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Preface

We live in the age of “data science and advanced analytics,” in which nearly every
intelligent service we use in our everyday lives is based on data, collected digitally
through smart devices. As the world surrounding an application is continuously
updating and computing is heading toward pervasive and ubiquitous environments,
contextual data analytics are essential for intelligent decision-making and services.
Contextual data is information that provides context to an event, person, or object.
Smartphones have recently advanced in terms of sensing capabilities, allowing them
to collect rich contextual data such as exterior and internal contexts, as well as
phone usage records of users in various day-to-day situations. Machine Learning
(ML) technology, a core part of Artificial Intelligence (AI), can be used to develop
data-driven intelligent context-aware models or systems for smart and automated
decision-making through extracting insights or useful knowledge, such as rules,
from contextual data. Thus, this book provides a thorough knowledge of the notion
of context-aware machine learning, as well as automated rule-based modeling in the
field of mobile data analytics.

We can divide this book into three main parts:

• At the beginning, we introduce the concept of context-aware machine learn-
ing including an automated rule-based framework within the broad area of
data science and analytics, particularly, with the aim of data-driven intelligent
decision-making. Thus, we have bestowed a comprehensive study on this topic
that explores multi-dimensional contexts in machine learning modeling and their
usefulness in various context-aware intelligent applications and services.

• In the next part of this book, we present the approaches to extract insights,
represented as contextual IF-THEN rules, from mobile data, which can be used
for making intelligent decisions in various context-aware test cases. Thus, in
this section, we explore various data processing steps and techniques including
contextual feature engineering, context discretization with time-series modeling,
as well as the approach of extracting contextual IF-THEN rules based on multi-
dimensional contexts. Moreover, we also explore the task of recency analysis,
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i.e., recent pattern-based updating and management of rules for mobile phone
users, which has come to represent an important field of research in the area.

• In the final part of the book, we mainly explore how the contextual information
and machine learning rules can be used to make intelligent decisions as well as
build various data-driven smart and intelligent applications. We also look into
deep learning models, which is a bigger family of machine learning approaches
that can be utilized when there is a lot of contextual data. Finally, in terms
of new research perspective, future advances in industries or academia, or
smart solutions in context-aware technology, prospective research works, and
challenges in the field of context-aware computing have been highlighted in this
section.

Since a rule-based system has high interpretability and accuracy the automation
of discovering rules from contextual raw data can make this book more practical and
beneficial for both application developers and researchers. Overall, this book can
be used as a useful resource for academics and industry professionals working in
various Fourth Industrial Revolution (Industry 4.0) application areas, such as Data
Science, Machine Learning & AI, Behavioral and Predictive Analytics, Context-
Aware Smart Computing, Systems and Personalization, Internet of Things (IoT)
and Mobile Applications, as well as Data-Driven Cybersecurity Intelligence with
automated rule-based modeling and decision-making.

We are glad to introduce this book to upper-level undergraduate and postgraduate
students, as well as academic and industry researchers in the relevant domains
mentioned earlier. We would like to express our gratitude to everyone who supported
and helped us complete this book. Finally, we would like to express our gratitude
to Springer Nature for publishing this book. Your insightful feedback on this book
would be greatly appreciated.

Enjoy the book!

Melbourne, VIC, Australia Iqbal H. Sarker
Melbourne, VIC, Australia Alan Colman
Melbourne, VIC, Australia Jun Han
Sydney, NSW, Australia Paul Watters
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Part I
Preliminaries

This part of the book consists of the Introduction (Chap. 1), application scenarios
and basic structure for context-aware rule learning framework (Chap. 2), and
literature review (Chap. 3) to provide the required background knowledge and
themes for this book.



Chapter 1
Introduction to Context-Aware Machine
Learning and Mobile Data Analytics

1.1 Introduction

Mobile computing and the Internet have played a crucial role in the evolution of the
modern digital era. The Internet has firmly established itself as the foundation of
modern communication. The use of the Internet, particularly the World Wide Web
(WWW), has now spread beyond desktop computers to millions of mobile phones
for real-world users.

Mobile devices have become one of the most popular ways for people all over
the world to communicate with one another for a variety of reasons. According to
the ITU (International Telecommunication Union), cellular network coverage has
reached 96.8% of the global population, and in developing countries, this figure
reaches almost 100% [1]. Mobile phones have evolved from merely communication
devices to intelligent and highly personal essential devices for individual users,
capable of assisting them in a variety of daily activities in various day-to-day
situations.

In the real world, cell phones can be several types, but in the context of this
book, they refer to smartphones or mobile devices with computing and Internet con-
nectivity capabilities. These devices have several important and advanced features
that enable better information access through smart computing and proper system
utilization for the benefit of the users. Smartphones have become increasingly
strong in terms of computing and data storage capacity in recent years. As a result,
these smart mobile phones are capable of doing a range of things related to users’
everyday lives, such as instant messaging, Internet or web browsing, e-mailing,
social network systems, online shopping, or various IoT services like smart cities,
health, or transportation services, in addition to being used as a communication
device [2, 3]. Future smartphones will be more powerful than current models, capa-
ble of communicating faster, storing more data, and incorporating new interaction
technologies.
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Fig. 1.1 Users’ interest trends over time where x-axis represents the timestamp information and
y-axis represents the popularity score in a range of 0 (min) to 100 (max)

As a result of recent developments in science and technology around the world,
the smartphone sector has seen a fast expansion in the mobile phone application
market [4]. According to their diverse capabilities, such as Internet connectivity,
data storage, and processing, these devices are well considered as one of the
most important Internet-of-Things (IoT) devices [2]. Today’s smartphone is also
considered as a “next-generation, multi-functional mobile phone that facilitates
data processing as well as enhanced wireless connectivity”, i.e., a combination of
a “powerful cell phone” and a “wireless-enabled PDA” [5]. According to Google
Trends data [6], we have shown in our previous paper Sarker et al. [3] that users’
interest on “Mobile Phones” is growing faster than other platforms like “Desktop
Computer”, “Laptop Computer” or “Tablet Computer” for the last 5 years from
2014 to 2019, as shown in Fig. 1.1.

In the real world, people use smartphones for a variety of purposes including
e-mailing, instant messaging, online shopping, Internet browsing, entertainment,
social media such as Facebook, Linkedin, Twitter, as well as various IoT services
such as smart cities, health, and transportation services [2, 3]. The execution
environment of smartphone applications differs from that of desktop applications
[7]. A desktop computer program is usually created for use in a static execution
environment, such as at work or at home. However, in most cases, this static
precondition does not apply to mobile networks or systems. The reason for this is
that the context in which an application exists is constantly evolving, and computing
is heading toward widespread and ubiquitous environments [7]. As a result, mobile
applications can adapt to evolving environments and act appropriately, which is
known as context-awareness [8].

In the context of computing with smart cell phones, artificial intelligence (AI)
techniques have evolved rapidly in recent years, allowing the devices to operate
intelligently. In many intelligent mobile applications, such as personalized rec-
ommendation, virtual assistant, mobile enterprise, security and privacy, healthcare
services, and even the corona-virus COVID-19 pandemic management in recent
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days, AI-based modeling, especially machine learning techniques [9, 10], and their
use in practice can be used. The increasing availability of contextual mobile data and
the rapid development of data analytics techniques [11] brought in a paradigm shift
to context-aware intelligent computing. Smartphone apps and services are referred
to as “context-aware” because they can recognize their users’ current contexts and
circumstances, “adaptive” because they can change dynamically based on the users’
needs, and “intelligent” because they are built on data-driven artificial intelligence,
which allows them to assimilate new information and able to assist the end-users
intelligently. As a result, machine learning-based modeling for intelligent decision-
making is a crucial component of developing context-aware smart mobile apps.

Overall, the aim of this book is to provide a thorough knowledge of the notion of
context-aware machine learning, as well as data-driven intelligent decision-making
in the field of mobile data analytics. The techniques will aid mobile app developers
in creating a variety of data-driven context-aware personalized systems, such as
smart context-aware mobile communication, intelligent mobile notification or inter-
ruption management, intelligent mobile recommendation, context-aware mobile
tourist guide, rule-based predictive modeling, context-aware self-management,
and many more that intelligently assist end-users in their daily activities in a
pervasive computing environment. Furthermore, the machine learning techniques
and decision-making intelligence explored in this book can be applied to a variety
of other application domains, such as smart cities and systems, IoT services,
cybersecurity & threat intelligence, and many more with relevant data in the area
of the Fourth Industrial Revolution (Industry 4.0).

1.2 Context-Aware Machine Learning

In general, machine learning (ML) is considered a branch of Artificial Intelligence
(AI), which is based on the idea that systems can learn from data, identify patterns
and make decisions with minimal human intervention. ML is closely related to
computational statistics, data analytics, or data science, and focuses on computer
programs to learn and develop without being explicitly programmed [12]. In other
words, machine learning focuses on the development of computer programs that can
access data and enable computers to learn and modify behavior without the need for
human interaction. The learning process starts with observations or data, such as
examples, direct experience, or instructions, to find trends in data and make better
decisions in the future. Machine learning models are made up of a collection of
rules, methods, or complex transfer functions that can be used to find interesting
data patterns or recognize or predict actions [9].

As shown in Fig. 1.2, there are four basic types of machine learning techniques
[9]. These are (i) supervised learning that uses labeled data for training algorithms
to accurately classify data or predict outcomes; (ii) unsupervised learning is a self-
learning strategy in which the system must discover the characteristics of the input
population on its own, without the use of a prior collection of categories, and thus
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Fig. 1.2 Various types of machine learning techniques

uses unlabeled data to train algorithms; (iii) semi-supervised learning that involves
combining a small amount of labeled data with a large amount of unlabeled data
during training; and (iv) reinforcement learning, which is concerned with how
intelligent agents can behave in a given environment to maximize the concept of
cumulative reward. Depending on the nature of the data and the desired outcome,
these learning methods can help to build data-driven effective models in a variety of
applications.

In this section, we define context-aware machine learning as the learning capabil-
ities from contextual data to build data-driven context-aware systems, particularly
intelligent and adaptive applications for smart mobile devices. Thus understanding
and defining the contextual information is the first step to go forward. Context has
been applied to a variety of fields including mobile and ubiquitous computing,
human-centered computing, ambient intelligence, and relevant other areas [13].
Several early research on context-aware computing, or context-awareness, in the
field of mobile and ubiquitous computing referred to context as the position of
people and things [14]. Schilit et al. [15] argue that the essential aspects of context
are (i) where you are, (ii) who you are with, and (iii) what resources are nearby.
According to Dey et al. [16] “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves”. We can also define context simply “as a
specific type of knowledge to dynamically adapt application behavior according to
the current needs”, which can be divided broadly into two main categories. These
are:

• External or physical context: This type of contextual information can be
measured by hardware sensors or the device itself. Location, time, light, sound,
movement, touch, temperature, air pressure, etc. are some examples of external
context.

• Internal or logical context: This type of contextual information is mostly speci-
fied by the user or captured by monitoring the user’s interaction. User’s identity,
goal, social activity, work context, business processes, preference, emotion, etc.
are some examples of logical context.
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Table 1.1 Various types of contexts with examples

Context category Context examples

Temporal context Date, time of day, season, etc.

Spatial context Location, orientation, speed, etc.

Social context People nearby, activity, calendar events, etc.

Environmental context Temperature, light, noise, etc.

Resource Nearby, printer, availability, etc.

Computation CPU, OS, memory, interfaces, etc.

Network Wire/wireless, bandwidth, error rate, etc.

Physiological Blood pressure, heart rate, tone of voice, etc.

Psychology Preference, emotion, tiredness, etc.

Based on the contextual information defined above, context-awareness is the
ability of a system or system component to gather such information and adapt
behaviors accordingly, which can be the spirit of pervasive computing [17]. As a
result, context awareness simply represents the dynamic nature of an application. In
a ubiquitous computing environment, the use of contextual knowledge in mobile
apps may minimize the amount of human effort and attention required for an
application to provide solutions related to a user’s needs or preferences [18].
Overall, context-aware systems are concerned with acquiring context (e.g., by
utilizing sensors to sense a scenario), understanding and analyzing context (e.g.,
decision-making according to the context), and implementing application behavior
depending on the recognized context (e.g. triggering actions based on context). In
Table 1.1, several contexts with examples have been summarized, which might have
different impacts on the applications.

In a context-aware system, machine learning techniques can play a significant
role to make such decisions dynamically through learning from the contextual data.
Thus, this book is based on context-aware machine learning techniques to extract
insights or useful knowledge, e.g., rules, from the contextual data, which can be
used to build data-driven intelligent context-aware models or systems for smart and
automated decision-making in an application.

Typically, a rule (A ⇒ C) is any statement that relates two principal components,
the rule’s left-hand-side (antecedent, A) and the rule’s right-hand-side (consequent,
C) together. An antecedent states the condition (IF) and consequent states the
result (THEN) held from the realization of this condition, i.e., (IF-THEN logical
statement). A contextual behavioral rule is defined as [contexts ⇒ behavior],
where the contexts (antecedent) represents an individual mobile phone user’s
contextual information (one or many), and the behavior (consequent) represents
his/her behavioral activities or usage for that contexts. The reason for using a rule-
based method in this book is that rules are easy to understand and can represent
the required information efficiently and effectively. Furthermore, rule-based models
can be easily expanded to meet specific needs by adding, removing, or modifying
them using advanced analysis, such as extracting recent trends or domain experts’
expertise.
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1.3 Mobile Data Analytics

People nowadays use smartphones for a range of everyday activities including voice
communication, text messaging, Internet or web browsing, using a variety of mobile
applications (apps), e-mail, social network systems, online messaging, and so on
[19]. Individual cell phone users’ activities in different contexts can be recorded
from various sources such as phone logs, sensors, or other relevant external sources
as shown in Fig. 1.3. The data generated by smartphones provide a means of gaining
new information about various aspects of the users, such as users’ diverse activities
with the devices in their daily life, user social interactions, and so on, which allows
a better understanding of individual mobile phone users in various contexts in the
real world. In this book, we mainly focus on historical phone log data consisting of
individual mobile phone users’ behavioral activities and corresponding contextual
information [20, 21]. Phone call logs [22, 23], SMS Logs [24], Apps usages logs [25,
26], mobile phone notification logs [27], weblogs [28], game Logs [29], context logs
[20, 25], and smartphone life logs [30] etc. are some examples of such phone log
data. Due to the recent developments in smartphones and their sensing capabilities,
the devices can record such rich contextual information about the user as well as
device usage records through device logs [25].

The key feature of this type of log data is that it contains the real data of
behavioral activities of individual mobile phone users in various situations, as their
smartphones automatically record this information based on the users’ real-world
surroundings. Here, the user’s context is defined as “any information that can be
used to characterize the situation of the user” (e.g., user current location) [16]. This
allows researchers to analyze individual mobile phone user behavior from phone log
data and to extract useful knowledge or rules about their actions in various contexts.
Individual cell phone users’ extracted contextual behavioral rules thus can be used

Fig. 1.3 Various types of
data generated by mobile
devices
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to design and develop adaptive, intelligent mobile applications in a context-aware
pervasive computing environment.

Data science methods can help to solve problems by analyzing data and turns
data into knowledge [11, 31]. In general, data science is the computing process
of discovering patterns in large datasets involving methods at the intersection of
machine learning, statistics, and database systems [32]. However, the purpose of
mobile data analytics is slightly different, as smart mobile phones are aware of their
user’s real-life surrounding environment, and users’ various types of activities or
social interactions, in various contexts in the real world. According to [33], mobile
data analytics is the process of intelligently analyzing continuous data streams on
mobile devices and can be used as a supporting technology to reduce the cost of
collecting user’s real-life data and transmission by performing intelligent processing
of data for intelligent mobile applications. Thus, mobile data analytics is considered
as the area which is concerned with the challenge of finding data-driven models
to make dynamic decisions for individual mobile phone users based on relevant
contextual information, or simply the contextual patterns and related user actions
from the data collected by the smart mobile phones in a pervasive computing
environment. In other words, it combines context-aware mobile computing, data
mining, machine learning, and a pervasive computing environment. It is the
computing process of extracting new knowledge (previously unknown) related to
user’s activities and their associated contexts, from the mobile phone data, e.g.,
context logs, which can be used to build real-life smart mobile applications for the
end mobile phone users.

Overall, we can conclude that mobile data analytics is a research area focusing
on modeling user preferences or habits in different contexts, to analyze various
behavioral trends, and ultimately predict behavioral activities from cell phone data,
where context-aware machine learning is the key. Thus it can play an important role
in a wide range of applications for delivering automated and intelligent services to
assist mobile phone users in their everyday lives.

1.4 An Overview of This Book

This book looks mainly at how the useful insights or context-aware machine
learning rules are extracted from mobile phone data with examples, and how these
rules can be used to design intelligent context-aware applications. It is to be noted
that context-aware strategies are different from the general data-driven system in
terms of adaptation, intelligence and smartness. Thus, the basic outline of this
book has been presented below that covers a background analysis of context-aware
machine learning framework with contextual data processing, feature analysis, time-
series modeling, rule discovery with multiple contexts, recent pattern analysis,
rule-based expert system modeling, the evolution of deep learning-based modeling
and future challenges.
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This chapter includes an introduction to the definitions, concepts, and principles
of context-aware machine learning along with mobile data analytics towards rule-
based intelligent applications, where the intentions and goal of this book have been
clarified.

Chapter 2 describes the core elements of a generic abstract architecture for
context-aware rule-based systems. This architecture serves as a foundation for the
examples that follow in the book, with each example incorporating its unique
features. We start by presenting application scenarios for two different types
of social context-aware applications in this chapter, which motivates research
into context-aware machine learning frameworks and systems. This chapter also
explores the various stages of this systemic architecture of a context-aware rule-
based system, beginning with raw contextual data to services.

Chapter 3 provides the background and reviews the related work from various
areas within the scope of this book to analyze and position this work concerning
the existing literature. The scope is determined based on the basic architecture
mentioned in the previous chapter. It covers the contexts and context-aware comput-
ing, the continuous time-series modeling, the rule discovery techniques including
association and classification techniques, dynamic rule updating and maintenance
techniques including incremental rule mining, and recent log-based rule mining
in the related real-life applications for the end mobile phone users. The review
also highlights the principal research areas in which the existing solutions fall
short of requirements for discovering a concise set of contextual rules of individual
mobile phone users, and motivates the research for extracting these rules utilizing
smartphone data.

Chapter 4 presents several real-world contextual datasets that can be utilized for
experimental purposes to extract useful knowledge or contextual rules. This chapter
also represents the contextual feature selection methods for efficient processing.

Chapter 5 presents discretization analysis for time-series behavioral data of
smartphone users. Although static segmentation is simple to understand and can be
beneficial for analyzing population behavior by comparing across individuals, the
generated static segments might not always correspond to individual user activity
patterns and subsequent behavior. In this chapter, we focus on dynamic segmen-
tation and modeling by taking into account the diverse behaviors of individuals
over time-of-the-week. For this, we describe a behavior-oriented time segmentation
methodology that uses phone usage data to generate optimal time segments of
individuals with similar behavioral characteristics. This provides a pathway for the
extraction of individual mobile phone users’ temporal behavioral rules. Finally, how
to use the created clusters to generate a set of temporal behavioral rules based on
users’ preferences for making intelligent decisions in temporal contexts using time-
series mobile phone data have been provided.

Chapter 6 focuses on discovering a set of rules based on multi-dimensional
contexts—for example, temporal, spatial, social, or other relevant. As a result,
we present a rule-based machine learning strategy for extracting a concise set of
association rules while accounting for relevant contexts. This chapter also presents
how we use a top-down strategy to create an association generation tree based on
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the relevant multi-dimensional contexts in our rule discovery technique. Finally,
how the behavioral association rules are extracted from the tree has been presented.

Chapter 7 presents a recency-based approach, that not only removes the outdated
rules from the existing rule-set but also outputs a complete set of updated rules
according to individuals’ recent behavioral patterns. This chapter presents how we
dynamically identify the period for which a recent behavioral pattern has been
dominant by analyzing the behavioral characteristics of individual mobile phone
users utilizing their mobile phone data. This chapter also presents how to identify
the outdated rules from the existing rule-set and outputs a complete set of updated
rules from the recent log data.

Chapter 8 explores primarily the mobile expert system, which is considered
one of the key AI techniques that can be used to make intelligent decisions and
more powerful mobile applications. Hence, we define and explain the mobile expert
system as knowledge or rule-based modeling, where a set of context-aware rules are
extracted from mobile data using rule-based machine learning methods.

Chapter 9 discusses the importance of deep learning in context-aware behavior
modeling for mobile phone users. This chapter also represents a neural network-
based deep learning modeling with multiple hidden layers based on the contextual
mobile phone data. Finally, this chapter shows the challenges of using deep models
along with feasible solutions.

Chapter 10 concludes the book by summarizing several real-world context-aware
applications that intelligently assist individual smartphone users in their everyday
activities. This chapter also addresses the most important and vital issues, ranging
from contextual data collection to decision-making, that have been thoroughly
explored. Several prospective research works and challenges in the field of context-
aware computing have also been addressed in this chapter.

1.5 Conclusion

In this chapter, we have explored context-aware machine learning related to various
aspects to analyze the mobile phone data. Intelligently analyzing the contextual
data including both the internal and external contexts with their patterns can be
used to build a data-driven context-aware model for smart and automated decision-
making, where machine learning technologies are the key. There are different
approaches to context-aware machine learning and some glimpses are presented in
this chapter. It is to be noted that context-aware machine learning-based strategies
are different from basic data-driven applications in terms of adaptation, intelligence
and smartness. We have also highlighted the advantages of machine learning
rule-based modeling for intelligent decision-making in real-world applications.
Overall, it is noted that the machine learning techniques and decision-making
intelligence explored in this book can be applied to a variety of application domains
such as mobile applications, smart cities and systems, IoT services, cybersecurity
intelligence, and many more with relevant data in the area of the Fourth Industrial
Revolution (Industry 4.0), mentioned in this chapter.



12 1 Introduction to Context-Aware Machine Learning and Mobile Data Analytics

References

1. Sarker, I. H. (2019). Context-aware rule learning from smartphone data: survey, challenges and
future directions. Journal of Big Data, 6(1), 1–25.

2. El Khaddar, M. A., & Boulmalf, M. (2017). Smartphone: The ultimate IoT and IoE device.
Smartphones from an Applied Research Perspective, 137.

3. Sarker, I. H., Hoque, M. M., Uddin, M. K., & Alsanoosy, T. (2021). Mobile data science and
intelligent apps: Concepts, AI-based modeling and research directions. Mobile Networks and
Applications, 26(1), 285–303.

4. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., & Tian, G. (2018). Personalized app
recommendation based on app permissions. World Wide Web, 21(1), 89–104.

5. Zheng, P., & Ni, L. M. (2006). Spotlight: The rise of the smart phone. IEEE Distributed Systems
Online, 7(3), 3.

6. Google trends (2019). https://trends.google.com/trends/
7. Finin, T., Joshi, A., Kagal, L., Ratsimore, O., Korolev, V., & Chen, H. (2001, September).

Information agents for mobile and embedded devices. In International workshop on coopera-
tive information agents (pp. 264–286). Berlin, Heidelberg: Springer.

8. de Almeida, D. R., de Souza Baptista, C., da Silva, E. R., Campelo, C. E., de Figueirêdo, H. F.,
& Lacerda, Y. A. (2006, April). A context-aware system based on service-oriented architecture.
In 20th international conference on advanced information networking and applications-volume
1 (AINA’06) (Vol. 1, pp. 6-pp). IEEE.

9. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research
directions. SN Computer Science, 2(3), 1–21.

10. Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021). AI-driven cybersecurity: an overview,
security intelligence modeling and research directions. SN Computer Science, 2(3), 1–18.

11. Sarker, I. H. (2021). Data science and analytics: An overview from data-driven smart
computing, decision-making and applications perspective. SN Computer Science, 2, 377

12. Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The
Morgan Kaufmann Series in Data Management Systems, 5(4), 83–124.

13. Dourish, P. (2004). What we talk about when we talk about context. Personal and Ubiquitous
Computing, 8(1), 19–30.

14. Schilit, B. N., & Theimer, M. M. (1994). Disseminating active map information to mobile
hosts. IEEE network, 8(5), 22–32.

15. Schilit, B., Adams, N., & Want, R. (1994, December). Context-aware computing applications.
In 1994 first workshop on mobile computing systems and applications (pp. 85–90). IEEE.

16. Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing,
5(1), 4–7.

17. Shi, Y. (2006, August). Context awareness, the spirit of pervasive computing. In 2006 first
international symposium on pervasive computing and applications (pp. 6–6). IEEE.

18. Anagnostopoulos, C., Tsounis, A., & Hadjiefthymiades, S. (2005, July). Context management
in pervasive computing environments. In ICPS’05. Proceedings. International Conference on
Pervasive Services, 2005 (pp. 421–424). IEEE.

19. Pejovic, V., & Musolesi, M. (2014, September). InterruptMe: Designing intelligent prompting
mechanisms for pervasive applications. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (pp. 897–908).

20. Cao, H., Bao, T., Yang, Q., Chen, E., & Tian, J. (2010, October). An effective approach for
mining mobile user habits. In Proceedings of the 19th ACM International Conference on
Information and Knowledge Management (pp. 1677–1680).

21. Hong, J., Suh, E. H., Kim, J., & Kim, S. (2009). Context-aware system for proactive
personalized service based on context history. Expert Systems with Applications, 36(4), 7448–
7457.

22. Phithakkitnukoon, S., Dantu, R., Claxton, R., & Eagle, N. (2011). Behavior-based adaptive call
predictor. ACM Transactions on Autonomous and Adaptive Systems, 6(3), 1–28.

https://trends.google.com/trends/


References 13

23. Sarker, I. H., Colman, A., Kabir, M. A., & Han, J. (2016, September). Phone call log as
a context source to modeling individual user behavior. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 630–
634).

24. Eagle, N., & Pentland, A. S. (2006). Reality mining: sensing complex social systems. Personal
and Ubiquitous Computing, 10(4), 255–268.

25. Zhu, H., Chen, E., Xiong, H., Yu, K., Cao, H., & Tian, J. (2014). Mining mobile user
preferences for personalized context-aware recommendation. ACM Transactions on Intelligent
Systems and Technology, 5(4), 1–27.

26. Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K. K., Xu, C., & Tapia, E. M. (2014,
September). Mobileminer: Mining your frequent patterns on your phone. In Proceedings of the
2014 ACM international joint conference on pervasive and ubiquitous computing (pp. 389–
400).

27. Mehrotra, A., Hendley, R., & Musolesi, M. (2016, September). PrefMiner: Mining user’s
preferences for intelligent mobile notification management. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (pp. 1223–1234).

28. Halvey, M., Keane, M. T., & Smyth, B. (2005, September). Time-based segmentation of
log data for user navigation prediction in personalization. In The 2005 IEEE/WIC/ACM
international conference on web intelligence (WI’05) (pp. 636–640). IEEE.

29. Paireekreng, W., Rapeepisarn, K., & Wong, K. W. (2009). Time-based personalised mobile
game downloading. In Transactions on edutainment II (pp. 59–69). Berlin, Heidelberg:
Springer.

30. Rawassizadeh, R., Tomitsch, M., Wac, K., & Tjoa, A. M. (2013). UbiqLog: A generic mobile
phone-based life-log framework. Personal and Ubiquitous Computing, 17(4), 621–637.

31. Witten, I. H., & Frank, E. (2002). Data mining: Practical machine learning tools and techniques
with Java implementations. ACM SIGMOD Record, 31(1), 76–77.

32. Cao, L. (2017). Data science: A comprehensive overview. ACM Computing Surveys, 50(3),
1–42.

33. Haghighi, P. D., Krishnaswamy, S., Zaslavsky, A., Gaber, M. M., Sinha, A., & Gillick, B.
(2013). Open mobile miner: A toolkit for building situation-aware data mining applications.
Journal of Organizational Computing and Electronic Commerce, 23(3), 224–248.



Chapter 2
Application Scenarios and Basic
Structure for Context-Aware Machine
Learning Framework

2.1 Motivational Examples with Application Scenarios

In today’s world, the increasing adoption and popularity of mobile phones have
radically changed the way we connect and communicate with others [1]. The cell
phone is a highly personal device that is used in a person’s everyday life. These
phones are regarded as “always on, always connected” devices [2]. However, due to
their day-to-day situations in their everyday lives, cell phone users are not always
attentive and responsive to incoming communications. As a result, people are often
distracted by incoming phone calls, which not only bother the owners/users but
also the people in the close surroundings (Figs. 2.1 and 2.2 illustrate two real-world
scenarios). In an official/working environment (e.g., in a meeting/seminar), such
interruptions may result in embarrassment, reduce worker performance, increase
mistakes, and stress [3]. Furthermore, this can affect other things such as doctoring
patients or driving a car, which can result in an accident.

Interruptions consume 28% of a knowledge worker’s day, according to the Basex
BusinessEdge study [4], which is focused on surveys and interviews conducted by
Basex over 18 months with high-level knowledge employees, senior executives at
end-user organizations, and executives at companies that manufacture Collaborative
Business Knowledge resources. Companies in the United States alone lose 28 billion
man-hours per year as a result of this. According to the Bureau of Labor Statistics
[5], it results in a loss of $700 billion, based on an average wage of $25/h for a
knowledge worker. Bailey et al. [6] found that when users are interrupted, they
take 3–27% longer to complete tasks and make twice as many errors. As a result,
handling phone call interruptions is crucial, and a context-aware machine learning-
based adaptive and intelligent system could be the best option.

Developing machine learning-based computational models capturing user behav-
ioral patterns, analyzing and eventually predict the next behaviors or detect strange
behaviors from users’ mobile phone data can be used to assist themselves in their
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Fig. 2.1 Interruptions with
phone calls for the user while
driving and may cause car
accident

Fig. 2.2 Interruptions with
phone calls for the
surrounding people and may
create embarrassing situations

daily life. The following examples intuitively illustrate the advantage of building
such machine learning models.

Motivating Example 1 Let’s say Alice is a smartphone user who serves as an exec-
utive officer in a corporate office. On Mondays between 9:00 a.m. and 11:00 a.m.,
she attends a routine meeting at her office. She usually ignores incoming phone calls
during that period because she does not want to be distracted during the meeting.
The reason for this is that interruptions can not only bother her, but they may also
bother others. Even though she is in a meeting, she needs to answer the phone if
it is from her boss because it is likely to be important to her. As a result, a mobile
phone user’s behavior can change according to her current contextual information.
Alice’s call response behavioral rules can be discovered by a context-aware machine
learning model based on her contexts utilizing her mobile phone data, e.g., phone
call logs, in which she accepts or declines incoming phone calls in her everyday
work routine [7]. The contextual behavioral rules discovered from Alice’s phone
log data could be used to create a smart call interruption management system for
her, providing context-aware customized services to intelligently manage incoming
calls.
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Fig. 2.3 Various types of smartphone apps that can assist in our daily life activities according to
users’ current needs

Motivating Example 2 Let’s assume Bob, another smartphone user is a Ph.D.
candidate. On his smartphone, Bob has a huge range of mobile applications known
as apps (Fig. 2.3 illustrates a real-world scenario with various types of apps).
Smartphone home screens offer quick access to frequently used applications, which
is especially useful [8]. However, Bob’s smartphone’s home screen is unaware of his
changing contexts and as a result, he is unable to intelligently handle applications
based on his current needs. Thus a context-aware machine learning model could
discover Bob’s app usage behavioral rules using his cell phone data, e.g., app usage
logs, enabling him to quickly access the app he requires. The contextual behavioral
rules discovered from Bob’s app usage log data could be used to create a smart
mobile app management system that can anticipate his potential usages based on
his current contextual information and intelligently assist him in using various types
of mobile apps.

The scenarios above demonstrate how a context-aware machine learning model
for individual cell phone users, based on data collected by the mobile device, can
be a key requirement for developing adaptive, intelligent, and context-aware smart
mobile systems that dynamically provide them personalized services in a context-
aware ubiquitous computing environment.
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2.2 Structure and Elements of Context-Aware Machine
Learning Framework

Sensing contextual features, thinking/decision-making, and acting/behaving prop-
erly are the three essential functionalities of an intelligent context-aware system.
Each of these functionalities involved in a system may differ in complexity. Some
systems may have sophisticated sensors for data acquisition, but they need little
processing or reasoning before functioning. Others may have little sensing but a
huge data processing task is needed before acting for the desired outcome. These
systems may also be developed in a centralized or distributed architecture across
one or more physical devices in the real world. In the following, we discuss the
elements of a context-aware machine learning framework.

Figure 2.4 depicts the basic structure of a context-aware machine-learning
architecture highlighting various components ranging from raw contextual data
to real-world applications and services, which can make intelligent decisions in
a system or application. Based on this architecture, a context-aware system can

Fig. 2.4 An overview of the context-aware rule learning framework
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perform intelligently as well as personalized services as it can discover contextual
rules learning from the raw data. As shown in Fig. 2.4, the framework usually
consists of four layers: contextual data acquisition layer, context discretization layer,
behavioral rule discovery layer, and finally dynamic updating and rule management
layer. We will go through these layers and their functions in learning contextual
rules from smartphone data in the following. These are:

2.2.1 Contextual Data Acquisition

In general, collecting real-world data is the first step in building a data-driven
system [9]. Thus in our context-aware rule learning framework, this is the first layer,
which is responsible to collect contextual data from the devices. As individuals’
behavior are not static may vary from user to user, this layer is mainly focusing
on collecting individual’s smartphone data that includes their day-to-day activities
with their phones in different contexts such as temporal context, spatial context,
social context, and relevant others. Contextual data can be gathered from a variety
of sources including phone logs, sensors, and other external sources related to the
target application. The key feature of such real data is that it contains the actual
behavioral activities of individual mobile phone users in various situations, as their
smartphones automatically record this information based on the users’ real-world
surroundings [1]. Thus, the data generated by smartphones provide a means of
gaining new information about various aspects of the users, such as users’ diverse
activities with the devices in their daily life, user social interactions, and so on,
which allows a better understanding of behavioral patterns of the users. To discover
such patterns from the raw contextual data, several data processing layers discussed
below might be helpful, which are used as the foundation for learning contextual
rules and corresponding context-aware applications.

2.2.2 Context Discretization

Context discretization based on machine learning techniques is the second layer
in our context-aware rule learning framework, as shown in Fig. 2.4. When we
have contextual raw data from the data acquisition layer, we need to discretize
the continuous contexts to explain the actual significance of the data, which can
also be defined as contextual data clustering. In other words, contextual data
with similar characteristics are grouped in one cluster, while data with dissimilar
characteristics is grouped in another, and so on. Real-world mobile data incorporates
continuous raw contextual information, for example, time-series data, which reflects
an individual’s varied behaviors in various data points in time order [10]. Although
time is the most important context in a mobile Internet portal, such exact time in
different time points is not very informative to build a rule-based model. Thus, time-
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based effective behavior modeling is considered an open problem in the field of
context-aware computing. An effective discretization technique, for example, time-
series modeling or clustering using machine learning techniques could produce
the desired outcome based on the data patterns in the source. Such discretization
outcome of a continuous context can be used in the discovery of hidden patterns or
relations that serve as the foundation for learning useful contextual rules. Overall,
the primary goal of this layer is to present the raw contextual data in a discretized
manner based on data characteristics.

2.2.3 Contextual Rule Discovery

The third layer in our context-aware rule learning framework, shown in Fig. 2.4,
is machine learning-based contextual rule discovery. Since various contexts can
have different effects on people’s behavioral activities in the real world, context
precedence analysis and corresponding rule discovery can help while making
intelligent decisions in various context-aware test cases [7]. This layer is responsible
mainly for generating a collection of users’ behavioral rules based on the precedence
of contexts, taking into account multi-dimensional contexts such as temporal
context, spatial context, social context, and other relevant contexts. To discover rules
utilizing log dataset, classification rules [11] and association rules [12] are the most
common methods, used in the area of mining mobile phone data. However, several
issues such as over-fitting problems, redundant generation, and model complexity
might happen based on such existing techniques. Thus this could be a major research
area presented in this book is to discover a concise set of useful behavioral rules
based on multi-dimensional contexts contained in individual’s mobile phone data,
considering the effectiveness and efficiency of the rule-based system.

2.2.4 Dynamic Updating and Management of Rules

The final layer in our context-aware rule learning system, shown in Fig. 2.4, is
machine learning-based dynamic updating and management of the discovered rules.
Mobile phone log data is not static as it is progressively added to day-by-day
according to an individual’s present (on-going) behaviors with mobile phones. Since
an individual’s behavior changes over time, the most recent patterns, e.g., recency,
are more likely to be interesting and significant than older ones for predicting an
individual’s future behavior in a particular context [13]. Thus recency analysis and
mining as well as corresponding rule updation, will play a role in dynamically
updating the discovered rules over time, as illustrated in Fig. 2.4. The key advantage
of this layer is that it considers the most recent trend, which reflects the freshness
of individuals’ actions in a given context and is likely to be more important than
older patterns in predicting outcomes. As a result, this layer is one of the most
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important layers in the system, as it is responsible for identifying behavioral trends
that evolve, as well as updating and managing rules continuously in response to
changes in behavioral patterns.

Overall, the main goal of this machine learning-based framework is extracting
a collection of contextual behavioral rules for individual smartphone users from
mobile phone data. The extracted rules can be used to create a variety of rule-based
intelligent systems that can provide not only the target personalized services that
differ from user to user but also population services in the specific application areas.

2.3 Conclusion

We have summarized the basic architecture of a context-aware machine learning
system in this chapter. In addition, technologies and techniques used in sensing
thought, and acting subsystems have been noted. The main goal of this chapter is
to provide a detailed description of the steps involved in processing raw contextual
data to build an intelligent system. In the proposed structure, we looked at four
different layers of data-driven tasks. We’ve gone through how to choose the right
segmentation strategy, machine learning rule-based modeling, and decision making,
as well as the benefits of each layer. The methodologies based on machine learning
techniques in applications and scenarios will be discussed in the following chapters,
with this architecture serving as the underlying blueprint.
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Chapter 3
A Literature Review on Context-Aware
Machine Learning and Mobile Data
Analytics

3.1 Contextual Information

The term context has a wide range of meanings and can be applied to a variety of
situations. In this section, we first go through some of the existing context definitions
in the domain of mobile and pervasive computing, and then we go over why contexts
are important in a particular application.

3.1.1 Definitions of Contexts

Context has been employed in a variety of fields, including pervasive and ubiquitous
computing, human-computer interaction, computer-supported collaborative work,
and ambient intelligence [1]. Early efforts on context-awareness in the area of
ubiquitous and pervasive computing referred to context as essentially the location
of people and objects [2]. Context has recently been expanded to encompass a
broader set of factors, such as an entity’s physical and social features, as well as
user behaviors [1]. Following a review of the pervasive and ubiquitous computing
community’s definitions and categories of context, this part aims to describe the
concept of the context within the area. Because the concepts of context in the domain
of pervasive and ubiquitous computing are similarly broad and this discussion is
meant to be informative rather than comprehensive.

From various viewpoints, several research has sought to define and describe the
context. Schilit et al. [2], for example, consider the user’s location information,
the surrounding persons and objects, and the changes to those objects as contexts.
Contexts are also defined by Brown et al. [3] as the user’s locational information,
temporal information, the surrounding individuals around the user, temperature, and
so on. In the same way, the user’s locational information, ambient information,
temporal information, and identity are all considered contexts By Ryan et al. [4].
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Other context definitions have merely provided synonyms for contexts, such as
context as the environment or social condition. A lot of studies have considered
the context as the user’s environmental information. For example, in [5], Brown et
al regarding the environmental information that the user’s computer is aware of as
context, whereas Franklin et al [6] regards the user’s social setting as context. Other
researchers, on the other hand, believe it is the environment that is related to the
applications. Ward et al. [7], for example, consider the state of the applications’
surrounding information as contexts. Context is defined by Hull et al. [8] as the
features of the user’s current position, which includes the complete surroundings. In
Rodden et al. [9], the settings of apps are likewise considered as context.

Schilit et al. [10] argued that the best parts of context are (i) where you are, (ii)
who you are with, and (iii) what resources are nearby. In their definition, information
about the changing environment is taken into consideration as context. They
encompass the computational environment as well as the physical environment,
in addition to the user environment, e.g., user location, adjacent individuals, and
the current social position of the user. For example, the computing environment
can include connection, available processors, user input and display, network
capacity, and computing costs, while the physical environment can include noise,
temperature, and lighting levels.

Dey et al. [11] give a survey of different views of context, which are mostly
imprecise and indirect, often defining context by synonym or example. Finally,
he provides the following definition of context, which is now widely accepted.
According to Dey et al. [11] “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves”.

3.1.2 Understanding the Relevancy of Contexts

Realizing the importance of contexts is merely the first step in properly utilizing
them in mining contextual behavioral rules of individual mobile phone users. We
need a clear understanding of what circumstances influence users to make decisions
in different situations to make efficient use of contexts in mobile phone users’
behavioral rules. The contexts associated with the user are the most relevant as we
aim to discover the user behavioral rules using their mobile phone data. Table 3.1
depicts an example of user situations influencing decision-making when dealing
with phone call interruptions. The relevance of the contexts, on the other hand, is
application particular, i.e., it may differ from one application to the next in the real
world.

Consider a personalized smart mobile app management system that can predict
an individual’s future app usages (Skype, Whatsapp, Facebook, Gmail, Microsoft
Outlook) based on contextual data. When the user is in her office on weekdays
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Table 3.1 Various types of user contexts influencing making decisions while handling the phone
call interruptions

Context category Context examples

Temporal context User’s activity occuring date (YYYY-MM-DD), time (hh:mm:ss), period
(e.g., 1 h, 10:00 a.m.–12:00 p.m.), weekday (e.g., Monday), weekend (e.g.,
Saturday), etc.

Spatial context User’s coarse level location such as office, work, home, market, restaurant,
vehicle, playground etc.

Social context User’s social activity or situation such as professional meeting, lecture,
seminar, lunch break, dinner, etc., and/or, social relationship between
individuals such as mother, friend, colleague, boss, significant one,
unknown, etc.

between 9:00 a.m. and 10:00 a.m., she normally uses Microsoft Outlook for mailing
purposes. The user’s contexts, such as temporal (Weekdays between 09:00 a.m. and
10:00 a.m.) and place (office), may be relevant to intelligently assist her in finding
this particular mobile application among a large number of installed apps on her
mobile phone.

Consider another example: a smartphone call interruption management system,
which may require more contexts. Mobile phones are commonly considered to
being “always on, always connected” devices in the real world, yet mobile users
are not always attentive and receptive to incoming contact [12]. Let’s say a user
has a regular meeting at her office on Monday between 9:00 and 11:00 a.m. She
usually rejects incoming phone calls during that period since she does not want to
be interrupted during the meeting. If the phone call is from her boss or mother, she
wants to answer it since it seems to be important to her. According to this example,
user phone call response behaviors are related not only to contexts, location (e.g.,
workplace), and temporal (e.g., Monday, between 9:00 a.m. and 11:00 a.m.), but
also to additional contexts, social situations (e.g., meeting), and social relationships
between individuals (e.g., boss or mother). As a result, the relevance of user
circumstances differs from app to app in the real world.

With a better understanding of contexts, mobile app developers will be able to
choose which contexts to be included in their apps, allowing them to create context-
aware apps that deliver personalized services and intelligently aid users in their
daily activities as well as smartphone based IoT services [123, 124]. According to
the aforementioned real-world examples, individual mobile phone users’ behavioral
rules should not be dependent on a fixed number of contexts. To meet these needs,
we provide a set of behavioral rules for individual mobile phone users based on
multi-dimensional contexts available in the mobile phone dataset, which may be
employed in relevant applications for the mobile phone user.
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3.2 Context Discretization

The discretization of continuous contextual data is one of the key research areas
covered in this book. The discretization method converts continuous numerical
attributes into discrete or nominal attributes with a finite number of intervals,
resulting in a non-overlapping partition of a continuous domain.

3.2.1 Discretization of Time-Series Data

Temporal context, represented as time-series data, is the most important aspect that
influences user behavior in a mobile Internet portal [13], according to the scope of
continuous context considered in this book. A time series is defined as “a sequence
of data points ordered in time, often measured at successive time points” [14]. In this
section, we focus on the discretization of time-series data as context discretization.

Unlike digital systems, human perception of time is not precise. Routine behav-
iors always have a time interval, even if it is only a little one, such as 5 min. Time
must be segmented into meaningful categories that act as a proxy for distinguishing
user’s various activities to evaluate time as a condition in a high confidence rule. As
a result, discretization of time-series data is required, which may then be used as the
foundation for a mobile phone-based context-aware rule learning system. Its major
purpose is to convert continuous time-series attributes into discrete or categorical
values, such as time segments, hence converting quantitative data into qualitative
data. According to [15], time-based behavior modeling is an open problem. Hence,
we summarize the existing time-series segmentation approaches into two broad
categories; (i) static segmentation, and (ii) dynamic segmentation, which is used
in various mobile applications. In the following, we discuss these methods used in
various application domains.

3.2.2 Static Segmentation

A static segmentation is simple to comprehend and can be useful for comparing
population behavior among cell phone users. Most researchers recently consider
only the temporal coverage (24-hours-a-day) and statically segment time into
arbitrary categories (e.g., morning) or times (e.g., 1 h) to produce segments, as
shown in Table 3.2. This form of static time segmentation focuses primarily on
time intervals. According to [16], there are two forms of time intervals: equal and
unequal time intervals.

A number of researchers have used equal interval-based segmentation in their
applications. For instance, Song et al. [17] present a log-based analysis on users’
search activity in order to increase search relevance by splitting the 24-h day
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into three equivalent time segments, e.g., morning [7:00–12:00], afternoon [13:00–
18:00], and evening [19:00–2400]. Using three temporal segments [0:00–7:59],
[8:00–15:59], and [16:00–23:59], Rawassizadeh et al. [18] propose a scalable
method for regular behavioral pattern mining from multiple sensor data. Morning
[6:00–12:00], afternoon [12:00–18:00], evening [18:00–2400], and night [0:00–
6:00] are the four period segments considered by Mukherji et al. [19]. Using the
same four time segments, Bayir et al. [20] suggest a web-based customized mobility
service for mobile applications. Paireekreng et al. [21] introduced a personalization
mobile game recommendation framework using time-of-day divided into four
cycles—morning, midday, evening, and night. Jayarajah et al. [22] use morning
[6:00–11:59], day [12:00–17:59], evening [18:00–23:59], and overnight [0:00–5:59]
to understand the difference in variety seeking over various time windows. In their
application model, Do et al. [23] night [0:00 a.m.–6:00 a.m.], morning [6:00 a.m.–
12:00 p.m.], afternoon [12:00 p.m.–6:00 p.m.], and evening [6:00 p.m.–0:00 a.m.] to
explain how user behavior changes with respect to time of day.

Several researchers have used unequal interval-based segmentation in their
applications. For instance, Xu et al. [24] have provided a prediction system for
smartphone app usages that incorporates three important everyday factors that affect
user app use behavior (context, group behavior, and user preferences). Morning
(starting at 6:00 a.m. and finishing at noon), afternoon (ending at 6:00 p.m.), and
night (all remaining hours) are the time segments they use. Mehrotra et al. propose a
novel interruptibility management solution in [25] that learns users’ preferences for
receiving mobile alerts based on automated rule extraction by mining their contact
with mobile phones. Morning [6:00–12:00], afternoon [12:00–16:00], evening
[16:00–20:00], and night [20:00–24:00 and 0:00–6:00] are the four-time slots they
use for segmentation. In their recommendation scheme, Zhu et al. [26] use five
static time segments in a day that are predefined as morning [7:00–11:00], noon
[11:00–1400], afternoon [14:00–18:00], and so on. Oulasvirta et al. [27] use five-
time slots (morning, forenoon, afternoon, evening, and night) as temporal context
to explain each user’s thoughts, ideas, beliefs, and emotions. Yu et al. investigate
how to mine topic models to manipulate user context logs for customized context-
aware suggestion in [28]. Morning [7:00–11:00], noon [11:00–14:00], afternoon
[14:00–18:00], evening [18:00–21:00], and night [21:00-Next day 7:00] are the
period segments used throughout their framework.

A number of authors [29–31] add to the above segmentations by introducing
early morning, late morning, midnight, and so on. Shin et al. propose a new context
model for app prediction in [32], which gathers a wide variety of contextual infor-
mation in a smartphone and makes customized app predictions using a naive Bayes
model. They divide time for weekdays and weekends into early morning, morning,
afternoon, evening, and night in their model. Farrahi et al. [33] divide each day into
8 coarse-grain time slots as follows: [0:00 a.m.–7:00 a.m.], [7:00 a.m.–9:00 a.m.],
[9:00 a.m.–11:00 a.m.], [11:00 a.m.–2:00 p.m.], [2:00 p.m.–5:00 p.m.], [5:00 p.m.–
7:00 p.m.], [7:00 p.m.–9:00 p.m.] and [9:00 p.m.–12:00 a.m.]. These time slots were
chosen to represent popular activities in everyday life, such as lunch, dinner, or work
hours in the morning and afternoon. These types of segmentation are often used in a
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variety of applications such as mining mobile user habits [34, 35], managing mobile
intelligent interruption management system [36], mining frequent co-occurrence
patterns on the mobile phones [37], making app prefetch practical on mobile phones
[38].

Several authors use time segments for different events scheduled in their calendar
in addition to the above time segments to predict individual cell phone user activity.
Cell phones are also considered one of the main means of accessing calendars (e.g.,
Google Calendar) to coordinate schedules such as meetings since they are still
associated and carrying with the users [39]. The calendar [40] allows the user to
identify unique tasks or events with length, temporal domain, and other attributes.
For example, if the calendar shows a meeting between 13:00 and 14:00, they
presume the user is inaccessible and is in a location with at least one other person
[41]. The time interval [13:00–14:00] is then used to forecast her cell phone use.
Calendar entries, according to Khalil et al. [42], is a good indicator of whether an
individual is available or unavailable for a phone call. Salovaara et al. [43] conducted
a study and found that 31% of incoming phone calls were due to unavailability, i.e.,
users were unable to answer the phone calls due to meetings, classes, appointments,
driving, or sleeping.

Several authors have designed a context-aware interruption management frame-
work that produces as an output if an incoming call should be enabled to ring
by taking into account the user’s above unavailability solution for a specific time
segment (e.g., between 13:00 and 14:00) using an individual’s calendar details.
Dekel et al. [44] build an application to reduce cell phone disturbances, for example.
The developers of [45] and [36] use calendar information to create a context-aware
interruption management system. To enhance mobile phone understanding, Seo et
al. [46] use the user’s schedule to determine policy rules in their context-aware
phone configuration management framework. The interruption handling rules in
these methods are focused on static temporal segments based on their scheduled
appointments in their individual’s calendar details, for example, the user is unable
to answer the incoming call while s/he is in a calendar case (e.g., a meeting between
13:00 and 14:00). However, in some situations, such an unavailability approach
offers poor accuracy.

Khalil et al. [47] surveyed 72 phone users and discovered that the above
unavailability solution for mobile communication has low accuracy (62%) for
loosely organized home activities like lunch, watching TV, and doing homework, but
high accuracy (93%) for structured events like classes, meetings, and appointments.
However, such special terms are insufficient to cover real-world use cases; a larger
range of meeting categories keywords is needed to capture users’ actual actions
[44]. Even if the user is involved in an ongoing task or social situation, the phone
call is always not disruptive, and the call is welcomed because it offers a required
mental break from the current task [48]. According to [49], 24% of mobile phone
users feel compelled to pick up a phone call while in a meeting. According to a
user survey conducted by Rosenthal et al. [50], 35% of participants want to receive
phone calls at work, while the rest do not. Sarker et al. [41] have demonstrated that
the presence of a calendar event for a specific time segment is insufficient to assume
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individual actions for their different calendar events. According to [51], the calendar
does not offer a reliably accurate depiction of the real world because events do not
occur or occur outside the calendar’s allocated time window. As a result, calendar-
based temporal segments are ineffective at capturing the actions of individual mobile
phone users [41].

Although different time intervals and corresponding segmentation are used for
different purposes (see Table 3.2), these methods all take into account a fixed
number of segments for all users. However, users’ behavioral evidence that varies
from user to user over time in the real world is not taken into account when doing
such segmentation. As a result, static segment generation may not be appropriate
for producing high-confidence temporal rules for individual smartphone users. For
example, in one case, a N1 number of segments may yield meaningful results,
whereas in another case, a N2 number of segments may yield better results, where
N1 �= N2. As a result, rather than statically generating rules, dynamic segmentation
of time may be able to represent individuals’ behavioral evidence over time and play
a role in producing high confidence rules based on their utilization records.

3.2.3 Dynamic Segmentation

A segmentation technique that produces a variable number of segments, as discussed
above, will be more useful for modeling users’ behavior. To achieve the target, a
dynamic segmentation technique rather than a static segmentation technique may be
used. The number of segments in a dynamic segmentation is not set and predefined;
it can change based on behavioral features, patterns, or preferences. There are many
dynamic segmentation strategies for modeling users’ behavioral patterns in temporal
contexts that generate a variable number of segments. To produce the segments,
several authors simply take into account a single parameter, such as interval length
or base time. Depending on the time frame, the number of time segments varies.
The number of segments will be Tmax/BP [52] if Tmax reflects the entire 24-h time
span and BP is a base period. The number of time segments decreases as the base
period increases and vice versa. If the base time is 5 min, the number of segments
will be determined by dividing 24-hours-a-day by 5. In this case, a base period of
5 min is assumed to be the finest granularity for distinguishing an individual’s day-
to-day activities. The number of segments decreases as the base time is increased
to 15 min, with 15 min being considered to be the finest granularity. As a result, the
number of segments varies depending on the starting time frame.

For example, Ozer et al. [53] suggest using sequential pattern mining techniques
to predict the location and time of cell phone users. In their process, they use a
15-min time interval for segmentation and then switch to 60-min intervals in their
experiments. Do et al. present a system for predicting where users will go and
which app they will use next using rich contextual knowledge from smartphone
sensors in [54]. They use 30 min as the parameter value in their system. Farrahi et
al. use temporal data to discover everyday habits from large-scale cell phone data
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in [55]. They also divide each day of the week into 30-min segments using 30 min
as the parameter value. Karatzoglou et al. use 2-h as the parameter value in their
mobile app recommendation system in [56]. In their analysis to classify human daily
activity patterns using cell phone data, Phithakkitnukoon et al. [57] use 3 h for time
segmentation. For various purposes, different authors use different interval values to
create a variable number of segments. When the value of such an interval is high, it
results in a small number of segments, and vice versa. However, the optimal value of
this parameter, which we are interested in, is required for an effective segmentation
that captures individual mobile user behavior.

Individual calendar schedules and corresponding time boundaries may also
be used to evaluate variable duration time segments to model users’ actions in
a temporal sense, which may differ depending on users’ preferences [41]. For
example, one user may have an event between 1 and 2 p.m., while another may have
an event between 1:30 pm and 2:30 pm. As a result, the time segmentation varies
depending on the events they have planned in their calendars. Multiple thresholds,
sliding windows, and data shape-based methods, as shown in Table 3.3, are also
used in many applications. Halvey et al. [58] proposed a multi-thresholds-based
approach for segmenting time-series log data to predict mobile device navigation
patterns. However, since no previous awareness of user behaviors exists, choosing
these thresholds to define the lower and upper boundary of a segment is extremely
difficult.

Several authors use machine learning methods such as clustering, genetic
algorithms, and others in addition to these approaches. To discover rules from
time series, Das et al. [59] suggest a cluster-based technique. The issue is that the
number of clusters must be known ahead of time, which is difficult to predict for
an individual. Besides these, GA based [60, 61], sliding window-based [62, 63],
shape-based [16, 64] segmentation have been proposed for different purposes.

The user’s total number of activity occurrences at each time point is used to
segment the data. These are not, however, behavior-oriented segmentations since
they do not account for the various actions of individuals that we are interested
in. Using cell phone data, a variety of authors examine various usage habits over
time. Phithakkitnukoon et al. [65], for example, create a behavior-based adaptive
call prediction system based on mobile phone data. Jang et al. have shown in [66]
that different users’ app usage activity differs over time in a day while using mobile
data. Henze et al. use mobile phone data in [67] to determine the best time to deploy
applications. Xu et al. [68] use cell phone data to determine the best period for
active applications. Based on user activity, Bohmer et al. [69] describe the peak
time of typical app usages. These methods consider scanning over each hour time
slot of the day (for example, [1:00 p.m.–2:00 p.m.]) to capture user habits and locate
a specific predefined section for their purposes. Such methods, on the other hand,
ignore the complex optimal segmentation based on an individual’s actions. We
have summarized a variety of works that use dynamic segmentation techniques for
various purposes in Table 3.3.
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Table 3.3 Various types of dynamic time segments used in different applications

Base technique Description References

Single parameter A predefined value of time interval,
e.g., 15 min is used to generate
segments

Ozer et al. [53]

A different value of time interval,
e.g., 30 min is used for
segmentation

Do et al. [54], Farrahi et al. [55]

A relatively large value of the
parameter, e.g., 2-h is used to
generate time segments

Karatzoglou et al. [56]

Another large value of time interval,
e.g., 3-h is used for segmentation to
make the number of segments small

Phithakkitnukoon et al. [57]

Calendar Various calendar schedules and
corresponding time boundaries are
used to model users’ behavior in
temporal context

Khail et al. [47], Dekel et al. [44],
Zulkernain et al. [36], Seo et al.
[46], Sarker et al. [41]

Multi-thresholds To identify the lower and upper
boundary of a segment for
segmenting time-series log data

Halvey et al. [58]

Data shape A data shape based time-series data
analysis

Zhang et al. [16], Shokoohi et al.
[64]

Sliding window A sliding window is used to analyze
time-series data

Hartono et al. [62], Keogh et al. [63]

Clustering A predefined number of clusters is
used to discover rules from
time-series data

Das et al. [59]

Genetic algorithm A genetic algorithm is used to
analyze time-series data

Lu et al. [60], Kandasamy et al. [61]

Clustering, as shown in Table 3.3, is an effective machine learning technique for
forming broad time segments that take into account such user activity patterns. Clus-
tering algorithms are typically built on certain assumptions and are biased against
certain types of problems. In this sense, saying “best” in the context of clustering
algorithms is a challenging task; it depends on the particular application [70]. The
K-means algorithm is the most well-known squared error-based clustering algorithm
[71] among a variety of clustering algorithms in the area of machine learning and
data science. However, this algorithm requires the initial partitions and a fixed
number of clusters K to be defined. With different starting points, the convergence
centroids often change. Because of the estimation of mean values, outliers may
often affect this algorithm. More significantly, this algorithm’s characteristics aren’t
directly applicable to our context-aware rule learning. This algorithm, for example,
assigns objects to the nearest cluster using the Euclidean distance function as a
measure of similarity. However, Euclidean distance is ineffective for determining
individual behavioral similarity and, as a result, learning behavioral rules. In the
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presence of outliers, another K-medoids method [72], is more robust than the K-
means algorithm since a medoid is less affected by outliers than a mean. As it
reduces the outlier problem, K-means and the problem of time-series modeling have
other characteristics in common.

Since the size and number of time segments are determined by the user’s actions,
which vary from one user to the next, bottom-up hierarchical data processing may
aid in the formation of behavioral clusters. There are two types of hierarchical
algorithms currently available: agglomerative methods and divisive methods. The
system clustering process, on the other hand, is not widely used in practice [70].
Single linkage [73] and full linkage [74] are the simplest and most common
agglomerative clustering methods. The single linkage agglomerative clustering
algorithm is similar to another tool, nearest neighbor [70]. All of these hierarchical
algorithms rely on a proximity matrix, which is computed by calculating the
distance between two new clusters. The clusters are then successively merged
according to the matrix value until the desired cluster structure is obtained. Because
of the differences in user behavior, it is impossible to predict the degree to which
merging is optimal according to a proximity matrix. Thus, using such clustering
techniques, segments could be produced based on time-series data on user behavior
patterns. Similarly, approaches based on genetic algorithms, such as those shown in
Table 3.3, generate dynamic segments.

In summary, time-series modeling, using both the static and dynamic segmen-
tation methods discussed above, can produce a variety of time segments that can
be used for a variety of purposes. The above time-series modeling approaches, on
the other hand, do not always map to trends of individual users based on their
preferences, which are based on users’ diverse habits through time-of-week and
may differ from user to user. To effectively use temporal context as the basis
for discovering rules capturing smartphone user behavior, a machine learning-
based time-series modeling technique that takes into account such patterns may be
important.

3.3 Rule Discovery

Another major focus of this study is using smartphone data to discover useful
behavioral rules of individual cell phone users based on multi-dimensional contexts,
such as temporal, spatial, or social contexts. In the field of machine learning, the
most popular techniques for discovering such rules of individual cell phone users are
association rule learning [75] and classification rule learning [76]. We will provide a
brief overview of both association and classification strategies for discovering rules
based on multi-dimensional contexts in the following sections.
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3.3.1 Association Rule Mining

Association rule mining [77] is the discovery of associations or patterns or rules or
relationships among a set of available items in a given dataset. Due to the descriptive
and easily understandable existence of the discovered association rules, association
rule mining has become a popular data mining technique [77]. Initial research into
mining association rules was largely motivated by the analysis of retail market
basket data to understand the purchasing behavior of the customers. One example is
that “if a customer buys a computer or laptop (an item), s/he is likely to also buy anti-
virus software (another item) at the same time”. A common way of measuring the
usefulness of association rules is to use its parameter, the ‘support’ and ‘confidence’
which is introduced in [77]. Support of a rule Sup(A ⇒ C) is the percentage
(%) of records in the dataset which carries all the items or contexts in a rule, and
the confidence Conf (A ⇒ C) is the percentage (%) of the records that carry all
the items or contexts in the rule among those records that carry the items in the
antecedent (A) of the rule.

Association rule mining algorithm discovers association rules that satisfy the
predefined minimum support and confidence constraints from a given dataset [75].
The association rule mining problem is usually decomposed into two subproblems;
(i) the first one is to identify several item sets whose occurrences exceed the
predefined minimum support threshold in the dataset, those item sets are called
frequent itemsets. We can define ‘item set’ as a non-empty set of items (each context
value is considered as an item in the mobile phone dataset). The cardinality of an
item set ranges from one to any positive number, e.g., is greater than zero. Each
transaction record in the dataset contains an item set of size n, i.e., if a transaction
record contains three different items (I1, I2, I3), then the size of the item set is 3.
An item set that can be found frequently in a dataset is typically called a frequent
itemset, which identified the minimum support threshold. For instance, if a threshold
is set to identify the frequent or infrequent item sets, then the item sets that are
observed below this minimum support threshold are called infrequent itemsets. On
the other hand, the item sets that are observed with a higher value of this minimum
support threshold are called frequent itemsets. Both frequent and infrequent itemsets
are subsets of a superset and (ii) the second problem is to generate association
rules from those frequent itemsets with another constraint of minimal confidence.
Association rules are discovered from only the frequent itemsets that are discovered
using the minimum support threshold discussed above. Thus, the discovery of a
frequent itemset affects the number of discovered association rules. To determine
whether an item set is frequent and infrequent, a minimum support threshold must
be preset by the user. Otherwise, it is typically not possible to discover neither the
frequent itemsets from a dataset nor their corresponding association rules.

Although association rule mining was introduced to extract associations from
market basket data [77], association rules are employed today in many other
domains such as data analysis, recommender systems, intrusion detection, and web
usages mining etc. In the area of mining mobile phone data, recently, a number
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of researchers [25, 26, 37] also use association rules for various purposes. Many
association rule mining algorithms have been proposed in the data mining literature,
such as logic based [78], frequent pattern based [75, 79, 80], tree-based [81] etc. In
the following, we mainly focus on some classic and popular association rule mining
algorithms, such as AIS [77], Apriori [75], Apriori-based such as Apriori-TID and
Apriori-Hybrid [75], FP-Tree [81], and RARM [82] algorithms.

3.3.1.1 AIS Algorithm

The AIS algorithm, proposed by Agrawal et al. [77], is the first algorithm designed
for association rule mining. The main focus of this algorithm is to improve the
quality of the datasets with the necessary functionalities for findings of associations
or relations within this data and to process decision support queries using the dis-
covered associations. In this algorithm, the consequent of the discovered association
rules contains only one item, however, the antecedent may contain several items or
contexts. An example of such association rule is like A1 ∩ A2 ⇒ C, where A1, A2
are the items in antecedent and C (one item) represents the consequences of that
rule.

In AIS algorithm [77], the frequent itemsets (each context value is considered as
an item in the mobile phone dataset) were generated by scanning the datasets several
times. A frequent item set satisfies the minimal support. This algorithm works
based on several iterations or passes over the dataset. While processing, during
the first pass over the dataset, the support count of each context value (item) was
accumulated. The context that is infrequent gets eliminated from the list of items.
An item is considered infrequent if it has a support count less than its predefined
minimum support value according to the preference of the individual user. In such
a way, candidate 1-item sets are generated from the dataset. After that, candidate
2-item sets are generated. To do this, this algorithm extends the generated frequent
1-item sets with the remaining other contexts available in the dataset during the
second pass over the dataset. After that, similar to the first pass, the infrequent item
set is eliminated in the second pass. For this, the algorithm again counts the support
value of the generated candidate 2-item sets and checked with the same minimum
support threshold that is preferred. The item sets whose support count do not satisfy
this predefined threshold are also considered as infrequent item set. Similarly, based
on the remaining other contexts in a record of the dataset, the (n + 1) candidate
itemsets are generated by extending the frequent n-item sets. The generation of all
these candidate item sets and the corresponding frequent itemsets (identified by
checking with the minimum support preference) identifying process iterate until
any one of them becomes empty. Finally, this algorithm generates association rules
based on the frequent itemsets that are identified in different iteration over the
dataset.

To make AIS algorithm [77] more efficient, an estimation method was introduced
to prune those generated item sets (combination of contexts) that cannot become
frequent according to its support value. It not only prunes the unnecessary item sets
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candidates but also helps to avoid the corresponding unnecessary effort of counting
those item sets. Besides such candidate generation, the memory management in the
AIS algorithm is another issue, as all the candidate itemsets and frequent itemsets
are assumed to be stored in the main memory. This is important when memory is
not enough to store the huge amount of generated candidates. To resolve this issue
memory management is also proposed for AIS; (i) to delete the generated candidate
itemsets that have never been extended, (ii) to delete the generated candidate
itemsets containing the maximal number of items and their siblings, and store this
the parent item sets in the disk as a seed for the next pass, which is described with
examples in [77].

The main drawback of the AIS algorithm is too many candidate item sets
generation and consequently produce a huge number of redundant associations or
rules. As a result, it not only produces several useless rules but also requires more
space or memory related to such unnecessary generation and wastes much effort
that turned out to be useless. At the same time, this algorithm needs too many passes
over the whole dataset, which makes the AIS algorithm inefficient for mining mobile
phone data to build context-aware real-life applications for mobile phone users.

3.3.1.2 Apriori Algorithm

Apriori proposed by Agrawal in [75] is the most popular algorithm in the area
of mining association rules. According to [83], it is a great improvement in the
history of association rule mining. The AIS algorithm [77] described above is just
a straightforward association generation approach that requires many passes over
the dataset, generating many candidate item sets while most of them turn out to
be useless. Comparing with the AIS algorithm, Apriori is more efficient during the
candidate generation process for two reasons. The first one is Apriori employs a new
method deferring from the AIS algorithm, for generating the candidate itemsets
(a set of context values), and the second one is it also introduces a new pruning
technique for eliminating the infrequent candidates.

To generate all the candidate itemsets (a set of contexts) from a given dataset,
there are two processes in Apriori algorithm [75]. Firstly, this algorithm generates
the candidate itemsets using the available items in the dataset. After generating these
candidates, the support value of the corresponding generated item sets is counted by
scanning the dataset. While processing, during the first scanning over the dataset,
the support count of each context value (item) is calculated to identify the frequent
item set. A frequent itemset satisfies the minimal support preferred by an individual
user. This algorithm performs a pruning operation and prunes the infrequent item
sets to reduce the burden of further processing. An item is considered infrequent
if it has a support count less than its predefined minimum support value set by the
preference of an individual user. On the other hand, the item sets that satisfy this
threshold are considered as frequent item sets, which are checked in each iteration
of the algorithm and generates only those candidate item sets that include the same
specified number of items, such as 1-context set, 2-context set, etc. In such a way,
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the candidate n-item sets are generated after the (n − 1)th passes. To do this, this
algorithm performs the joining operation with only the frequent (n − 1)-item sets
by counting their corresponding support value over the dataset. To generate these
candidate item sets, the Apriori algorithm follows its property, which is defined as
“every sub (n − 1)-item sets of the frequent n-item sets must be frequent” [75]. As
such, if any sub (n−1)-item sets are not in the list of frequent (n−1)-item sets, then
the n-item sets candidate is pruned. According to this condition, all the candidate n-
item sets are pruned by checking their sub (n − 1)-item sets during the process as
there is no possibility to be frequent according to the Apriori property [75].

In summary, Apriori algorithm [75] avoids the effort wastage of counting the
candidate itemsets (a set of contexts) that are already known to be infrequent (not
satisfy the support threshold), during the process of identifying frequent itemsets.
This algorithm not only generates the candidate itemsets by joining among the
frequent itemsets (satisfy the support threshold preferred by an individual) level-
wisely but also prunes the candidates according to the Apriori property that is
mentioned above. As a result, the number of remaining candidate item sets becomes
much smaller, which are ready for further processing. It dramatically reduces the
computation, I/O cost and memory requirement comparing with the AIS algorithm
[77]. However, the Apriori still has two major drawbacks, of which one has been
inherited from the AIS approach. The inherited drawback is that it still has to scan
the entire dataset multiple times as it builds the list of frequent itemsets, which
eventually produces a huge number of redundant rules. The second drawback is
that the candidate generation process is time and memory-consuming and complex
that is not effective for mining mobile phone data to build context-aware real-life
applications for mobile phone users.

3.3.1.3 Apriori-Based Algorithms

Based on the Apriori algorithm [75], several new association rule mining algorithms
were designed with some modifications of this algorithm. For example, Apriori-TID
and Apriori-Hybrid [75] are the modifications of the Apriori algorithm.

These algorithms are based on the Apriori algorithm and try to improve
the efficiency in terms of execution time by making some modifications. These
algorithms try to reduce the number of passes over the dataset and to reduce the size
of the dataset to be scanned in every pass for generating the candidate itemsets. Also,
these algorithms try to prune the generated candidates by using different techniques.

Apriori-TID [75] extends the original Apriori algorithm by removing the need
for multiple scanning of the datasets. This algorithm sets a counter during the first
pass through the dataset. This counter is then used later to determine the frequent
itemsets. As a result, the original dataset is not needed to counter this. On the
other hand, Apriori-Hybrid [75] is based on the idea that is not necessary to use
a similar process for each pass over the dataset for generating candidates. This
approach combines the advantage of using the Apriori algorithm in the early passes
and later this algorithm uses the Apriori-TID algorithm. There is a problem with
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this approach is the cost of switching between Apriori and Apriori-TID algorithms.
Another algorithm Predictive Apriori proposed by Scheffer [84] generates rules by
predicting predictive accuracy combining form support and confidence. So some-
times it produced the rules with large support but low confidence and got unexpected
results. These algorithms could give better results in terms of computational time
in some cases. However, the problem of redundancy still exists in these modified
algorithms.

3.3.1.4 FP-Tree Algorithm

Frequent Pattern Tree (known as FP-Tree) is another association rule mining
algorithm, which was introduced by Han et al in [81], to mine frequent patterns
like Apriori. FP-Tree is another milestone in the development of mining association
rules in terms of execution time. This algorithm needs no candidate generation
process like AIS and Apriori algorithm. It can generate frequent itemsets with only
two passes over the dataset. The frequent patterns generation process includes two
sub-processes: (i) it first constructs the frequent pattern tree, and (ii) then generates
the frequent patterns from the tree. By avoiding the candidate generation process
and taking less scanning over the dataset, FP-Tree becomes an order of magnitude
faster algorithm than the AIS [77] and Apriori [75] algorithm for generating frequent
patterns from a given dataset [83].

Three reasons make the FP-Tree algorithm more efficient [83]. First, this
algorithm generates a frequent pattern tree, which is a compressed representation
of a given dataset. While constructing the tree, only frequent items measured by
counting the support value are used. A frequent itemset satisfies the minimal support
preferred by an individual user. The other irrelevant information is pruned. This
algorithm also does ordering the items (contexts) according to their support values
[81]. Secondly, this algorithm only scans the dataset twice. The patterns that satisfy
the user-specified minimum threshold are generated by constructing the conditional
FP-Tree. To do this, this algorithm uses the concept of the suffix of the patterns.
For instance, the conditional FP-Tree contains only the patterns with the specified
suffix of the patterns, which reduces the computation cost dramatically. Thirdly, the
frequent pattern tree uses a divide and conquer method. It considerably reduces the
size of the subsequent conditional tree. This algorithm generates the longer frequent
patterns by extending the shorter patterns, i.e., adding a suffix to the shorter frequent
patterns [83].

Although the FP-tree does not generate candidates like Apriori, it produces
similar outputs for the same dataset. As a result, the problem of producing redundant
association rules still exists. Thus, it will not be effective for mining mobile phone
data to build context-aware real-life applications for mobile phone users because of
its redundant association generation [83].
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3.3.1.5 RARM Algorithm

Rapid Association Rule Mining (RARM) is an approach proposed by Das et al.
[82] that also uses the tree structure to represent the dataset. This approach also
does not utilize a candidate generation process. RARM algorithm uses the SOTrieIT
(Support Ordered Trie Itemset) structure for generating the candidate itemsets such
as 1-item sets and 2-item sets. It can quickly generate such item sets without
generating the candidates and scanning the dataset as well. Similar to the FP-Tree
[81] that is discussed above, every node of the SOTrieIT contains one item and the
corresponding support value. This algorithm uses the SOTrieIT tree for generating
the candidate item-sets [82].

The main focus of this algorithm is faster processing than the existing algorithms.
According to [82] RARM is up to 100 times faster than Apriori [75]. However, the
problem of producing redundant association rules still exists. Thus, it will not be
effective for mining mobile phone data to build context-aware real-life applications
for mobile phone users because of its redundant association generation [83].

3.3.1.6 Association Rule Mining Summary

The association rule learning algorithm finds association rules from a dataset
that satisfy predefined minimum support and confidence constraints [75]. In the
literature on data mining, several association rule learning algorithms have been
suggested, such as logic-based [78], frequent pattern based [75, 79, 80], tree-
based [81] etc. As it has its parameter support and confidence, the association rule
learning technique is well established in terms of rule efficiency, e.g., accuracy
and flexibility [85]. A number of researchers [25, 26, 37] have used association
rule learning technique (e.g., Apriori)[75] to mine rules capturing mobile phone
users’ behavior. However, when it comes to discovering users’ behavioral rules,
association rule learning has some limitations. The disadvantages of association
rules for discovering the behavioral rules of individual mobile phone users when
taking into account multi-dimensional contexts are summarized below.

• Lacking in Understanding the Impact of Contexts: Different contexts in mobile
phone data, such as temporal, spatial, or social background, can have varying
effects or influence on individual mobile phone users’ behavioral rules. Incoming
phone calls from a significant person, such as a mother, are often answered by
a person, even if she is in a meeting since her family comes first. In this case,
the importance of individuals’ social relationships (social relationship →
mother) in making behavioral decisions is greater than other related contexts
such as time, weekday or holiday, place, accompanied with, and so on. However,
when discovering rules based on multi-dimensional contexts, the standard asso-
ciation rule learning methodology implicitly assumes that all of the contexts in
the datasets have the same nature and/or effect.
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• Redundancy: If a user preference is defined as a minimum support value
and minimum confidence value, an association rule learning technique, such
as Apriori, discovers all the contextual associations in a given dataset. As a
consequence, the association rule learning methodology generates a large number
of redundant rules because it does not consider the usefulness of the associations
when creating them. For instance, it produces up to 83% redundant rules for a
given dataset that makes the rule-set unnecessarily large [86]. Therefore, it is
very difficult to determine the most interesting ones among the huge amount of
rules generated. As a result, it makes the rule-based decision-making process
ineffective and more complex, which is not effective to build a context-aware
intelligent system [87].

• Computational Complexity and High Training Time: The association rule learn-
ing method necessitates a significant amount of preparation time to generate
rules. For example, when the association rule learning algorithm is used to
discover user behavioral rules, the authors find a long-running period spanning
many hours in an experimental study in the cell phone domain [37]. The key
explanation for the long training period is that traditional association methods
compute all possible correlations between contexts and are unable to filter out
the useful rules for decision-making. As a consequence, generating patterns that
aren’t required adds to the computational complexity and training time.

In summary, traditional association rule learning techniques may not be appropri-
ate to generate users’ behavioral rules in multi-dimensional environments, to create
intelligent context-aware systems, when taking into account the effect of contexts,
the redundancy issue while producing rules, and computational complexity.

3.3.2 Classification Rules

Another method for extracting user behavioral rules from datasets is classification.
Classification is another tool for discovering rules in the field of data mining, where
A represents contextual information and C represents the corresponding activity
class. In general, classification is classified as a learning method for mapping
(classifying) a data instance into the dataset’s predefined class labels. According
to [88], data classification is a two-step process; (i) is the learning stage, in which
a classification model is built from a given dataset; the training set is the data
from which a classification feature or model is learned, and (ii) second one is a
classification step, in which the model is used to evaluate or predict class labels
for previously unknown data; the testing set is the data set used to test the learned
model’s or function’s classification ability.

Classifier efficiency is normally determined by accuracy, which is the percentage
of correct predictions over the total number of predictions made for a given test
dataset, according to [88]. Many other metrics, such as sensitivity, error rate,
specificity, precision, recall, and f-measure, are also used to understand the various
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aspects of the generated model. In the data mining literature, several classification
algorithms with rule generation capabilities have been proposed. In the following,
we mainly focus on some basic and popular approaches such as ZeroR [89], OneR
[90], Decision Tree [76], PART [91], and RIDOR [89].

3.3.2.1 Zero-R

Among the classification techniques used in the data mining field, Zero-R is the most
basic [89]. This algorithm only considers the objective and disregards all predictors.
The majority group is predicted by the Zero-R classifier (class). For example, a
Zero-R model for a sample phone call dataset may be “behavior → reject”.
Although Zero-R has no predictability capacity, it can be used to establish a baseline
output for other classification methods [89].

3.3.2.2 One-R

Holte et al. [90] proposed One-R, which is a simple and inexpensive classification
method. One-R, short for “One Rule,” is a straightforward but precise classification
algorithm for generating the predicting rule. In this method, a one-level decision tree
is built from the training records, and the rules are extracted from that tree, which is
connected to frequently occurring classes in the dataset. Humans can easily interpret
and comprehend the rules produced by the One-R approach. This algorithm creates
a frequency table for each predictor against the target to generate a rule for it. It
then produces one rule for each predictor in the data and chooses the rule with
the smallest total error as its “one rule”. If a user is in a meeting, for example,
the phone call action is rejected. One-R has been shown to generate rules that are
only marginally less reliable than state-of-the-art classification algorithms while still
being easy to understand by humans [90].

3.3.2.3 RIDOR

A direct classification tool is the Ripple Down Rule learner (RIDOR) [89]. The
default rule and the additional rules of that default rule are created by this algorithm.
The algorithm produces a default rule by evaluating the dataset first, according to
this principle. Following that, it generates a set of additional rules. To do this, the
algorithm measures the error rate and selects the rules with the lowest error rate.
These created additional rules are used in addition to the default rule to predict the
unseen classes for a given condition.
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3.3.2.4 Decision Tree

Decision trees [92] is a well-known and widely discussed technique for classi-
fication and prediction. A decision tree is a graph that illustrates the possible
outcome of a decision using a branching process. Each branch of a decision tree
represents a choice among a set of options related to the context of attribute
values, and each leaf node represents a classification or decision for that choice.
The decision tree algorithm aims to derive classification rules from instance
learning. We’ll go through some simple decision tree algorithms in this section.
Various algorithms exist in the implementation of speed, scalability, performance
intelligibility, classification accuracy, and other factors, each with its own set of
advantages.

J. R. Quinlan suggested ID3 as the central algorithm for creating decision trees
[92]. The ID3 algorithm builds a decision tree by using a top-down approach
in which each attribute or context is tested at each node using a greedy search
through the specified training dataset. It determines the entropy and information
gain, which is a statistical property used to determine which attribute to measure
at each node in the tree [92]. The degree to which a given attribute distinguishes
training examples according to their target classification is measured by information
gain. For both missing values and continuous-valued attributes, the ID3 algorithm
does not produce sufficient results. The values for a continuous attribute should be
mapped to some discrete representation to improve ID3 efficiency.

Quinlan proposes a modified algorithm, the C4.5 algorithm, based on the ID3
algorithm [76]. C4.5 uses the principle of knowledge benefit to construct decision
trees from a training dataset in a similar manner to ID3. For splitting the dataset into
subsets, the C4.5 decision tree algorithm uses gain ratio as the test attribute selection
criterion, and each time selects the attribute with the highest knowledge gain ratio
as the test attribute for a given set. C4.5 is a statistical classifier that can deal with
both numeric and missing value attributes, is robust in the presence of noise, and
can build trees with large branches and scales.

The CART algorithm tends to simplify and increase the performance of the
decision tree [93]. CART will deal with both order and disorder data in addition to
multi-state numerical data. It chooses the test attribute based on the Gini coefficient
and creates a binary tree with a straightforward structure. Following that, the SLIQ
[94] and SPRINT [95] algorithms are proposed solely to improve scalability and
parallelism.

3.3.2.5 Hybrid Classification

In [91], PART was proposed as a hybrid classification algorithm. This algorithm
generates rules using a rule induction method in addition to the decision tree. Instead
of using these two algorithms in two steps, this algorithm combines them all into
one. Even though this algorithm creates a decision tree, it does not create a complete
decision tree. A partial decision tree is built using a divide and conquer method in
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PART. A rule induction procedure is used to produce the candidate rules. After
that, this algorithm employs a pruning process to filter the intended rules. DTNB,
proposed by Sheng et al. [96], is another hybrid classification technique for creating
classifications, similar to the PART algorithm. It employs a decision table as well
as a Naive Bayes classifier. The generated rules can be used to predict previously
unknown classes in a given situation.

3.3.2.6 Classification Rule Mining Summary

One of the most common rule-based classification algorithms is decision tree, which
has several advantages, including being easier to interpret, being able to handle high-
dimensional data, being simple and quick, being accurate, and being able to generate
human-understandable classification rules [97, 98]. A number of authors [36, 99–
101], in particular, have used the decision tree classification method to find rules
capturing cell phone users’ actions for different purposes. However, to model users’
actions, classification rules have some limitations. The disadvantages of rule-based
classification strategies for discovering the behavioral rules of individual cell phone
use are summarized below.

• Low-Reliability: In general, reliability refers to the consistency of being depend-
able or continuously performing well. If the pattern or rule describes a rela-
tionship that happens in a high percentage of relevant situations, it is said to
be accurate. A classification rule will be reliable if it provides high prediction
accuracy, and an association rule will be reliable if it has high confidence
correlated with the accuracy, according to Geng et al. [102]. However, in
many situations, the classification rules discovered by traditional rule-based
classification methods, such as decision trees, have poor reliability [25, 103].
A classification rule does not guarantee high accuracy in forecasts, according to
Freitas et al. [85]. The explanation for this is that it may have an over-fitting
problem and inductive bias, both of which reduce the accuracy of a machine
learning-based model’s prediction.

• Lacking in Flexibility: Traditional rule-based classification techniques, such as
decision trees, do not allow users to set their preferences, and as a result, they
make rigid decisions for each test case [76]. However, when considering real-
world scenarios, static decisions in modeling user actions can not be meaningful.
The explanation for this is that people’s preferences aren’t always consistent; they
can differ from one user to another [104]. For example, one person will wish for
the phone call agent to reject incoming calls if she has not answered them more
than 80% of the time in the past. This preference could be 95% of the time for
another person, depending on her preferences.

• Lacking in Generalization: Typically, generality refers to the extent to which
a pattern or rule is systematic, i.e., the percentage of all applicable records in
the dataset that match the pattern. According to Geng et al. [102], a pattern
is more useful and interesting if it characterizes more details in the related
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dataset. When creating classification rules, traditional classification strategies
take data-driven generalization into account. Aside from that, users’ behavior-
based generalization might be of concern. Users’ actions, for example, can be
consistent in a variety of situations, with just a few exceptions [105]. As a
result, behavior-oriented generalization may provide more accurate results for
modeling users’ use patterns. The generalization process not only simplifies
the resulting machine learning-based model but also reduces overfitting and
increases prediction accuracy.

Neither association rule mining (e.g., Apriori) [75] nor classification rule mining
(e.g., Decision tree) [76] are ideal for discovering behavioral rules of cell phone
users based on multi-dimensional contexts. As a result, in this book we suggest a
behavioral decision tree-based approach that generates not only useful general rules
for capturing individual actions at a given level of confidence with a small number
of contexts but also rules that articulate unique exceptions to the general rules when
more context-dimensions are considered.

3.4 Incremental Learning and Updating

Mobile phone log data is not static; it is gradually applied day by day based on
an individual’s current (on-going) mobile phone habits. Since people’s behavior
changes over time, the more recent trends are more likely to be important and
relevant for predicting people’s potential behavior in specific situations than older
ones [106, 107]. As a result, updating and complex management of discovered rules
based on individuals’ recent behavioral trends (e.g., recency) becomes a challenge,
as changes can not only invalidate certain current rules but also make other rules
relevant.

Several incremental rule mining techniques have been proposed for mining rules
in a complex database in the field of data mining. To get a fully updated set of
rules, these techniques use existing rules and the incremental portion of the dataset.
For example, Cheung et al. [108] proposed the FUP algorithm, which is the first
incremental updating technique for preserving association rules as new data is added
into the database. The FUP algorithm is used to discover new frequent itemsets in a
complex database and is based on the Apriori [75] algorithm.

By deleting earlier itemsets that are either considered to be still frequent or
deemed infrequent only by testing the incremental section, FUP tries to extract the
value from the previously discovered rules to produce a relatively small candidate
set to be tested against the original data set. Cheung, et al. suggested a new algorithm
FUP2, which is an expansion of the FUP algorithm, in [109]. When new transactions
are added to a database, the FUP updates the association rules, while the FUP2
extracts the rules from the final data collection, taking into account both the removed
and newly added parts. If the data set is only modified by insertions, the FUP2
algorithm would behave similarly to FUP.
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Xu et al. [110] suggest another incremental association rule mining algorithm.
They suggest an IFP-tree technique, which is an extension of the FP-tree technique
[81]. When a data set is incremented, it uses the current FP-tree to construct the
IFP-tree. It updates the support of the related nodes of the tree for each transaction
of the incremental part. If, on the other hand, a new node is formed, it is held as a
new branch of the root node. The frequent itemsets are discovered after the tree has
been built. It does so by contrasting both old and new trees. When a new node in
the updated tree is discovered, frequent itemsets are created. Since each new node
in the tree forms its branch, only the new branches can result in the generation
of a new frequent object. However, as the number of dimensions and transactions
grows, its efficiency suffers. Thomas et al. propose an algorithm based on the idea
of Negative Border that preserves both frequent and border itemsets [111]. The
algorithm updates to support counts of all frequent itemsets and border itemsets
as data is added to or removed from the original database. However, to minimize
scanning times of an initial database, a large number of border itemsets must be
stored in memory.

A few algorithms are proposed based on the three-way decision, which is
an extension of the widely used binary-decision model with an optional third
alternative [112, 113]. The concepts of approval, rejection and no engagement
suggested by Yao [114] are used to build a three-way decision theory. All itemsets
are divided into three regions using these methods, namely the positive, the
boundary, and the negative region. Positive itemsets are already popular, and they
consider them without reservation. Itemsets in the boundary region are uncommon,
but they could become more common shortly after data increment. Even after data
increment, itemsets in the negative region will become less common, and they will
be abandoned. As a result, all that is required to keep the frequently used itemsets
up to date is to review those in the boundary zone. The runtime is saved because the
negative region containing the majority portion is never computed.

Amornchewin et al. suggest a probability-based incremental association rule
discovery algorithm in [115]. To avoid reprocessing entire dynamic databases,
this algorithm uses the Bernoulli trials principle and uses previously mined infor-
mation. When only new data is inserted into a dynamic database, the algorithm
can efficiently maintain association rules. Thusaranon et al. [116] propose a
new probability-based incremental association rule discovery algorithm that is a
development of Amornchewin and Kreesuradej’s [115] algorithm. They expand the
algorithm’s ability to maintain association rules of a complex database in the case
of record insertion and deletion at the same time in this algorithm.

The above incremental mining techniques primarily consider the overall mining
process’s faster processing, e.g., performance. Instead of processing the combined
dataset that includes the initial dataset and the incremental portion, these techniques
minimize scanning on the provided datasets by mining the incremental part sepa-
rately. As a result, the overall mining method with conventional updating techniques
affects the amount of time it takes to find a full set of revised rules. However, the
freshness of rules, such as rules based on recent trends, is important in modeling
users’ behavior, and this has not been taken into account in these techniques. The
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explanation for this is that in the real world, user behavior is not static and can
change over time. To effectively model smartphone users’ behavior in relevant
multi-dimensional contexts, updation in terms of freshness in users’ behavior while
generating rules is needed.

Several researchers use recent cell phone log data behavioral patterns to forecast
future actions rather than patterns extracted from the entire historical logs to
generate rules based on an individual’s current behavior. They do, however, use
a static period of recent historical data, which may be insufficient for determining
users’ recent behavioral rules. For example, Lee et al. [117] have used recent call
list data to study cell phone users’ calling patterns and create a call recommendation
algorithm for an adaptive speed-call list. To achieve their target, they extract call
logs from the previous 3 months. Barzaiq et al. [118] suggest an approach that
analyzes cell phone historical data over a 2-year cycle to forecast outgoing calls
and observe relatively additional computational load that appears to be unnecessary.
Phithakkitnukoon et al. [119], conduct their research on reality mining datasets
collected over 9 months and find that only a recent portion of contact history is
more important. Phithakkitnukoon et al. [65] present a model for forecasting phone
calls for the next 24 h based on the users’ previous contact history in a separate
paper. They demonstrated that the recent trend of the user’s calling pattern is more
important than the older one and has a higher correlation to the future pattern
than the pattern generated from all historical data in their approach. As a result,
to improve prediction accuracy, the most recent 60 days of call records in the call
logs are considered to be the potential observed call activities [65]. However, since
users’ actions are not consistent in the real world and may differ from user to user
over time, such a static period consideration may not be appropriate to represent
one’s current behavior.

Apart from these methods, several authors [120, 121] deal with the issue of
handling personal information, such as individual’s contact lists in their mobile
phone, and more precisely, the task of searching for the desired contact number
when making an outgoing call. According to Bergman et al. [120], a large number
of contacts in cell phones are never used, even though contact lists grow larger.
According to their findings, 47% of the users’ contacts had not been used in over
6 months or had never been used at all. Stefanis et al. [121] used a window-based
model for handling and searching personal information on mobile phones to predict
future actions. They demonstrated in their experiment that the training window for
predicting an individual’s cell phone use behavior should be long enough to provide
enough data. A training window of more than 2 weeks, on the other hand, would be
unable to capture the dynamic changes in phone call behavior patterns. Furthermore,
a training window of fewer than 7 days will be insufficient to capture behavioral
changes through all days of the week, including changes in social circumstances
on weekends. In conclusion, standard updating techniques discussed above may
not be appropriate for producing a full collection of users’ behavioral rules in
multi-dimensional contexts, to develop intelligent context-aware systems, to provide
relevant services to end smartphone users, when taking into account the freshness
in rules representing users’ current actions and their dynamic updation.
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3.5 Identifying the Scope of Research

Mobile phones have become an inseparable part of our lives. As mentioned in this
chapter, not all users’ cell phone use behaviors are the same and can vary from one
user to another based on contextual details. In a context-aware pervasive computing
environment, studies have demonstrated that mining contextual behavior rules of
individual cell phone users will intelligently assist them in various context-aware
personalized systems such as smart call interruption management system, smart call
reminder system, mobile notification management system, context-aware mobile
app recommender systems, and various predictive services.

Users do not want to use apps that require individual cell phone users to identify
and maintain their behavioral rules manually rather than automatically discovered,
according to studies. Users may not have the time, inclination, experience, or
interest to manually maintain rules [122]. Mining behavioral rules of individual cell
phone users based on relevant multi-dimensional contexts, according to individual
preferences, is a key prerequisite for developing such smart applications.

The state-of-the-art in the field of mobile data analytics was addressed in this
chapter. Based on this, we have summarized the scope of research below, which are
taken into account throughout this book:

(i) Contextual data pre-processing and feature selection are the primary parts
of an effective context-aware system. In Chap. 4, the basic feature selection
and extraction methods for efficient processing have been provided. We also
present several contextual datasets that can be utilized to build a machine
learning based context-aware model for corresponding mobile applications
and services in this chapter. As the real-world data may contain noisy and
inconsistency instances, the pre-processing steps have also been analyzed to
clean and remove noises from raw data in this chapter.

(ii) Context discretization, e.g., an effective time-series modeling considering
mobile user behavioral activities is still lacking for building an intelligent
context-aware system. In Chap. 5, we present a behavior-oriented time seg-
mentation technique capturing user behavioral patterns to produce temporal
behavioral rules. Using time-series cell phone data, this method dynamically
considers not only the temporal coverage of the week but also the number of
incidences of various behaviors to produce related behavioral time segments
over the week.

(iii) Existing studies have focused on mainly association rule mining techniques
(e.g., Apriori) or classification rule mining techniques (e.g., Decision tree) for
discovering user behavioral rules utilizing mobile phone data. However, there
is still a lack of discovering the useful behavioral rules of individual mobile
phone users based on multi-dimensional contexts. In Chap. 6, we present a
tree based approach to model an individual’s mobile phone usage behavior
utilizing their mobile phone data. This approach produces not only the general
rules that capture an individual’s behavior at a particular level of confidence
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with a minimal number of contexts but also produces rules that express specific
exceptions to the general rules when more context dimensions are taken into
account.

(iv) Another key limitation of the existing literature is that the previous studies
have not considered the recency-based rules of individual mobile phone users
and updating the existing rules based on the recent behavioral patterns of
individuals. In other words, there is a lack of understanding about rules
that reflect an individual’s recent behavioral patterns ignoring the user’s past
behavioral patterns to get a complete set of updated rules. In Chap. 7, we
present an approach for recency-based updating the rules and their dynamic
management. This updated rules-set not only contains all the useful rules of
an individual mobile phone user for the whole log period but also expresses
recent behavioral patterns that will help model mobile phone usage behavior
of individuals to provide personalized services for the end mobile phone users
in a context-aware pervasive computing environment.

(v) A rule-based expert system modeling is typically considered one of the key AI
techniques that can be used to make intelligent decisions and more powerful
applications. In Chap. 8, we discuss mobile expert system as a knowledge or
rule-based modeling, where a set of context-aware rules are extracted from
mobile data discussed in earlier chapters. Usually, the purpose of the expert
system is to take information from a human expert and turn this into a number
of hardcoded rules for the input data to be implemented. In this chapter, we
focus on the generated rules based on machine learning techniques, rather than
the hardcoded rules, as we take into account the dynamism in the context-
aware rules.

(vi) Deep learning is part of a broader family of machine learning methods based
on artificial neural networks with representation learning. Although, the rule-
based machine learning methods performed well, deep learning can be used,
when a large amount of data is available. In Chap. 9, we discuss the importance
of deep learning and a context-aware deep learning model for mobile phone
users.

(vii) Finally, in Chap. 10, we highlight the most important and vital issues, ranging
from contextual data collection to decision-making, that has been thoroughly
explored in this book. In terms of new researchers’ perspectives, future
advances in industries, and smart solutions in the context-aware technology
industry, prospective research works, and challenges in the field of context-
aware computing have been addressed.

Overall, this book presents a variety of techniques and research scope in
the field of context-aware machine learning and data analytics, which can be
used for building a variety of real-world applications. The prominent application
fields are personalized assistance services, recommendation systems, human-centric
computing, adaptive and intelligent systems, IoT services, smart cities, mobile
privacy and security systems, and many others, where applications dynamism based
on contextual data is needed.
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3.6 Conclusion

The effect of multi-dimensional contexts on smartphone data, both in terms of
context-aware rule learning and the dataset itself, was addressed in this book.
In this chapter, we mainly aimed to address the current state of mobile data
analytics and associated rule learning techniques. We have also explored about
how multi-dimensional contexts including temporal, spatial, and social contexts
can influence such technology. We have summarized applicable research for each
popular technique to help others in the context-aware rule learning community. In
terms of time-series modeling, rule discovery based on multi-dimensional contexts,
and updating rules over time according to individual preferences, we have addressed
various issues regarding context-aware rule learning. In terms of current research,
there has been a lot of emphasis on conventional context-aware systems and
techniques, with less work on machine learning rule-based context-aware systems
for successful decision making in a specific domain.

Overall, we reviewed previous research and addressed a discussion of challenges
and potential directions for learning context-aware rules from smartphone data in
this chapter. The domain-specific context-aware rules can be used to create a variety
of context-aware models that intelligently assist end-users in their daily activities.
At the end of this chapter, we have summarized the scope of research, which are
taken into account throughout this book. We also assume that this study can be used
as a reference guide in the relevant application areas including mobile applications,
smart systems and security, etc. for both academia and industry.
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Part II
Context-Aware Rule Learning and

Management

This part of the book explores the approaches to extract the context-aware rules from
mobile data in multi-dimensional contexts by presenting the datasets and contextual
features (Chap. 4), the approach to discretization of time-series data (Chap. 5), the
approach to extract rules (Chap. 6), and the approach to managing the recent patterns
(Chap. 7).



Chapter 4
Contextual Mobile Datasets,
Pre-processing and Feature Selection

4.1 Smart Mobile Phone Data and Associated Contexts

We live in the data era [1], in which everything around us is connected to a data
source, and everything in our lives is recorded digitally. Mobile phones, also known
as cellular phones, have become increasingly common and popular. Their ability to
capture user behaviors allows them to gain insight into individual users’ cell phone
use habits. Recent advancements in smart cell phones and their sensing capabilities
have allowed the collection of rich contextual information about the user and mobile
phone usage records through system logs, such as phone call logs [2, 3], SMS Log
[4], mobile application (Apps) usages logs [5, 6], mobile phone notification logs [7],
weblogs [8], Game Log [9], context logs [5], and smartphone lifelog [10] etc. These
historical mobile phone data is simply a combination of past contextual information
(various contexts) and individual mobile phone users’ behaviors for those contexts
[11]. As a result, such contextual data captured by cell phones can be used as the
basis for analyzing user behavioral activities. In the following, we discuss several
phone log datasets and their associated contexts.

4.1.1 Phone Call Log

Smartphones can store different types of contextual data related to a user’s phone
call activities, such as making outgoing calls and handling incoming calls, in its
phone log. The logging of a user’s phone call information, e.g., call date, exact call
time, call type, call duration in call logs, in particular, provides raw data on when the
user makes outgoing calls, accepts, declines, or misses incoming calls [3, 12, 13].
In addition to call specific metadata, other types of contextual information, such as
user location and the social relationship between the caller and the callee identified
by the individual’s unique phone contact number, are also registered by smart cell
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phones [4]. Thus, call log data obtained by a smart cell phone can be used as a
contextual data source in smart context-aware mobile communication systems to
model individual mobile phone user behavior [14].

4.1.2 Mobile SMS Log

The most popular text communication service in cell phone communication systems
is the short message service (SMS). Individual cell phone users can exchange short
text messages using uniform communications rules or protocols. According to the
International Telecommunication Union’s [15], short messages have developed into
a vast commercial industry worth over 81 billion dollars. The rapid increase in the
number of cell phone users around the world has resulted in a significant increase
in spam messages. The main issue with SMS spam is that it is irritating to the
recipients. Furthermore, SMS spam can be costly due to some users having to pay
for each text message they receive. Furthermore, permanently blocking SMS from a
specific subscriber is not a good option because of a possibility to miss a significant
message. The SMS log contains all messages, including real and spam text messages
[16], or good content and bad content [17], as well as their contextual information,
such as the user identifier, date, time, and other SMS related metadata, which can
be used in the task of automatic filtering of SMS spam for different individuals
in different contexts [4, 16], or predicting good time or bad time to deliver such
messages [17].

4.1.3 Smartphone App Usage Log

Due to the rapid growth and adoption of mobile channels, smartphones and tablets
have become one of the most significant media for social entertainment and
knowledge acquisition [5]. The vast number of mobile applications, or apps, e.g.,
Multimedia, Facebook, Gmail, Youtube, Skype, Game available via the Internet,
which can be installed and operated by individual users on their smartphones
according to their individual needs, can be linked to the radical rise of smart mobile
phones. As a result, it’s important for not only mobile designers and software
developers, but also academics, to understand how different people use various
applications for real-world purposes on their smartphones. For different types of
mobile apps, app use logs contain various contextual information such as date, time
of day, battery level, profile type such as general, silent, meeting, outdoor, offline,
charging state such as charging, full, or not connected, location such as home,
workplace, on the way, and other app-related metadata [5, 6, 18, 19]. These logs
can be used to mine the contextual behavioral rules of individual cell phone users,
such as which app a user prefers in a given situation. Mining such preferences is
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a crucial step toward better understanding mobile phone users’ app use patterns
and providing customized context-aware app recommendations according to their
current needs.

4.1.4 Mobile Phone Notification Log

In the real world, several smart mobile apps use notifications to notify users of
different events, news, or simply to give them reminders or warnings. Many of
them, for example, mobile phone alerts are neither useful nor important to the users’
interests. As a consequence, such ineffective alerts are regarded as obtrusive and
potentially irritating by users [7]. For instance, notifications of inviting games on
social networks, social or promotional emails, or a variety of predictive suggestions
provided by various smartphone applications, such as Twitter, Facebook, LinkedIn,
WhatsApp, Viver, Skype, and Youtube [7]. The notification log contains contextual
data such as notification type, user physical activity such as still, walking, running,
biking, or driving, user location such as home or work place, date, time-of-day,
user reaction to such notifications, dismiss or accept, and other notification-related
metadata [7]. Such notification logs can be used to extract contextual behavioral
rules that can be used to create intelligent mobile notification management systems
according to their preferences.

4.1.5 Web or Navigation Log

Individual users may have different needs and priorities at different times of the day
and days of the week because user navigation habits on the Internet are context-
dependent [8]. In recent years, there has been a growing interest in time-based
consumption trends in the workplace. User mobile web navigation, web browsing,
e-mail, entertainment, talk, news, TV, travel, sport, banking, miscellaneous, and
related contextual information such as date, time-of-day, weekdays, weekends are
all recorded in the weblog [8, 20, 21]. Mining contextual usage patterns from
log data can be used to make accurate context-aware navigation predictions and
adjust the portal layout to the needs of users. Such contextual user navigation
predictions can help to improve download times by pre-fetching pages, which would
be beneficial for mobile phone users for whom download time is a particular issue.

4.1.6 Game Log

With the rapid development and widespread availability of mobile Internet, smart-
phones are now being used for a variety of traditional PC-based applications, such
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as game downloads. Downloading mobile games via smartphone appears to be
one of the most common activities among mobile phone users these days. People
enjoy a wide variety of games, including action, adventure, casual, puzzle, strategy,
and sports. Users of mobile phones can play such games for a variety of reasons,
including to relax after a challenge, to quickly escape from real-world activities,
or to pass the time when they are lonely. Users can, however, have different
preferences about what types of games they want to play at different times of
the day. Individual cell phone users’ game logs provide information about playing
different types of games, as well as relevant contextual information such as date,
time of day, weekdays, weekends, and so on [9]. The context-dependent game-
playing rules derived from such log data can be used to create a customized mobile
game recommendation system for individual phone users based on their preferences.

4.1.7 Smartphone Life Log

Smartphones are more than just a phone for making calls; they also have video
players, game consoles, personal calendars, storage, and other advanced features.
They are also known as handheld computers, and they have the same computing
capabilities as personal computers. Individual users, on the other hand, can take
their smart mobile phones with them anywhere and at any time, unlike personal
computers. As a result of the widespread availability of smart cell phones and
their computational capacities for a variety of real-world applications, these devices
can be used as a life-logging system, such as personal e-memories [10]. In a
more technological sense, life-logs sense and store contextual information from
an individual’s surrounding environment using a range of sensors found in their
smartphones, which are the life-long core components such as user phone calls,
SMS headers, App use, e.g., Skype, Whatsapp, Youtube etc., physical activities form
Google play API, and related contextual information such as WiFi and Bluetooth
devices in user’s proximity, geographical location, temporal information [10].
Individual mobile phone users’ context-dependent behavioral rules can be derived
from such life-log data and used to enhance user experience in their everyday lives.

4.1.8 Dataset Summary

In the above, we have discussed various types of smartphone log data related to the
user’s activities and their associated contextual information. Hence, we summarize
the major characteristics of such log data that is collected by the smart mobile
phones in a context-aware pervasive computing environment.

• Data are collected automatically by the devices according to their data storage
capabilities, thus minimized the effort of manual data collection.
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• These are the real-life data of mobile phone users with their unique behavioral
patterns, thus contains the actual activities or response with the devices, e.g.,
reject phone call, of the individual users in different contexts such as temporal,
spatial, social or others relevant.

• Different types of customized apps can be used to record the necessary data for
building data-driven personalized applications for the mobile phone users.

This represents the first layer of our context-aware rule learning framework as
collecting relevant data is the first step to build a data-driven system. Such contextual
data can be collected from various sources like smartphone logs, sensors or external
sources relevant to the application. Smartphone data collected from these sources
usually contains raw contexts that characterize individuals’ daily life behavioral
activities with their phones, and need to process effectively to use as the basis for
learning context-aware rules.

4.2 Examples of Contextual Mobile Phone Data

In this section, several data samples in different contexts have been provided to give
a clear understanding on contextual datasets. This includes time-series mobile phone
data as well as data with multi-dimensional contexts for different applications.

4.2.1 Time-Series Mobile Phone Data

Let, Tseries be a data feature and q it’s corresponding domain. Tseries is a sequence
of data points ordered in time such that Tseries = (t1, t2, ..., tm), where t1, t2, ..., tm
are individual observations, each of which contains real-value data and m is the
number of observations in a time-series. A time-series mobile phone dataset DST is
a collection of records, where

(i) each record r is a set of pairs (ti , valuei), where ti ∈ Tseries that represents the
timestamps, and value ∈ q. For example, ‘2016-09-10 19:38:20’ is a value of
ti , which represents the timestamps information in the format YYYY-MM-DD
hh:mm:ss.

(ii) each ti ∈ Tseries , also called attribute (temporal context), may occur at most
once in any record, and

(iii) each record has a particular user activity with mobile phones (e.g., reject phone
call).

A sample user’s time-series cell phone data is shown in Table 4.1. It presents
some data from a phone call log, which tracks user phone call activities along
with corresponding temporal data. In the real world, an individual cell phone user’s
typical phone call habits are (i) accepting an incoming phone call, (ii) rejecting
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Table 4.1 Examples of time-series mobile phone data and corresponding phone call activities of
a sample mobile phone user

Timestamps (YYYY-MM-DD
hh:mm:ss)

Phone call type and
duration

User phone call activity
(behavior)

2016-09-19 10:03:15 Incoming call, 0 s Reject

2016-09-19 10:35:25 Incoming call, 0 s Reject

2016-09-19 11:53:55 Incoming call, 0 s Reject

2016-09-19 21:30:22 Outgoing call, 125 s Outgoing

2016-09-19 22:40:25 Incoming call, 125 s Accept

2016-09-20 07:53:35 Missed call, 0 s Missed

2016-09-20 08:19:14 Outgoing call, 60 s Outgoing

2016-09-20 08:25:04 Incoming call, 135 s Accept

2016-09-20 10:19:39 Incoming call, 0 s Reject

2016-09-20 12:20:24 Missed call, 0 s Missed

or declining an incoming phone call, (iii) the phone rings but the user ignores the
call intentionally or unintentionally, i.e, missed, and (iv) making a phone call to
a specific person, i.e., Outgoing [3]. Both temporal information and user-related
phone call activity are stored for each record, with accept and reject calls being
stored in the system log as incoming calls with corresponding call duration [3].

Each record in the dataset (see Table 4.1) contains exact temporal information
(e.g., 2016-09-19 10:03:15) that can not be used in their behavioral rules as there
is a very small chance that these exact values may match values of unseen, testing
cases to predict her future behavior. For instance, the first record shows that the
user rejects the incoming phone call on 2016-09-19 at 10:03:15. It is unlikely to
reject another incoming call at the same time 10:03:15 (hh:mm: ss) on another date
(YYYY-MM-DD). In general, discretization or time-series segmentation approach
could be an effective approach to pre-process such temporal contextual data, in
which an input is divided into a sequence of discrete segments or nominal attributes,
that is, quantitative data into qualitative data, with a finite number of intervals.

4.2.2 Mobile Phone Data with Multi-Dimensional Contexts

Let Con = {con1, con2, ..., conm} be a set of nominal contexts and Q =
{q1, q2, ..., qm} the set of corresponding domains. A mobile phone dataset DS is
a collection of records, where

(i) each record r is a set of pairs (coni, valuei), where coni ∈ Con, and valuei ∈
Q. For example, if coni represents as the context ‘location’, then an example
of valuei is ‘office’.

(ii) each coni ∈ Con, also called attribute (context), may occur at most once in
any record, and
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Table 4.2 Sample mobile phone dataset with multi-dimensional contexts and corresponding
phone call activities of a sample user

Social activity Social User phone call

Temporal Location (situation) relationship activity (behavior)

Mon[10:00-12:00] Office Meeting Friend Reject

Mon[10:00-12:00] Office Meeting Boss Accept

Mon[10:00-12:00] Office Meeting Unknown Reject

Mon[10:00-12:00] Office Meeting Colleague Reject

Mon[18:30-19:30] Home Dinner Friend Accept

Mon[18:30-19:30] Home Dinner Colleague Accept

Tue[18:30-19:30] Home Dinner Unknown Missed

Tue[12:30-13:30] Office Lunch Friend Accept

Wed[15:00-17:00] Office Lecture Friend Missed

Wed[15:00-17:00] Office Lecture Friend Reject

Wed[15:00-17:00] Office Lecture Friend Reject

Fri[10:15-11:30] Office Seminar Friend Reject

Fri[10:15-11:30] Office Seminar Mother Accept

Fri[10:15-11:30] Office Seminar Friend Reject

Fri[14:30-15:30] Office Seminar Friend Reject

Fri[14:30-15:30] Office Seminar Mother Accept

Fri[14:30-15:30] Office Seminar Friend Reject

Sat[18:30-19:30] Market Shopping Friend Missed

Sat[18:30-19:30] Market Shopping Unknown Missed

Sun[18:30-19:30] Home Dinner Colleague Accept

(iii) each record has a particular user activity with mobile phones (e.g., reject phone
call).

Table 4.2 shows an example of mobile phone data containing multi-dimensional
contexts of a sample mobile phone user. It reports some pieces of information
including user phone call activities with multi-dimensional contextual information.

Each record in the dataset (see Table 4.2) contains several contextual information
related to her particular phone call activity. For instance, the first record shows that
the user rejects (phone call activity) her friend’s (social relationship) phone call
between 10:00 and 12:00 on Monday (temporal context) as she is in a meeting
(social activity) at her office (spatial context). User behavioral rules are discovered
from such contextual data, that can be used to predict her future behavior in
different contexts. In the following, we discuss multi-dimensional contexts for
another application domain.
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4.2.3 Contextual Apps Usage Data

Contextual apps usage data, discussed in this section, includes not only the user-
centric context, such as the users’ spatio-temporal context, their mood or desires,
and so on, but also the device-centric context, which considers the users’ effects
on their use. It contains different types of apps usage including Facebook, Gmail,
LinkedIn, Instagram , Youtube, Whatsapp, Read News etc. of a sample user. In the
following, we discuss the apps usage data considering several contexts.

Temporal Context This is one of the most important factors influencing a user’s
smartphone use [22]. For example, an individual’s smartphone app usage in the
morning can differ from her usage at night. Furthermore, in the real world, one’s
behavioral activities can vary over different periods or hours.

Work Status In general, an individual’s work status in the real world is determined
by the day of the week, whether it is a workday or a holiday. Many people’s work
status has a major effect on their app use. For example, one’s app use habits on a
Saturday, say a holiday, can differ from those on other workdays.

Spatial Context It represents users’ spatial information, such as their location,
which can be used to model and predict individual smartphone apps in another
context. The explanation for this is that an individual’s phone use can be varied
according to her current location [14]. As a result of this perception of user mobility
and the associated context-aware model, location-based services can be provided
for the benefit of individual users.

User Mood Typically, user mood refers to a person’s emotional state, which
is primarily concerned with sentiment and emotional analysis. Since a person’s
emotional condition is not constant in the real world and may shift over time, it
could be another important factor that influences individuals and can be used to
model customized app use conduct [23]. For example, when one person is in a good
mood, she prefers to listen to music, while when she is sad, she prefers to use online
messaging.

Device Status Individuals’ device-specific contextual information such as phone
profile, phone battery level, or charging status, in addition to the above contexts
related to users’ day-to-day circumstances and preferences, which affect individu-
als’ preferences to use smartphone apps. For example, if a person’s phone battery
gives off a low-power signal, she is unlikely to connect to the Internet to use an
entertainment app.

Internet Connectivity This often reflects the device’s meaning, which connects it to
the rest of the world. As a result, Internet access and speed can affect how people use
their smartphones. For example, if Wifi (wireless fidelity, which primarily refers to
some types of wireless local area networks) is available, one person enjoys playing
video songs; otherwise, he does not.
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Table 4.3 Sample examples of contextual apps usage data

Contexts Type Example values

Temporal context Continuous Time-of-the-day [24-hours-a-day]
Days-of-the-week [7-days-a-week]

Spatial context Categorical Phone user location [at home, at office, at
the canteen, in the playground, on the way,
etc.]

Work status context Categorical (binary) Workday and Holiday

User mood context Categorical Emotional state of phone user [normal,
happy, or sad]

Device status context Categorical Battery level [low, medium, or full]

Phone profile context Categorical Phone notification [general, silent, or
vibration]

Internet connectivity
context

Categorical (binary) WiFi connectivity [on, off]

Smartphone apps Categorical Social networking, Gmail,
Communication, video, entertainment,
read news, games etc.

Table 4.3 provides a summary with the examples of contextual apps usage data.
Extracting contextual behavioral rules of mobile phone users can be used to build an
effective context-aware model, such as an intelligent apps recommendation system,
that effectively predicts personalized smartphone app usage and recommends
accordingly in their daily usage, based on the contextual information discussed
above.

4.3 Data Preprocessing

This section covers the basics of data pre-processing, such as eliminating noisy
data, replacing missing values, and selecting important features while removing
unnecessary and redundant ones. The followings are included in the pre-processing
step:

4.3.1 Data Cleaning

The quality of the data is important to build a data-driven model. Any data that
is incomplete, noisy, or inconsistent may have an impact on the final outcome
[24]. Data cleaning is the method of deleting or altering data that is inaccurate,
incomplete, obsolete, duplicated, or incorrectly formatted in order to prepare it for
further processing. When it comes to data analysis, this data is normally not required
or beneficial because it can slow down the process or produce incorrect results.
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Missing values can be handled by ignoring the tuple or filling the value with a
specific value. Noisy data can be handled in many ways such as binning techniques,
clustering, combined human and machine analysis, regression, etc. Inconsistency
can be resolved manually. Overall, we can conclude that data cleaning process
prepares the data for further processing, which extracts the most useful information
from the collected data.

4.3.2 Data Integration

In certain cases, we need to integrate data from different sources in a data warehouse
for further study [25]. Knowledge silos are typically created due to the lack of
collaboration, making it difficult to get a full picture of how an organization is doing.
It causes inefficiencies, slowing decision-making and increasing redundancies. Data
integration is a data pre-processing technique that involves integrating data from
several heterogeneous data sources into a single data store. Data can be made
more important with the aid of a good integration strategy. In data integration,
schema integration and redundancy are major concerns. Thus, we must deal with a
number of issues when integrating the data, including entity identification problems,
redundancy, tuple duplication, and data conflict detection and resolution.

4.3.3 Data Transformation

The process of transforming data from one format or structure to another is known
as data transformation in computing. Most data integration and data management
functions, including data wrangling, data warehousing, data integration, and device
integration, require it. Data transformation can be simple or complicated, depending
on the amount of data that needs to be changed between the source and target
data. The format, structure, complexity, and volume of the data being transformed
can all influence the tools and technologies used for data transformation. It is
usually accomplished by a combination of manual and automated processes. A
few transformation approaches include normalization, smoothing, discretization,
aggregation, and generalization can be used. However, during transition, a lack of
experience and carelessness can cause issues.

4.3.4 Data Reduction

Data reduction is a method of reducing the size of original data so that it can
be represented in a much smaller space. When reducing data, data reduction
strategies maintain data integrity. The time spent on data reduction should not
be overlooked in favor of the time saved by data mining on the smaller data
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collection. Data reduction can serve two purposes: it can minimize the number of
data records by removing invalid data, or it can generate summary data and statistics
at various aggregation levels for various applications. Data aggregation, attribute
subset selection, dimension reduction, data compression, numerosity reduction,
discretization, hierarchy generation, etc. are all methods that can be used. Data
reduction is performed after data cleaning, incorporation, and transformation to
obtain task-relevant data.

Pre-processing is necessary when the data set contains irrelevant data that is
incomplete (missing), noisy (outliers), and inconsistent. Thus, in the field of data
analytics, pre-processing is an important and prerequisite phase that is used to turn
raw data into a useful and efficient format. In the following, we discuss several types
of feature selection as well as dimensionality reduction techniques.

4.4 Dimensionality Reduction

High-dimensional data processing is a difficult task for both researchers and
application developers in the area of machine learning and data science. Thus,
unsupervised learning technique dimensionality reduction is significant because it
leads to better human interpretations, lower computational costs, and avoids over-
fitting and duplication by simplifying models. Feature selection is a process to
select features which are more informative but some features may be redundant, and
others may be irrelevant and noisy [26]. For dimensionality reduction, both feature
selection and feature extraction can be used. The main difference between these
two is that feature selection selects a subset of the original features, while feature
extraction produces entirely new ones [26]. In the following, we briefly discuss these
techniques.

4.4.1 Feature Selection

The process of choosing a subset of specific features (variables, predictors) to use
in building machine learning and data science models is known as feature selection,
also known as variable or attribute selection in data. It reduces the complexity of a
model by removing irrelevant or less important features, allowing machine learning
algorithms to be trained faster. A correct and optimal subset of the selected features
in a problem domain will reduce overfitting by simplifying and generalizing the
model while also increasing the model’s accuracy [27]. As a result, feature selection
[28, 29] is regarded as one of the most important concepts in machine learning,
as it has a significant impact on the target machine learning model’s effectiveness
and performance. Some common techniques for feature selection include the Chi-
squared test, analysis of variance (ANOVA), Pearson’s correlation coefficient, and
recursive feature elimination.
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4.4.2 Feature Extraction

Feature extraction techniques in a machine learning-based model or system typically
provide a better understanding of the data, a way to increase prediction accuracy, and
a way to minimize computational cost or training time. The aim of feature extraction
[28, 29] is to reduce the number of features in a dataset by creating new ones from
old ones and discarding the old ones. This new reduced set of features can then
be used to summarize the original set of features. Principal components analysis
(PCA) is a dimensionality-reduction technique that extracts a lower-dimensional
space from existing features in a dataset to create new brand components [29].

4.4.3 Dimensionality Reduction Algorithms

In the machine learning and data science literature, several algorithms have been
suggested to minimize data dimensions [30, 31]. The common methods that are
commonly used in different application areas are summarized in the following
sections.

• Chi-square: The chi-square χ2 [32] statistic estimates the discrepancy between
observed and predicted frequencies of a sequence of events or variables. The
degree of freedom, the sample size, and the magnitude of the disparity between
the actual and observed values are all influenced by χ2. For evaluating relation-
ships between categorical variables, the chi-square χ2 is widely used. If Ei is the
predicted value and Oi is the observed value, then

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(4.1)

• Pearson Correlation: Another tool for understanding a feature’s relationship to
the response variable is Pearson’s correlation, which can be used for feature
selection [29]. This approach can also be used to determine the relationship
between features in a dataset. The resulting value is [−1, 1], where −1 means
perfect negative correlation, +1 means perfect positive correlation, and 0 means
that the two variables do not have a linear correlation. If X and Y are two random
variables, the correlation coefficient between X and Y is defined as [30]

r(X, Y ) =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(4.2)

• ANOVA: ANOVA is a statistical method for comparing the mean values of
two or more groups that are substantially different from one another. ANOVA
assumes that the variables and the objective have a linear relationship and that
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the variables have a normal distribution. F-tests are used in the ANOVA system
to statistically verify the equality of means. The results of this test’s ANOVA F-
value’ [32] can be used for feature selection when some features independent of
the target variable can be omitted.

• Recursive Feature Elimination (RFE): Recursive Feature Elimination (RFE)
is a feature selection method that uses brute force. Before the model meets
the required number of features, RFE [32] suits it and eliminates the weakest
function. Features are ranked by the coefficients or feature significance of the
model. By recursively extracting a small number of features per iteration, RFE
aims to eliminate model dependencies and collinearity.

• Principal Component Analysis (PCA): In the field of machine learning and data
science, principal component analysis (PCA) is a widely used unsupervised
learning method. PCA is a mathematical technique that converts a collection
of correlated variables into a set of uncorrelated variables called principal
components from a set of correlated variables [33, 34]. PCA works by identifying
the fully transformed covariance matrix with the highest eigenvalues and then
projecting the data into a new subspace of equal or fewer dimensions [32].

4.5 Conclusion

Several contextual datasets captured by the mobile devices that can be utilized to
extract contextual rules for building rule-based context-aware model are presented
in this chapter. Such contextual data can be collected from various sources like
smartphone logs, sensors or external sources relevant to the application. Smartphone
data collected from these sources usually contains raw contexts that characterize
individuals’ daily life behavioral activities with their phones, and need to process
effectively to use as the basis for learning context-aware rules. As the real-world
data may contain noisy and inconsistency instances, the pre-processing steps have
also been analyzed to clean and remove noises from raw data, which is an important
and prerequisite phase that is used to turn raw data into a useful and efficient format.
Finally, the basic feature selection and extraction methods for efficient processing
has also been provided in this chapter
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Chapter 5
Discretization of Time-Series Behavioral
Data and Rule Generation based
on Temporal Context

5.1 Introduction

In general, discretization is a process to convert continuous numerical attributes into
discrete or nominal attributes with a finite number of intervals, resulting in a non-
overlapping partition of a continuous domain. As mentioned earlier, the temporal
context, represented as time-series data, is the most important aspect that influences
user behavior in a mobile Internet portal [1]. Individuals’ behaviors vary over time in
the real world, and the smart devices record the precise time information (e.g., 2015-
04-25 08:35:55) of all the diverse activities with mobile phones in time order, are
considered as time-series behavioral data. However, unlike digital systems, human
perception of time is not precise. Routine behaviors always have a time interval,
even if it is only a small one, such as 5 min [2]. For example, a user calls her mother
in the evening regularly. She is unlikely to contact her mother every day at 6:00
p.m.; she could call at 6:13 p.m. one day and 5:51 p.m. on another day. As a result,
the exact time is not very informative in predicting user behavior in the future.
According to Farrahi et al. [3] time-based effective behavior modeling is an open
problem. In this chapter, we explore the discretization process of the continuous
time-series data to generate temporal segments according to the behavioral patterns
of the users, which is used as the basis of generating rules based on temporal context.

To evaluate time as a condition in a high confidence rule, time must be separated
into meaningful categories that act as a proxy for recognizing a user’s various activ-
ities. Researchers employ numerous methods of segmentation to mine mobile user
behavior for diverse goals, including large interval or small interval segmentation
without taking into account individual behavioral patterns. For instance, a number
of researchers [4–7] use large interval-based segmentation (e.g., morning[6:00 a.m.–
12:00 p.m.]) in order to mine mobile user behavior. Such large segments may
not suitable for generating meaningful behavioral rules in a temporal context. On
Monday, for example, one user may attend a regular meeting from 8:00 to 8:30 a.m.,
while another attends class from 10:00 to 11:30 a.m. While in a meeting or class,
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both users reject the incoming call. Users may normally accept incoming calls at
different times in the morning. Because of the inability to distinguish individual’s
such distinct behaviors in the morning, these logged call response behaviors would
not be generalizable to a meaningful rule if long static segments (e.g., morning)
were used.

On the other hand, several researchers use small interval-based segmentation
(e.g., 15 min) [8–10] instead of the above large categories by taking into account
the frequent variations of individual’s behaviors. However, in many circumstances,
these small interval time segments will not yield meaningful rules. If the time
interval is too short, for example, there may not be enough behavioral data instances
in each segment to determine the dominant behavior based on many observations,
or there may be none at all. Creating behavioral rules based on observations with so
little “support” is unlikely to be effective [2]. In general, as the period is increased,
we should expect more data instances, more support, and more behavioral variations
to be detected, masking the true dominating behavior. Such segments are not suited
for capturing the actual behaviors of mobile phone users because each individual’s
activity is different. As a result, to create effective temporal rules, specific behavior-
oriented time segments that reflect logged behavior of a single mobile phone user
must be discovered.

In this chapter, we present a method for mining an individual’s behavior by ana-
lyzing their mobile phone time-series data and discovering behavior-oriented time
segments. When time is segmented effectively, high confidence rules emerge that
capture dominant behavior for as much of the week as possible. To produce rules,
association rule learner [11] rather than classification rule learner is considered. The
reason is that classification learners cannot ensure that a discovered classification
rule will have a high predictive accuracy [12]. Association rule learning, on the other
hand, is a well-defined, deterministic task that discovers rule sets with confidence
levels over a predetermined threshold [11]. The threshold for developing rules will
be established according to an individual’s preference for how interventionist the
agent should be. As no two people’s behaviors are the same in the real world, the
segmentation and corresponding rules may differ from user to user based on their
behavioral patterns overtime of the week.

5.2 Requirements Analysis

In this section, we summarize the key requirements for an effective time-series
segmentation to mine behavioral rules of individual mobile phone users. These are:

Req1 Dynamic: There are two main types of segmentation techniques (static and
dynamic), in terms of determining the number of segments. As the mobile phone
usage behaviors of individuals can be very different, a fixed number of predefined
segments is not an effective way to capture individuals’ behavior. For instance,
only two segments (office hours and non-office hours) may capture the behavioral
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patterns of one individual, and more number segments (e.g., 24 segments in
a day, a 1-h interval for each or more segments) might be needed to capture
the behavior of another individual depends on her unique behavioral patterns.
Therefore, a static number of arbitrary time segments is not able to capture an
individual’s behavioral patterns. In addition to the time of the day, an individual’s
behavior may differ between days of the week (Monday, Tuesday, ..., Sunday).
For instance, one’s Monday’s behaviors are quite consistent and as a result, a
fewer number of segments may be able to capture the behavioral patterns, while
more segments might be needed for other days of the week for that user. As
we have no prior knowledge about an individual’s behavior, the segmentation
should be dynamic, i.e., the segmentation technique needs to identify the number
of optimal segments dynamically without any prior knowledge by analyzing the
characteristics of an individual’s mobile phone data and eventually extract a set
of effective time segments with associated days-of-the-week to produce high
confidence temporal behavior rules of individuals.

Req2 Temporal Coverage Maximization: Coverage maximization is another
requirement while doing an effective segmentation to mine the temporal
behavioral rules of individual mobile phone users. The purpose of maximizing
temporal coverage is to enrich discoverability by specifying periods that are
spanned by similar behavioral patterns of individuals. Simply, temporal coverage
refers to how much of the week is covered by the rules. Temporal coverage can be
more flexible and determines the corresponding time window (e.g., 10:30 a.m.–
12:15 p.m. is an example of a time window) for which temporal rules must
be valid, but this time window may not be the same for all days-of-the-week.
Higher temporal coverage makes the temporal rule-set more effective in terms of
support value and corresponding applicability while mining mobile phone user’s
behavior. Therefore, the technique needs to maximize the temporal coverage for
each segment as long as the corresponding temporal rule is valid for a particular
confidence threshold preferred by an individual user.

Req3 Accuracy Maximization in Temporal Rules: The confidence of a rule is
directly associated with the accuracy, i.e., a higher value of confidence ensures
higher accuracy of rules and vice-versa. To evaluate time as a condition in a
high confidence rule, time must be segmented into meaningful categories that
serve as a proxy for identifying the user’s diverse behaviors in her daily life
activities. For instance, to get a high confidence value, if we take into account
a very small segment assuming like behavior in that segment, the temporal rule
with that segment may have very low support that may not be meaningful. In
general, by increasing the time interval we would expect more data instances
(greater support) but also greater behavioral variations that reduce the confidence
of the rule. As mentioned above, the mobile user behavior may not be consistent
at various time-of-the-day and days-of-the-week, the technique needs to generate
optimal time segments according to their similar behavioral patterns, to produce
effective temporal rules that satisfy the confidence threshold (accuracy label)
preferred by an individual mobile phone user.
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In this work, we address the above three aspects for generating behavior-oriented
time segments capturing similar behavior characteristics according to individual’s
unique behavioral patterns as the basis for mining their temporal behavior rules.

5.3 Time-series Segmentation Approach

In this section, we discuss how does the behavior-oriented time segmentation
(BOTS) technique work to extract temporal behavior rules from time-series mobile
phone data to mine people’s behavior.

5.3.1 Approach Overview

In this approach, first, a small base period is taken into account to divide each
day of the week into relatively little temporal slices. For this, we consider a 5-min
interval to be the finest granularity required to distinguish an individual user’s day-
to-day activity. Then behavior-oriented segments are generated from the time slices
generated by a specific base period mentioned above. To do so, we determine each
slice’s dominant behavior and dynamically combine adjacent slices with similar
dominating characteristics to produce larger segments of similar behavior. These
aggregated segments will provide greater support and coverage over time, and they
can be utilized as the foundation for mining rules specific to individuals. Finally,
we choose the best segmentation by determining the segmentation’s applicability.
We iteratively increase the basis period and compare the applicability of the
corresponding segmentation over each iteration to discover the optimal base period
because we have no prior knowledge of individual behavioral patterns. The optimal
time segmentation is determined by the time segmentation that gives the greatest
applicability, and the related base period is used as the optimal base period for
capturing individual behavioral patterns. Finally, we generate the temporal behavior
rules for the users based on the discovered optimal segmentation. The block diagram
of this process for obtaining temporal behavior rules of individuals is shown in
Fig. 5.1. The components of the above figure are described one by one in the
subsections that follow.

5.3.2 Initial Time Slices Generation

As the approach is based on individual behavior, the first part of this method is
the generation of initial time slices for collecting an individual’s behavioral activity
throughout 24 h. To accomplish this, we start by dividing each day of the week into
small temporal slices based on a base period. These initial time slices are utilized to
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Fig. 5.1 An overview of time-series segmentation approach for mining temporal behavior rules of
individual mobile phone users

Fig. 5.2 An example of initial time slices for a particular base period

capture their behavioral patterns, as people’s daily behavior occurs in a period rather
than at a specific time. The number of time slices is determined by the base period’s
duration. If Tmax represents the entire 24-h day and BP represents the base period,
the number of slices is

Number-of -Slices = Tmax

BP
(5.1)

The number of time slices reduces as the base period increases, according
to Eq. (5.1). If the starting base period is 5 min, the number of slices will be
(24-hours-a-day)/5 = 288. A base period, such as 5 min, is considered to be
the finest granularity for distinguishing an individual’s day-to-day activities. The
number of slices will be (24-hours-a-day)/10 = 144 if the base period is
increased to (5t imes2) = 10 min in the second iteration. Figure 5.2 illustrates an
example of initial time slices (T S1, ..., T S6) with time limits between 10:30 a.m.
and 11:30 a.m., when the base period (BP ) is 10 min.

5.3.3 Behavior-Oriented Segments Generation

In this section, we generate the behavior-oriented time segments based on the initial
time slices generated for a particular base period. This section divides into two parts:
the first one is dominant behavior identification for the generated time slices, and
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the second one is their dynamic aggregation based on the identified similar dominant
characteristics.

5.3.3.1 Dominant Behavior Identification

As we take into account the diverse behavioral activities of individuals across
time, we first identify the dominant behavior for each time slice generated in the
previous phase. The largest number of occurrences of a given activity among a list
of activities in a time slice is represented as dominant behavior [2]. We divide the
activity instances from the log into time slices since an individual’s behavior pattern
differs depending on the duration of the typical activities they do during the week.
We take the entire period to be a week in this case, assuming that individuals’ typical
behaviors follow a weekly pattern. As a result, activities from many weeks for the
same weekly time slices are merged, and the entire week is divided into time slices.

The time slice containing the dominant behavior may play a role in generating a
high confidence rule for that dominating behavior. We may not receive dominating
behavior in some time slices since we have no prior knowledge about an individual’s
behaviors over time of the week.

Assume we have a time slice T S30 with the following behavioral information,
where the first parameter reflects the corresponding occurrences in percentage in
T S30 and the second parameter reflects user behavior class.

{T S30 : (BH1, 45%), (BH2, 45%), (BH3, 10%)}

However, because both BH1 and BH2 have the same number of occurrences,
there is no dominating behavior in T S30 (45%). As a result, using T S30 to generate
rules results in numerous rules with conflict behaviors (BH1 and BH2), which is
impractical. We can avoid such conflicting rules in terms of rule confidence by
taking into account more than 50% of occurrences for specific behavior in a time
slice.

Assume we have another time slice T S35 with the behavioral information below,
where the parameters reflect user behavior class and associated occurrences in
percentage in T S35, respectively.

{T S35 : (BH1, 55%), (BH2, 40%), (BH3, 5%)}

As a result, BH1 is the dominating behavior in T S35, with the highest occur-
rences (55%) compared to the others. The time slice T S35 may play a role in
generating a relevant conflict-free rule with the dominating behavior BH1. However,
as previously said, the confidence level for creating rules varies depending on an
individuals’ preferences for how interventionist they want to be. Consider the case
where a user Ux’s chosen confidence threshold is 80%, implying that she is not
interested in rules with the confidence of less than 80%. Even though there is a clear
dominating behavior (BH1) in that time slice, the produced rule utilizing the time
slice T S35 will be useless for Ux .
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Fig. 5.3 Sample behavioral data (%) in different time slices

As a result, we use the preferred rule confidence threshold (t) to determine the
dominant behavior of each time slice to construct behavioral rules based on indi-
vidual preferences. Using this threshold has the advantage of reducing the amount
of processing required to obtain the desired segmentation based on individual
preferences. If the proportion of a specific behavior class BH ≥ threshold(t)

in a time slice, then BHi is the dominant behavior for that time slice. Figure 5.3
presents a sample behavioral data evidence for recognizing dominant behavior for
various time slices, assuming a confidence threshold of 80%.

Figure 5.3 shows that T S1 has 100% BH2 that meets the confidence, indicating
that BH2 is the dominant behavior for this slice. BH2 is the dominant behavior
for the T S2 slice because it also meets the threshold as T S2 has 83% BH2, 8%
BH3, and 9% BH4. Similarly, for time slices T S3 and T S4, BH2 is the dominant
behavior. There is no dominating behavior for the time slices T S5 and T S6 as no
behavior larger than 80% is obtained in these two slices. Overall, each slice can only
have one dominant behavior as the dominant behavior is the one with the greatest
number of occurrences, according to the definition. If T Stotal is the total number of
time slices, then the number of time slices containing the dominant is

Number-of -TS(dominant) ≤ T Stotal

5.3.3.2 Dynamic Aggregation

Once the dominant behavior for each time slice has been discovered, slices that
exhibit the same dominant behavior are dynamically aggregated into the longest
possible time segments using our methodology. This is done to increase the support
value and temporal coverage of any rules that are retrieved for these time segments
later on.



82 5 Discretization of Time-Series Behavioral Data and Rule Generation based. . .

Fig. 5.4 Dynamic aggregation of initial time slices based on the dominant behavior

Assume we have four consecutive time slices T S1, T S2, T S3, and T S4, each with
the behavioral information shown in Fig. 5.3, where the first parameter represents
the time slice and the second parameter denotes the corresponding dominant
behavior for that time slice.

{(T S1, BH2), (T S2, BH2), (T S3, BH2), (T S4, BH2)}

Because each of these time slices has the dominating behavior, each slice can
create significant rules in terms of confidence on its own. However, because these
time slices include the same dominating behavior, we aggregate them into one single
longest segment Seg1 (shown in Fig. 5.4) to achieve an effective behavior-oriented
segment. As a result, the dominating behavior’s longest equivalent behavioral
segment can yield more relevant rules in terms of support, temporal coverage, and
confidence with the dominant behavior BH2.

We employ a bottom-up hierarchical aggregation strategy based on dominating
behavior to find the longest related behavioral segments. The agglomerative cluster-
ing algorithm [13], which uses a proximity matrix built by computing the distance
between clusters, is the most similar methodology. The method merges the clusters
one by one based on the matrix value until the desired cluster structure is achieved,
which is set by a threshold. Because of the differences in users’ behavior over
time, predicting the threshold level at which the merging works best according to a
proximity matrix is quite challenging. As a result, we create subsequent segments
by dynamically aggregating beginning time slices based on similar behavior, with
some segments requiring more merging and others requiring less merging, as the
behavior of individual mobile users varies. Figure 5.4 provides a sample example
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of employing dynamic aggregation to create such dynamic segments [Seg1, Seg2]
from the original time slices, where BH2 is the dominant behavior of Seg1 [D =
BH2] and Seg2 [D = None] has no dominant behavior.

Algorithm 1: Dynamic aggregation
Data: initial time slices list: T Slist

Result: behavior-oriented segment list: Seglist

1 //create initial segment using the first time slice
2 Seginit ← T S1
3 //insert segment into the segment list
4 Seglist ← insert (Seginit )
5 foreach T S in T Slist do
6 //identify dominant behavior using the threshold t
7 D ← identifyDominant (T S, t)

8 //check the dominant behavior
9 if D(Seginit ) ≡ D(T S) then

10 //aggregate into one segment
11 Segagg ← aggregate (Seginit , T S)
12 //initial segment is changed to aggregated segment
13 Seginit ← Segagg

14 //update segment list
15 Seglist ← update(Seginit )
16 else
17 //create new segment using the next time slice
18 Segnew ← createSeg(T S)
19 //insert segment into the list
20 Seglist ← insert (Segnew)
21 end
22 end
23 return Seglist

Algorithm 1 explains how to perform this dynamic aggregation. The list of
starting time slices T Slist is used as input data, and the list of behavior-oriented
segments Seglist is used as output data. Our approach Algorithm 1 dynamically
determines the number of segments to be formed from an individual’s time-series
mobile phone data, rather than arbitrarily determining the number of segments in
advance. As a result, depending on their behavioral patterns, the number of segments
and time duration of the produced segments will vary from user to user.

5.3.4 Selection of Optimal Segmentation

In this section, we find the best segmentation and behavior-oriented segments that
may be utilized to construct individual mobile phone users’ temporal behavior rules.
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5.3.4.1 Segments Filtering

As different lengths of segments with different dominant behaviors (for example,
Seg1 with D = BH2 and Seg2 with [D = None], as shown in Fig. 5.4) are
produced after dynamic aggregation, we must choose segments that can produce
high confidence temporal rules to reduce the processing burden. The reason for this
is that employing all of the segments generated by dynamic aggregation is unlikely
to yield high confidence behavioral rules since all of these segments may not reflect
the strong pattern of a particular behavior that is required to represent a segment as
a rule.

We simply ignore segments that have no dominant behavior (e.g., segments
with [D = None]) when selecting segments that can construct behavioral rules
based on the desired confidence of individuals. Because of employing segments
with [D = None], it is impossible to build temporal rules that satisfy the user’s
preferred confidence. As a result, to produce meaningful temporal behavior rules
for individuals, we only take into account segments that exhibit a specific dominant
behavior.

Assume we have three segments with the behavioral data below, where the first
parameter specifies time segments and the second parameter signifies the matching
dominating behavior after dynamic aggregation.

{(Seg1, BH2), (Seg2, None), (Seg3, BH4)}

Since Seg2 has no dominant behavior, it is unable to generate any meaningful
behavioral rules based on the individual’s preferences. As a result, we minimize the
segment size by filtering such segments and consider Seg1 and Seg3 for discovering
rules, as each of these segments contains distinct dominating behavior that serves as
the foundation of useful behavioral rules of the users.

5.3.4.2 Applicability Measurement

Because of their effects on support, temporal coverage, and confidence, different
base periods may result in various time segmentation and related rules. We take into
account each of the filtered segments with the dominating behavior is an antecedent
of the temporal rule for measuring applicability because they are all capable of
producing rules according to individual preferences.

We present a metric called ‘applicability’ that measures the applicability of
rules generated by the aforementioned filtered segments with a certain dominating
behavior to find the best segmentation. Applicability is a descriptive statistic that
considers two parameters for a certain confidence level. These are:

• Temporal coverage—It is the time interval that a temporal rule covers. If tstart

and tend are the start and end time points of a particular time segment that is used
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to generate a temporal rule R, then the temporal coverage for that rule Rcov =
|tend − tstart |, i.e., the internal time interval of that segment.

• Support—The number of behavioral instances in a time segment used to generate
a temporal rule is known as support (Rsup).

Time segmentation during the week is used as a proxy for the user’s activities and
subsequent behavior in our method. On the one hand, we want time segmented with
sufficient resolution to distinguish between different forms of dominant behavior
for a given confidence threshold. We also want as much support as feasible for
rules that capture that behavior. However, the association rule learning metrics of
confidence and support [11] are insufficient for identifying appropriate temporal
rules for mining mobile user behavior. The reason for this is that temporal rules
might have a little or big temporal coverage, depending on the volatility of a
user’s behavior stability across time. The traditional metric treats each context (for
example, a time segment with a small or long time interval) as a distinct item that is
more significant in market basket analysis [11]. As a result, it does not capture the
role of temporal coverage in identifying relevant user behavioral rules.

We define our new ‘applicability’ metric as follows:
Applicability: It is defined as the product of aggregate support and aggregate

temporal coverage, where aggregate support is the fraction of the sum of all the
rules’ support counts that satisfies the confidence threshold among the maximum
possible support considered, and aggregate temporal coverage is the proportion of
the temporal coverage by those rules.

Formally, the applicability is defined as:

Applicability =
N∑

i=1

(
Rsupi

Smax

∗ Rcovi

Cmax

)
(5.2)

where Rsup represents a rule’s support count, Rcov represents the rule’s temporal
coverage, Smax represents the maximum possible support in a dataset, Cmax

represents the maximum possible temporal coverage in a week, and N’ represents
the number of rules that satisfy the user’s confidence threshold.

5.3.4.3 Identify Optimal Segmentation

As previously stated, the applicability of temporal rules for a certain confidence
threshold is determined by the dynamic segments list generated, which is based
on the length of the base period. The best segmentation will be determined by
the unique pattern of the user’s various behaviors. We iteratively increase the base
period by a suitable time gap and compare the applicability of the associated
segmentation over each iteration to discover the optimal base period because we
have no prior information of individual behavioral patterns. The optimal time
segmentation is determined by the generated time segments that give the maximum
applicability, and the optimal base period is determined by the corresponding base
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period that captures the unique behavioral patterns of individuals. As our method is
based on personalized behavioral activities, the optimal base period for capturing
the behavioral pattern and the corresponding segments for developing temporal
behavior rules may differ from one user to another in our real-world life.

Algorithm 2: Identify optimal segmentation
Data: base period: BP

Result: optimal segments list: OSeglist

1 //initialize applicability
2 Ainit ← 0
3 foreach BP in 24-hours-a-day time scale do
4 //generate initial time slices using base period
5 T Slist ← generateTS(BP)
6 //produce behavior-oriented aggregated segments
7 Seglist ← aggregateSeg(T Slist )
8 //get filtered segments
9 FSeglist ← filterSeg(Seglist )

10 //calculate the applicability utilizing filtered segments
11 Applicability ← calculateApplicability(FSeglist )
12 //compare the applicability
13 if Applicability > Ainit then
14 //store the base period as optimal base period
15 BPoptimal ← BP

16 //update initial applicability
17 Ainit ← Applicability

18 //update optimal list
19 OSeglist ← updateOSegList(Seglist )
20 end
21 //next base period
22 increase BP

23 end
24 return OSeglist

Algorithm 2 depicts the overall process. The base period BP is used as input data,
while the list of optimal segments OSeglist is used as output data.

5.3.5 Temporal Behavior Rule Generation Using Time
Segments

We apply the well-known association rule learning algorithm Apriori [11] to
generate the temporal rules of an individual user using the best segmentation. We
chose this technique because we wish to build a set of temporal rules using the
segments generated above. One of the most important advantages of employing
association rule learning is that a discovered behavioral rule will have a high
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prediction accuracy [12] because it allows an individual to create rules based on
her preferred level of confidence.

Although this approach has the disadvantage of redundancy in associations, it
does not produce redundant rules in our situation since we only employ the temporal
segments to generate the output temporal rules. Furthermore, both end-users and
application developers will find it simple to read and understand [14].

A temporal rule is expressed as temporal context ⇒ behavior , with
the antecedent being “temporal context” and the consequent being “user behav-
ior.” The algorithm constructs rules with an antecedent that contains temporal
information [weekday, time segment] and a consequent that solely contains indi-
vidual behavior during that time period. This means that rules can be in the
form temporal context ⇒ behavior but not in the form of behavior ⇒
temporal context . To better understand the concept of temporal rules let us
consider an example of phone call behaviors where the user: (i) always (100%)
makes outgoing calls between 13:00 and 14:00 on Thursdays; (ii) rejects most of the
incoming calls (92%) between 14:10 and 15:45 on Mondays; (iii) misses most of
the incoming calls (87%) between 19:00 and 21:00 on Saturdays, and (iii) accepts
most of the incoming calls (98%) between 07:30 and 10:30 on Sundays, then the
following temporal rules would represent the user’s behavior for these temporal
segments:

(i) T hursday [13:00−14:00] ⇒ Outgoing (Conf = 100%)

(ii) Monday [14:10−15:45] ⇒ Reject (Conf = 92%)

(iii) Saturday [19:00−21:00] ⇒ Missed (Conf = 87%)

(iv) Sunday [07:30−10:30] ⇒ Accept (Conf = 98%)

By validating the parameters ‘support’ and ‘confidence’ defined above, the
algorithm examines the data and generates such temporal rules. In other words, a
set of temporal behavioral rules for an individual mobile phone user is developed
only when it satisfies the user’s specified minimal support and confidence criteria.
It’s worth mentioning that lowering the support or confidence levels can lead to the
discovery of more temporal rules, and vice versa [11].

5.4 Effectiveness Comparison

In this experiment, we compare the effectiveness of our BOTS methodology
to existing time segmentation methodologies in terms of applicability and data
coverage (percentage). To accomplish so, we first choose five baseline methods
for mining mobile user behavior that use distinct time segments. For comparison
purposes, we denote these baseline methods as BM1 [8] that uses 15-min equal
interval for time segmentation to mine human mobility patterns, BM2 [4] that
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uses 4-unequal time slots based segmentation for learning mobile user preferences
for notification management, BM3 [15] that uses 5-unequal time slots for time
segmentation for mining mobile user preferences for personalized recommendation,
BM4 [7] that uses 4-h equal interval-based time segmentation for learning phone
usages sequential patterns to build mobile sequence mining engine and finally,
BM5 [9] that uses 3-h equal interval for time segmentation to identify human daily
activity patterns utilizing mobile phone data respectively. To compare the techniques
objectively, we averaged behaviors from different weeks using the same datasets for
various baseline techniques.

To show the effectiveness for individual users, Figs. 5.5 and 5.6 show the relative
comparison of applicability and Figs. 5.7 and 5.8 show the relative comparison of
data coverage (%) for User X and Y respectively. As no rule is meaningful without
the minimum number of occurrences, we take into account minimum support 1
(one instance) for each approach in our experimental purpose. Furthermore, we
investigated several confidence thresholds, including 51% (lowest strength), 60%,
and up to 100% (maximum strength).

From Figs. 5.5, 5.6, 5.7, and 5.8, we find that our BOTS approach consistently
outperforms previous approaches for different confidence thresholds. The funda-
mental reason is that existing approaches to mining mobile user activity do not take
into account people’s various behavioral patterns for segmentation. Our dynamic
technique, on the other hand, is behavior-oriented and can better capture the unique
behavioral patterns of each user, resulting in a set of behavior-oriented segments for
a certain confidence threshold.

Fig. 5.5 Applicability comparison of different segmentation approaches utilizing an individual’s
mobile phone data (User X)
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Fig. 5.6 Applicability comparison of different segmentation approaches utilizing an individual’s
mobile phone data (User Y)

Fig. 5.7 Data coverage (%) comparison of different segmentation approaches utilizing an individ-
ual’s mobile phone data (User X)

In addition to individual comparison, we also show the relative comparison of
average applicability and data coverage (%) for a collection of users of two different
datasets shown in Fig. 5.9. For this, we calculate the average applicability and data
coverage (%) of all the users taken for experimental purposes in this study, for each
approach with the same confidence threshold 75%. The average findings also reveal
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Fig. 5.8 Data coverage (%) comparison of different segmentation approaches utilizing an individ-
ual’s mobile phone data (User Y)

Fig. 5.9 Average applicability and average coverage comparison of different segmentation
approaches utilizing the collection of individuals mobile phone data of different datasets. (a)
Average applicability. (b) Average coverage

that for a group of users, our BOTS methodology continuously outperforms earlier
approaches. The reason is that we can more accurately identify each user’s unique
behavioral patterns, resulting in higher applicability and data coverage (percentage)
values for all users. However, existing techniques are not behavior-oriented and
are unable to represent the user’s different behavioral patterns that change over
time. As a result, the likelihood of hiding the real dominant behavior in a segment
rises in tandem with other existing behaviors, lowering the applicability and data
coverage (percentage) for a given confidence level. By better capturing individual’s
behavioral patterns, our dynamic time segmentation methodology overcomes these
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issues and enhances segmentation quality in terms of applicability and data coverage
(percent) for a given confidence threshold.

5.5 Conclusion

We have presented a dynamic behavior-oriented time segmentation methodology
in this chapter for extracting temporal behavior rules to mine mobile user behavior
using their phone data. Our method dynamically determines the optimal continuous-
time segments, each of which is dominated by the user’s activity. As a result, for
these time segments, temporal rules are generated, which can be used to construct
an automated rule-based personal assistance system for mobile phone users. The
time segments are determined based on the users’ contiguous dominant activity,
can span the week, and will differ from user to user to accurately reflect their
behavioral patterns. Furthermore, the time segments and behavioral rules are chosen
in such a way that the preferred confidence threshold achieves maximum temporal
coverage by the rules, resulting in maximum applicability for the rules. We have
also established the applicability measure for this reason, which considers the
support and temporal coverage that the mined rules provide. Although we use phone
call behavior scenarios as examples throughout the chapter, our method is also
applicable to different application domains, e.g., in the context of cybersecurity,
this method can help for effectively analyzing the behavioral patterns of various
cyber-attacks in time series.
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Chapter 6
Discovering User Behavioral Rules Based
on Multi-Dimensional Contexts

6.1 Introduction

Real-world smartphone data usually comprise a set of features relevant to the indi-
vidual user activities, whose interpretation depends on some contextual information
such as temporal context (day, time), spatial context (e.g., location - at office), social
context (social activity, e.g., meeting, or social relationship between individuals,
e.g., mother). In this chapter, we take into account these multi-dimensional contexts
for discovering user behavioral rules. As defined in earlier chapter, a rule (A ⇒
C) is any statement that relates two principal components, the rule’s left-hand
side (antecedent, A) and the rule’s right-hand side (consequent, C) together. An
antecedent states the condition (IF) and a consequent states the result (THEN) held
from the realization of this condition, i.e., (IF-THEN logical statement). According
to the general definition of a rule, we define a behavioral rule of an individual mobile
phone user based on multi-dimensional contexts, as [contexts ⇒ user behavior],
where contexts (antecedent) represents the information of such multi-dimensional
contexts, and behavior (consequent) represents individual’s mobile phone usage
behavior for that contexts. An example of such a behavioral rule of an individual
mobile phone user would be “On Monday[10:00–12:00] (temporal), if a user
is in a meeting (social activity) at her office (locational), she rejects (behavior)
the incoming calls of her mobile phone” and represented as a rule format as
“Monday[10:00–12:00],Meeting,Off ice ⇒ Reject”. A set of discovered such
behavioral rules of individual mobile phone users based on multi-dimensional
contexts utilizing their mobile phone data can be used to provide personalized
services to intelligently assist them in their daily activities in a context-aware
pervasive computing environment.
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In the area of mining mobile phone data, association rule mining [1] and
classification rule mining [2] are the most common techniques to discover such
types of rules of individual mobile phone users. In particular, several researchers
[3–5] have used classification rule mining technique (e.g., C4.5 Decision tree)[2]
to mine rules capturing mobile phone users’ behavior. However, the decision tree-
based rules mostly have low reliability [6, 7]. The reason is that in some cases,
the performance of decision tree-based rules is very low because of having lower
confidence value and consequently gives lower prediction accuracy for unseen test
cases. Due to the over-fitting problem and inductive bias, decision trees cannot
ensure that a discovered classification rule will have a high predictive accuracy [8].
Furthermore, this methodology lacks the flexibility to specify user preferences (e.g.,
confidence level) that may differ from user to user based on the consistency of their
behaviors, resulting in mobile phone users making rigid decisions [2].

On the other hand, the association rule mining technique (e.g., Apriori) [1] is well
defined in terms of the rule’s performance (e.g., accuracy) and flexibility as it has
the own parameter support and confidence [8]. Several researchers [6, 9, 10] have
used the association rule mining technique (e.g., Apriori)[1] to mine rules capturing
mobile phone users’ behavior. The association rule mining methodology finds all
context associations in the dataset that meet the user-specified minimum support
and confidence preferences. As a result of examining all possible combinations of
contexts without any intelligence, it generates a large number of redundant rules.
For instance, if a particular context (e.g., meeting) can take a call handling decision
of an individual user, then the combination of additional contexts (e.g., meeting,
office, Monday) for the same decision making, is considered a redundant rule for
that user. Such redundant discovery affects the quality and usefulness of the rules.
According to Fournier et al. [11], the association rule mining technique generates
up to 83% redundant rules, resulting in an unnecessarily large ruleset, which makes
the decision-making process ineffective and more complex [12]. Furthermore, it is
not feasible to provide real-time, proactive, and personalized services as it requires
a significant amount of training time. For instance, Srinivasan et al. [9] observe a
long-running time exceeding several hours, when the traditional association rule
mining algorithm Apriori [1] is applied to mobile context data.

The above discussion highlights that the traditional association rule mining
technique (e.g., Apriori) [1] and the classification rule mining technique (e.g.,
Decision tree) [2] might not be suitable for mining the useful behavioral rules of
individual mobile phone users based on multi-dimensional contexts. In this chapter,
we present a tree-based rule mining approach that produces a concise set of useful
behavioral rules based on multi-dimensional contexts. This approach generates
not only the general behavioral rules of individual mobile phone users but also
their specific exceptions while mining rules from the datasets. This approach also
provides flexibility in terms of allowing to configure the confidence preference
for each mobile phone user while mining their behavioral rules, which can play
a significant role in building context-aware personalized applications for the users.
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6.2 Multi-Dimensional Contexts in User Behavioral Rules

As we aim to discover user behavioral rules based on multi-dimensional contexts,
in this section, we discuss several relevant contexts that might have an influence on
individual mobile phone users and can be used in mining their useful behavioral
rules. These are:

• Temporal Context—In the real world, each user activity is connected with
a specific timestamp (e.g., 2015-04-25 08:35:55), hence temporal context is
important when modeling people’s mobile phone usage behavior. Through the
examination of a large sample of user data, Halvey et al. [13] have shown
that time-of-week is an essential element in modeling mobile user behavior.
This temporal context is related to a specific date (e.g., YYYY-MM-DD),
day-of-week (Monday, Tuesday, ..., Sunday), and time-of-day (e.g., hh:mm:
ss). Additional temporal information, such as public holidays, weekdays, and
weekends, may impact mobile phone users’ decisions in addition to the basic
temporal information. Humans, unlike digital systems, do not have a precise
understanding of time [14]. Routine behaviors always have a temporal interval.
As a result, to employ such time-series temporal information in behavioral rules,
a time-series discretization approach (e.g., time segments) is required, which
is discussed in the previous chapter. Friday [09:00–11:00], Monday [12:00–
13:00], Saturday [15:30–18:45], and so on are some examples of generated time
segments.

• Spatial Context—Another important user context that may be used to better
characterize individual’s mobile phone usage behavior is spatial context, e.g.,
user location [15]. Understanding human mobility in everyday life is essential for
applications that provide location-based services. Many emerging location-based
applications have been accepted by mobile phone users as the pervasiveness of
smart mobile phones has increased in recent years. Some of the factors that
contribute to the popularity of locational context in mobile phone applications
are highlighted below. First, location-based services rely on the user’s geographic
location to acquire relevant information on the spot, and thus the user reacts
appropriately in that context [16]. For example, a person’s phone call response
behavior at office may differ significantly from her answer at home. Xu Sun
[17] also demonstrated how location data can be used to enhance the mobile
user experience by offering relevant mobile services. Second, most modern
smartphones can locate or approximate their actual location using various
embedded sensors or technologies such as GPS, Wi-Fi, Bluetooth, and so on
[16]. In addition to these methods, cell tower ID [18, 19] can be used to determine
nominal values of approximate location. Office, home, market, store, restaurant,
car, and other coarse level places [20] can be utilized to extract the behavioral
rules of individual mobile phone users.
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• Social Context—In addition to the temporal and geographic settings mentioned
above, social factors have an impact on individual mobile phone users’ decision-
making [21]. Individuals participate in a variety of social activities in the real
world, such as professional meetings, seminars, and lectures. People differ signif-
icantly in their use of mobile phones during diverse occasions, as demonstrated
by Sarker et al. [22]. For example, during an event meeting, one person may
be happy to answer incoming phone calls, while another may not [23]. Even a
single person may act differently depending on the type of occurrence that has
occurred [24]. A person’s phone call reaction at a “professional meeting” may
differ significantly from her reaction during a “lunch break” event. Individual
mobile phone users’ calendar schedules can provide such contextual information
or factors regarding various types of occurrences [25]. Calendars (e.g., Google
Calendar, Outlook Calendar) are commonly used to organize and manage daily
activities and schedules. [22, 26]. Individual mobile phone users often use
electronic calendars as a personal activity management system to coordinate their
daily activities or agendas. These calendars can also be a useful resource for
them because they provide various contextual information about the individual’s
scheduled events or appointments. These can be work-related activities (e.g.,
professional meetings, classes), family activities (e.g., holidays with family
members, picking up kids from school, medical appointments), or public events
(e.g., concerts, sporting events, etc.) [27–29]. In addition to such social events,
individual social interactions, such as those with family, friends, colleagues, and
significant ones, have an impact on individual mobile phone users’ decision-
making [30, 31]. During an event formal meeting, for example, a user normally
rejects an incoming phone call; nevertheless, if the incoming contact is from her
boss, she answers. As a result, the social relationship between the caller and the
callee has a significant impact on how the call is handled. Thus, social contextual
information, in addition to temporal and locational context, can be used to find
the useful behavioral rules of individual mobile phone users.

The above discussed multi-dimensional contexts (temporal, locational, and
social) are taken into account in this study to mine relevant behavioral rules of
individual mobile phone users. In our technique, however, we do not rely on the
static number of contexts to mine their behavioral rules. We primarily concentrate
on the rule discovery methodology, which is based on a variety of user-relevant
scenarios. As a result, we leverage the relevant user’s contextual information
available in the gathered mobile phone datasets to demonstrate the efficacy of the
appropriate behavioral rules established by our technique for individual mobile
phone users.
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6.3 Requirements Analysis

In this section, we highlight the key requirements for discovering the useful
behavioral rules of individual mobile phone users based on the multi-dimensional
contexts (discussed above) utilizing their mobile phone data. These are:

Req1 Flexibility: Flexibility is one of the vital requirements for mining useful
behavioral rules of individual mobile phone users. This allows individual mobile
phone users to configure their preferences (confidence level) for discovering
rules according to their behavioral patterns. In the real world, individual user’s
behavioral patterns are not identical to all. Moreover, we do not expect 100% like
behavior of an individual for a particular context. For instance, a user typically
rejects most of the incoming phone calls and accepts a few significant calls such
as calls from her boss, when she is in a meeting. In a similar context meeting
(social situation → meeting) the user behaves differently (reject or accept)
with the incoming phone calls, which affects the confidence value of rules. If
we want to produce rules based on rigid decision-making, we may lose some
useful rules that might be interested in a particular user. Thus, unlike a traditional
decision tree [2], a behavioral rule mining approach should have flexibility for
allowing individual mobile phone users to set the confidence level according to
their preferences while mining their behavioral rules rather than rigid decision
making. Such preferences may vary from user to user as the behavioral patterns
are not identical to all in the real world. An example of such flexibility is, say,
an individual wants the agent to reject calls where in the past he/she has rejected
calls more than, say, 80% of the time (e.g., confidence level = 80%). So the rules
that satisfy this threshold are discovered for this user. Another individual may
want the agent to reject calls where in the past he/she has rejected calls more
than, say, 95% of the time. The discovered rules that satisfy this user-specific
threshold, are considered as reliable rules (good performing) for that user.

Req2 Minimizing Overfitting and Discovering General Behavioral Rules: A
model is said to be a good machine learning model if it generalizes any new
input data from the problem domain. A pattern or rule is called general if it
covers a relatively large subset of a relevant dataset. According to Geng et
al. [32], generality measures the comprehensiveness of a pattern, that is, the
fraction of all the relevant records in the dataset that matches the pattern. If a
pattern characterizes more information in the relevant dataset, it tends to be more
interesting [1, 32]. The main benefit of generalization in mining user behavioral
rules is that it takes into account a minimal number of relevant contexts of users
while producing rules. For example, typically a mobile phone user rejects most
of the incoming calls when she is in a meeting, particularly calls from several
relationships such as her friends, colleagues, or unknown. Such behavior of
that individual is considered as “general behavior” during the meeting, which
can be used to discover a general behavioral rule with high confidence. Unlike
a traditional decision tree [2], where rules are extracted for each relationship
available in the dataset, such general rule with high confidence plays an important
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role in effective behavior modeling for unseen test cases. This generalization not
only simplifies the tree-based model but also minimizes the over-fitting problem
of the traditional decision tree [2]. In our rule mining approach, we take into
account such generalization while producing nodes according to an individual’s
behavior for a particular confidence level, to minimize the over-fitting problem
and to discover the general behavioral rules of an individual user. A classification
algorithm is said to over-fit, if it has lacking generalization, i.e., if it generates a
decision tree utilizing the training dataset, which depends too much on irrelevant
features of that data instances; It performs well on the training dataset but getting
relatively poor performance to make predictions on unseen test cases. As the
main purpose of a rule-based machine learning model is to make predictions on
future data, which the model has never seen, the behavioral rule mining approach
should have the ability to produce the general behavioral rules according to
individual’s preference.

Req3 Discovering Specific Exception Rules and Non-redundancy: Specific excep-
tion is another type of rule which represents different behavior of the corre-
sponding general rule. Let’s consider the above example, though the user rejects
most of the incoming calls in a meeting, the user ‘accepts’ a few numbers of
calls, particularly calls from her boss or mother. As such, the above general
behavioral rules do not apply to her boss or mother. Thus, in addition to the above
general behavioral rules (meeting ⇒ reject), such type of specific exceptions
(meeting, boss ⇒ accept) or (meeting,mother ⇒ accept) are needed to be
discovered to model individual’s behavior more effectively. As we discover only
the specific exceptions of the relevant general behavioral rules, such discovery
not only makes the rules useful but also avoids the redundant production in
rules. Redundancy affects the rule quality and usefulness in practicality and
makes the size of the discovered rule-set unnecessarily larger. This larger set is
difficult to interpret and to identify the interesting rules for decision-makers and
consequently makes the decision-making process ineffective and more complex.
In our rule mining approach, we take into account the issue of redundancy while
generating rules. Redundant production also takes a huge amount of time [9]
and makes the overall process inefficient for real-world purposes. Thus, the
behavioral rule mining approach should have the ability to produce the specific
exceptions of the general behavioral rules, which will be non-redundant to
provide real-time, proactive, and personalized services more effectively.

Req4 Conflict Resolution in Multiple Rules: Conflict in rules occurred when
multiple rules provided different behavior for a particular context, associated
in both rules. Let’s consider the above phone call behavior example. For the
same context ‘meeting’, the behavior of the general rule is ‘reject’, and the
behavior of the specific exception rule is ‘accept’. As the contexts in general rules
(e.g., meeting) are also available in the corresponding specific exceptions (e.g.,
meeting, boss) or (e.g., meeting, mother), a rule order is needed to set the priority
of the rules during the context ‘meeting’ in evaluation. However, the traditional
confidence and support-based rule ordering [1] is not sufficient to predict the
behavior for a particular test case. In addition to the support and confidence, the
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number of relevant contexts in the rule’s antecedent also need to be considered for
the ordering of rules to make conflict resolution. In our approach, we do ordering
the discovered rules after extracting them from the contextual datasets. Thus, the
behavioral rule discovery approach should have the ability to order the rules for
handling the conflicts in rules.

In this work, we address the above four aspects for mining the useful behavioral
rules of individual mobile phone users based on multi-dimensional contexts, to
make the behavior modeling approach more effective, i.e., improving the accuracy
for predicting individual mobile phone user’s behavior.

6.4 Rule Mining Methodology

In this section, we present a rule-based machine learning approach for identifying
behavioral association rules of individual users using their phone log dataset to pro-
vide context-aware intelligent services. Our method comprises multiple processing
phases, which are detailed below.

6.4.1 Identifying the Precedence of Contexts

We choose the most appropriate context based on its precedence because differ-
ent contexts, such as temporal, spatial, or social environment, may have varied
implications on behavioral rules. For example, an incoming phone call from a
significant person (e.g., mother) is usually accepted by an individual, although she
may decline the call in other situations, e.g., if social relationship → mother

then the behavior → accept . In this case, the relevance of a “social relationship” in
making a call handling decision outweighs other factors such as time, location, and
so on. The role of contexts in making decisions may differ for another individual,
depending on her behavioral patterns in various situations.

To establish the precedence of contexts, we calculate entropy [33], which is a
measure of impurity, and information gain [33], which splits the training samples
into specific behavioral classes for a certain context. The highest precedence context
is the one that has the most information. We first define entropy before we can
quantify information gain properly. Entropy is a measure of impurity or disorder.
The impurity of an arbitrary collection of samples is defined by the entropy. When
the uncertainty is at its highest, it reaches its peak, and vice versa. Entropy and
information gain are defined as follows [33]

H(S) = −
∑

x∈X

p(x)log2p(x) (6.1)

IG(A, S) = H(S) −
∑

t∈T

p(t)H(t) (6.2)
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Where, H(S) represents the entropy of set S, T represents the subsets created
from splitting set S by attribute A such that S = ∪t∈T t , p(t) is the proportion of
the number of elements in t to the number of elements in set S, and H(t) represents
the entropy of the subset t . In our tree-based method, the context containing the
most information, such as temporal or spatial, or social, is regarded the highest
precedence context in a given scenario. Consider the following sample dataset,
which includes three different situations and the accompanying call response
behavior of a mobile phone user X. According to her behavioral patterns, the
contexts may be ranked as follows:

Rank1 : Social Activity/Situation(S) ∈ {meeting, lecture, seminar}
Rank2 : Social Relationship(R) ∈ {boss,mother, colleague, f riend,

unknown}
Rank3 : T emporal(T ) ∈ {t ime-of -the-week}
where,

User phone call response behavior(BH) ∈ {accept, reject}

6.4.2 Designing Association Generation Tree

In our tree based approach, we design an association generation tree (AGT), which
is a common tree structure with a root node, several branches, and several interiors
and/or leaf nodes. The tree is built from the root node, and each branch represents
a context-aware test on a specific context value, such as in a meeting. Each node,
whether interior or leaf, represents the corresponding outcome, which includes the
behavioral activity class and the test’s confidence value.

We use a top-down strategy to develop the AGT, which is one of the most
common information processing methodologies. According to the precedence stated
in the previous section, the tree is partitioned into behavioral activity classes
distinguished by the values of the most relevant contexts. Once the tree’s root node
has been identified, the child nodes and their related branches can be discovered.
The branches with the associated contexts and corresponding behavioral activity
class indicated by the dominant behavior, i.e., indicating the most occurrences for a
certain context, with a corresponding confidence value, are then recursively added
to the tree. We consider the generalized pattern based on one’s behavioral patterns
for a given confidence level, say t = 80%, that is preferred by individuals and
may vary from user to user when generating nodes. After that, we compare the
node to its parent nodes to see whether it contains redundant information. If it is
detected, it is labeled REDUNDANT’ (NodeType → ‘REDUNDANT’). If both
the child node and its parent node include the same behavior class and satisfy
the individual’s preferred confidence threshold, the node is considered redundant.
Figure 6.1 depicts an example of AGT using several types of generated nodes
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Fig. 6.1 An example of association generation tree (AGT) identifying ‘REDUNDANT’ nodes
based on multi-dimensional contexts

and a confidence preference of 80%. Algorithm 3 describes the whole process of
constructing AGT.

6.4.3 Extracting Non-redundant Behavioral Association Rules

Rules are extracted by traversing the tree while taking into account the decision
nodes once the association generation tree (AGT) has been completed. To do so, we
first choose the decision-making nodes from among all the tree’s created nodes. If a
node meets an individual’s preferred confidence threshold (NodeConf ≥ t) and is
not labeled as ‘REDUNDANT’ (NodeType �= ‘REDUNDANT’) in the previous
step, it is considered a decision node. As shown in Fig. 6.1, the decision nodes
contain the behavioral activity classes and related confidence values satisfied by
the user desired threshold (t = 80%). As a result, Table 6.1 provides a summary of
the AGT’s produced nodes, as illustrated in Fig. 6.1.

We traverse from the root node to each decision-making node to construct non-
redundant behavioral association rules that meet our objectives. The following are
some instances of behavioral association rules generated by the tree.

R1 : Lecture ⇒ Reject (conf = 100%, using Node 2)
R2 : Meeting ⇒ Reject (conf = 85%, using Node 3)
R3 : Lunch, F riend ⇒ Accept (conf = 92%, using Node 4)
R4 : Lunch,Unknown ⇒ Missed (conf = 95%, using Node 5)
R5 : Meeting, Boss ⇒ Accept (conf = 100%, using Node 7)
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Algorithm 3: Association generation tree
Data: Dataset: DS = X1, X2, ..., Xn // each instance Xi contains a number of nominal

context-values and corresponding behavior class BH , confidence threshold = t

Result: An association generation tree

1 Procedure AGT (DS, context_list, BHs);
2 N ← createNode() //create a root node for the tree
3 if all instances in DS belong to the same behavior class BH then
4 return N as a leaf node labeled BH with 100% confidence.
5 end
6 if context_list is empty then
7 return N as a leaf node labeled with the dominant behavior class and corresponding

confidence value.
8 end
9 identify the highest precedence context Csplit for splitting and assign Csplit to the node N .

10 foreach context value val ∈ Csplit do
11 create subset DSsub of DS containing val.
12 if DSsub �= φ then
13 identify the dominant behavior and calculate the confidence value.
14 create a child node with the identified dominant behavior.
15 //check with its parent node
16 if both nodes satisfy the confidence threshold then
17 if both nodes represent same behavior class then
18 //label the child node as ‘REDUNDANT’ node
19 NodeType → ‘REDUNDANT ′
20 end
21 end
22 add a subtree with new node and associated context values.
23 //recursively do this with remaining contexts
24 AGT (DSsub, {context_list − Csplit }, BHs))

25 end
26 end
27 return N

Table 6.1 An overview of the generated nodes in AGT shown in Fig. 6.1

Node no Node parameters Decision making summary

Node 01 NodeConf = 65% < t No (does not satisfy the confidence preference)

Node 02 NodeConf = 100% ≥ t Yes (satisfy the condition of producing rule)

Node 03 NodeConf = 85% ≥ t Yes (satisfy the condition of producing rule)

Node 04 NodeConf = 92% ≥ t Yes (satisfy the condition of producing rule)

Node 05 NodeConf = 95% ≥ t Yes (satisfy the condition of producing rule)

Node 06 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)

Node 07 NodeConf = 100% ≥ t Yes (satisfy the condition of producing rule)

Node 08 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)

Node 09 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)

Node 10 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)

Node 11 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)

Node 12 NodeType = ‘REDUNDANT’ No (does not satisfy the node type)
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Rule R1 states that the user always rejects incoming calls (100%), when the user
is in a lecture, which is produced from node 2 in the tree. When the user is at a
meeting (node 3 in the tree), rule R2 indicates that the user rejects the majority
of incoming calls (85%). The rule R5 represents an exception to the general rule
R2, whereas this rule indicates the user’s general behavior at a meeting. The user
always (100%) takes her boss’s calls while in a meeting, according to the specific
exceptional rule R5. If the related general behavior rule is not applicable in the
appropriate contexts, specific exception rules play a vital role in modeling individual
behavioral activities. Similarly, the rules R3 and R4 indicate user behavior at lunch,
which can differ from one user to another in the real world.

6.5 Experimental Analysis

6.5.1 Effect on the Number of Produced Rules

In this experiment, we compare the discovered association rules utilizing both our
rule discovery strategy and the traditional association rule mining-based techniques
(BM). Apriori [1] is the most popular and widely utilized association rule mining
approach in numerous application fields in the area of mining frequent patterns
and association rules. Another prominent approach of mining frequent itemsets and
rules, similar to the Apriori approach, is frequent pattern growth [33]. This method
focuses on developing rules rather than candidates, which lowers database searching
when generating rules. However, in terms of found rules, it yields a similar result.

Figures 6.2, 6.3, 6.4, and 6.5 show the relative comparison of produced number
of rules for different users utilizing their datasets respectively. For this, we examined
multiple confidence criteria, ranging from 100% (highest) to 60% (minimum)

Fig. 6.2 Rule comparison for user U01



104 6 Discovering User Behavioral Rules Based on Multi-Dimensional Contexts

Fig. 6.3 Rule comparison for user U02

Fig. 6.4 Rule comparison for user U03

Fig. 6.5 Rule comparison for user U04
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(lowest). We are not interested in using a confidence preference of less than 60% in
our experimental study because confidence is directly associated with the accuracy
of rules.

If we observe Figs. 6.2, 6.3, 6.4, and 6.5, we can see that as the confidence level
is reduced, the number of identified association rules employing base approaches
increases. The reason for this is that while producing rules, it simply takes into
consideration all possible combinations of contexts. As a result, a lower confidence
value satisfies more associations, resulting in a larger output. In our technique,
however, for lower confidence thresholds, a greater proportion of child nodes
subsume in their parent node, resulting in a reduction in the number of generated
rules.

In terms of non-redundant rule discovery, if we further observe Figs. 6.2, 6.3,
6.4, and 6.5, we can see that our rule discovery methodology dramatically reduces
the overall number of discovered rules, when compared to basic association rule
mining approaches at different confidence criteria. The fundamental reason for
this is that traditional association rule mining ignores redundancy analysis in
associations when developing rules, resulting in an overly large rule set for a given
confidence preference. On the other hand, we discover and eliminate redundancy
while developing rules, extracting only non-redundant behavioral association rules.

As a result, our method minimizes the total number of identified rules while
producing a compact collection of behavioral association rules. Such non-redundant
behavioral association rule generation improves the effectiveness of our methodol-
ogy and can be utilized to create a rule-based context-aware system that can quickly
select appropriate rules from the identified rules and act accordingly. As a result of
our experiments, we can conclude that our rule discovery methodology is capable
of removing redundancy caused by existing base approaches while developing rules
and providing a concise set of non-redundant behavioral association rules.

6.5.2 Effect of Confidence Preference on the Predicted
Accuracy

We demonstrate the impact of confidence on precision and recall in this experiment.
To do so, we first provide the detailed findings by adjusting the conference threshold
for different individuals from 100% (highest) to 60% (lowest). Since confidence
is defined as the accuracy of rules, we are not interested in using a value of less
than 60% as a confidence preference. The relationship between precision and recall
for different confidence criteria for two separate persons using their smartphone
datasets is shown in Figs. 6.6 and 6.7.

Higher precision usually results to lower recall and vice versa. To make a reliable
prediction of individuals, we apply a confidence preference in our methodology. In
a context-aware test case, this allows users to set their preferences while making a
decision. If we observe Figs. 6.6 and 6.7, we can see that as the confidence level is
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Fig. 6.6 Utilizing dataset of user U01
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Fig. 6.7 Utilizing dataset of user U02

reduced, recall increases and vice versa. Precision, on the other hand, rises as the
confidence threshold rises, and vice versa. The number of inaccurate predictions of
context-aware test cases decreases as the confidence level rises, and the precision
rises as a result. Overall, a greater confidence threshold leads to higher precision but
poorer recall, while a lower confidence threshold leads to lower precision but higher
recall, shown in Figs. 6.6 and 6.7 utilizing their datasets. A trade-off preference is
more important in a user-centric application since the higher value of precision and
recall shows the model efficacy. By default, we utilize an 80% confidence preference
to find behavioral association rules for the users, assuming that all users have the
same preference. We also give users the option of configuring the precision-recall
trade-off based on their personal preferences. As a result, we may deduce that user-
to-user confidence preferences have an impact on the anticipated accuracy of the
resulting rule-based context-aware model.

6.5.3 Effectiveness Comparison

We demonstrate the usefulness of our rule-based model based on individual
behavioral rules in terms of prediction accuracy in this experiment. As we begin by
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Fig. 6.8 Utilizing dataset of user U01

Fig. 6.9 Utilizing dataset of user U02

selecting numerous rule-based classification approaches from the machine learning
and data science domains, such as ZeroR, OneR, RIDOR, DTNB, RIPPER, and DT.
When compared to our rule-based model, these base classification approaches are
represented as CBM1, CBM2, CBM3, CBM4, CBM5, and CBM6 accordingly in
this experiment. As we discover rules based on the association generation tree, our
rule discovery methodology is abbreviated as AGT. For a fair comparison, we utilize
the same smartphone datasets in both training and testing sets. Figures 6.8 and 6.9
show the prediction accuracy for various rule-based classification methods of two
different individual users in the area of our analysis.

Our technique significantly outperforms earlier rule-based classification systems
for predicting individuals behavioral actions, as shown in Figs. 6.8 and 6.9. Aside
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Fig. 6.10 Average accuracy comparison

Fig. 6.11 Average error rate comparison

from individual comparisons, we also present a relative comparison of average
prediction accuracy (percentage) and average error rate (percentage) for a collection
of datasets, shown in Figs. 6.10 and 6.11 respectively. We do this by calculating the
average prediction accuracy (percentage) and average error rate (percentage) using
all of the datasets in this experiment. The average findings also reveal that our rule-
based system consistently outperforms earlier methods in terms of higher accuracy
and lower error rate. The reason is that this approach can effectively capture an
individual’s behavioral patterns in multi-dimensional contexts, which enhances the
prediction outcomes. As a result, we may conclude that the presented rule discovery
methodology is more effective in context-aware test cases than existing base models.
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6.6 Conclusion

In this chapter, we have presented a rule-based machine learning method for
detecting redundancy in associations and extracting a set of behavioral association
rules based on context precedence. We created an association generation tree based
on relevant multi-dimensional contexts such as temporal, spatial, and social factors
to do this. The tree created in our method is used to extract non-redundant behavioral
association rules. When compared to standard rule-based methods, our studies using
people’s contextual smartphone datasets reveal that this rule discovery methodology
is more effective in terms of non-redundant rule generation and context-aware
decision making. In this study, we also evaluated rule-based association and classifi-
cation algorithms in terms of their capability to generate rules from a given dataset.
The presented rule discovery approach will aid application developers in creating
context-aware intelligent applications that will intelligently support smartphone
users in their daily tasks. In addition to mobile applications, the concept of our rule
mining method can also be applicable in different application domains, e.g., in the
context of cybersecurity, this method can help to build machine learning rule-based
intelligent security systems considering the surrounding contextual information, or
the security features.
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Chapter 7
Recency-Based Updating and Dynamic
Management of Contextual Rules

7.1 Introduction

Mobile phone log data is not static as it is progressively added to day-by-
day according to individual’s diverse behaviors with mobile phones. Since an
individual’s behavior changes over time, the most recent pattern is likely to be more
significant than older ones for predicting individual mobile phone user behavior [1].

Currently, researchers use static periods of recent log data to produce rules that
express users’ present behavior. For example, Lee et al. [2] have studied the mobile
phone users’ calling patterns and used the last 3 months’ call logs. Phithakkitnukoon
et al. [3] have presented a model for predicting incoming and outgoing calls and
assumed the latest 60 days call logs data to model future call activities. The problem
of utilizing a static period of log data to produce rules is that those rules may not
reflect the present behavior of a user, as an individual’s behavior changes over time.
Let’s consider the last 3 months’ call log data of a mobile phone user. Assume
that as per log data the user has a call ‘reject’ behavioral pattern [10:00 AM–
12:00 PM] as she used to have a regular meeting at that time. Recently, she has
no meeting at that time period on Monday and she typically ‘accepts’ incoming
phone calls. So for this example, the past ‘reject’ behavioral pattern, even with
high evidence (support value) according to log data, is not meaningful to predict
her future behavior. Therefore, we need to find out when the behavior changes of
individual users’ so that more currently relevant rules can be formulated.

To dynamically identify such period, if we assume only a short period (e.g., last
week’s data) as indicative of recent behavior, there may not be enough data instances
in that period to infer a valid rule for predicting future phone call behavior. Creating
rules based on observations with so little “support” is unlikely to be effective [4].
On the other hand, if we take into account a comparatively longer period (e.g., last
6 months data) as indicative of recent behavior, we could get greater support but
it might result in a greater behavioral variation thus decrease the confidence of
some expected rules. As a consequence, we may miss these rules because of low
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confidence. Therefore, an optimal period of log data that reflects the recent behavior
of an individual needs to be identified. Individuals’ behavioral rules then need to be
updated to remove outdated rules (out-of-date rules) that conflict with their recent
behavior and to include more recent behavioral rules that do not exist in the existing
rule-set, to get a complete set of significant rule-set for use in various real-world
applications.

In this chapter, we present a recency-based updating approach that not only
removes the outdated rules (rules that do not represent the present behavior of an
individual) from the existing rule-set but also outputs a complete set of updated
rules according to individuals’ recent behavioral patterns. In this approach, we
first dynamically identify an optimal period for which a recent behavioral pattern
has been dominant by analyzing the behavioral characteristics of individual mobile
phone users utilizing their mobile phone data. Once we have determined the recent
log data, we then identify the outdated rules from the existing rule-set (discovered
from entire log data), by checking the behavior for a particular context in both
recent log data and the entire log data of an individual. After that, this recency-
based approach removes the outdated rules from the existing rule-set and outputs
a complete set of updated rules by merging the existing rule-set and the newly
discovered rule-set from the recent log data.

7.2 Requirements Analysis

In this section, we discuss and summarize the key requirements of the recency-based
approach. These are:

Req1 Identifying Changes in Individual’s Behavioral Patterns and Determining
Recent Log: One of the most important requirements for extracting an individ-
ual’s recency-based behavioral rules is identifying changes in behavioral patterns
and determining related dynamic recent log data. By examining an individual’s
behavioral patterns in relevant contexts, an appropriate period of recent log data
that reflects their recent behavior can be determined. Individuals’ recency-based
rules can be discovered using this dynamic optimal period of data. Thus, the
method should be able to detect the changes in an individual’s behavioral patterns
utilizing their phone log data without any prior knowledge.

Req2 Detecting and Removing Outdated Rules: An outdated (out-of-date) behav-
ioral rule is a valid rule in terms of rule’s constraints (e.g., support and
confidence) but does not represent the recent behavior of an individual user. The
definition of an outdated rule of individual mobile phone users is formally stated
as—Let, a rule R1 : A1 ⇒ C1 that is discovered from the entire mobile phone
dataset DS, where A1 represents the contextual information and C1 is the mobile
phone usage behavior. The rule R1 is considered as an outdated rule Routdated ,
if and only if C1 is identified as conflict (different behavior) for that context A1
utilizing recent phone log data DSrecent , i.e., A1 ⇒ C2 and C1 �= C2, where
C1 and C2 represent the past and recent behavior respectively for A1. In general,
this type of rule is produced based on past behavioral patterns of individuals
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utilizing the entire phone log data. As the most recent pattern is more significant
than older ones, the outdated rules even with high support values increase the
error rate for predicting an individual’s future behavior. Therefore, the approach
should have the ability to detect and remove the outdated rules from the rule-set
extracted from entire phone log data.

Req3 Discovering New Recent Behavioral Rules: A new recent behavioral rule
is a rule that is not produced when utilizing the entire phone log data DS but is
produced when utilizing the recent period of log data DSrecent . The definition of
a new recent behavioral rule of individual mobile phone users is formally stated
as—Let, a rule R : A ⇒ C that is produced utilizing recent log data DSrecent ,
where A represents the contextual information and C is the mobile phone usage
behavior. The rule R is considered as a new recent behavioral rule Rnew, if and
only if, there is no such rule discovered from the entire log dataset DS. Although
DSrecent is a subset of DS, such kinds of rules are not discovered utilizing the
entire log data DS because of their low confidence value and not satisfying the
user preferred confidence threshold (say, 80%). The reason is that an individual’s
behavior changes over time for a particular context and several variations in
user’s behavior or conflicts for that context decrease the confidence of the
associated behavior. However, a strong behavioral pattern with high confidence
may be found in the recent phone log DSrecent , which satisfies the user preferred
confidence threshold. Such new rules make the behavior model more significant
to predict an individual’s future behavior. Therefore, the approach should have
the ability to produce such new recent behavioral rules of individuals.

Req4 Dynamic Management of Rules: As the recency-based approach is respon-
sible not only to identify the dynamic optimal period of recent log data but also
for identifying and removing the outdated rules, and discovering new recent
behavioral rules, dynamic management of rules is needed to get a complete
set of updated rules without making any assumptions about when individual’s
behavior changed to a new pattern. Let, RSinitial be a set of rules discovered from
entire mobile phone data DS, and RSrecent be another set of rules discovered
from recent log data DSrecent . A complete set of recency based updated rules
RSupdated will be the merging output of these two rule-sets, e.g., RSupdated =
merge(RSinitial, RSrecent ). This complete updated rule-set RSupdated not only
contains all the significant rules of an individual mobile phone user but also
expresses recent behavioral patterns that will be applicable for modeling mobile
phone usage behavior in real-world applications.

7.3 An Example of Recent Data

The concept of recent log data is formally stated as—Let, s1 be the number of
instances (records) in the entire mobile phone dataset DS, which is temporally
ordered. A recent mobile phone dataset DSrecent is a subset of DS, which contains
the most recent records of DS based on timestamps of size s2, where s2 ≤ s1.
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Table 7.1 Sample recent log dataset (from record rs to rn) containing phone call activities with
multi-dimensional contexts

Social activity Social User

Record No Temporal Location (Situation) relationship activity

r1 Mon[10:00–12:00] Office Meeting Friend Reject

r2 Mon[10:00–12:00] Office Meeting Boss Accept

r3 Mon[10:00–12:00] Office Meeting unknown Reject

r4 Mon[18:30–19:30] Home Dinner Friend Accept

r5 Tue[18:30–19:30] Home Dinner Friend Accept

r6 Tue[18:30–19:30] Home Dinner Friend Accept

r7 Fri[10:15–11:30] Office Lecture Friend Reject

r8 Fri[14:30–15:30] Office Lab Friend Accept

r9 Mon[10:00–12:00] Office Meeting Friend Reject

r10 Mon[18:30–19:30] Home Dinner unknown Missed

– – – – – –

– – – – – –

– – – – – –

Recent data

rs – – – – –

– – – – – –

– – – – – –

rn−3 Mon[10:00–12:00] Office No event Friend Accept

rn−2 Wed[10:00–12:00] Office Meeting Friend Reject

rn−1 Fri[10:15–11:30] Office Seminar Colleague Accept

rn Fri[14:30–15:30] Office Lab Friend Reject

Table 7.1 shows an example of recent log DSrecent starting from the record rs
to rn, which is a subset of the entire log data DS starting from the record r1 to rn
ordered temporally. It reports some pieces of information coming from a phone call
log that records user phone call activities with corresponding context values. For
each record, temporal, locational, and social information, and user corresponding
phone call activity are stored.

Each record in the dataset (see Table 7.1) is ordered temporally, i.e., ordered
according to the temporal information sequentially. For instance, a record r1
represents an activity on Monday between 10:00 AM and 12:00 PM of a particular
week. Record r5 represents another activity of the next day Tuesday between 18:30
and 19:30 of that week. Similarly, a record r9 represents another similar activity
(meeting) of Monday between 10:00 AM and 12:00 PM of the next week. According
to Table 7.1, the record rn is the most recent activity of an individual user and
the record rs represents the starting record of the recent log, i.e., the behavioral
patterns based on relevant contexts before rs are considered as past behavior and the
behavioral patterns after rs up to rn are considered as recent behavior of users. If
there is no change in behavioral patterns from the record r1 (beginning of entire log
data) to rn, then the behavioral patterns for the entire log are considered as recent
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patterns. We utilize such variable length of recent log data in our recency-based
approach to discover the recent behavioral patterns more properly. It varies from
user to user depending on how the user’s behavior changes over time of the week in
different contexts.

7.4 Identifying Optimal Period of Recent Log Data

Identifying an optimal period of recent behavioral data dynamically from the entire
phone log is the key to our recency-based approach for individual mobile phone
users. This section presents all the phases to identify such a period of log data.

7.4.1 Data Splitting

We split the entire log into week-by-week data in this initial phase since the time
of the week is the most important factor influencing user behavior [5]. We chose
weekly basis splitting since no one’s behavior is likely to be the same every day
of the week (Monday, Tuesday,..., Sunday). As a result, we expect weekly patterns
of behavior to repeat (e.g., a user has the same days off work each week). Week
W1 represents the initial week data in the mobile phone log of an individual mobile
phone user, while week Wn represents the most recent week data in the mobile
phone log of an individual mobile phone user as shown in Fig. 7.1.

7.4.2 Association Generation

Once the data splitting has been completed, we generate context-association for
each set of week-wise data DSweek starting from the most recent week Wn. Context
association is simply the combination of contexts, where—

(i) the association may contain single (user social activity, e.g., meeting) or multi-
dimensional contexts (user social activity, e.g., meeting, user location, e.g.,
office).

Fig. 7.1 An example of week-wise data splitting
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(ii) contexts are added incrementally according to the precedence of contexts to
create an association based on multi-dimensional contexts.

(iii) each context may occur at most once in an association.
(iv) the number of contexts in an association is less or equal to the total number of

contexts in a given dataset DSweek .

We calculate information gain [6], which is a statistical property that generates
entropy and measures how well a particular context-value separates the training
datasets into specific behavior classes available in the dataset, to discover the
precedence of contexts in a dataset. The highest precedence context is defined
as the one with the largest information gain value. The process for generating
context associations is set out in Algorithm 4. Input data includes week wise
data: DSweek = X1, X2, ..., Xn, which contains a set of instances with categorical
contexts and output data is the association list assoc_list . The algorithm returns
the generated association list assoc_list . A combination {office, meeting} is an
example of context association containing 2-contexts.

Algorithm 4: Context association generation
Data: Week-wise dataset: DSweek = X1, X2, ..., Xn // each instance Xi contains a number

of categorical contexts
Result: association list assoc_list

1 initial_assoc ← φ; // initialization
2 Procedure CAG (DSweek, context_list);
3 if context_list is empty then
4 return assoc_list ;
5 end
6 //calculate entropy and information gain for each context and identify the precedence of

contexts
7 Abest ← the context that best classifies examples;
8 foreach context value con ∈ Abest do
9 assoc ← create_association(con, initial_assoc);

10 added assoc to the assoc_list;
11 // partition into subsets and grow the corresponding subtrees for each subset
12 DSsub ← subset of DSweek that have value con;
13 if DSsub is empty then
14 initial_assoc ← φ;
15 else
16 //remove Abest context from the context list
17 context_list ← context_list − Abest ;
18 // recursively generated association with remaining attributes
19 CAG(DSsub, context_list)

20 end
21 end
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7.4.3 Score Calculation

We calculate the conflict score based on the conflict behavior for each association
between two adjacent weeks after producing the context associations. We start by
identifying the dominant behavior [4] because we don’t always expect a user to
behave exactly like another for a given association.

For example, if a user rejects 85% of incoming calls, accepts 10%, and misses
5% of incoming calls for a specific association of context (e.g., meeting, office),
reject will be the dominant behavior for that association. For example, if a user
accepts 65% of incoming calls and rejects 35% for a specific association of context
(e.g., seminar, office, coworker), then acceptance will be the dominant behavior for
that association. We start scanning from the most recent week Wn and continue to
all previous weeks Wn−1,Wn−2,Wn−3, ...,W1 one by one to identify the conflict
behavior for each context association in the adjacent weeks.

We calculate the conflict score using Eq. 7.1 after determining whether or not
there is a conflict for each context association established in the previous section. If
assoctotal represents the total number of associations generated in a week Wn and
conf licttotal represents the total number of conflicts discovered when comparing
the generated associations in a week Wn and the adjacent week [Wn−1], then the
percentage (percentage) of conflict score with respect to the most recent week Wn

is defined as follows:

score(%) = conf licttotal

assoctotal

× 100 (7.1)

The process for calculating this conflict score is set out in Algorithm 5. Input
data includes adjacent weeks data: DSweek1 for a week Wn and DSweek2 for a week
Wn−1, each of which contains a set of training instances X1, X2, ..., Xn, and output
data is the conflict score in percentage. We first generate context associations for
DSweek1 and DSweek2 using Algorithm 4. After that for each association, we check
whether the dominant behavior is the same or not. If different dominant found then
the number of conflict increases. After that, we calculate the percentage (%) of
conflict behaviors. Finally, this algorithm returns the calculated score.

7.4.4 Data Aggregation

The final stage in determining an optimal period of recent log data is data aggrega-
tion. We do this by aggregating the week-wise data based on similar behavioral
patterns identified by conflict score. As we do not expect the same contextual
information in each week, we use the conflict score between two adjacent weeks
rather than likelihood to assess behavioral similarity. For example, the user may
attend a seminar during one week but not throughout all weeks. The conflict score,
on the other hand, identifies behavioral differences between 2 weeks. If the conflict
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Algorithm 5: Conflict score calculation
Data: adjacent weeks data: DSweek1 for week Wn and DSweek2 for week Wn−1.
Result: conflict score: score

1 assoc_list1 ← generate_association(DSweek1);
2 (using algorithm 4)
3 assoc_list2 ← generate_association(DSweek2);
4 (using algorithm 4)
5 //initializing score count
6 initialize count ← 1
7 foreach association assoc in assoc_list1 do
8 if same assoc found in assoc_list2 then
9 //identify the dominant behavior for assoc

10 BH1 ← identify_dominant (assoc,DSweek1);
11 BH2 ← identify_dominant (assoc,DSweek2);
12 //check the dominant behavior
13 if BH1 �= BH2 then
14 increment count

15 end
16 end
17 end
18 //calculate the percentage (%) of conflicts score
19 score ← calculateP ercentage(count, assoc_list1)

20 return score

score of two consecutive weeks is 0% (no conflict), the behavioral patterns in these
2 weeks are very similar [7]. We aggregate the conflict scores of two adjacent weeks
from the most recent week Wn to the prior weeks [Wn−1,Wn−2, ..., ] until we
achieve a substantial difference in the conflict scores of two adjacent weeks. Then,
for recent similar behavioral patterns, we established a boundary line. A significant
variation is encountered when it exceeds the average result of the variations by
considering the overall behavior in the entire datasets. If Stotal is the total conflict
score and Nweeks is the overall number of weeks in a dataset, the average score is as
follows:

average score = Stotal

Nweeks

(7.2)

This aids in determining an optimal period of recent log data by identifying
the dynamic threshold rather than assuming a static threshold. According to their
behavioral consistency, such a threshold may differ from user to user. Thus, recent
behavioral patterns are discovered for some users by averaging a large number of
weeks and for others by aggregating a smaller number of weeks, based on how the
user’s behavior changes over time of the week in various contexts.

Figure 7.2 shows an example of recent log data by aggregating the most recent
4 weeks data (from Week Wn−3 up to Week Wn), which reflect the recent behavioral
patterns of an individual user. According to Fig. 7.2, week Wn is the most recent
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Fig. 7.2 An example of data aggregation for identifying recent log data

week and week Wn−3 is the boundary of recent behavioral patterns, that is, the
behavioral patterns based on related contexts before week Wn−3 (from week W1 up
to week Wn−3), are considered as past behavior and the behavioral patterns after
week Wn−3 up to the most recent week Wn (from week Wn−3 up to week Wn), are
considered as recent behavior of that user. If there is no change in behavioral patterns
from week W1 (beginning of log data) up to week Wn, then the behavioral patterns
in the entire log data are considered as recent patterns. Our approach dynamically
creates an optimal period of recent log data from an individual’s cell phone data,
rather than arbitrarily determining the number of periods in advance. As a result,
the number of weeks and time bounds for recent log data will vary for each user,
depending on how the user’s behavior varies through time and context. We utilize
such variable length of recent log data for producing individual recency-based rules.

7.5 Machine Learning Based Behavioral Rule Generation
and Management

We create rules based on the recent log data DSrecent once it has been determined.
On recent log data, we use our previous rule-based machine learning method
[8], association generation tree, to generate rules. The reason for using tree-based
learning is that the nodes closer to the root are more general, which can be utilized
to mine broader behavioral patterns. To build behavioral rules, this method first
creates a tree based on context precedence, with each node representing a behavior
class and its accompanying confidence value. Rules are extracted by traversing the
tree from the root node to each decision node, indicated by the node’s value, once
the tree has been designed. To simulate individual mobile phone user behavior, this
methodology generates a set of human-understandable behavioral rules based on
multi-dimensional contexts. When more context dimensions are taken into account,
the created rules not only capture an individual’s generic behavior at a certain
level of confidence with a small number of contexts but also express specific
exceptions to the general rules. When a user is at a meeting, for example, she
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normally rejects the majority of incoming calls (83%); but, she always accepts
(100%) if the incoming call is from her boss.Thus the produced general and specific
exception rule are represented as Rgeneral : meeting ⇒ reject (conf = 83%) and
Rexception : meeting, boss ⇒ accept (conf = 100%) respectively. Such produced
rules are non-redundant and reliable according to individual’s preferred confidence.

In our approach, once we have produced rules utilizing a dynamic length of
recent log data DSrecent , we merge this rule-set with initial rule-set RSinitial that
is produced utilizing the entire phone log data DS. To extract the initial rule-set
RSinitial , we also use the same rule discovery approach [8] discussed above, in
order to output a complete set of updated rules RSupdated for each individual user.
While merging, we identify and remove the outdated rules from the initial rule-set
RSinitial , as these rules do not represent the recent behavior of an individual. We
also remove rules from RSrecent that exist in the initial rule set RSinitial . Thus, we
output a complete set of recency-based updated rules by taking into account the
behavioral patterns in both the rule-sets RSinitial and RSrecent using a rule merging
operation, e.g., RSupdated = merge(RSinitial , RSrecent ).

7.6 Effectiveness Comparison and Analysis

We compare the effectiveness of our recency-based modeling for providing context-
aware mobile services to the base model in terms of prediction coverage and error
rate [1]. Figures 7.3 and 7.4 show the above-mentioned error rate (%) and coverage

Fig. 7.3 Effectiveness comparison of our approach in terms of error rate (%)
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Fig. 7.4 Effectiveness comparison of our approach in terms of prediction coverage (%)

Fig. 7.5 Effectiveness comparison of our approach in terms of average prediction coverage (%)
and error rate (%) of all datasets

(%) for different users utilizing their own datasets. For a particular confidence
preference of 80%, the results are provided for both procedures.

Our recency-based approach consistently outperforms the base model for pre-
dicting individual mobile phone usage behavior, as shown in Figs. 7.3 and 7.4.
The fundamental reason for this is that rules generated by the base model do not
represent the rule’s freshness according to the recent behavior of individuals. Our
recency-based solution, on the other hand, tackles this problem by generating rules
based on an individual’s recent behavioral patterns, making the technique more
useful by maximizing prediction coverage as well as minimizing error rate.

In addition to individual comparisons, we show a relative comparison of average
prediction coverage and error rate in predictions for a collection of datasets
when compared to the base model. Figure 7.5 shows the average results (average
prediction coverage and average error rate considering all datasets). For a collection
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of datasets, the average findings suggest that our recency-based strategy outperforms
the base model. The reason is that when we create behavioral rules for specific
users, we take into account their recent behavioral patterns, which improves the
effectiveness of our method by better capturing their behavioral patterns.

7.7 Conclusion

In this chapter, we have discussed how to update the behavioral rules of individual
mobile phone users based on current behavioral patterns as well as how to manage
them dynamically. We took into account four aspects for this, including detecting
changes in individual behavior and determining an optimal period of recent log data,
identifying and removing outdated rules that do not represent an individual’s recent
behavior, discovering new recent behavioral rules that do not exist in the existing
rule-set, and dynamic management of these rules to get the best results. A method
for identifying an optimal period of recent log data from the entire log data, which
is the key of the recency-based behavior modeling has also been presented. The
primary theme of this methodology is that we dynamically identify such periods by
comparing the behavioral similarities of individual mobile phone users across time,
which can vary from user to user in the real world. The resultant updated rule set
produced by this model not only incorporates all the significant rules of the users
but also reflects their recent behavioral patterns in rules that can play a significant
role in a variety of real-world applications. In addition to mobile applications, the
concept of the recency-based model can also be applicable in different application
domains, e.g., in the context of cybersecurity this can help to effectively analyze
the effect of cyber-attacks based on their recent behavioral patterns in cyberspace to
build better secured systems.
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Part III
Rule-Based Systems, Deep Learning and

Challenges

This part of the book discusses machine learning rule-based expert system modeling
(Chap. 8), deep learning modeling for context-aware systems (Chap. 9), and finally
a conclusion recapping the contributions of this book, real-world applications, and
major challenges and research issues for future investigation (Chap. 10).



Chapter 8
Context-Aware Rule-Based Expert
System Modeling

8.1 Structure of a Context-Aware Mobile Expert System

A mobile expert system modeling is based on a set of context-aware rules to
build various smart mobile applications. The simplest type of AI method that uses
prescribed knowledge-based rules to solve an issue is usually a rule-based expert
system [1]. Usually, the purpose of the expert system is to take information from
a human expert and turn this into a number of hardcoded rules for the input
data to be implemented. In this chapter, we focus on the generated rules based
on machine learning techniques, rather than the hardcoded rules, as we take into
account the dynamism in the context-aware rules and corresponding applications.
In the following, we first discuss about the structure of a rule-based mobile expert
system, and then we discuss how we can use context-aware rules extracted using
machine learning techniques for the rule-based expert system.

An example of a knowledge-based system is a mobile expert system, which
is divided broadly into two subsystems, such as the inference engine and the
knowledge base, shown in Fig. 8.1. In addition, a user interface is another part of
a complete expert system. In the following, we discuss the roles of each module,
shown in Fig. 8.1.

• Knowledge-base: As it consists of knowledge of the target mobile domain as
well as operational knowledge of the decision rules of apps, the knowledge base
module is the basis of an expert system. The knowledge base is a collection of
rules or other information structures derived typically from the human expert.
As we are interested on data-driven automated rules, rather than the typical
hardcoded rules, we take into account the rule-based machine learning methods
to generate rules. Rules are typically structured as IF-THEN statements of the
form:
IF < antecedent > THEN < consequent >
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Fig. 8.1 A structure of a mobile expert system modeling

where antecedent represents the conditional statements of a particular situation
and the consequent represents the corresponding action. The rule is executed to
“fire” when the antecedent is satisfied with the given conditions formulated by
contextual information.

• Inference Engine: The inference engine, which selects rules from the generated
rule-list to execute, is the key processing feature of an expert system. It thus
seeks knowledge-based information and relationships and offers answers, or
recommendations similar to a human expert. In other words, the knowledge base
is used to draw conclusions about the situations. Therefore the main task of the
inference engine is to find its way to draw a conclusion through a set of rules. To
do this the method of forward chaining can be used, starting from the known facts
and moving forward by applying rules of inference to obtain further data, and it
continues until it reaches the target. Another method of backward chaining that
begins from the goal can also be used according to the needs, going backwards
by using inference rules to decide the facts that match the goal.

• User interface: The way by which an expert system communicates with a user
is referred to as a user interface. Dialog boxes, command prompts, forms, and
other input techniques can all be used to do this. Some expert systems interact
with other computer applications rather than with humans directly.

8.2 Context-Aware Rule Generation Methods

A context-aware rule has two parts, which follow the “IF-THEN” logical structure to
formulate. The antecedent part (premise or condition) represents users’ surrounding
contextual information such as temporal context, spatial context, social contexts,
or others relevant contextual information and the consequent part (conclusion or
action) represents their corresponding behavioral activities, or usage [2]. While a
rules-based system could be considered as having “fixed” intelligence, in contrast,
a machine learning system is adaptive and attempts to simulate human intelligence.
There is still a layer of underlying rules, but instead of a human writing a fixed
set, the machine can learn new rules independently and discard ones that aren’t
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working anymore. Machine learning techniques can be used to generate such rules
from smartphone data. For instance, in our rule mining approach “ABC-RuleMiner”,
Sarker et al. [3], we have discovered a set of useful contextual rules for mobile phone
users considering their behavioral patterns in the data.

Rule-based machine learning approaches include mainly learning classifier
systems, e.g., Decision tree [4], and association rule learning, e.g., Apriori algorithm
[5] that relies on a set of rules. In Sect. 8.3, we discuss briefly the context-aware
rules generated from mobile data. Such an IF-THEN rule-based expert system
model can have the decision-making ability of a human expert in an intelligent
system designed to solve complex problems and knowledge reasoning. Moreover,
the machine learning techniques can be used to update the generated rules according
to the recent patterns [6]. In addition to the generated rules, domain experts knowing
business rules can also update and manage the rules according to the needs. Thus,
mobile expert systems can be used to make intelligent decisions in corresponding
mobile applications. In the following, we divide the machine learning rule based
methods into two categories such as association rules and classification rules [7, 8]
in the field of machine learning and data science, for rule-based modeling.

• Classification learning rules: In machine learning, the classification is one of the
popular techniques that can be used in various application areas. Several popular
classification techniques such as decision trees [4], IntrudTree [9], BehavDT
[10], Ripple Down Rule learner (RIDOR) [11], Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) [12], etc. exist with the ability of rule
generation.

• Association learning rules: In general association rules are created by searching
for frequent IF-THEN pattern data on the basis of support and confidence value
[3]. For generating rules using a given data set, common association rule learning
techniques such as AIS [13], Apriori [5], FP-Tree [14], RARM [15], Eclat
[16], ABC-RuleMiner [3], etc. can be used. Association rule mining (ARM)
techniques are well established in terms of the reliability and accuracy of the
rule as has its own parameters [17]. Thus association rules can play a significant
role to build a mobile expert system [20].

To extract the context-aware IF-THEN rules using machine learning techniques,
we have conducted experiments on two different contextual datasets. One is
“phone call dataset” of mobile phone users with different types of calling, e.g.
incoming call responses such as answering or rejecting calls, missed and outgoing
user calls [18]. The contextual information includes temporal, spatial, and social
relationships. To generate rules from the phone call datasets, we have used our
earlier behavior-oriented time segmentation (BOTS) technique [19] to pre-process
the raw time-series data to create dynamic time segments with similar behavioral
patterns. We also generate data-centric social contexts [21] from the raw data for our
experimental purpose. Another one is “smartphone apps usage dataset” [22] con-
taining various types of apps usage activities, e.g., using Gmail, Facebook, Youtube,
Whatsapp, Browser, Google Maps, etc. in several contexts such as temporal context,
work status, spatial context, their emotional state, Internet connectivity, or device-
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related status. In the following, we discuss how the classification and association
rules differ and can be used to build rule-based expert system modeling.

8.3 Context-Aware IF-THEN Rules and Discussion

In this section, we discuss the context-aware IF-THEN rules that are extracted
from mobile phone data using the machine learning techniques. We also perform
a comparative analysis and discussion between the generated rules considering
both the classification and association rules, mentioned in rule-based expert system
modeling within the area.

8.3.1 IF-THEN Classification Rules

In this experiment, we first discover the context-aware IF-THEN rules from the
phone call dataset mentioned above using the machine learning classification
technique. In Table 8.1, we have shown a set of sample generated classification rules
considering the temporal context, spatial context, and social relationship, according
to the availability in the data. Similarly, in Table 8.2, we have demonstrated another
set of generated classification rules utilizing apps usage contextual data, where
more number of contexts are involved in the data, mentioned earlier in the dataset
descriptions.

If we observe Tables 8.1 and 8.2, we found that the antecedent part (IF) in the
rules represents users’ contextual information and the consequent part (THEN)
represents their corresponding behavioral activities. For instance, the rule R3 in
Table 8.1 states that the user rejects the incoming calls from Relationship1 on

Table 8.1 Sample generated classification rules utilizing phone call contextual data

Rules Context-aware classification rules
R1 IF time → Monday[00 : 41 01 : 20], relationship → Relationship6

⇒ T HEN activity → ACCEPT

R2 IF time → Monday[18 : 41 19 : 20], relationship → Relationship6

⇒ T HEN activity → MISSED

R3 IF time → T uesday[00 : 01 02 : 30], relationship → Relationship1

⇒ T HEN activity → REJECT

R4 IF time → T uesday[00 : 01 02 : 30], relationship → Relationship83

⇒ T HEN activity → MISSED

R5 IF time → Saturday[21 : 16 22 : 30], relationship → Relationship39

⇒ T HEN activity → OUT GOING



8.3 Context-Aware IF-THEN Rules and Discussion 133

Table 8.2 Sample generated classification rules utilizing app usage contextual data

Rules Context-aware classification rules
R1 IF time → Fri[6.00 − 7.00], Location → Canteen,Wif i → ON

⇒ T HEN activity → WebBrowsing

R2 IF time → Fri[12.00 − 13.00], Location → Home,Wif i → ON

⇒ T HEN activity → UseFacebook

R3 IF time → Fri[16.00 − 17.00], Location → Workplace,

P rof ile → Meeting

⇒ T HEN activity → UseGmail

R4 IF time → Sat[14.00 − 15.00], Location → Home,Mood → Normal

⇒ T HEN activity → ReadNews

R5 IF time → Sun[16.00 − 17.00], Location → Home,Mood → Normal

⇒ T HEN activity → WatchMovie

T uesday. Similarly, the rule R3 in Table 8.2 states that the user uses Gmail at
workplace on Friday at the meeting period.

According to the rules generated in Tables 8.1 and 8.2, we can say that it
takes into account the priority of the contexts to generate the rules, e.g., temporal
context is common for all the generated rules, due to its highest priority to generate
rules. However, the number of contexts in the rules are not static, may vary from
rule to rule, depending on the context priority or the impact of the associated
contexts to make a decision. Thus its difficult for human experts like the traditional
expert system modeling, to assume such priority in contexts to make the expected
decisions. The machine learning classification rules that are taken into account in
our discussion are capable to handle such context priority in the rules according to
their influence in making decisions. Therefore, the context-aware rules considering
the impact of the associated contexts of the mobile phone users shown in Tables 8.1
and 8.2 generated from mobile phone data can be used to make the mobile expert
system more effective rather than the hardcoded rules.

8.3.2 IF-THEN Association Rules

In this experiment, we first discover the context-aware IF-THEN rules from
the phone call dataset mentioned above using the machine learning association
technique. In Table 8.3, we have shown a set of sample generated association
rules considering the temporal context, spatial context, and social relationship,
according to the availability in the data, mentioned above. Similarly, in Table 8.4,
we have demonstrated another set of generated association rules utilizing apps usage
contextual data, where more number of contexts are involved in the data. As we
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Table 8.3 Sample generated association rules utilizing phone call activity contextual data

Rules Context-aware association rules Confidence
R1 IF time → T uesday[17 : 31 18 : 45], relationship → Relationship87,

⇒ T HEN activity → ACCEPT

Conf = 100%

R2 IF time → T uesday[17 : 31 18 : 45], location → Helsinkicenter,

⇒ T HEN activity → MISSED

Conf = 98%

R3 IF relationship → Relationship91, location → Southf erry

⇒ T HEN activity → OUT GOING

Conf = 100%

R4 IF time → Sunday[01 : 16 02 : 30], location → Parkslope,

relationship → Relationship1

⇒ T HEN activity → REJECT

Conf = 92%

R5 IF time → T uesday[02 : 31 03 : 45]
⇒ T HEN activity → ACCEPT

Conf = 84%

Table 8.4 Sample generated association rules utilizing app usage contextual data

Rules Context-aware association rules Confidence
R1 IF time → Sat[14.00 − 15.00], ChargingState → NotConnected,

Mood → Happy

⇒ T HEN activity → Browsing

Conf = 100%

R2 IF location → Home, Wif i → ON,Mood → Sad

ChargingState → Charging

⇒ T HEN activity → WatchYoutube

Conf = 100%

R3 IF location → OntheWay,Wif i → OF,Mood → Sad

ChargingState → Complete

⇒ T HEN activity → UseFacebook

Conf = 91%

R4 IF holiday → Yes, Location → Home, Wif i → ON,Mood → Sad

⇒ T HEN activity → WatchMovie

Conf = 88%

R5 IF time → Sat[6.00 − 7.00], Holiday → Yes, Location → Home,

Wif i → OFF,Mood → Happy

⇒ T HEN activity → ReadNews

Conf = 80%

produce mobile user behavioral association rules for a given confidence preference,
the results are presented in Tables 8.3 and 8.4, when the preferred confidence level
is, say, 80%.

If we observe Tables 8.3 and 8.4, we found that the antecedent part (IF)
in the rules represents users’ contextual information and the consequent part
(THEN) represents their corresponding behavioral activities like the classification
rules discussed above. However, the association rules have their corresponding
confidence values that measure the strength of the rules, shown in Tables 8.3 and 8.4.
For instance, the rule R4 in Table 8.3 states that the user rejects most of the incoming
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calls (92%) from Relationship1 on Sunday, when she is at Parkslope. Similarly,
the rule R4 in Table 8.4 states that the user watches Movie at home (88%), when
she is in sadmood and WiF iconnectivity is on.

According to the rules generated in Tables 8.3 and 8.4, we can say that the
number of contexts in the rules are not static, may vary from rule to rule, depending
on the associated contextual patterns. For some rules, only a few number of contexts
or even one context, e.g., rule R5 with only temporal context in Table 8.3, can
make the decisions with high confidence value, and in some cases, the rules
consist of higher dimensions of contexts, e.g., rule R5 consists of temporal, work
day status, spatial, Internet connectivity, and user mood in Table 8.4. Thus its
difficult for human experts like the traditional expert system modeling, to assume
such dynamism in context-aware rules to make the expected decisions according
to personalized preferences. Moreover, the preferences in association rules may
vary from user to user in the real world life and diverse situations. The machine
learning association rules that are taken into account in our discussion are capable
to handle such dynamism according to the data patterns, which can effectively make
the decisions based on the associated contexts. As the association rules represent
the confidence values, these rules are more reliable than the above generated
classification rules, to make decisions according to users’ preferences. Therefore,
the behavior-oriented rules of mobile phone users with the confidence values shown
in Tables 8.3 and 8.4 generated from mobile phone data can be used to make the
mobile expert system more effective.

8.4 Conclusion

In this chapter, we have discussed the context-aware rule-based expert system
modeling for mobile data science applications to make intelligent decisions. The
rule-based expert system is considered one of the key artificial intelligence tech-
niques that can be used to make intelligent and more powerful applications in the
area. Our analysis of context-aware rule-based expert system modeling can play
a significant role in designing and building data-driven intelligent mobile systems.
The rule based expert systems can provide various personalized smartphone services
in the real-world life. Such systems, either standalone or distributed, may assist the
users intelligently according to the generated rules in different contextual day-to-day
situations in their daily life. Overall, our study on rule-based expert system modeling
will aid application developers in creating context-aware intelligent applications that
will intelligently support smartphone users in their daily tasks. In addition to mobile
applications, the concept of our expert system modeling can also be applicable in
different application domains, e.g., in the context of cybersecurity, this can help
to build machine learning rule-based intelligent security systems by taking into
account the generated policy rules as knowledge-base.
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Chapter 9
Deep Learning for Contextual Mobile
Data Analytics

9.1 Introduction

In the field of data analytics, various machine learning techniques, such as Decision
Trees, Random Forests, Support Vector Machines, Logistic Regression, Adaptive
Boosting are common and can be used for building context-aware prediction
model [1]. Real-world mobile usage data, on the other hand, may include many
contextual dimensions and be much larger in size due to the users’ daily behavioral
data. As a result, conventional machine learning models may not be suitable for
developing a context-aware model. While principal components analysis (PCA)
[2], an unsupervised, non-parametric statistical technique in machine learning, is
an effective tool for reducing dimensions, it may often lose important information
when transforming contextual attributes to components.

Deep learning [3], on the other hand, is a subset of machine learning algorithms
or artificial intelligence that evolved from the artificial neural network (ANN),
as illustrated in Fig. 9.1, which employs multiple layers to extract higher-level
contextual features from raw data. Deep learning differs from conventional machine
learning in terms of efficiency as the volume of data increases. Furthermore, deep
learning and conventional machine-learning algorithms vary significantly in their
ability to extract high-level features directly from data. While deep learning takes
a long time to train a model due to the large number of parameters, it takes a
short amount of time to run during testing as compared to other machine learning
algorithms.

Deep learning is progressing due to the availability of powerful computational
resources and large amounts of training data. Computation on mobile devices is
becoming possible as mobile devices become more computationally efficient [4, 5].
If deep learning in the cloud is suitable for the application, using one of many current
cloud artificial intelligence APIs could be the simplest way to deploy deep learning
capabilities on a mobile device. In this case, the device acts as both a sensor and
a user interface. These APIs include AI capabilities in machine learning, speech
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Fig. 9.1 Deep learning within the area of machine learning and artificial intelligence

recognition, natural language processing, AI assistant, computer vision, and other
areas. Microsoft Cognitive Services, Google Cloud Vision, IBM Watson Services,
Amazon are some examples of well-known services [4]. This chapter discusses the
importance of deep learning in context-aware behavior modeling for mobile phone
users and explore a deep neural network learning-based context-aware model.

Popular deep learning techniques, such as Multi-layer Perceptron (MLP), Con-
volutional Neural Network (CNN or ConvNet), Recurrent Neural Network (RNN)
or Long Short-Term Memory (LSTM), Self-organizing Map (SOM), Auto-Encoder
(AE), Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN),
Generative Adversarial Network (GAN), Deep Transfer Learning (DTL or Deep
TL), Deep Reinforcement Learning (DRL or Deep RL), or their ensembles and
hybrid approaches can be used to solve problems in various application domains
[3, 6]. A typical artificial neural network model, i.e., MLP is a completely connected
network that includes an input layer that receives input data, an output layer that
makes a decision or prediction about the input signal, and one or more hidden layers
between these layers, which are called the network’s true computational engine, as
shown in Fig. 9.2. In this chapter, we primarily focus on context-aware smartphone
use prediction using such deep learning modeling with multiple hidden layers.

9.2 Contextual Data

Data availability is typically the basis for a data-driven model based on ANN and DL
methods [1]. Typically, datasets represent a collection of data records with a variety
of attributes or characteristics, as well as other relevant information, from which
the data-driven model is derived. Several contextual data are considered in this
study, including not only the user-centric context, such as the user’s spatio-temporal
context, mood or emotional state, and so on, but also the device-centric context, such
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Fig. 9.2 An example of neural network with multiple hidden layers

as battery level, phone profile, Internet access, and so on that are discussed below.
Different types of mobile apps are considered, including social networking, instant
messaging, voice communications, entertainment, and other apps that are relevant
to users’ everyday lives.

• User-Centric Contexts: According to the general concept of context, it could
be anything to define the state of an object or entity [5]. When establishing
the context in this work, a smartphone user can be interpreted as an entity. As
a result, different data measurements can have an effect on how mobile users
use their apps. For example, temporal context reflects time-related information
on how users interact with apps. It is one of the most important situations that
has a significant impact on mobile users’ phone behaviors [7]. In addition to
such temporal data, users’ employment status could be another factor that has a
major impact on app use for many people. For example, an individual user’s app
usage behavior on Saturday, say a holiday, can vary from her usage on Monday,
the first working day of the week [8]. While it is comparable to the temporal
sense in terms of weekdays and weekends, it also represents individuals’ working
status, which is an important context for modeling mobile app usage based on
their preferences. A spatial context that reflects user spatial knowledge, such
as one of the current office locations, is another relevant context to consider
[5]. For the purpose of developing human-centered context-aware application,
the spatio-temporal context is popular. User mood or emotional state can be
another important context that influences people, especially in human-centered
applications. When a person is in a good mood, for example, she prefers to listen
to only her favorite songs, while she prefers to talk with her close friends on
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social media, when she is sad. We believe that all of these factors will have an
impact on predicting how context-aware smartphones will be used, and could
vary from user to user depending on their preferences.

• Device-Centric Contexts: Users’ device-centric contexts are also relevant for
modeling the behavior of user app usage, in addition to the above user-centered
contexts related to day-to-day circumstances or personal preferences of users.
Contextual information can include one’s contact profile, phone’s battery level or
charging status, Internet access, and so on, all of which may have influence on
how different mobile app categories are used [5]. For example, if one’s device
has a low-power signal, she will not usually connect her device to the Internet
in order to use an entertainment app like watching Youtube videos. As a result,
all of these device-centric contextual data could also play an important role on
predicting context-aware smartphone usage.

To predict the usage of context-aware mobile apps, we use both user-centric
and device-centric contextual information in our deep learning modeling. We
summarized the detailed picture of the contexts that are used in our deep learning
model in Table 9.1. Figures 9.3 and 9.4, for example, show two separate function
data distributions, t ime and workday respectively. The value is very small for some
data points, while it is much higher for others, as seen in Figs. 9.3 and 9.4. We will
need exploratory data analysis to feed our target artificial neural network learning
classification technique, as discussed above, in order to build our deep learning
model. Missing data handling, exploring contextual feature encoding methods like
label encoding or one hot encoding, feature scaling, normalization of the contextual
data etc. are common while building a data-driven model [5].

Table 9.1 An overview of contexts used in our deep learning model

Contexts Type Example values

Temporal context Continuous Time-of-the-day [24-hours-a-day]
Days-of-the-week [7-days-a-week]

Work status context Categorical (binary) Workday and Holiday

Spatial context Categorical Phone user location [at home, at office,
at the canteen, in the playground, on
the way, etc.]

User mood context Categorical Emotional state of phone user [normal,
happy, or sad]

Phone profile context Categorical Phone notification [general, silent, or
vibration]

Battery charging status
context

Categorical Battery level [low, medium, or full]

Internet connectivity context Categorical (binary) WiFi connectivity [on, off]

Smartphone apps Categorical Social networking, Gmail,
Communication, Video, Entertainment,
Read News, Games etc.
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Fig. 9.3 Data distribution of the contextual feature ‘t ime’

Fig. 9.4 Data distribution of the contextual feature ‘work day’

9.3 Deep Neural Network Modeling

In this section, we present a context-aware prediction model for smartphone users
based on deep neural network learning.

9.3.1 Model Overview

As shown in Fig. 9.5, the model is built with multiple layers. The neurons in the
network are also known as nodes, and they are linked together in different layers
by connections. We use the contextual features selected through the correlation
analysis as the size of the input layer, and an output layer with the number of
neurons equal to the number of app classes, i.e., a multi-class classification task, to
construct our context-aware model. For computation, we use multiple hidden layers
with up to 400 neurons. We also use dropout in each layer to simplify the model and
use the Adam optimizer to compile the neural network model. When training the
contextual network, we use 500 epochs with a batch size of 128. We often use a tiny
0.001 learning rate since it allows the contextual network model to reach the global
minimum. To adjust model weights, the loss function defined in Eq. 9.3 is used. We



142 9 Deep Learning for Contextual Mobile Data Analytics

Fig. 9.5 Our deep neural
network learning based
context-aware smartphone
apps usage prediction model

empirically set these hyperparameters to build our deep learning model using deep
learning from artificial neural networks. In the following, we will go through each
layer of our model separately.

9.3.2 Input Layer

The contextual data is transferred directly from the model input layer to the first
hidden layer, where the data is multiplied by the weights of the first hidden layer.
The input contextual data is chosen using the correlation analysis, and the size of
the input layer is determined by the number of contextual features chosen. We do
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this filtering to eliminate the less important, or redundant context from the given
dataset, by analyzing the data patterns and dependency, in order to create an efficient
context-aware model. This filtering reduces the size of the input layer’s neurons
and, as a result simplifies the model. While building the deep learning model,
we consider contextual features in the input layer, such as temporal context, work
status (weekday or holiday), spatial context, emotional state, Internet access, phone
profile, and system battery level, based on their relevance to the target class.

9.3.3 Hidden Layer(s)

The nodes of this layer are not visible to the outside world, but they are part of
any neural network’s abstraction. The hidden layer takes measurements of all the
features entered through the input layer and sends the results to the output layer.
In a nutshell, the hidden layers perform nonlinear transformations on the inputs to
the network. As the activation function, we use the Rectified Linear Unit (ReLU)
defined in Eq. 9.1. ReLU solves the vanishing gradient problem while also allowing
the model to learn faster [9, 10]. We often use dropouts in each layer to simplify
the model and use the “Adam” optimizer to compile the neural network model.
Adam optimization is a stochastic gradient descent method for adaptive first and
second-order moment estimation. To adjust the weights of the model, we use the
CrossEntropy loss function, which is defined in Eq. 9.3. During learning, the
most common Backpropagation process [11], is used to update the model’s relation
weights between neurons.

ReLU : f (x) = max(0, x) (9.1)

Sof tmax : f (yk) = exp(φk)∑c
j exp(φj )

(9.2)

Loss = −
n∑

i=1

m∑

j=1

yi,j log(pi,j ) (9.3)

Where, yi,j denotes the true value, i.e., 1 if the i sample belongs to the j and 0
class otherwise and pi,j denotes the likelihood of the i sample model belonging to
the j class.

9.3.4 Output Layer

This layer communicates the network’s information to the outside world. As a result,
this output layer is in charge of producing the final prediction’s outcome. The output
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layer takes the inputs from the layers that come before it, runs the calculations
through its neurons, and then computes the output. The number of neurons of this
layer corresponds to the size of various apps such as Facebook (FB), Gmail, Movie
(MOV), Skype (SK), Music (MS), LinkedIn (LI), Live Sport (LS), Whatsapp (WA),
Browsing (BR), Read News (RN), Instagram (IG), Youtube (YT), Games (GM), and
so on. As a result, our model is considered as a multi-class classification task, with
these different app categories serving as model classes. In our deep learning model,
we use the ‘Softmax’ activation function described in Eq. 9.2, which produces
values between 0 and 1 for each of the outputs that add up to 1. As a result, this
can be deduced as a multinomial probability distribution. To accomplish our task,
the softmax function is used as the activation function in the output layer of neural
network models.

9.4 Prediction Results of the Model

This experiment shows the prediction results of our deep neural network learning-
based model. The calculated outcome for predicting context-aware smartphone
usage is shown in Figs. 9.6 and 9.7. The results are shown in terms of model
accuracy and loss score for user U1 and U2 respectively.

Figures 9.6 and 9.7 show that the accuracy is initially low and the loss score is
high. However, as the number of epochs increases, the accuracy improves while the
loss score decreases. The reason for this is that our model starts with random weight
values to build the network.

It creates the correct model by factoring in weight updates at each epoch. At
the end, it will be able to build a context-aware app usage model with a higher
accuracy score and a lower loss score for the unknown test cases. As a result, we
can deduce that the mobile deep learning model can predict smartphone usage based
on contextual information with higher accuracy and lower model loss, as shown in
Figs. 9.6 and 9.7.

Fig. 9.6 Calculated outcome in terms of accuracy and loss score of the mobile deep learning
model for predicting context-aware smartphone usage utilizing the dataset of User U1. (a) Model
accuracy score. (b) Model loss score
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Fig. 9.7 Calculated outcome in terms of accuracy and loss score of the mobile deep learning
model for predicting context-aware smartphone usage utilizing the dataset of User U2. (a) Model
accuracy score. (b) Model loss score

9.5 Conclusion

We present a deep neural network learning model for predicting context-aware
smartphone usage in this paper. In our model, we took into account contextual
information in a variety of dimensions, including temporal context, such as workday
or holiday status, spatial context, user emotional states, WiFi status or Internet
connection, and device-related status, such as charging status, profiling, and so on.
In order to build the model, we took into account a variety of contextual features that
could have influence on how people use apps in their various real-world contexts on
a daily basis, as well as data sets on app usage from smartphone users. The results
of the experiments on the usage of datasets for mobile apps show that the model
is capable of building an effective context-aware prediction model. We believe
that this model would be useful for application developers to build suitable real-
life applications for end-users, particularly where conventional machine learning
models struggle with higher context dimensions and large amounts of contextual
data.
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Chapter 10
Context-Aware Machine Learning
System: Applications and Challenging
Issues

10.1 Rule-Based Intelligent Mobile Applications

A machine learning rule-based system expresses information as a collection of IF-
THEN rules extracted from the data using machine learning techniques [1]. This
rule-based system can specify what to do or infer in various scenarios and can act
as a software agent [2]. A real-life smartphone application is an actual platform
to employ the discovered contextual rules. The development of individual real-life
applications that integrate the behavioral rules to make rule-based predictions or to
provide the personalized services for individual mobile phone users in a context-
aware pervasive computing environment. For example, an “intelligent phone call
interruption management system” could be a real-world application for mobile users
based on the discovered behavioral rules that automatically manage interruptions
according to their preferences. Similarly, discovered rules from mobile apps logs
can be used to build a “mobile recommendation system” to assist them in their daily
life according to the needs of an individual in different contexts. In the following, we
have discussed several applications considering context-awareness that have been
studied widely in the past few years.

• Smart Context-Aware Mobile Communication: Although mobile phones are
considered to be “always on, always connected” devices, users are not always
aware of and responsive to incoming mobile communication [3]. As a result,
people are often disrupted by incoming phone calls in different day-to-day
circumstances in their everyday lives, causing disruption not just to the phone
users but also to others nearby. Such interruptions can cause embarrassment not
only in a professional environment, such as a meeting or a lecture but also in
other activities like observing patients by a doctor or driving a car. These types
of interruptions may often lead to decreased worker efficiency, increased errors,
and stress in the workplace [4]. Call activity records in application logs (e.g.,
phone call logs) are a rich resource in the real world for mining contextual
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behavioral rules of individual cell phone users, which can be used for building
smart call interruption management systems to intelligently handling incoming
calls according to their preferences [5]. Another real-world application is a smart
call reminder system that intelligently finds the desired contact from a huge
contact list and reminds a user to make a phone call to a specific person in
a specific context, based on the user’s behavioral rules discovered from their
previous calling history.

• Intelligent Mobile Notification Management: These days one can find a wide
range of smart smartphone apps from the app stores. These applications enable
users of mobile phones to subscribe to a large number of information channels
and actively receive a large number of notifications [6]. However, depending on
the content form and sender of the messages, cell phone users do not approve
these notifications. Users usually ignore notifications that are not useful or
important to their interests [6]. Most notifications of inviting games on social
networks, social or promotional emails, for example, are swiped away without
being clicked, indicating that the user has no interest in these notifications.
Furthermore, predictive recommendations from various cell phone apps, such
as social networking systems, e.g., Facebook, WhatsApp, Viber, Skype, and
Youtube, may or may not be of interest to a specific user [6–8]. The explanation
for this is that users may become annoyed by such uninteresting phone notifi-
cations. As a result, some users choose to uninstall the relevant apps from their
smartphones to stop receiving such updates. Individual behavioral rules based on
contextual information can be used to intelligently handle such notifications. For
instance, one person often ignores promotional email notifications; one accepts
Facebook birthday reminder notifications mostly at night when she is at home;
and one does not accept Viber or Whatsapp notifications from unknown people
at work. Such behavioral activities may vary from user to user depending on their
preferences in various contexts. The contextual behavioral rules can be used to
provide such personalized services intelligently to mobile phone users.

• Context-Aware Mobile Recommendation: Traditional recommender systems [9]
primarily concentrate on recommending the most appropriate products or ser-
vices to users. When making a recommendation to a specific person, these
traditional recommendation systems typically do not take into account the
contextual information [10]. However, in certain real-life scenarios, it may
not be sufficient to make recommendations without taking into account such
contextual information. For example, depending on the temporal context, the
recommendation outcome of a travel recommender system in the summer can
be very different from the outcome in the winter for a specific user. Similarly, a
particular context, such as location information, can have an impact on making
different recommendations for users [11, 12]. One of the most important aspects
of mobile recommendation is mobile app recommendation [13]. Mobile devices
such as smartphones and tablets have become one of the most significant media
for social entertainment and knowledge acquisition due to their rapid growth
and adoption [14]. In reality, various contexts and app usages (e.g., Multimedia,
Facebook, Gmail, Youtube, Skype, Game) data is captured in context-rich system
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logs, which can be used to mine the contextual behavioral rules of individual
mobile phone users, i.e., which app is preferred by a specific user in a given
context. Mining such preferences, in particular, is a crucial step in gaining
a better understanding of mobile phone users’ app use habits. The context-
logs-based behavioral rules can be used to provide customized context-aware
recommendations for various mobile phone applications to mobile phone users.

• Smart Context-Aware Mobile Tourist Guide: Tourists today expect customized
access to tourism information at any time, from any place, and through any
medium. Traditional information centers provide tourists with valuable and
applicable information, but they are not available at any time or in any place.
As circumstances or context parameters change, tourists may wish to change
their schedules or re-plan their itineraries. As a result, a ubiquitous and pervasive
tourist assistant can play a crucial role in the tourism industry’s growth. A
context-aware web service-based tourism information system can be a smart
tourist guide or information system. If context elements are applied to these
systems, they will be able to present more specific information based on the
user’s needs and the context, for example, his or her current location or time.
Consider the following scenario: the system demands restaurant details around
the tourist’s current venue, say, Melbourne, Australia, at noon. The information
collected takes into account the tourist’s food preferences as well as his or her
economic status. Finally, the tourist’s mobile device displays the appropriate
restaurant list. In this task, the elements of context are tourist’s location (e.g.,
Melbourne, Australia), the time of day (e.g., noon), and personal interests (may
differ from user-to-user). Such a context-aware mobile application allows travel
enjoyable and provides useful information without requiring the users to expend
too much time or money. Therefore, a rule-based context-aware system can help
to generate a personalized guide for the tourists based on history.

• Rule-based Predictive and Personalized Services: Predictive modeling, in gen-
eral, employs historical data or statistics to forecast a relevant future outcome
that can be applied to any uncertain occurrence, regardless of when it happened.
As a result, individual mobile phone users’ contextual behavioral rules can be
used to predict their actions in response to specific contextual information. Some
examples of such predictions are—to predict the outgoing calls analyzing mobile
phone historical call log data [15–17] for smart searching in contact list, to predict
incoming calls for planning and scheduling (e.g., it can be used to avoid unwanted
calls and schedule time for wanted calls) [18], to predict the next mobile
application that an individual is going to use for a particular contexts by analyzing
individual’s app usages data [19–22], to predict smartphone notification response
behavior of individual users utilizing their responses to the notifications stored
in the smartphone notification logs, in order to build intelligent notification
management system [7, 8]. In addition to these mobile usage related services,
rule-based modeling can be used in other personalized services like smart-
city services, health services, transport services, etc. to assist them in their
daily activities in different situations in a context-aware pervasive computing
environment.
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• Context-Aware Self Management and Energy Saving: Due to the limited energy
supply, energy conservation is a crucial problem for real-time systems in
embedded devices. In most situations, the battery is the primary source of
power for smart mobile devices. Due to the number of processing resources
available in these devices, users can now accomplish a variety of tasks that
were previously only possible with a computer. These devices, however, continue
to have problems with power management. As smartphones are equipped with
many features, users need to manage a growing number of complex configuration
settings, which allows automated configuration of the devices without taking
attention to users. Context-aware smart configuration settings including volume
settings, WiFi turn on/off, GPS turn on/off, and application management can play
a role to reduce battery consumption. Users desire different groups of settings
to be applied for different contexts. However, this is currently difficult to do,
because it is typically a manually-intensive process that cannot adapt to changing
context. A smart self-management system automatically changes the smartphone
configuration when the smartphone needs to be changed and what configuration
settings it needs to have for a given context.

• Context-Aware Smartcity Services: A smart sustainable city is an innovative
city that uses information and communication technologies (ICTs) and other
means to improve quality of life, efficiency of urban operations and services, and
competitiveness while also meeting current and future generations’ economic,
social, and environmental needs. There are variety of smartcity applications
ranging from personalized to population services. For instance, a rule-based
tourist recommendation system could be a smartcity application [23]. Similarly,
traffic light management, smart grid, smart building and home services, smart
parking, etc. are popular smartcity applications. The extracted rules based on
contexts from the relevant data source can play a significant role to build the
corresponding model to provide these services more intelligently.

• Context-Aware Security and Privacy: Security ensures the confidentiality,
integrity, and availability of information in general, whereas privacy is more
specific to personal information privacy rights [24]. Because of the threats
associated with IT consumerization and cloud computing, context-aware
security has become more relevant in recent years. This is a practical method
for implementing user-centric security and privacy since it allows for the
management of threat models associated with the users’ frequent context
changes. A security context is a collection of information gathered from the
user’s environment and the application environment that is relevant to the security
infrastructure of both the user and the application domain. As a result, context-
aware security refers to the use of contextual data to improve information
security decisions such as identity, geolocation, time of day, and endpoint
device type. The majority of current research at the application layer focuses
on context-based security policies for adaptive authentication and authorization
services [25]. Adaptive security policies are described by the International
Telecommunication Union (ITU) as a collection of security actions about
different layers of the security architecture: Infrastructure layer (physical network
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nodes and communication links), service layer (basic networking, transport,
and added value services), and application layer (network-based applications)
[25, 26]. Thus context-aware rule-based security policies can play a vital role in
the domain of mobile platforms as well as Internet of Things (IoT) applications.

Overall, the contextual rule-based modeling can be used in various real-world
application areas, where the context-awareness and application intelligence are
involved. Thus, the impact of contextual rule learning in mobile application
development and user experience is significant in these days and can be considered
as next-generation mobile learning.

10.2 Major Challenges and Research Issues

We summarize a range of research issues relating to mining contextual behavioral
rules of individual cell phone users in this section. These include mobile data quality,
determining the relevance of contexts to provide dynamic services, discretization
of continuous contextual data as the foundation for knowledge discovery, user
behavioral rule discovery and ranking, knowledge-based interactive post-mining for
semantic comprehension, and dynamic updating and management of rules based on
their current behavior. In the following, we briefly discuss these issues.

• Collection and Management of Contextual Data: Collecting real-world contex-
tual data is the first step to build data-driven intelligent applications for mobile
phone users [27]. The reason is that such data usually comprises features whose
interpretation depends on some contextual information, such as temporal, spatial,
or social context, relevant to mobile phone users. The contextual data can be
acquired from distributed sources. For instance, users’ social activity such as ‘in
a meeting’ and relevant information can be acquired from the calendar, and users’
mobile phone usage information and corresponding contextual information can
be acquired from different sensors or context sources, such as phone logs [28].
Thus, to facilitate the extraction of reliable insight from contextual information
and to use the knowledge in context-aware intelligent applications, integrating
and effective management of relevant contexts is important. Therefore, the
challenge is to acquire contextual information from distributed sources and how
to integrate and manage such information for effective data analysis. Developing
an incentive program for mobile devices can be used for collecting timely,
complete, consistent, and accurate data effectively.

• Ensuring the Quality of Smartphone Data: Since mobile phone data is collected
and stored using a variety of sensors and data sources, it may contain noise, i.e.,
wrong and/or redundant instances. Noise is the term for such inconsistency in a
mobile phone dataset. Simply stated, noise is something that obscures the relation
between an instance’s features or contexts and its behavior class in a dataset
[29]. The existence of such noisy instances in cell phone data is a major problem
for modeling user behavior, with numerous adverse consequences. For example,
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due to the number of incorrect or redundant training samples, the over-fitting
problem can occur, lowering prediction accuracy and increasing the complexity
of machine learning techniques [30].

As the prediction model requires noise-free training data collection, it’s
difficult to get higher classification or prediction accuracy of user activity by
analyzing individuals’ mobile phone log data using machine learning techniques.
According to Sarker et al. [31], the effects of noisy instances are: noise can result
in the creation of additional behavioral rules that are irrelevant to individual cell
phone users, resulting in an unnecessarily large ruleset; the training samples
may increase, thus increasing the complexity of the corresponding machine
learning-based behavioral model for individuals. To ensure the accuracy of the
training data, it is essential to identify and remove the noisy instances from the
dataset. The consistency of the training data and the competence of the machine
learning algorithm are both important factors in the performance of the machine
learning technique-based model. As a result, before constructing the model, a
noise reduction process is needed to improve the model’s prediction accuracy
based on real-world cell phone data.

• Understanding the relevancy of contexts: Realizing the importance of contexts
is a crucial step towards effectively using them in mining contextual behavioral
rules of individual cell phone users. We need a better understanding of what cir-
cumstances influence users to make decisions in various situations to effectively
use contexts in the behavioral rules of individual cell phone users. The contexts
related to the user are the most applicable as we try to discover the contextual
behavioral rules of individuals using their cell phone data. However, the contexts’
relevancy is application-specific, i.e., it may differ from one application to
another in the real world.

Consider a customized smart mobile app management system that can predict
an individual’s future app usages (e.g., Skype, Whatsapp, Facebook, Gmail,
Microsoft Outlook, and so on) based on contextual data. When the user is at her
office on weekdays between 9:00 a.m. and 10:00 a.m., she usually uses Microsoft
Outlook for mailing purposes. The user’s contexts, such as temporal (weekdays
between 09:00 AM and 10:00 AM) and location (at the office), may be important
to intelligently assist herself in finding this specific mobile application among
a large number of installed applications on her mobile phone. Consider another
scenario, such as a mobile phone call interruption management system, where
more contexts might be relevant. Cell phones are often referred to as “always-
on, always-connected” devices in the real world, but mobile users are not always
attentive and responsive to incoming communication [3]. Let’s say a user has a
routine meeting at her office on Monday between 9:00 and 11:00 a.m. She usually
declines incoming phone calls during that period because she does not want to
be distracted during the meeting. If the phone call is from her boss or mother,
she wants to answer it because it seems to be important to her. According to
this example, user phone call answer patterns are relevant not only to the above
contexts, location (e.g., at the office), and temporal (e.g., on Monday, between
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9:00 AM and 11:00 AM), but also to the additional contexts, social situation
(e.g., in a meeting), and social-relational context (e.g., boss or mother).

The relevancy of user contexts differs from application to application in the
real world, as shown by the real-world examples above. As a result, a greater
understanding of context relevancy as it relates to individual users’ needs would
aid mobile app developers in deciding what context to use in their apps to offer
customized services that assist them intelligibly.

• Discretization of Contextual Data: Discretization is one of the most important
preprocessing techniques in data mining since it functions as the basis for
identifying useful knowledge or rules [27]. Depending on such parameters,
the discretization process converts continuous numerical attribute values into
discrete or nominal attribute values. To put it another way, it converts quantitative
data into qualitative data with a finite number of intervals, resulting in a
non-overlapping partition in a continuous domain such as time or location.
The essence of continuous data is that it is always massive in size, has high
dimensionality, and is updated regularly. Assuming a data set consisting of N

samples and C target classes, a discretization algorithm would discretize the
continuous attribute A in this data set into m discrete intervals, Dis =[d0, d1],
[d1, d2],..., [dm−1, dm], where d0 represents the minimal value, dm represents the
maximal value, and di < di+1, for i = 0, 1, .., m − 1. Such a discrete result Dis

is called a discretization scheme on attribute A, and < p = d1, d2, .., dm−1 > is
the set of cut points of attribute A.

Let’s consider, time-series data, which is the most important continuous
context that impacts user behavior in a mobile Internet portal [32]. Mobile phones
keep track of the precise temporal details (e.g., YYYY-MM-DD hh:mm:ss)
of users’ activities with their phones. In contrast to digital systems, human
interpretation of time is not precise in behavior modeling. Every routine activity
requires a period, such as five minutes. For example, a college student might call
her mother in the evening to discuss her day’s studies. She is unlikely to call
her mother every day at 6:00 p.m.; she might call at 6:14 p.m. one day and 5:54
p.m. the next. Thus, rather than exact temporal information, a time segment or
interval, such as between 5:50 PM and 6:15 PM, is very informative to capture
her activity patterns. An optimal segmentation technique is needed to generate
such time segments that capture similar behavioral characteristics [33]. As with
the discretization of temporal information, a method to pre-process continuous
context values to convert them to nominal values before applying the rule mining
technique should be developed.

• Rule Discovery and Model Building: The majority of current context-aware
frameworks are based on static, centralized client-server architectures [34].
Mobile platforms, on the other hand, demand that the context modeling process
and inference engine be simple and lightweight. The discovery and analysis of
contextually responsive features and their patterns are of great importance to
make context-aware intelligent decisions in a ubiquitous computing environment
[28]. Because of the vast amount of data processing, conventional computational
techniques such as data mining and machine learning [1] may not be applicable
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to make real-time decisions for cell phone users, reducing the efficiency of
mobile phones. The association rule mining technique [35], for example, can
uncover a large number of redundant rules that are no longer useful, rendering
the decision-making process complex and ineffective. To achieve large-scale
context awareness and create smart context-aware models, a deeper understand-
ing of the strengths and limitations of state-of-the-art big data processing and
analytics systems is needed. Thus the challenge is to model the contextual data
effectively for adequate decision-making. Mining in-depth behavioral patterns
of mobile phone users based on related contextual information, utilizing mobile
phone data collected from single or multiple sources, can be considered. Using
various constraints and particular mobile phone application interestingness into
models could be useful in the dynamic context-aware decision-making process.
For instance, extracted phone call response behavioral rules according to an
individual’s preferences can be used to minimize phone call interruptions.

• Knowledge-Based Interactive Postmining: Knowledge-based postmining of dis-
covered rules may be another research topic in terms of semantically generalizing
rules to prevent categorical data sparsity and make the rules more useful and
interesting in a specific domain [30]. Semantic generalization, which makes use
of applicable domain information, broadens the scope of the rules by examining
their semantic relationships. The semantic generalization of rules is crucial for
enhancing context-based adaptation and ensuring that individuals in context-
aware applications and services behave properly. For several applications, it is
difficult for decision-makers to process, interpret, and use the generated data
relevant rules in the decision-making process. Furthermore, it is crucial to choose
the best rules based on the query context by using fewer but closely related
rules. Thus, two issues must be considered for successful use of the created
rules: discovering the less closely related rules, and managing categorical data
sparseness when implementing these rules [5]. The concept of knowledge-based
multi-level generalization of generated rules may help to solve the problems
described above. Generalized association rules can help to reduce the search
space and combine several low support rules into a less number of high support
rules by taking into account the use of a concept hierarchy for a particular
domain. An ontology-based approach [24, 36] could be a possible way to use
such concepts for a particular domain while generalizing the rules.

• Mobility and Adaptation: Computing environments are highly diverse due to the
mobility of computing devices, applications, and people. Pervasive computing
applications are exposed to changes in available resources such as network
access, input and output devices, unlike desktop applications, which rely on a
carefully designed and relatively static collection of resources [28]. Furthermore,
to complete tasks on behalf of customers, they are often expected to collaborate
randomly and opportunistically with previously unknown software services. As
a result, ubiquitous computer applications must be extremely adaptable and
versatile. As an example, an application may need to modify its style of output
following a transition from an office environment to a moving vehicle, to be
less intrusive. Thus the challenge is to adapt the changing environment more
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effectively in the system. As the recent advances in smart mobile phones can
capture the current contextual information about user’s mobility and dynamic
environment, an adaptive context-aware application based on such contexts could
be useful, which can adapt the contexts and behave accordingly to assist the
individual users in their daily activities.

10.3 Concluding Remarks

In this book, we have done a comprehensive study on context-aware machine
learning modeling utilizing users’ mobile phone data, which can create a vital turn
in the way of interaction among people and mobile devices in our real-world life.
A comprehensive survey on this topic through a context-aware machine learning
framework that explores multi-dimensional contexts in machine learning modeling,
discretization analysis and time-series modeling, contextual rule discovery and
predictive analytics, and recent-pattern based behavior modeling, has been con-
ducted to provide intelligent services. Furthermore, we have also discussed how
the extracted contextual rules can play a vital role to build a mobile expert system
as well as the importance of deep neural network learning methods in the area.
The analysis and mobile data mining techniques detailed in this book provides
the basis for further research into machine learning rule-based modeling, and the
potential to use such rules to build smart context-aware mobile applications for
the end mobile phone users to intelligently assist them in their daily activities in
a pervasive computing environment. The prominent application fields of context-
aware machine learning modeling are many, but not limited to, personalized mobile
applications, recommendation systems, IoT applications, smart city and systems, as
well as smart cybersecurity services discussed throughout the book.

Finally, numerous ideas for future research are proposed to broaden this area to
more applicable and pervasive scenarios. There were also some notes on potential
solutions and suggestions for researchers, as well as a variety of future challenges.
Overall, we do believe that our study opens a promising path for future research on
context-aware rule-based modeling based on machine learning techniques, and to
build personalized rule-based smart and intelligent systems for the end mobile phone
users to intelligently assist themselves in their daily life. We conclude this book with
the hope that it will be useful in the development of context-aware machine learning
which will lead to a brighter future in a variety of applications within the scope of the
Fourth Industrial Revolution (Industry .40), especially in the domain of data-driven
smart computing and decision-making intelligence in our real-life services.
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