
On the Specification and Monitoring
of Timed Normative Systems

Shaun Azzopardi1(B) , Gordon Pace2 , Fernando Schapachnik3,
and Gerardo Schneider1

1 University of Gothenburg, Gothenburg, Sweden
shaun.azzopardi@gu.se, gersch@chalmers.se

2 University of Malta, Msida, Malta
gordon.pace@um.edu.mt

3 ICC and Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina
fschapachnik@dc.uba.ar

Abstract. In this article we explore different issues and design choices
that arise when considering how to fully embrace timed aspects in the
formalisation of normative systems, e.g., by using deontic modalities,
looking primarily through the lens of monitoring. We primarily focus on
expressivity and computational aspects, discussing issues such as dura-
tion, superposition, conflicts, attempts, discharge, and complexity, while
identifying semantic choices which arise and the challenges these pose
for full monitoring of legal contracts.

Keywords: Deontic logic · Timed logic · Normative systems · Legal
contracts · Monitoring

1 Introduction

If Alice is permitted to download a song from an online content provider, and
gets a bonus that allows her to download another one, everybody would agree
that now she can download up to two songs. Let’s add time to the equation
and consider Alice being permitted at 7am to download a song from 8am to
10am. At 9am she is granted another download permission, from 9am to 11am.
At 9:30am she downloads a song. Can she download another at 10:30am? In
other words, which of the two permissions did she exhaust? Is the permission
involved a conditional one? How do we specify and monitor for these kind of
timed normative specifications?

Reasoning about permissions and other normative modalities is the domain of
deontic logic, while reasoning about time is usually the domain of temporal logic
in the verification community. Verification and monitorability of temporal logics,
including ones with real-time, has been extensively investigated (e.g., [9,32,33]).

Partially supported by UBACyT 20020130200032BA and PICT-2016 201-0112, the
Swedish Research Council (Vetenskapsr̊adet) under grant Nr. 2019-04951 (X-LEGAL:
Smart Legal Contracts), and the ERC Consolidator grant DSynMA (No. 772459).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 81–99, 2021.
https://doi.org/10.1007/978-3-030-88494-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_5&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0003-0743-6272
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-030-88494-9_5

82 S. Azzopardi et al.

We argue that normative concepts (e.g., obligations, prohibitions, and per-
missions/rights) are not appropriately modelled using existing monitoring logics.
For example, specifying in LTL a prohibition to never download songs illegally
is easy, however how can one specify that the specification may be violated
but repaired by paying an appropriate fine? The näıve approach would simply
use a disjunction between the two formulas, however this does not capture the
difference in priority between the clauses and the different levels of violation.

Deontic logics have been proposed instead for normative reasoning. Differ-
ent deontic languages have in fact been explored, with the ability to model and
monitor for violations and their repair (e.g., [6,7]). Such languages involve cer-
tain normative modalities, parametrised by some state- or event-based formula,
given some appropriate background theory. The difficulty and complexity of for-
malising untimed normative systems using deontic concepts have been studied
in [43], while the justification on why LTL, CTL, and process algebra might not
be sufficient to capture all the deontic notions has been presented in [18].

In this paper we want to focus on the monitorability of these logics under
extensions with timed aspects. Although the different modalities that arise from
adding time to deontic logic have been studied before, there are still many unan-
swered questions and no analysis of their monitorability. For instance, in [25]
Governatori et al. analyse permissions with deadlines but do not discuss the
issue of which one is discharged in case of temporal superposition nor what hap-
pens with timed permissions in the context of contracts. Superposition presents
challenges for obligations too. Hashmi et al. [30] extend previous work by Gov-
ernatori et al. [26] to deal with the temporal compliance of rules and present a
categorisation of many types of obligations (punctual, persistent, achievement,
etc.) based on the timing of their effect, enforcement and violation. However,
some issues remain unexplored:1 if O[0, 10](a) and O[5, 15](a) are two achieve-
ment obligations (meaning the obligation is discharged by the execution of a
single action a during the period) and a is not executed in the [0, 5) time inter-
val, does it need to be performed twice during the [5, 10] period?

Normative conflicts become more interesting and challenging in the pres-
ence of time. We would certainly consider F (a) to be in conflict with O(a)
in an untimed and punctual context, but what happens with F [0, 10](a) and
O[5, 15](a)? Is this an unresolvable conflict despite the fact that compliance is
possible? Should it be concluded that while there is a conflict in the [5, 10] inter-
val the contract requiring both is still valid?

In many cases it is interesting to talk about the moment a given obligation
(or right) is enacted, or whenever the action or state of affairs affected by such
modalities occur, and refer to them in another clauses. For instance, consider the
situation in which Alice has the right to download two songs, but the second one

1 In this paper we will use the notation O[b, e](a) to denote the obligation to perform
action a between time b and e. We use the same notation but with P to denote
permission and F to denote prohibition. Note that despite the formal syntax, we
are not committed to a formal semantics, since the paper is dedicated to explore the
family of such semantics one can choose to adopt.

On the Specification and Monitoring of Timed Normative Systems 83

may only be downloaded between 3 and 5 days after downloading the first. Later
on, an obligation to write a review on the songs is enforced, with a deadline of 30
days after having downloaded the second song. These kinds of (relative) timing
constraints for deontic norms are usually not treated in the literature, as there
is a need of having richer timed logics with, for example, freeze quantifiers [1].

In this article we continue the exploration of the different challenges that a
timed deontic logic presents. Compared to previous work, we discuss the issues
of timed superposition, timed deontic conflicts, discharge of deontic modalities
in case of conflicts and attempting. Integrating time as a first class citizen in a
logic brings not only expressivity concerns but also complexity and computability
issues. In the case of a deontic logic, many other subtle issues arise, which we
identify and discuss. We also discuss monitorability of deontic logics and their
timed extensions, and consider the challenges to monitor synthesis.

The next section discusses different timed logics used in computer science
and the trade-offs their represent in terms of expressivity and complexity, and
briefly introduces deontic logic. After that, Sect. 3 digs into the different inter-
pretation challenges presented by the inclusion of time in deontic logic. Section 4
discusses the monitorability of deontic logics and their timed extensions, and
suggestions for monitor synthesis of the timed case. References to related work
are made throughout the article. Section 5 concludes the paper with some final
observations.

2 Background

2.1 Temporal Logics, Timed Logics and Complexity

Computer scientists have studied different temporal and timed logics, including
their expressiveness, properties and decision procedures for their satisfiability,
monitorability, and validity.

Temporal aspects appear in many different ways in real life, be it in computer
systems or the legal domain. The simplest are probably situations related to the
frequency on the occurrence of certain events, and the order between events, be
it sequences, ordering or causality. Temporal logics have been around for a while
and have been successfully used for specifying reactive and other computational
systems, and also in combination with deontic logic (e.g., [24–26,29]). In practice,
as much of this work has observed before, any non-trivial normative document
contains temporal aspects.

Temporal logics allow for reasoning about the ordering and causality between
events, and come in different flavours, depending on whether time is discrete
or continuous, whether there is a single future (linear) or it captures different
possible futures (branching), whether it is possible to talk about the past or only
the future, whether the logic talks about points in time or intervals, whether
there is a global notion of time or only relative time, etc. Timed logics may be
propositional or have quantifiers. Expressiveness and decidability are of course
very much dependent on a combination of the different choices made on all the
dimensions mentioned above (and others).

84 S. Azzopardi et al.

There is extensive work on the use of different timed logics, and we will
not give details here as this is beyond the scope of this paper. That said, we
will briefly describe the expressive power of three timed extensions of temporal
logics namely time-bounded operators, freeze quantification, and time variables
as presented by Alur and Henzinger [1], due to their relevance in what follows.

The first, and possibly least expressive, way to add timing constraints to
existing temporal logics is to have bounded temporal operators where the classic
temporal operators are enhanced with (integer) intervals. In this logic you can
express properties like “every event e1 is followed by another event e2 within 7
time units”, written as �(e1 → ♦[0,7]e2). The bounded-operator notation can
only express properties relating adjacent temporal operators and cannot express
non-local properties of the kind “every event e1 is followed by a response e2,
which is followed by another response e3, such that the delay between e2 and e3
is no more than the delay between e1 and e2”.

For that there is a need of a more expressive logic, one containing freeze
quantifiers. This second variant of timed logic allows for quantification over time
variables, which may be used to compare with other time variables. The non-local
property given above would be expressed as follows in such a logic: � x.(e1 →
♦ y.(e2 ∧ ♦z.(e3 ∧ z − y ≤ y − x))), where x and y are time variables associated
with the corresponding states defined by the formula in its scope (x.ϕ(x) holds
at time t iff ϕ(t) does).

A third, and more expressive, way to write timing constraints is by using
explicit clock variables, based on first-order temporal logic and explicit (global)
time, thus allowing to existentially and universally quantifier over clocks (see
[35] for examples).

Expressivity, however, comes at the price of complexity or even undecidabil-
ity. This is specially pressing when some type of tool is used or envisioned. For
instance, encodings using timed automata may require one clock per variable
(e.g., [16]), but the verification complexity depends on the number of clocks—
and is exponential in the case of Timed Computational Tree Logic (TCTL).

Extending temporal logics with time-bounded temporal operators increases
their complexity, in some cases yielding undecidability. For instance, the model
checking problem for Metric Temporal Logic (MTL) is undecidable. Nevertheless,
some interesting fragments of MTL, such as Metric Interval Temporal Logic
(MITL) are decidable but EXPSPACE-complete [10].

For more examples and more details about expressiveness of these logics and
other variants we direct the reader to [1] and the references therein.

2.2 Formalisation of Normative Systems: Deontic Logics

Deontic logic is the study of deontic modalities—mainly obligation, prohibition,
and permission, meant for the modelling of legal and moral notions [22]. Ini-
tial deontic formalisms in the philosophical field (e.g., Standard Deontic Logic
[23,39]) faced certain paradoxes, e.g., the inability to express what should happen
to make up for an obligation being violated without introducing contradictions.

On the Specification and Monitoring of Timed Normative Systems 85

These paradoxes have remained problematic and the subject of debate [28]. How-
ever different approaches have been recently proposed to solve these problems
(e.g., [16,44,45]), that have made deontic logic more useful in practice. We intro-
duce the main concepts based on existing deontic formalisms briefly, but to keep
our discussion general—we do not commit to any particular formalism for this
paper.

A distinguishing feature between deontic formalisms is whether they are
event/action- or propositional/state-based. One may be obliged to perform a
certain action (e.g., pay a certain fee), or to reach a certain state (e.g., the state
of having no pending payments to make). These approaches are dual, reaching
different states typically requires performing actions (or, in a timed context, the
passing of time), while actions may cause changes in state. For simplicity and
without loss of generality we continue the discussion in this section by referring
solely to action-based logics.

An obligation to do some action a requires a to be performed. This is often
represented as O(a). Similarly for permissions, P (a), and prohibitions F (a).
These three can often be defined in terms of each other, e.g., a prohibition
not to do an action is the obligation to not do it (O(a) = F (¬a)), while a
permission to do an action is often the lack of an obligation to do not do the
action (P (a) = ¬O(¬a)). Here we go beyond this and focus on the strand of
work that views permission as a right to perform an action, as suggested in von
Wright’s seminal work [22], where permission includes an implicit obligation for
the other parties to allow the permitted party to perform the action.

Variants of these modalities can also refer to a party, i.e. Op(a) where p is
the name of the obliged party (e.g., [5]). Without these notational variants there
may be underlying assumptions about which party or parties are associated with
each action.

An important aspect of deontic formalisms is how they handle contrary-to-
duty norms, or reparations. These are clauses that come into effect when there has
been a violation, allowing some action/s to repair the violation, e.g., the paying
of a penalty. The ability to handle these clauses is of utmost importance for
practical applications of normative systems, e.g., for the monitoring of contracts
or laws that use these kind of clauses routinely. We represent this, e.g., for
obligations with OO($10);O(b)(a) where a 10 dollar penalty must be paid if a is
not performed, and b performed after.

For more extensive and in depth material about deontic logic in general see
[20] and references therein.

The combination of deontic concepts with (real-)time has been considered in
an ad hoc manner in the literature, with different interpretations chosen without
justification or contrasted with other possible ones. The effects of adding time
to specific deontic operators was discussed in [25,26]. Note that those, and other
similar work by Governatori et al., do not address the general more complex
issue of getting a fully-fledged logic (or formal language) where many timed
operators co-exist. C-O Diagrams [13,16,38] is a formal (visual) language (not a
logic) featuring deontic concepts and timed constraints, with a timed automata

86 S. Azzopardi et al.

semantics. The language has interesting features but does not address many of
the issues discussed in this paper. No monitoring techniques has been studied
for any of the above languages and logics.

3 Interpreting Timed Norms

In this section we resort to small examples to discuss different issues and design
choices, that need to be taken into account when thinking about a deontic logic
that is able to fully embrace all aspects of time-related expressions.2

State- vs. Action-Based Deontic Operators. The duality between contracts
regulating events vs. regulating the state-of-affairs is also reflected in the deon-
tic modalities themselves when taking into consideration time. On one hand,
one may have pointwise modalities—for example, the obligation to perform an
action at a particular point in time. Such pointwise modalities are frequently
encountered when considering a system with discrete time events. For example,
if the service-provider gives priority to a particular user at time point ti, they are
obliged to give priority to another user at the next time point (when an event is
received) ti+1. However, when one considers continuous real-time clocks, deontic
modalities are typically over intervals of time. For example, an obligation with a
deadline might oblige the service provider to ensure that a service is continuously
available over the coming hour; or a user accessing a digital asset management
system, may be prohibited from requesting the download of a file twice within
a second of each other.

If we consider interval-based deontic modalities, there lies a duality with the
event- vs. state-based view of the world. Does one identify the points in time
when a modality starts holding and when it terminates, or does one identify
the interval over which the modality holds? The most common approach one
finds in the literature is the state-based approach (e.g., [26,27,29,30]), follow-
ing the approach used in interval temporal logics such as Interval Temporal
Logic (ITL) [41] and duration calculus [14]. This approach correlates closely
with natural language clauses expressing concepts such as deadlines: “The user
is prohibited from transferring funds to a third party in the first 7 days of the
creation of an account” or “The bank is obliged to refund a user within 15 days
of a request to redeem an account.”

However, there is also work which takes the action-based approach (e.g., [17]),
in which the key is to signal the start and end of a modality e.g.,

←−
O p(A) indicates

the beginning of a time interval over which there is an obligation on party p to
perform action A, while

−→
O p(A) would be the end of this obligation. Such an

approach corresponds to when these moments are identified in a legal text in
separate ways, for instance “The student has the right to upload a new assignment

2 It is worth noting that different interpretations of normative statements go far
beyond the assignment of a formal semantics. Such differing views frequently cor-
respond to views different parties may have of a normative text, e.g., a contract,
including possibly in court.

On the Specification and Monitoring of Timed Normative Systems 87

from the first day of term” and “If a student unregisters from a unit, he or she
automatically loses the right to upload assignments.”.

The latter approach lends itself to a trace-based semantics, in which each
event or time progression updates the clauses in force. However, this inherent
state of active clauses makes compositional reasoning over contracts more diffi-
cult, and the former approach typically yields cleaner semantics.

A Plethora of Timed Deontic Modalities. What time should the logic refer
to? Absolute time, i.e. a universal and always accessible clock that is referred to
in every time-related expression, might be relatively inexpensive from a compu-
tational point of view, yet equally unrealistic from a legal perspective. Many legal
expressions also require relative time, as in “warranty period should be at least
3month from the time of purchase”. Is this just syntactic sugar to an expression
like “let U be the universal clock, let p be the time of purchase (according to
the universal clock), and the warranty period is of w, then the purchased item
is still in warranty as long as U ≤ p + w”? Complexity usually grows with the
number of clocks, so it is in general desirable to reduce the number of clocks.
This might be possible in some cases, for instance whenever what is needed is
only the time-stamp associated with a given event but not how time evolves for
such event (e.g., to compute duration). In some other cases, clock reusability is
possible, although this kind of optimisation is usually handled under the hood
by the tools.

Some use cases do require more intricate expressions of time. Consider for
instance “license can be renewed during 10 days after expiration if the expiration
cause was A, or 15 days if the expiration cause was B”, an expression where
the deadline is relative to occurrences of events in the past, or “if the item under
warranty is taken to reparations, the warranty period is extended by the amount
of time the item is being repaired, each time it is repaired”, where the deadline
needs to be computed. Such expressions seem to call for an algebra of time
intervals, another threat to computability when real-time is involved [31].

To complicate things further, deadlines can sometimes be expressed in rela-
tion to an event still to happen (e.g., “service should be provided until the user
disconnects”), or as a boolean expression involving many time references (e.g.,
“service should be provided until the user disconnects, with a maximum of one
month of service, not surpassing the calendar year”).

Once deontic clauses have an explicit duration, the issue of possible multiple
violations during that period arises. Should multiple violations trigger multiple
reparations? Also, one should be able to distinguish between multiple violations
vs. one violation that has a duration. Think of trespassing: if entering a facility
is forbidden during the night, is trespassing twice for 1 h each the same as tres-
passing once for 2 h? As timed logics allow to measure the duration of an event,
duration of violation should also be available as a parameter to the reparation
clause. For example, an obligation to provide food and water to passengers dur-
ing a flight might be redressed with a fine, possibly proportional to the duration
of the flight.

88 S. Azzopardi et al.

Obligations with duration present challenges of their own: how should be
O[0, 10](a) read? If a is an event or action, should it be sustained during the
[0, 10] period, or it is only mandatory to do it at least once during the period?
Again both cases are reasonable and may be required in different contexts, with
the modalities allowing for the expression of the two. Even limiting our view to
the variant to oblige the performance of the action once during the period, how
should O[0, 10](a)⊕O[5, 15](a) be interpreted? Does the performance of a during
the interval [5, 10] satisfy both obligations, or are two occurrences required?
Although the latter may appear to be more reasonable, it is worth noting that
this would mean that conjunction is no longer idempotent, with O[0, 10](a) ⊕
O[0, 10](a) being different from O[0, 10](a). Actions differ on the nature of their
effects. Ensuring the door is open is idempotent, but paying or buying are not.

Part of the issue at stake in the previous example is whether modalities
are dischargeable or permanent. Dischargeable modalities cease their effect once
they are fulfilled, while permanent ones do not. For instance, prohibitions tend
to be permanent. That is, a prohibition is still enacted (and in force) even when
somebody has violated it. Furthermore, a prohibition is still in force even if
a violation triggers its corresponding reparation. Note that a prohibition (and
actually every modality) can be at the same time permanent and time bounded
(e.g., it is forbidden to enter the pool during the night).

Dischargeable obligations are also common. Consider having ten days to fill
in a report. The obligation is discharged with the execution of one instance of
the action (the filling of the report), and gets violated when the deadline is met
without the action happening. If the obligation were permanent (e.g., behave
nicely during school time, or do what your boss asks during working hours),
when the deadline is met there is no violation. In this case, violations occur
within the interval when the obligation is active.

Governatori et al. [25] have characterised different types of obligations with
deadlines, for instance distinguishing between achievement obligations (corre-
sponding to the obligation to perform an action before the deadline), and main-
tenance obligations (corresponding to the obligation to ensure that a state holds
until the deadline elapses). The variety of types of obligations with deadlines
the authors present encompasses many common types of obligations even if not
necessarily complete (in that not all forms of obligations over intervals are cov-
ered) already indicates the variety of choices one can adopt from when designing
a real-time deontic logic with connections between our discussion above and the
formalised notions in [25].

Permission and Time. In the case of an action-based logic, being permitted
to do something within an interval can mean several different things, from having
a continuous permission to repeat the action as many times as one wants (e.g.,
permission to enter the facility during daytime) to a one time permission, i.e. a
dischargeable one.

In that last case it also seems to make sense to have some type of algebra of
dischargeable permissions, as being granted a one day permission to download
a song is not the same being granted the same permission twice. While it seems

On the Specification and Monitoring of Timed Normative Systems 89

clear that meeting the deadline puts an end to every instance of the permission,
what happens with the combination3 of permissions P [0, 10](a) ⊕ P [5, 15](a) if
at time 6 the action a is performed? When time reaches 11, is there still one
permission left over? Is it always the case that the discharged permission is the
oldest one? If so, why?

Another conflicting case can arise if we consider a one-time permission to use
a service for half an hour. Now suppose another similar permission is granted.
Can the bearer of the two half-hour permissions use the service for a full hour?
In some cases there might be no difference while in others the granter of the
permission may not consider them to be equivalent because a gap in between
may be required (e.g., riding a horse or using a machine which might overheat).

Now consider the same example in the context of contracts, where one party
can violate the other’s permission to execute an action by not providing the
proper synchronisation. Suppose party p has two permissions to execute synchro-
nised action a: PO($10)[0, 10](a) ⊕ PO($20)[5, 15](a), the first having a reparation
fee of $10 and the other a fee of $20. If at time 6 party p is not able to execute
the permitted action because of lack of synchronisation by the other party, what
is the fee applicable as reparation? Is it $10, $20 or even $30?

Permissions with intervals, both permanent and dischargeable, present chal-
lenges to clearly define time-based conflicts. As an example, think of a permission
to present a form in a government office until midnight on a specific date, yet the
office is available only in working hours. Common sense states that the permis-
sion is for presenting during working hours until the midnight of the given date,
and that there is no conflict involved. However, finding a formulation where this
can be expressed naturally in a formal language is challenging, because of the
chain of logical relations that need to be established to link the action of ‘hand-
ing in the form’ with the ‘office being open’ predicates. Furthermore, in some
cases, limitations on time windows are made with the specific goal of discour-
aging the performance of the action (in this case the presentation of the form).
If the intersection of the deadline and the working hours only left a small time
frame available, should this situation be detected? This may indicate that the
notion of conflict may, in some cases, be a fuzzy rather than crisp predicate.

Attempted Actions. As was mentioned before, in action-based timed deontic
logics hitting a deadline without fulfilling an obligation is considered to be a
violation. Think of the case of a contract, in which party A agrees to sell to
party B at a discount price because party B agrees to buy at least 200 kg of
goods during a one week period. During the first few days a transaction is made
and B buys 100 kg at a discounted price. Then the week goes by with no other
transaction being completed. The case goes to court, where A is claiming that
B took advantage of the discount price without reaching the minimum agreed
volume. Party B argues that she did attempt to buy several times yet on all the
occasions party A’s shop was either closed or out-of-stock. B even mentions one

3 From this point onwards, we will use the notation C ⊕ C′ to denote both C and C′

being enacted. We avoid the use of symbols typically used for conjunction e.g., ∧ or
& in order to avoid implicit assumptions of idempotency of the operator.

90 S. Azzopardi et al.

occasion where she emailed A to arrange for a purchase and A took so long to
respond that she had to get the goods from another supplier.

How should a logic handle such a case so that the attempts became observ-
able? If buying and selling are separate actions, then that would mean parties can
execute them independently, which is not the way a buy-sell agreement should
be modelled. Effectively, it makes more sense to think of a synchronised buy-sell
action that both parties need to agree to execute. The problem is that in most
action-based logics when one party tries to synchronise on a shared action and
the other party does not handshake, there is no trace of attempt in the result-
ing execution. Other logics, specifically those where events are timestamped, do
leave a trace and the resulting execution has two events, close enough in time,
and probably a third acknowledgement message, all of which can be abstracted
together as a single transaction, or a high-level synchronised event.

Deontic logics usually do not allow for such a two-level interpretation: one
where individual events can be seen (B trying to buy without being responded
by A) and another where a successful sequence of a buy attempt and a proper
response are abstracted as a single buy-sell transaction. This is common in net-
work protocols where a ‘connection’ is a high-level event with an initiator and
a completer. Being an initiator is a role: any of the parties can be the initiator
just by sending first the proper connection initiation message. A deontic logic
should probably allow for a more complicated scenario: it should let any of the
parties attempt the transaction, but without a single initiation message, i.e. a
buy-sell transaction can be started either with a buy or a sell attempt.

Going back to the discount-per-volume case, B’s obligation of buying should
be regarded as discharged because either a high-level buy-sell action took place,
or a low level buy attempt was issued by B without a response from A within a
proper time-frame, which may not be formal defined. Actually, whether two buy
and sell messages separated by t time units are to be considered to correspond to
an acknowledged request or not may be a controversial issue among the involved
parties. What tools should the logic provide to ground this discussion?

Timed Conflicts. Conflicts due to time expressions are also a topic of interest.
Although F (a) ⊕ O(a) is clearly a conflicting sentence, how should we interpret
F [0, 10](a)⊕O[5, 15](a)? Is this an unsatisfiable conflict? Should it be concluded
that while there is a conflict during the interval [5, 10]—at the beginning of which
F [0, 5](a) ⊕ O[0, 10](a) is in force?

If action a takes time to perform, does the interval specify when the action
should commence, finish or all the performance time? If, for instance, we take
the time of commencement, O[5, 10](a) means that the action must start in the
interval irrespectively of when it ends (as in ‘the shipment should be sent to their
the destination during the next 24 h’), but should the time instant be the same
for a prohibition as in F [5, 10](a)? Is there a violation if action a starts at time
3 and finishes at time 6?

We have already discussed the issue of having overlapping time intervals for
obligations, permissions and prohibitions. The situation is of course even more
complex in the presence of CTDs (contrary-to-duties) and CTPs (contrary-to-

On the Specification and Monitoring of Timed Normative Systems 91

prohibitions) clauses. Timed CTDs and CTPs may be problematic also if their
triggering is conditional to some relative notions of time, and of course in case
of normal delays not necessarily due to the fault of the involved parties.

For instance, a company working regulation might state that all employees
must answer company email within 24 h of receipt. If they will not be able to
answer within this time-frame, they should then send a standard mail at least
one hour before the 24-h deadline saying that they will not be able to answer in
time and state by when an answer is to be expected. In the absence of both an
answer and the canned response, the company automatically sends a message
with a reprimand to the employee (after the 24 h deadline) and decreases the
employee’s bonus by 2 points. A concrete situation might be that Alice sends her
answer exactly 23 h after having received an email but a system problem causes
her answer to arrive after the 24-h deadline. The system then will produce the
automatic response and will decrease her bonus balance by 2 points. A solution
based on time-stamps might help here: every event should have a time-stamp
and all the norms should be explicit on whether it refers to the time-stamp of
attempting, sending or receiving something. This solution, however, might cause
inconsistencies as certain obligations will be triggered and might need then to
be recalled (similar to rollbacks in long-lived transactions). What is then the
meaning of recalling such obligations? Of course we should also recall all the
corresponding (eventually nested) CTDs (and similarly for CTPs).

In the above example one the main issues was caused by delays. Should we
allow for reasoning only for the ideal case, or should we include a model of the
delays? Which delays are acceptable and which are not (from the liability point
of view)?

Other Standing Challenges. Deontic formal languages can serve many pur-
poses such as conflict analysis, runtime verification, simulation, etc. Each of these
domains of application impose its own constraints. For instance, matching real
occurrence time of the events is an issue in run-time monitoring, specially for
distributed events. Thus, coping with rollback-able attribution of guilt for failed
deadlines (like the example given in Sect. 3) or fuzzy-matching of events [11]
(i.e. being able to deal with the fuzziness of timestamps of real-life events) might
become a requirement that is not really necessary for other types of applications.

Although there are purely logic-based approaches successfully dealing with
time (e.g., [30,36]), most of the existing tools are automata-based (e.g., [37]),
thus, if one wants to warrant tool support, one might want to use some kind of
underlying timed transition system with annotations on the deontic imperatives.

From the design point of view, the choice might be between starting with
timed automata, one of the most popular automata-based timed formalisms,
and add the deontic information, or start with the standard deontic logic Kripke
semantics and add time to it. This choice might be driven by different con-
siderations and we do not have a formal argument in favour or against any of
them.

A good example of how deontic modalities and timed constraints may be
combined, somehow following the first approach mentioned above (interpret-

92 S. Azzopardi et al.

ing and encoding the deontic modalities into timed automata), is the case of
C-O Diagrams [16], for which a timed automata semantics was given (see [16]
for a first translation and [13] for a new optimised translation for an extension of
the original diagrams). The translation was implemented as Uppaal automata
and integrated into a toolchain called Contract Verifier [12].

4 Monitoring Norms and Timed Norms

In the previous section we introduced and reviewed different interpretations of
deontic modalities that arise in a real-time context. In this section, we continue
the discussion with a focus on monitoring of normative systems under these
different modalities and interpretations.

4.1 Monitorability

The appropriateness of a logic for runtime verification depends, amongst other
things, on its monitorability, that is whether for any finite execution we can even-
tually make a determination whether a specification is satisfied or violated [9,46].
For example, monitoring for linear temporal logic (LTL) has certain limitations,
e.g., the LTL specification Fa can only be monitored for satisfaction (if a occurs),
but not for violation (without some knowledge of the underlying system). We
discuss these standard notions of satisfaction- and violation-monitorability with
regards to deontic logics. Although one finds literature on the monitoring of
norms in specific logics (e.g., [2,21]), rather than focus on a particular logic in
this section we take a more high level view.

Consider an ‘obligation’ to eventually do a positive action, without any time
limit. Is this truly an obligation? Such an ‘obligation’ can essentially be post-
poned forever, and thus we cannot monitor for its violation. If we allow it, we
can however monitor for its satisfaction (similarly to Fa in LTL). On the other
hand, the obligation not to do an action (or prohibition) without any time limit
does have more meaningful normative semantics over finite traces—it is violated
if the prohibited action is done.

Similar to prohibitions, permissions (here the right to do something) do not
need to be bounded to make sense—the notion of perpetual rights is standard.
However, they differ to obligations and prohibitions with regards to satisfaction
and violation semantics. Permissions cannot be violated by the permitted party,
but instead they can be violated by others when the permitted action requires the
other party or parties to synchronise in their performance [8]. One interpretation
is that the parties always, at each time step, provide the required synchronising
actions, or at least at the time steps the permitted party wants to exercise the
permission [3]. Essentially this is a safety property when we can monitor attempts
to perform actions: just monitor for the attempt to exercise the permission and
if it fails then the permission has been violated [7]. This interpretation can be
relaxed to take into account that there may be real-world limitations on the
performance of the action, and only enforce the obligation on the other parties

On the Specification and Monitoring of Timed Normative Systems 93

at time steps where it is possible for them to provide the synchronising actions,
or within a bounded time-frame, without any effect on monitorability. It is worth
noting that there are different types of rights identified in the literature [34], and
the interpretation of permission as the liberty of one party from other parties
interfering with that first party’s performance of the permitted action is but one
of them.

Another pertinent issue is that when monitoring deontic specifications we are
not just interested in trace violation. In deontic logic there are multiple parties
to a contract, and thus we are more often also interested in which party or
parties caused the violation. This kind of blame assignment may not always be
possible, for example when the specification is unsatisfiable, or is difficult when
the actions of a party in the past may force another party to violate the contract
in the future. Another aspect is that a party may still be in compliance with
a contract if they reasonably attempt to satisfy it but are prevented to do so
by the environment (the real world and the other parties). For example, one
may not be able to satisfy an obligation because another has not provided the
synchronising action, and thus the other is at fault. Capturing and analysing
this also requires the monitoring of attempts to perform an action (e.g., [7]),
otherwise this kind of compliance cannot be monitored for.

We have considered the monitorability of the different kinds of atomic
norms, however norms can also be composed together in different ways. Allow-
ing unconstrained logical combinations causes certain paradoxes and dilemmas
(see [28,43]), since normative modalities are not truth statements. However,
deontic logics with constrained interpretations of these combinations that avoid
these paradoxes also exist (e.g., [40]). Here we consider the monitorability of
combinations of normative modalities with unconstrained logical operators for
completeness.

Sequence and conjunction clearly both maintain monitorability given mon-
itorability of the sub-formulas (the resulting property remains co-/safety). A
clause can also have an associated reparation clause, which can be modelled
using a monitor for the first clause that upon detecting a violation of the first
clause triggers a monitor for the second.

Norms can also be guarded or conditioned on something happening. The
monitorability of the guards depends on the allowed expressions. If the expres-
sion is a regular expression or a past-time LTL formula then monitorability is
maintained. It seems unlikely that allowing unmonitorable expressions would
add anything to the logic, e.g., allowing future-time LTL to guard norms would
allow us to write [FGp]O(a) (if p is true infinitely often from this point on,
then you are obliged to do a), which seems counter-intuitive—the party cannot
reasonably be held to have violated a contract if the contract expects impossible
things of them, such as clairvoyance.

We also consider the remaining usual logical operations: negation, and dis-
junction. Usually, a negated prohibition becomes a permission, a negated obli-
gation becomes the permission not to do the action, and a negated permission
becomes a prohibition. In deontic logics the disjunction can usually be moved

94 S. Azzopardi et al.

to the event/state parameter side given appropriate background theories (e.g.,
O(a)∨O(b) = O(a∨b)), or involves clauses with mutually exclusive guards (e.g.,
[p]O(a)∨ [!p]O(a) = [p]O(a)⊕ [!p]O(a)). The former is more difficult in the timed
case, e.g., O[0,5](a) ∨ O[4,10](b), but can be solved in the same way by moving
timing to the event side, i.e., O(a[0,5] ∨ b[4,10]). In the case of disjunction of more
complex clauses, e.g., with sequence O(a);P (b)∨O(b);P (a), guards can be used
to remove the disjunction, i.e., O(a ∨ b); ([a]P (b) ⊕ [b]P (a)) (assuming only one
action can happen in each time step).

Other deontic logics use the notion of defeasability, where certain clauses
may be in conflict with each other but have a priority function that resolves the
conflict (e.g., if the first rule does not hold then try the second) [27]. This has a
disjunctive nature that does not affect monitorability.

Then full monitorability here requires the ability to observe failed actions,
and knowledge about the synchronising actions made available by the parties.
Without these we are unable to talk about whether parties have fulfilled their
obligations with respect to a deontic contract.

4.2 Monitor Synthesis

One approach to monitoring deontic logics could involve their translation into
established runtime verification logics, however there are some features of deon-
tic logics that do not translate well. For example, the notion of reparations,
where a party may be obligated to perform a certain action, and failing that
they are in violation of the contract, but may perform certain actions as repara-
tions for this violation and return into compliance. The best attempt at writing
OO(b)(a) in LTL would involve disjunction, i.e., a∨ (¬a∧X(b)). However in LTL
this loses the priority implicit in the deontic logic representation. Reparations
are not simply other options, but imply recognition by the performing party
that they have violated a contract, an action which can have legal effect. More-
over, violation of certain clauses does not mean other obligations are not still
in effect—there are different levels of violation that are not captured accurately
by existing approaches to monitoring. They could perhaps be added through
certain meta-level considerations, but not at the level of existing monitoring
languages. Working at the level of deontic logic instead allows us to directly
take into account all these considerations that are required for legal contract
monitoring.

In previous work we have given operational semantics to different untimed
deontic languages (e.g., [7,19]) which can easily be used for monitor synthesis.
An automata construction could also be constructed, through a Kripke structure
where states are associated with the sets of norm clauses that must hold when
at that state. Contract automata [6,8] may be able to be re-purposed for this.

The timed case has different needs, as discussed previously. Effective and
efficient monitors for relative timing constraints are especially important in the
monitoring of normative systems. These often specify norms that activate at
the point another norm is satisfied, or penalties that start holding at the time
another norm is violated.

On the Specification and Monitoring of Timed Normative Systems 95

Looking to LTL with (real-)time as inspiration we find different approaches
for monitor synthesis. Focusing on metric temporal logic (MTL), i.e. temporal
logic with until and since modalities holding over a certain interval, we find
translations to deterministic timed automata that can be re-purposed for mon-
itoring (e.g., [42]). Another interesting approach involves reducing the problem
to monitoring LTL with atoms corresponding to bounded (i.e., with bounded
intervals) MTL formulas [32]. Essentially the proposed algorithm uses dynamic
programming techniques to determine the value of the bounded MTL formulas
by collecting events appropriately depending on the associated time they occur
and the interval associated with the formula. The authors extend this work for
MTL with predicates that can refer to time points, allowing for monitoring of
specifications with relative timing [33]. This suggests that separately combining
monitoring of timing aspects and higher-level normative aspects may also be
effective.

One issue not considered in detail in previous work is that of the underlying
theory. One event/state parameter may correspond to the evaluation of a more
complex predicate. For example, in a state-based deontic logic we may want to
specify that at the end of each month there is an obligation that the average
number of transactions is below a certain number. Operationalising such speci-
fications can involve having a layer of monitors that compute these predicates’
values, which can be queried by the norm monitors. For a rich monitorable lan-
guage, forms of symbolic monitor automata (e.g., DATES [15], or [4]) can be
used to compute the values of these predicates.

The proposed solution for complex event predicates above may be combined
with an approach inspired by that of [32] for MTL—the bounds associated with
an obligation may be moved to the events: O[x, y](a) = O(a[x,y]). Thus we may
be able to re-use monitor synthesis for the untimed case by simply adding a
layer that transforms timed events into appropriate timed action atoms (e.g.,
if x ≤ z ≤ y then the transformation (a, z → a[x,y] can be applied, where the
event (a, z) denotes action a occurring at time z), which are then processed by
appropriate monitors for the deontic-level specifications.

5 Conclusions

In this article we explored the different issues and design choices that arise when
considering how to fully embraced timed aspects into a deontic logic, mainly from
a computational point of view. To do so we ask questions beyond those addressed
in prior work by others (e.g., [11,16,17,25,26,30]). We resorted to small examples
to discuss issues such as duration, superposition, conflicts, attempts, discharge,
complexity and tool support among others, many of which were not covered in
the literature.

In summary, we considered the state- and action-based approaches for
interval-based deontic modalities, which respectively require the identification
of the interval on which the modality holds, and the actions that identify the
start and end of the interval. We discussed choices with regards to underlying

96 S. Azzopardi et al.

clocks (universal or relative), and different constraints required out of modalities
(that something must hold until a deadline, or within a certain interval). The lat-
ter allows for different interpretations—given two intersecting obligations, doing
one event may be able to satisfy both, or not. The issue of dischargeability and
permanence of norms was also discussed (a norm may no longer hold after being
first satisfied, or it may continue holding). Moreover, taking into account that
attempts to fulfil a norm may fail, through no fault of the actor, in a timed
context requires reasoning about synchronising actions not necessarily occurring
at the same time step. Finally, we discussed conflicts due to overlapping time
intervals, where a contract may have satisfying traces but other traces that exer-
cise the conflict. This can be a problem especially in the context of reparations
with some relative deadline.

One thing that many of the used examples have in common is that the differ-
ent interpretations proposed seem to correspond with interpretations that dif-
ferent stakeholders might sustain in case of conflict, even in court. One research
direction is to investigate a logic using nondeterminism to correspond to pos-
sible interpretations. What such a logic would provide is not settling over an
interpretation but rather coherence: one branch might flag violations for actions
that commence during the prohibited interval, irrespectively of where they end,
while another one might only flag violations for prohibited action that happen
entirely in the interval, but no branch would mix both interpretations. Thus,
legal arguments become arguments about choosing (or pruning) branches in the
logic.

Finally, we have discussed and analysed what are the main issues and chal-
lenges in the monitoring of (un)timed deontic logics. To the best of our knowledge
no work exists on the monitoring of such logics. This is an open research direction
for researchers in the RV community to consider. Though a successful approach
might first need to address all the issues discussed in this paper concerning the
extension of deontic modalities with time, we believe that existing approaches
for MTL can inspire monitor synthesis techniques for timed deontic logics.

References

1. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

2. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN -2010. LNCS (LNAI), vol. 6541, pp. 321–336. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21268-0 18

3. Azzopardi, S.: Extending contract automata with reparation, hypothetical and
conditional clauses. Technical report, University of Malta, May 2014

4. Azzopardi, S., Colombo, C., Ebejer, J.-P., Mallia, E., Pace, G.J.: Runtime verifica-
tion using VALOUR. In: RV-CuBES 2017. Kalpa Publications in Computing, vol.
3, pp. 10–18 (2017)

5. Azzopardi, S., Gatt, A., Pace, G.J.: Reasoning about partial contracts. In: JURIX
2016, pp. 23–32 (2016)

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-642-21268-0_18

On the Specification and Monitoring of Timed Normative Systems 97

6. Azzopardi, S., Pace, G.J., Schapachnik, F.: Contract automata with reparations.
In: JURIX 2014, pp. 49–54 (2014)

7. Azzopardi, S., Pace, G.J., Schapachnik, F.: On observing contracts: deontic con-
tracts meet smart contracts. In: JURIX 2018, pp. 21–30 (2018)

8. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract automata - an
operational view of contracts between interactive parties. Artif. Intell. Law 24(3),
203–243 (2016)

9. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4) (2011)

10. Bouyer, P., Laroussinie, F.: Model checking timed automata. In: Modeling and
Verification of Real-Time Systems: Formalisms and Software Tools, pp. 111–140
(2010)

11. Cambronero, M., Llana, L., Pace, G.J.: Timed contract compliance under event
timing uncertainty (2019, submitted for publication)

12. Camilleri, J.J., Haghshenas, M.R., Schneider, G.: A web-based tool for analysing
normative documents in English. In: SAC-SVT 2018, pp. 1865–1872. ACM (2018)

13. Camilleri, J.J., Schneider, G.: Modelling and analysis of normative documents.
Logical Algebraic Methods Program. 91, 33–59 (2017)

14. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

15. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

16. Dı́az, G., Cambronero, M.-E., Mart́ınez, E., Schneider, G.: Specification and verifi-
cation of normative texts using C-O Diagrams. Trans. Softw. Eng. 40(8), 795–817
(2014)

17. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for
tracking the normative state of contracts. Int. J. Cooperative Inf. Syst. 14(2–3),
99–129 (2005)

18. Fenech, S., Okika, J., Pace, G.J., Ravn, A.P., Schneider, G.: On the specification
of full contracts. In: FESCA 2009. ENTCS, vol. 253(1), pp. 39–55 (2009)

19. Fenech, S., Pace, G.J., Schneider, G.: Automatic conflict detection on contracts.
In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 200–214.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03466-4 13

20. Gabbay, D., van der Meyden, R., Horty, J., Parent, X., van der Torre, L.: The
Handbook of Deontic Logic. College Publications (2013)

21. Aranda Garćıa, A., Cambronero, M.-E., Colombo, C., Llana, L., Pace, G.J.: Run-
time verification of contracts with Themulus. In: de Boer, F., Cerone, A. (eds.)
SEFM 2020. LNCS, vol. 12310, pp. 231–246. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58768-0 13

22. Wright, G.H.V.: Deontic logic. Mind 60(237), 1–15 (1951)
23. Wright, G.H.V.: Deontic logic: a personal view. Ratio Juris 12, 26–38 (1999)
24. Goŕın, D., Mera, S., Schapachnik, F.: A software tool for legal drafting. In: FLA-

COS 2011, pp. 1–15. Elsevier (2011)
25. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in

temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76928-6 50

https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03466-4_13
https://doi.org/10.1007/978-3-030-58768-0_13
https://doi.org/10.1007/978-3-030-58768-0_13
https://doi.org/10.1007/978-3-540-76928-6_50
https://doi.org/10.1007/978-3-540-76928-6_50

98 S. Azzopardi et al.

26. Governatori, G., Rotolo, A.: Justice delayed is justice denied: logics for a temporal
account of reparations and legal compliance. In: Leite, J., Torroni, P., Ågotnes, T.,
Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp.
364–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22359-
4 25

27. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: ICAIL 2005, pp. 25–34 (2005)

28. Hansen, J.: The paradoxes of deontic logic: alive and kicking. Theoria 72(3), 221–
232 (2006)

29. Hashmi, M., Governatori, G., Wynn, M.T.: Modeling obligations with event-
calculus. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol.
8620, pp. 296–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09870-8 22

30. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: an abstract formal framework. Inf. Syst. Front. 18(3), 429–455 (2015).
https://doi.org/10.1007/s10796-015-9558-1

31. Henzinger, T.A.: It’s about time: real-time logics reviewed. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055640

32. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

33. Ho, H.-M., Ouaknine, J., Worrell, J.: On the expressiveness and monitoring of
metric temporal logic. CoRR, abs/1803.02653 (2018)

34. Kanger, S., Kanger, H.: Rights and parliamentarism. Theoria 32(2), 85–115 (1966)
35. Konur, S.: Real-time and probabilistic temporal logics: an overview. CoRR,

abs/1005.3200 (2010)
36. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)
37. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Softw. Tools Technol.

Transfer 1(1), 134–152 (1997)
38. Mart́ınez, E., Dı́az, G., Cambronero, M.-E., Schneider, G.: A model for visual

specification of E-contracts. In: IEEE SCC 2010, pp. 1–8. IEEE Computer Society
(2010)

39. McNamara, P.: Deontic logic. In: Gabbay, D.M., Woods, J., (eds.) Handbook of
the History of Logic, vol. 7, pp. 197–289. North-Holland Publishing (2006)

40. Meyer, J.-J., Dignum, F., Johannes, R.: The Paradoxes of Deontic Logic Revis-
ited: A Computer Science Perspective. Technical report UU-CS-1994-38, EWI-IS:
Department of Computer Science, University of Utrecht, Utrecht, September 1994

41. Moszkowski, B., Manna, Z.: Reasoning in interval temporal logic. In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 371–382. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4 374

42. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 13

43. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 20

44. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5 11

https://doi.org/10.1007/978-3-642-22359-4_25
https://doi.org/10.1007/978-3-642-22359-4_25
https://doi.org/10.1007/978-3-319-09870-8_22
https://doi.org/10.1007/978-3-319-09870-8_22
https://doi.org/10.1007/s10796-015-9558-1
https://doi.org/10.1007/BFb0055640
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/3-540-12896-4_374
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-00255-7_20
https://doi.org/10.1007/978-3-540-72952-5_11

On the Specification and Monitoring of Timed Normative Systems 99

45. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Logic Algebraic Program. 81(4), 458–490 (2012)

46. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25

	On the Specification and Monitoring of Timed Normative Systems
	1 Introduction
	2 Background
	2.1 Temporal Logics, Timed Logics and Complexity
	2.2 Formalisation of Normative Systems: Deontic Logics

	3 Interpreting Timed Norms
	4 Monitoring Norms and Timed Norms
	4.1 Monitorability
	4.2 Monitor Synthesis

	5 Conclusions
	References

