through four behaviors:

– When the agent can not move to the desired direction, it adds the
direction to the Direction Stack and changes its orientation clockwise.

– When the agent can move to the desired direction, but the block can
not, the agent performs a rotation operation to allow the block movement.

– When both the agent and the block can move to the desired direc-
tion, and there is something in the direction stack, it removes the top-
most direction in the Direction Stack and changes orientation to the removed
direction.

– When both the agent and the block can move to the desired direc-
tion, and the Direction Stack is empty, the agent moves to the destina-
tion.

The rotation operations of the block are considerably simple when compared
to the movement operations. When the block needs a rotation, the agent identi-
fies a direction that is free and rotates clockwise or counterclockwise to position
the block in a way that movement becomes possible.

3.6 Achieving Tasks After Unexpected Events

The scenario proposed by MAPC is competitive and highly dynamic. For these
reasons, one of the most prominent difficulties is to ensure that the agents can
perform the defined strategies as planned. During the development of the agents,
we perceived some recurring situations that led to failures in the task submis-
sion process, and we implemented modifications to correct problems when they
emerged.

The simulator randomly creates what is called a “clear event.” These events
mark a random-sized area on the map and perform a “clear action” on it. This
action disables all agents in the area, erases all blocks in it, and changes obstacles
locations in the area and its surroundings. This event is particularly problematic
when an agent carries a block to a goal area, and the event erases this block.
Another similar situation is that of an opposing agent that uses an action to
erase the block carried by the agent. To troubleshoot this kind of problem, an
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agent that moves with a block constantly checks if it still exists. This verification
uses the perceptual information on the block and the belief described in Sect. 3.5
that informs the agent where the block is. If the agent has the belief but does not
perceive the block, it was erased. In this case, the agent interrupts its movement
and moves toward the dispenser to get a new block.

As described in Sect. 3.3, the owner agent chooses the cell where it will meet
the auxiliary agents the moment it selects a task. Due to the highly dynamic
nature of the environment, there is no way to ensure that the agents will be able
to assemble the blocks in the selected place. Two problems can result in this
type of situation. The first is when the cell that the agent chose is not available.
The second problem is when there is not enough space to set up the structure
of the task. For this reason, the owner agent performs these two checks when
it arrives sufficiently close to the cell (to the point of receiving its perceptions).
If the agent notices one of these situations, it seeks another unoccupied cell as
close as possible and communicates to the auxiliary agents the new coordinates.

As agents only perform the mapping calculation described in Sect. 3.2 when
they meet, there may be two owner agents that have no mappings among them.
In this case, an agent cannot inform the other where it will assemble the blocks as
it does not know the coordinate system of the other. This lack of communication
can cause two agents to select the same cell to assemble their blocks. With the
behavior described above, the owner agents can solve this situation. However,
while this situation happens, auxiliary agents may end up disturbing and causing
a task to take longer to complete. Consider an example where agents agent1 and
agent3 are owner agents and agents agent2 and agent4 are auxiliary agents. In
this example, agent2 is assisting agent1, and agent4 is assisting agent3. As
agents agent1 and agent3 did not recognize each other, they can not exchange
information. Both agent1 and agent3 choose the same cell to set up the structure
of their tasks. The four agents seek the required blocks and head to the appointed
place. If agent1 arrives first and verifies that the conditions of the space are
correct, it then waits for agent2 to arrive. The following agent to arrive at the
place is agent4, which assumes its position designated by agent3. When agent2
arrives, it can not connect its block to agent1 because agent4 is in the cell that
agent2 should occupy. The agents stay in a deadlock until agent3 verifies that
the cell is occupied and communicates a new location to agent4. As unlikely
as this situation may seem, it happened several times during the development
of the agents of our team. To avoid circumstances like this, we defined that
auxiliary agents should wait for the owner agent before positioning themselves.
After collecting the block in the dispenser, the auxiliary agents move to the
position assigned by the owner agent. However, when they arrive at a cell that
is at a five cell distance from their destiny, they stop. Auxiliary agents only
approach the designated cell after receiving a message from the owner agent
informing that it is positioned and ready to assemble.
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4 Match Analysis

Five teams competed in the 2020/2021 edition of the Multi-Agent Programming
Contest: FIT BUT, GOAL-DTU, MLFC, LTI-USP, and Jacamo Builders. This
edition’s winning team was FIT BUT, with ten victories. Our strategy gave us
three victories and nine defeats, which yielded the fourth placement.

We present the final score of each team in Table 2. In the contest, each team
disputed one match against every other team. Each match is composed of three
simulations. In simulation 1, each team uses 15 agents. In simulation 2, each
team has 30 agents, and in simulation 3, each team has 50 agents. Each simula-
tion happens in an environment where the agents of the two teams attempt to
simultaneously complete the tasks generated by the simulator to earn points. At
the end of 750 steps, the team that gained more points wins the simulation. A
victory in a simulation awarded three points, and a tie awarded one point.

Table 2. Total score of each team.

Placement Team Score

1 FIT BUT 30

2 GOAL-DTU 22

2 MLFC 22

4 LTI-USP 9

5 JaCaMo Builders 6

In this section, we examine the very different strategies proposed by each
team. Also, we describe the problems our agents presented during the contest
and the results of our matches.

4.1 LTI-USP vs. GOAL-DTU

GOAL-DTU agents use a strategy where as soon as the agent sees a dispenser,
it picks up two blocks from it and starts to carry them. When agents decide to
achieve a task, they release unnecessary blocks and move the required blocks
to a goal area. While moving, one of the agents passes through the task board
and accepts the task. This strategy causes the agents to deliver some tasks very
quickly, depending on the location of the agents. An example of this was a task
submitted in Simulation 2 that yielded 52 points, more than half of the total
obtained in any simulation. One similarity between team strategies is that as
well as our agents, GOAL-DTU agents do not try to ride structures that need
four blocks.

An interesting situation happened in Simulation 1, where our agents were
able to submit five tasks while the GOAL-DTU agents only submitted four.
Because the GOAL-DTU agents always carry two blocks, they often needed
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only two agents to complete tasks of size 3. This difference allowed their agents
to complete big-sized tasks faster than our agents, earning them more points
while completing fewer tasks.

An atypical situation took place in Simulation 3, where GOAL-DTU agents
did not accept any task. As a result, our agents completed more tasks which
reflected in increasing the score of our team.

At some point in the three simulations, our agents froze. This freezing is
something that had not happened during development and took us by surprise.
We had to restart the agents, and this ended up damaging their performance.
The agents had to repeat the entire exploration procedure, losing many steps
from the simulation. Also, some agents stood with blocks attached to them after
the restart. Since we haven’t prepared the agents for this scenario, they tried to
follow the strategy as if the block did not exist. The attached blocks made the
agents have many problems moving and completing tasks.

We show the number of points obtained by the teams in each of the simula-
tions in Table 3.

Table 3. Results of the match vs GOAL-DTU.

Team Sim 1 Sim 2 Sim 3

LTI-USP 16 14 38

GOAL-DTU 65 100 0

4.2 LTI-USP vs. JaCaMo Builders

After the freezing problem occurred with the agents in the previous match, we
tried to verify what we could do to prevent the situation from repeating. Between
matches, we implemented a quick fix so that the agents would release the blocks
after restarting. This fix would avoid agents being stuck with blocks, allowing
them to move and work on the tasks as expected.

During simulation 1, we realized that the agents were not able to complete
the tasks. Since we could not see what was happening to the agents, we took
some time to acknowledge there was a problem. Therefore, we made no points in
this simulation. We attributed this problem to the recent update in the agents’
source code and reversed the changes. In Simulation 2 and Simulation 3, we used
the same source code used against GOAL-DTU. We again had the same freezing
problems for the agents. However, we managed to make enough points before
this happened to secure the two victories.

We could not identify the strategy used by the Jacamo Builders team. During
the three simulations, their agents only completed tasks of size 1, which gave
them few points. Also, some agents carried four blocks at the same time. This
strategy makes it very difficult for the agents to move.

We show the number of points obtained by the teams in each of the simula-
tions in Table 4.
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Table 4. Results of the match vs JaCaMo Builders.

Team Sim 1 Sim 2 Sim 3

LTI-USP 0 20 38

JaCaMo Builders 8 10 10

4.3 LTI-USP vs. FIT BUT

After the match against the team Jacamo Builders, we had almost a whole day
before the match against the FIT BUT team. In this period, we tried to identify
the cause of the agents’ freezing. Unfortunately, we could not find an answer.
Therefore, we implemented and extensively tested a method for the agents to
destroy the blocks they were carrying after the restart. With this updated code,
we started the second day of the contest.

FIT BUT team agents take a block from the first dispenser they find and stay
with it. The agents then accept tasks based on the blocks they already possess.
That is, an agent will only accept a task whose initial block is the one they are
carrying. Already owning the blocks results in an assembly process that is much
faster than ours. Another optimization in the FIT BUT agents is that the agents
can identify the closest agent possessing the required block. Once identified, the
agents move one towards the other and connect the blocks where they meet.
Once the structure is complete, the agent moves to the goal area and submits
the task.

An interesting feature of the strategy is that multiple agents can try to reach
the same task simultaneously. When an agent is trying to complete the task and
another agent completes it before, the agents are able to reuse the blocks they
already have connected to complete tasks in the future, further increasing the
speed with which they submit the tasks.

FIT BUT agents do not select either tasks of size 4, like our agents and
GOAL-DTU agents. Because of their high efficiency in the assembly and sub-
mission, their agents submitted many tasks before our agents, which made us
obtain very few points.

We show the number of points obtained by the teams in each of the simula-
tions in Table 5.

Table 5. Results of the match vs FIT BUT.

Team Sim 1 Sim 2 Sim 3

LTI-USP 16 10 0

FIT BUT 185 148 314
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4.4 LTI-USP vs. MLFC

After an exploration phase, MLFC agents would position an agent in the goal
area and multiple agents around it with a block each. This agent in the goal area
receives the blocks from the agents around it and assembles the task. While the
other agents assemble the task, the first agent to deliver a block to the agent in
the goal area moves to the task board and accepts the corresponding task. This
agent then returns, receives the assembled blocks, and submits the task.

MLFC agents were the only ones to assemble and submit tasks of size 4.
This possibility provided them many points since none of the other teams would
deliver a task of this size before them. Also, always having the blocks positioned
near the goal area made the assembly much quicker, yielding more points. A
disadvantage of this strategy is that the agents could work on only a few tasks
in parallel. In Simulation 1, only one agent positioned itself in the goal area,
which resulted in the assemble of only one task at a time. The team had many
agents that were only waiting, which wasted part of the team’s potential.

Our team was not able to compete with the speed with which they assembled
tasks. However, since the agents only did few tasks simultaneously, our agents
could assemble and deliver the other tasks in which MLFC agents were not
working.

We show the number of points obtained by the teams in each of the simula-
tions in Table 6.

Table 6. Results of the match vs MLFC.

Team Sim 1 Sim 2 Sim 3

LTI-USP 16 38 8

MLFC 160 195 235

5 Conclusion

In this paper, we have described the strategies used by our team (LTI-USP)
in the 2020/2021 MAPC. We employed Jason agents to collect, assemble, and
submit the contest’s tasks. Our agents create an individual map based on their
point of origin and use a mapping system to communicate positions to other
agents. Some agents, to which we have given the name of owners, are responsible
for picking up tasks in the task boards and coordinating with other agents to
assemble the task structures and submit them to earn points.

Our strategy made us have three victories, reaching the fourth position.
Although we did not have a good performance in the contest, it is gratifying
to see that the agents could perform the defined strategy.

The current MAPC scenario is quite complex, and we learned that multi-
ple strategies are possible. We hope to use the obtained experience to conceive
even better agents in the next edition. Among the possible strategy changes, we
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believe that having all the blocks brought by auxiliary agents would decrease the
number of steps needed for assembly. This modification could be even more effi-
cient if these agents have already collected the blocks before the task is accepted.

6 Team Overview: Short Answers

6.1 Participants and Their Background

What was your motivation to participate in the contest?
Our motivation was to build a set of agents that acted in a sufficiently complex
environment to validate the results of other researches carried out by the
authors in the area of Belief-Desire-Intention architectures.

What is the history of your group? (course project, thesis, . . .)
Marcio F. Stabile Jr. is a candidate for a Ph.D. in Computer Science at the
University of São Paulo and Jaime S. Sichman is his advisor.

What is your field of research? Which work therein is related?
Both authors research the area of cognitive agents, in particular, BDI agents.
We are currently working on novel ways of executing the BDI reasoning cycle.

6.2 Statistics

Did you start your agent team from scratch or did you build on your
own or someone else’s agents (e.g. from last year)?
Our group built the agents from scratch. The only section of code that was
not implemented by our group was the environment, which was provided by
the MAPC organizers.

How much time did you invest in the contest (for programming, orga-
nizing your group, other)?
A rough estimate would be 400 h used in the design and programming of the
agents.

How was the time (roughly) distributed over the months before the
contest?
The development started in September 2020 and was completed in January
2021. The time was evenly divided throughout the period.

How many lines of code did you produce for your final agent team?
The code of the agents who participated in the contest has 1985 lines.

How many people were involved?
Both authors were involved in the design, and Marcio F. Stabile Jr. imple-
mented the agents.

When did you start working on your agents?
The design of the agents began in September 2020.
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6.3 Technology and Techniques

Did you make use of agent technology/AOSE methods or tools? What
were your experiences?
As we plan to use the agents in our research, we only used the Jason framework
to develop it.

Agent programming languages and/or frameworks?
We used the Jason framework for creating and running the agents.

Methodologies (e.g. Prometheus)?
We did not use any agent development methodology present in the literature.

Notation (e.g. Agent UML)?
We did not use any agent notation described in the literature.

Coordination mechanisms (e.g. protocols, games, . . . )?
The agents communicate and coordinate through Jason’s message system.

Other (methods/concepts/tools)?
No.

6.4 Agent System Details

How do your agents decide what to do?
The agents decide what to do based on the information they have about the
environment, the messages they receive from other agents, and the role they
are currently playing.
Explorer agents move randomly in search of new information about dis-
pensers, goals, and task boards and, mainly, seek to recognize the team’s
agents so that they can work together.
Agents playing the role of owners go to the nearest task board in search of
tasks. If the task needs more than one block, it asks for help from auxil-
iary agents so that each one takes a block from the respective dispenser. The
owner agent then goes to a goal area where it waits for the auxiliary agents
to assemble the blocks and submit the task.
Finally, auxiliary agents are explorer agents who, as soon as they receive
communication from owner agents, go to the nearest dispenser to take the
requested block to the owner.

How do your agents decide how to do it?
The agents decide how to complete their tasks according to the information
they have about the environment.
Exploiting agents communicate only new information to other agents and
move in the same direction until they perceive an obstacle.
When choosing a place to assemble the blocks, owner agents, look for the
nearest goal area. If the chosen place is occupied by obstacles or other agents,
it searches for another place and communicate to the auxiliary agents. The
blocks are assembled in a predetermined manner, depending on the configu-
ration in which the blocks are to be placed.
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How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach?
Our approach is fully decentralized. Each agent has its mental map of the
environment, and communication is done through messages that use map-
pings that are constituted by the agents when they recognize each other.

Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly.
Our agents do not use any of these features.

Can your agents change their general behavior during runtime? If so,
what triggers the changes?
The only behavioral changes occur when an explorer agent becomes an owner
or auxiliary agent. Explorer agents who are aware of the position of at least
one dispenser of each type, a task board, a goal area, and have the mapping
of two agents who are not owners become owners. However, there is a limit
of owners that is one third of the total number of agents. Once the limit is
reached, exploiting agents cannot become owner agents. On the other hand,
explorer agents who receive a request for assistance from an owner agent
become auxiliary agents for the duration of the assistance. As soon as this is
over, they become explorer agents again.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
We had to make a change after the first day because the agents were freezing,
and when restarting them, the agents who were carrying blocks did not know
what to do with them, which hampered their movement.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience?
Debugging was a complex task since it is a big challenge to keep agents and the
environment in sync when using Jason’s debugger. To correct the problems,
we had to add a series of prints on the behaviors that presented problems to
comprehend what was wrong. Moreover, random events make it even harder
to discover the source of some issues.

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing?
We put some prints in crucial sections of the code to find out what the agents
were doing. As an example, we know when an agent changes from explorer
to owner, when it selects a task, and when it submits it.

Did you invest time in making your agents more robust/fault-tolerant?
How?
We invested much time making the agent more fault-tolerant. In a rough esti-
mate, about 60% of the written code makes the agent recover from unforeseen
events. Whether by avoiding obstacles, changing the region where the blocks
will be assembled, or recovering blocks that were randomly destroyed, much
of the agents’ source code would not be necessary if there were no problems
during execution.
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6.5 Scenario and Strategy

What is the main strategy of your agent team?
Our main strategy is to get agents to recognize the environment and them-
selves as quickly as possible. Once an agent has enough information, it starts
trying to achieve the tasks by asking for help from other agents it already
recognizes. Each agent collects a block in the corresponding dispenser, and
they meet in the goal area to assemble the blocks and submit the task.

Please explain whether you think you came up with a good strategy
or you rather enabled your agents to find the best strategy.
After watching the matches, we realized that we made both right and wrong
decisions. A correct decision was not to have agents that carry multiple blocks
simultaneously, as this makes it extremely difficult to move the agent around
the map. Among the wrong strategy decisions, our agents would not try to
deliver tasks of size four. During our tests, they were very subject to failures,
and it was rarely possible to achieve a task of this size. This behavior decision
caused that if an opposing team quickly delivered such a task, they would
have a number of points that would be almost impossible to match.

Did you implement any strategy that tries to interfere with your
opponents?
We did not implement any strategy to harm opposing agents.

How do your agents decide which tasks to complete?
When an owner agent arrives at the task board, it prioritizes the most recently
created tasks to minimize the chance of it being submitted by the opposing
team. Also, when an owner agent selects a task, it warns the other agents on
the team not to select the same task. We thought it would be interesting to
prioritize tasks of size two, as they would be completed more quickly. This
strategy did not prove effective, as the amount of points obtained in this way
was not large enough to have a good performance in the contest.

How do your agents coordinate assembling and delivering a structure
for a task?
Assembling and delivering is coordinated by the owner agent. It tells auxiliary
agents where it is, where the block should be positioned and when to connect
the blocks.

Which aspect(s) of the scenario did you find particularly challenging?
The most prominent difficulty was the fact that agents are not able to iden-
tify themselves through perceptions. This problem required more effort than
initially planned to solve.
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6.6 And the Moral of it is . . .

What did you learn from participating in the contest?
One of the most challenging aspects of the scenario is the low amount of
information each agent possesses. We had to learn how to get agents to coor-
dinate without information that is generally taken for granted, like having an
overview of the environment and identifying who the other agents are.

What advice would you give to yourself before the contest/another
team wanting to participate in the next?
Focus on completing big-sized tasks quickly. If your agents can do that, they
will probably do well.

What are the strong and weak points of your team?
Our team’s strong point is its high fault tolerance. The agents have several
ways to recover from the most diverse problems that can happen during the
simulations. The agents’ weak point is how much time they need to organize
themselves once they have decided which task to achieve. Another weak point
is not trying to assemble tasks of size four.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms?
Because we chose Jason, we were able to use the simulator interface that was
already available. This availability avoided a great deal of work to connect the
agents to the simulator. In addition, due to our deep knowledge of the internal
mechanisms of the Jason framework, we were able to make some small changes
to the agents’ code that significantly reduced their processing time.

Which problems did you encounter because of your chosen technolo-
gies?
The utmost difficulty we had with Jason was using its debugging tool in
conjunction with the simulator.

Did you encounter previously unseen problems/bugs during the con-
test?
Yes. In some matches our agents entered a state where even though they were
running and no error message was displayed, all the agents stopped executing
actions. We still could not identify the reason for this problem.

Did playing against other agent teams bring about new insights on
your own agents?
Watching the matches against the other teams made us realize that some tiny
changes could have generated substantial differences in the scores obtained.

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)?
Currently, owner agents search for one of the necessary blocks for the task. We
believe that having all the blocks brought by auxiliary agents would decrease
the number of steps needed for assembly.
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Auxiliary agents are currently waiting for a message from the owner agent
to begin the process of fetching the block and waiting for it near the goal
area region. We would modify the agents to stay positioned with a block even
before the owner selects a task.

Which aspect of your team cost you the most time?
The aspect that cost the most time was preparing the agents for the greatest
possible number of situations in which the original plans would fail. In our
experience, agents are rarely able to submit a task without any setbacks.

What can be improved regarding the contest/scenario for next year?
There is a possibility that a particular map configuration can be advantageous
to one of the teams. We think it would be interesting for teams to compete
against each other on more than one map.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
As far as we could tell, the number of steps required for assembling tasks
is of utmost importance, and our agents were not sufficiently fast. During
the simulations, the winning teams were able to submit a few tasks of size 4
quickly, which earned them an enormous amount of points.

If you participated in the “free-for-all” event after the contest, did
you learn anything new about your agents from that?
Unfortunately, we were unable to participate in the “free-for-all” event.
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Abstract. This paper describes the JaCaMo Builders team and its participation
in the Multi-Agent Programming Contest 2020/21 based on the Agents Assem-
ble II scenario. The paper presents the analysis of the scenario and design of the
solution; the software architecture, including the tools used during the develop-
ment of the team; the main strategies; and the results achieved by the team, with
challenges and directions for future editions of the contest.

1 Introduction

The Multi-Agent Programming Contest (MAPC) [11]1 is an annual competition with
the main aim to stimulate research in the area of Multi-Agent System (MAS) devel-
opment and programming. The scenario of the MAPC 2020/21 (15th edition), named
“Agents Assemble II”, is an extension of the previous scenario and brings new chal-
lenges for agents, such as a different number of agents in each match2, the world grid
loops horizontally and vertically, and task rewards decrease over time. This scenario is
an attempt to stress some key characteristics of MAS, in particular, cooperation, coordi-
nation, and decentralization. Our agent team, named JaCaMo Builders3, was developed
by a group formed by five PhDs, two PhD students, and two undergraduate students
from different institutions: Federal University of Santa Catarina (UFSC), Federal Insti-
tute of Santa Catarina (IFSC), Santa Catarina State University (UDESC), and Umeå
University. There are three main aims for our participation in the contest: (i) improve

1 http://multiagentcontest.org.
2 For simplicity, we use the term “match” to refer to each single round that our team plays in the
contest, including the rounds against the same opponent.

3 https://github.com/jacamo-lang/mapc2020.
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our MAS developing skills, (ii) evaluate new features developed in the JaCaMo plat-
form, and (iii) evaluate some proposals developed in the context of the some of the
members’ thesis work.

This paper describes the JaCaMo Builders team solution and the organization of the
paper is as follows. Section 2 presents an analysis of the scenario, the organization of
our group, and the design of the solution. Section 3 gives an overview of the general
software architecture used in our implementation, such as programming languages and
communication infrastructure. Section 4 discusses the main aspects of our strategy as
well as some statistics observed during the competition and comparison to other teams.
Section 5 presents tools we have employed to develop and improve our agents. Finally,
the conclusions are presented in Sect. 6, where we include a discussion about challenges
that we found out during the contest, results, and suggestions for future contests.

2 System Analysis and Design

In the current scenario, a group of agents is situated in a dynamic world grid that loops
horizontally and vertically. In the beginning of each match, agents do not know anything
about the world4 and merely have a limited local vision according to the cell in which
they are located in a certain moment. The world contains plenty of obstacles that agents
cannot cross. These obstacles are changed randomly by means of a clear mechanism,
which means that some obstacles may disappear while new ones may appear.

A team of agents scores when it accepts some task, acquires blocks, assembles them
into the pattern described in the task, and submits the assembled pattern to accomplish
the task. Agents can only get tasks if they are close to special cells of the world, named
task boards. The blocks are acquired close to other special cells of the world, named
dispensers and, finally, the assembled patterns must also be submitted when the agent
is located in special cells of the world, named goal zones. The team only scores if all of
these steps are concluded before the deadline of the task.

The organization of our group to develop a team of agents to participate in the con-
test was as follows. Each member or subgroup of our group was more engaged with
a specific part of the development of the team, mostly well separated in different and
independent strategies that agents could take. We did not use any software engineer-
ing methodology or formal method during the development of our team. Instead, we
developed the team based on a prototype-driven approach. With the exception of some
common parts of the implementation, each specific strategy was tested independently
of the others. This made it easier to divide the development among the members of our
group.

The MAS was built considering two main dimensions: the environment
(Subsect. 2.1) and the agent (Subsect. 2.2). The environment dimension is responsi-
ble for mustering the entities that do not have autonomy, such as tools used by the
agents, while the agent dimension is responsible for mustering the entities that have
autonomy [6].

4 We refer to world as the full scenario, including the parts already discovered by the agents and
the parts not yet discovered. We refer to map as the part of the world already discovered by the
agents.
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In our analysis of the scenario, we identified some main requirements for the team:
(i) agents should be situated in the same map in order to be able to better collaborate
with each other; (ii) agents should be able to identify other agents they are seeing in the
map5; (iii) agents should explore the map as soon as possible to discover the coordinates
of goal zones, task boards, and dispensers; (iv) agents should understand the dimension
of the map in order to avoid walking around the map longer distances than they should
walk to move from a cell to another cell; (v) agents should be able to walk in the
map carrying on at least a block in order to avoid getting stuck somewhere due to
the presence of obstacles when they need to bring blocks from one place to another;
(vi) agents should be able to compute a path between two different cells in the map
considering that the map is dynamic and obstacles may appear and disappear.

2.1 Environment Dimension

The environment includes not only the map of the world, but also whatever other tools
agents may have access to, to help them achieve some goal or to share some information
with other agents. In particular about our team, we decided to provide some function-
alities through specific tools. The first one is a tool that lets the agents interact with the
MAPC server, so that they can receive updates and send their actions for every step. The
second one is a tool that allows agents to store information about the world, in particular
the location of everything they can see and discover (a private map). The third one is a
tool that allows agents to share information with other agents, in order to synchronize
the information about the world when the agents are already situated in the same known
world (a shared map). Finally, the fourth tool is to help to create coalitions by means
of auctions.

2.2 Agent Dimension

We have identified some specific roles that agents can play in the contest. Two of these
roles are related to two main goals: maximize the total score of the team by submitting
tasks, and minimize the total score of the opponent team by preventing the approach
of opponent agents to goal zones and task boards. In order to satisfy the first goal, a
group of agents adopts a role named task-builder, while to satisfy the second goal, a
group of agents adopts a role named defender. Another important goal is to discover
the world as soon as possible, so that, all the agents have the goal to explore the world
in the beginning of each match.

Agents use two channels to share information: messages and a shared blackboard.
Messages are used by an agent when it needs to share a piece of information or when
it wants to ask another agent to perform some task. For example, if an agent wants to
meet another agent in a certain cell of the map, it sends a message to that agent with
the desired location for the meeting. A blackboard is a tool that is used by the agents to
store a larger amount of information or to communicate with more agents at the same

5 Some technique must be applied to identify agents since the MAPC server merely informs
about the presence of an agent, the team it belongs (and not its identifier), and its coordinates
according to the observing agent’s limited view.
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time. Agents store and update information about the map on the blackboard, such as the
location of the dispensers, goal zones, obstacles, and task boards. Each agent starts in
a match, having its private blackboard with only the information discovered by itself.
Agents then merge this information in a shared blackboard as soon as they meet other
agents, and they identify themselves.

3 Software Architecture

In the current edition of MAPC, we used the EIS-MASSim [4] to communicate with
the contest server as well as the JaCaMo6 platform [5] to develop the MAS. JaCaMo
is a framework for MAS programming that combines three separate technologies, each
of them being well-known on its own and developed for a number of years, and allows
an MAS developer to implement agents, environments, and organizations as first-class
abstractions. JaCaMo is a combination of Jason [7], for programming autonomous
agents, CArtAgO [12], for programming environment artifacts, and Moise [9], for
programming MAS organizations.

The agents are written in the Jason language and the connection of each agent
with the contest server is made by means of a CArtAgO artifact, named EISAccess.
Each agent has its own EISAccess instance and this artifact has an operation named
action that the agent uses to send an action to the contest server. The perceptions pro-
vided by the contest server are converted to observable properties and stored in the arti-
fact, so that an agent can perceive the changes in the environment and update its beliefs.
We have not used Moise to specify the organization of the MAS; instead, we set the
role of each agent in a .jcm file, where we fully specify the configuration of the MAS
such as the names of the agents, initial goals, and beliefs. As we have not used Moise,
an agent knows its role due to the .asl file that is attributed to it. For each role we have
a different .asl file that contains all the plans, goals and beliefs related to the role. For
example, an agent responsible for defending the goal zones and task boards uses the
defender.asl file, while agents responsible to build structures of a single block
use the individualist.asl file, and agents responsible to build structures of two
blocks use the collectivist.asl. In order to reuse code, common code (plans,
goals, beliefs, rules) among different roles are kept in other .asl files and included in
each strategy that shares the same code. For example, the agentBase.asl musters
a bunch of plans, rules, beliefs, and goals that are common for all roles, such as the
exploration strategy, walking in the world, interaction with the artifacts and with the
contest server, among others.

The source code of the team has about 5914 lines written in the Jason language for
the agents’ code, about 947 lines for the implementation of the CArtAgO environment,
and about 1258 lines of other Java files, totaling 8119 lines.7

4 Strategies, Details and Statistics

In this section, we describe the main strategies of our team (Subsect. 4.1) and the main
results that we got against other teams (Subsect. 4.2).
6 http://jacamo.sourceforge.net/.
7 We did not remove comments in the code before counting the number of lines.

http://jacamo.sourceforge.net/
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4.1 Team Strategies

We considered four main problems to deal with the proposed scenario: world explo-
ration and data synchronization; routing and walking in the world; accepting, build-
ing, and submitting tasks; and defense of the goal zones and task boards. All these
“sub-problems” are important in the scenario of the MAPC 2020. Our team of agents
is completely decentralised in the beginning of each match. During the beginning of
the match, agents try to build a “common map” which is stored in a CArtAgO artifact,
shared among all agents. Synchronization in the exploration phase is important to let
all agents see the “same world” and it allows agents to make better and faster decisions.
Routing plays an important role for the team, because the scenario is quite dynamic, and
investing time to make the agents explore such a scenario may give us a good reward
during the competition. Most agent decisions are taken in a non-centralised way, but
different agents may collaborate, for example to build some structure together. We con-
sidered the acceptance, building and submission of the tasks as the core part of this
MAPC scenario, as agents need to decide which tasks they could accept and also how
to actually build a structure, because it does not depend on a single agent, but a small
group of agents. Finally, as a way to maximize our chances to perform better than other
teams, the agents need to defend the goal zones with the main aim to avoid that the
opponent could submit a structure to accomplish its tasks.

World Exploration. The world exploration aims to cover the largest possible map
area in the lowest possible step interval. This requires avoiding going twice through the
same point. To this end, the agents walk in the world following a strategy based on the
Spanning Tree Covering (STC) algorithm [8]8. The set of coordinates covered by the
vision range of an agent is a cell. In the MAPC scenario, this set, considering the agent
placed at (x, y) with a vision range of r units, is given by the function Cell, defined
as Cell(x, y, r) = {(xc, yc)|(xc, yc) ∈ C ∧ |xc − x| ≤ r ∧ |yc − y| ≤ r}, where C
is the set of all coordinates. The coordinates (x, y) are the center of the cell. Since an
agent maps all the elements inside a cell, it can move straight to a coordinate external to
that cell to map new objects. The agent (i) records the coordinates that mark the center
of the current cell and (ii) chooses a direction to follow to reach the center of the next
cell to be explored. It is given by the functionNextCell(x, y, r, d), considering that the
agent has vision range r, is placed in the coordinates (x, y), and chooses the direction
d ∈ {north, south, east, west}:

NextCell(x, y, r, d) =

⎧
⎪⎪⎨

⎪⎪⎩

(x, y + r) if d = north
(x, y − r) if d = south
(x+ r, y) if d = east
(x − r, y) if d = west

(1)

The agent maps all the objects its vision range reaches while moving between two cells.
While moving between cells, the agent builds a representation of a tree. The center of
8 Besides STC strategy, we have implemented a spiral strategy. Comparing these two strategies,
in the beginning of the exploration, they perform very similarly in terms of mapped area.
However, STC discovering rate increases from around step 100, making STC discover about
70% more than spiral strategy in further steps.
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each cell is a vertex. The path between the center of two cells is an edge. The leaves of
the tree are cells from which there is no free path to a not visited cell. To avoid going
through already explored zones, the agents can simply avoid going through existing
edges. Besides, when the agents find a blocked route, they can backtrack in the tree
until they find a free path to move forward. Each agent builds its own tree, which is
merged with the trees of other agents when they share their maps.

Map Sharing. To facilitate teamwork, the agents share their knowledge of the world
with each other. Each agent, at the beginning of each match, has its own map with what
the agent is discovering in the world. We call this individual map of each agent “LPS”
(Local Positioning System). The agents start exploring the world following the explo-
ration strategy. As soon as two agents meet in the world (i.e., they perceive each other),
they need to identify who they are seeing. This is achieved by each agent sharing its
current picture of what is being seen in the world and comparing it with the other team-
mates, however looking at it as a mirror view. Agents only consider identifying other
agents if no more than 2 agents are situated in the view range. After identifying each
other, the agents share their maps and start building a common map. This is repeated
until all agents become situated in the same map. We call this common map shared
among all agents “GPS” (Global Positioning System). In addition, as the map loops
horizontally and vertically, the agents try to determine the correct size of the map, in
order to avoid walking around the map several times to arrive to some nearby place.
In order to determine the size of the map, we built the following solution, where two
agents must meet each other after giving a lap around the map. By our experiments, the
number of steps required to find the size is around 450 in the better cases. This number
depends on the team size and the map size.

Routing and Walking on the Environment. Walking in the world is a very important
aspect for this scenario, considering that the environment is constantly being updated.
The routing strategy is responsible for guiding the agents from an origin cell to a des-
tination cell. In our team, agents use the A* algorithm in order to find a route. In every
step of the simulation, it updates the route according to the current map of the agent,
which means that in every step the agent will use A* to decide which direction it will
take to continue to move from the origin to the destination.

The A* algorithm considers the agent and its attached blocks9, which may constrain
some paths, such as in narrow passages between obstacles10. It takes into account only
the obstacles in the vision range of the agent. By obstacles, we mean all items that are
insurmountable by the agents, i.e., black cells, the blocks that are dropped in the map
and other agents and their attached blocks. If, for some reason, the agent fails to move
towards the chosen direction, it will route a path again in the next step. A possible reason
for the failure is that the agent meets another agent or a block attached to an agent, which
are other moving entities.

9 Our agents are able to walk carrying a maximum of four blocks (a block attached to each
side).

10 The algorithm only routes paths for the agent and its attached blocks in the current rotation,
i.e., it does not try other possible rotations.
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Accepting, Building, and Submitting Tasks. The group of agents that adopt the role
task-builder has two main strategies in order to accept and submit tasks, and for each
one there is a kind of agent, respectively named individualist and collectivist. The agent
of kind individualist is responsible exclusively to accept, complete and submit tasks of
a single block, while the agent of kind collectivist is responsible to accept, complete
and submit tasks that require a maximum of two blocks. The goal behind such strate-
gies is to do simple tasks effectively. We did not focus on more complex tasks because
it demands more time to be completed and more sophisticated collaboration and coor-
dination among the involved agents.

In a match, individualist and collectivist agents start exploring the world until meet-
ing the requirements of a task, and are chosen to perform the task or to help another
agent perform a task. After accomplishing or failing in performing or helping in a task,
the agents go back to explore the world.

The strategy adopted by the individualist agents is advantageous in the sense that
agents do not need to collaborate with other agents in order to complete a task. This
strategy consists in checking for new tasks until finding a task the agent can perform
in order to participate in an auction. For the auction, the agents estimate the number
of steps they will take to walk from the current position to the closest task board, then
to the closest dispenser of the specified block, and then to the closest goal zone. The
best proposal is the minimal estimation of steps. The first one to answer with the best
proposal is the winner, i.e., should perform the task. All other agents dismiss this task.
Another auction for the same task would only occur in case the winner fails in perform-
ing the task11.

The strategy adopted by the collectivist agents consists of one agent accepting a task
(we named this agent as master), getting a block, and finding an agent to bring a second
block (we named this agent as helper). In order to find a helper agent, the master agent
starts an auction informing its map, which block it needs and its current position. The
agents that are on the same map and know where to find the specified block estimate
the number of steps they will take to bring the block to the master. The best proposal
is the minimal estimation of steps. The first one to answer with the best proposal is
the winner. After finding a helper agent, the master participates in the auction of the
task informing its estimated number of steps to bring the first block, plus the estimation
informed by the helper. Similarly, the minimal steps estimation and first to propose is the
winner, and other agents dismiss this task. Thus, the helper agent is hired, i.e., becomes
committed to this part of the task. The two agents then combine a meeting place where
they meet and build the structure. The meeting place is usually near the goal zones.
After meeting and connecting the blocks, the master agent then performs rotations in
order to match the requirements of the task and then submits the final structure. Just
like in the individualist strategy, fails may drive to new auctions.

Defense of the Goal Zones. Our defense strategy is conceived according to two main
goals. The first one is to minimize the chances that the opponent accepts some task.

11 There are three situations considered fails, which result in a complete reset of the agent: agent
is lost (its map does not match with its view), agent did not send an action for a number of
times, and agent is performing a task that just expired.
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The second one is to minimize the chances that the opponent submits a completed task.
Broadly speaking, a defender agent can achieve the first goal by means of guarding a
task board against the approach of an opponent agent, and it can achieve the second
goal by means of guarding a goal zone against the approach of opponents.

A defender agent first explores the world, and when a dispenser is discovered, it
attaches four blocks to itself (one in each adjacent position)12. The next step is to find
a goal zone or a task board. After the defender agent finds a goal zone or a task board
still not occupied by another defender, it stands in the middle of the goal zone or task
board to guard these areas by not allowing the opponent agents to approach them. For
the goal zones with big areas, our defender agents move inside the goal zone according
to the direction from where the opponent agents come from.

4.2 Comparison to Other Teams

Our team of agents performed not so good in the contest, which led us to achieve the
fifth position in the final classification. In our analysis, we point out below the main
issues that we found during and after the contest that caused our result.

The first issue was related to transitions between matches, and this issue was found
during the contest. For some reason, which we could not understand well, some agents
did not perform the transitions between matches correctly. Some of them became dis-
abled during the new match. In order to solve this problem during the contest, we had
to restart the full MAS, and it made all our agents start playing in the new match from
scratch, and, as a consequence, losing part of the first steps and having to explore the
world again.

The second issue was related to our defense strategy, which did not work well during
the contest. The defender agents were getting the blocks and going to the goal zones
or task boards, however, they did not perform movements to avoid that the opponent
agents approach the areas that they were guarding. In addition, the transition issue was
found more problematic in the defender agents and because of that, the defender agents
became disabled during most part of the contest.

Our team of agents lost most matches during the contest; however, among the
matches that our team won, one of them was particularly interesting. It was the third
match against GOAL-DTU. In this match, our agents behaved like in most of the
matches, accomplishing a small amount of tasks. In contrast, agents of GOAL-DTU
seemed not to be able to accomplish any task. What we could notice is that our agents
were occupying the goal zones (red cells) for long times (Fig. 1, where the blue square
agents are the GOAL-DTU agents and the green diamond agents are the JaCaMo
Builders); i.e., GOAL-DTU agents apparently did not try to approach to the goal zones.

12 In our strategies, agents only catch blocks from dispensers, ignoring dropped blocks.
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Fig. 1. Screenshot of the match 3 against GOAL-DTU showing our agents (green diamonds)
occupying a goal zone (red cells). (Color figure online)

Figure 2 illustrates a situation we have experienced in the first two matches, where
our agents, for some reason, did not occupy the goal zones. The result against GOAL-
DTU made us think that a more robust defense strategy could have made a difference
in the contest.

Fig. 2. Screenshot of the match 1 against GOAL-DTU showing that the goal zones (red cells)
were not occupied by our agents (green diamonds). (Color figure online)

Another particularly interesting match happened against LTI-USP, and it demon-
strated that not always an opponent avoids walking into a goal zone occupied by our
agents. Figure 3 presents the exact moment when two agents of LTI-USP joined a goal
zone occupied by one of our defender agents, where the green diamond agents are the
LTI-USP agents and the blue square agents are the JaCaMo Builders agents.
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Fig. 3. Screenshot of a match against LTI-USP where our agents (blue squares) occupied a goal
zone (red cells) but have not avoided that LTI agents (green diamonds) enter the goal zone. (Color
figure online)

5 Developing and Improving Agents

In this section, we introduce some tools we have used to develop and improve our
agents, as follows. Subsection 5.1 presents the testing methods that we have employed
for the development of our strategies. Subsection 5.2 introduces an approach for
improving the decision-making process of our agents. Finally, Subsect. 5.3 introduces
the use of interactive programming for faster prototyping.

5.1 Unit and AB Tests for Agents

We have employed two methods to test our strategies: unit tests and an AB statistical
analysis for goal-oriented tests; the combination consolidates a perspective which we
call Goal-Oriented Test-Driven Development (GOTDD) [10]. For the unit tests, a pre-
liminary testing framework was developed allowing the developer to perform special
compilation process for test (e.g., by running $./gradlew test) which performs
configured tests. This command can be run locally at any time during the development,
and also it can be configured in Continuous Integration tools (e.g. GitHub actions) in
order to report test errors to the developer. For explaining the unit test facility, let us
consider a Jason rule for calculating the Manhattan distance between two points, as
illustrated in Fig. 4.

distance(X1,Y1,X2,Y2,D) :-
D = math.abs(X2-X1) + math.abs(Y2-Y1).

Fig. 4. Calculate the Manhattan distance between two points

In GOTDD, it is expected to have tests for every component of the system. The
unit test facility runs all plans labelled as @some label[test] and provides testing
plans such as assert equals for comparing values and assert true to check if
a belief exists, among others. For example, a way to test the rule distance is giving
some coordinates in which the distance is already known, so that we can compare the
answer from the rule with the known answer as shown in Fig. 5.
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@[test]
+!testDistance :

distance(0,0,3,3,D0) &
distance(-30,-20,4,4,D1) &
distance(-0,10,-9,8.9,D2) &
distance(0.7,-17,4,-19,D3)
<-
!assert_equals(D0,6);
!assert_equals(D1,58);
!assert_equals(D2,10.1);
!assert_equals(D3,5.3).

Fig. 5. Unit tests for the rule called distance

To illustrate how to test a plan for achieving a goal in common situations consider-
ing the MAPC scenario, let us consider our strategy collectivist in which the agent has
the plan find meeting area/5 to find a clear area to meet another agent in order
to assemble blocks. In this case, our testing agent starts importing a belief base which is
a snapshot of an agent’s belief base captured from a simulation, i.e., this agent believes
in a set of coordinates for obstacles and other objects captured from a real MAPC situa-
tion. The plan find meeting area/5 expects a desired coordinate, which means it
will return a near coordinate that is a clear area (i.e., there are no obstacles on these coor-
dinates, on its adjacent positions and on the other agent’s coordinates and its adjacent
positions). This near coordinate can be a random coordinate because the plan will test if
the desired coordinate can be used, if not, it will try random neighbors. In this case, we
have chosen a particular desired coordination in which we previously know that there
are solution that are in the range of 10 position of the desired coordinates. We set the
test for find meeting area/5 plan as illustrated in Fig. 6, i.e., we should receive
as an answer a coordinate equal to the desired coordinate with 10 units of tolerance for
X and Y values.

{ include("test_walking.bb") }

@[test]
+!test_find_meeting_area

<-
!find_meeting_area(35,0,1,XM2,YM2);
!assert_equals(35,XM2,10); //35 +/- 10
!assert_equals(0,YM2,10). //0 +/- 10

Fig. 6. Unit tests for the plan find meeting area
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Another facility we have developed for GOTDD is the statistical analysis of some
defined events. For instance, we were interested to check after a complete simulation
or set of simulations if a new version of the strategy seems to be performing better
than previous versions. Statistical analysis was necessary because the simulations are
stochastic, and our strategies use many random factors to make decisions.

To compare a version to its previous versions, we have stored some relevant events
in a file along with information about the used strategy, version and other details accord-
ing to each kind of event. Figure 7 illustrates how such data is stored by using a defined
internal action which appends an event and its details to a file. In this sense, the referred
internal action is called in some relevant plans of the agent, such us after submitting a
task in which the agent receives from the environment the information telling if it was
succeeded, or it has failed.

!do(submit(T),R0);
if (R0 == success) {

.save_stats("taskSubmitted",T);
} else {

.save_stats("submitFailed",T);
}

Fig. 7. The body of submit task plan in which different events are being recorded.

With the MAS storing events while running simulations, we have set a particular
computer to run statistical tests. Every new version was labelled in the version control
system and pulled to the testing computer. We have run a batch of at least 30 rounds of
simulations for each version. This number gave a minimal statistically significant set of
data for each version.

To compare versions, we have to check if the distribution of data for each compari-
son is normal, if so, we can apply the z-test13 between the new version and the previous
version. If a statistically significant difference can be found, we compare the average
of occurrences of each event, checking if the new version is maximizing or minimizing
them as expected. Note that a new version can be considered better than a previous ver-
sion if it maximizes some events (such as taskSubmitted) and minimizes others (such
as submitFailed).

Figure 8 illustrates a comparison between version 0.17 and 0.16 for the event
taskSubmitted. In this particular example, the distributions present no significant dif-
ference, so that we cannot say a version is better or worse than the other14.

13 We have set to use t-test for sample sizes smaller than 30.
14 The code and complete example for statistical tests are available at https://cleberjamaral.
github.io/fastpages/comparison/jupyter/2020/11/06/agents-goal-benchmark-test.html.

https://cleberjamaral.github.io/fastpages/comparison/jupyter/2020/11/06/agents-goal-benchmark-test.html
https://cleberjamaral.github.io/fastpages/comparison/jupyter/2020/11/06/agents-goal-benchmark-test.html
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Fig. 8. Comparison of version 0.17 and 0.16, in this case, there is no significant difference.

With the statistical analysis, we could verify many parameters altogether. Besides
taskSubmit and submitFailed, we have stored information when the agent was lost
according to its beliefs and new perceptions, if the agent could not send an action to the
simulation in time, among others. In this sense, in situations in which we have changed
a piece of code in order to reduce the occurrence of a bug such as agent is lost, it was
expected to get less of the specific bug occurrence, while other parameters were sup-
posed to be statistically similar (or present improvement as an indirect consequence).

5.2 Reinforcement Learning with MAB

Another approach we have attempted to make use of provides tools to make dynamic
choices between different agent variants at run-time, using the so-called Multi-Armed
Bandit (MAB) algorithm class. MAB algorithms address a simplistic reinforcement
learning problem that is concerned with the iterative choice of actions to optimize the
expected reward in a stateless environment [13]. As a toy example, one may consider
an agent that needs to choose which slot machine in a set she should pull (assum-
ing not pulling a machine is no option), considering the reward history the agent has
obtained from previous pulls. Thereby, the agent has to trade off exploitation (pulling
the machine with the highest expected reward) and exploration (‘trying out’ a machine
that may potentially yield a higher expected reward in the future). In the context of
the contest, a MAB algorithm could have potentially been used to dynamically switch
strategies within matches. A Jason extension that supports two simple MAB algorithms
was implemented. However, the extension was not utilized during the contest, because
no reliable assessment of its usefulness was conducted.

5.3 Interactive Programming Support

Finally, we have used interactive programming in this MAPC using jacamo-web IDE
[2,3]. Interactive programming allows to develop a system while it is running, with-
out stopping it. It was useful for prototyping and debugging some functions. To launch
jacamo-web with an ordinary JaCaMo project, it is just needed to add it as a depen-
dency. Jacamo-web instantiates jacamo-rest [1] on the backend and provides a client
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interface to access by a web browser. This client interface facilitates monitoring the sys-
tem, understanding of which artifacts and agents are instantiated, and which agents are
interacting with the elements of the environment. Besides, and most important for our
purposes, it provides interface to send commands to agents and to change agent’s code,
allowing to hot-swap a new source code.

Fig. 9. Jacamo-web interface for changing a running agent’s code.

To make it possible to prototype agents while running, it was necessary to make a
few adaptations to MAPC server configuration and agents’ code. On the MAPC server,
we changed the agentTimeout configuration (default is 4 s) to a minute or more. We
have changed on agent so that it does not send its action to the environment without
a developer command. This was necessary because with the default timeout, the steps
may run too fast and the developer may not have time to realize and understand what is
going on in time to visualize and prototype changes when a situation asks.

To give an example of a situation in which jacamo-web has helped, we had some
problems in which the agent got close to the right destination, but it did not realize that.
In some cases, we have created beliefs and for some reason, sometimes the beliefs were
not updated correctly according to agent’s movements. In this case with jacamo-web
we could check that the belief was wrong according to the agent’s actual position, and
we could make changes on agent’s code to avoid such mistakes. The situation was used
to debug and to prototype an improvement, making the development of a hot-fix much
faster. Figure 9 illustrates how an agent’s code can be modified and loaded on a running
agent.
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6 Conclusion

Participating in the MAPC, provided us – in addition to the contest results – with a
series of feedback about tools and languages used during the implementation of the
MAS, which allowed us to test new features and improve some aspects about them.
Our final classification was not the best that we could achieve; however, we had the
opportunity to identify quite clearly the advantages and disadvantages of our strategies,
and bugs that happened before and during the contest.

One of the main issues that we found out was the difficulty of synchronizing all
agents with the same view about the world. This issue is mainly related to the update
of all the perceptions that agents receive in each round. Considering the number of
agents in each round, we noticed that while some agents had already finished updating
their beliefs according to the perceptions received from the MAPC server, others have
not updated all the perceptions yet. Even though this situation remains for a very short
time, the fact that agents have different information about the world means that they
may take wrong decisions. In order to address this issue, we built a kind of “global
clock” using the number of the step, so that agents in the same step could take action
while others do not.

Another difficulty that our group found out was related to the integration of the
strategies developed by our different developers and with respect to the maintenance of
the code of the MAS. The non-adoption of a clear development methodology and the
lack of design patterns and good practices in development of an MAS made it difficult
for a member of our group to quickly understand and change the code written by another
developer of our own group. We believe the “shared development” of an MAS is a
challenging problem and we plan to address it in future projects, having as a result a set
of good practices and design patterns.

A third challenge that we found out during the development of the MAS was related
to debugging and testing. Testing and debugging were mostly done by means of inspect-
ing the agent internal state (beliefs, goals, intentions, etc.) and by printed/logged mes-
sages in the terminal or files. Although these means were enough to find out some bugs
in the code, they were not so suitable to test the MAS after making some changes in the
code, in order to ensure that nothing was affected in other parts of the code. An assertion
mechanism, named JaCaMo Unit Tests, was then developed by our group focused on
Jason agents, so that a developer can annotate a plan with the label @[test] and insert
assertions in its code. The plans annotated with test are then automatically executed in
every push of the code into git and have their assertions tested. When we have a plan
being tested on every push, we have the opportunity to be advised if some change has
affected other parts of the MAS. It is specially effective when we have many developers
working in the same project. Performing static tests may also be a more convenient and
faster way to test new features. The static tests usually run faster than the simulation.

Although useful, a static test framework is not a silver bullet, in special when the
scenario is stochastic. For instance, we raised a bunch of possible causes for an agent
to have excessive intentions (which causes delay, possibly step loses and agent’s crash).
The common way to chase such a bug is simulating and monitoring some aspects of the
agent and the environment (e.g. printing log messages) until occurring the error. Then,
we can go backward until finding the bug. However, it is often hard to reach the specific
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condition in a stochastic scenario. In such cases, an AB test between the new version
and previous ones was useful. It did some job of the developer by monitoring aspects
and grabbing useful data in order to fix bugs. This approach also helped to prioritize
our developing efforts, since we started to count how often the monitored bugs were
happening.

We have not used advanced planning, machine learning15, or similar artificial intel-
ligence techniques, and we have neither used an explicit organization, nor norms in our
team for this year, even though we have found situations where we could have bene-
fited from some of these methods. In our future participation, depending on the new
scenario, we plan, for example, to integrate both machine learning and an explicit orga-
nization in our team. While the use of machine learning can help our agents to learn
more about the opponents at run-time, an explicit organization can help to improve the
coordination and collaboration among the agents, besides it better separates the orga-
nization code from the agents and the environment. For example, in this latter case, all
the coordination and collaboration in our current version are hard-coded in the agents’
code and depend on interactions among agents. Furthermore, there are some strategies
that we need to adapt in our team, such as (i) to allow the agents to accept tasks that
require more than two blocks; (ii) to make the agents able to walk in the world carrying
on more than four blocks; (iii) make the agents able to build more complex structures;
and (iv) review our defense strategy to fix bugs that we found during the contest.

Finally, to improve the current scenario, we suggest the addition of new agent types
(such as existed in scenarios of previous years), which may also bring new challenges
and elevate the importance of organizations for agents. Some examples of agents that
could be added is a repairer, which could make others enabled again, and specific types
to link the type of block to the type of agent that could attach that block, which means
that to attach some block an agent of certain type is required.

Short Answers

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest?
There are three main aims of our this year’s participation: (i) improve our MAS
developing skills, (ii) evaluate new features developed in the JaCaMo platform,
and (iii) evaluate some proposals developed in final works of some team mem-
bers, such as their thesis.

What is the history of your group? (course project, thesis, . . .)
Our agent team, named JaCaMo Builders, was developed by a group formed
by five PhDs, two PhD students, and two undergraduate students from differ-
ent institutions: Federal University of Santa Catarina (UFSC), Federal Institute
of Santa Catarina (IFSC), Santa Catarina State University (UDESC), and Umeå
University. Maicon, Tiago, Cleber, andMaiquel were PhD students of prof. Jomi

15 Although we have developed a Multi-Armed Bandit approach.
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and worked in their thesis with MAS. The MAPC was introduced to them by
Jomi and since the “Agents in Mars” scenario, at least some of them is always
attending the MAPC. Nowadays, they became professors in different universi-
ties/institutes and still work with research in the MAS field. Vitor is a student of
Maiquel and Robson a student of Maicon, both having a contact with MAS for
the first time. Finally, Timotheus and Mauri are respectively a PhD student and
a professor having a first contact with the MAPC.

What is your field of research? Which work therein is related?
Most of our group members are researchers in the MAS field, working on the
development of languages, platforms, and other tools in order to bring advances
in the MAS field.
For example, one of the PhD thesis, is studying an automated model for gen-
erating MAS organisations. In the context of the contest, a possible application
could be on deciding an initial setup for the agents of a match. We have created
different strategies which can be seen as organisational roles. In this sense, on
the design time, it could produce organisational structures in which the agents
are arranged in, testing which one is performing better. Another possible appli-
cation could be on generating coalitions for achieving particular tasks on the
running time. Unfortunately, we had no time to exploit it in this contest since
we had other more important issues to solve.

A.2 Statistics

Did you start your agent team from scratch or did you build on your own or
someone else’s agents (e.g. from last year)?

Our team of agents was developed from scratch.
Howmuch time did you invest in the contest (for programming, organizing your
group, other)?

We started to work on the team development in April/2020 and we surely spent
about 1000 h until the contest.

How was the time (roughly) distributed over the months before the contest?
We tried to work the same amount of time during all the months before the
contest, however, after the first attempt of qualification we had to invest some
more time to work in the building of structures. The qualification was a little
harder than what we imagined and it made our group to change the priorities of
which strategies we should implement first.

How many lines of code did you produce for your final agent team?
The agents’ code has about 5914 lines written in the Jason language. The
CArtAgO environment has about 947 lines while other Java files have about
1258 lines.

How many people were involved?
Our group is formed by nine people: five PhDs, two PhD students, and two
undergraduate students from different institutions: Federal University of Santa
Catarina (UFSC), Federal Institute of Santa Catarina (IFSC), Santa Catarina
State University (UDESC), and Umeå University.

When did you start working on your agents?
We started to work on the team development in April/2020.
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A.3 Technology and Techniques

Did youmake use of agent technology/AOSEmethods or tools?What were your
experiences?

We used agent technology to develop a team for this year’s scenario, however
we did not use any software engineering method or tool during the development
of our team. Part of our group of people had already previous experience in the
MAPC as well as with agent oriented programming.

Agent programming languages and/or frameworks?
We adopted the JaCaMo platform to develop our team, in special, the Jason
language for the agents and CArtAgO to develop the environment.

Methodologies (e.g. Prometheus)?
We did not use any methodology.

Notation (e.g. Agent UML)?
We did not use any notation.

Coordination mechanisms (e.g. protocols, games, . . . )?
We use auction to decide how agents decide who accepts which task as well
as to decide which agent becomes helped to another agent. In addition, a syn-
chronization mechanism was developed to synchronize all agents in the same
world.

Other (methods/concepts/tools)?
We did not use any other special tool, method or concepts during the develop-
ment of our team. However, we implemented an algorithm to schedule internal
tasks that agents have to perform in certain moments.

A.4 Agent System Details

How do your agents decide what to do?
The agents have an internal scheduler to decide which tasks to perform in each
moment. These tasks are not the tasks of the scenario, but the internal tasks of
the agent, such as to accomplish some internal goal. In order to decide what to
do (which action to take) in the MAPC scenario, it depends on what the agent
is doing in the moment. For example, an agent that planned to move from a cell
to another cell is following a route that was calculated in the current of previous
steps. Another example is when the agents still do not share the same world
map, which means the agents try to meet the other agents of the team as soon as
possible.

How do your agents decide how to do it?
It all depends on what the agents want to do. If the agents are still in the begin-
ning of the match, they use a strategy to explore the map and synchronize all
the information. The information is shared among agents by means of merging
the information of every two agents that meet each other. All the information
is stored in an artifact and each agent has access to its own information until it
meets another agent. If the agents are already working with some task, a sin-
gle agent works individually if the task requires a single block and if the task
requires two blocks, the agent asks another agent to bring a block and to finish
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the structure. Agents who have the goal to defend the goal zones and task boards
try first to find these places and then get four blocks in order to carry until the
goal zone or task board that it found before. The defenders observe when oppo-
nents arrive near to the task boards or goal zones that they are protecting and try
to move accordingly in order to block the way of the opponents.

How does the team work together? (i.e. coordination, information sharing, ...)
How decentralised is your approach?

Our team of agents in completely decentralised in the beginning of the match.
During the beginning of the match, agents try to build a “common map” which
is stored in an CArtAgO artifact, shared among all agents. After building the
“common map”, it became the only point of information about the map. All
decisions are taken in a non-centralised way, however different agents may par-
ticipate, for example, to build some structure together.

Do your agents make use of the following features: Planning, Learning, Organ-
isations, Norms? If so, please elaborate briefly.

We did not use planning, learning, an explicit organisation, or norms in our
team for this year, even though we plan to integrate machine learning in our
team somewhere in the future.

Can your agents change their behavior during runtime? If so, what triggers the
changes?

We organized a match in two main phases: the first phase is the exploration and
synchronization and it aims to make all agents be in the same world. The second
phase is more focused on accepting, building and submitting tasks, defending
goal zones, so that, agents would not try to explore so much the map anymore.
What triggers this change of behavior is when the agents fulfil enough explo-
ration and synchronization of the map.

Did you have to make changes to the team (e.g. fix critical bugs) during the
contest?

We had a critical issue happening during the transitions among different
matches, however to fix such issue we simply restarted the agents.

How did you go about debugging your system? What kinds of measures could
improve your debugging experience?

We used assertions (a new feature of the Jason language and also available for
JaCaMo) as well as print/log messages.

During the contest you were not allowed to watch the matches. How did you
understand what your team of agents was doing? Did this understanding help
you to improve your team’s performance?

We had a log system in our MAS, where agents often print what they are doing
during the execution, such as which action they are performing, where they are
and when they accept and submit some task. It was not completely precise to
understand what was going on during the contest however it was enough to give
some idea about how the agents were behaving.

Did you invest time in making your agents more robust? How?
Yes. We invested some time to make agents to reset themselves if they under-
stand that they are performing bad actions (or not any action) or get lost in the
world.
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A.5 Scenario and Strategy

What is the main strategy of your agent team?
We considered four main problems to deal with the proposed scenario: world
exploration and data synchronization; routing and walking in the world; accept-
ing, building, and submitting tasks; and defense of the goal zones. All these
“sub-problems” are important in the scenario of the MAPC 2020. Synchroniza-
tion in the exploration phase is important to let all agents to see the “same world”
and it allows agents to make better and faster decisions. Routing plays an impor-
tant role for the team, because the scenario is quite dynamic and investing time
to make the agents to walk in such a scenario may give us a good reward during
the competition. We considered the acceptance, building and submission of the
tasks as the core part of this MAPC scenario; once the agents needs to decide
which tasks they could accept and also how to actually build a structure, because
it does not depend on a single agent, but a small group of agents. Finally, as a
way to also maximize our chances to perform better than other teams, agents
needs to defend the goal zones with the main aim to avoid that the adversary
could deliver their tasks.

Please explain whether you think you came up with a good strategy or you
rather enabled your agents to find the best strategy.

We spent some time before to start writing code of our agents discussing the
strategies that we would adopt in our team. In addition, we also made multiple
versions of our team and made them play against each other to decide which
would be the strategies that we keep for the final version of our team.

Did you implement any strategy that tries to interfere with your opponents?
In order to maximize the chances to win the contest we saw two main aspects to
consider: to make as much points as possible as well as to minimize the number
of points that the opponent could make. In order to minimize the number of
points that the opponent could make, we adopted a strategy where some agents
had the goal to avoid that opponent agents could approach the goal zones or
task boards, so that, the opponent agents could not make as much points as they
wanted.

How do your agents decide which tasks to complete?
Once the agents know at least a task board and a goal zone to submit a task, the
agents can start accepting tasks. They often accepted tasks with single blocks,
however in some situations they also could accept tasks of at a maximum of two
blocks. We did not try to accept tasks that require more than two blocks once
the organization of the agents would me much more complex, and we focused
in other aspects of the scenario instead.

How do your agents coordinate assembling and delivering a structure for a
task?

We do not define a priori which agents will form each group to complete a task.
The decision of which agent will help to accomplish each task is made by means
of a kind of auction with the available agents in the moment. In addition, some
agents may accomplish tasks individually, when the tasks is formed by a single
block.
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Which aspect(s) of the scenario did you find particularly challenging?
The characteristics of the map were the most challenging aspects for our group,
such as the “infinity” map and the fact that agents do not know who they are
seeing in the map.

A.6 And the Moral of It Is . . .

What did you learn from participating in the contest?
Participating in the contests is always a great challenge and even though several
members of our team participated in more than two editions we always have
a lot of new things to learn. This year scenario was a lot more challenging and
brought problems that demanded a precise coordination of the agents, such as to
build a structure and to explore and synchronise the map. This new challenged
allowed us to elaborate and test different strategies to make agents collaborate
in order to build strategies and also to minimize the time that agents take to be
situated in a common world.

What advice would you give to yourself before the contest/another team want-
ing to participate in the next?

Our main advice is to build a team as simple as possible in order to minimize
bugs and complexity of the agents in a first moment. After having a first simple
version of the team fully working, increment it with more complex strategies
and test it before to move forward to new strategies.

What are the strong and weak points of your team?
The main strength of our teams is that agents do not only focus on accepting,
building and submitting tasks to get rewards, but also to defend the goal zones
and task boards to prevent that the adversary gets rewards. So, our expectation
was to maximize our chances to get a bigger score than our adversaries.
The main weaknesses of our agents is that they have a little difficulty to move
when carrying more blocks, which can make it difficult for an agent that is
holding a more complex structure to escape the clearing area when some clear
action happens or to move around in areas with too many obstacles. In addition,
our agents do not commit to tasks that demand more than two blocks, which can
be a clear disadvantage in scenarios with few tasks that demand no more than
two blocks. We did not spend so much time on improving it once we tried to
make our agents build the structures near to the goal zones.

Where did you benefit from your chosen programming language, methodology,
tools, and algorithms?

The choice for the JaCaMo platform to develop our team of agents was an
important point for our group. The separation of the MAS implementation
according to different first-class abstractions such as organization, agents, and
environment made it easier for us to organize and maintain the code of the MAS.
In addition, several members of our group had already some experience with the
JaCaMo platform.
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Which problems did you encounter because of your chosen technologies?
The main problem that we found in our chosen technologies was the difficulty
to debug the execution, so that, we implemented a feature based on “asserts”
to help us to identify some wrong behaviors in the system, as well as print
messages.

Did you encounter new problems during the contest?
We found a problem during the transitions between matches, which did not hap-
pen during our local tests. In addition, we noticed some issues when agents
needed to submit tasks of two blocks and defend task boards and goal zones to
prevent the opponent agents to complete their tasks.

Did playing against other agent teams bring about new insights on your own
agents?

Yes. We noticed during the contest that most teams looked not so ready for
the situation in which the task boards or goal zones were occupied by some
opponent agent and such opponent agent not allowing the agents to freely sub-
mit tasks or get blocks. However, unfortunately, our strategy to defend the task
boards and goal zones did not work well during the contest.

What would you improve (wrt. your agents) if you wanted to participate in the
same contest a week from now (or next year)?

We would have a couple of issues to fix in order to make our team perform
better during that week, such as (1) improve the transition between the matches,
(2) fix some problems when agents commit to tasks of two blocks, (3) fix some
problems in our defender agents (the ones that try to block the access of the
opponent agents to the goal zones and task boards).

Which aspect of your team cost you the most time?
We feel that the most challenging aspect of the implementation of our team
of agents was the map exploration and map synchronization, which played an
important role in all other things that agents could do. So that, making the agents
discover the dimensions of the map and setting all agents in the “same map”
took us a plenty of time. In addition, we spent quite a huge time in debugging
the system in order to fix some problems during the agents’ execution.

What can be improved regarding the contest/scenario for next year?
We suggest the inclusion of new agent types (such as existed in scenarios of pre-
vious years), which may also bring new challenges and stress the organization
of agents. For example, some blocks could be brought just by certain type of
agent.
In addition, we also suggest to keep the scenario of this year’s scenario for the
next edition of the contest, without big changes. As a first time attending the
contest for this scenario, we devoted a huge amount of time to implement the
team and we see a lot yet possible to improve in the team. During the contest,
we noticed other teams also demonstrated some issues that could be fixed for
the next edition. Thus, our suggestion is to try to keep the next edition’s scenario
as close as possible to this edition.
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Why did your team perform as it did? Why did the other teams perform bet-
ter/worse than you did?

We believe some of our strategies were a little buggy during the contests, such
as the submission of tasks of two blocks and the defense of task boards and goal
zones. These two strategies play a very important role in our team and if they do
not work properly the team becomes a lot weaker than it really is. In addition,
we had a serious problem during transitions between matches, which made us to
restart the full MAS during the contest. It means, our agents lost all their beliefs,
goals and knowledge about the world where they were situated.

If you participated in the “free-for-all” event after the contest, did you learn
anything new about your agents from that?

In the “free-for-all”, our team seemed to perform better, and we held the third
place among four participants. Our team was able to submit three tasks of single
blocks however another team did not submit any task. We also observed that
several agents (of different teams) were occupying the goal zones most of the
time, which made it more difficult for the teams to submit tasks.
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