
Chapter 3
A Literature Review on Context-Aware
Machine Learning and Mobile Data
Analytics

3.1 Contextual Information

The term context has a wide range of meanings and can be applied to a variety of
situations. In this section, we first go through some of the existing context definitions
in the domain of mobile and pervasive computing, and then we go over why contexts
are important in a particular application.

3.1.1 Definitions of Contexts

Context has been employed in a variety of fields, including pervasive and ubiquitous
computing, human-computer interaction, computer-supported collaborative work,
and ambient intelligence [1]. Early efforts on context-awareness in the area of
ubiquitous and pervasive computing referred to context as essentially the location
of people and objects [2]. Context has recently been expanded to encompass a
broader set of factors, such as an entity’s physical and social features, as well as
user behaviors [1]. Following a review of the pervasive and ubiquitous computing
community’s definitions and categories of context, this part aims to describe the
concept of the context within the area. Because the concepts of context in the domain
of pervasive and ubiquitous computing are similarly broad and this discussion is
meant to be informative rather than comprehensive.

From various viewpoints, several research has sought to define and describe the
context. Schilit et al. [2], for example, consider the user’s location information,
the surrounding persons and objects, and the changes to those objects as contexts.
Contexts are also defined by Brown et al. [3] as the user’s locational information,
temporal information, the surrounding individuals around the user, temperature, and
so on. In the same way, the user’s locational information, ambient information,
temporal information, and identity are all considered contexts By Ryan et al. [4].
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Other context definitions have merely provided synonyms for contexts, such as
context as the environment or social condition. A lot of studies have considered
the context as the user’s environmental information. For example, in [5], Brown et
al regarding the environmental information that the user’s computer is aware of as
context, whereas Franklin et al [6] regards the user’s social setting as context. Other
researchers, on the other hand, believe it is the environment that is related to the
applications. Ward et al. [7], for example, consider the state of the applications’
surrounding information as contexts. Context is defined by Hull et al. [8] as the
features of the user’s current position, which includes the complete surroundings. In
Rodden et al. [9], the settings of apps are likewise considered as context.

Schilit et al. [10] argued that the best parts of context are (i) where you are, (ii)
who you are with, and (iii) what resources are nearby. In their definition, information
about the changing environment is taken into consideration as context. They
encompass the computational environment as well as the physical environment,
in addition to the user environment, e.g., user location, adjacent individuals, and
the current social position of the user. For example, the computing environment
can include connection, available processors, user input and display, network
capacity, and computing costs, while the physical environment can include noise,
temperature, and lighting levels.

Dey et al. [11] give a survey of different views of context, which are mostly
imprecise and indirect, often defining context by synonym or example. Finally,
he provides the following definition of context, which is now widely accepted.
According to Dey et al. [11] “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves”.

3.1.2 Understanding the Relevancy of Contexts

Realizing the importance of contexts is merely the first step in properly utilizing
them in mining contextual behavioral rules of individual mobile phone users. We
need a clear understanding of what circumstances influence users to make decisions
in different situations to make efficient use of contexts in mobile phone users’
behavioral rules. The contexts associated with the user are the most relevant as we
aim to discover the user behavioral rules using their mobile phone data. Table 3.1
depicts an example of user situations influencing decision-making when dealing
with phone call interruptions. The relevance of the contexts, on the other hand, is
application particular, i.e., it may differ from one application to the next in the real
world.

Consider a personalized smart mobile app management system that can predict
an individual’s future app usages (Skype, Whatsapp, Facebook, Gmail, Microsoft
Outlook) based on contextual data. When the user is in her office on weekdays
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Table 3.1 Various types of user contexts influencing making decisions while handling the phone
call interruptions

Context category Context examples

Temporal context User’s activity occuring date (YYYY-MM-DD), time (hh:mm:ss), period
(e.g., 1 h, 10:00 a.m.–12:00 p.m.), weekday (e.g., Monday), weekend (e.g.,
Saturday), etc.

Spatial context User’s coarse level location such as office, work, home, market, restaurant,
vehicle, playground etc.

Social context User’s social activity or situation such as professional meeting, lecture,
seminar, lunch break, dinner, etc., and/or, social relationship between
individuals such as mother, friend, colleague, boss, significant one,
unknown, etc.

between 9:00 a.m. and 10:00 a.m., she normally uses Microsoft Outlook for mailing
purposes. The user’s contexts, such as temporal (Weekdays between 09:00 a.m. and
10:00 a.m.) and place (office), may be relevant to intelligently assist her in finding
this particular mobile application among a large number of installed apps on her
mobile phone.

Consider another example: a smartphone call interruption management system,
which may require more contexts. Mobile phones are commonly considered to
being “always on, always connected” devices in the real world, yet mobile users
are not always attentive and receptive to incoming contact [12]. Let’s say a user
has a regular meeting at her office on Monday between 9:00 and 11:00 a.m. She
usually rejects incoming phone calls during that period since she does not want to
be interrupted during the meeting. If the phone call is from her boss or mother, she
wants to answer it since it seems to be important to her. According to this example,
user phone call response behaviors are related not only to contexts, location (e.g.,
workplace), and temporal (e.g., Monday, between 9:00 a.m. and 11:00 a.m.), but
also to additional contexts, social situations (e.g., meeting), and social relationships
between individuals (e.g., boss or mother). As a result, the relevance of user
circumstances differs from app to app in the real world.

With a better understanding of contexts, mobile app developers will be able to
choose which contexts to be included in their apps, allowing them to create context-
aware apps that deliver personalized services and intelligently aid users in their
daily activities as well as smartphone based IoT services [123, 124]. According to
the aforementioned real-world examples, individual mobile phone users’ behavioral
rules should not be dependent on a fixed number of contexts. To meet these needs,
we provide a set of behavioral rules for individual mobile phone users based on
multi-dimensional contexts available in the mobile phone dataset, which may be
employed in relevant applications for the mobile phone user.
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3.2 Context Discretization

The discretization of continuous contextual data is one of the key research areas
covered in this book. The discretization method converts continuous numerical
attributes into discrete or nominal attributes with a finite number of intervals,
resulting in a non-overlapping partition of a continuous domain.

3.2.1 Discretization of Time-Series Data

Temporal context, represented as time-series data, is the most important aspect that
influences user behavior in a mobile Internet portal [13], according to the scope of
continuous context considered in this book. A time series is defined as “a sequence
of data points ordered in time, often measured at successive time points” [14]. In this
section, we focus on the discretization of time-series data as context discretization.

Unlike digital systems, human perception of time is not precise. Routine behav-
iors always have a time interval, even if it is only a little one, such as 5min. Time
must be segmented into meaningful categories that act as a proxy for distinguishing
user’s various activities to evaluate time as a condition in a high confidence rule. As
a result, discretization of time-series data is required, which may then be used as the
foundation for a mobile phone-based context-aware rule learning system. Its major
purpose is to convert continuous time-series attributes into discrete or categorical
values, such as time segments, hence converting quantitative data into qualitative
data. According to [15], time-based behavior modeling is an open problem. Hence,
we summarize the existing time-series segmentation approaches into two broad
categories; (i) static segmentation, and (ii) dynamic segmentation, which is used
in various mobile applications. In the following, we discuss these methods used in
various application domains.

3.2.2 Static Segmentation

A static segmentation is simple to comprehend and can be useful for comparing
population behavior among cell phone users. Most researchers recently consider
only the temporal coverage (24-hours-a-day) and statically segment time into
arbitrary categories (e.g., morning) or times (e.g., 1 h) to produce segments, as
shown in Table 3.2. This form of static time segmentation focuses primarily on
time intervals. According to [16], there are two forms of time intervals: equal and
unequal time intervals.

A number of researchers have used equal interval-based segmentation in their
applications. For instance, Song et al. [17] present a log-based analysis on users’
search activity in order to increase search relevance by splitting the 24-h day



3.2 Context Discretization 27

Ta
bl
e
3.
2

V
ar
io
us

ty
pe
s
of

st
at
ic
tim

e
se
gm

en
ts
us
ed

in
di
ff
er
en
ta
pp

lic
at
io
ns

T
im

e
in
te
rv
al
ty
pe

N
um

be
r
of

se
gm

en
ts

U
se
d
tim

e
in
te
rv
al
an
d
se
gm

en
td

et
ai
ls

R
ef
er
en
ce
s

E
qu
al

3
M
or
ni
ng

[7
:0
0–
12
:0
0]
,a
ft
er
no
on

[1
3:
00
–1
8:
00
]
an
d
ev
en
in
g
[1
9:
00
–2
4:
00
]

So
ng

et
al
.[
17

]

E
qu
al

3
[0
:0
0–
7:
59
],
[8
:0
0–
15
:5
9]

an
d
[1
6:
00
–2
3:
59
]

R
aw

as
si
za
de
h
et
al
.[
18

]

E
qu
al

4
M
or
ni
ng

[6
:0
0–
12
:0
0]
,a
ft
er
no
on

[1
2:
00
–1
8:
00
],
ev
en
in
g
[1
8:
00
–2
4:
00
]
an
d

ni
gh
t[
0:
00
–6
:0
0]

M
uk
he
rj
ie
ta
l.
[1
9]

E
qu
al

4
M
or
ni
ng

[6
:0
0–
12
:0
0]
,a
ft
er
no
on

[1
2:
00
–1
8:
00
],
ev
en
in
g
[1
8:
00
–2
4:
00
]
an
d

ni
gh
t[
0:
00
–6
:0
0]

B
ay
ir
et
al
.[
20

]

E
qu
al

4
M
or
ni
ng
,a
ft
er
no
on
,e
ve
ni
ng

an
d
ni
gh
t

Pa
ir
ee
kr
en
g
et
al
.[
21

]

E
qu
al

4
M
or
ni
ng

[6
:0
0–
11
:5
9]
,d

ay
[1
2:
00
–1
7:
59
],
ev
en
in
g
[1
8:
00
–2
3:
59
],
ov
er
ni
gh
t

[0
:0
0–
5:
59
]

Ja
ya
ra
ja
h
et
al
.[
22

]

E
qu
al

4
N
ig
ht

[0
:0
0
a.
m
.-
6:
00

a.
m
.]
,m

or
ni
ng

[6
:0
0
a.
m
.-
12
:0
0
p.
m
.]
,a
ft
er
no
on

[1
2:
00

p.
m
.-
6:
00

p.
m
.]
,a
nd

ev
en
in
g
[6
:0
0
p.
m
.-
0:
00

a.
m
.]

D
o
et
al
.[
23

]

U
ne
qu
al

3
M
or
ni
ng

(b
eg
in
ni
ng

at
6:
00

a.
m
.a
nd

en
di
ng

at
no
on
),
af
te
rn
oo
n
(e
nd
in
g
at

6:
00

p.
m
.)
,n

ig
ht

(a
ll
re
m
ai
ni
ng

ho
ur
s)

X
u
et
al
.[
24

]

U
ne
qu
al

4
M
or
ni
ng

[6
:0
0–
12
:0
0]
,a
ft
er
no
on

[1
2:
00
–1
6:
00
],
ev
en
in
g
[1
6:
00
–2
0:
00
]
an
d

ni
gh
t[
20
:0
0–
24
:0
0
an
d
0:
00
–6
:0
0]

M
eh
ro
tr
a
et
al
.[
25

]

U
ne
qu
al

5
M
or
ni
ng

[7
:0
0–
11
:0
0]
,n

oo
n
[1
1:
00
–1
4:
00
],
af
te
rn
oo
n
[1
4:
00
–1
8:
00
]
an
d
so

on
Z
hu

et
al
.[
26

]

U
ne
qu
al

5
M
or
ni
ng
,f
or
en
oo
n,

af
te
rn
oo
n,

ev
en
in
g,

an
d
ni
gh
t

O
ul
as
vi
rt
a
et
al
.[
27

]

U
ne
qu
al

5
M
or
ni
ng

[7
:0
0–
11
:0
0]
,n

oo
n
[1
1:
00
–1
4:
00
],
af
te
rn
oo
n
[1
4:
00
–1
8:
00
],
ev
en
in
g

[1
8:
00
–2
1:
00
],
an
d
ni
gh
t[
21
:0
0-
N
ex
td

ay
7:
00
]

Y
u
et
al
.[
28

]

U
ne
qu
al

>
5

E
ar
ly

m
or
ni
ng
,m

or
ni
ng
,l
at
e
m
or
ni
ng
,m

id
ni
gh
ta
nd

so
on

N
ab
ou

ls
ie
ta
l.
[2
9]

U
ne
qu
al

>
5

E
ar
ly

m
or
ni
ng
,m

or
ni
ng
,l
at
e
m
or
ni
ng
,m

id
ni
gh
ta
nd

so
on

D
as
hd
or
je
ta
l.
[3
0]

U
ne
qu
al

>
5

E
ar
ly

m
or
ni
ng
,m

or
ni
ng
,l
at
e
m
or
ni
ng
,m

id
ni
gh
ta
nd

so
on

Sh
in

et
al
.[
31

]

U
ne
qu
al

8
S1

[0
:0
0
a.
m
.–
7:
00

a.
m
.]
,S

2[
7:
00

a.
m
.–
9:
00

a.
m
.]
,S

3[
9:
00

a.
m
.–
11
:0
0
a.
m
.]
,

S4
[1
1:
00

a.
m
.–
2:
00

p.
m
.]
,S

5[
2:
00

p.
m
.–
5:
00

p.
m
.]
,S

6[
5:
00

p.
m
.–
7:
00

p.
m
.]
,

S7
[7
:0
0
p.
m
.–
9:
00

p.
m
.]
an
d
S8

[9
:0
0
p.
m
.–
12
:0
0
a.
m
.]

Fa
rr
ah
ie
ta
l.
[3
3]



28 3 A Literature Review on Context-Aware Machine Learning and Mobile Data. . .

into three equivalent time segments, e.g., morning [7:00–12:00], afternoon [13:00–
18:00], and evening [19:00–2400]. Using three temporal segments [0:00–7:59],
[8:00–15:59], and [16:00–23:59], Rawassizadeh et al. [18] propose a scalable
method for regular behavioral pattern mining from multiple sensor data. Morning
[6:00–12:00], afternoon [12:00–18:00], evening [18:00–2400], and night [0:00–
6:00] are the four period segments considered by Mukherji et al. [19]. Using the
same four time segments, Bayir et al. [20] suggest a web-based customized mobility
service for mobile applications. Paireekreng et al. [21] introduced a personalization
mobile game recommendation framework using time-of-day divided into four
cycles—morning, midday, evening, and night. Jayarajah et al. [22] use morning
[6:00–11:59], day [12:00–17:59], evening [18:00–23:59], and overnight [0:00–5:59]
to understand the difference in variety seeking over various time windows. In their
application model, Do et al. [23] night [0:00 a.m.–6:00 a.m.], morning [6:00 a.m.–
12:00 p.m.], afternoon [12:00 p.m.–6:00 p.m.], and evening [6:00 p.m.–0:00 a.m.] to
explain how user behavior changes with respect to time of day.

Several researchers have used unequal interval-based segmentation in their
applications. For instance, Xu et al. [24] have provided a prediction system for
smartphone app usages that incorporates three important everyday factors that affect
user app use behavior (context, group behavior, and user preferences). Morning
(starting at 6:00 a.m. and finishing at noon), afternoon (ending at 6:00 p.m.), and
night (all remaining hours) are the time segments they use. Mehrotra et al. propose a
novel interruptibility management solution in [25] that learns users’ preferences for
receiving mobile alerts based on automated rule extraction by mining their contact
with mobile phones. Morning [6:00–12:00], afternoon [12:00–16:00], evening
[16:00–20:00], and night [20:00–24:00 and 0:00–6:00] are the four-time slots they
use for segmentation. In their recommendation scheme, Zhu et al. [26] use five
static time segments in a day that are predefined as morning [7:00–11:00], noon
[11:00–1400], afternoon [14:00–18:00], and so on. Oulasvirta et al. [27] use five-
time slots (morning, forenoon, afternoon, evening, and night) as temporal context
to explain each user’s thoughts, ideas, beliefs, and emotions. Yu et al. investigate
how to mine topic models to manipulate user context logs for customized context-
aware suggestion in [28]. Morning [7:00–11:00], noon [11:00–14:00], afternoon
[14:00–18:00], evening [18:00–21:00], and night [21:00-Next day 7:00] are the
period segments used throughout their framework.

A number of authors [29–31] add to the above segmentations by introducing
early morning, late morning, midnight, and so on. Shin et al. propose a new context
model for app prediction in [32], which gathers a wide variety of contextual infor-
mation in a smartphone and makes customized app predictions using a naive Bayes
model. They divide time for weekdays and weekends into early morning, morning,
afternoon, evening, and night in their model. Farrahi et al. [33] divide each day into
8 coarse-grain time slots as follows: [0:00 a.m.–7:00 a.m.], [7:00 a.m.–9:00 a.m.],
[9:00 a.m.–11:00 a.m.], [11:00 a.m.–2:00 p.m.], [2:00 p.m.–5:00 p.m.], [5:00 p.m.–
7:00 p.m.], [7:00 p.m.–9:00 p.m.] and [9:00 p.m.–12:00 a.m.]. These time slots were
chosen to represent popular activities in everyday life, such as lunch, dinner, or work
hours in the morning and afternoon. These types of segmentation are often used in a



3.2 Context Discretization 29

variety of applications such as mining mobile user habits [34, 35], managing mobile
intelligent interruption management system [36], mining frequent co-occurrence
patterns on the mobile phones [37], making app prefetch practical on mobile phones
[38].

Several authors use time segments for different events scheduled in their calendar
in addition to the above time segments to predict individual cell phone user activity.
Cell phones are also considered one of the main means of accessing calendars (e.g.,
Google Calendar) to coordinate schedules such as meetings since they are still
associated and carrying with the users [39]. The calendar [40] allows the user to
identify unique tasks or events with length, temporal domain, and other attributes.
For example, if the calendar shows a meeting between 13:00 and 14:00, they
presume the user is inaccessible and is in a location with at least one other person
[41]. The time interval [13:00–14:00] is then used to forecast her cell phone use.
Calendar entries, according to Khalil et al. [42], is a good indicator of whether an
individual is available or unavailable for a phone call. Salovaara et al. [43] conducted
a study and found that 31% of incoming phone calls were due to unavailability, i.e.,
users were unable to answer the phone calls due to meetings, classes, appointments,
driving, or sleeping.

Several authors have designed a context-aware interruption management frame-
work that produces as an output if an incoming call should be enabled to ring
by taking into account the user’s above unavailability solution for a specific time
segment (e.g., between 13:00 and 14:00) using an individual’s calendar details.
Dekel et al. [44] build an application to reduce cell phone disturbances, for example.
The developers of [45] and [36] use calendar information to create a context-aware
interruption management system. To enhance mobile phone understanding, Seo et
al. [46] use the user’s schedule to determine policy rules in their context-aware
phone configuration management framework. The interruption handling rules in
these methods are focused on static temporal segments based on their scheduled
appointments in their individual’s calendar details, for example, the user is unable
to answer the incoming call while s/he is in a calendar case (e.g., a meeting between
13:00 and 14:00). However, in some situations, such an unavailability approach
offers poor accuracy.

Khalil et al. [47] surveyed 72 phone users and discovered that the above
unavailability solution for mobile communication has low accuracy (62%) for
loosely organized home activities like lunch, watching TV, and doing homework, but
high accuracy (93%) for structured events like classes, meetings, and appointments.
However, such special terms are insufficient to cover real-world use cases; a larger
range of meeting categories keywords is needed to capture users’ actual actions
[44]. Even if the user is involved in an ongoing task or social situation, the phone
call is always not disruptive, and the call is welcomed because it offers a required
mental break from the current task [48]. According to [49], 24% of mobile phone
users feel compelled to pick up a phone call while in a meeting. According to a
user survey conducted by Rosenthal et al. [50], 35% of participants want to receive
phone calls at work, while the rest do not. Sarker et al. [41] have demonstrated that
the presence of a calendar event for a specific time segment is insufficient to assume
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individual actions for their different calendar events. According to [51], the calendar
does not offer a reliably accurate depiction of the real world because events do not
occur or occur outside the calendar’s allocated time window. As a result, calendar-
based temporal segments are ineffective at capturing the actions of individual mobile
phone users [41].

Although different time intervals and corresponding segmentation are used for
different purposes (see Table 3.2), these methods all take into account a fixed
number of segments for all users. However, users’ behavioral evidence that varies
from user to user over time in the real world is not taken into account when doing
such segmentation. As a result, static segment generation may not be appropriate
for producing high-confidence temporal rules for individual smartphone users. For
example, in one case, a N1 number of segments may yield meaningful results,
whereas in another case, a N2 number of segments may yield better results, where
N1 �= N2. As a result, rather than statically generating rules, dynamic segmentation
of time may be able to represent individuals’ behavioral evidence over time and play
a role in producing high confidence rules based on their utilization records.

3.2.3 Dynamic Segmentation

A segmentation technique that produces a variable number of segments, as discussed
above, will be more useful for modeling users’ behavior. To achieve the target, a
dynamic segmentation technique rather than a static segmentation technique may be
used. The number of segments in a dynamic segmentation is not set and predefined;
it can change based on behavioral features, patterns, or preferences. There are many
dynamic segmentation strategies for modeling users’ behavioral patterns in temporal
contexts that generate a variable number of segments. To produce the segments,
several authors simply take into account a single parameter, such as interval length
or base time. Depending on the time frame, the number of time segments varies.
The number of segments will be Tmax/BP [52] if Tmax reflects the entire 24-h time
span and BP is a base period. The number of time segments decreases as the base
period increases and vice versa. If the base time is 5min, the number of segments
will be determined by dividing 24-hours-a-day by 5. In this case, a base period of
5min is assumed to be the finest granularity for distinguishing an individual’s day-
to-day activities. The number of segments decreases as the base time is increased
to 15min, with 15min being considered to be the finest granularity. As a result, the
number of segments varies depending on the starting time frame.

For example, Ozer et al. [53] suggest using sequential pattern mining techniques
to predict the location and time of cell phone users. In their process, they use a
15-min time interval for segmentation and then switch to 60-min intervals in their
experiments. Do et al. present a system for predicting where users will go and
which app they will use next using rich contextual knowledge from smartphone
sensors in [54]. They use 30min as the parameter value in their system. Farrahi et
al. use temporal data to discover everyday habits from large-scale cell phone data
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in [55]. They also divide each day of the week into 30-min segments using 30min
as the parameter value. Karatzoglou et al. use 2-h as the parameter value in their
mobile app recommendation system in [56]. In their analysis to classify human daily
activity patterns using cell phone data, Phithakkitnukoon et al. [57] use 3 h for time
segmentation. For various purposes, different authors use different interval values to
create a variable number of segments. When the value of such an interval is high, it
results in a small number of segments, and vice versa. However, the optimal value of
this parameter, which we are interested in, is required for an effective segmentation
that captures individual mobile user behavior.

Individual calendar schedules and corresponding time boundaries may also
be used to evaluate variable duration time segments to model users’ actions in
a temporal sense, which may differ depending on users’ preferences [41]. For
example, one user may have an event between 1 and 2 p.m., while another may have
an event between 1:30 pm and 2:30 pm. As a result, the time segmentation varies
depending on the events they have planned in their calendars. Multiple thresholds,
sliding windows, and data shape-based methods, as shown in Table 3.3, are also
used in many applications. Halvey et al. [58] proposed a multi-thresholds-based
approach for segmenting time-series log data to predict mobile device navigation
patterns. However, since no previous awareness of user behaviors exists, choosing
these thresholds to define the lower and upper boundary of a segment is extremely
difficult.

Several authors use machine learning methods such as clustering, genetic
algorithms, and others in addition to these approaches. To discover rules from
time series, Das et al. [59] suggest a cluster-based technique. The issue is that the
number of clusters must be known ahead of time, which is difficult to predict for
an individual. Besides these, GA based [60, 61], sliding window-based [62, 63],
shape-based [16, 64] segmentation have been proposed for different purposes.

The user’s total number of activity occurrences at each time point is used to
segment the data. These are not, however, behavior-oriented segmentations since
they do not account for the various actions of individuals that we are interested
in. Using cell phone data, a variety of authors examine various usage habits over
time. Phithakkitnukoon et al. [65], for example, create a behavior-based adaptive
call prediction system based on mobile phone data. Jang et al. have shown in [66]
that different users’ app usage activity differs over time in a day while using mobile
data. Henze et al. use mobile phone data in [67] to determine the best time to deploy
applications. Xu et al. [68] use cell phone data to determine the best period for
active applications. Based on user activity, Bohmer et al. [69] describe the peak
time of typical app usages. These methods consider scanning over each hour time
slot of the day (for example, [1:00 p.m.–2:00 p.m.]) to capture user habits and locate
a specific predefined section for their purposes. Such methods, on the other hand,
ignore the complex optimal segmentation based on an individual’s actions. We
have summarized a variety of works that use dynamic segmentation techniques for
various purposes in Table 3.3.
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Table 3.3 Various types of dynamic time segments used in different applications

Base technique Description References

Single parameter A predefined value of time interval,
e.g., 15min is used to generate
segments

Ozer et al. [53]

A different value of time interval,
e.g., 30min is used for
segmentation

Do et al. [54], Farrahi et al. [55]

A relatively large value of the
parameter, e.g., 2-h is used to
generate time segments

Karatzoglou et al. [56]

Another large value of time interval,
e.g., 3-h is used for segmentation to
make the number of segments small

Phithakkitnukoon et al. [57]

Calendar Various calendar schedules and
corresponding time boundaries are
used to model users’ behavior in
temporal context

Khail et al. [47], Dekel et al. [44],
Zulkernain et al. [36], Seo et al.
[46], Sarker et al. [41]

Multi-thresholds To identify the lower and upper
boundary of a segment for
segmenting time-series log data

Halvey et al. [58]

Data shape A data shape based time-series data
analysis

Zhang et al. [16], Shokoohi et al.
[64]

Sliding window A sliding window is used to analyze
time-series data

Hartono et al. [62], Keogh et al. [63]

Clustering A predefined number of clusters is
used to discover rules from
time-series data

Das et al. [59]

Genetic algorithm A genetic algorithm is used to
analyze time-series data

Lu et al. [60], Kandasamy et al. [61]

Clustering, as shown in Table 3.3, is an effective machine learning technique for
forming broad time segments that take into account such user activity patterns. Clus-
tering algorithms are typically built on certain assumptions and are biased against
certain types of problems. In this sense, saying “best” in the context of clustering
algorithms is a challenging task; it depends on the particular application [70]. The
K-means algorithm is the most well-known squared error-based clustering algorithm
[71] among a variety of clustering algorithms in the area of machine learning and
data science. However, this algorithm requires the initial partitions and a fixed
number of clusters K to be defined. With different starting points, the convergence
centroids often change. Because of the estimation of mean values, outliers may
often affect this algorithm. More significantly, this algorithm’s characteristics aren’t
directly applicable to our context-aware rule learning. This algorithm, for example,
assigns objects to the nearest cluster using the Euclidean distance function as a
measure of similarity. However, Euclidean distance is ineffective for determining
individual behavioral similarity and, as a result, learning behavioral rules. In the
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presence of outliers, another K-medoids method [72], is more robust than the K-
means algorithm since a medoid is less affected by outliers than a mean. As it
reduces the outlier problem, K-means and the problem of time-series modeling have
other characteristics in common.

Since the size and number of time segments are determined by the user’s actions,
which vary from one user to the next, bottom-up hierarchical data processing may
aid in the formation of behavioral clusters. There are two types of hierarchical
algorithms currently available: agglomerative methods and divisive methods. The
system clustering process, on the other hand, is not widely used in practice [70].
Single linkage [73] and full linkage [74] are the simplest and most common
agglomerative clustering methods. The single linkage agglomerative clustering
algorithm is similar to another tool, nearest neighbor [70]. All of these hierarchical
algorithms rely on a proximity matrix, which is computed by calculating the
distance between two new clusters. The clusters are then successively merged
according to the matrix value until the desired cluster structure is obtained. Because
of the differences in user behavior, it is impossible to predict the degree to which
merging is optimal according to a proximity matrix. Thus, using such clustering
techniques, segments could be produced based on time-series data on user behavior
patterns. Similarly, approaches based on genetic algorithms, such as those shown in
Table 3.3, generate dynamic segments.

In summary, time-series modeling, using both the static and dynamic segmen-
tation methods discussed above, can produce a variety of time segments that can
be used for a variety of purposes. The above time-series modeling approaches, on
the other hand, do not always map to trends of individual users based on their
preferences, which are based on users’ diverse habits through time-of-week and
may differ from user to user. To effectively use temporal context as the basis
for discovering rules capturing smartphone user behavior, a machine learning-
based time-series modeling technique that takes into account such patterns may be
important.

3.3 Rule Discovery

Another major focus of this study is using smartphone data to discover useful
behavioral rules of individual cell phone users based on multi-dimensional contexts,
such as temporal, spatial, or social contexts. In the field of machine learning, the
most popular techniques for discovering such rules of individual cell phone users are
association rule learning [75] and classification rule learning [76]. We will provide a
brief overview of both association and classification strategies for discovering rules
based on multi-dimensional contexts in the following sections.
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3.3.1 Association Rule Mining

Association rule mining [77] is the discovery of associations or patterns or rules or
relationships among a set of available items in a given dataset. Due to the descriptive
and easily understandable existence of the discovered association rules, association
rule mining has become a popular data mining technique [77]. Initial research into
mining association rules was largely motivated by the analysis of retail market
basket data to understand the purchasing behavior of the customers. One example is
that “if a customer buys a computer or laptop (an item), s/he is likely to also buy anti-
virus software (another item) at the same time”. A common way of measuring the
usefulness of association rules is to use its parameter, the ‘support’ and ‘confidence’
which is introduced in [77]. Support of a rule Sup(A ⇒ C) is the percentage
(%) of records in the dataset which carries all the items or contexts in a rule, and
the confidence Conf (A ⇒ C) is the percentage (%) of the records that carry all
the items or contexts in the rule among those records that carry the items in the
antecedent (A) of the rule.

Association rule mining algorithm discovers association rules that satisfy the
predefined minimum support and confidence constraints from a given dataset [75].
The association rule mining problem is usually decomposed into two subproblems;
(i) the first one is to identify several item sets whose occurrences exceed the
predefined minimum support threshold in the dataset, those item sets are called
frequent itemsets. We can define ‘item set’ as a non-empty set of items (each context
value is considered as an item in the mobile phone dataset). The cardinality of an
item set ranges from one to any positive number, e.g., is greater than zero. Each
transaction record in the dataset contains an item set of size n, i.e., if a transaction
record contains three different items (I1, I2, I3), then the size of the item set is 3.
An item set that can be found frequently in a dataset is typically called a frequent
itemset, which identified the minimum support threshold. For instance, if a threshold
is set to identify the frequent or infrequent item sets, then the item sets that are
observed below this minimum support threshold are called infrequent itemsets. On
the other hand, the item sets that are observed with a higher value of this minimum
support threshold are called frequent itemsets. Both frequent and infrequent itemsets
are subsets of a superset and (ii) the second problem is to generate association
rules from those frequent itemsets with another constraint of minimal confidence.
Association rules are discovered from only the frequent itemsets that are discovered
using the minimum support threshold discussed above. Thus, the discovery of a
frequent itemset affects the number of discovered association rules. To determine
whether an item set is frequent and infrequent, a minimum support threshold must
be preset by the user. Otherwise, it is typically not possible to discover neither the
frequent itemsets from a dataset nor their corresponding association rules.

Although association rule mining was introduced to extract associations from
market basket data [77], association rules are employed today in many other
domains such as data analysis, recommender systems, intrusion detection, and web
usages mining etc. In the area of mining mobile phone data, recently, a number
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of researchers [25, 26, 37] also use association rules for various purposes. Many
association rule mining algorithms have been proposed in the data mining literature,
such as logic based [78], frequent pattern based [75, 79, 80], tree-based [81] etc. In
the following, we mainly focus on some classic and popular association rule mining
algorithms, such as AIS [77], Apriori [75], Apriori-based such as Apriori-TID and
Apriori-Hybrid [75], FP-Tree [81], and RARM [82] algorithms.

3.3.1.1 AIS Algorithm

The AIS algorithm, proposed by Agrawal et al. [77], is the first algorithm designed
for association rule mining. The main focus of this algorithm is to improve the
quality of the datasets with the necessary functionalities for findings of associations
or relations within this data and to process decision support queries using the dis-
covered associations. In this algorithm, the consequent of the discovered association
rules contains only one item, however, the antecedent may contain several items or
contexts. An example of such association rule is like A1 ∩ A2 ⇒ C, where A1, A2
are the items in antecedent and C (one item) represents the consequences of that
rule.

In AIS algorithm [77], the frequent itemsets (each context value is considered as
an item in the mobile phone dataset) were generated by scanning the datasets several
times. A frequent item set satisfies the minimal support. This algorithm works
based on several iterations or passes over the dataset. While processing, during
the first pass over the dataset, the support count of each context value (item) was
accumulated. The context that is infrequent gets eliminated from the list of items.
An item is considered infrequent if it has a support count less than its predefined
minimum support value according to the preference of the individual user. In such
a way, candidate 1-item sets are generated from the dataset. After that, candidate
2-item sets are generated. To do this, this algorithm extends the generated frequent
1-item sets with the remaining other contexts available in the dataset during the
second pass over the dataset. After that, similar to the first pass, the infrequent item
set is eliminated in the second pass. For this, the algorithm again counts the support
value of the generated candidate 2-item sets and checked with the same minimum
support threshold that is preferred. The item sets whose support count do not satisfy
this predefined threshold are also considered as infrequent item set. Similarly, based
on the remaining other contexts in a record of the dataset, the (n + 1) candidate
itemsets are generated by extending the frequent n-item sets. The generation of all
these candidate item sets and the corresponding frequent itemsets (identified by
checking with the minimum support preference) identifying process iterate until
any one of them becomes empty. Finally, this algorithm generates association rules
based on the frequent itemsets that are identified in different iteration over the
dataset.

To make AIS algorithm [77] more efficient, an estimation method was introduced
to prune those generated item sets (combination of contexts) that cannot become
frequent according to its support value. It not only prunes the unnecessary item sets
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candidates but also helps to avoid the corresponding unnecessary effort of counting
those item sets. Besides such candidate generation, the memory management in the
AIS algorithm is another issue, as all the candidate itemsets and frequent itemsets
are assumed to be stored in the main memory. This is important when memory is
not enough to store the huge amount of generated candidates. To resolve this issue
memory management is also proposed for AIS; (i) to delete the generated candidate
itemsets that have never been extended, (ii) to delete the generated candidate
itemsets containing the maximal number of items and their siblings, and store this
the parent item sets in the disk as a seed for the next pass, which is described with
examples in [77].

The main drawback of the AIS algorithm is too many candidate item sets
generation and consequently produce a huge number of redundant associations or
rules. As a result, it not only produces several useless rules but also requires more
space or memory related to such unnecessary generation and wastes much effort
that turned out to be useless. At the same time, this algorithm needs too many passes
over the whole dataset, which makes the AIS algorithm inefficient for mining mobile
phone data to build context-aware real-life applications for mobile phone users.

3.3.1.2 Apriori Algorithm

Apriori proposed by Agrawal in [75] is the most popular algorithm in the area
of mining association rules. According to [83], it is a great improvement in the
history of association rule mining. The AIS algorithm [77] described above is just
a straightforward association generation approach that requires many passes over
the dataset, generating many candidate item sets while most of them turn out to
be useless. Comparing with the AIS algorithm, Apriori is more efficient during the
candidate generation process for two reasons. The first one is Apriori employs a new
method deferring from the AIS algorithm, for generating the candidate itemsets
(a set of context values), and the second one is it also introduces a new pruning
technique for eliminating the infrequent candidates.

To generate all the candidate itemsets (a set of contexts) from a given dataset,
there are two processes in Apriori algorithm [75]. Firstly, this algorithm generates
the candidate itemsets using the available items in the dataset. After generating these
candidates, the support value of the corresponding generated item sets is counted by
scanning the dataset. While processing, during the first scanning over the dataset,
the support count of each context value (item) is calculated to identify the frequent
item set. A frequent itemset satisfies the minimal support preferred by an individual
user. This algorithm performs a pruning operation and prunes the infrequent item
sets to reduce the burden of further processing. An item is considered infrequent
if it has a support count less than its predefined minimum support value set by the
preference of an individual user. On the other hand, the item sets that satisfy this
threshold are considered as frequent item sets, which are checked in each iteration
of the algorithm and generates only those candidate item sets that include the same
specified number of items, such as 1-context set, 2-context set, etc. In such a way,
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the candidate n-item sets are generated after the (n − 1)th passes. To do this, this
algorithm performs the joining operation with only the frequent (n − 1)-item sets
by counting their corresponding support value over the dataset. To generate these
candidate item sets, the Apriori algorithm follows its property, which is defined as
“every sub (n − 1)-item sets of the frequent n-item sets must be frequent” [75]. As
such, if any sub (n−1)-item sets are not in the list of frequent (n−1)-item sets, then
the n-item sets candidate is pruned. According to this condition, all the candidate n-
item sets are pruned by checking their sub (n − 1)-item sets during the process as
there is no possibility to be frequent according to the Apriori property [75].

In summary, Apriori algorithm [75] avoids the effort wastage of counting the
candidate itemsets (a set of contexts) that are already known to be infrequent (not
satisfy the support threshold), during the process of identifying frequent itemsets.
This algorithm not only generates the candidate itemsets by joining among the
frequent itemsets (satisfy the support threshold preferred by an individual) level-
wisely but also prunes the candidates according to the Apriori property that is
mentioned above. As a result, the number of remaining candidate item sets becomes
much smaller, which are ready for further processing. It dramatically reduces the
computation, I/O cost and memory requirement comparing with the AIS algorithm
[77]. However, the Apriori still has two major drawbacks, of which one has been
inherited from the AIS approach. The inherited drawback is that it still has to scan
the entire dataset multiple times as it builds the list of frequent itemsets, which
eventually produces a huge number of redundant rules. The second drawback is
that the candidate generation process is time and memory-consuming and complex
that is not effective for mining mobile phone data to build context-aware real-life
applications for mobile phone users.

3.3.1.3 Apriori-Based Algorithms

Based on the Apriori algorithm [75], several new association rule mining algorithms
were designed with some modifications of this algorithm. For example, Apriori-TID
and Apriori-Hybrid [75] are the modifications of the Apriori algorithm.

These algorithms are based on the Apriori algorithm and try to improve
the efficiency in terms of execution time by making some modifications. These
algorithms try to reduce the number of passes over the dataset and to reduce the size
of the dataset to be scanned in every pass for generating the candidate itemsets. Also,
these algorithms try to prune the generated candidates by using different techniques.

Apriori-TID [75] extends the original Apriori algorithm by removing the need
for multiple scanning of the datasets. This algorithm sets a counter during the first
pass through the dataset. This counter is then used later to determine the frequent
itemsets. As a result, the original dataset is not needed to counter this. On the
other hand, Apriori-Hybrid [75] is based on the idea that is not necessary to use
a similar process for each pass over the dataset for generating candidates. This
approach combines the advantage of using the Apriori algorithm in the early passes
and later this algorithm uses the Apriori-TID algorithm. There is a problem with
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this approach is the cost of switching between Apriori and Apriori-TID algorithms.
Another algorithm Predictive Apriori proposed by Scheffer [84] generates rules by
predicting predictive accuracy combining form support and confidence. So some-
times it produced the rules with large support but low confidence and got unexpected
results. These algorithms could give better results in terms of computational time
in some cases. However, the problem of redundancy still exists in these modified
algorithms.

3.3.1.4 FP-Tree Algorithm

Frequent Pattern Tree (known as FP-Tree) is another association rule mining
algorithm, which was introduced by Han et al in [81], to mine frequent patterns
like Apriori. FP-Tree is another milestone in the development of mining association
rules in terms of execution time. This algorithm needs no candidate generation
process like AIS and Apriori algorithm. It can generate frequent itemsets with only
two passes over the dataset. The frequent patterns generation process includes two
sub-processes: (i) it first constructs the frequent pattern tree, and (ii) then generates
the frequent patterns from the tree. By avoiding the candidate generation process
and taking less scanning over the dataset, FP-Tree becomes an order of magnitude
faster algorithm than the AIS [77] and Apriori [75] algorithm for generating frequent
patterns from a given dataset [83].

Three reasons make the FP-Tree algorithm more efficient [83]. First, this
algorithm generates a frequent pattern tree, which is a compressed representation
of a given dataset. While constructing the tree, only frequent items measured by
counting the support value are used. A frequent itemset satisfies the minimal support
preferred by an individual user. The other irrelevant information is pruned. This
algorithm also does ordering the items (contexts) according to their support values
[81]. Secondly, this algorithm only scans the dataset twice. The patterns that satisfy
the user-specified minimum threshold are generated by constructing the conditional
FP-Tree. To do this, this algorithm uses the concept of the suffix of the patterns.
For instance, the conditional FP-Tree contains only the patterns with the specified
suffix of the patterns, which reduces the computation cost dramatically. Thirdly, the
frequent pattern tree uses a divide and conquer method. It considerably reduces the
size of the subsequent conditional tree. This algorithm generates the longer frequent
patterns by extending the shorter patterns, i.e., adding a suffix to the shorter frequent
patterns [83].

Although the FP-tree does not generate candidates like Apriori, it produces
similar outputs for the same dataset. As a result, the problem of producing redundant
association rules still exists. Thus, it will not be effective for mining mobile phone
data to build context-aware real-life applications for mobile phone users because of
its redundant association generation [83].
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3.3.1.5 RARM Algorithm

Rapid Association Rule Mining (RARM) is an approach proposed by Das et al.
[82] that also uses the tree structure to represent the dataset. This approach also
does not utilize a candidate generation process. RARM algorithm uses the SOTrieIT
(Support Ordered Trie Itemset) structure for generating the candidate itemsets such
as 1-item sets and 2-item sets. It can quickly generate such item sets without
generating the candidates and scanning the dataset as well. Similar to the FP-Tree
[81] that is discussed above, every node of the SOTrieIT contains one item and the
corresponding support value. This algorithm uses the SOTrieIT tree for generating
the candidate item-sets [82].

The main focus of this algorithm is faster processing than the existing algorithms.
According to [82] RARM is up to 100 times faster than Apriori [75]. However, the
problem of producing redundant association rules still exists. Thus, it will not be
effective for mining mobile phone data to build context-aware real-life applications
for mobile phone users because of its redundant association generation [83].

3.3.1.6 Association Rule Mining Summary

The association rule learning algorithm finds association rules from a dataset
that satisfy predefined minimum support and confidence constraints [75]. In the
literature on data mining, several association rule learning algorithms have been
suggested, such as logic-based [78], frequent pattern based [75, 79, 80], tree-
based [81] etc. As it has its parameter support and confidence, the association rule
learning technique is well established in terms of rule efficiency, e.g., accuracy
and flexibility [85]. A number of researchers [25, 26, 37] have used association
rule learning technique (e.g., Apriori)[75] to mine rules capturing mobile phone
users’ behavior. However, when it comes to discovering users’ behavioral rules,
association rule learning has some limitations. The disadvantages of association
rules for discovering the behavioral rules of individual mobile phone users when
taking into account multi-dimensional contexts are summarized below.

• Lacking in Understanding the Impact of Contexts: Different contexts in mobile
phone data, such as temporal, spatial, or social background, can have varying
effects or influence on individual mobile phone users’ behavioral rules. Incoming
phone calls from a significant person, such as a mother, are often answered by
a person, even if she is in a meeting since her family comes first. In this case,
the importance of individuals’ social relationships (social relationship →
mother) in making behavioral decisions is greater than other related contexts
such as time, weekday or holiday, place, accompanied with, and so on. However,
when discovering rules based on multi-dimensional contexts, the standard asso-
ciation rule learning methodology implicitly assumes that all of the contexts in
the datasets have the same nature and/or effect.
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• Redundancy: If a user preference is defined as a minimum support value
and minimum confidence value, an association rule learning technique, such
as Apriori, discovers all the contextual associations in a given dataset. As a
consequence, the association rule learning methodology generates a large number
of redundant rules because it does not consider the usefulness of the associations
when creating them. For instance, it produces up to 83% redundant rules for a
given dataset that makes the rule-set unnecessarily large [86]. Therefore, it is
very difficult to determine the most interesting ones among the huge amount of
rules generated. As a result, it makes the rule-based decision-making process
ineffective and more complex, which is not effective to build a context-aware
intelligent system [87].

• Computational Complexity and High Training Time: The association rule learn-
ing method necessitates a significant amount of preparation time to generate
rules. For example, when the association rule learning algorithm is used to
discover user behavioral rules, the authors find a long-running period spanning
many hours in an experimental study in the cell phone domain [37]. The key
explanation for the long training period is that traditional association methods
compute all possible correlations between contexts and are unable to filter out
the useful rules for decision-making. As a consequence, generating patterns that
aren’t required adds to the computational complexity and training time.

In summary, traditional association rule learning techniques may not be appropri-
ate to generate users’ behavioral rules in multi-dimensional environments, to create
intelligent context-aware systems, when taking into account the effect of contexts,
the redundancy issue while producing rules, and computational complexity.

3.3.2 Classification Rules

Another method for extracting user behavioral rules from datasets is classification.
Classification is another tool for discovering rules in the field of data mining, where
A represents contextual information and C represents the corresponding activity
class. In general, classification is classified as a learning method for mapping
(classifying) a data instance into the dataset’s predefined class labels. According
to [88], data classification is a two-step process; (i) is the learning stage, in which
a classification model is built from a given dataset; the training set is the data
from which a classification feature or model is learned, and (ii) second one is a
classification step, in which the model is used to evaluate or predict class labels
for previously unknown data; the testing set is the data set used to test the learned
model’s or function’s classification ability.

Classifier efficiency is normally determined by accuracy, which is the percentage
of correct predictions over the total number of predictions made for a given test
dataset, according to [88]. Many other metrics, such as sensitivity, error rate,
specificity, precision, recall, and f-measure, are also used to understand the various
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aspects of the generated model. In the data mining literature, several classification
algorithms with rule generation capabilities have been proposed. In the following,
we mainly focus on some basic and popular approaches such as ZeroR [89], OneR
[90], Decision Tree [76], PART [91], and RIDOR [89].

3.3.2.1 Zero-R

Among the classification techniques used in the data mining field, Zero-R is the most
basic [89]. This algorithm only considers the objective and disregards all predictors.
The majority group is predicted by the Zero-R classifier (class). For example, a
Zero-R model for a sample phone call dataset may be “behavior → reject”.
Although Zero-R has no predictability capacity, it can be used to establish a baseline
output for other classification methods [89].

3.3.2.2 One-R

Holte et al. [90] proposed One-R, which is a simple and inexpensive classification
method. One-R, short for “One Rule,” is a straightforward but precise classification
algorithm for generating the predicting rule. In this method, a one-level decision tree
is built from the training records, and the rules are extracted from that tree, which is
connected to frequently occurring classes in the dataset. Humans can easily interpret
and comprehend the rules produced by the One-R approach. This algorithm creates
a frequency table for each predictor against the target to generate a rule for it. It
then produces one rule for each predictor in the data and chooses the rule with
the smallest total error as its “one rule”. If a user is in a meeting, for example,
the phone call action is rejected. One-R has been shown to generate rules that are
only marginally less reliable than state-of-the-art classification algorithms while still
being easy to understand by humans [90].

3.3.2.3 RIDOR

A direct classification tool is the Ripple Down Rule learner (RIDOR) [89]. The
default rule and the additional rules of that default rule are created by this algorithm.
The algorithm produces a default rule by evaluating the dataset first, according to
this principle. Following that, it generates a set of additional rules. To do this, the
algorithm measures the error rate and selects the rules with the lowest error rate.
These created additional rules are used in addition to the default rule to predict the
unseen classes for a given condition.
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3.3.2.4 Decision Tree

Decision trees [92] is a well-known and widely discussed technique for classi-
fication and prediction. A decision tree is a graph that illustrates the possible
outcome of a decision using a branching process. Each branch of a decision tree
represents a choice among a set of options related to the context of attribute
values, and each leaf node represents a classification or decision for that choice.
The decision tree algorithm aims to derive classification rules from instance
learning. We’ll go through some simple decision tree algorithms in this section.
Various algorithms exist in the implementation of speed, scalability, performance
intelligibility, classification accuracy, and other factors, each with its own set of
advantages.

J. R. Quinlan suggested ID3 as the central algorithm for creating decision trees
[92]. The ID3 algorithm builds a decision tree by using a top-down approach
in which each attribute or context is tested at each node using a greedy search
through the specified training dataset. It determines the entropy and information
gain, which is a statistical property used to determine which attribute to measure
at each node in the tree [92]. The degree to which a given attribute distinguishes
training examples according to their target classification is measured by information
gain. For both missing values and continuous-valued attributes, the ID3 algorithm
does not produce sufficient results. The values for a continuous attribute should be
mapped to some discrete representation to improve ID3 efficiency.

Quinlan proposes a modified algorithm, the C4.5 algorithm, based on the ID3
algorithm [76]. C4.5 uses the principle of knowledge benefit to construct decision
trees from a training dataset in a similar manner to ID3. For splitting the dataset into
subsets, the C4.5 decision tree algorithm uses gain ratio as the test attribute selection
criterion, and each time selects the attribute with the highest knowledge gain ratio
as the test attribute for a given set. C4.5 is a statistical classifier that can deal with
both numeric and missing value attributes, is robust in the presence of noise, and
can build trees with large branches and scales.

The CART algorithm tends to simplify and increase the performance of the
decision tree [93]. CART will deal with both order and disorder data in addition to
multi-state numerical data. It chooses the test attribute based on the Gini coefficient
and creates a binary tree with a straightforward structure. Following that, the SLIQ
[94] and SPRINT [95] algorithms are proposed solely to improve scalability and
parallelism.

3.3.2.5 Hybrid Classification

In [91], PART was proposed as a hybrid classification algorithm. This algorithm
generates rules using a rule induction method in addition to the decision tree. Instead
of using these two algorithms in two steps, this algorithm combines them all into
one. Even though this algorithm creates a decision tree, it does not create a complete
decision tree. A partial decision tree is built using a divide and conquer method in
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PART. A rule induction procedure is used to produce the candidate rules. After
that, this algorithm employs a pruning process to filter the intended rules. DTNB,
proposed by Sheng et al. [96], is another hybrid classification technique for creating
classifications, similar to the PART algorithm. It employs a decision table as well
as a Naive Bayes classifier. The generated rules can be used to predict previously
unknown classes in a given situation.

3.3.2.6 Classification Rule Mining Summary

One of the most common rule-based classification algorithms is decision tree, which
has several advantages, including being easier to interpret, being able to handle high-
dimensional data, being simple and quick, being accurate, and being able to generate
human-understandable classification rules [97, 98]. A number of authors [36, 99–
101], in particular, have used the decision tree classification method to find rules
capturing cell phone users’ actions for different purposes. However, to model users’
actions, classification rules have some limitations. The disadvantages of rule-based
classification strategies for discovering the behavioral rules of individual cell phone
use are summarized below.

• Low-Reliability: In general, reliability refers to the consistency of being depend-
able or continuously performing well. If the pattern or rule describes a rela-
tionship that happens in a high percentage of relevant situations, it is said to
be accurate. A classification rule will be reliable if it provides high prediction
accuracy, and an association rule will be reliable if it has high confidence
correlated with the accuracy, according to Geng et al. [102]. However, in
many situations, the classification rules discovered by traditional rule-based
classification methods, such as decision trees, have poor reliability [25, 103].
A classification rule does not guarantee high accuracy in forecasts, according to
Freitas et al. [85]. The explanation for this is that it may have an over-fitting
problem and inductive bias, both of which reduce the accuracy of a machine
learning-based model’s prediction.

• Lacking in Flexibility: Traditional rule-based classification techniques, such as
decision trees, do not allow users to set their preferences, and as a result, they
make rigid decisions for each test case [76]. However, when considering real-
world scenarios, static decisions in modeling user actions can not be meaningful.
The explanation for this is that people’s preferences aren’t always consistent; they
can differ from one user to another [104]. For example, one person will wish for
the phone call agent to reject incoming calls if she has not answered them more
than 80% of the time in the past. This preference could be 95% of the time for
another person, depending on her preferences.

• Lacking in Generalization: Typically, generality refers to the extent to which
a pattern or rule is systematic, i.e., the percentage of all applicable records in
the dataset that match the pattern. According to Geng et al. [102], a pattern
is more useful and interesting if it characterizes more details in the related
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dataset. When creating classification rules, traditional classification strategies
take data-driven generalization into account. Aside from that, users’ behavior-
based generalization might be of concern. Users’ actions, for example, can be
consistent in a variety of situations, with just a few exceptions [105]. As a
result, behavior-oriented generalization may provide more accurate results for
modeling users’ use patterns. The generalization process not only simplifies
the resulting machine learning-based model but also reduces overfitting and
increases prediction accuracy.

Neither association rule mining (e.g., Apriori) [75] nor classification rule mining
(e.g., Decision tree) [76] are ideal for discovering behavioral rules of cell phone
users based on multi-dimensional contexts. As a result, in this book we suggest a
behavioral decision tree-based approach that generates not only useful general rules
for capturing individual actions at a given level of confidence with a small number
of contexts but also rules that articulate unique exceptions to the general rules when
more context-dimensions are considered.

3.4 Incremental Learning and Updating

Mobile phone log data is not static; it is gradually applied day by day based on
an individual’s current (on-going) mobile phone habits. Since people’s behavior
changes over time, the more recent trends are more likely to be important and
relevant for predicting people’s potential behavior in specific situations than older
ones [106, 107]. As a result, updating and complex management of discovered rules
based on individuals’ recent behavioral trends (e.g., recency) becomes a challenge,
as changes can not only invalidate certain current rules but also make other rules
relevant.

Several incremental rule mining techniques have been proposed for mining rules
in a complex database in the field of data mining. To get a fully updated set of
rules, these techniques use existing rules and the incremental portion of the dataset.
For example, Cheung et al. [108] proposed the FUP algorithm, which is the first
incremental updating technique for preserving association rules as new data is added
into the database. The FUP algorithm is used to discover new frequent itemsets in a
complex database and is based on the Apriori [75] algorithm.

By deleting earlier itemsets that are either considered to be still frequent or
deemed infrequent only by testing the incremental section, FUP tries to extract the
value from the previously discovered rules to produce a relatively small candidate
set to be tested against the original data set. Cheung, et al. suggested a new algorithm
FUP2, which is an expansion of the FUP algorithm, in [109]. When new transactions
are added to a database, the FUP updates the association rules, while the FUP2
extracts the rules from the final data collection, taking into account both the removed
and newly added parts. If the data set is only modified by insertions, the FUP2
algorithm would behave similarly to FUP.
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Xu et al. [110] suggest another incremental association rule mining algorithm.
They suggest an IFP-tree technique, which is an extension of the FP-tree technique
[81]. When a data set is incremented, it uses the current FP-tree to construct the
IFP-tree. It updates the support of the related nodes of the tree for each transaction
of the incremental part. If, on the other hand, a new node is formed, it is held as a
new branch of the root node. The frequent itemsets are discovered after the tree has
been built. It does so by contrasting both old and new trees. When a new node in
the updated tree is discovered, frequent itemsets are created. Since each new node
in the tree forms its branch, only the new branches can result in the generation
of a new frequent object. However, as the number of dimensions and transactions
grows, its efficiency suffers. Thomas et al. propose an algorithm based on the idea
of Negative Border that preserves both frequent and border itemsets [111]. The
algorithm updates to support counts of all frequent itemsets and border itemsets
as data is added to or removed from the original database. However, to minimize
scanning times of an initial database, a large number of border itemsets must be
stored in memory.

A few algorithms are proposed based on the three-way decision, which is
an extension of the widely used binary-decision model with an optional third
alternative [112, 113]. The concepts of approval, rejection and no engagement
suggested by Yao [114] are used to build a three-way decision theory. All itemsets
are divided into three regions using these methods, namely the positive, the
boundary, and the negative region. Positive itemsets are already popular, and they
consider them without reservation. Itemsets in the boundary region are uncommon,
but they could become more common shortly after data increment. Even after data
increment, itemsets in the negative region will become less common, and they will
be abandoned. As a result, all that is required to keep the frequently used itemsets
up to date is to review those in the boundary zone. The runtime is saved because the
negative region containing the majority portion is never computed.

Amornchewin et al. suggest a probability-based incremental association rule
discovery algorithm in [115]. To avoid reprocessing entire dynamic databases,
this algorithm uses the Bernoulli trials principle and uses previously mined infor-
mation. When only new data is inserted into a dynamic database, the algorithm
can efficiently maintain association rules. Thusaranon et al. [116] propose a
new probability-based incremental association rule discovery algorithm that is a
development of Amornchewin and Kreesuradej’s [115] algorithm. They expand the
algorithm’s ability to maintain association rules of a complex database in the case
of record insertion and deletion at the same time in this algorithm.

The above incremental mining techniques primarily consider the overall mining
process’s faster processing, e.g., performance. Instead of processing the combined
dataset that includes the initial dataset and the incremental portion, these techniques
minimize scanning on the provided datasets by mining the incremental part sepa-
rately. As a result, the overall mining method with conventional updating techniques
affects the amount of time it takes to find a full set of revised rules. However, the
freshness of rules, such as rules based on recent trends, is important in modeling
users’ behavior, and this has not been taken into account in these techniques. The
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explanation for this is that in the real world, user behavior is not static and can
change over time. To effectively model smartphone users’ behavior in relevant
multi-dimensional contexts, updation in terms of freshness in users’ behavior while
generating rules is needed.

Several researchers use recent cell phone log data behavioral patterns to forecast
future actions rather than patterns extracted from the entire historical logs to
generate rules based on an individual’s current behavior. They do, however, use
a static period of recent historical data, which may be insufficient for determining
users’ recent behavioral rules. For example, Lee et al. [117] have used recent call
list data to study cell phone users’ calling patterns and create a call recommendation
algorithm for an adaptive speed-call list. To achieve their target, they extract call
logs from the previous 3 months. Barzaiq et al. [118] suggest an approach that
analyzes cell phone historical data over a 2-year cycle to forecast outgoing calls
and observe relatively additional computational load that appears to be unnecessary.
Phithakkitnukoon et al. [119], conduct their research on reality mining datasets
collected over 9 months and find that only a recent portion of contact history is
more important. Phithakkitnukoon et al. [65] present a model for forecasting phone
calls for the next 24 h based on the users’ previous contact history in a separate
paper. They demonstrated that the recent trend of the user’s calling pattern is more
important than the older one and has a higher correlation to the future pattern
than the pattern generated from all historical data in their approach. As a result,
to improve prediction accuracy, the most recent 60 days of call records in the call
logs are considered to be the potential observed call activities [65]. However, since
users’ actions are not consistent in the real world and may differ from user to user
over time, such a static period consideration may not be appropriate to represent
one’s current behavior.

Apart from these methods, several authors [120, 121] deal with the issue of
handling personal information, such as individual’s contact lists in their mobile
phone, and more precisely, the task of searching for the desired contact number
when making an outgoing call. According to Bergman et al. [120], a large number
of contacts in cell phones are never used, even though contact lists grow larger.
According to their findings, 47% of the users’ contacts had not been used in over
6 months or had never been used at all. Stefanis et al. [121] used a window-based
model for handling and searching personal information on mobile phones to predict
future actions. They demonstrated in their experiment that the training window for
predicting an individual’s cell phone use behavior should be long enough to provide
enough data. A training window of more than 2 weeks, on the other hand, would be
unable to capture the dynamic changes in phone call behavior patterns. Furthermore,
a training window of fewer than 7 days will be insufficient to capture behavioral
changes through all days of the week, including changes in social circumstances
on weekends. In conclusion, standard updating techniques discussed above may
not be appropriate for producing a full collection of users’ behavioral rules in
multi-dimensional contexts, to develop intelligent context-aware systems, to provide
relevant services to end smartphone users, when taking into account the freshness
in rules representing users’ current actions and their dynamic updation.
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3.5 Identifying the Scope of Research

Mobile phones have become an inseparable part of our lives. As mentioned in this
chapter, not all users’ cell phone use behaviors are the same and can vary from one
user to another based on contextual details. In a context-aware pervasive computing
environment, studies have demonstrated that mining contextual behavior rules of
individual cell phone users will intelligently assist them in various context-aware
personalized systems such as smart call interruption management system, smart call
reminder system, mobile notification management system, context-aware mobile
app recommender systems, and various predictive services.

Users do not want to use apps that require individual cell phone users to identify
and maintain their behavioral rules manually rather than automatically discovered,
according to studies. Users may not have the time, inclination, experience, or
interest to manually maintain rules [122]. Mining behavioral rules of individual cell
phone users based on relevant multi-dimensional contexts, according to individual
preferences, is a key prerequisite for developing such smart applications.

The state-of-the-art in the field of mobile data analytics was addressed in this
chapter. Based on this, we have summarized the scope of research below, which are
taken into account throughout this book:

(i) Contextual data pre-processing and feature selection are the primary parts
of an effective context-aware system. In Chap. 4, the basic feature selection
and extraction methods for efficient processing have been provided. We also
present several contextual datasets that can be utilized to build a machine
learning based context-aware model for corresponding mobile applications
and services in this chapter. As the real-world data may contain noisy and
inconsistency instances, the pre-processing steps have also been analyzed to
clean and remove noises from raw data in this chapter.

(ii) Context discretization, e.g., an effective time-series modeling considering
mobile user behavioral activities is still lacking for building an intelligent
context-aware system. In Chap. 5, we present a behavior-oriented time seg-
mentation technique capturing user behavioral patterns to produce temporal
behavioral rules. Using time-series cell phone data, this method dynamically
considers not only the temporal coverage of the week but also the number of
incidences of various behaviors to produce related behavioral time segments
over the week.

(iii) Existing studies have focused on mainly association rule mining techniques
(e.g., Apriori) or classification rule mining techniques (e.g., Decision tree) for
discovering user behavioral rules utilizing mobile phone data. However, there
is still a lack of discovering the useful behavioral rules of individual mobile
phone users based on multi-dimensional contexts. In Chap. 6, we present a
tree based approach to model an individual’s mobile phone usage behavior
utilizing their mobile phone data. This approach produces not only the general
rules that capture an individual’s behavior at a particular level of confidence
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with a minimal number of contexts but also produces rules that express specific
exceptions to the general rules when more context dimensions are taken into
account.

(iv) Another key limitation of the existing literature is that the previous studies
have not considered the recency-based rules of individual mobile phone users
and updating the existing rules based on the recent behavioral patterns of
individuals. In other words, there is a lack of understanding about rules
that reflect an individual’s recent behavioral patterns ignoring the user’s past
behavioral patterns to get a complete set of updated rules. In Chap. 7, we
present an approach for recency-based updating the rules and their dynamic
management. This updated rules-set not only contains all the useful rules of
an individual mobile phone user for the whole log period but also expresses
recent behavioral patterns that will help model mobile phone usage behavior
of individuals to provide personalized services for the end mobile phone users
in a context-aware pervasive computing environment.

(v) A rule-based expert system modeling is typically considered one of the key AI
techniques that can be used to make intelligent decisions and more powerful
applications. In Chap. 8, we discuss mobile expert system as a knowledge or
rule-based modeling, where a set of context-aware rules are extracted from
mobile data discussed in earlier chapters. Usually, the purpose of the expert
system is to take information from a human expert and turn this into a number
of hardcoded rules for the input data to be implemented. In this chapter, we
focus on the generated rules based on machine learning techniques, rather than
the hardcoded rules, as we take into account the dynamism in the context-
aware rules.

(vi) Deep learning is part of a broader family of machine learning methods based
on artificial neural networks with representation learning. Although, the rule-
based machine learning methods performed well, deep learning can be used,
when a large amount of data is available. In Chap. 9, we discuss the importance
of deep learning and a context-aware deep learning model for mobile phone
users.

(vii) Finally, in Chap. 10, we highlight the most important and vital issues, ranging
from contextual data collection to decision-making, that has been thoroughly
explored in this book. In terms of new researchers’ perspectives, future
advances in industries, and smart solutions in the context-aware technology
industry, prospective research works, and challenges in the field of context-
aware computing have been addressed.

Overall, this book presents a variety of techniques and research scope in
the field of context-aware machine learning and data analytics, which can be
used for building a variety of real-world applications. The prominent application
fields are personalized assistance services, recommendation systems, human-centric
computing, adaptive and intelligent systems, IoT services, smart cities, mobile
privacy and security systems, and many others, where applications dynamism based
on contextual data is needed.
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3.6 Conclusion

The effect of multi-dimensional contexts on smartphone data, both in terms of
context-aware rule learning and the dataset itself, was addressed in this book.
In this chapter, we mainly aimed to address the current state of mobile data
analytics and associated rule learning techniques. We have also explored about
how multi-dimensional contexts including temporal, spatial, and social contexts
can influence such technology. We have summarized applicable research for each
popular technique to help others in the context-aware rule learning community. In
terms of time-series modeling, rule discovery based on multi-dimensional contexts,
and updating rules over time according to individual preferences, we have addressed
various issues regarding context-aware rule learning. In terms of current research,
there has been a lot of emphasis on conventional context-aware systems and
techniques, with less work on machine learning rule-based context-aware systems
for successful decision making in a specific domain.

Overall, we reviewed previous research and addressed a discussion of challenges
and potential directions for learning context-aware rules from smartphone data in
this chapter. The domain-specific context-aware rules can be used to create a variety
of context-aware models that intelligently assist end-users in their daily activities.
At the end of this chapter, we have summarized the scope of research, which are
taken into account throughout this book. We also assume that this study can be used
as a reference guide in the relevant application areas including mobile applications,
smart systems and security, etc. for both academia and industry.
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