
Lu Feng
Dana Fisman (Eds.)

21st International Conference, RV 2021
Virtual Event, October 11–14, 2021
Proceedings

Runtime VerificationLN
CS

 1
29

74
Fo

rm
al

 M
et

ho
ds

Lecture Notes in Computer Science 12974

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Lu Feng • Dana Fisman (Eds.)

Runtime Verification
21st International Conference, RV 2021
Virtual Event, October 11–14, 2021
Proceedings

123

Editors
Lu Feng
University of Virginia
Charlottesville, VA, USA

Dana Fisman
Ben-Gurion University of the Negev
Be’er Sheva, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88493-2 ISBN 978-3-030-88494-9 (eBook)
https://doi.org/10.1007/978-3-030-88494-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4651-8441
https://orcid.org/0000-0002-6015-4170
https://doi.org/10.1007/978-3-030-88494-9

Preface

This volume contains the refereed proceedings of the 21st International Conference on
Runtime Verification (RV 2021), virtually held during October 11–14, 2021. The RV
series is a sequence of annual meetings that brings together scientists from both aca-
demia and industry interested in investigating novel lightweight formal methods to
monitor, analyze, and guide the runtime behavior of software and hardware systems.
Runtime verification techniques are crucial for system correctness, reliability, and
robustness; they provide an additional level of rigor and effectiveness compared to
conventional testing, and are generally more practical than exhaustive formal verifi-
cation. Runtime verification can be used prior to deployment, for testing, verification,
and debugging purposes, and after deployment for ensuring reliability, safety, and
security, for providing fault containment and recovery, and for online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events of established forums, including the
Conference on Computer-Aided Verification and ETAPS. The proceedings of RV from
2001 to 2005 were published in Electronic Notes in Theoretical Computer Science.
Since 2006, the RV proceedings have been published in Springer’s Lecture Notes in
Computer Science. Previous RV conferences took place in Istanbul, Turkey (2012);
Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid,
Spain (2016); Seattle, USA (2017); Limassol, Cyprus (2018); and Porto, Portugal
(2019). The conferences last year and this year were planned to take place in Los
Angeles, USA, but were held virtually due to COVID-19.

This year we received 40 submissions, 29 as regular contributions and 11 as short,
tool, or benchmark papers. Each of these submissions went through a rigorous
single-blind review process as a result of which most papers received four reviews and
all papers received at least three review reports. The committee selected 18 contribu-
tions, 11 regular and 7 short/tool/benchmark papers, for presentation during the con-
ference and inclusion in these proceedings. The evaluation and selection process
involved thorough discussions among the members of the Program Committee
(PC) and external reviewers through the EasyChair conference manager, before
reaching a consensus on the final decisions.

The conference featured three keynote speakers:

– Patricia Bouyer-Decitre, LSV, CNRS and ENS Paris-Saclay, France
– Radu Grosu, Technische Universität Wien, Austria
– Holger Hermanns, Saarland University, Germany

The conference also included one tutorial:

– “Formal Analysis of AI-Based Autonomy: From Modeling to Runtime Assurance”
by Hazem Torfah, Sebastian Junges, Daniel Fremont, and Sanjit A. Seshia.

RV 2021 is the result of the combined efforts of many individuals to whom we are
deeply grateful. In particular, we thank the PC members and sub-reviewers for their
accurate and timely reviewing, all authors for their submissions, and all attendees of the
conference for their participation. We thank Jyotirmoy V. Deshmukh and Dejan
Ničković, chairs of RV 2020, for their generous help answering our many questions,
and the RV Steering Committee for their support.

August 2021 Lu Feng
Dana Fisman

vi Preface

Organization

Program Committee

Houssam Abbas Oregon State University, USA
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Domenico Bianculli University of Luxembourg, Luxembourg
Borzoo Bonakdarpour Michigan State University, USA
Radu Calinescu University of York, UK
Chih-Hong Cheng DENSO AUTOMOTIVE Deutschland GmbH,

Germany
Jyotirmoy Deshmukh University of Southern California, USA
Georgios Fainekos Arizona State University, USA
Yliès Falcone Université Grenoble Alpes and Inria Grenoble, France
Chuchu Fan MIT, USA
Lu Feng (chair) University of Virginia, USA
Thomas Ferrère Imagination Technologies, UK
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Dana Fisman (chair) Ben-Gurion University, Israel
Adrian Francalanza University of Malta, Malta
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund NASA’s Jet Propulsion Laboratory, USA
Bettina Könighofer Technical University of Graz, Austria
Morteza Lahijanian University of Colorado, Boulder, USA
Axel Legay UCLouvain, Belgium
Martin Leucker University of Luebeck, Germany
Chung-Wei Lin National Taiwan University, Taiwan
David Lo Singapore Management University, Singapore
Leonardo Mariani University of Milano-Bicocca, Italy
Nicolas Markey IRISA, CNRS, Inria, and University of Rennes 1,

France
Laura Nenzi University of Trieste, Italy
Dejan Nickovic Austrian Institute of Technology, Austria
Gordon Pace University of Malta, Malta
Nicola Paoletti Royal Holloway, University of London, UK
Dave Parker University of Birmingham, UK
Doron Peled Bar Ilan University, Israel
Violet Ka I Pun Western Norway University of Applied Sciences,

Norway
Giles Reger University of Manchester, UK
Cesar Sanchez IMDEA Software Institute, Spain

Gerardo Schneider Chalmers University of Technology, Sweden
Julien Signoles CEA LIST, France
Oleg Sokolsky University of Pennsylvania, USA
Stefano Tonetta Fondazione Bruno Kessler, Italy
Hazem Torfah University of California, Berkeley, USA
Dmitriy Traytel University of Copenhagen, Denmark

Steering Committee

Howard Barringer University of Manchester, UK
Ezio Bartocci Technical University of Vienna, Austria
Saddek Bensalem Verimag and Université Grenoble Alpes, France
Yliès Falcone Université Grenoble Alpes and Inria Grenoble, France
Klaus Havelund NASA’s Jet Propulsion Laboratory, USA
Insup Lee University of Pennsylvania, USA
Martin Leucker University of Lübeck, Germany
Giles Reger University of Manchester, UK
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Oleg Sokolsky University of Pennsylvania, USA

Best Paper Award Committee

Martin Leucker University of Lübeck, Germany
Dave Parker University of Birmingham, UK
Doron Peled Bar Ilan University, Israel

Test of Time Award Internal Committee

Georgios Fainekos Arizona State University, USA
Lu Feng University of Virginia, USA
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Dana Fisman Ben-Gurion University, Israel
Insup Lee University of Pennsylvania, USA

Test of Time Award External Committee

Alan J. Hu University of British Columbia, Canada
Marta Kwiatkowska University of Oxford, UK
Fabio Somenzi University of Colorado Boulder, USA

viii Organization

Additional Reviewers

Attard, Duncan Paul
Azzopardi, Shaun
Baranov, Eduard
Bartolo Burlo, Christian
Baumeister, Jan
Benjamin, Thibaut
Ganguly, Ritam
Imrie, Calum
Jackson, John
Kallwies, Hannes
Kharraz, Karam
Kohn, Florian
Krish, Veena

Micheli, Andrea
Momtaz, Anik
Oliveira Da Costa, Ana
Paterson, Colin
Raszyk, Martin
Requeno, Jose Ignacio
Schwenger, Maximilian
Soueidi, Chukri
Stolz, Volker
Stümpel, Annette
Wang, Yue
Xuereb, Jasmine
Zolnai-Lucas, Jeremy

Organization ix

Contents

Regular Papers

Predicate Monitoring in Distributed Cyber-Physical Systems 3
Anik Momtaz, Niraj Basnet, Houssam Abbas, and Borzoo Bonakdarpour

Specifying Properties over Inter-procedural, Source Code Level
Behaviour of Programs . 23

Joshua Heneage Dawes and Domenico Bianculli

Into the Unknown: Active Monitoring of Neural Networks. 42
Anna Lukina, Christian Schilling, and Thomas A. Henzinger

Monitoring with Verified Guarantees . 62
Johann C. Dauer, Bernd Finkbeiner, and Sebastian Schirmer

On the Specification and Monitoring of Timed Normative Systems 81
Shaun Azzopardi, Gordon Pace, Fernando Schapachnik,
and Gerardo Schneider

Efficient Black-Box Checking via Model Checking with Strengthened
Specifications . 100

Junya Shijubo, Masaki Waga, and Kohei Suenaga

Neural Predictive Monitoring Under Partial Observability. 121
Francesca Cairoli, Luca Bortolussi, and Nicola Paoletti

A Compositional Framework for Quantitative Online Monitoring
over Continuous-Time Signals . 142

Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang

Nested Monitors: Monitors as Expressions to Build Monitors 164
Felipe Gorostiaga and César Sánchez

Diamont: Dynamic Monitoring of Uncertainty for Distributed
Asynchronous Programs. 184

Vimuth Fernando, Keyur Joshi, Jacob Laurel, and Sasa Misailovic

Assumption-Based Runtime Verification of Infinite-State Systems. 207
Alessandro Cimatti, Chun Tian, and Stefano Tonetta

Short Papers and Tool Papers

Differential Monitoring . 231
Fabian Muehlboeck and Thomas A. Henzinger

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 244
Jean-Christophe Filliâtre and Clément Pascutto

Gaussian-Based Runtime Detection of Out-of-distribution Inputs
for Neural Networks . 254

Vahid Hashemi, Jan Křetínský, Stefanie Mohr, and Emmanouil Seferis

Parallel and Multi-objective Falsification with SCENIC and VERIFAI 265
Kesav Viswanadha, Edward Kim, Francis Indaheng, Daniel J. Fremont,
and Sanjit A. Seshia

A Theoretical Framework for Understanding the Relationship Between Log
Parsing and Anomaly Detection . 277

Donghwan Shin, Zanis Ali Khan, Domenico Bianculli,
and Lionel Briand

Specification and Runtime Verification of Temporal Assessments
in Simulink . 288

Akshay Rajhans, Anastasia Mavrommati, Pieter J. Mosterman,
and Roberto G. Valenti

PerceMon: Online Monitoring for Perception Systems 297
Anand Balakrishnan, Jyotirmoy Deshmukh, Bardh Hoxha,
Tomoya Yamaguchi, and Georgios Fainekos

Tutorial Paper

Formal Analysis of AI-Based Autonomy: From Modeling
to Runtime Assurance . 311

Hazem Torfah, Sebastian Junges, Daniel J. Fremont,
and Sanjit A. Seshia

Author Index . 331

xii Contents

Regular Papers

Predicate Monitoring in Distributed
Cyber-Physical Systems

Anik Momtaz1, Niraj Basnet2, Houssam Abbas2,
and Borzoo Bonakdarpour1(B)

1 Michigan State University, East Lansing, MI 48824, USA
borzoo@msu.edu

2 Oregon State University, Corvallis, OR 97331, USA

Abstract. This paper solves the problem of detecting violations of pred-
icates over distributed continuous-time and continuous-valued signals in
cyber-physical systems (CPS). We assume a partially synchronous set-
ting, where a clock synchronization algorithm guarantees a bound on
clock drifts among all signals. We introduce a novel retiming method that
allows reasoning about the correctness of predicates among continuous-
time signals that do not share a global view of time. The resulting prob-
lem is encoded as an SMT problem and we introduce techniques to solve
the SMT encoding efficiently. Leveraging simple knowledge of physical
dynamics allows further runtime reductions. We fully implement our app-
roach on two distributed CPS applications: monitoring of a network of
autonomous ground vehicles, and a network of aerial vehicles. The results
show that in some cases, it is even possible to monitor a distributed CPS
sufficiently fast for online deployment on fleets of autonomous vehicles.

1 Introduction

As the environment we live in develops, so does our dependency on safety-critical
cyber-physical systems (CPS), along with the need for verifying their correctness.
A particularly critical class of CPS includes software applications distributed
over networked nodes, which we will refer to as agents. Examples include fleets
of autonomous vehicles, network of sensors in infrastructures, health-monitoring
wearables, and networks of medical devices. While the literature of distributed
computing is decades old, and many important problems have been solved in
the context of discrete-event systems, we currently lack a solid understanding
of distributed CPS, as they are differentiated by three characteristics. First,
their signals are analog ; these signals contain an uncountable infinity of events
which makes existing reasoning techniques from the discrete settings inapplica-
ble in most cases. The applications we target, such as those above, care about
continuous-time behavior: for instance, it is not enough to say that a voltage
does not spike at sample times. Thus, adjusting the signal sampling rate does

This work is sponsored in part by the United States NSF FMitF-1917979 and CCF-
2118356 awards.

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-88494-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_1

4 A. Momtaz et al.

nothing to address the need for reasoning about the analog signals. Second, each
agent in these CPS has a local clock that drifts from other agents’ clocks; thus,
the notion of time, taken for granted in centralized systems, must be revised,
since it is unclear when exactly events are sequential and concurrent. In fact,
it is not clear how continuous events in different processes obey the happened
before relation [21], and how one can reason about the order of occurrence of
continuous events. Robust controllers do not address the issues of asynchrony in
time. Third, CPS signals obey physical laws and dynamics. Even a rough knowl-
edge of these dynamics might be leveraged to reason about distributed signals
and predict their behavior, thus increasing efficiency. In this paper, we take the
first step towards rigorous, automated reasoning about distributed CPS whose
correctness and integrity is vital to guaranteeing the safety of the environment
they operate in. A popular and practical approach to reason about the health
of CPS is to monitor them with respect to their formal specification, and detect
violations. Currently, we lack techniques for monitoring CPS where analog sig-
nals are produced by distributed agents that do not share a global clock (see
the related work in Sect. 7). Lack of synchrony in particular creates significant
challenges, as the monitor has to reason about signal values at local times of
different agents, which may lead to inconsistent monitoring verdicts. This diffi-
culty is compounded by the fact that agents typically communicate with each
other, which imposes additional constraints on event ordering.

Motivating Example. We illustrate the urgent need for monitoring distributed
CPS by a critical application in automated air traffic control (AATC). The mar-
ket for unmanned aerial vehicles (UAVs) is witnessing explosive growth [18].
The Federal Aviation Administration (FAA) in the United States is envision-
ing a federated framework, in which UAVs that collaborate in monitoring global
air safety properties are rewarded with faster free-flight paths to their desti-
nations [14,15]. To enable this federated framework, analog signals like UAV
position and velocity must be monitored by the ATC tower software to see
whether they violate global instantaneous safety properties, or predicates. These
predicates are Boolean expressions defined over the simultaneous states of the
different CPS agents, like mutual separation between agents, conditional speed
limits, and minimal energy storage. These predicates must be evaluated on the
global state, which is the state of all UAVs combined at the same moment in
time. However, the absence of a perfect shared clock among all UAVs may result
in a situation where UAV1’s clock indicates t = 5 and UAV2’s clock indicates
t = 5.2, at the same physical ‘real’ moment. Equivalently, the same value on
both clocks might mean different physical moments. If the central ATC moni-
tor uses these two states to evaluate whether the predicate is violated, it might
lead to false negatives (i.e., missing violations) or false positives (i.e., declaring
a violation when none exists).

The UAV example has two characteristics that are present in many other
distributed CPS: first, while it is generally impossible to guarantee perfect
continuous-time synchrony, clock synchronization algorithms such as NTP [23]
ensure that the drift among local clocks remains within some bounds. Secondly,
it is often the case that the central monitor knows some bounds on the UAV

Predicate Monitoring in Distributed Cyber-Physical Systems 5

dynamics, like velocity limits. In this example, the ATC tower itself would know
the UAVs’ speed limits. We leverage these two characteristics in developing our
solution.

1.1 Our Solution and Contributions

In this paper, we propose a sound and complete solution to the problem of
predicate monitoring for distributed CPS. Our contributions are as follows:

1. a Satisfiability Modulo Theory (SMT) based algorithm for centralized moni-
toring of distributed analog signals for predicate violations, augmented with
a clock synchronization algorithm that guarantees bounded skew ε between
all local clocks, using the classic happened-before relation [21];

2. a retiming technique that borrows the notion of retiming functions from
stochastic processes;

3. a lightweight mechanism for incorporating bounds on system dynamics to
reduce monitoring overhead;

4. an analysis of the sensitivity of monitoring overhead to the skew bound and
the amount of communication between agents, and

5. a technique for parallelizing the monitoring algorithm to improve scalability.

We have fully implemented our techniques and report results of experiments
on monitoring a network of autonomous ground vehicles (real-world experiment)
and aerial vehicles (in simulation). It should be mentioned that due to using a
central monitor, naturally the system is susceptible to a single point of failure.
This paper is concerned in developing the proposed theory, not account for fault
tolerance. We make the following observations. First, although our approach
is based on SMT solving, it can be employed for online monitoring when the
monitor is invoked with appropriate frequency (i.e., the monitoring overhead
does not surpass the normal operation time of the system). Second, incorporating
the knowledge of system dynamics is highly beneficial in reducing the overhead
of monitoring. In some cases it leads to a speedup by one order of magnitude.
Finally, monitoring overhead is independent of the clock skews when practical
clock synchronization protocols (e.g., NTP and PTP) are applied.

2 Model of Computation

We first set some notation. The set of reals is R, the set of non-negative reals is
R+, and the set of positive reals is R

∗
+. The integer set {1, . . . , N} is abbreviated

as [N]. Global time values (kept by an imaginary global clock) are denoted by
χ, χ′, χ1, χ2, etc., while the letters t, t′, t1, t2, s, s′, s1, s2, etc. denote local clock
values specific to given agents which will always be clear from the context.

2.1 Signal Model

In this section, we introduce our signal model, i.e., our model of the output signal
of an agent. Monitoring can be done regardless of the dynamics of the agents.
However, as we see later, a rough knowledge of the dynamics can be helpful.

6 A. Momtaz et al.

Definition 1. An output signal (of some agent A) is a function x : [a, b] → R
d,

which is right-continuous, left-limited, and is not Zeno. Here, [a, b] is an interval
in R+, and will be referred to as the timeline of the signal. �

Without loss of generality, we will henceforth assume that x is one-dimensional,
i.e., d = 1. Right-continuity means that at all t in its support, lims→t+ x(s) =
x(t). Left-limitedness means the function has a finite left-limit at every t in its
support: lims→t− x(s) < ∞. Not being Zeno means that x has a finite number
of discontinuities in any bounded interval in its support. This ensures that the
signal cannot jump infinitely often in a finite amount of time. A discontinuity in
a signal x(·) can be due to a discrete event internal to agent A (like a variable
updated by software), or to a message sent to or received from another agent A′.

We assume a loosely coupled system with asynchronous message passing.
Specifically, the system consists of N reliable agents that do not fail, denoted
by {A1, A2, . . . , AN}, without any shared memory or global clock. The output
signal of agent An is denoted by xn, for 1 ≤ n ≤ N . Agents can communicate
via FIFO lossless channels. The contents of a message are immaterial to our
purposes. We will need to refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a theoretical object used in definitions and
theorems, and is not available to the agents. We make two assumptions:

– (A1) Partial synchrony. The local clock (or time) of an agent An can be
represented as an increasing function cn : R+ → R+, where cn(χ) is the value
of the local clock at global time χ. Then, for any two agents An and Am, we
have:

∀χ ∈ R+.|cn(χ) − cm(χ)| < ε

with ε > 0 being the maximum clock skew. The value ε is assumed fixed and
known by the monitor in the rest of this paper. In the sequel, we make it
explicit when we refer to ‘local’ or ‘global’ time.

– (A2) Deadlock-freedom. The agents being analyzed do not deadlock.

Assumption (A1) is met by using a clock synchronization algorithm, like
NTP [23], to ensure bounded clock skew among all agents.

In the discrete-time setting, an event is a value change in an agent’s variables.
We now update this definition for the continuous-time setting of this paper.
Specifically, in an agent An, an event is either a (i) a pair (t, xn(t)), where t is
the local time (i.e., returned by function cn); (ii) a message transmission, or (iii)
a message reception. There is no assumption on the messages that the agents
send to each other. Messages that are sent to the monitor are timestamped by
their respective local clocks. Since the agents evolve in continuous time and
their output signals are defined for all local times t, a message transmission
or reception always coincides with a signal value; i.e., if An receives a message
at local time t, its signal has value xn(t) at that time. Thus, without loss of
generality, every event will be represented as a (local time, value) pair (t, xn(t)),
often abbreviated as en

t (n and t will be omitted when irrelevant).

Predicate Monitoring in Distributed Cyber-Physical Systems 7

A distributed signal is modeled as a set of events partially ordered by Lam-
port’s happened-before (�) relation [21], extended by our assumption (A1) on
bounded clock skew among all agents. Namely, let

E = {en
t | n ∈ [N] ∧ In ⊆ R+ ∧ t ∈ In}

denote a set of events, where t is local time in agent An, and set In is a bounded
nonempty interval. The following defines a continuous-time distributed signal
under partial synchrony.

Definition 2. A distributed signal on N agents is a tuple (E,�), where E is
a set of events obeying the restriction: for every n ∈ [N]. The relation � is a
relation between events such that:

(1) In every agent An, all events are totally ordered, that is,

∀t, t′ ∈ In : (t < t′) → (en
t � en

t′).

(2) If e is a message send event in an agent and f is the corresponding receive
event by another agent, then we have e � f .

(3) For any two events en
t , em

t′ ∈ E, if t + ε < t′, then en
t � em

t′ .
(4) If e � f and f � g, then e � g. �

1.5

1

2.3

3

2.94

3.1

message

C

A1 A2

y t

s

x

Fig. 1. Two partially synchronous con-
tinuous concurrent timelines with ε =
0.1, and corresponding signals x and y.
(Solid dot indicates signal value at dis-
continuity). C is a consistent cut but
C′ is not.

Figure 1 shows an example. The classi-
cal case of complete asynchrony is recov-
ered by setting ε = ∞. The restriction
on In is necessary in the continuous-time
setting and will be re-visited in the next
section.

Because the agents are only synchro-
nized to within an ε, it is not possi-
ble to actually evaluate all signals at the
same moment in global time. The notion
of consistent cut and its frontier, defined
next, capture possible global states: that
is, states that could be valid global states
(see Fig. 1).

Definition 3 (Consistent Cut). Given a distributed signal (E,�), a subset
of events C ⊆ E is said to form a consistent cut if and only if when C contains
an event e, then it contains all events that happened-before e. Formally,

∀e ∈ E . (e ∈ C) ∧ (f � e) ⇒ f ∈ C.

�

From this definition and Definition 2. (3) it follows that if em
t′ is in C, then C

also contains every event en
t s.t. t + ε < t′.

8 A. Momtaz et al.

A consistent cut C can be represented by its frontier front(C) =(
e1t1 , . . . , e

N
tN

)
, in which each en

tn is the last event of agent An appearing in C.
Formally:

∀n ∈ [N] . en
tn ∈ C and tn = max{t ∈ In | ∃en

t ∈ C}
Example 1. Figure 1 shows two timelines, generated by two agents executing
concurrently. Every moment in each timeline corresponds to an event en

t , where
n ∈ {1, 2}. An arrow between the timelines indicates a message transmission and
reception. Thus, we may see that the following hold: e11.5 � e12.3, e21 � e23.1,
and e11.5 � e21. Assuming ε = 0.1, it comes that all events below (thus, before)
the solid arc form a consistent cut C with frontier front(C) = (e13, e

2
2.94), On the

other hand, all events below the dashed arc do not form a consistent cut since
e12.3 � e23.1 and e23.1 is in the set C ′, but e12.3 is not in C ′.

2.2 Signal Transmission to the Monitor

Communication between nodes necessarily involves sampling the analog signal,
transmitting the samples, and reconstructing the signal at the receiving node.
Our objective is to monitor the reconstructed analog signals. This is different
from monitoring a discrete-time signal consisting of the samples – the appli-
cations we target actually care about the value of the signal between samples,
and potential violations they reveal. Methods for signal transmission, including
sampling and reconstruction, are standard in Communication theory. Errors due
to sampling and reconstruction (say, because of bandwidth limitations) can be
accounted for by strictifying the STL formula using the methods of [16]. The
choice of reconstruction algorithm is application-dependent and follows from
domain knowledge. In this paper’s experiments, we assume that every output
signal xn is reconstructed as piece-wise linear between the samples. We empha-
size that other reconstructions, like cubic splines, can also be used with simple
modification to our algorithms at the cost of additional runtime, and that the
choice of reconstruction is orthogonal to our techniques and this paper’s objec-
tives. Since we assume the agents do not deadlock, this transmission happens in
segments of length T : at the kth transmission, agent An transmits xn|[(k−1)T,kT],
the restriction of its output signal to the interval [(k − 1)T, kT] as measured
by its local clock. In the rest of this paper, we refer exclusively to the signal
fragments received by the monitor in a given transmission.

We now re-visit the restriction placed on In in Definition 2, namely, that it
is a non-empty bounded interval. Non-emptiness models that computation does
not deadlock. That In is an interval expresses that no events are missed, or
equivalently, that signal reconstruction is perfect at the monitor. The restriction
that it be bounded models the above monitoring setup: the monitor is only ever
dealing with bounded signal fragments xn|[(k−1)T,kT], so

In = [(k − 1)T, kT] (1)

for every agent at the kth transmission, measured in local time. By the bounded
skew assumption, we have:

Predicate Monitoring in Distributed Cyber-Physical Systems 9

Lemma 1. For any two agents An, Am, |min In − min Im| ≤ ε and |max In −
max Im| ≤ ε. �

3 The Predicate Monitoring Problem

Many system requirements are often captured via predicates (e.g., invariants). A
predicate φ is a global Boolean-valued function over the signal values of agents.
For instance, φ(x1, x2) = (x1 > 0) ∧ (ln(x2) < 3) is a predicate on two signals
that evaluates to true when x1 > 0 and ln(x2) < 3, otherwise false.

Because the agents are partially synchronized to within an ε, it is not possible
to actually evaluate all signals at the same moment in global time. However, as
noted above, the frontier of a consistent cut gives us a possible global state.

Definition 4 (Distributed satisfaction). Given a distributed signal (E,�)
over N agents, and a predicate φ over the N agents, we say that (E,�) satisfies
φ iff for all consistent cuts C ⊆ E with

front(C) =
(

(t1, x1(t1)), . . . , (tN , xN (tN))
)

we have φ
(
x1(t1), x2(t2), . . . , xN (tN)

)
= true. We write this as (E,�) |= φ. �

Thus, we formally define the problem as follows.

Problem Statement

Continuous-Time Monitoring of Distributed CPS. Given a dis-
tributed signal (E,�) and a predicate φ over N agents, determine
whether (E,�) |= φ.

When a distributed signal (E,�) does not satisfy a predicate φ, we say that
(E,�) violates φ and write (E,�) �|= φ. In this paper, we want to detect whether
there exists a consistent cut C ⊆ E, such that (E,�) �|= φ.

The main challenge in monitoring distributed signals is that the monitor
has to reason about signals that are subject to time asynchrony. For instance,
consider two signals x1 and x2 and the case where x1(2) = 5, x2(3) = 1,
φ(x1, x2) = (x1 > 4) ∧ (x2 < 0), and ε = 2 so that time points 2 and 3 form a
consistent cut. In this case, since the above signal values are at local times within
the possible clock skew, one has to (conservatively) consider that the predicate
is violated. In the next section, we present our solution to the problem.

4 SMT-Based Monitoring Algorithm

In a nutshell, our solution has the following features:

– Central monitor. We assume that there is a central monitor that solves,
at regular intervals, the monitoring problem described in Sect. 3.

10 A. Momtaz et al.

– Signal retiming. As signals are measured using their local clocks, the mon-
itor should somehow align them to detect possible violations of the predicate.
To this end, we propose a retiming technique that establishes the happened-
before relation in the continuous-time setting, and stretches or compacts sig-
nals to align them with each other within the ε clock skew bound.

– SMT encoding. We transform the monitoring decision problem into
an SMT-solving problem, whose components (like input signals and the
happened-before relation) are modeled as SMT entities and constraints.

4.1 Retiming Functions

Our signal model is continuous-time, that is, the signals are maps from R+ to
R+. Therefore, to model the approximate re-synchronizing action of the monitor,
we use a retiming function.

Definition 5 (Retiming functions). A retiming function, or simply retim-
ing, is an increasing function ρ : R+ → R+. An ε-retiming is a retiming function
such that: ∀t ∈ R+ : |t − ρ(t)| < ε. Given a distributed signal (E,�) over N
agents and any two distinct agents Ai, Aj, where i, j ∈ [N], a retiming ρ from
Aj to Ai is said to respect � if we have (ei

t � ej
t′) ⇒ (t < ρ(t′)) for any two

events ei
t, e

j
t′ ∈ E. �

y

t s

x

y ◦ id

x

t

x t

y ◦ ρ1

x

t

y ◦ ρ2

(a) (b)

(d) (e)

(f)

(c)
sss

t t t

id ρ1

ρ2

Fig. 2. Predicate violation between
two signals x and y measured using
partially synchronized clocks t and s.

Figure 2 shows examples of retimings
and how they relate to predicate moni-
toring. To detect predicate violation, we
must first retime y to the t axis via a
retiming map ρ. (c) shows three differ-
ent retimings, including the identity. (d)–
(e) show the retimed y. For the predicate
x > y, (e)-(f) show no violations, but (d)
does. The conservative monitoring answer
is that the predicate is violated. An ε-
retiming ρ maps R+ to itself, but it is
easy to see that the restriction of ρ to a
bounded interval I is an increasing func-
tion from I to ρ(I) that respects the con-
straint |t − ρ(t)| < ε for all t ∈ I. Thus,
in what follows we restrict our attention
to the action of ε-retimings on bounded
intervals.

We now state and prove the main technical result of this paper, which relates
the existence of consistent cuts in distributed signals to the existence of retimings
between the agents’ local clocks.

Proposition 1. Given a predicate φ and distributed signals (E,�) over N
agent, there exists a consistent cut C ⊆ E that violates φ if and only if there

Predicate Monitoring in Distributed Cyber-Physical Systems 11

exists a finite A1-local clock value t and N − 1 ε-retimings ρn : In → I1 that
respect �, 2 ≤ n ≤ N , such that:

φ
(
x1(t), x2 ◦ ρ−1

2 (t), . . . , xN ◦ ρ−1
N (t)

)
= false (2)

and such that ρ−1
m ◦ρn : In → In is an ε-retiming for all n �= m. Here, ‘◦’ denotes

the function composition operator. �

Proof. (⇐) Suppose that such retimings exist. Define the local time values
t1 := t, tn = ρ−1

n (t), 2 ≤ n ≤ N , and the set C = {en
t | t ≤ tn}. By the

construction of C and the fact that the retimings respect �, it holds that if
e ∈ C and f � e then f ∈ C. For every n,m ≥ 2, n �= m, it holds that
tm = ρ−1

m (ρn(tn)) so |tn − tm| ≤ ε. Thus C is a consistent cut with frontier
(en

tn)N
n=1 that witnesses the violation of φ.

(⇒) Suppose now that there exists a consistent cut C with frontier:

front(C) =
(

(t1, x1(t1)), . . . , (tN , xN (tN))
)

that witnesses violation of φ. We need the following facts.

Fact 1. For every two events en
tn and em

tm in the frontier of a consistent cut, we
have |tn − tm| ≤ ε. Indeed, since en

tn ∈ front(C), we have em
s ∈ C for all s s.t.

s + ε ≤ tn. Thus, tm ≥ s for all such s and so tm ≥ tn − ε. By symmetry of the
argument, tn ≥ tm − ε holds as well.

Fact 2. Given intervals [a, b] and [c, d] s.t. |a − c| ≤ ε and |b − d| ≤ ε, the map
L : [a, b] → [c, d] defined by L(t) = c + d−c

b−a (t − a) is a linear ε-retiming. This is
immediate.

Suppose first that there are no message exchanges. For 2 ≤ n ≤ N , we define
the retiming ρn : In → I1 in two pieces. First, set ρn(tn) = t1. By preceding
lemma, |tn − t1| ≤ ε. Write I1 = [a, b] and In = [c, d] for notational simplicity
in this proof. Call a pair of intervals that satisfies the hypothesis of Fact 2 an
admissible pair. Then, the following pairs are clearly admissible by Lemma 1:
[a, t1] and [c, tn], and [t1, b] and [tn, d]. Thus, there exist two linear retimings
Ln : [a, t1] → [c, tn] and L′

n : [t1, b] → [tn, d], and we can define a piece-wise ρn:
ρn(t) = Ln(t) on c ≤ t ≤ tn and ρn(t) = L′

n(t) on tn ≤ t ≤ d. It is easy to
establish that ρn is an ε-retiming.

It remains to show that ρ−1
n ◦ ρm : Im = [f, g] → [c, d] is also an ε-retiming.

This too can be established in parts, first over [f, tm] then over [tm, g], using
the same arguments as above and exploiting the linearity of these retimings. For
instance, if we write αn for the slope of Ln, then over [f, tm]

ρ−1
n (ρm(s)) = L−1

n (Lm(s)) = L−1
n (a + αm(s − c))

=
1

αn
[a + αm(s − c)] + f − a/αn = f +

g − f

d − c
(s − c)

which is a linear ε-retiming by Fact 2.

12 A. Momtaz et al.

If there are message exchanges, the above argument still applies but over
a more fine-grained division of the timelines In obtained by partitioning each
timeline at message transmission times. We sketch the proof: for the admissible
pair I1 = [a, b] and In = [c, d], suppose the first message is sent from An to A1 at
local time s < tn and is received at local time r < t1. Define t(s) := min(s+ε, r).
Then the pair [a, t(s)], [c, s] is admissible. Repeat this process for all messages.
We end up with a collection of admissible pairs that can be retimed to each
other, as above, without violating the � relation. These are concatenated to
yield the desired retiming ρn. �

Thus, finding a consistent cut that violates the predicate can be achieved
by finding such retimings. The proof of Proposition 1 further shows that the
retimings can always be chosen as piece-wise linear (rather than any increasing
function), which yields significant runtime savings in the SMT encoding in the
next section.

Remark 1. An interesting consequence of Fact 2 in the proof is that it is enough
to use piece-wise linear retimings. This results in the following concrete problem.

Concrete Problem Statement

Given ε > 0, a distributed signal (E,�) over N agents, and a predicate φ
over the N agents, find N −1 ε-retiming functions ρ2, . . . , ρN that satisfy
the hypotheses of Prop. 1 and s.t.

φ
(
x1(t1), x2(t2), . . . , xN (tN)

)
= false (3)

4.2 SMT Formulation

We solve the monitoring problem by transforming it into an instance of satis-
fiability modulo theory (SMT). Specifically, we ask whether there exists N − 1
retimings, such that (3) holds; equivalently, whether there exists a consistent cut
that witnesses satisfaction of ¬φ.

Without loss of generality, we start with our encoding of two agents, A1 and
A2 (shown in Fig. 1). A1 outputs signal x supported over the bounded timeline
I1, which is discretized to D1 ⊂ I1 and sent to the monitor. Similarly, A2 outputs
signal y supported over the bounded timeline I2, which is discretized to D2 ⊂ I2
and sent to the monitor. D1 and D2 are finite. Let δk > 0 be the sampling period
of agent Ak, so two consecutive elements of Dk differ by δk, k ∈ {1, 2}.

Consider further that A2 transmits a message at local time t1 and it is
received by A1 at local time t2, and that A1 sends a message at local time
t3 which is received by A2 at local time t4. The distributed signal violates the
predicate iff the following SMT problem returns SAT.

SMT Entities. In our encoding, the entities are the retimings ρn included
as uninterpreted functions (the solver will interpret), signals x and y, intervals

Predicate Monitoring in Distributed Cyber-Physical Systems 13

I1 and I2, real numbers t, s, s′, t1, t2, t3, and t4. All these entities have been
defined in the previous sections. The following quantities are all constants in the
encoding, since they are known to the monitor: the sampling time sets Dk and
sampling periods δk, the sampled values {x(ti) | ti ∈ D1} and {y(si) | si ∈ D2},
and the message transmission and reception local times.

SMT Constraints. The encoding is a conjunction of the following constraints:

– (Predicate violation) The first constraint ‘finds’ local times t and s at which
predicate φ is violated (upto ε-synchrony):

∃ t ∈ I1.∃s ∈ I2. (4a)
(
∃t− ∈ D1. t− ≤ t ≤ t− + δ1

)
∧ (4b)

(
∃s− ∈ D2 . s− ≤ s ≤ s− + δ2

)
∧ (4c)

(
ρ(s) = t

)
∧ (4d)

(
¬φ(x(t−), y(s−))

)
(4e)

Equation (4b) finds the time sample t− such that x(t) = x(t−): this is the
result of our assumption that signals are piece-wise constant. Equation(4c)
does the same for y. Equation (4d) specifies that s is retimed to t: this is
what guarantees that (x(t), y(s)) is a possible global state as per Propo-
sition 1. Equation (4e) checks violation of the predicate at (x(t), y(s)) =
(x(t−), y(s−)).

– (Valid retiming) Eq. (5) ensures that ρ is a valid ε-retiming from I2 to I1:

∀s ∈ I2. ∃t ∈ I1. (ρ(s) = t) ∧ (|t − s| < ε) (5)

and Eq. (6) ensures that the retiming function is increasing:

∀s ∈ I2. ∀s′ ∈ I2.
(
s < s′ ⇒ ρ(s) < ρ(s′)

)
(6)

– (Happened-before) Eq. (7) enforces the happened-before relation for message
transmissions: (

ρ(t1) < t2

)
∧

(
t3 < ρ(t4)

)
(7)

– (Inverse retiming) When there are more than 2 agents, we must also encode
the constraint that for all n �= m, ρ−1

m ◦ ρn is an ε-retiming. Thus, for all
n �= m, letting fm be the uninterpreted function that represents the inverse
of the uninterpreted ρm, we add

∀t ∈ In · fm(ρn(t)) = t (8)

in addition to the analogs of Eqs. (6) and (5) for fm ◦ ρn.

14 A. Momtaz et al.

Other Signal Models. If output signals were piece-wise linear, say, Eq. (4e)
would be modified accordingly:

φ

(
x(t−) +

x(t− + δ1) − x(t−)
δ1

(t − t−), (9)

y(s−) +
y(s− + δ2) − y(s−)

δ2
(s − s−)

)
= false

x

y

x(t−) = 1 x(t− + δ1) = 53

y(s−) = 2 y(s− + δ2) = 43

Fig. 3. Piece-wise Linear
Interpolation

Our choice of signal models is limited by the SMT
solver: it must be able to handle the corresponding
interpolation equations, like the piece-wise linear inter-
polation in Eq. (9). As an example, in Fig. 3, let x and
y be two signals, where the violating predicate φ to be
monitored is x(t) = y(s). Let ρ be a retiming of y on
x, such that ρ(s−) = t− and ρ(s− + δ2) = t− + δ1.
It can be observed that although the discretized sig-
nal samples do not violate φ, due to the signals being
piece-wise linear, it is easy to identify a violation at time t and s on signals x
and y respectively, where x(t) = 3, y(s) = 3 and ρ(s) = t.

It is worth mentioning that restricting the SMT search to piece-wise linear
retimings results in a significant decrease in run time, compared to the approach
where the SMT is tasked with determining an interpolation. For example, for
two UAVs with ε = 1 ms over 5s-long signals, at segment count 5, the search
for a general retiming requires 3.42 s, whereas searching for a piece-wise linear
retiming requires only 1.01 s. Since, by Remark 1, there is no loss of generality in
this restriction, from this point, all the reported experiments are obtained using
the piece-wise linear retiming approach.

Remark 2. (i) ρ−1
m ◦ρn respects � automatically so it is not necessary to encode

that explicitly. (ii) Because we can restrict the SMT search to piece-wise linear
retimings (see remark following proof of Proposition 1), constraint (8) can be
simplified, namely, the expression for the inverse can be hard-coded. We don’t
show this to maintain clarity of exposition.

5 Exploiting the Knowledge of System Dynamics

y
t

s

x
rate bound

y ≤ 0.5

x ≥ 3

rate bound

τ1

τ2

Fig. 4. Leveraging dynamics.

Physical processes in a CPS follow the laws of
physics. A runtime monitor can leverage this
knowledge of the CPS dynamics to make moni-
toring more efficient.

We explain our idea by the following exam-
ple (see Fig. 4). From knowing the rate bound
|ẋ| ≤ 1 (shown by a dashed line), the monitor
concludes that the earliest x can satisfy the atom
x ≤ 3 is τ1. Similarly for y. Given that τ1 > τ2,
the monitor discards, roughly speaking, the frag-
ment [0, τ2] from each signal and monitors the

Predicate Monitoring in Distributed Cyber-Physical Systems 15

remaining pieces. Note that x(0) = 1 and y(0) = 2. Consider the predicate:
φ = ¬(a ∨ b), where a := x ≥ 3 and b := y ≤ 0.5. Let a and b be atoms of
predicate φ. There are 3 Boolean assignments to atoms a and b that falsify the
predicate. Let us fix one such assignment, a = b = true. If the monitor knows a
uniform bound on the rate of change ẋ of x, say ∀t.|ẋ(t)| ≤ 1, then it can infer
that a = true cannot hold before τ1 = 2 (local time). Similarly, if the monitor
knows that |ẏ| ≤ 3, then b = true cannot hold before τ2 = 0.5 (local time).
Taking into account the ε-synchrony, the monitor can limit itself to monitoring
x|[2,T] (the restriction of x to [2, T]) and y|[2−ε,T+ε].

Algorithm 1: Dynamics-aware monitoring.
Data: Distributed signal (E, �), ε, predicate

φ, bounds |ẋn| ≤ bn, n ∈ [N]
Result: (E, �) |= φ

1 Set tn = min In, n ∈ [N]
2 while not done do
3 Get next violating assignment σ to the

atoms of φ
4 if there are no more violating assignments

then
5 done
6 else
7 for every atom a in φ do
8 if σ(a) = true then
9 τn = min{τ | x(tn + τ) ≥

va}, n ∈ [N]

10 else
11 τn = min{τ | x(tn + τ) <

va}, n ∈ [N]

12 end
13 Set τ = maxn τn and m = argmaxnτn

14 SMT-monitor the distributed signal Eσ

made of the restrictions
xn|[tn+τ−ε,max In], n �= m and
xm|[tm+τ,max Im]

15 If SAT, done.

16 end

17 end

Now, if this yields UNSAT
in the SMT instance, we
select the next Boolean
assignment (in terms of
atoms a and b) that falsi-
fies predicate φ (e.g., a =
false and b = true), derive
the useful portion of sig-
nals x and y, and repeat
the same procedure until the
answer to the SMT instance
is affirmative or all falsi-
fying Boolean assignments
are exhausted. Of course,
this requires exploring all
such assignments to atoms
of the predicate, but since
we expect the number of
atoms in realistic predicates
to be relatively small, the
exhaustive nature of falsi-
fying Boolean assignments
will not be a bottleneck. We
generalize this idea to N
agents and arbitrary pred-
icates in Algorithm 1. We
assume without loss of gen-
erality that every atom a
that appears in φ is of the
form xn ≥ va for some n and va ∈ R. A Boolean assignment is a map σ from
atoms to {false, true}, and a violating assignment is one that makes the pred-
icate false. Thus, given a violating assignment σ, for every atom a, a = σ(a)
iff xn ≥ va (if σ(a) = true) or xn < va (if σ(a) = false). Obvious modification
to Algorithm 1 allows the monitor to take advantage of knowing different rate
bounds at different points along the signals.

16 A. Momtaz et al.

6 Case Studies and Evaluation

In this section, we evaluate our technique using two case studies on networks of
autonomous ground and aerial vehicles.

6.1 Case Studies

Network of Ground Autonomous Vehicles. We collected data from two
1/10th-scale autonomous cars competing in a race around a closed track. Each
car carries a LiDAR for perceiving the world, and uses Wi-Fi antennas to com-
municate with the central monitor. Each car is running a model predictive con-
troller to track its racing line and RRT to adjust its path. The trajectory data is
sampled at 25 Hz. In this application, the useful signal length to monitor is 1–2 s,
as this is the control horizon (i.e., the controller repeatedly plans the next 1–2 s).
Thus, in Eq. (1), T = 1 − 2 s. A reasonable range for ε is interval [1, 5]ms, guar-
anteed by ROS clock synchronization based on NTP. Unless otherwise indicated,
we monitor the predicate d(x1, x2) > δ ∧ d(x1, x2) ≤ Δ.

Network of UAVs. We use Fly-by-Logic [27], a path planner software for
UAVs, to simulate the operation of two UAVs performing various reach-avoid
missions. In a reach-avoid mission, each UAV must reach a goal within a deadline,
and must avoid static obstacles as well as other UAVs. The path planner uses
a temporal logic robustness optimizer to find the most robust trajectory. The
trajectories are sampled at 20 Hz. In this application, the useful signal length
to monitor is around 2 s, as this is the UAV’s ‘reaction time’ (depending on
current speed). Thus, in Eq. (1), T � 2s. A reasonable range for ε is again 1–
5 ms, guaranteed by ROS. Unless otherwise indicated, we monitor the predicate
d(x1, x2) ≥ δ.

Note that the SMT solver’s effort is mostly spent on finding retiming, instead
of predicate complexity. Thus, we pick simpler predicates for our experiments.

6.2 Experimental Setup

In our experiments, we choose the following parameters: (1) signal duration, (2)
maximum clock skew ε, and (3) distribution of communication among agents.
We measure the monitor run time. All experiments are replicated to exhibit %95
confidence interval to provide statistical significance. The experimental platform
is a CentOS server with 112 Intel(R) Xeon(R) Platinum 8180 CPUs @ 3.80 GHz
CPU and 754G of RAM. Our implementation invokes the SMT-solver Z3 [10] to
solve the problem described in Sect. 4. Color versions of all figures are available
in the digital version of the paper.

6.3 Analysis of Results

Impact of Signal Segmentation. Given a signal-to-be-monitored, we have a choice
of either passing the entire signal to the monitor, or chopping it into segments
and monitoring each segment separately (while accounting for ε-synchrony).

Predicate Monitoring in Distributed Cyber-Physical Systems 17

0 10 20

−4

−2

0

2

Number of segments

R
un

ti
m
e
(s
)
in

lo
g 2

sc
al
e

S.D. = 0.5s
S.D. = 0.6s
S.D. = 0.7s
S.D. = 0.8s
S.D. = 0.9s
S.D. = 1.0s
S.D. = 1.5s
S.D. = 2.0s

(a) Network of cars.

0 10 20

−4

−2

0

2

Number of segments

R
un

ti
m
e
(s
)
in

lo
g 2

sc
al
e

S.D. = 0.5s
S.D. = 0.6s
S.D. = 0.7s
S.D. = 0.8s
S.D. = 0.9s
S.D. = 1.0s
S.D. = 1.5s
S.D. = 2.0s

(b) Network of UAVs.

Fig. 5. Impact of signal segmentation on run time with varying signal duration (S.D.)
and fixed ε = 0.001 s.

Monitoring a signal in one shot is computationally more expensive than monitor-
ing a number of shorter segments. Figure 5 shows the results of this claim. Note
that all curves are plotted in log2 scale to provide more clarity. As can be seen,
for any signal duration, chopping the signal and invoking the monitor for the
shorter segments reduces the run time significantly. For example, in the case of
the UAV network (Fig. 5b), for a signal duration of 2 s, it takes 4.5 s to monitor
the signal in one shot, but only 0.55 s if the monitor is invoked 20 times over
the signal duration. We observe the same behavior in Fig. 5a. This is due to the
SMT-solver having to deal with much smaller search spaces in each invocation.

0 2 4 6

0.2

0.4

0.6

0.8

Signal duration (s)

R
un

ti
m
e
(s
)

ε = 0.001s

Fig. 6. Best run time (network of cars)
for different signal duration.

Figure 6 shows the best achievable
run time for different signal durations by
searching over the segment count of range
[1, 25]. For example, segment count of 4 is
obtained for 1 s signal to get minimum run
time of 0.17 s, while segment count of 18 is
obtained for 5 s signal to get minimum run
time of 0.72 s. The best run time shown
is achieved by distributing the monitor-
ing tasks across all the available cores (4)
on the monitoring device. Notice that our
predicate detection algorithm can be par-
allelized trivially, assigning one or a pool
of segments to a different core.

An important consequence of segmentation is that it enables us to monitor
signals in real time, as for 3 or more segments, the run time of the monitor is
less than the signal duration. For this reason, in all remaining experiments, the
signal-to-monitor is chopped into 20 segments and each segment is monitored
separately. Cumulative run times (of monitoring all 20 segments) are reported.

Impact of Clock Skew. We now study the impact of different choices of ε on
monitoring run time. We choose realistic values for ε with millisecond resolu-

18 A. Momtaz et al.

2 4

0

2

4

Clock skew ε (ms)

R
un

ti
m
e
(s
)
in

lo
g 2

sc
al
e

Seg = 1
Seg = 2
Seg = 3
Seg = 4
Seg = 5
Seg = 7
Seg = 9
Seg = 20

(a) Network of cars.

2 4

·10−3

0

2

4

Clock skew ε (ms)

R
un

ti
m
e
(s
)
in

lo
g 2

sc
al
e

Seg = 1
Seg = 2
Seg = 3
Seg = 4
Seg = 5
Seg = 7
Seg = 9
Seg = 20

(b) Network of UAVs.

Fig. 7. Impact of clock skew on run time. Signal duration = 2 s.

0 10 20 30

0

20

40

60

Number of segments

R
un

ti
m
e
(s
)

Agents = 2 (bottom) to 10 (top)

(a) Signal Duration = 5s and ε = 0.001s

2 4 6 8 10

0

20

40

60

Number of agents

R
un

ti
m
e
(s
)

S.D. = 5s

(b) Signal Duration = 5s and ε = 0.001s

Fig. 8. Impact of agents on run time.

tion. Figure 7 shows the monitoring run time for a 2 s signal chopped into 1–20
segments. Both Figs. 7a and 7b show that high resolution clock synchronization
results in very stable execution time for the monitor. This is a positive result,
showing that for practical clock synchronization algorithms, the actual value of
ε does not have an impact on the monitoring overhead.

Impact of Number of Agents. Now we observe the impact of the number of
UAVs on the monitor. Figure 8a shows the effect on run time for increasing the
number of agents from 2 to 10 with ε = 1ms over 5s-long signals. As each
segment of a signal can be monitored independently, we improve our run time
by distributing the monitoring tasks across all available cores on the monitoring
device. Observe that initially the run time drastically improves as more segments
are used. However, eventually the improvement becomes negligible, due to run
time being dominated by non-SMT tasks, such as creating job queues, allocating
jobs to cores, and so on. We refer to this run time as the best run time. Figure 8b
shows the best run times for different number of agents with ε = 1ms over
5s-long signals.

Predicate Monitoring in Distributed Cyber-Physical Systems 19

0 50 100

1.3

1.4

1.5

1.6

Number of messages

R
un

ti
m
e
(s
)

ε = 0.001s

(a) Signal Duration = 1s and ε = 1s.

0 50 100

200

300

400

Number of messages

R
un

ti
m
e
(s
)

ε = 2s

(b) Signal Duration = 2s and ε = 2s.

Fig. 9. Impact of communication (between two agents) on run time.

0 1 2 3

1.5

2

Time (s)

V
el
oc

it
y
(m

/
s)

Velocity-car1
Velocity-car2

(a) Velocity profile of two cars.

1 2 3

0

1

2

3

Signal duration (s)

R
un

ti
m
e
(s
)

SMT-normal
SMT-dynamics

(b) Run time vs. signal duration.

Fig. 10. Impact of Algorithm 1 on monitoring run time. ε = 0.001 s.

Impact of Communication. We examine whether the number of messages
exchanged between agents has a significant impact on monitor run time. Two
opposing mechanisms exist: on the one hand, messages impose an order between
the send and receive moments and so reduce concurrency. In the discrete-time
setting this normally reduces the asynchronous monitoring complexity. On the
other hand, messages result in extra constraints in the SMT encoding via Eq. 7,
which could increase SMT run time.

Figure 9 shows the results. In (a) we use ε = 1 ms and a 1s-long signal.
Run time varies with no clear trend, suggesting that neither of the above two
opposing mechanisms dominates. In (b), we use ε = 2 s for a 2s-long signal: i.e.,
all events are concurrent. One can see the order introduced by messages are
slightly increasing the runtime, instead of decreasing it. No conclusion can be
drawn, and future work should study this more closely.

Impact of Knowledge of Dynamics Bounds. Here the predicate of interest is
φ = (v1 > 1.6)∨(v2 > 1.3), where vi is the velocity of the ith car. The acceleration
limit from system dynamics is 1 m/s2. The monitor samples the received signals
(Fig. 10b) at 0.25 s intervals and applies the acceleration bounds as explained in

20 A. Momtaz et al.

Sect. 5 to discard irrelevant pieces of the signal. As shown in Fig. 10, applying
Algorithm 1 clearly reduces the monitor run time. In general, of course, the
exact run time reduction varies. For instance, while the speedup is ×10 for 3s-
long signals 3 s, it is ×15 for 2s-long signals.

7 Related Work

Runtime Monitoring of CPS. Accurate time-keeping for CPS was investigated
in the Roseline project [1]. Assuming perfect synchrony, [4] introduces a tool for
offline monitoring of robust MTL semantics, and [12] performs online monitoring
of STL [13]. The work [11] requires the full dynamical model of the system for
predictive monitoring. Our work is closer to [19], which assumes worst-case a
priori bounds on signal values (but without factoring dynamics). The works [29]
and [2] study of how the satisfaction of a temporal property is affected by timing
inaccuracies. Minimally intrusive CPS monitoring was studied in [22].

Decentralized Monitoring. Lattice-theoretic centralized and decentralized online
predicate detection in distributed systems has been studied in [7,24]. Extensions
of this work to include temporal operators appear in [25,26]. In [30], the authors
design a method for monitoring safety properties in distributed systems using the
past-time linear temporal logic. This approach, however, suffers from producing
false negatives. Runtime monitoring of LTL formulas for synchronous distributed
systems has been studied in [5,8,9]. Finally, fault-tolerant monitoring has been
investigated in [6] for asynchronous and in [20] for synchronous networks.

Partially Synchronous Monitoring. The feasibility of monitoring partially syn-
chronous distributed systems to detect latent bugs was first studied in [31]. This
approach was generalized to the full LTL in [17]. The authors achieve this in a
discrete-time/value setting by detecting the presence of latent bugs using SMT
solvers. In [28], the authors propose a tool for identifying data races in distributed
system traces. This approach is able to handle non-deterministic discrete event
orderings. However, these approaches cannot not fully capture the continuous-
time and continuous-valued behavior of CPS.

8 Conclusion

In this paper, we demonstrated a technique for online predicate detection for
distributed signals that do not share a global clock. Our approach is based on
causality analysis between real-valued signals, and integrates a realistic assump-
tion on maximum clock skew among the local clocks, and rough knowledge of
system dynamics, to make the problem tractable. We made several important
observations by experimenting over a real network of autonomous vehicles and
a simulated network of UAVs. Our approach can be effectively implemented to
monitor a distributed CPS in an online fashion.

Predicate Monitoring in Distributed Cyber-Physical Systems 21

As for future work, there are many interesting research avenues. Our app-
roach finds the first global states that violate a predicate. A crucial step in
debugging distributed CPS is to find all such states. Thus, it is important to
investigate data structures that can efficiently represent a set of global states of
distributed continuous signals that violate a predicate. In the discrete setting,
computation slices [24] are an example of such a data structure. One way to
achieve this is by using the long-known notion of regions in timed automata [3].
Another future problem is to monitor distributed signals with respect to Signal
Temporal Logic (STL) specifications.

References

1. https://sites.google.com/site/roselineproject/
2. Abbas, H., Mittelmann, H., Fainekos, G.: Formal property verification in a con-

formance testing framework. In: ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE), October 2014

3. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Form. Methods Syst. Des.
48(1), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

6. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers, C.:
Decentralized asynchronous crash-resilient runtime verification. In: Proceedings of
the 27th International Conference on Concurrency Theory (CONCUR), pp. 16:1–
16:15 (2016)

7. Chauhan, H., Garg, V.K., Natarajan, A., Mittal, N.: A distributed abstraction
algorithm for online predicate detection. In: Proceedings of the 32nd IEEE Sym-
posium on Reliable Distributed Systems (SRDS), pp. 101–110 (2013)

8. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Form. Methods Syst. Des. 49(1), 109–158 (2016). https://doi.org/
10.1007/s10703-016-0251-x

9. Danielsson, L.M., Sánchez, C.: Decentralized stream runtime verification. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 185–201.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 11

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

12. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

13. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

https://sites.google.com/site/roselineproject/
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-030-32079-9_11
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9

22 A. Momtaz et al.

14. Drone Life. FAA UTM project: Decentralized UAS traffic management demon-
stration, September 2019. https://dronelife.com/2019/09/09/decentralized-uas-
traffic-management-demonstration

15. FAA. DOT UAS initiatives, April 2019. https://www.faa.gov/uas/programs
partnerships/DOT initiatives

16. Fainekos, G.E., Pappas, G.J.: Robust sampling for MITL specifications. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 147–162.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1 12

17. Ganguly, R., Momtaz, A., Bonakdarpour, B.: Distributed runtime verification
under partial asynchrony. In: Proceedings of the 24nd International Conference
on Principles of Distributed Systems (OPODIS), pp. 20:1–20:17 (2020)

18. Hendry-Brogan, M.: Global unmanned aerial vehicle (UAV) market report. Tech-
nical report, May 2019

19. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Form. Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

20. Kazemloo, S., Bonakdarpour, B.: Crash-resilient decentralized synchronous run-
time verification. In: Proceedings of the 37th Symposium on Reliable Distributed
Systems (SRDS), pp. 207–212 (2018)

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

22. Medhat, R., Bonakdarpour, B., Kumar, D., Fischmeister, S.: Runtime monitor-
ing of cyber-physical systems under timing and memory constraints. ACM Trans.
Embed. Comput. Syst. 14(4), 79:1-79:29 (2015)

23. Mills, D.: Network time protocol version 4: Protocol and algorithms specification.
RFC 5905, RFC Editor, June 2010

24. Mittal, N., Garg, V.K.: Techniques and applications of computation slicing. Distrib.
Comput. 17(3), 251–277 (2005). https://doi.org/10.1007/s00446-004-0117-0

25. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: Proceedings of the 29th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 494–503 (2015)

26. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7 32

27. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic. In: IEEE Conference on Control Technology and
Applications (2017)

28. Pereira, J.C., Machado, N., Sousa Pinto, J.: Testing for race conditions in dis-
tributed systems via SMT solving. In: Ahrendt, W., Wehrheim, H. (eds.) TAP
2020. LNCS, vol. 12165, pp. 122–140. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50995-8 7

29. Quesel, J.-D.: Similarity, logic, and games: bridging modeling layers of hybrid sys-
tems. Ph.D. thesis, Carl Von Ossietzky Universitat Oldenburg, July 2013

30. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: ICSE (2004)

31. Tekken Valapil, V., Yingchareonthawornchai, S., Kulkarni, S., Torng, E., Demirbas,
M.: Monitoring partially synchronous distributed systems using SMT solvers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 277–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 17

https://dronelife.com/2019/09/09/decentralized-uas-traffic-management-demonstration
https://dronelife.com/2019/09/09/decentralized-uas-traffic-management-demonstration
https://www.faa.gov/uas/programs_partnerships/DOT_initiatives
https://www.faa.gov/uas/programs_partnerships/DOT_initiatives
https://doi.org/10.1007/978-3-540-75454-1_12
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s00446-004-0117-0
https://doi.org/10.1007/978-3-540-75142-7_32
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-319-67531-2_17

Specifying Properties over Inter-procedural,
Source Code Level Behaviour of Programs

Joshua Heneage Dawes(B) and Domenico Bianculli

University of Luxembourg, Luxembourg, Luxembourg
{joshua.dawes,domenico.bianculli}@uni.lu

Abstract. The problem of verifying a program at runtime with respect to some
formal specification has led to the development of a rich collection of speci-
fication languages. These languages often have a high level of abstraction and
provide sophisticated modal operators, giving a high level of expressiveness. In
particular, this makes it possible to express properties concerning the source code
level behaviour of programs. However, for many languages, the correspondence
between events generated at the source code level and parts of the specification
in question would have to be carefully defined.

To enable expressing—using a temporal logic—properties over source code
level behaviour without the need for this correspondence, previous work intro-
duced Control-Flow Temporal Logic (CFTL), a specification language with a
low level of abstraction with respect to the source code of programs. However,
this work focused solely on the intra-procedural setting. In this paper, we address
this limitation by introducing Inter-procedural CFTL, a language for expressing
source code level, inter-procedural properties of program runs. We evaluate the
new language, iCFTL, via application to a real-world case study.

Keywords: Dynamic analysis · Source code · Inter-procedural

1 Introduction

Within the context of Runtime Verification [5], many languages have been introduced
in order to allow the specification of properties that executions of programs should
hold. These languages include temporal logics (such as Linear Temporal Logic [24] and
Metric Temporal Logic [23]), stream equations [11], rule systems [4], automata [3,10],
and others [18,21].

Specification languages typically achieve a high level of expressiveness. For exam-
ple, temporal logics often combine a high level of abstraction with complex modal oper-
ators such as next, until, and eventually (along with timed extensions of these operators).
This approach has clear benefits. For example, given different correspondences between
the specification and the events generated at runtime, one specification language can be
used to express properties concerning multiple levels of granularity of a system (for
example, properties concerning both objects and individual lines of code). An example
of a tool that provides support in constructing this correspondence is JAVA-MAC [22].
However, the language then misses specific operators that would make expression of
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 23–41, 2021.
https://doi.org/10.1007/978-3-030-88494-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_2&domain=pdf
http://orcid.org/0000-0002-2289-1620
http://orcid.org/0000-0002-4854-685X
https://doi.org/10.1007/978-3-030-88494-9_2

24 J. H. Dawes and D. Bianculli

properties over specific types of runtime events easier. As an example, we consider
Metric Temporal Logic. The duration of a function call could be captured by refer-
ring to the time difference between the occurrence of the function return event, and
the function call event. A language specialised for source code level properties could
improve on this by 1) assuming a trace that contains the appropriate information and 2)
introducing specific operators, such as function call duration.

In doing this, the expression of properties such as “the time taken by each call to
the function f is no more than 0.001 times the length of the list l immediately before
the call” would become more straightforward. Further, if one were to use a language
specialised to the source code setting, there would be no need to define how events such
as function calls and returns, or variable value changes, relate to parts of specifications.

Some approaches, such as the LARVA tool [10] (whose specification formalism
is automata whose transitions trigger the execution of pieces of attached Java code),
already allow properties over the source code level of programs to be expressed easily.
Another example, which focuses less on the order of events, is Control-Flow Temporal
Logic (CFTL) [17], which was introduced as a linear-time, temporal logic to be used
specifically for expressing properties over the source code level behaviour of programs.
Specifications written in CFTL do not require any additional information to have mean-
ing with respect to a program.

CFTL has been shown to be a useful specification formalism (as seen in applications
of VYPR [14,15], the framework built for analysing programs with respect to CFTL
specifications). However, only properties concerning the intra-procedural behaviour of
programs can be expressed (because these properties were sufficient for the case studies
being considered in that work). This restriction means that one cannot express proper-
ties such as “if the variable a drops below some threshold in function1 func1, then
variable flag is set to true in function func2”. Given that large programs are often
divided into multiple procedures, many properties that software engineers could want
to express would likely involve multiple procedures, like the property mentioned above.

In this paper, we introduce an extension of CFTL that enables one to express such
properties. We call this new language inter-procedural CFTL, or iCFTL. iCFTL pro-
vides the same operators as CFTL (for example, to measure the duration of a function
call and to obtain the value held by a variable at a given point in time), but allows the
points at runtime referred to by properties to be taken from multiple procedures. This
extension of the features offered by CFTL to the inter-procedural setting allows the
expression of new classes of properties, and requires us to address challenges such as
1) constructing a new kind of trace that can represent the inter-procedural behaviour of
a program; 2) extending the CFTL syntax to deal with the new kind of trace; and 3)
performing instrumentation in a wider scope than that required for CFTL. With these
challenges addressed, we demonstrate the utility of extending CFTL’s features to the
inter-procedural setting via a case study involving a real-world system used by the CMS
Experiment at CERN [9], in which properties that cannot be expressed in CFTL are
expressed in iCFTL.

1 In the rest of the paper, we use the terms function and procedure interchangeably to denote a
general, callable subroutine.

Properties over Inter-procedural, Source Code Level Program Behaviour 25

Program := x= expr | func | Program;Program |
if expr then (Program) else (Program) |
while expr do (Program) | for x in iterator do (Program)

expr := x | func | arithExpr | boolExpr
func := f (expr1, . . . ,exprn)
iterator := range(expr,expr)

(1)

Fig. 1. A grammar for simple imperative programs.

Structure of the Paper. In order to introduce iCFTL, the paper is structured as fol-
lows: In Sect. 2, we give background material on CFTL, since variations of much of
the machinery are used by iCFTL. In Sects. 3 and 4, we introduce iCFTL by giving
its syntax and semantics. In Sect. 5, we introduce an instrumentation approach based
on iCFTL specifications. In Sect. 6, we acknowledge that our initial monitoring algo-
rithm is not efficient and describe how it can be optimised based on information from
instrumentation. In Sect. 7, we report on our case study. In Sect. 8, we position our con-
tribution in the literature (alongside giving a brief discussion of the expressive power of
iCFTL) and in Sect. 9 we give concluding remarks.

2 Background: Control-Flow Temporal Logic

Control-Flow Temporal Logic (CFTL) [17] is a linear-time, temporal logic used to
express properties over the source code level behaviour of programs. In this section, we
will introduce CFTL by first defining the structures over which its semantics is defined,
and then giving examples of specifications. The structures that we will introduce are the
symbolic control-flow graph of a program and a dynamic run, our version of a trace.

2.1 Symbolic Control-Flow Graphs

We introduce a graph structure that can be used to encode the state change and reach-
ability information found in a program. For simplicity of presentation, we will assume
that P is a program generated by the grammar in Fig. 1. We will also assume that each
statement stmt in the program P can be associated with a unique program point taken
from the abstract syntax tree of P. Such program points can be assigned simply by asso-
ciating an integer with each node in the abstract syntax tree. We will denote the program
point of a statement stmt by ρ(stmt). Further, for a program P we denote by Vars(P)
the set of program variables found in P. Vars(P) can be partitioned into PVar(P) (the
primitive type variables) and RVar(P) (the reference type variables). Note that, in the
CFTL case, we do not consider concurrency and concentrate on the intra-procedural
setting.

Based on these assumptions about the structure of a program, we now define the
components of a symbolic control-flow graph. First, a symbolic state σ associated with
a statement stmt is a pair 〈ρ(stmt),m〉, for a mapping m from Vars(P) to statuses in

26 J. H. Dawes and D. Bianculli

Fig. 2. A Python program with a for-loop with its symbolic control-flow graph.

{changed,unchanged,undefined,called}. We abuse notation and write σ(x) to mean
m(x), for m the map contained in σ . The symbolic control-flow graph SCFG(P) of a
program is then a directed graph with symbolic states as vertices. Formally, SCFG(P) =
〈V,E,vs〉 where V is a set of symbolic states, E ⊂V ×V a set of edges, and vs ∈V the
starting symbolic state.

We say that a symbolic state σ is final in SCFG(P) if it has no successors, i.e., there
is no edge 〈σ ,σ ′〉 ∈ E for some σ ′ ∈V . Further, we say that a path π through SCFG(P)
is a sequence of edges e1,e2, . . . ,en such that each ei ∈ E and, for each ei and ei+1,
ei = 〈σ ,σ ′〉 and ei+1 = 〈σ ′,σ ′′〉 (i.e., edges have to be adjacent).

We give an example of a programwith its symbolic control-flow graph in Fig. 2. One
could construct the symbolic control-flow graph of a program in a language allowing
more complex syntax than that described in Fig. 1, provided that one can construct a
scheme to translate programs to graphs.

2.2 Dynamic Runs

We now define the type of trace, which we call a dynamic run, over which the CFTL
semantics is defined. Intuitively, a dynamic run follows a path through a symbolic
control-flow graph and gives concrete timing and data values to each symbolic state
encountered along the path.

More formally, a dynamic run of a program P is a sequence of triples 〈t,σ ,m〉 with
a timestamp t ∈ R≥, a symbolic state σ , and a mapping m from program variables
in Vars(P) to concrete values. Further, for each pair of consecutive triples 〈t,σ ,m〉,
〈t ′,σ ′,m′〉, there is a path from σ to σ ′ in SCFG(P).

Each triple in a dynamic run is known as a concrete state. Given a concrete state
s = 〈t,σ ,m〉, we write s(x) to refer to the value given to the program variable x by the
map m. We denote by t(〈t,σ ,m〉) the timestamp t. We call a pair 〈〈t,σ ,m〉,〈t ′,σ ′,m′〉〉
of consecutive concrete states a transition, which we usually denote by tr. We denote
by paths(tr) the set of paths from σ to σ ′ in SCFG(P). A transition tr is atomic if the
only acyclic path from σ to σ ′ in SCFG(P) is of length 1. We define t(.) for transitions
by t(〈〈t,σ ,m〉,〈t ′,σ ′,m′〉〉) = t, i.e., the time at which the transition started.

Properties over Inter-procedural, Source Code Level Program Behaviour 27

2.3 Examples of CFTL Specifications

With our notion of a trace introduced, we briefly describe the structure of CFTL specifi-
cations, and then give examples. CFTL specifications are always universally-quantified
at least once, do not have existential quantifiers, and are in prenex normal form. The
quantifiers use predicates in order to extract relevant concrete states or transitions from
dynamic runs and bind them to variables. For example, calls(f) identifies all transi-
tions whose second concrete state contains a symbolic state that maps f to called, and
changes(x) identifies all concrete states whose symbolic states map x to changed. Fur-
ther, there can be no free variables. Examples of CFTL specifications include the fol-
lowing:

– The property that “the next call to f after each change of the variable var should
take less than 10 s” can be expressed by

∀q ∈ changes(var) : duration(next(q,calls(f))) ∈ (0,10).

The predicate calls(f) captures all transitions that represent calls of the function
f and next refers to the next transition (after q) in the dynamic run satisfying the
predicate calls(f).

– The property “whenever the function f is called, its duration must be no more than
0.001 times the length of the list held in variable x immediately before the call” can
be expressed by

∀t ∈ calls(f) : duration(t) < length(source(t)(x))×0.001.

source(t)(x) gives the concrete state immediately before the transition t, and then
gets the value of the program variable x in that concrete state.

3 iCFTL: Inter-procedural CFTL

We now present an extension of CFTL to the inter-procedural setting. This new lan-
guage is called iCFTL.

3.1 Systems of Multiple Procedures

In the intra-procedural setting, we assume that traces being checked for satisfaction of
some CFTL specification are generated by single procedures. In the inter-procedural
setting, we will be checking a trace generated by some system consisting of multiple
procedures, each of which is a program obtained from the grammar in Fig. 1. This
enables us to construct their symbolic control-flow graphs. We group the name and
program associated with each procedure in a system of multiple procedures.

Definition 1. A system of multiple procedures S is a pair 〈P,prog〉 for P a set of
names of procedures and prog a map that sends each name in P to a program gener-
ated by the grammar in Fig. 1.

We will often refer to a system of multiple procedures simply as a system.

28 J. H. Dawes and D. Bianculli

3.2 Inter-procedural Dynamic Runs

The dynamic run defined in Sect. 2.2, when considered in the scope of an entire system
of multiple procedures, represents a single execution of some procedure. In order to
define a language similar to CFTL, but with the ability to express properties concerning
inter-procedural behaviour, we introduce a kind of trace that represents a run of a system
of multiple procedures.

Our approach is to collect the dynamic runs generated by each procedure in a sys-
tem, label each one with the name of the procedure that generated it, and assume that
the timestamps of the concrete states in each dynamic run are synchronised2. We refer
to a collection of dynamic runs generated by a run of a system S as an inter-procedural
dynamic run over the system S.

Definition 2. An inter-procedural dynamic run D̄ over the system S is a triple

〈P,{D1, . . . ,Dn},L 〉,
whereP is a set of names of procedures in the system S; {Di} is a set of dynamic runs
generated by the procedures in S; andL is a mapping that labels each dynamic runDi

with the name of the procedure in P that generated it.

Given a concrete state s in any dynamic run in an inter-procedural dynamic run, we
denote by dynamicRun(s) the unique dynamic run to which s belongs (which exists
because each s has a unique timestamp). We extend this to transitions tr = 〈s,s′〉 by
dynamicRun(tr) = dynamicRun(s). We then combine dynamicRun(.) with the map
L to define a map proc by proc(s) = L (dynamicRun(s)). Similarly for transitions
tr = 〈s,s′〉, we set proc(tr) = proc(s). Intuitively, proc(.) gives the name of the unique
procedure that had control in the system when the concrete state/transition given was
attained/taking place.

To generalise our approach to multiple types of systems, we assume that there is
always more to observe. While it is possible to observe everything in some cases (e.g.,
programs that compute a single result and terminate), for other systems it is not. For
example, Web services (such as the one used in our case study described in Sect. 7)
constantly receive new requests that trigger repeated executions of procedures.

3.3 Syntax of iCFTL

We give a grammar for the iCFTL syntax in Fig. 3. In the grammar, the non-terminal
symbols used in rules are highlighted in blue. We also group the rules by Quantifiers,
Predicates, and Constraints. We now describe the role of each group of rules, and give
examples to illustrate how rules can be applied to construct certain specifications.

Quantifiers. The first rule to apply from the grammar to generate an iCFTL specifica-
tion is φ . This rule can be applied repeatedly in order to generate multiple quantifiers.
We will always assume specifications are in prenex normal form.

2 This assumption is reasonable since either 1) everything will happen on the same machine, so
the machine’s clock can be used for synchronisation; or 2) if this is not the case, then protocols
such as NTP can be used.

Properties over Inter-procedural, Source Code Level Program Behaviour 29

Fig. 3. Syntax of iCFTL.

Predicates. Each quantifier requires a predicate in order to identify concrete states or
transitions to which the variable used in the quantifier should be bound. These predi-
cates are generated by the ΓQS and ΓQT rules. In these cases, there are two parts: one to
select the relevant dynamic run (during) and one to select the relevant concrete state or
transition from that dynamic run (see Sect. 2.3).

To give some examples, the predicate changes(x).during(p) captures concrete states
generated by the procedure p in which the program variable x has just been changed.
Similarly, the predicate calls(f).during(p) captures transitions representing a call of
the procedure f during the procedure p. The future operators extends these predicates
to identify all such concrete states or transitions in the future, rather than just the next
occurrence.

Combining Quantifiers and Predicates. Quantifiers and predicates are combined to
form sequences of quantifiers. An example is

∀q ∈ changes(x).during(f) : ∀tr ∈ future(q,calls(g).during(h)) : . . .

This sequence of quantifiers would capture each concrete state representing a change
of the program variable x (during calls of the procedure f) and, for each change, every
call of the function g occurring in the future (during calls of the procedure h).

Concrete State and Transition Selection. Quantifiers allow us to select concrete states
and transitions to be used in the inner-most, quantifier free part of a specification. Given
these concrete states and transitions, we must be able to navigate the inter-procedural
dynamic run in order to select others. Using the rules S and T , this can be done by
1) applying the simple operators before and after to transitions (which obtain the con-
crete state immediately before and immediately after the transition); or 2) using next in
conjunction with one of the predicates changes(x).during(p) or calls(f).during(p) to

30 J. H. Dawes and D. Bianculli

search forwards in time. Hence, given concrete states or transitions identified by quan-
tifiers, one can either write constraints over those directly, or use the before, after, or
next operators to navigate the inter-procedural dynamic run.

Constraints. For an iCFTL specification ϕ , we denote by inner(ϕ) the inner-most,
quantifier-free part of the specification. Once the sequence of quantifiers has been gen-
erated, one can generate inner(ϕ), which is intuitively the constraint to check at each
combination of concrete states/transitions identified by the quantifiers. The grammar
allows for disjunction and negation, but we frequently use additional Boolean connec-
tives such as conjunction and implication.

Within the Boolean combination of constraints, each part of the specification gen-
erated by an application of either φS or φT is called an atom. Atoms place constraints
on quantities extracted from concrete states or transitions identified using the S and T
rules.

Atoms generated by rules containing only one non-terminal symbol are called nor-
mal and atoms generated by rules containing two non-terminal symbols are called
mixed. Atoms are the parts of the specification that place constraints on quantities
extracted from dynamic runs. We refer to the parts of specifications generated by the
rules S and T as expressions.

Building Constraints. Suppose we have the sequence of quantifiers

∀q ∈ changes(x).during(f),

and would like to assert that each concrete state bound to the variable q maps the pro-
gram variable x to a value that is strictly less than 10. Our first step would be to take
the variable q (treating it as a concrete state) and determine the value to which it maps
the variable x. Since there is no navigation of the inter-procedural dynamic run to be
performed (we are placing a constraint over a quantity measurable directly from the con-
crete state held by q), we can go immediately to the φS rule and generate the constraint
q(x) ∈ (0,10) (acknowledging that there would have to be a conjunction to include the
possibility of q(x) being equal to 0).

Formula Trees for iCFTL. Given inner(ϕ) of an iCFTL specification ϕ , we denote
by tree(inner(ϕ)) the and-or formula tree of inner(ϕ). This formula tree is such that
leaves correspond to either normal atoms or expressions in mixed atoms. We use this
mechanism when defining our monitoring procedure for iCFTL in Sect. 5.

3.4 Examples

We now give some examples of properties that can be expressed using iCFTL:

– The property “when the variable level drops below 10 in the method check, the
time until the next call of adjust in the method control should be no more than
1 s” can be expressed by

∀q ∈ changes(level).during(check) : q(level) < 10 =⇒
timeBetween(q,before(q.next(calls(adjust).during(control)))) ∈ [0,1].

Properties over Inter-procedural, Source Code Level Program Behaviour 31

Fig. 4. The quantifier relation
 for the iCFTL semantics.

– The property “for each change of the variable user during an execution of the pro-
cedure login, and for each future change of the variable user during executions of
the procedure getUser, the value of variable user should remain the same”, taking
some liberties with syntax, can be expressed by:

∀q ∈ changes(user).during(login) :
∀q′ ∈ future(q,changes(user).during(getUser)) : q′(user) = q(user)

(2)

The key syntactic novelty in iCFTL is the during component of predicates, which allows
one to refer to events across multiple procedures.

4 A Semantics for iCFTL

In order to align with our case study (see Sect. 7), which is a Web service whose traces
must be assumed to be infinite, we define the semantics of iCFTL with respect to pre-
fixes of infinite program traces. We take a similar approach to much existing work in
the RV community: we define a semantics over prefixes of program traces [6] and give a
provisional verdict. This semantics consists of two key steps. The first involves deriving
a set of bindings by inspection of an inter-procedural dynamic run D̄ with respect to the
quantifiers in an iCFTL specification ϕ . These bindings will collect together concrete
states and transitions from D̄ and provide them to inner(ϕ). The second step involves
evaluating inner(ϕ) with respect to each binding derived.

4.1 Finding Bindings

Given an inter-procedural dynamic run D̄ and an iCFTL specification ϕ , our goal is to
inspect its quantifiers ∀q1 ∈ Γ1 : · · · : ∀qn ∈ Γn in order to derive a set of maps, which we
will refer to as bindings. These bindings will send the variable q1 to a concrete state or
transition satisfying Γ1, the variable q2 to a concrete state or transition satisfying Γ2, and
so on. We will then take each binding and decide on a truth value for inner(ϕ) based on
the values given to each variable q1, . . . ,qn by the binding.

32 J. H. Dawes and D. Bianculli

D̄ =
{login,getUser,getUserData},{D1,D2,D3,D4},
[D1 login,D2 getUser,D3 getUserData,D4 getUser]

D1 = 0, [], [] , 0.2, [getUser called,user changed], [user 10] , . . .

D2 = 0.1, [], [] , 0.15, [user changed, . . .], [user 10] , . . .

D3 = 0.3, [], [] , 0.45, [getUser called,user changed], [user 10] , . . .

D4 = 0.35, [], [] , 0.4, [user changed, . . .], [user 10] , . . .

Fig. 5. An example inter-procedural dynamic run.

We begin the construction of the set of bindings by defining the quantifier relation,
denoted by
, that indicates whether a given concrete state q or transition tr satisfies a
predicate used in a quantifier. The definition is given in Fig. 4.

The second and final step is to recurse on the quantifiers in order to progressively
construct the set of bindings, which we denote by bindingsϕ(D̄ ,∀q1 ∈ Γ1 : · · · : ∀qn ∈
Γn). This is done by determining the concrete states or transitions that satisfy the pred-
icate of the first quantifier and then, if there are multiple quantifiers, identifying the
concrete states or transitions that satisfy the next predicates. The check for satisfaction
at each step is based on the relation defined in Fig. 4. We highlight that, if no concrete
states or transitions are identified by a predicate, a binding is generated that does not
include all variables from the specification. We refer to such a binding as partial.

An Example. In order to illustrate the procedure for constructing bindings, we con-
sider the iCFTL specification in Eq. 2 along with an inter-procedural dynamic run
given in Fig. 5. In this inter-procedural dynamic run, there are three procedures, login,
getUser, getUserData. We assume that both login and getUserData involve calls
to getUser. One can see the caller-callee relationship between dynamic runs when all
of the timestamps of concrete states of a callee dynamic run fall in between two times-
tamps of consecutive concrete states in the caller dynamic run.

Based on the inter-procedural dynamic run in Fig. 5, binding construction would go
as follows: The procedure would identify concrete states that satisfy the first quantifier,
and then inspect the second quantifier. For the first quantifier

changes(user).during(login),

the concrete state 〈0.2, [getUser �→ called,user �→ changed], [user �→ 10]〉 would be
identified. Based on this initially identified concrete state, we look for further concrete
states satisfying

future(q,changes(user).during(getUser)),

with respect to the concrete state 〈0.2, [getUser �→ called,user �→ changed], [user �→
10]〉 identified by the first quantifier. Hence, the concrete state 〈0.4, [user �→ changed,

Properties over Inter-procedural, Source Code Level Program Behaviour 33

. . .], [user �→ 10]〉 would be identified. Since all quantifiers have been inspected, we
conclude with the set of bindings:

⎧
⎨

⎩

[
q �→ 〈0.2, [getUser �→ called,user �→ changed], [user �→ 10]〉]

,[
q �→ 〈0.2, [getUser �→ called,user �→ changed], [user �→ 10]〉,
q′ �→ 〈0.4, [user �→ changed, . . .], [user �→ 10]〉

]

⎫
⎬

⎭

Notice that we keep a binding that only sends q to a concrete state, and not q′. This is
to capture the intuition that the binding with only q may be extended with a new value
of q′ given more observations from the monitored system.

4.2 Evaluation at a Binding

The next step in developing the semantics is to evaluate the constraints defined by the
specification at each of the bindings in the set bindingsϕ(D̄ ,∀q1 ∈ Γ1 : · · · : ∀qn ∈ Γn).
For this, we introduce the eval(D̄ ,β ,X) function.

This function takes an expression from the specification, along with a binding and
an inter-procedural dynamic run, and gives the unique concrete state or transition that
is required by that expression. If no such concrete state or transition exists, the function
returns null.

Once we have obtained the concrete state or transition referred to by an expres-
sion, we can determine the truth values of atoms, and therefore the truth values of
Boolean combinations of atoms. This process is encoded in the [.]β function, which
is defined recursively in Fig. 6. The function [.]β takes as input an inter-procedural
dynamic run, a binding and either a Boolean combination of atoms, or a single atom,
and gives a truth value from the set {true, false, inconclusive}. This set has ordering
false < inconclusive < true with ¬inconclusive = inconclusive.

If a single atom is given and the required concrete states and transitions are found,
the truth value given is either true or false. If a single atom is given and no concrete
state or transition is identified, the truth value is inconclusive. If a Boolean combination
of atoms is given, the total order of the truth domain is used to determine the truth value,
given the truth values of the subformulas3.

4.3 The Semantics Function

We have now introduced the machinery for 1) extracting a set of bindings from an inter-
procedural dynamic run based on a specification; and 2) determining the truth values of
atoms in an iCFTL specification given a specific binding. The final step in defining the
semantics for iCFTL is to combine all of these components in order to give a verdict.

While most existing work in RV concentrates on generating verdicts that are simple
objects, such as true or false, taken from a truth domain, our approach differs. Instead,

3 Of course, if the specification expresses a tautology or is unsatisfiable, this evaluation-by-
composition approach is problematic. However, as seen in [13], satisfiability for CFTL (and
therefore iCFTL) can only be decided once a sufficiently long trace has been observed, hence
we do not consider it in the semantics.

34 J. H. Dawes and D. Bianculli

Fig. 6. Part of the constraint function for iCFTL.

the verdict that we provide is a map from bindings extracted from the inter-procedural
dynamic run to truth values. In addition, we encode in these truth values whether or not
the binding associated with the truth value is partial. We do this because, if a binding
is partial, we cannot be sure that it will be extended to form a complete binding given
further observations from the system.

Fig. 7. The translation function.

In order to provide this distinction, we introduce the translate function. This func-
tion, defined in Fig. 7, translates from the truth values {true, false, inconclusive} given
by the function in Fig. 6 to complete and partial versions of the same truth values:

{true, truep, false, falsep, inconclusive, inconclusivep}.

Finally, we define the semantics function [D̄ ,ϕ]S, which simply computes the set of
bindings for a given inter-procedural dynamic run with respect to an iCFTL specifica-
tion and, for each one, gives the value of the translation function:

[D̄ ,ϕ]S = [β �→ translate(D̄ ,β ,ϕ) : β ∈ bindingsϕ(D̄ ,∀q1 ∈ Γ1 : · · · : ∀qn ∈ Γn)].

Hence, for a given inter-procedural dynamic run and iCFTL specification, the verdict
that we compute is the map given by [D̄ ,ϕ]S indicating 1) the truth values given by the

Properties over Inter-procedural, Source Code Level Program Behaviour 35

constraints in the specification at each binding; and 2) the type of binding for which
each truth value was obtained.

5 Monitoring

We now develop an initial algorithm that processes an inter-procedural dynamic run and
an iCFTL specification in order to give a verdict. The algorithm is inspired by the work
on CFTL and VYPR [14,17]. We will see that it does not scale well, and describe an
instrumentation process in Sect. 6 to greatly improve the situation.

Given an inter-procedural dynamic run 〈P,{D1, . . . ,Dm},L 〉, our “naive” moni-
toring approach for iCFTL, given in Algorithm 1, consists of iterating through the con-
crete states contained in all of the dynamic runs Di in ascending order of timestamps.
This sequence of concrete states is denoted by flattened(D̄). For each concrete state
curr, we see if 1) curr, or the transition leading into it, contributes to a binding and 2)
curr, or the transition leading to it, contributes to the truth value of some atom. If curr
or the transition leading to it contributes to the truth value of some atom, Algorithm 1
uses formula trees to determine the new truth value of inner(ϕ). We highlight that † is
the map update operator, that is, a † [e �→ v] refers to the map that agrees with a on all
elements of the domain of a, except for e which is mapped to v.

Formula Trees. The monitoring algorithm often instantiates a new formula tree tree(φ)
(or uses an existing one) and then updates it with the update function. This function
takes a formula tree with a concrete state or transition and replaces the relevant nodes
in the formula tree accordingly.

If the concrete state/transition given is relevant to an expression, the node holding
that expression is replaced by the value given to that expression by the concrete state/-
transition. For example, if we have the concrete state 〈0.1, [x �→ changed], [x �→ 1.5]〉
and an expression q on a leaf of the formula tree, the latter can be replaced by 1.5 if
the q is part of q(x) in the specification. Alternatively, if the concrete state/transition is
relevant to a normal atom, the node holding that atom is replaced with a truth value. For
example, given the same concrete state and an atom q(x)< 2, the leaf could be replaced
by true. Once this replacement has taken place, the formula tree is collapsed based on
the conventional rules for propositional connectives.

Correctness. A correctness argument for Algorithm 1 involves showing that 1) the bind-
ings generated by the algorithm and the semantics are the same; and 2) the procedure for
obtaining truth values of inner(ϕ) in the algorithm has the same result as the semantics.
It is similar to the one given in [13].

Complexity. The main loop of Algorithm 1 performs as many iterations as there are
concrete states in D̄ , which we will denote by |D̄ |. For each of these iterations, we
process the existing bindings, of which there are at most |D̄ |m/m! [13]. Hence, the
approximate complexity is O(|D̄ |m+1/m!). We highlight that m is rarely greater than 2,
hence the complexity can be seen as O(|D̄ |m+1), meaning that, even for specifications
with only one quantifier, this initial monitoring algorithm scales quadratically in the
length of the trace.

36 J. H. Dawes and D. Bianculli

Algorithm 1. Monitoring for an iCFTL specification ∀q1 ∈ Γ1 : · · · : ∀qm ∈ Γm : φ .
1: M ← [] � empty map from bindings to formula trees
2: prev ← 〈t1, [], []〉 � to store the previous state, assuming t1 is the first timestamp in the

dynamic run
3: for concrete state curr ∈ flattened(D̄) do
4: � Handle the cases where a new binding should be generated
5: � New bindings are generated if the state/transition is in Γ1
6: if curr
 Γ1 then
7: M = M † ([q1 �→ curr] �→ update(tree(φ),curr))
8: if (prev,curr)
 Γ1 then
9: M = M † ([q1 �→ 〈prev,curr〉] �→ update(tree(φ),〈prev,curr〉))
10: � Bindings are extended if the state/transition is in Γi for i > 1
11: for (β = [q1 �→ v1, . . .qk �→ vk],T) in M where k < m do
12: if curr
 Γk+1 then
13: M = M † ((β † [qk+1 �→ curr]) �→ update(T,curr))
14: if (prev,curr)
 Γk+1 then
15: M = M † ((β † [qk+1 �→ 〈prev,curr〉]) �→ update(T,〈prev,curr〉))
16: for (β ,T) in M do � Now update formula trees for existing bindings
17: T ′ ← update(T,curr)
18: prev ← curr � Finally save the current state as the last state

19: return M

6 Instrumentation

The inefficiency of Algorithm 1 has two principal causes: 1) the amount of unnecessary
information contained in the inter-procedural dynamic run being processed; and 2) the
lookup required to decide whether a concrete state/transition contributes to a binding.
To improve the situation, we traverse the symbolic control-flow graphs of the relevant
procedures in order to determine which program points are relevant to a specification.
This traversal is part of the process of instrumentation, whose steps are described in the
following sections.

6.1 Inspection of the Quantifiers

For an iCFTL specification with quantifiers ∀q1 ∈ Γ1 : · · · : ∀qn ∈ Γn, we recursively
construct maps from the variables q1, . . . ,qn to symbolic states from the relevant sym-
bolic control-flow graphs. As an example, suppose that we are monitoring a system S=
〈{f},prog〉. If a specification had the quantifier sequence ∀q ∈ changes(x).during(f),
we would identify all symbolic states σ in the symbolic control-flow graph of the pro-
gram prog(f) that had σ(x) = changed. A final step, which helps during monitoring, is
the assignment of a unique integer (i.e., an index) to each map from the variables qi to
concrete states.

Properties over Inter-procedural, Source Code Level Program Behaviour 37

6.2 Inspection of the Atoms

Given the set of maps constructed from the inspection of quantifiers, we perform further
traversal of the symbolic control-flow graphs of the system for each atom in inner(ϕ).
For example, if we had the iCFTL specification

∀q ∈ changes(x).during(f) : duration(q.next(calls(g).during(h))) < 1,

then we would traverse the symbolic control-flow graph of the procedure prog(h) in
order to find symbolic states σ with σ(g) = called.

6.3 Filtering Dynamic Runs

After applying the procedure described in Sects. 6.1 and 6.2, we have a set of symbolic
states, which we call instrumentation points, taken from the various symbolic control-
flow graphs in the system. This set of instrumentation points is such that we can remove
any concrete state from an inter-procedural dynamic run that does not correspond to one
of the symbolic states in the set. More formally, if a concrete state 〈t,σ ,m〉 appears in
an inter-procedural dynamic run and σ is not in the set of instrumentation points, the
concrete state can be removed from the inter-procedural dynamic run. The safety of
this approach is proved in [13]. While the proof there is for CFTL, the instrumentation
approaches are sufficiently similar that it applies here.

6.4 Lookup During Monitoring

An important source of inefficiency in Algorithm 1 is the requirement to find the for-
mula trees that must be updated, given a measurement from an inter-procedural dynamic
run. In order to reduce the number of formula trees that must be checked, we group for-
mula trees by the unique integer identifying each map constructed in Sect. 6.1. For each
concrete state, we can then extract its symbolic state and determine which map (if any)
it belongs to (this can be performed as a pre-processing step to improve lookup speeds
further). With formula trees grouped with respect to these uniquely identifying integers,
we can then determine the set of formula trees that must be updated.

6.5 Implications for Complexity

These optimisations mean that 1) there can be fewer concrete states to process, since we
can filter them based on relevant symbolic states; and 2) lookup of the relevant formula
trees is faster. A more in-depth discussion can be found in [17] and [13].

7 Case Study

To evaluate iCFTL, we have extended the existing VYPR framework [14] to include
a new library for building iCFTL specifications, along with machinery for instrumen-
tation and monitoring. The prototype implementation is available under the Apache

38 J. H. Dawes and D. Bianculli

2.0 license at https://doi.org/10.5281/zenodo.5195959, with development occurring at
https://github.com/SNTSVV/VyPR-iCFTL.

Using this implementation, we have performed some initial experiments on a
Python-based case study [12] provided by the CMS Experiment at CERN [9], where
the initial work on CFTL and VYPR was performed. This case study is a Web ser-
vice, therefore consisting of a server and (to simplify this initial experimental setting)
a single client. The client uploads data to the server over the course of multiple HTTP
requests. We note that the restriction of CFTL to the intra-procedural setting means that
properties that require measurements to be taken over multiple HTTP requests certainly
cannot be expressed. With iCFTL this limitation is gone, since inter-procedural also
means “inter-request”.

In order to demonstrate this concretely, we present an iCFTL specification that we
have been able to monitor, which could not be expressed in CFTL (hence demonstrating
the usefulness of taking the features offered by CFTL and extending them to the inter-
procedural setting). We also present initial measurements of the overhead induced by
the extended implementation of VYPR.

Specification. Our principal specification, taking liberties with syntax, is:

∀c ∈ calls(find new).during(app.routes.hashes) :
timeBetween(before(c),

after(c.next(calls(get usage).during(app.routes.upload md))) < 4

This specification expresses the property that the time between two concrete states
attained at runtime in two different procedures of the system under scrutiny must be less
than four seconds. The first of these concrete states is the concrete state immediately
before the transition representing a call of the function find new, occurring during a
dynamic run generated by the hashes procedure (found in the module app.routes).
The second concrete state is the one immediately after the transition representing the
next call of get usage that occurs during a dynamic run generated by the upload md
procedure.

Overhead. In order to obtain initial measurements of the overhead induced by VYPR,
we ran the same upload 100 times, with and without monitoring. When this was done
with no delay between uploads, we obtained an overhead of approximately 3.22%. By
introducing a delay between uploads, we could reduce the overhead to 1.69%. We high-
light that this delay between requests allows any measurements not processed by the
VYPR monitoring algorithm during requests to be processed between requests. A more
detailed discussion of the overhead induced by VYPR is given in [13].

8 Related Work

We first discuss the relationship between iCFTL and CFTL [17]. Despite the fact that
iCFTL can express properties that could not be expressed in CFTL, if we restrict the
semantics of iCFTL to a single dynamic run, the newly introduced syntax does not

https://doi.org/10.5281/zenodo.5195959
https://github.com/SNTSVV/VyPR-iCFTL

Properties over Inter-procedural, Source Code Level Program Behaviour 39

allow any new kinds of properties to be expressed in this setting. That is, the notable
extensions of the syntax (the introduction of the during(p) component to various pred-
icates) would not be useful in the intra-procedural setting. Hence, rather than referring
to iCFTL as an improvement on the expressive power of CFTL, we refer to iCFTL as
an extension of the features provided by CFTL into the inter-procedural setting.

iCFTL is a departure from the conventional approach seen in (or adapted to) the
RV community, which often involves an extremely expressive specification formalism
with a high level of abstraction [4,21,23,24]. iCFTL does not distinguish between the
symbols that are used in a specification and the events that occur during the runtime of
a program. This has the disadvantage that a change to the source code requires a change
to the specification, however we argue that specifications should be actively maintained
as code changes. Work with a similar approach includes LARVA [10], which provides
specification formalisms with a low level of abstraction, but that focus on the order of
events, which is not the focus of iCFTL. Further, CARET [2,25] allows references to
(untimed) function calls and returns. In contrast, iCFTL enables one to talk about time
and data, alongside function calls (which are not separated into call and return events).

The monitoring approach used for iCFTL varies from many used in RV in that
many approaches use automata [7,20]. Given that iCFTL specifications are universally-
quantified, and must be in prenex-normal form, there is some similarity between our
monitoring approach and that used for the Quantified Event Automata formalism [3].
Here, bindings are generated and a central monitor structure (an automaton) is instan-
tiated for each binding. If one replaces these automata with our formula trees, the
approaches are similar.

Our instrumentation approach applies static analysis to determine the program
points from which data should be taken at runtime. We also use instrumentation to
optimise lookup. There are multiple bodies of work in RV that use instrumentation to
optimise the monitoring process. The most notable include CLARA [8], which applies
a series of static analyses in order to decide which statements do not need to be instru-
mented (and in order to generate a residual property, which is a property that has been
partially proved during static analysis), and STARVOORS [1], which attempts to prove
pre- and post-conditions of specifications written in a specification formalism that com-
bines DATEs [10] and Dynamic Logic [19].

9 Conclusion

The central contribution of this paper is our new specification language, iCFTL (Inter-
procedural Control-Flow Temporal Logic). This new logic enables the expression of
properties concerning the inter-procedural, source code level behaviour of programs.
Such properties cannot be expressed in CFTL, which focuses on the intra-procedural
setting.

Our development of iCFTL has involved introduction of an initial monitoring algo-
rithm, along with the acknowledgement that this does not scale well for larger traces. To
remedy the situation, we have made reference to our previous work on instrumentation
which can be applied with almost no modification. To demonstrate the expressiveness of
iCFTL, we have extended the existing VYPR framework and applied it to a case study:

40 J. H. Dawes and D. Bianculli

a Web service used at the CMS Experiment at CERN. This case study has demon-
strated that more properties can be checked, leading to enhanced analysis capability of
the VYPR framework.

Key directions for future work identified so far include 1) refining our instrumenta-
tion approach and 2) translating the explanation machinery presented recently [14,16]
into the inter-procedural setting.

Acknowledgments. The research described has been carried out as part of the COSMOS, which
has received funding from the European Union’s Horizon 2020 Research and Innovation Pro-
gramme under grant agreement No. 957254. The authors wish to thank Lionel Briand for his
feedback on iCFTL, and the CMS Experiment at CERN for help with the case study.

References

1. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime verifica-
tion: framework and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34026-0 24

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24730-2 35

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9 9

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-
fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24622-0 5

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 1

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
J. Log. Comput. 20(3), 651–674 (2010)

7. Bensalem, S., Bozga, M., Krichen, M., Tripakis, S.: Testing conformance of real-time appli-
cations by automatic generation of observers. Electron. Notes Theor. Comput. Sci. 113, 23–
43 (2005)

8. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating finite-state
runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418,
pp. 183–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 15

9. CERN: Compact Muon Solenoid experiment. https://home.cern/science/experiments/cms
10. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-

time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol.
5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03240-
0 13

11. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: 12th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2005), Burlington,
Vermont, USA, 23–25 June 2005, pp. 166–174. IEEE Computer Society (2005). https://doi.
org/10.1109/TIME.2005.26

https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-16612-9_15
https://home.cern/science/experiments/cms
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26

Properties over Inter-procedural, Source Code Level Program Behaviour 41

12. Dawes, J.H.: A Python object-oriented framework for the CMS alignment and calibration
data. In: Journal of Physics: Conference Series, vol. 898, p. 042059, October 2017. https://
doi.org/10.1088/1742-6596/898/4/042059

13. Dawes, J.H.: Towards automated performance analysis of programs by runtime verification.
Ph.D. thesis, University of Manchester (2021)

14. Dawes, J.H., Han, M., Javed, O., Reger, G., Franzoni, G., Pfeiffer, A.: Analysing the per-
formance of Python-based web services with the VYPR framework. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 67–86. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-60508-7 4

15. Dawes, J.H., Han, M., Reger, G., Franzoni, G., Pfeiffer, A.: Analysis tools for the VyPR
framework for Python. In: International Conference on Computing in High Energy and
Nuclear Physics, Adelaide, Australia 2019 (2019)

16. Dawes, J.H., Reger, G.: Explaining violations of properties in control-flow temporal logic.
In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 202–220. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 12

17. Dawes, J.H., Reger, G.: Specification of temporal properties of functions for runtime ver-
ification. In: Hung, C., Papadopoulos, G.A. (eds.) Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, 8–12 April 2019, pp.
2206–2214. ACM (2019). https://doi.org/10.1145/3297280.3297497

18. Dou, W., Bianculli, D., Briand, L.C.: A model-driven approach to trace checking of pattern-
based temporal properties. In: 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, 17–22 September
2017, pp. 323–333. IEEE Computer Society (2017). https://doi.org/10.1109/MODELS.2017.
9

19. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci. 18(2), 194–211 (1979)

20. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4 6

21. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 68–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 6

22. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assur-
ance approach for Java programs. Formal Methods Syst. Des. 24(2), 129–155 (2004)

23. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst.
2(4), 255–299 (1990)

24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October–1 November 1977, pp.
46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32

25. Roşu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: this time with calls
and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-89247-2 4

https://doi.org/10.1088/1742-6596/898/4/042059
https://doi.org/10.1088/1742-6596/898/4/042059
https://doi.org/10.1007/978-3-030-60508-7_4
https://doi.org/10.1007/978-3-030-60508-7_4
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-89247-2_4

Into the Unknown: Active Monitoring
of Neural Networks

Anna Lukina1(B) , Christian Schilling2(B) , and Thomas A. Henzinger1

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
{anna.lukina,thomas.henzinger}@ist.ac.at
2 University of Konstanz, Konstanz, Germany

christian.schilling@uni-konstanz.de

Abstract. Neural-network classifiers achieve high accuracy when pre-
dicting the class of an input that they were trained to identify. Main-
taining this accuracy in dynamic environments, where inputs frequently
fall outside the fixed set of initially known classes, remains a challenge.
The typical approach is to detect inputs from novel classes and retrain
the classifier on an augmented dataset. However, not only the classifier
but also the detection mechanism needs to adapt in order to distinguish
between newly learned and yet unknown input classes. To address this
challenge, we introduce an algorithmic framework for active monitoring
of a neural network. A monitor wrapped in our framework operates in
parallel with the neural network and interacts with a human user via
a series of interpretable labeling queries for incremental adaptation. In
addition, we propose an adaptive quantitative monitor to improve pre-
cision. An experimental evaluation on a diverse set of benchmarks with
varying numbers of classes confirms the benefits of our active monitoring
framework in dynamic scenarios.

Keywords: Monitoring · Neural networks · Novelty detection

1 Introduction

Automated classification is an essential part of numerous modern technologies
and one of the most popular applications of deep neural networks [21]. Neural-
network image classifiers have fast-forwarded technological development in many
research areas, e.g., automated object localization as a stepping stone to success-
ful real-world robotic applications [41]. Such applications require a high level of
reliability from the neural networks.

However, when deployed in the real world, neural networks face a common
problem of novel input classes appearing at prediction time, leading to possi-
ble misclassifications and system failures. For example, consider a scenario of
a neural network used for labeling inputs and making decisions about the next
actions for an automated system with limited human supervision: a robot assis-
tant learning to recognize objects in a new home. Assume the neural network

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 42–61, 2021.
https://doi.org/10.1007/978-3-030-88494-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_3&domain=pdf
http://orcid.org/0000-0001-9525-0333
http://orcid.org/0000-0003-3658-1065
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-030-88494-9_3

Into the Unknown: Active Monitoring of Neural Networks 43

is trained well on a dataset containing examples of a finite set of classes. How-
ever, after this robot is deployed in the real home, novel classes of objects can
appear and confuse the neural network. The inherent misclassifications can stay
undetected and accumulate over time, eventually reducing overall accuracy.

The likelihood of severe system damage increases with the frequency and
diversity of novel input classes. Typically, this risk is addressed by detecting
novel inputs, augmenting the training dataset, and retraining the classifier from
scratch [29]. This procedure is not only inefficient, but also leaves the system
vulnerable until such a dataset has been collected. Techniques to incrementally
adapt classifiers at prediction time are beneficial for improving accuracy in real-
world applications [32,34]. They, however, do not provide desired interpretability
for the human. Approaches to run-time monitoring of neural networks were
therefore introduced [31]. In particular, approaches based on abstractions [4,5,
15,43] proved to be effective at detecting novel input classes. In addition, they
provide transparency of neural-network monitoring.

Crucially, these monitors are constructed offline and remain static at pre-
diction time. Functionalities they are still lacking are distinguishing between
“known” and “unknown” novelties and selectively adapting at prediction time.

We propose an active monitoring framework for neural networks that detects
novel input classes, obtains the correct labels from a human authority, and adapts
the neural network and the monitor to the novel classes, all at prediction time.
The framework contains a mechanism for automatic switching between monitor-
ing and adaptation based on run-time statistics. Adaptation consists of either
learning new classes (when enough data has been collected) or retraining with
more up-to-date information (when the run-time performance is unsatisfactory),
where retraining is applied to the network and the monitor independently. A
trained neural-network model accompanied by our framework, as an external
observer and mediator between the neural network and the human, achieves
improved transparency of operation through informative interaction.

Furthermore, we propose a new monitor designed for the adaptive setting.
Introducing a quantitative metric at the hidden layers of the neural network, the
monitor timely warns about inputs of novel classes and reports its own confidence
to the authority. This allows for assessing the need of model adaptation. The
quantitative metric allows for easy adaptation at prediction time to newly intro-
duced labels and successfully maintains overall classification accuracy on inputs
of known and previously novel classes combined. As such, our framework is an
interactive and interpretable tool for informed decision making in neural-network
based applications. We summarize the contributions of this paper below.

1. We propose an automatic framework with two modes, monitoring and adap-
tation, that operates in parallel with the original neural network and adapts
the monitor to novel input classes at prediction time.

2. We propose a quantitative metric to measure the confidence of the novelty
detection and to guide the monitor refinement. In contrast to traditional qual-
itative monitoring, which judges whether or not an observed input-output pair
of the network is reliable, our quantitative monitoring approach computes a

44 A. Lukina et al.

numerical “reliability score” for each observed input-output pair. The score
corresponds to the distance of values in feature space at training and predic-
tion time.

3. We provide an experimental evaluation on a diverse set of image-classification
benchmarks, demonstrating the effectiveness of the framework for achieving
high monitor precision over time. Given a fixed budget of times the monitor
can query the authority for a label, our monitoring approach adapts to the
available classes and consumes the budget more effectively.

After reviewing the related work in the next section, we provide the back-
ground and assumptions used throughout the paper in Sect. 3. We describe our
quantitative monitor and the process of adaptation in Sect. 4. We report on our
experimental results in Sect. 5 and conclude in Sect. 6.

2 Related Work

Novelty Detection. Gupta and Carlone consider neural networks that estimate
human poses, for which they propose a domain-specific monitoring algorithm
trained on perturbed inputs [13]. Our framework is not limited to any specific
domain of images. Common novelty-detection approaches [30] examine the input
sample distribution [18], which is computationally heavier at run-time than our
monitors. Several approaches monitor the neuron valuations and compare to a
“normal” representation of those valuations per class, obtained for a training
dataset: the patterns of neuron indices with highest values [36] or positive/non-
positive values [5], and a box abstraction [15,16,43]. These monitors are purely
qualitative and hence not adaptive, in contrast to our metric-based monitor.

Anomaly Detection. There exist other directions for detecting more general
anomalous behavior, not necessarily only novel classes. In selective classification,
an input is rejected based on a (quantitative) confidence score, already at train-
ing time [10]. The probably best-known approach classifies based on the softmax
score [12,14], which is shown to be limited in effect [9]. Approaches to failure
prediction aim to identify misclassifications of known classes [45]. Domain adap-
tation techniques detect when the underlying data distribution changes, which is
necessary for statistical methods to work reliably [33]. Notably, Royer and Lam-
pert show that correlations in the data distribution can be exploited to increase
a classifier’s precision [34]; while that approach applies to arbitrary classifiers in
an unsupervised setting, it cannot deal with unknown classes. Sun and Lampert
study the detection of out-of-spec situations, when classes do not occur with the
expected frequency [39]. An important aspect of domain adaptation, transfer
learning [28,40], is challenging online [47].

Continuous/Incremental Learning. A central obstacle in incremental learning
is catastrophic forgetting : the classifier’s precision for known classes decreases
over time [26]. We mitigate that obstacle by maintaining a sample of the train-
ing data and tuning the model on demand. Mensink et al. find that a simple

Into the Unknown: Active Monitoring of Neural Networks 45

nearest-class-mean (NCM) classifier (mapping an input to feature space and
choosing the closest centroid of all known classes) is effective [27]; they also
consider multiple centroids per class, as we do, but they use the Mahalanobis
distance in contrast to our more lightweight distance. Guerriero et al. extend that
idea to nonlinear deep models, where the focus is on efficiency to avoid constant
retraining [11]; we also delay retraining (network and monitor) until precision
deteriorates. Rebuffi et al. extend the NCM classifier for class-incremental learn-
ing with fixed memory requirements [32]. That learning approach, working in a
completely supervised scenario, retrains the neural network using sample selec-
tion/herding and rehearsal. These ideas could also be integrated in our frame-
work, but a representative sampling for our monitor is harder to obtain. Similar
to the NCM approach is the proposal by Mandelbaum and Weinshall to obtain
a confidence score using a k-nearest-neighbor distance based on the Euclidean
distance with respect to the training dataset, for which they require to modify
the training procedure [25]; we do not need access to the training procedure and
we experimentally found that the Euclidean distance is not suitable for networks
with different scales at different neurons.

Active Learning. Our approach is inspired by active learning. Active learning
aims to maximize prediction accuracy even on unseen data by detecting the most
representative novel inputs to label and incrementally retraining the neural net-
work on a selected sample of labeled novelties [37]. In contrast, the performance
of our framework is measured primarily by the run-time precision of the moni-
tor. We therefore use the incrementally retrained neural network solely for the
monitor adaptation in parallel with the original model. Our quantitative monitor
also reasons about the feature space of the neural network (and not the input
space).

An essential idea behind active learning is that, when selecting the training
data systematically, fewer training samples are needed; this selection is usually
taken at run-time by posing labeling queries to an authority [37]. Our approach
follows the spirit of selective sampling, where data comes from a stream, from
the region of uncertainty [7]. Das et al. follow a statistical approach to outlier
detection adapting to the reactions of the authority [8].

In an open world setting, novel classes have to be detected on the fly and
the classifier needs to be adapted accordingly. This setting is first approached
in [1] using an NCM classifier and in [2] with a softmax score. More recently,
Mancini et al. propose a deep architecture for learning new classes dynamically
[24]. Wagstaff et al. argue that two main obstacles in this setting are the cold
starts and the cost of having the classifier in the loop [42].

3 Background and Assumptions

In this paper, we deal with neural networks, which we denote by N . For simplicity
we present the concepts assuming a single feature layer � of the network, but
they generalize to multiple feature layers in a straightforward way. A monitor

46 A. Lukina et al.

is a function that takes both an input and the prediction of a classifier, and
then assesses whether that prediction is correct. The monitor raises a warning
if it suspects that the prediction is incorrect. The assessment can be qualitative
(“yes” or “no”) or quantitative (expressing the confidence of the monitor). We
write �x for an unlabeled data point, X for a (possibly labeled) dataset, y ∈ Y
for a class in a set of classes, and (�x, y) for a labeled data point.

Observing Feature Layers: We are given a trained neural network N and a
labeled dataset X with classes Y (which is not necessarily the dataset that N
was trained on). When we observe a feature layer � for some input, we obtain the
corresponding neuron valuations at layer �, which we regard as high-dimensional
vectors. We can thus compute the set of neuron valuations Vy for each class y ∈ Y
and each corresponding sample in X .

Performance Metrics: As conventionally used for assessing the performance of
classifiers and monitors, we compute the precision score. For a classifier this is
the ratio of correct classifications over all predictions, while for a monitor this
is the ratio of correct warnings (true positives, TP) over the total number of
warnings (including false positives, FP): TP/(TP + FP). At run-time we can only
compute the precision score based on samples that we know the ground truth for,
i.e., samples reported by the monitor and subsequently labeled by an authority.

Hyperparameters: We define the model performance threshold s∗
network as 95%

of the precision score of the original neural-network model N on a test dataset
(with classes known to N), which we use for making decisions about model
adaptation. The parameter s∗

samples is the number of collected and labeled data
samples of a novel class sufficient for incremental adaptation of the model to this
class, which we set to s∗

samples = 0.05 · |X |/|Y| for an initially given dataset. The
parameter s∗

monitor is the desired precision threshold of the monitor at run-time,
which we set to 0.9. The parameters d∗(y) (for each class y ∈ Y) are thresholds
for refining the set of inputs detected by the monitor, initialized to 1.

Assumptions: In this work we make a number of assumptions. First, we assume
the availability of an authority that assigns the correct label for any input that
is requested. While a human can play this role in many cases, in certain applica-
tions like medical image processing such an authority does not necessarily exist.
Second, in our experimental setup we assume that the authority is available in
real time. We also occasionally adapt the monitor or retrain the neural network.
While faster than building from scratch, this takes a non-negligible amount of
time. In time-critical applications one would need to delay these interactions and
adaptations accordingly. Third, neural networks require a large amount of data
points in order to learn new classes. In our evaluation there is sufficient data
available. Still, there are approaches that work with only few samples [3,23].

Into the Unknown: Active Monitoring of Neural Networks 47

4 Approach

We design our monitoring framework to achieve high precision in detecting novel
classes without depressing the learned model’s run-time performance. To address
this trade-off, our framework operates in stages, switching between monitoring
and adaptation. This procedure is based on parallel composition of two compo-
nents: a dynamically adapted copy of the original neural network and a monitor
that originally knows the same classes as the network. During monitoring, inputs
to the network that are reported by the monitor are submitted to an authority
for assigning the correct label. From that, precision scores for both the monitor
and the neural network are assessed for whether adaptation is required. During
adaptation, depending on the assessment, the neural network or the monitor is
incrementally adjusted, or they are retrained in order to learn an unknown class.

4.1 Quantitative Monitor

In addition to a general framework, we also propose a quantitative monitor for
neural networks that fits well into the framework. In a nutshell, our quantitative
monitor works as follows. At run-time, given an input �x and a corresponding
prediction y of the neural network, the monitor observes the feature layer � and
compares its valuation to a model of “typical” behavior for the class y. Next
we describe the steps to initialize this monitor, i.e., to construct said behavioral
model, which are also illustrated in Fig. 1. Given a labeled training dataset, we
observe the neuron valuations Vy for each class y ∈ Y (Fig. 1(a)). We then apply
a clustering algorithm to the sets Vy (Fig. 1(b)). In our implementation, we use
a k-means [22] algorithm that finds a suitable k dynamically.

So far the initialization is shared with the qualitative monitor from [15],
which would next compute the box abstraction for each cluster. A qualitative
abstraction-based monitor can only determine whether a point lies inside the
abstraction (here: a box) or not. Since we are interested in a quantitative moni-
tor, we instead define a distance function below.

Distance Function. We set reference points for computing the distance function
at the cluster centers. This way the majority of points have low distance. Below
we describe the particular distance function that we found effective in our evalu-
ation, which we also depict in Fig. 1(c) and (d). We note, however, that the idea
generalizes to arbitrary metrics.

Let us fix a class y ∈ Y and a corresponding cluster By with center �c =
(c1, . . . , cn)T of dimension n. Let �r = (r1, . . . , rn)T be the radius of the bounding
box around the cluster. We define the distance of a point �p = (p1, . . . , pn)T to By

as the maximum absolute difference to �c in any projected dimension i, normalized
by the radius ri:

d+(�p,By) = max
i

|ci − pi| · r−1
i .

48 A. Lukina et al.

PC 1

P
C

2

(a)

PC 1

P
C

2

(b)

PC 1

P
C

2

(c) (d)

Fig. 1. Illustration of the steps for initializing the quantitative monitor on a fixed
class, in a two-dimensional projection on the first two principal components PC 1
and PC 2 of the feature layer �. (a) Sampling of data points. (b) Result of clustering
(here: two clusters • and �) where × and × respectively mark the cluster centers.
(c) Quantitative metric for each cluster, visualized as dashed lines. (d) Projection of
an initialized quantitative monitor and its detection results for a network trained on
the first two classes of the MNIST dataset.

The distance generalizes to a set By of clusters for the same class y by taking
the minimum distance in the set:

d+(�p, y) = min
By∈By

d+(�p,By).

Computing the distance is linear in the dimension (i.e., the number of neurons
in the feature layer). We note that we can in principle also generalize the distance
to a set of classes Y in order to obtain a new classifier. In this paper, for the
purpose of monitoring, we just compare the distance for a fixed class to some
class-specific threshold (which we explain later).

Into the Unknown: Active Monitoring of Neural Networks 49

Fig. 2. High-level overview of the framework. The neural-network classifier receives
an input at run-time (top left). This input is classified while the monitor watches the
classification process. The authority is only queried for the correct label if the monitor
reports a misclassification. That may trigger, depending on the result and the history,
adaptation of the monitor or of the model.

4.2 Active Monitoring Algorithm

We now explain our active monitoring algorithm, summarized in Algorithm1
and also illustrated in Fig. 2.

Initialization. We start with a trained neural network N with a feature layer �
and a dataset X with a number of classes (the “known” classes) as inputs. The
first step in 2 is to initialize a monitor M for this network, for example as
described in Sect. 4.1 for our quantitative monitor. Instead of working on the
feature layer’s neurons directly, we learn a transformation matrix by applying
principal component analysis (PCA) [17] or Kernel PCA [35] to the neuron
valuations Vy. This transformation is not a requirement of our framework, and
hence we omit it in the pseudocode; as we noticed experimentally, this step tends
to further separate the valuations Vy and Vy′ for different classes y′ �= y, which
improves the overall monitor precision.

Monitoring Stage (Lines 4–11). At run-time, we apply our framework to a stream
of inputs. For each input �x, we perform the following steps. We first apply
the neural network to obtain both the class prediction y and the (principal
components of the) neuron valuations �p at the feature layer �. We then query
the monitor M about the prediction. In the case of the quantitative monitor, M
computes the distance d+(�p, y) with respect to the predicted class y. Then M

50 A. Lukina et al.

Algorithm 1: Active monitoring
Input: N : trained model
X : training data
Xrun : online input stream

1 while True do
2 M, Y ← buildMonitor(N , X , �) // build monitor M and extract known

classes Y from X
3 while True do

// monitoring mode
4 �x ← get(Xrun) // get next input �x
5 y ← classify(N , �x) // predict class of �x
6 �p ← observe(N , �x, �) // observe output at layer �
7 warning, �s ← monitor(�p, y, M) // monitor and compute statistics �s
8 if warning then
9 y� ← askAuthority(�x, y, d+(�p, y))

10 X ← collect(�x, y�, X) // add labeled pair (�x, y�) to X
11 adapt model ← evaluate(�s, X , Y)

// adaptation mode
12 if adapt model then
13 N , M, X ← adaptModel(N , X) B
14 break

15 M ←adaptMonitor(�s, M, N , X) A

16 end

17 end

18 end

compares this distance to a class-specific threshold d∗
y; initially this threshold is

set to 1, but we increase this value during the course of the algorithm later.
In the simple case that d+(�p, y) ≤ d∗

y, the monitor does not raise a warning
and the framework just returns the predicted class y for input �x (not shown in the
pseudocode). Otherwise the monitor rejects the network prediction as unknown.
In this case we query the authority to provide the ground truth y∗ for input �x
and add the pair (�x, y∗) to our training dataset X . For our quantitative monitor
we additional provide the authority with the distance d+(�p, y) as a confidence
measure, while for qualitative monitors this argument is missing. The procedure
evaluate(�s,X ,Y), where �s = {snetwork , ssamples , smonitor}, decides between the
following two scenarios, which we describe afterward.

A The ground truth matches the prediction (y∗ = y). In this case it was not
correct to raise a warning and we continue with the monitor adaptation.

B The ground truth does not match the prediction (y∗ �= y), possibly because
y∗ is unknown to N . In this case it was correct to raise a warning and we
continue with the model adaptation.

Monitor Adaptation (Line 15). Procedure adaptMonitor(�s, M, N , X) for mon-
itor adaptation in A is triggered if a wrong warning was raised and only applies

Into the Unknown: Active Monitoring of Neural Networks 51

to our quantitative monitor. Recall that the reason for raising a warning is
that the distance of �p exceeds the threshold for class y. We do not immediately
adapt the monitor every time it raises a wrong warning. Instead we keep track
of the monitor’s performance over time in terms of a score smonitor as defined
in Sect. 3. We only adapt the monitor if smonitor drops below a user-defined
threshold s∗

monitor . The adaptation performs two simple steps. First, we adapt
the cluster centers to the new collected data in X . Second, we adapt the distance
threshold d∗

y as follows. Let ssamples be the number of samples of class y that we
have already collected in X , and let s∗

samples be a learning threshold as defined
in Sect. 3. We define the new threshold d∗

y (which increases compared to the old
value) as

d∗
y + (d+(�p, y) − d∗

y) · s∗
samples

ssamples
.

Model Adaptation (Lines 12–14). In contrast to monitor adaptation, model adap-
tation in B involves retraining the neural-network model in order to learn novel
classes of inputs. Procedure adaptModel(N , X) performs this adaptation only
if one of the following conditions is satisfied:

B.1 The number of collected samples labeled by the authority reaches a pre-
defined threshold s∗

samples (see Sect. 3).
B.2 The precision score of the current model snetwork falls below the desired

value s∗
network (see Sect. 3).

In B.1 , using the dataset X replenished with the data points reported by
the monitor and labeled by the authority, we identify which class (or multiple
classes) should be learned, based on the collected statistics �s. We then employ
transfer learning [28] to train a new model that recognizes this class (classes)
in addition to the ones already known. Specifically, we remove the output layer
and all trailing layers until the last fully connected one and then add a new
output layer corresponding to the desired number of classes present in X . From
the newly compiled model we also augment the monitor. In the case of our
quantitative monitor, we apply the steps from Sect. 4.1 for the new class(es) and
set the corresponding distance threshold(s) to 1.

In B.2 , we rely on regular run-time measurements of the precision score
for the current model. Algorithmically, this is achieved by keeping a separate
(not used for retraining) test dataset after each successful transfer learning. We
collect only the inputs reported by our monitor and subsequently labeled by the
authority. This is in line with our main objective for the human in the loop to
remain the ultimate trustee for the framework.

Remark 1. The model obtained from transfer learning on the accumulated
labeled samples is not meant as a replacement for the original model provided at
the initialization stage but rather as an assistant to ongoing active monitoring.

This concludes all possible cases for one iteration of the algorithm. This
process is repeated for each input in the stream.

52 A. Lukina et al.

Table 1. Dataset and model description. The columns show the number of samples for
training and testing, the number of classes in total and initially known to the network,
the ID of the network architecture, and the full dimension (i.e., number of neurons) of
the monitored layer.

Dataset Dataset size train/test Classes all/init Net ID Dimension full

MNIST 60,000/10,000 10/5 1 40

FMNIST 60,000/10,000 10/5 1 40

CIFAR10 50,000/10,000 10/5 3 256

GTSRB 39,209/12,630 43/22 2 84

EMNIST 112,800/18,800 47/24 1 40

5 Experiments

We perform two experiments. In the first experiment we compare our quanti-
tative monitor to three other (static) monitoring strategies: a box-abstraction
monitor [15], a monitor based on the softmax score [14], and a monitor that
warns with uniform random rate. We evaluate these monitors on five image-
classification datasets. In the second experiment we investigate the influence of
different parameters on our quantitative monitor specifically.

5.1 Benchmark Datasets

We consider the following publicly available datasets, summarized in Table 1:
MNIST [20], Fashion MNIST (FMNIST) [44], and Extended MNIST (EMNIST)
[6] consist of 28 × 28 grayscale images; CIFAR10 [19] and the German Traffic
Sign Recognition Benchmark (GTSRB) [38] consist of 32 × 32 color images.

For each of these benchmarks we trained two neural-network models: one
model trained on all classes, which we refer to as the “static full” model, and one
model trained on half of the classes, which we refer to as the “static half” model.
We used VGG16 [46] pretrained on ImageNet for CIFAR10 and the architectures
from [5] for MNIST (which we also use for FMNIST and EMNIST) and GTSRB.

5.2 Experimental Setup

We let the framework process inputs in batches of size 128. For each dataset we
ran our active monitoring framework on reshuffled data five times.

We evaluate our active monitoring framework with four different monitoring
strategies, each of which uses the same overall processing within the framework,
e.g., the same sequence of samples in the input stream and the same policy for
model adaptation. The strategy based on the softmax score rejects inputs when
the score falls below 0.9. The random strategy rejects inputs with probability

Into the Unknown: Active Monitoring of Neural Networks 53

p = 5% (resp. p = 10% in the EMNIST experiment). To make the comparison
fair, we limit the number of available authority queries for each strategy to a
budget of p (the random rejection probability) percent of the full dataset. For
most of the benchmarks we used PCA and s∗

samples as explained in Sect. 3. For
CIFAR10, we used Kernel PCA and s∗

samples = 0.01 · |X |/|Y| instead.
We implemented our framework in Python 3.6 with Tensorflow 2.2 and scikit-

learn. We ran all experiments on an i7-8550U@1.80 GHz CPU with 32 GB RAM.
The source code and scripts that we used are available online1.

Table 2. Monitor comparison. We compare four different monitoring strategies: quan-
titative (this paper), box abstraction, softmax score, and random warning. For each
benchmark we report the interaction limit with the authority, the highest number of
learned classes, and the average monitoring precision of five runs. The best results per
benchmark are marked in bold.

Dataset Interaction
limit

Quantitative
class/prec

Abstraction
class/prec

Softmax
class/prec

Random
class/prec

MNIST 3,000 10
0.81± 0.01

10
0.6 ± 0.02

10
0.71 ± 0.01

6
0.48 ± 0.01

FMNIST 3,000 9
0.74± 0.02

9
0.54 ± 0.02

10
0.7 ± 0.01

8
0.5 ± 0.01

CIFAR10 2,500 10
0.75± 0.02

10
0.61 ± 0.02

10
0.53 ± 0.01

10
0.41 ± 0.01

GTSRB 1,960 37
0.67 ± 0.02

38
0.7 ± 0.01

34
0.75± 0.03

25
0.29 ± 0.01

EMNIST 11,280 42
0.81± 0.01

47
0.71 ± 0.02

47
0.69 ± 0.01

47
0.39 ± 0.01

5.3 Experimental Results

General Performance. The performance of the different monitoring strategies
in terms of monitoring precision is averaged over five runs and summarized in
Table 2. For all but one benchmark our monitor achieves the highest precision,
and for GTSRB the precision is comparable with other monitors. Figure 3 shows
the evolution of the monitor precision over time as more classes are learned.
Recall that the network is dynamically retrained (using transfer learning) for
new classes. Clearly, the number of new samples for this training procedure is
lower than in a normal, full-fledged training. Consequently, the adapted network
is less precise for these new classes (cf. Table 3) than a network trained on the full
training dataset. Hence it is expected that the general trend in the monitoring
precision is decreasing for all strategies.

1 https://github.com/VeriXAI/Into-the-Unknown.

https://github.com/VeriXAI/Into-the-Unknown

54 A. Lukina et al.

(a) MNIST (b) FMNIST

(c) CIFAR10 (d) GTSRB

(e) EMNIST

Fig. 3. Comparison of the monitor precision between four monitoring strategies, aver-
aged over five runs and including 95%-confidence bands. The markers correspond to
points in time when a model adaptation takes place.

Into the Unknown: Active Monitoring of Neural Networks 55

Table 3. Model adaptation. We compare the static model trained on 50% of the
classes, the static model trained on all classes, and the model obtained from our frame-
work (using the quantitative monitor), averaged over five runs. In the static cases, the
test accuracy is measured on the filtered test set (not including novelties for the 50%
model). The second column shows the epochs used for the initial training resp. the
retraining/transfer learning at run-time.

Dataset Epochs
init/run

Static half
train/test

Static full
train/test

Adaptive
test

MNIST 10/10 0.99/0.99 0.99/0.99 0.97 ± 0.01

FMNIST 10/10 0.99/0.92 0.97/0.91 0.79 ± 0.05

CIFAR10 50/30 0.99/0.83 0.99/0.79 0.54 ± 0.02

GTSRB 30/30 0.99/0.95 0.99/0.88 0.87 ± 0.01

EMNIST 30/30 0.97/0.92 0.92/0.86 0.71 ± 0.04

We report the test accuracy of the neural networks in Table 3, averaged over
five runs per benchmark. The accuracy is generally lower than what could be
achieved by training the network with a full and balanced dataset from scratch
(the “static full” model), but for some benchmarks we achieve almost the same
accuracy. This shows that the framework is able to adapt to new situations.

Cost Analysis. In Fig. 4, we show the frequency of authority queries over time.
Recall that there is a budget of queries (cf. Table 2). Our quantitative monitor
queries the authority more frequently at the beginning but as it adapts to more
novel classes the rate of requests is steadily decreasing. Thus the monitor has
the fewest queries in four of the five benchmarks (except for GTSRB). The
other monitors do not have an adaptation mechanism and therefore are prone
to querying the authority more often. For some monitors we even observe an
increase in warnings over time, in particular the monitor that uses the softmax
score. As we argued above, we suspect that the network tends to be less confident
for newly learned classes, which results in lower softmax scores. Learning new
classes often happens at roughly the same point in time. This is because the
novelties appear with uniform distribution in the input stream; hence the points
in time when a fixed number per class has been seen are close to each other.

Overall the plots do not reveal a clear trend which monitor is fastest at
learning new classes. There is generally a trade-off between the rate at which a
warning is raised and the rate at which new classes are learned. In our scenario,
raising a warning is initially correct in 50% of the cases (note that none of the
monitors is in that range); taken to the extreme, a monitor that always raises
a warning would be the fastest in learning new classes. On the other hand, a
monitor that generally raises fewer warnings to the authority may also miss
novelties and thus learn slower. However, in our experience it is more preferred
to provide a low false-positive rate, i.e., warnings raised by the monitor should
be genuine. In this sense the quantitative monitor works best.

56 A. Lukina et al.

(a) MNIST (b) FMNIST

(c) CIFAR10 (d) GTSRB

(e) EMNIST

Fig. 4. Comparison of the rate of authority queries between four monitoring strategies,
averaged over five runs and including 95%-confidence bands. The markers correspond
to points in time when a model adaptation takes place.

Into the Unknown: Active Monitoring of Neural Networks 57

(a) Static and dynamic distance threshold. (b) Different initial threshold values.

Fig. 5. Influence of the dynamic distance threshold d∗(y) for each class y on the
quantitative-monitor precision for the MNIST benchmark. The markers correspond to
points in time when a model adaptation takes place. (a) Comparison between a static
value and a dynamically changing value (as proposed in this paper); we also show a
comparison with a run where we omit the preprocessing with PCA. (b) Influence of
the initial value of the threshold.

Ablation and Sensitivity Study. All components of our framework contributed
to its performance. In Fig. 3, we have illustrated how incremental retraining
of the model improves the monitor precision for all monitoring strategies. In
principle, other active-learning strategies can be plugged into our framework to
further increase this effect. In addition, Fig. 3 demonstrates that the monitor-
adaptation stage (where the monitor is incrementally adjusted without model
adaptation), which only applies to our quantitative monitor, helps maintaining
a better precision than the other monitoring strategies.

Figure 5(a) shows that dynamically changing the value of the distance thresh-
old d∗(y) (for each class y) contributes to the precision of our monitor, and so
does the use of PCA for dimensionality reduction. Similarly, Fig. 5(b) shows
that the starting value of the (dynamic) threshold also influences the monitor
precision.

Timing Analysis. Table 4 shows a timing comparison for the individual adap-
tation stages of the framework, taken from the runs for the quantitative mon-
itor strategy. (Comparing different strategies is generally difficult because they
interact with the authority and adapt the model and/or the monitor in differ-
ent orders and frequencies.) The time grows with the size of the dataset but on
average is on the order of milliseconds per input; hence the framework can be
run in real time. For CIFAR10 the time is dominated by the use of Kernel PCA.

58 A. Lukina et al.

Table 4. Average run times in seconds. For each benchmark we average (five runs)
the time for retraining the neural network (when enough samples of a new class were
collected), for retraining the monitor (after retraining the neural network), and for
adapting the monitor (when the precision drops too much).

Dataset Retrain network Retrain monitor Adapt monitor

MNIST 26 ± 1 59 ± 3 39 ± 5

FMNIST 19 ± 6 45 ± 10 59 ± 5

CIFAR10 257 ± 57 2,477 ± 282 40 ± 3

GTSRB 228 ± 12 194 ± 24 19 ± 1

EMNIST 360 ± 191 347 ± 71 82 ± 16

6 Conclusion and Future Work

In this work, we have presented an active monitoring framework for accompa-
nying a neural-network classifier during deployment. The framework adapts to
unknown input classes via interaction with a human authority. Experiments on
a diverse set of image-classification benchmarks showed that active monitoring
is effective in improving accuracy over time in the setting when inputs of novel
classes are frequently encountered. Moreover, we introduced a new quantita-
tive monitor, providing the human with confidence about the reported warn-
ings based on a distance to the predicted class in feature space. In comparison
to alternative monitoring strategies, our monitor demonstrated superior perfor-
mance in detection and adaptation at run-time. Our framework thus improves
trustworthiness of automated decision making.

Our framework is independent of the choice of the dataset and the neural-
network architecture. The only requirements for applicability of our approach
are access to the output of the feature layer(s). We plan to extend our procedure
toward real-world applications with particular need of active monitoring, e.g.,
in robotics for the trained controller to gradually adapt to the behavior of the
authority. Other interesting directions are time-critical applications where the
adaptation of the monitor or the neural network need to be delayed to uncritical
phases, and scenarios where novel inputs occur rarely. In addition, the underlying
method of our framework can serve as a suitable tool for designing an algorithmic
approach to explainability of a neural network’s predictions.

Acknowledgments. We thank Christoph Lampert and Alex Greengold for fruitful
discussions. This research was supported in part by the Simons Institute for the Theory
of Computing, the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein
Award), and the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk�lodowska-Curie grant agreement No. 754411.

Into the Unknown: Active Monitoring of Neural Networks 59

References

1. Bendale, A., Boult, T.E.: Towards open world recognition. In: CVPR, pp.
1893–1902. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.
7298799

2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: CVPR, pp. 1563–
1572. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.173

3. Bendre, N., Terashima-Maŕın, H., Najafirad, P.: Learning from few samples: a
survey. CoRR abs/2007.15484 (2020). https://arxiv.org/abs/2007.15484

4. Chen, Y., Cheng, C., Yan, J., Yan, R.: Monitoring object detection abnormali-
ties via data-label and post-algorithm abstractions. CoRR abs/2103.15456 (2021).
https://arxiv.org/abs/2103.15456

5. Cheng, C., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: DATE, pp. 300–303. IEEE (2019). https://doi.org/10.23919/DATE.
2019.8714971

6. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: extending MNIST to
handwritten letters. In: IJCNN, pp. 2921–2926. IEEE (2017). https://doi.org/10.
1109/IJCNN.2017.7966217

7. Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learn-
ing. Mach. Learn. 15(2), 201–221 (1994). https://doi.org/10.1007/BF00993277

8. Das, S., Wong, W., Dietterich, T.G., Fern, A., Emmott, A.: Incorporating expert
feedback into active anomaly discovery. In: ICDM, pp. 853–858. IEEE Computer
Society (2016). https://doi.org/10.1109/ICDM.2016.0102

9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: ICML. JMLR Workshop and Conference
Proceedings, vol. 48, pp. 1050–1059. JMLR.org (2016). http://proceedings.mlr.
press/v48/gal16.html

10. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks.
In: NeurIPS, pp. 4878–4887 (2017). http://papers.nips.cc/paper/7073-selective-
classification-for-deep-neural-networks

11. Guerriero, S., Caputo, B., Mensink, T.: DeepNCM: deep nearest class mean
classifiers. In: ICLR. OpenReview.net (2018). https://openreview.net/forum?
id=rkPLZ4JPM

12. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: ICML. PMLR, vol. 70, pp. 1321–1330. PMLR (2017). http://
proceedings.mlr.press/v70/guo17a.html

13. Gupta, A., Carlone, L.: Online monitoring for neural network based monocular
pedestrian pose estimation. In: ITSC, pp. 1–8. IEEE (2020). https://doi.org/10.
1109/ITSC45102.2020.9294609

14. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: ICLR. OpenReview.net (2017).
https://openreview.net/forum?id=Hkg4TI9xl

15. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based
monitoring of neural networks. In: ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 325, pp. 2433–2440. IOS Press (2020). https://doi.org/10.3233/
FAIA200375

16. Ibrahim, S.H., Nassar, M.: Hack the box: fooling deep learning abstraction-based
monitors. CoRR abs/2107.04764 (2021). https://arxiv.org/abs/2107.04764

17. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, Springer,
Heidelberg (1986). https://doi.org/10.1007/978-1-4757-1904-8

https://doi.org/10.1109/CVPR.2015.7298799
https://doi.org/10.1109/CVPR.2015.7298799
https://doi.org/10.1109/CVPR.2016.173
https://arxiv.org/abs/2007.15484
https://arxiv.org/abs/2103.15456
https://doi.org/10.23919/DATE.2019.8714971
https://doi.org/10.23919/DATE.2019.8714971
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1007/BF00993277
https://doi.org/10.1109/ICDM.2016.0102
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks
https://openreview.net/forum?id=rkPLZ4JPM
https://openreview.net/forum?id=rkPLZ4JPM
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.1109/ITSC45102.2020.9294609
https://doi.org/10.1109/ITSC45102.2020.9294609
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.3233/FAIA200375
https://doi.org/10.3233/FAIA200375
https://arxiv.org/abs/2107.04764
https://doi.org/10.1007/978-1-4757-1904-8

60 A. Lukina et al.

18. Knorr, E.M., Ng, R.T.: A unified notion of outliers: properties and computation.
In: KDD, pp. 219–222. AAAI Press (1997). http://www.aaai.org/Library/KDD/
1997/kdd97-044.php

19. Krizhevsky, A.: Learning multiple layers of features from tiny images. University
of Toronto, Technical report (2009)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

21. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26
(2017). https://doi.org/10.1016/j.neucom.2016.12.038

22. Lloyd, S.P.: Least squares quantization in PCM. Trans. Inf. Theory 28(2), 129–136
(1982). https://doi.org/10.1109/TIT.1982.1056489

23. Lu, J., Gong, P., Ye, J., Zhang, C.: Learning from very few samples: a survey.
CoRR abs/2009.02653 (2020). https://arxiv.org/abs/2009.02653

24. Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., Caputo, B.: Knowledge is never
enough: towards web aided deep open world recognition. In: ICRA, pp. 9537–9543.
IEEE (2019). https://doi.org/10.1109/ICRA.2019.8793803

25. Mandelbaum, A., Weinshall, D.: Distance-based confidence score for neural net-
work classifiers. CoRR abs/1709.09844 (2017). http://arxiv.org/abs/1709.09844

26. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. In: Psychology of Learning and Motivation, vol.
24, pp. 109–165. Elsevier (1989). http://www.sciencedirect.com/science/article/
pii/S0079742108605368

27. Mensink, T., Verbeek, J.J., Perronnin, F., Csurka, G.: Distance-based image clas-
sification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal.
Mach. Intell. 35(11), 2624–2637 (2013). https://doi.org/10.1109/TPAMI.2013.83

28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

29. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019).
https://doi.org/10.1016/j.neunet.2019.01.012

30. Pimentel, M.A.F., Clifton, D.A., Clifton, L.A., Tarassenko, L.: A review of novelty
detection. Signal Process. 99, 215–249 (2014). https://doi.org/10.1016/j.sigpro.
2013.12.026

31. Rahman, Q.M., Corke, P., Dayoub, F.: Run-time monitoring of machine learning
for robotic perception: a survey of emerging trends. IEEE Access 9, 20067–20075
(2021). https://doi.org/10.1109/ACCESS.2021.3055015

32. Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier
and representation learning. In: CVPR, pp. 5533–5542. IEEE Computer Society
(2017). https://doi.org/10.1109/CVPR.2017.587

33. Redko, I., Morvant, E., Habrard, A., Sebban, M., Bennani, Y.: Advances in Domain
Adaptation Theory. Elsevier (2019)

34. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: CVPR, pp.
1401–1409. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.
7298746

35. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis.
In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0020217

http://www.aaai.org/Library/KDD/1997/kdd97-044.php
http://www.aaai.org/Library/KDD/1997/kdd97-044.php
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/TIT.1982.1056489
https://arxiv.org/abs/2009.02653
https://doi.org/10.1109/ICRA.2019.8793803
http://arxiv.org/abs/1709.09844
http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
https://doi.org/10.1109/TPAMI.2013.83
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1109/ACCESS.2021.3055015
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2015.7298746
https://doi.org/10.1109/CVPR.2015.7298746
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/BFb0020217

Into the Unknown: Active Monitoring of Neural Networks 61

36. Schultheiss, A., Käding, C., Freytag, A., Denzler, J.: Finding the unknown: novelty
detection with extreme value signatures of deep neural activations. In: Roth, V.,
Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 226–238. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66709-6 19

37. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers (2012). https://doi.org/10.
2200/S00429ED1V01Y201207AIM018

38. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recogni-
tion benchmark: a multi-class classification competition. In: IJCNN, pp. 1453–1460.
IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033395

39. Sun, R., Lampert, C.H.: KS(conf): a light-weight test if a multiclass classifier oper-
ates outside of its specifications. Int. J. Comput. Vis. 128(4), 970–995 (2020).
https://doi.org/10.1007/s11263-019-01232-x

40. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer
learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis,
I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01424-7 27

41. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain ran-
domization for transferring deep neural networks from simulation to the real world.
In: IROS, pp. 23–30. IEEE (2017). https://doi.org/10.1109/IROS.2017.8202133

42. Wagstaff, K.L., Lu, S.: Efficient active learning for new domains. In: Workshop on
Real World Experiment Design and Active Learning (2020)

43. Wu, C., Falcone, Y., Bensalem, S.: Customizable reference runtime monitoring
of neural networks using resolution boxes. CoRR abs/2104.14435 (2021). https://
arxiv.org/abs/2104.14435

44. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.
org/abs/1708.07747

45. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of
vision systems. In: CVPR, pp. 3566–3573. IEEE Computer Society (2014). https://
doi.org/10.1109/CVPR.2014.456

46. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks
for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10),
1943–1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579

47. Zhao, P., Hoi, S.C.H.: OTL: a framework of online transfer learning. In: ICML, pp.
1231–1238. Omnipress (2010). https://icml.cc/Conferences/2010/papers/219.pdf

https://doi.org/10.1007/978-3-319-66709-6_19
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1007/s11263-019-01232-x
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1109/IROS.2017.8202133
https://arxiv.org/abs/2104.14435
https://arxiv.org/abs/2104.14435
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/CVPR.2014.456
https://doi.org/10.1109/CVPR.2014.456
https://doi.org/10.1109/TPAMI.2015.2502579
https://icml.cc/Conferences/2010/papers/219.pdf

Monitoring with Verified Guarantees

Johann C. Dauer1 , Bernd Finkbeiner2 , and Sebastian Schirmer1(B)

1 German Aerospace Center (DLR), Braunschweig, Germany
{johann.dauer,sebastian.schirmer}@dlr.de

2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany
finkbeiner@cispa.saarland

Abstract. Runtime monitoring is generally considered a light-weight
alternative to formal verification. In safety-critical systems, however, the
monitor itself is a critical component. For example, if the monitor is
responsible for initiating emergency protocols, as proposed in a recent
aviation standard, then the safety of the entire system critically depends
on guarantees of the correctness of the monitor. In this paper, we present
a verification extension to the Lola monitoring language that integrates
the efficient specification of the monitor with Hoare-style annotations
that guarantee the correctness of the monitor specification. We add two
new operators, assume and assert, which specify assumptions of the mon-
itor and expectations on its output, respectively. The validity of the
annotations is established by an integrated SMT solver. We report on
experience in applying the approach to specifications from the avionics
domain, where the annotation with assumptions and assertions has lead
to the discovery of safety-critical errors in the specifications. The errors
range from incorrect default values in offset computations to complex
algorithmic errors that result in unexpected temporal patterns.

Keywords: Formal methods · Cyber-physical systems · Runtime
verification · Hoare logic

1 Introduction

Cyber-physical systems are inherently safety-critical due to their direct inter-
action with the physical environment – failures are unacceptable. A means of
protection against failures is the integration of reliable monitoring capabilities. A
monitor is a system component that has access to a wide range of system infor-
mation, e.g., sensor readings and control decisions. When the monitor detects a
failure, i.e., a violation of the behavior stated in its specification, it notifies the
system or activates recoveries to prevent failure propagation.

The task of the monitor is critical to the safety of the system, and its cor-
rectness is therefore of utmost importance. Runtime monitoring approaches like
Lola [5,6] address this by describing the monitor in a formal specification lan-
guage, and then generating a monitor implementation that is provably correct
and has strong runtime guarantees, for example on memory consumption. Formal
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 62–80, 2021.
https://doi.org/10.1007/978-3-030-88494-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_4&domain=pdf
http://orcid.org/0000-0002-8287-2376
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-4596-2479
https://doi.org/10.1007/978-3-030-88494-9_4

Monitoring with Verified Guarantees 63

monitoring languages typically feature temporal [18] and sometimes spatial [16]
operators that simplify the specification of complex monitoring behaviors. How-
ever, the specification itself, the central part of runtime monitoring, is still prone
to human errors during specification development. How can we check that the
monitor specification itself is correct?

In this paper, we introduce a verification feature to the Lola framework.
Specifically, we extend the specification language with assumptions and asser-
tions. The framework verifies that the assertions are guaranteed to hold if the
input to the monitor satisfies the assumptions. The prime application area of
Lola is unmanned aviation. Lola is increasingly used for the development and
operation monitoring of unmanned aircraft; for example, the Lola monitor-
ing framework has been integrated into the DLR unmanned aircraft superAR-
TIS1 [1]. The verification extension presented in this paper is motivated by this
work. In practice, system engineers report that support for specification devel-
opment is necessary, e.g., sanity checks and proves of correctness. Additionally,
recent developments in unmanned aviation regulations and standards indicate
a similar necessity. One such development is the upcoming industry standard
ASTM F3269 (Standard Practice for Methods to Safely Bound Flight Behavior
of Unmanned Aircraft Systems Containing Complex Functions). ASTM F3269
introduces a certification strategy based on a Run-Time Assurance (RTA) archi-
tecture that bounds the behavior of a complex function by a safety monitor [15],
similar to the well-known Simplex architecture [21]. This complex function could
be a Deep Neural Network as proposed in [4]. A simplified version of the archi-
tecture2 of ASTM F3269 is shown in Fig. 1.

External Data

Safety Monitor

Complex Function

Recovery Control Function(s)

Switch

Fig. 1. Run-Time Assurance architecture proposed by ASTM F3269 to safely bound
a complex function using a safety monitor.

1 https://www.dlr.de/content/en/research-facilities/superartis-en.html.
2 In its original version the data is separated into assured and unassured data and

data preparation components are added.

https://www.dlr.de/content/en/research-facilities/superartis-en.html

64 J. C. Dauer et al.

At the core of the architecture is a safety monitor that takes the inputs
and outputs of the complex function, and decides whether the complex function
behaves as expected. If not, the monitor switches the control from the complex
function to a matching recovery function. For instance, the flight of an unmanned
aircraft could be separated into different phases: e.g., take-off, cruise flight, and
landing. For each of these phases, a dedicated recovery could be defined, e.g.,
braking during take-off, the activation of a parachute during cruise flight, or
a go-around maneuver during landing. Further, it is crucial that recoveries are
only activated under certain conditions and that only one recovery is activated
at a time. For instance, a parachute activation during a landing approach is
considered safety-critical. The verification extension of Lola introduced in this
paper can be used to guarantee statically that such decisions are avoided within
the monitor specification. Consider the simplified Lola specification

input event_a, event_b, value: Bool, Bool, Float32

assume <a1> !(event_a and event_b)

output braking : Bool := ...computation...

output parachute : Bool := ...computation...

output go_around : Bool := ...computation...

assert <a1> !(braking and parachute)

that declares an assumption on the system input events and asserts that
braking and parachute never evaluates to true simultaneously.

In the following, we first give a brief introduction to the stream-based speci-
fication language Lola, then present the verification approach, and, finally, give
details on the tool implementation and our tool experience with specifications
that were written based on interviews with aviation experts. Our results show
that standard Lola specifications are indeed prone to error, and that these
errors can be caught with the formal verification introduced by our extension.

Related Work
Most work on the verification of monitors focuses on the correct transformation
into a general programming language. For example, Copilot [17] specifications
can be compiled into C code with constant time and memory requirements. Sim-
ilarly, there is a translation validation toolkit for Lola monitors implemented
in Rust [6], which is based on the Viper verification tool. Translation validation
of this type is orthogonal to the verification approach of this paper. Instead of
verifying the correctness of a transformation, our focus is to verify the specifi-
cation itself. Both activities complement each other and facilitate safer future
cyber-physical systems.

Our verification approach is based on classic ideas of inductive program ver-
ification [7,11], and is closely related to the techniques used in static program
verifiers like KeY [2], VeriFast [12], and Dafny [14]. In a verification approach
like Dafny, we are interested in functional properties of procedures, specified as
post-conditions that relate the values upon the termination of the procedure
with those at the time of entry to the procedure, e.g., ensure y = old(y). By
contrast, a stream-based language like Lola allows arbitrary access to past and

Monitoring with Verified Guarantees 65

future stream values. This makes it necessary to unfold the Lola specification
in order to properly relate the assumptions and assertions in time.

Most closely related to stream-based monitoring languages are synchronous
programming languages like LUSTRE [10], ESTEREL [3], and SIGNAL [8].
For these languages, the compiler is typically used for verification – a program
representing the negation of desired properties is compiled with the target pro-
gram and a check for emptiness decides whether the properties are satisfied.
Furthermore, a translation from past linear-time temporal logic to ESTEREL
was proposed to simplify the specification of more complex temporal proper-
ties [13]. Other verification techniques also exist like SMT-based k-Induction for
LUSTRE [9] or a term rewriting system on synced effects [22]. A key difference
in our approach is that we do not rely on compilation. Our verification works
on the level of an intermediate representation. Furthermore, synchronous pro-
gramming languages are limited to past references, while the stream unfolding
for the inductive correctness proof of the Lola specification includes both past
and future temporal operators. Similar to k-Induction, our approach is sound
but not complete.

2 Runtime Monitoring with Lola

We now give an overview of the monitoring specification language Lola. The
verification extension is presented in the next section.

Lola is a stream-based language that describes the translation from input
streams to output streams:

input t1 : T1

...
input tm : Tm

output s1 : Tm+1 := e1(t1, . . . , tm, s1, . . . , sn)
...

output sn : Tm+n := en(t1, . . . , tm, s1, . . . , sn)
trigger ϕ message

where input streams carry synchronous arriving data from the system under
scrutiny, output streams represent calculations, and triggers generate notifica-
tion messages at instants where their condition ϕ becomes true. Input streams
t1, . . . , tm and output streams s1, . . . , sn are called independent and dependent
variables, respectively. Each variable is typed: independent variables ti are typed
Ti and dependent variables si are typed Tm+i. Dependent variables are computed
based on stream expressions e1, . . . , en over dependent and independent stream
variables. A stream expression is one of the following:

66 J. C. Dauer et al.

– an atomic stream expression c of type T if c is a constant of type T ;
– an atomic stream expression s of type T if s is a stream variable of type T ;
– a stream expression ite(b, e1, e2) of type T if b is a Boolean stream expression

and e1, e2 are stream expressions of type T . Note that ite abbreviates the
control construct if-then-else;

– a stream expression f(e1, . . . , ek) of type T if f : T1 × · · ·×Tk �→ T is a k-ary
operator and e1, . . . , ek are stream expressions of type T1, . . . , Tk;

– a stream expression o.offset(by : i).defaults(to : d) of type T if o is a stream
variable of type T , i is an Integer, and d is of type T .

For example, consider the Lola specification

input altitude: Float32 // in m

output altitude_bound := altitude > 200.0

trigger altitude_bound "Warning: Decrease altitude!"

that notifies the system if the current altitude is above its operating limits, i.e.,
200.0m. Note that stream types are inferred, i.e., altitude bound is of type
Bool.

Lola uses temporal operators that allow output streams to access its and
others previous and future stream values. The stream

output alt_count := if altitude ≤ 200.0 then 0

else alt_count.offset(by: -1).defaults(to: 0) + 1

represents a count of consecutive altitude violations by accessing its own previous
value, i.e., offset(by: x) where a negative and positive integer x represents
past and future stream accesses, respectively. Since temporal accesses are not
always guaranteed to exist, the default operator defines values which are used
instead, i.e., defaults(to: d) where d has to be of the same type as the used
stream. Here, at the first position of alt count the default value zero is taken.
As abbreviations for the temporal operators, alt count[x, d] is used. Further,
s[x..y, d, ◦] for x < y abbreviates s[x,d] ◦ s[x+1,d] ◦ . . . ◦ s[y,d] where
◦ is a binary operator. Using alt count > 10 as a trigger condition is preferable
if only persistent violations should be reported.

In general, Lola is a specification language that allows to specify complex
temporal properties in a precise, concise, and less error-prone way. The focus
is on what properties should be monitored instead of how a monitor should be
executed. Therefore, the Lola monitor synthesis automatically infers and opti-
mizes implementation details like evaluation order and memory management.
The evaluation order [6] of Lola streams is automatically derived by analysis
of the dependency graph [5] of the specification. This allows to ignore the order
when taking advantage of the modular structure of Lola output streams, e.g.,:

output alt_avg := alt_count / (position+1)

output alt_count := if altitude ≤ 200.0 then 0

else alt_count.offset(by: -1).defaults(to: 0) + 1

output position := position.offset(by: -1).defaults(to: 0)

Monitoring with Verified Guarantees 67

where position and alt count are used before their definition. Further, the
dependency graph allows to detect invalid cyclic stream dependencies, e.g.,
output a := a.offset(by: 0).defaults(to: 0).

3 Assumptions and Assertions

In this section, we present the verification extension for the Lola specification
language. The extension allows the developer to annotate the Lola specification
with assumptions and assertions in order to verify the desired guarantees on
the computed streams. As an example, consider the simplified specification in
Listing 1, which is structured into stream computations in Lines 1 to 23, and
assumptions and assertions from Line 26 onwards.

1input alt : Float32 // Height above ground

2input x, y : Float32, Float32 // Position in local coordinate system

3input speed : Float32 // Velocity of aircraft

4input landing : Bool // Indicates landing mode

5input lg_status : (Float32,Float32,FLoat32) // Status of landing gear

6

7// Complex computations

8output dst_on_runway : Float32 :=
√

x2 + y2

9output geofence_violation : Bool := ...

10output landing_gear_ready : Bool := ...

11
12// Take-off contingency

13output decelerate := alt < 1.0 ∧ speed < 10.0 ∧ dst_on_runway > 20.0

14// In-flight contingency

15output parachute := geofence_violation ∧ alt > 100.0

16// Landing contingency

17output gain_alt := landing ∧ alt ≥ 10.0 ∧ (speed > 10.0 ∨
18!landing_gear_ready[-4..0, true, ∧])
19
20// Notifications to the system

21trigger decelerate "RECOVERY: Stop take-off by decelerating aircraft."

22trigger parachute "RECOVERY: Activate parachute."

23trigger gain_alt "RECOVERY: Gain altitude for next landing attempt."

24
25// By concept of operations: landing is always within geofence.

26assume <a1> ¬(landing ∧ geofence_violation)

27assume <a1> abs(speed) <= 80.0 // Given by data protocol

28
29// Only one contingency is activated at once.

30assert <a1> ¬((decelerate ∧ parachute) ∨ (decelerate ∧ gain_alt)

31∨ (parachute ∧ gain_alt))

32// Parachute SHALL ONLY be activated 100 m above ground.

33assert <a2> parachute → alt > 100.0

Listing 1. A simplified Run-Time Assurance Lola specification with three recovery
functions for three different flight phases. Assumptions and assertions are used to show
that only one recovery function is activated at once.

68 J. C. Dauer et al.

The computation part specifies a safety monitor within a RTA architecture
that triggers recovery functions for three different flight phases. First, the take-
off recovery function is triggered (Line 21) when the targeted take-off speed
was not achieved on a runway up to a predefined point (Line 13). The distance
between the current position and the end of the runway with local coordinates
(0, 0) is computed in Line 8. Second, in-flight a parachute is activated (Line 22)
when virtual barriers for the aircraft, i.e., a geofence, are exceeded (Line 15).
For more details on a Lola geofence specification (Line 9), we refer to [20].
Last, during landing, up to a point of no return (alt < 10.0), a new landing
attempt is initiated (Line 23) if the aircraft’s speed is too fast or its landing gear
is not yet ready. To be more robust, the current and the previous value of the
landing gear ready is taken into account (Lines 17–18).

With the verification extension, the specification assures that recoveries are
not activated simultaneously (Lines 30–31), i.e., for instance there is no possi-
bility that a parachute is activated during a landing approach. The first two
conjunctions in Line 30 evaluate to false because relevant outputs use a disjoint
altitude condition. The last conjunction requires an assumption. In fact, here,
two assumptions are linked by the identifier a1 to the assertion. The assumptions
specify: the known bound of received speed data (Line 27) as well as operational
information (Line 26), e.g., given by the concept of operation a nominal landing
is only foreseen within the predefined operational airspace. Further, a second
assertion is stated in Line 33 that guarantees that the parachute should only be
activated when the aircraft is 100m above ground. In this case, the property can
be shown assumption-free. Assertions help engineers to show that certain prop-
erties are true. The given assertions indicate how specification debugging and
management can benefit from the extension – it avoids digging into potentially
complex stream computations.

The extension and its verification approach are presented in the following. In
general, the verification extension is used if a Lola specification is annotated in
the following way:

assume 〈α1〉 θ1

...
assume 〈αm〉 θm

assert 〈αm+1〉 ψ1

...
assert 〈αm+n〉 ψn

where α1, . . . , αm+n ∈ Γ are identifiers for θ1, . . . , θm, ψ1, . . . , ψn, which are
Boolean stream expressions with possibly temporal operators. For convenience,
we define functions which return all θ and ψ that are linked to a given α identifier:
assume(α) = {θj | ∀αj ∈ Γ, α = αj} and assert(α) = {ψj | ∀αj ∈ Γ, α = αj}.

Monitoring with Verified Guarantees 69

The set of assertion ψ1, . . . , ψn is correct for all input streams iff whenever an
assumption is satisfied, its corresponding assertion is satisfied as well.

The verification of assertions relies on the encoding of the Lola execution in
Satisfiability Modulo Theory (SMT). We define the smt function that encodes
a stream expression next. It can be used to encode independent and dependent
variables as well as expressions of assumptions and assertions.

Definition 1 (SMT-Encoding of Stream Expressions).
Let Φ be a Lola specification over independent stream variables t1, . . . , tm
and dependent stream variables s1, . . . , sn. Further, let the natural number
N + 1 be the length of the input streams, c be an SMT constant symbol,
and τ0

1 , . . . , τN
1 , . . . , τ0

m, . . . , τN
m , σ0

1 , . . . , σN
1 , . . . , σ0

n, . . . , σN
n be SMT variables.

Then, the function smt recursively encodes a stream expression e at position j
with 0 ≤ j ≤ N in the following way:

– Base cases:
• smt(c)(j) = c
• smt(ti)(j) = τ j

i

• smt(si)(j) = σj
i

– Recursive cases:
• smt(f(e1, . . . , en))(j) = f(smt(e1)(j), . . . , smt(en)(j))
• smt(ite(eb, e1, e2))(j) = ite(smt(eb)(j), smt(e1)(j), smt(e2)(j))

• smt(e[k, c])(j) =

{
smt(e)(j + k) if 0 ≤ j + k ≤ N,

c otherwise

where ite is an SMT encoding of if-then-else; f is an interpreted function if
f is from a theory supported by the SMT solver and an uninterpreted function
otherwise.

Next, Proposition 1 shows how the correctness of asserted stream properties
can be proven for finite input streams. If the set of assertions is correct, asserted
stream properties are guaranteed to be valid in each step of the monitor execu-
tion. In practice, such specifications are preferable. In the following, let Φ be a
Lola specification with verification annotations. Further, we refer to the set of
input streams and computed output streams as stream execution.

Proposition 1 (Assertion Verification of a Finite Stream Execution).
The set of assertions is correct for a finite stream execution with length N + 1
under given assumptions, if the following formula is valid:∧

i: 0≤i≤N

(∧
α∈Γ

(
∧

θ ∈ assume(α)

smt(θ)(i) ∧ ∧
sk∈Φ

σi
k = smt(ek)(i) → ∧

ψ ∈ assert(α)

smt(ψ)(i)
))

The formula in Proposition 1 unfolds the complete stream execution and
informally expresses that an assertion must hold in each stream position when-
ever its corresponding assumption and implementation are satisfied.

70 J. C. Dauer et al.

To avoid the complete unfolding and allow arbitrary stream lengths, an induc-
tive argument is given in Proposition 2 that defines proof obligations for an anno-
tated Lola specification. Next, we present a template for the stream unfolding
that helps to define the proof obligation at the Beginning (Definition 3), during
Run (Definition 4), and at the End (Definition 5) of a stream execution.

Definition 2 (Template Stream Unfolding).
We define the template formula φt that states proof obligations as:∧
α∈Γ

(∧
i: c asm

(∧
θ ∈ assume(α)

smt(θ)(i)
)

∧ ∧
i: c asserted

(∧
ψ ∈ assert(α)

smt(ψ)(i)
)

∧ ∧
i: c streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→ ∧
i: c assert

(∧
ψ ∈ assert(α)

smt(ψ)(i)
))

where c asm, c asserted, c streams, and c assert are template parameters for
the unfolding of assumptions, previously proven assertions, output streams, and
assertion, respectively.

The template formula in Definition 2 uses template parameters for the stream
unfolding. For instance, the parameter assignment c asm := 0 ≤ i < 10 adds
assumptions at the first ten positions of the stream execution. Further, the
parameter c asserted allows to incorporate the induction hypothesis.

In the following, we will use the Lola specification

assume<a1> reset[-1, f] ∨ reset[1, f]

input reset : Bool

output o1 := if reset then 0 else o1[-1, 0] + 1

output o2 := o1[-1, 0] + o1 + o1[1, 0]

assert<a1> 0 ≤ o2 and o2 ≤ 3

as a running example for the template stream unfolding. Here, the input reset
represent a reset command for the output stream o1 that counts how long no
reset occurred. Output o1 is used by output o2 which aggregates over the pre-
vious, the current, and the next outcome of o1 . As assertion, we show that o2
is always positive and never larger than three given the assumption that in each
execution step either the previous or the next reset is true. The assumption
ensures that at most two consecutive resets are false. Given the reset sequence
of input values 〈true; false; false〉 that satisfies the assumption, the resulting o1
stream evaluates to 〈0; 1; 2〉. Here, at the second position of the sequence, o2
evaluates to three. To show that the assertion also holds at the first and the last
position of the sequence, out-of-bounds values must be considered.

We show how the template φt can be used at the beginning of a stream
execution. Here, default values due to past stream accesses beyond the beginning
of a stream need to be captured by the obligation to guarantee that the assertions
hold in these cases. The combination of past out-of-bounds and future out-
of-bounds default values must also be covered by the obligations in case the
stream is stopped early. These scenarios are depicted for the running example in
Fig. 2. The figure shows four finite stream executions with different lengths. All

Monitoring with Verified Guarantees 71

stream positions are colored gray, while only some positions contain a single red
dot. These features indicate the unfolding of stream variables and annotations
using the template φt. A gray-colored position means that the assumptions have
been unfolded and a dotted position means the assertion has been unfolded.
Further, arrows indicate temporal stream accesses where solid lines correspond
to accesses by outputs and dashed lines correspond to accesses by annotations,
i.e., assumptions and assertions. For each stream execution, only the arrows for
a single position are depicted – the arrows for other positions have been omitted
for the sake of clarity. For example, for N = 0, the accesses of output o2 are
both out-of-bounds, i.e., the default value zero is used. While for N = 3, the
accesses at the second position are shown where only the past access of the
assumption leads to an out-of-bounds access. The figure depicts all necessary
stream execution that cover all combinations of past out-of-bounds accesses, i.e.,
with and without future bound violations. The described unfoldings of Fig. 2 are
formalized as proof obligations in Definition 3.

Definition 3 (Proof Obligations for Past Out-of-bounds Accesses).
Let wp = sup({0} ∪ { |k| | e[k, c] ∈ Φ where k < 0}) be the most negative offset
and wf = sup({0} ∪ { k | e[k, c] ∈ Φ where k > 0}) be the greatest positive
offset. The proof obligations φBegin for past out-of-bounds accesses are defined
as the conjunction of template formulas:∧

N : 0≤N<max(1, 2·(wp+wf))

φt(c asm, c asserted , c streams, c assert)

with template parameters:
• c asm := 0 ≤ i ≤ N ,
• c asserted := false,
• c streams := 0 ≤ i ≤ N ,
• c assert := 0 ≤ i < max(1, min(N + 1, 2 · wp)).

N=0 •

N=1 • •

N=2 • •

N=3 • •

Fig. 2. Four stream executions of different length N + 1 with the respective template
unfolding are depicted. The stream executions consider all cases with past out-of-
bound accesses. A gray-colored box indicates that an assumption has been unfolded at
this position, while a red dotted box indicates that an assertion has been unfolded at
this position. Solid and dashed arrows indicate accesses by streams and annotations,
respectively. (Color figure online)

Next, the case where no out-of-bounds access occurs is considered. Hence,
the obligations capture the nominal case where no default value is used. Since we
have shown that past out-of-bounds accesses are valid we can use these proven

72 J. C. Dauer et al.

assertions as assumptions. Figure 3 depicts a stream execution with a single
dotted position, i.e., the position where the assertion must be proven. As can
be seen, all accesses from this position are within bounds. Further, note that
the accesses of the first and the last unfolded assumption, i.e., the first and the
last gray-colored position, are also within bounds. The described unfolding is
formalized as proof obligations in Definition 4.

Definition 4 (Proof Obligations for No Out-of-bounds Accesses).
The proof obligations φRun without out-of-bounds accesses are defined as
φt(c asm, c asserted , c streams, c assert) with template parameters:

• c asm := wp ≤ i ≤ N − wf ,
• c asserted := 2 · wp ≤ i ≤ N − 2 · wf ∧ i �= 3 · wp,
• c streams := 2 · wp ≤ i ≤ N − 2 · wf ,
• c assert := i = 3 · wp,

where N = 3 · (wp + wf).

Last, we consider the case where only future out-of-bounds accesses occur.
Hence, the respective obligations need to incorporate default values of future
out-of-bounds accesses. As before, we can use the previously proven assertions
as assumptions. Figure 4 depicts a stream execution with two dotted positions,
i.e., positions where the assertion must be proven. The position where arrows
are given represents the case where only the assumption results in a future out-
of-bounds access. The last position of the stream execution represents the case
in which both the assumption and the stream result in future out-of-bounds
accesses. The presented unfolding is formalized as proof obligations in Defini-
tion 5.

Definition 5 (Proof Obligations for Future Out-of-bounds Accesses).
The proof obligations φEnd for future out-of-bounds accesses are defined as
the template formula φt(c asm, c asserted , c streams, c assert) with template
parameters:

• c asm := wp ≤ i ≤ N ,
• c asserted := 2 · wp ≤ i < 3 · wp,
• c streams := 2 · wp ≤ i ≤ N ,
• c assert := 3 · wp ≤ i ≤ N

where N = 3 · wp + wf .

So far, we have defined proof obligations for certain positions in the stream
execution with and without out-of-bounds accesses. Together, the proof obliga-
tions constitute an inductive argument for the correctness of the assertions, see
Proposition 2. Here, the base case is given by Definition 3 and induction steps are
given by Definitions 4 and 5. The induction steps use the induction hypothesis,
i.e., valid assertions, due to the template parameter c asserted.

Proposition 2 (Assertion Verification by Lola Unfolding).
The set of assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is valid.

Monitoring with Verified Guarantees 73

Proposition 2 proves the soundness of the verification approach. Soundness
refers to the ability of an analyzer to prove the absence of errors—if a Lola
specification is accepted, it is guaranteed that the assertions are not violated.
The converse does not hold, i.e., the presented verification approach is not com-
plete. Completeness refers to the ability of an analyzer to prove the presence
of errors—if a Lola specification is rejected, the counter-example given should
be a valid stream execution that results in an assertion violation. The following
Lola specification is rejected even though no assertion is violated:

1input a: Int32

2assume <a1> a ≤ 10

3output sum := if sum[-1, 0] ≤ 10 then 0 else sum[-1, 0] + a

4assert < a1 > sum ≤ 100

Here, since the if-condition in Line 3 evaluates to true at the beginning of the
stream execution, sum is a constant stream with value zero. Hence, the assertion
in Line 4 is never violated. The verification approach rejects this specification.
The reason for this is that sum ≤ 100 is added as an asserted condition in φRun .
Therefore, the SMT solver can assign a value between 91 and 100 to the earliest
sum variable of the unfolding, resulting in an assertion violation of the next sum
variable.

N=6 •

Fig. 3. A stream execution of length N+1 with the corresponding template unfolding is
depicted. The stream execution considers the case where no out-of-bound access occurs.
Gray-colored and red dotted positions represent unfolded assumptions and assertions,
respectively. Solid and dashed arrows indicate accesses by streams and annotations,
respectively. (Color figure online)

N=4 • •

Fig. 4. A stream execution of length N +1 with the corresponding template unfolding
is depicted. The stream execution covers all cases where future out-of-accesses occur.
Gray-colored and red dotted positions represent unfolded assumptions and assertions,
respectively. Solid and dashed arrows indicate accesses by streams and annotations,
respectively. (Color figure online)

74 J. C. Dauer et al.

4 Application Experience in Avionics

In this section, we present details about the tool implementation and tool expe-
riences on practical avionic specifications.

Tool Implementation and Usage
The tool is based on the open source Lola framework3 written in Rust. Specif-
ically, it uses the Lola frontend to parse a given specification into an interme-
diate representation. Based on this representation, the SMT formulas are cre-
ated and evaluated with the Rust z3 crate4. At its current phase of the crate’s
development, a combined solver is implemented that internally uses either a
non-incremental or an incremental solver. There is no information on the imple-
mented tactics available, but all our requests could be solved within seconds. For
functions that are not natively supported by the Rust Z3 solver, the output is
arbitrarily chosen by the solver with respect to the range of the function. The
tool expects a Lola specification augmented by assumptions and assertions.
The verification is done automatically and produces a counter-example stream
execution, if any exists. The counter-example can then be used by the user to
debug its specifications. Two different kinds of users are targeted. First, users
that write the entire augmented specification. Such a user could be a systems
engineer who is developing a safety monitor and wants to ensure that it contains
critical properties. Second, users that augment an existing specification. Here,
one reason could be that an existing monitor shall be composed with other
critical components and certain behavioral properties are expected. Also, sim-
ilar to software testing, the task of writing a specification and their respective
assumptions and assertions could be separated between two users to ensure the
independence of both.

Practical Results
To gain practical tool experience, previously written specifications based on
interviews with engineers of the German Aerospace Center [19] were extended
by assumptions and assertions. The previous specifications were tested using log-
files and simulations – the authors considered them correct. We report several
specification errors in Table 1 that were detected by the presented verification
extension. In fact, the detected errors would have resulted in undetected fail-
ures. After the errors in the previous specifications were fixed, all assertions
were proven correct. Note that the errors could have been found due to man-
ual reviews. However, such reviews are tedious and error-prone, especially when
temporal behaviors are involved. The detected errors in Table 1 can be grouped
into three classes: Classical Bugs, Operator Errors, and Wrong Interpretations.
Classical bugs are errors that occur when implementing an algorithm. Operator
errors are Lola specific errors, e.g., temporal accesses. Last, wrong interpreta-
tions refer to gaps between the specification and the user’s design intend, e.g.,
violated assertions due to incomplete specifications. Next, we give one represen-

3 https://rtlola.org/.
4 https://docs.rs/z3/0.9.0/z3/.

https://rtlola.org/
https://docs.rs/z3/0.9.0/z3/

Monitoring with Verified Guarantees 75

tative example for each group. We reduced the specification to the representative
fragment.

Table 1. Detected errors by the verification extension, where #o, #a, and #g rep-
resent the number of outputs, assumptions, and assertions given in the specification,
respectively.

Specification #o #a #g Detected errors

gps vel output 14 6 6 –

gps pos output 19 3 10 –

imu output 18 6 6 Wrong default value
Division by zero

nav output 25 3 5 Missing abs()

tagging 6 2 2 –

ctrl output 25 7 8 Wrong threshold comparisons

mm output 1 4 1 2 –

mm output 2 17 6 9 Missing if condition
Wrong default value

contingency output 4 8 1 Observation: both contingencies
could be true in case of voting, i.e.,
both at 50%

health output 1 5 1 –

Example 1 (Classical Bug).
The Lola specification in Listing 2 monitors the fuel level. A monitor shall
notify the operator when one of the three different fuel levels are reached: half
(Line 8), warning (Line 9), and danger (Line 10). The fuel level is computed as a
percentage in Line 7. It uses the fuel level at the beginning of the flight (Line 6)
as a reference for its computation. Given the documentation of the fuel sensor,
it is known that fuel values are within R

+ and decreasing. This is formalized
in Line 4 as an assumption. As an invariant, we asserted that the starting fuel
is greater or equal to fuel (Line 15). Further, in Lines 16 to 18, we stated that
once a level is reached it should remain at this level. During our experiment,
the assertion led to a counter-example that pointed to the previously used and
erroneous fuel level computation:

output fuel_level := (start_fuel - fuel) / start_fuel

In short, the output computed the consumed fuel and not the remaining fuel. The
computation could be easily fixed by converting consumed fuel into remaining
fuel, see Line 7. Therefore, Listing 2 satisfies its assertion. Note, that offset
accesses were used to assert the temporal behavior of the fuel level output stream.
Further, trigger once is an abbreviation which states that only the first raising
edge is reported to the user.

76 J. C. Dauer et al.

1// Inputs

2input fuel: Float64

3// Assumptions

4assume<a5> fuel > 0.0 and fuel < fuel[-1, fuel + 0.1]

5// Outputs

6output start_fuel := start_fuel[-1, fuel]

7output fuel_level := 1.0 - (start_fuel - fuel) / start_fuel

8output fuel_half := fuel_level < 0.50

9output fuel_warning := fuel_level < 0.25

10output fuel_danger := fuel_level < 0.10

11trigger_once fuel_half "INFO: Fuel level is half reduced"

12trigger_once fuel_warning "WARNING: Fuel level is below 25%"

13trigger_once fuel_danger "DANGER: Fuel level is below 10%"

14// Assertions

15assert<a5> start_fuel >= fuel

16and (fuel_half[-1, false] -> fuel_half)

17and (fuel_warning[-1, false] -> fuel_warning)

18and (fuel_danger[-1, false] -> fuel_danger)

Listing 2. The fixed version of the Lola ctrl output specification that monitors the
fuel level. Three level of engagement are depicted: half, warning, and danger.

Example 2 (Operator Error).
An important monitoring property is to detect frozen values as these indicate
a deteriorated sensor. Such a specification is depicted in Listing 3. Here, as an
input, the acceleration in x-direction is given. The frozen value check is computed
from Line 6 to Line 10. It compares previous values using Lola’s offset operator.
To check this computation, we added the sanity check that asserts that no frozen
value shall be detected (Line 13) when small changes in the input are present
(Line 4). In the previous version, the frozen values were computed using the
abbreviated offset operator:

output frozen_ax := ax[-5..0, 0.0, =]

This resulted in a counter-example that pointed to wrong default values.
Although the abbreviated version is easier to read and reduces the size of the
specification, it is unfortunately not suitable for this kind of property. The tool
detected the unlikely situation that the first value of ax is 0.0 which would
have resulted in evaluating frozen ax to true. Although unlikely, this should be
avoided as contingencies activated in such situations depend on correct results
and otherwise could harm people on the ground. By unfolding the operator and
adding a different default value to one of the past accesses, the error was resolved
(Line 6). Listing 3 shows the fixed version which satisfies its assertion.

Monitoring with Verified Guarantees 77

1// Inputs

2input ax: Float32

3// Assumptions

4assume <a1> ax != ax[-1, ax + ε]
5// Outputs

6output frozen_ax := ax[-5, 0.1] = ax[-4, 0.0]

7and ax[-4, 0.0] = ax[-3, 0.0]

8and ax[-3, 0.0] = ax[-2, 0.0]

9and ax[-2, 0.0] = ax[-1, 0.0]

10and ax[-1, 0.0] = ax

11trigger frozen_ax "WARNING: x-acceleration is frozen!"

12// Assertions

13assert <a1> !frozen_ax

Listing 3. The Lola imu output specification that monitors frozen acceleration values.

Example 3 (Wrong Interpretation).
In Listing 4, two visual sensor readings are received (Lines 2–3). Both, readings
argue over the same observations where avgDist represents the average distance
to the measured obstacle, actual is the number of measurements, and static is
the number of unchanged measurements. A simple rating function is introduced
(Lines 5–8) that estimates the corresponding rating – the higher the better. Using
these ratings, the trust in each of the sensors is computed probabilistically (Lines
9–10). When considering the integration of such a monitor as an ASTM switch
condition that decides which sensor value should be forwarded, the specification
should be revised. This is the case because the assertion in Line 14 produces a
counter-example which indicates that both trust triggers (Lines 11–12) can be
activated at the same time. A common solution for this problem is to introduce
a priority between the sensors.

1// Inputs

2input avgDist_laser, actual_laser, static_laser: Float64

3input avgDist_optical, actual_optical, static_optical: Float64

4// Outputs

5output rating_laser :=

60.2 * static_laser + 0.4 * actual_laser + 0.4 * avgDist_laser

7output rating_optical :=

80.2 * static_optical + 0.4 * actual_optical + 0.4 * avgDist_optical

9output trust_laser := rating_laser / (rating_laser + rating_optical)

10output trust_optical := 1.0 - trust_laser

11trigger trust_laser >= 0.5

12trigger trust_optical >= 0.5

13// Assertions

14assert <a1> trust_laser != trust_optical

Listing 4. The Lola contingency output specification that uses an heuristic to decide
which sensor is more trustworthy.

The examples show how the presented Lola verification extension can be
used to find errors in specifications. We also noticed that the annotations can

78 J. C. Dauer et al.

serve as documentation. System assumptions are often implicitly known dur-
ing development and are finally documented in natural language in separate
files. Having these assumptions explicitly stated within the monitor specifica-
tion potentially reduces future mistakes when reusing the specification, e.g.,
when composing with other monitor specifications. Listing 5 depicts such an
example specification. Here, the monitor interfaces are clearly defined by the
domain of input a (Line 5) and output o (Line 13). Also, reset is assumed to be
valid at least once per second (Line 5). Further, no deeper understanding of the
internal computations (Lines 7–10) is required in order to safely compose this
specification with others.

1// Inputs with frequency 5Hz

2input a: Float64

3input reset: Bool

4// Assumptions

5assume <a1> 0.0 ≤ a ≤ 1.0 and reset[-4..0, false, ∨]

6// Outputs

7output o_1 := ...

8...

9output o_n := ...

10output o := o_1 + ... + o_n

11trigger o ≥ 0.5 "Warning: Output o exceeds threshold!"

12// Assertions

13assert <a1> 0.0 ≤ o ≤ 1.0

Listing 5. Lola specification annotations describe interface properties.

5 Conclusion

As both the relevance and the complexity of cyber-physical systems continues
to grow, runtime monitoring is an essential ingredient of safety-critical systems.
When monitors are derived from specifications it is crucial that the specifications
are correct. In this paper, we have presented a verification approach for the
stream-based monitoring language Lola. With this approach, the developer can
formally prove guarantees on the streams computed by the monitor, and hence
ensure that the monitor does not cause dangerous situations. The verification
extension is motivated by upcoming aviation regulations and standards as well
as by practical feedback of engineers.

The extension has been applied to previously written Lola specifications
that were obtained based on interviews with aviation experts. In this process,
we discovered and fixed several serious specification errors.

In the future, we plan to develop automatic invariant generation for Lola
specifications. Another interesting direction for future work is to exploit the
results of the analysis for the optimization of the specification and the result-
ing monitoring code. Finally, we plan to extend the verification approach to
RTLola, the real-time extension of Lola.

Monitoring with Verified Guarantees 79

Acknowledgement. This work was partially supported by the German Research
Foundation (DFG) as part of the Collaborative Research Center Foundations of Per-
spicuous Software Systems (TRR 248, 389792660), by the European Research Council
(ERC) Grant OSARES (No. 683300), and by the Aviation Research Programm LuFo of
the German Federal Ministry for Economic Affairs and Energy as part of “Volocopter
Sicherheits-Technologie zur robusten eVTOL Flugzustandsabsicherung durch formales
Monitoring” (No. 20Q1963C).

References

1. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 28–39. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 3

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. Lecture Notes in Computer Science, vol. 4334. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-69061-0

3. Berry, G.: The Foundations of Esterel, pp. 425–454. MIT Press, Cambridge (2000)
4. Cluzeau, J.M., Henriquel, X., van Dijk, L., Gronskiy, A.: Concepts of design assur-

ance for neural networks (CoDANN). Technical report, EASA European Union
Aviation Safety Agency, March 2020

5. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME
2005), pp. 166–174 (2005). https://doi.org/10.1109/TIME.2005.26

6. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified rust monitors for
Lola specifications. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 431–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7 24

7. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds.) Program Verification, vol. 14, pp. 65–81. Springer, Dordrecht
(1993). https://doi.org/10.1007/978-94-011-1793-7 4

8. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987.
LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18317-5 15

9. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: 2008 Formal Methods in Computer-Aided Design, pp.
1–9 (2008). https://doi.org/10.1109/FMCAD.2008.ECP.19

10. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proc. IEEE 79(9), 1305–1320 (1991). https://doi.
org/10.1109/5.97300

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1109/5.97300
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

80 J. C. Dauer et al.

13. Jagadeesan, L.J., Puchol, C., Von Olnhausen, J.E.: Safety property verification of
Esterel programs and applications to telecommunications software. In: Wolper, P.
(ed.) CAV 1995. LNCS, vol. 939, pp. 127–140. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60045-0 45

14. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

15. Nagarajan, P., Kannan, S.K., Torens, C., Vukas, M.E., Wilber, G.F.: ASTM F3269
- an industry standard on run time assurance for aircraft systems. https://doi.org/
10.2514/6.2021-0525

16. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 2

17. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

18. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

19. Schirmer, S.: Runtime monitoring with Lola. Master’s thesis, Saarland University,
December 2016

20. Schirmer, S., Torens, C., Adolf, F.: Formal monitoring of risk-based
geofences. https://doi.org/10.2514/6.2018-1986. https://arc.aiaa.org/doi/abs/10.
2514/6.2018-1986

21. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: Proceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No.98CH36207), vol. 6, pp. 3504–3508 (1998). https://doi.org/
10.1109/ACC.1998.703255

22. Song, Y., Chin, W.-N.: A synchronous effects logic for temporal verification of pure
Esterel. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 417–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 19

https://doi.org/10.1007/3-540-60045-0_45
https://doi.org/10.1007/3-540-60045-0_45
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.2514/6.2021-0525
https://doi.org/10.2514/6.2021-0525
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1007/978-3-030-67067-2_19
https://doi.org/10.1007/978-3-030-67067-2_19

On the Specification and Monitoring
of Timed Normative Systems

Shaun Azzopardi1(B) , Gordon Pace2 , Fernando Schapachnik3,
and Gerardo Schneider1

1 University of Gothenburg, Gothenburg, Sweden
shaun.azzopardi@gu.se, gersch@chalmers.se

2 University of Malta, Msida, Malta
gordon.pace@um.edu.mt

3 ICC and Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina
fschapachnik@dc.uba.ar

Abstract. In this article we explore different issues and design choices
that arise when considering how to fully embrace timed aspects in the
formalisation of normative systems, e.g., by using deontic modalities,
looking primarily through the lens of monitoring. We primarily focus on
expressivity and computational aspects, discussing issues such as dura-
tion, superposition, conflicts, attempts, discharge, and complexity, while
identifying semantic choices which arise and the challenges these pose
for full monitoring of legal contracts.

Keywords: Deontic logic · Timed logic · Normative systems · Legal
contracts · Monitoring

1 Introduction

If Alice is permitted to download a song from an online content provider, and
gets a bonus that allows her to download another one, everybody would agree
that now she can download up to two songs. Let’s add time to the equation
and consider Alice being permitted at 7am to download a song from 8am to
10am. At 9am she is granted another download permission, from 9am to 11am.
At 9:30am she downloads a song. Can she download another at 10:30am? In
other words, which of the two permissions did she exhaust? Is the permission
involved a conditional one? How do we specify and monitor for these kind of
timed normative specifications?

Reasoning about permissions and other normative modalities is the domain of
deontic logic, while reasoning about time is usually the domain of temporal logic
in the verification community. Verification and monitorability of temporal logics,
including ones with real-time, has been extensively investigated (e.g., [9,32,33]).

Partially supported by UBACyT 20020130200032BA and PICT-2016 201-0112, the
Swedish Research Council (Vetenskapsr̊adet) under grant Nr. 2019-04951 (X-LEGAL:
Smart Legal Contracts), and the ERC Consolidator grant DSynMA (No. 772459).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 81–99, 2021.
https://doi.org/10.1007/978-3-030-88494-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_5&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0003-0743-6272
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-030-88494-9_5

82 S. Azzopardi et al.

We argue that normative concepts (e.g., obligations, prohibitions, and per-
missions/rights) are not appropriately modelled using existing monitoring logics.
For example, specifying in LTL a prohibition to never download songs illegally
is easy, however how can one specify that the specification may be violated
but repaired by paying an appropriate fine? The näıve approach would simply
use a disjunction between the two formulas, however this does not capture the
difference in priority between the clauses and the different levels of violation.

Deontic logics have been proposed instead for normative reasoning. Differ-
ent deontic languages have in fact been explored, with the ability to model and
monitor for violations and their repair (e.g., [6,7]). Such languages involve cer-
tain normative modalities, parametrised by some state- or event-based formula,
given some appropriate background theory. The difficulty and complexity of for-
malising untimed normative systems using deontic concepts have been studied
in [43], while the justification on why LTL, CTL, and process algebra might not
be sufficient to capture all the deontic notions has been presented in [18].

In this paper we want to focus on the monitorability of these logics under
extensions with timed aspects. Although the different modalities that arise from
adding time to deontic logic have been studied before, there are still many unan-
swered questions and no analysis of their monitorability. For instance, in [25]
Governatori et al. analyse permissions with deadlines but do not discuss the
issue of which one is discharged in case of temporal superposition nor what hap-
pens with timed permissions in the context of contracts. Superposition presents
challenges for obligations too. Hashmi et al. [30] extend previous work by Gov-
ernatori et al. [26] to deal with the temporal compliance of rules and present a
categorisation of many types of obligations (punctual, persistent, achievement,
etc.) based on the timing of their effect, enforcement and violation. However,
some issues remain unexplored:1 if O[0, 10](a) and O[5, 15](a) are two achieve-
ment obligations (meaning the obligation is discharged by the execution of a
single action a during the period) and a is not executed in the [0, 5) time inter-
val, does it need to be performed twice during the [5, 10] period?

Normative conflicts become more interesting and challenging in the pres-
ence of time. We would certainly consider F (a) to be in conflict with O(a)
in an untimed and punctual context, but what happens with F [0, 10](a) and
O[5, 15](a)? Is this an unresolvable conflict despite the fact that compliance is
possible? Should it be concluded that while there is a conflict in the [5, 10] inter-
val the contract requiring both is still valid?

In many cases it is interesting to talk about the moment a given obligation
(or right) is enacted, or whenever the action or state of affairs affected by such
modalities occur, and refer to them in another clauses. For instance, consider the
situation in which Alice has the right to download two songs, but the second one

1 In this paper we will use the notation O[b, e](a) to denote the obligation to perform
action a between time b and e. We use the same notation but with P to denote
permission and F to denote prohibition. Note that despite the formal syntax, we
are not committed to a formal semantics, since the paper is dedicated to explore the
family of such semantics one can choose to adopt.

On the Specification and Monitoring of Timed Normative Systems 83

may only be downloaded between 3 and 5 days after downloading the first. Later
on, an obligation to write a review on the songs is enforced, with a deadline of 30
days after having downloaded the second song. These kinds of (relative) timing
constraints for deontic norms are usually not treated in the literature, as there
is a need of having richer timed logics with, for example, freeze quantifiers [1].

In this article we continue the exploration of the different challenges that a
timed deontic logic presents. Compared to previous work, we discuss the issues
of timed superposition, timed deontic conflicts, discharge of deontic modalities
in case of conflicts and attempting. Integrating time as a first class citizen in a
logic brings not only expressivity concerns but also complexity and computability
issues. In the case of a deontic logic, many other subtle issues arise, which we
identify and discuss. We also discuss monitorability of deontic logics and their
timed extensions, and consider the challenges to monitor synthesis.

The next section discusses different timed logics used in computer science
and the trade-offs their represent in terms of expressivity and complexity, and
briefly introduces deontic logic. After that, Sect. 3 digs into the different inter-
pretation challenges presented by the inclusion of time in deontic logic. Section 4
discusses the monitorability of deontic logics and their timed extensions, and
suggestions for monitor synthesis of the timed case. References to related work
are made throughout the article. Section 5 concludes the paper with some final
observations.

2 Background

2.1 Temporal Logics, Timed Logics and Complexity

Computer scientists have studied different temporal and timed logics, including
their expressiveness, properties and decision procedures for their satisfiability,
monitorability, and validity.

Temporal aspects appear in many different ways in real life, be it in computer
systems or the legal domain. The simplest are probably situations related to the
frequency on the occurrence of certain events, and the order between events, be
it sequences, ordering or causality. Temporal logics have been around for a while
and have been successfully used for specifying reactive and other computational
systems, and also in combination with deontic logic (e.g., [24–26,29]). In practice,
as much of this work has observed before, any non-trivial normative document
contains temporal aspects.

Temporal logics allow for reasoning about the ordering and causality between
events, and come in different flavours, depending on whether time is discrete
or continuous, whether there is a single future (linear) or it captures different
possible futures (branching), whether it is possible to talk about the past or only
the future, whether the logic talks about points in time or intervals, whether
there is a global notion of time or only relative time, etc. Timed logics may be
propositional or have quantifiers. Expressiveness and decidability are of course
very much dependent on a combination of the different choices made on all the
dimensions mentioned above (and others).

84 S. Azzopardi et al.

There is extensive work on the use of different timed logics, and we will
not give details here as this is beyond the scope of this paper. That said, we
will briefly describe the expressive power of three timed extensions of temporal
logics namely time-bounded operators, freeze quantification, and time variables
as presented by Alur and Henzinger [1], due to their relevance in what follows.

The first, and possibly least expressive, way to add timing constraints to
existing temporal logics is to have bounded temporal operators where the classic
temporal operators are enhanced with (integer) intervals. In this logic you can
express properties like “every event e1 is followed by another event e2 within 7
time units”, written as �(e1 → ♦[0,7]e2). The bounded-operator notation can
only express properties relating adjacent temporal operators and cannot express
non-local properties of the kind “every event e1 is followed by a response e2,
which is followed by another response e3, such that the delay between e2 and e3
is no more than the delay between e1 and e2”.

For that there is a need of a more expressive logic, one containing freeze
quantifiers. This second variant of timed logic allows for quantification over time
variables, which may be used to compare with other time variables. The non-local
property given above would be expressed as follows in such a logic: � x.(e1 →
♦ y.(e2 ∧ ♦z.(e3 ∧ z − y ≤ y − x))), where x and y are time variables associated
with the corresponding states defined by the formula in its scope (x.ϕ(x) holds
at time t iff ϕ(t) does).

A third, and more expressive, way to write timing constraints is by using
explicit clock variables, based on first-order temporal logic and explicit (global)
time, thus allowing to existentially and universally quantifier over clocks (see
[35] for examples).

Expressivity, however, comes at the price of complexity or even undecidabil-
ity. This is specially pressing when some type of tool is used or envisioned. For
instance, encodings using timed automata may require one clock per variable
(e.g., [16]), but the verification complexity depends on the number of clocks—
and is exponential in the case of Timed Computational Tree Logic (TCTL).

Extending temporal logics with time-bounded temporal operators increases
their complexity, in some cases yielding undecidability. For instance, the model
checking problem for Metric Temporal Logic (MTL) is undecidable. Nevertheless,
some interesting fragments of MTL, such as Metric Interval Temporal Logic
(MITL) are decidable but EXPSPACE-complete [10].

For more examples and more details about expressiveness of these logics and
other variants we direct the reader to [1] and the references therein.

2.2 Formalisation of Normative Systems: Deontic Logics

Deontic logic is the study of deontic modalities—mainly obligation, prohibition,
and permission, meant for the modelling of legal and moral notions [22]. Ini-
tial deontic formalisms in the philosophical field (e.g., Standard Deontic Logic
[23,39]) faced certain paradoxes, e.g., the inability to express what should happen
to make up for an obligation being violated without introducing contradictions.

On the Specification and Monitoring of Timed Normative Systems 85

These paradoxes have remained problematic and the subject of debate [28]. How-
ever different approaches have been recently proposed to solve these problems
(e.g., [16,44,45]), that have made deontic logic more useful in practice. We intro-
duce the main concepts based on existing deontic formalisms briefly, but to keep
our discussion general—we do not commit to any particular formalism for this
paper.

A distinguishing feature between deontic formalisms is whether they are
event/action- or propositional/state-based. One may be obliged to perform a
certain action (e.g., pay a certain fee), or to reach a certain state (e.g., the state
of having no pending payments to make). These approaches are dual, reaching
different states typically requires performing actions (or, in a timed context, the
passing of time), while actions may cause changes in state. For simplicity and
without loss of generality we continue the discussion in this section by referring
solely to action-based logics.

An obligation to do some action a requires a to be performed. This is often
represented as O(a). Similarly for permissions, P (a), and prohibitions F (a).
These three can often be defined in terms of each other, e.g., a prohibition
not to do an action is the obligation to not do it (O(a) = F (¬a)), while a
permission to do an action is often the lack of an obligation to do not do the
action (P (a) = ¬O(¬a)). Here we go beyond this and focus on the strand of
work that views permission as a right to perform an action, as suggested in von
Wright’s seminal work [22], where permission includes an implicit obligation for
the other parties to allow the permitted party to perform the action.

Variants of these modalities can also refer to a party, i.e. Op(a) where p is
the name of the obliged party (e.g., [5]). Without these notational variants there
may be underlying assumptions about which party or parties are associated with
each action.

An important aspect of deontic formalisms is how they handle contrary-to-
duty norms, or reparations. These are clauses that come into effect when there has
been a violation, allowing some action/s to repair the violation, e.g., the paying
of a penalty. The ability to handle these clauses is of utmost importance for
practical applications of normative systems, e.g., for the monitoring of contracts
or laws that use these kind of clauses routinely. We represent this, e.g., for
obligations with OO($10);O(b)(a) where a 10 dollar penalty must be paid if a is
not performed, and b performed after.

For more extensive and in depth material about deontic logic in general see
[20] and references therein.

The combination of deontic concepts with (real-)time has been considered in
an ad hoc manner in the literature, with different interpretations chosen without
justification or contrasted with other possible ones. The effects of adding time
to specific deontic operators was discussed in [25,26]. Note that those, and other
similar work by Governatori et al., do not address the general more complex
issue of getting a fully-fledged logic (or formal language) where many timed
operators co-exist. C-O Diagrams [13,16,38] is a formal (visual) language (not a
logic) featuring deontic concepts and timed constraints, with a timed automata

86 S. Azzopardi et al.

semantics. The language has interesting features but does not address many of
the issues discussed in this paper. No monitoring techniques has been studied
for any of the above languages and logics.

3 Interpreting Timed Norms

In this section we resort to small examples to discuss different issues and design
choices, that need to be taken into account when thinking about a deontic logic
that is able to fully embrace all aspects of time-related expressions.2

State- vs. Action-Based Deontic Operators. The duality between contracts
regulating events vs. regulating the state-of-affairs is also reflected in the deon-
tic modalities themselves when taking into consideration time. On one hand,
one may have pointwise modalities—for example, the obligation to perform an
action at a particular point in time. Such pointwise modalities are frequently
encountered when considering a system with discrete time events. For example,
if the service-provider gives priority to a particular user at time point ti, they are
obliged to give priority to another user at the next time point (when an event is
received) ti+1. However, when one considers continuous real-time clocks, deontic
modalities are typically over intervals of time. For example, an obligation with a
deadline might oblige the service provider to ensure that a service is continuously
available over the coming hour; or a user accessing a digital asset management
system, may be prohibited from requesting the download of a file twice within
a second of each other.

If we consider interval-based deontic modalities, there lies a duality with the
event- vs. state-based view of the world. Does one identify the points in time
when a modality starts holding and when it terminates, or does one identify
the interval over which the modality holds? The most common approach one
finds in the literature is the state-based approach (e.g., [26,27,29,30]), follow-
ing the approach used in interval temporal logics such as Interval Temporal
Logic (ITL) [41] and duration calculus [14]. This approach correlates closely
with natural language clauses expressing concepts such as deadlines: “The user
is prohibited from transferring funds to a third party in the first 7 days of the
creation of an account” or “The bank is obliged to refund a user within 15 days
of a request to redeem an account.”

However, there is also work which takes the action-based approach (e.g., [17]),
in which the key is to signal the start and end of a modality e.g.,

←−
O p(A) indicates

the beginning of a time interval over which there is an obligation on party p to
perform action A, while

−→
O p(A) would be the end of this obligation. Such an

approach corresponds to when these moments are identified in a legal text in
separate ways, for instance “The student has the right to upload a new assignment

2 It is worth noting that different interpretations of normative statements go far
beyond the assignment of a formal semantics. Such differing views frequently cor-
respond to views different parties may have of a normative text, e.g., a contract,
including possibly in court.

On the Specification and Monitoring of Timed Normative Systems 87

from the first day of term” and “If a student unregisters from a unit, he or she
automatically loses the right to upload assignments.”.

The latter approach lends itself to a trace-based semantics, in which each
event or time progression updates the clauses in force. However, this inherent
state of active clauses makes compositional reasoning over contracts more diffi-
cult, and the former approach typically yields cleaner semantics.

A Plethora of Timed Deontic Modalities. What time should the logic refer
to? Absolute time, i.e. a universal and always accessible clock that is referred to
in every time-related expression, might be relatively inexpensive from a compu-
tational point of view, yet equally unrealistic from a legal perspective. Many legal
expressions also require relative time, as in “warranty period should be at least
3month from the time of purchase”. Is this just syntactic sugar to an expression
like “let U be the universal clock, let p be the time of purchase (according to
the universal clock), and the warranty period is of w, then the purchased item
is still in warranty as long as U ≤ p + w”? Complexity usually grows with the
number of clocks, so it is in general desirable to reduce the number of clocks.
This might be possible in some cases, for instance whenever what is needed is
only the time-stamp associated with a given event but not how time evolves for
such event (e.g., to compute duration). In some other cases, clock reusability is
possible, although this kind of optimisation is usually handled under the hood
by the tools.

Some use cases do require more intricate expressions of time. Consider for
instance “license can be renewed during 10 days after expiration if the expiration
cause was A, or 15 days if the expiration cause was B”, an expression where
the deadline is relative to occurrences of events in the past, or “if the item under
warranty is taken to reparations, the warranty period is extended by the amount
of time the item is being repaired, each time it is repaired”, where the deadline
needs to be computed. Such expressions seem to call for an algebra of time
intervals, another threat to computability when real-time is involved [31].

To complicate things further, deadlines can sometimes be expressed in rela-
tion to an event still to happen (e.g., “service should be provided until the user
disconnects”), or as a boolean expression involving many time references (e.g.,
“service should be provided until the user disconnects, with a maximum of one
month of service, not surpassing the calendar year”).

Once deontic clauses have an explicit duration, the issue of possible multiple
violations during that period arises. Should multiple violations trigger multiple
reparations? Also, one should be able to distinguish between multiple violations
vs. one violation that has a duration. Think of trespassing: if entering a facility
is forbidden during the night, is trespassing twice for 1 h each the same as tres-
passing once for 2 h? As timed logics allow to measure the duration of an event,
duration of violation should also be available as a parameter to the reparation
clause. For example, an obligation to provide food and water to passengers dur-
ing a flight might be redressed with a fine, possibly proportional to the duration
of the flight.

88 S. Azzopardi et al.

Obligations with duration present challenges of their own: how should be
O[0, 10](a) read? If a is an event or action, should it be sustained during the
[0, 10] period, or it is only mandatory to do it at least once during the period?
Again both cases are reasonable and may be required in different contexts, with
the modalities allowing for the expression of the two. Even limiting our view to
the variant to oblige the performance of the action once during the period, how
should O[0, 10](a)⊕O[5, 15](a) be interpreted? Does the performance of a during
the interval [5, 10] satisfy both obligations, or are two occurrences required?
Although the latter may appear to be more reasonable, it is worth noting that
this would mean that conjunction is no longer idempotent, with O[0, 10](a) ⊕
O[0, 10](a) being different from O[0, 10](a). Actions differ on the nature of their
effects. Ensuring the door is open is idempotent, but paying or buying are not.

Part of the issue at stake in the previous example is whether modalities
are dischargeable or permanent. Dischargeable modalities cease their effect once
they are fulfilled, while permanent ones do not. For instance, prohibitions tend
to be permanent. That is, a prohibition is still enacted (and in force) even when
somebody has violated it. Furthermore, a prohibition is still in force even if
a violation triggers its corresponding reparation. Note that a prohibition (and
actually every modality) can be at the same time permanent and time bounded
(e.g., it is forbidden to enter the pool during the night).

Dischargeable obligations are also common. Consider having ten days to fill
in a report. The obligation is discharged with the execution of one instance of
the action (the filling of the report), and gets violated when the deadline is met
without the action happening. If the obligation were permanent (e.g., behave
nicely during school time, or do what your boss asks during working hours),
when the deadline is met there is no violation. In this case, violations occur
within the interval when the obligation is active.

Governatori et al. [25] have characterised different types of obligations with
deadlines, for instance distinguishing between achievement obligations (corre-
sponding to the obligation to perform an action before the deadline), and main-
tenance obligations (corresponding to the obligation to ensure that a state holds
until the deadline elapses). The variety of types of obligations with deadlines
the authors present encompasses many common types of obligations even if not
necessarily complete (in that not all forms of obligations over intervals are cov-
ered) already indicates the variety of choices one can adopt from when designing
a real-time deontic logic with connections between our discussion above and the
formalised notions in [25].

Permission and Time. In the case of an action-based logic, being permitted
to do something within an interval can mean several different things, from having
a continuous permission to repeat the action as many times as one wants (e.g.,
permission to enter the facility during daytime) to a one time permission, i.e. a
dischargeable one.

In that last case it also seems to make sense to have some type of algebra of
dischargeable permissions, as being granted a one day permission to download
a song is not the same being granted the same permission twice. While it seems

On the Specification and Monitoring of Timed Normative Systems 89

clear that meeting the deadline puts an end to every instance of the permission,
what happens with the combination3 of permissions P [0, 10](a) ⊕ P [5, 15](a) if
at time 6 the action a is performed? When time reaches 11, is there still one
permission left over? Is it always the case that the discharged permission is the
oldest one? If so, why?

Another conflicting case can arise if we consider a one-time permission to use
a service for half an hour. Now suppose another similar permission is granted.
Can the bearer of the two half-hour permissions use the service for a full hour?
In some cases there might be no difference while in others the granter of the
permission may not consider them to be equivalent because a gap in between
may be required (e.g., riding a horse or using a machine which might overheat).

Now consider the same example in the context of contracts, where one party
can violate the other’s permission to execute an action by not providing the
proper synchronisation. Suppose party p has two permissions to execute synchro-
nised action a: PO($10)[0, 10](a) ⊕ PO($20)[5, 15](a), the first having a reparation
fee of $10 and the other a fee of $20. If at time 6 party p is not able to execute
the permitted action because of lack of synchronisation by the other party, what
is the fee applicable as reparation? Is it $10, $20 or even $30?

Permissions with intervals, both permanent and dischargeable, present chal-
lenges to clearly define time-based conflicts. As an example, think of a permission
to present a form in a government office until midnight on a specific date, yet the
office is available only in working hours. Common sense states that the permis-
sion is for presenting during working hours until the midnight of the given date,
and that there is no conflict involved. However, finding a formulation where this
can be expressed naturally in a formal language is challenging, because of the
chain of logical relations that need to be established to link the action of ‘hand-
ing in the form’ with the ‘office being open’ predicates. Furthermore, in some
cases, limitations on time windows are made with the specific goal of discour-
aging the performance of the action (in this case the presentation of the form).
If the intersection of the deadline and the working hours only left a small time
frame available, should this situation be detected? This may indicate that the
notion of conflict may, in some cases, be a fuzzy rather than crisp predicate.

Attempted Actions. As was mentioned before, in action-based timed deontic
logics hitting a deadline without fulfilling an obligation is considered to be a
violation. Think of the case of a contract, in which party A agrees to sell to
party B at a discount price because party B agrees to buy at least 200 kg of
goods during a one week period. During the first few days a transaction is made
and B buys 100 kg at a discounted price. Then the week goes by with no other
transaction being completed. The case goes to court, where A is claiming that
B took advantage of the discount price without reaching the minimum agreed
volume. Party B argues that she did attempt to buy several times yet on all the
occasions party A’s shop was either closed or out-of-stock. B even mentions one

3 From this point onwards, we will use the notation C ⊕ C′ to denote both C and C′

being enacted. We avoid the use of symbols typically used for conjunction e.g., ∧ or
& in order to avoid implicit assumptions of idempotency of the operator.

90 S. Azzopardi et al.

occasion where she emailed A to arrange for a purchase and A took so long to
respond that she had to get the goods from another supplier.

How should a logic handle such a case so that the attempts became observ-
able? If buying and selling are separate actions, then that would mean parties can
execute them independently, which is not the way a buy-sell agreement should
be modelled. Effectively, it makes more sense to think of a synchronised buy-sell
action that both parties need to agree to execute. The problem is that in most
action-based logics when one party tries to synchronise on a shared action and
the other party does not handshake, there is no trace of attempt in the result-
ing execution. Other logics, specifically those where events are timestamped, do
leave a trace and the resulting execution has two events, close enough in time,
and probably a third acknowledgement message, all of which can be abstracted
together as a single transaction, or a high-level synchronised event.

Deontic logics usually do not allow for such a two-level interpretation: one
where individual events can be seen (B trying to buy without being responded
by A) and another where a successful sequence of a buy attempt and a proper
response are abstracted as a single buy-sell transaction. This is common in net-
work protocols where a ‘connection’ is a high-level event with an initiator and
a completer. Being an initiator is a role: any of the parties can be the initiator
just by sending first the proper connection initiation message. A deontic logic
should probably allow for a more complicated scenario: it should let any of the
parties attempt the transaction, but without a single initiation message, i.e. a
buy-sell transaction can be started either with a buy or a sell attempt.

Going back to the discount-per-volume case, B’s obligation of buying should
be regarded as discharged because either a high-level buy-sell action took place,
or a low level buy attempt was issued by B without a response from A within a
proper time-frame, which may not be formal defined. Actually, whether two buy
and sell messages separated by t time units are to be considered to correspond to
an acknowledged request or not may be a controversial issue among the involved
parties. What tools should the logic provide to ground this discussion?

Timed Conflicts. Conflicts due to time expressions are also a topic of interest.
Although F (a) ⊕ O(a) is clearly a conflicting sentence, how should we interpret
F [0, 10](a)⊕O[5, 15](a)? Is this an unsatisfiable conflict? Should it be concluded
that while there is a conflict during the interval [5, 10]—at the beginning of which
F [0, 5](a) ⊕ O[0, 10](a) is in force?

If action a takes time to perform, does the interval specify when the action
should commence, finish or all the performance time? If, for instance, we take
the time of commencement, O[5, 10](a) means that the action must start in the
interval irrespectively of when it ends (as in ‘the shipment should be sent to their
the destination during the next 24 h’), but should the time instant be the same
for a prohibition as in F [5, 10](a)? Is there a violation if action a starts at time
3 and finishes at time 6?

We have already discussed the issue of having overlapping time intervals for
obligations, permissions and prohibitions. The situation is of course even more
complex in the presence of CTDs (contrary-to-duties) and CTPs (contrary-to-

On the Specification and Monitoring of Timed Normative Systems 91

prohibitions) clauses. Timed CTDs and CTPs may be problematic also if their
triggering is conditional to some relative notions of time, and of course in case
of normal delays not necessarily due to the fault of the involved parties.

For instance, a company working regulation might state that all employees
must answer company email within 24 h of receipt. If they will not be able to
answer within this time-frame, they should then send a standard mail at least
one hour before the 24-h deadline saying that they will not be able to answer in
time and state by when an answer is to be expected. In the absence of both an
answer and the canned response, the company automatically sends a message
with a reprimand to the employee (after the 24 h deadline) and decreases the
employee’s bonus by 2 points. A concrete situation might be that Alice sends her
answer exactly 23 h after having received an email but a system problem causes
her answer to arrive after the 24-h deadline. The system then will produce the
automatic response and will decrease her bonus balance by 2 points. A solution
based on time-stamps might help here: every event should have a time-stamp
and all the norms should be explicit on whether it refers to the time-stamp of
attempting, sending or receiving something. This solution, however, might cause
inconsistencies as certain obligations will be triggered and might need then to
be recalled (similar to rollbacks in long-lived transactions). What is then the
meaning of recalling such obligations? Of course we should also recall all the
corresponding (eventually nested) CTDs (and similarly for CTPs).

In the above example one the main issues was caused by delays. Should we
allow for reasoning only for the ideal case, or should we include a model of the
delays? Which delays are acceptable and which are not (from the liability point
of view)?

Other Standing Challenges. Deontic formal languages can serve many pur-
poses such as conflict analysis, runtime verification, simulation, etc. Each of these
domains of application impose its own constraints. For instance, matching real
occurrence time of the events is an issue in run-time monitoring, specially for
distributed events. Thus, coping with rollback-able attribution of guilt for failed
deadlines (like the example given in Sect. 3) or fuzzy-matching of events [11]
(i.e. being able to deal with the fuzziness of timestamps of real-life events) might
become a requirement that is not really necessary for other types of applications.

Although there are purely logic-based approaches successfully dealing with
time (e.g., [30,36]), most of the existing tools are automata-based (e.g., [37]),
thus, if one wants to warrant tool support, one might want to use some kind of
underlying timed transition system with annotations on the deontic imperatives.

From the design point of view, the choice might be between starting with
timed automata, one of the most popular automata-based timed formalisms,
and add the deontic information, or start with the standard deontic logic Kripke
semantics and add time to it. This choice might be driven by different con-
siderations and we do not have a formal argument in favour or against any of
them.

A good example of how deontic modalities and timed constraints may be
combined, somehow following the first approach mentioned above (interpret-

92 S. Azzopardi et al.

ing and encoding the deontic modalities into timed automata), is the case of
C-O Diagrams [16], for which a timed automata semantics was given (see [16]
for a first translation and [13] for a new optimised translation for an extension of
the original diagrams). The translation was implemented as Uppaal automata
and integrated into a toolchain called Contract Verifier [12].

4 Monitoring Norms and Timed Norms

In the previous section we introduced and reviewed different interpretations of
deontic modalities that arise in a real-time context. In this section, we continue
the discussion with a focus on monitoring of normative systems under these
different modalities and interpretations.

4.1 Monitorability

The appropriateness of a logic for runtime verification depends, amongst other
things, on its monitorability, that is whether for any finite execution we can even-
tually make a determination whether a specification is satisfied or violated [9,46].
For example, monitoring for linear temporal logic (LTL) has certain limitations,
e.g., the LTL specification Fa can only be monitored for satisfaction (if a occurs),
but not for violation (without some knowledge of the underlying system). We
discuss these standard notions of satisfaction- and violation-monitorability with
regards to deontic logics. Although one finds literature on the monitoring of
norms in specific logics (e.g., [2,21]), rather than focus on a particular logic in
this section we take a more high level view.

Consider an ‘obligation’ to eventually do a positive action, without any time
limit. Is this truly an obligation? Such an ‘obligation’ can essentially be post-
poned forever, and thus we cannot monitor for its violation. If we allow it, we
can however monitor for its satisfaction (similarly to Fa in LTL). On the other
hand, the obligation not to do an action (or prohibition) without any time limit
does have more meaningful normative semantics over finite traces—it is violated
if the prohibited action is done.

Similar to prohibitions, permissions (here the right to do something) do not
need to be bounded to make sense—the notion of perpetual rights is standard.
However, they differ to obligations and prohibitions with regards to satisfaction
and violation semantics. Permissions cannot be violated by the permitted party,
but instead they can be violated by others when the permitted action requires the
other party or parties to synchronise in their performance [8]. One interpretation
is that the parties always, at each time step, provide the required synchronising
actions, or at least at the time steps the permitted party wants to exercise the
permission [3]. Essentially this is a safety property when we can monitor attempts
to perform actions: just monitor for the attempt to exercise the permission and
if it fails then the permission has been violated [7]. This interpretation can be
relaxed to take into account that there may be real-world limitations on the
performance of the action, and only enforce the obligation on the other parties

On the Specification and Monitoring of Timed Normative Systems 93

at time steps where it is possible for them to provide the synchronising actions,
or within a bounded time-frame, without any effect on monitorability. It is worth
noting that there are different types of rights identified in the literature [34], and
the interpretation of permission as the liberty of one party from other parties
interfering with that first party’s performance of the permitted action is but one
of them.

Another pertinent issue is that when monitoring deontic specifications we are
not just interested in trace violation. In deontic logic there are multiple parties
to a contract, and thus we are more often also interested in which party or
parties caused the violation. This kind of blame assignment may not always be
possible, for example when the specification is unsatisfiable, or is difficult when
the actions of a party in the past may force another party to violate the contract
in the future. Another aspect is that a party may still be in compliance with
a contract if they reasonably attempt to satisfy it but are prevented to do so
by the environment (the real world and the other parties). For example, one
may not be able to satisfy an obligation because another has not provided the
synchronising action, and thus the other is at fault. Capturing and analysing
this also requires the monitoring of attempts to perform an action (e.g., [7]),
otherwise this kind of compliance cannot be monitored for.

We have considered the monitorability of the different kinds of atomic
norms, however norms can also be composed together in different ways. Allow-
ing unconstrained logical combinations causes certain paradoxes and dilemmas
(see [28,43]), since normative modalities are not truth statements. However,
deontic logics with constrained interpretations of these combinations that avoid
these paradoxes also exist (e.g., [40]). Here we consider the monitorability of
combinations of normative modalities with unconstrained logical operators for
completeness.

Sequence and conjunction clearly both maintain monitorability given mon-
itorability of the sub-formulas (the resulting property remains co-/safety). A
clause can also have an associated reparation clause, which can be modelled
using a monitor for the first clause that upon detecting a violation of the first
clause triggers a monitor for the second.

Norms can also be guarded or conditioned on something happening. The
monitorability of the guards depends on the allowed expressions. If the expres-
sion is a regular expression or a past-time LTL formula then monitorability is
maintained. It seems unlikely that allowing unmonitorable expressions would
add anything to the logic, e.g., allowing future-time LTL to guard norms would
allow us to write [FGp]O(a) (if p is true infinitely often from this point on,
then you are obliged to do a), which seems counter-intuitive—the party cannot
reasonably be held to have violated a contract if the contract expects impossible
things of them, such as clairvoyance.

We also consider the remaining usual logical operations: negation, and dis-
junction. Usually, a negated prohibition becomes a permission, a negated obli-
gation becomes the permission not to do the action, and a negated permission
becomes a prohibition. In deontic logics the disjunction can usually be moved

94 S. Azzopardi et al.

to the event/state parameter side given appropriate background theories (e.g.,
O(a)∨O(b) = O(a∨b)), or involves clauses with mutually exclusive guards (e.g.,
[p]O(a)∨ [!p]O(a) = [p]O(a)⊕ [!p]O(a)). The former is more difficult in the timed
case, e.g., O[0,5](a) ∨ O[4,10](b), but can be solved in the same way by moving
timing to the event side, i.e., O(a[0,5] ∨ b[4,10]). In the case of disjunction of more
complex clauses, e.g., with sequence O(a);P (b)∨O(b);P (a), guards can be used
to remove the disjunction, i.e., O(a ∨ b); ([a]P (b) ⊕ [b]P (a)) (assuming only one
action can happen in each time step).

Other deontic logics use the notion of defeasability, where certain clauses
may be in conflict with each other but have a priority function that resolves the
conflict (e.g., if the first rule does not hold then try the second) [27]. This has a
disjunctive nature that does not affect monitorability.

Then full monitorability here requires the ability to observe failed actions,
and knowledge about the synchronising actions made available by the parties.
Without these we are unable to talk about whether parties have fulfilled their
obligations with respect to a deontic contract.

4.2 Monitor Synthesis

One approach to monitoring deontic logics could involve their translation into
established runtime verification logics, however there are some features of deon-
tic logics that do not translate well. For example, the notion of reparations,
where a party may be obligated to perform a certain action, and failing that
they are in violation of the contract, but may perform certain actions as repara-
tions for this violation and return into compliance. The best attempt at writing
OO(b)(a) in LTL would involve disjunction, i.e., a∨ (¬a∧X(b)). However in LTL
this loses the priority implicit in the deontic logic representation. Reparations
are not simply other options, but imply recognition by the performing party
that they have violated a contract, an action which can have legal effect. More-
over, violation of certain clauses does not mean other obligations are not still
in effect—there are different levels of violation that are not captured accurately
by existing approaches to monitoring. They could perhaps be added through
certain meta-level considerations, but not at the level of existing monitoring
languages. Working at the level of deontic logic instead allows us to directly
take into account all these considerations that are required for legal contract
monitoring.

In previous work we have given operational semantics to different untimed
deontic languages (e.g., [7,19]) which can easily be used for monitor synthesis.
An automata construction could also be constructed, through a Kripke structure
where states are associated with the sets of norm clauses that must hold when
at that state. Contract automata [6,8] may be able to be re-purposed for this.

The timed case has different needs, as discussed previously. Effective and
efficient monitors for relative timing constraints are especially important in the
monitoring of normative systems. These often specify norms that activate at
the point another norm is satisfied, or penalties that start holding at the time
another norm is violated.

On the Specification and Monitoring of Timed Normative Systems 95

Looking to LTL with (real-)time as inspiration we find different approaches
for monitor synthesis. Focusing on metric temporal logic (MTL), i.e. temporal
logic with until and since modalities holding over a certain interval, we find
translations to deterministic timed automata that can be re-purposed for mon-
itoring (e.g., [42]). Another interesting approach involves reducing the problem
to monitoring LTL with atoms corresponding to bounded (i.e., with bounded
intervals) MTL formulas [32]. Essentially the proposed algorithm uses dynamic
programming techniques to determine the value of the bounded MTL formulas
by collecting events appropriately depending on the associated time they occur
and the interval associated with the formula. The authors extend this work for
MTL with predicates that can refer to time points, allowing for monitoring of
specifications with relative timing [33]. This suggests that separately combining
monitoring of timing aspects and higher-level normative aspects may also be
effective.

One issue not considered in detail in previous work is that of the underlying
theory. One event/state parameter may correspond to the evaluation of a more
complex predicate. For example, in a state-based deontic logic we may want to
specify that at the end of each month there is an obligation that the average
number of transactions is below a certain number. Operationalising such speci-
fications can involve having a layer of monitors that compute these predicates’
values, which can be queried by the norm monitors. For a rich monitorable lan-
guage, forms of symbolic monitor automata (e.g., DATES [15], or [4]) can be
used to compute the values of these predicates.

The proposed solution for complex event predicates above may be combined
with an approach inspired by that of [32] for MTL—the bounds associated with
an obligation may be moved to the events: O[x, y](a) = O(a[x,y]). Thus we may
be able to re-use monitor synthesis for the untimed case by simply adding a
layer that transforms timed events into appropriate timed action atoms (e.g.,
if x ≤ z ≤ y then the transformation (a, z → a[x,y] can be applied, where the
event (a, z) denotes action a occurring at time z), which are then processed by
appropriate monitors for the deontic-level specifications.

5 Conclusions

In this article we explored the different issues and design choices that arise when
considering how to fully embraced timed aspects into a deontic logic, mainly from
a computational point of view. To do so we ask questions beyond those addressed
in prior work by others (e.g., [11,16,17,25,26,30]). We resorted to small examples
to discuss issues such as duration, superposition, conflicts, attempts, discharge,
complexity and tool support among others, many of which were not covered in
the literature.

In summary, we considered the state- and action-based approaches for
interval-based deontic modalities, which respectively require the identification
of the interval on which the modality holds, and the actions that identify the
start and end of the interval. We discussed choices with regards to underlying

96 S. Azzopardi et al.

clocks (universal or relative), and different constraints required out of modalities
(that something must hold until a deadline, or within a certain interval). The lat-
ter allows for different interpretations—given two intersecting obligations, doing
one event may be able to satisfy both, or not. The issue of dischargeability and
permanence of norms was also discussed (a norm may no longer hold after being
first satisfied, or it may continue holding). Moreover, taking into account that
attempts to fulfil a norm may fail, through no fault of the actor, in a timed
context requires reasoning about synchronising actions not necessarily occurring
at the same time step. Finally, we discussed conflicts due to overlapping time
intervals, where a contract may have satisfying traces but other traces that exer-
cise the conflict. This can be a problem especially in the context of reparations
with some relative deadline.

One thing that many of the used examples have in common is that the differ-
ent interpretations proposed seem to correspond with interpretations that dif-
ferent stakeholders might sustain in case of conflict, even in court. One research
direction is to investigate a logic using nondeterminism to correspond to pos-
sible interpretations. What such a logic would provide is not settling over an
interpretation but rather coherence: one branch might flag violations for actions
that commence during the prohibited interval, irrespectively of where they end,
while another one might only flag violations for prohibited action that happen
entirely in the interval, but no branch would mix both interpretations. Thus,
legal arguments become arguments about choosing (or pruning) branches in the
logic.

Finally, we have discussed and analysed what are the main issues and chal-
lenges in the monitoring of (un)timed deontic logics. To the best of our knowledge
no work exists on the monitoring of such logics. This is an open research direction
for researchers in the RV community to consider. Though a successful approach
might first need to address all the issues discussed in this paper concerning the
extension of deontic modalities with time, we believe that existing approaches
for MTL can inspire monitor synthesis techniques for timed deontic logics.

References

1. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

2. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN -2010. LNCS (LNAI), vol. 6541, pp. 321–336. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21268-0 18

3. Azzopardi, S.: Extending contract automata with reparation, hypothetical and
conditional clauses. Technical report, University of Malta, May 2014

4. Azzopardi, S., Colombo, C., Ebejer, J.-P., Mallia, E., Pace, G.J.: Runtime verifica-
tion using VALOUR. In: RV-CuBES 2017. Kalpa Publications in Computing, vol.
3, pp. 10–18 (2017)

5. Azzopardi, S., Gatt, A., Pace, G.J.: Reasoning about partial contracts. In: JURIX
2016, pp. 23–32 (2016)

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-642-21268-0_18

On the Specification and Monitoring of Timed Normative Systems 97

6. Azzopardi, S., Pace, G.J., Schapachnik, F.: Contract automata with reparations.
In: JURIX 2014, pp. 49–54 (2014)

7. Azzopardi, S., Pace, G.J., Schapachnik, F.: On observing contracts: deontic con-
tracts meet smart contracts. In: JURIX 2018, pp. 21–30 (2018)

8. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract automata - an
operational view of contracts between interactive parties. Artif. Intell. Law 24(3),
203–243 (2016)

9. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4) (2011)

10. Bouyer, P., Laroussinie, F.: Model checking timed automata. In: Modeling and
Verification of Real-Time Systems: Formalisms and Software Tools, pp. 111–140
(2010)

11. Cambronero, M., Llana, L., Pace, G.J.: Timed contract compliance under event
timing uncertainty (2019, submitted for publication)

12. Camilleri, J.J., Haghshenas, M.R., Schneider, G.: A web-based tool for analysing
normative documents in English. In: SAC-SVT 2018, pp. 1865–1872. ACM (2018)

13. Camilleri, J.J., Schneider, G.: Modelling and analysis of normative documents.
Logical Algebraic Methods Program. 91, 33–59 (2017)

14. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

15. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

16. Dı́az, G., Cambronero, M.-E., Mart́ınez, E., Schneider, G.: Specification and verifi-
cation of normative texts using C-O Diagrams. Trans. Softw. Eng. 40(8), 795–817
(2014)

17. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for
tracking the normative state of contracts. Int. J. Cooperative Inf. Syst. 14(2–3),
99–129 (2005)

18. Fenech, S., Okika, J., Pace, G.J., Ravn, A.P., Schneider, G.: On the specification
of full contracts. In: FESCA 2009. ENTCS, vol. 253(1), pp. 39–55 (2009)

19. Fenech, S., Pace, G.J., Schneider, G.: Automatic conflict detection on contracts.
In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 200–214.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03466-4 13

20. Gabbay, D., van der Meyden, R., Horty, J., Parent, X., van der Torre, L.: The
Handbook of Deontic Logic. College Publications (2013)

21. Aranda Garćıa, A., Cambronero, M.-E., Colombo, C., Llana, L., Pace, G.J.: Run-
time verification of contracts with Themulus. In: de Boer, F., Cerone, A. (eds.)
SEFM 2020. LNCS, vol. 12310, pp. 231–246. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58768-0 13

22. Wright, G.H.V.: Deontic logic. Mind 60(237), 1–15 (1951)
23. Wright, G.H.V.: Deontic logic: a personal view. Ratio Juris 12, 26–38 (1999)
24. Goŕın, D., Mera, S., Schapachnik, F.: A software tool for legal drafting. In: FLA-

COS 2011, pp. 1–15. Elsevier (2011)
25. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in

temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76928-6 50

https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03466-4_13
https://doi.org/10.1007/978-3-030-58768-0_13
https://doi.org/10.1007/978-3-030-58768-0_13
https://doi.org/10.1007/978-3-540-76928-6_50
https://doi.org/10.1007/978-3-540-76928-6_50

98 S. Azzopardi et al.

26. Governatori, G., Rotolo, A.: Justice delayed is justice denied: logics for a temporal
account of reparations and legal compliance. In: Leite, J., Torroni, P., Ågotnes, T.,
Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp.
364–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22359-
4 25

27. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: ICAIL 2005, pp. 25–34 (2005)

28. Hansen, J.: The paradoxes of deontic logic: alive and kicking. Theoria 72(3), 221–
232 (2006)

29. Hashmi, M., Governatori, G., Wynn, M.T.: Modeling obligations with event-
calculus. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol.
8620, pp. 296–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09870-8 22

30. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: an abstract formal framework. Inf. Syst. Front. 18(3), 429–455 (2015).
https://doi.org/10.1007/s10796-015-9558-1

31. Henzinger, T.A.: It’s about time: real-time logics reviewed. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055640

32. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

33. Ho, H.-M., Ouaknine, J., Worrell, J.: On the expressiveness and monitoring of
metric temporal logic. CoRR, abs/1803.02653 (2018)

34. Kanger, S., Kanger, H.: Rights and parliamentarism. Theoria 32(2), 85–115 (1966)
35. Konur, S.: Real-time and probabilistic temporal logics: an overview. CoRR,

abs/1005.3200 (2010)
36. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)
37. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Softw. Tools Technol.

Transfer 1(1), 134–152 (1997)
38. Mart́ınez, E., Dı́az, G., Cambronero, M.-E., Schneider, G.: A model for visual

specification of E-contracts. In: IEEE SCC 2010, pp. 1–8. IEEE Computer Society
(2010)

39. McNamara, P.: Deontic logic. In: Gabbay, D.M., Woods, J., (eds.) Handbook of
the History of Logic, vol. 7, pp. 197–289. North-Holland Publishing (2006)

40. Meyer, J.-J., Dignum, F., Johannes, R.: The Paradoxes of Deontic Logic Revis-
ited: A Computer Science Perspective. Technical report UU-CS-1994-38, EWI-IS:
Department of Computer Science, University of Utrecht, Utrecht, September 1994

41. Moszkowski, B., Manna, Z.: Reasoning in interval temporal logic. In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 371–382. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4 374

42. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 13

43. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 20

44. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5 11

https://doi.org/10.1007/978-3-642-22359-4_25
https://doi.org/10.1007/978-3-642-22359-4_25
https://doi.org/10.1007/978-3-319-09870-8_22
https://doi.org/10.1007/978-3-319-09870-8_22
https://doi.org/10.1007/s10796-015-9558-1
https://doi.org/10.1007/BFb0055640
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/3-540-12896-4_374
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-00255-7_20
https://doi.org/10.1007/978-3-540-72952-5_11

On the Specification and Monitoring of Timed Normative Systems 99

45. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Logic Algebraic Program. 81(4), 458–490 (2012)

46. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25

Efficient Black-Box Checking via Model
Checking with Strengthened

Specifications

Junya Shijubo(B) , Masaki Waga , and Kohei Suenaga

Graduate School of Informatics, Kyoto University, Kyoto, Japan
shijubo@fos.kuis.kyoto-u.ac.jp

Abstract. Black-box checking (BBC) is a testing method for cyber-
physical systems (CPSs) as well as software systems. BBC consists of
active automata learning and model checking ; a Mealy machine is learned
from the system under test (SUT), and the learned Mealy machine is
verified against a specification using model checking. When the Mealy
machine violates the specification, the model checker returns an input
witnessing the specification violation of the Mealy machine. We use it to
refine the Mealy machine or conclude that the SUT violates the specifica-
tion. Otherwise, we conduct equivalence testing to find an input witness-
ing the difference between the Mealy machine and the SUT. In the BBC
for CPSs, equivalence testing tends to be time-consuming due to the time
for the system execution. In this paper, we enhance the BBC utilizing
model checking with strengthened specifications. By model checking with
a strengthened specification, we have more chance to obtain an input wit-
nessing the specification violation than model checking with the original
specification. The refinement of the Mealy machine with such an input
tends to reduce the number of equivalence testing, which improves the
efficiency. We conducted experiments with an automotive benchmark.
Our experiment results demonstrate the merit of our method.

Keywords: black-box checking · Cyber-physical system falsification ·
Specification strengthening · Automata learning

1 Introduction

Due to its safety-critical nature, the safety assurance of a cyber-physical system
(CPS) is crucial. However, since a CPS is implemented as a combination of soft-
ware and physical systems, traditional safety-assurance techniques for software
such as testing and formal verification are hard to apply to a CPS.

Much effort has been devoted to adapt these safety-assurance methods for
software to a CPS [16]. Representatives of these methods are falsification [13] and
formal verification [7,17]. Given a CPS M and a specification ϕ that describes
how the system should work, a falsification method tries to discover an input
to M that violates ϕ to reveal a flaw of M. In contrast, a formal verification
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 100–120, 2021.
https://doi.org/10.1007/978-3-030-88494-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_6&domain=pdf
http://orcid.org/0000-0002-2853-1159
http://orcid.org/0000-0001-9360-7490
http://orcid.org/0000-0002-7466-8789
https://doi.org/10.1007/978-3-030-88494-9_6

Efficient Black-Box Checking by Specification Strengthening 101

Learn an automaton
that approximates M

Verify if
M̃ |= ϕ by

model checking

Test if
M ϕ is
witnessed

by σ

Check if
M M̃

by equivalence
testing

M ϕ
witnessed by σ

Deems M |= ϕ

(A)

(B) (C)(D)

Learn a Mealy machine M̃

M̃ ϕ
witnessed

by σ

M̃ |= ϕ

No.
(M = M̃ is

witnessed by σ)

= M̃ is
witnessed by σ

Yes.Deems M = M̃

Fig. 1. The workflow of black-box checking.

method tries to guarantee the absence of bugs by mathematically proving that
M conforms to ϕ.

There is a tradeoff between these two groups. Although formal verification
ensures high-level safety by resorting to mathematical proofs, its cost is too
heavy to be applied to a large CPS. Furthermore, it cannot be applied if the
system M is a black box. On the contrary, falsification is cheaper than formal
verification and applicable even if M is a black box. However, efficiently driving
the counterexample search for a black box M is often challenging.

Black-box checking (BBC) [32], one of the falsification methods, is an app-
roach to address this tradeoff. The main idea of BBC is to combine active
automata learning such as L* [2], which synthesizes an automaton approximat-
ing the behavior of a black-box system, with model checking—one of the formal
verification techniques—to search for a counterexample in an organized way.

Figure 1 shows the workflow of BBC. It first learns a Mealy machine M̃ that
approximates the behavior of the black-box system M under test ((A) in Fig. 1);
this can be done by using the candidate-generation phase of automata learning
algorithm such as L* [2]. Notice that the learned M̃ may not be equivalent to
M. Next, BBC decides whether M̃ |= ϕ holds by model checking ((B) in Fig. 1.)
If this does not hold (i.e., M̃ �|= ϕ), the model-checking procedure returns a
counterexample input to M̃ that drives M̃ to a state that satisfies ¬ϕ. BBC
then checks whether σ is a true counterexample or a spurious one by feeding σ
to the original system M and observing its behavior ((C) in Fig. 1.) If σ is a true
counterexample (i.e., σ witnesses M � ϕ), then BBC has disproved M |= ϕ; it
returns σ as a counterexample. If σ is not a counterexample to the actual system
M, then σ is a spurious counterexample that exhibits the difference between M
and M̃. Then, BBC uses σ as a new input to the automata-learning procedure

102 J. Shijubo et al.

Learn an automaton
that approximates M

Verify if
M̃ |= ϕ by

model checking

Verify if
M̃ |= ψ by

model checking

Test if
M = ψ is

witnessed by σ

Test if
M ϕ is
witnessed

by σ

Check if
M M̃ by
equivalence

testing

M ϕ
witnessed by σ

Deems M |= ϕ

(A)

(B) (C)(D)
(B)

(C)

Learn a Mealy machine M̃

M̃ ϕ
witnessed

by σ

M̃ |= ϕM̃ |= ψ

M̃ = ψ witnessed by σ
Yes

No. (M = M̃ is witnessed by σ)

No.
(M = M̃ is

witnessed by σ)

= M̃ is
witnessed by σ

Yes.

Deems M = M̃

Fig. 2. The workflow of our method, where ψ is a strengthened specification of ϕ. The
red part is the changes from the original BBC (Fig. 1). (Color figure online)

to obtain a new automaton. If M̃ |= ϕ holds in the model-checking step in
(B), BBC gives M̃ and M to an equivalence-testing procedure ((D) in Fig. 1).
The equivalence-testing procedure tries to find an input trace that differentiates
M and M̃ by generating many inputs and executing M and M̃. One may
use random sampling for the input generation or may use more sophisticated
techniques like hill climbing and evolutionary computation. If an input σ that
exhibits the difference between M and M̃ is discovered, BBC uses σ as a new
input to the automata learning procedure. Otherwise, BBC deems that M̃ and
M are equivalent and returns M |= ϕ.

One of the practical issues in BBC for CPSs is its long execution time. In
particular, the computational cost of the equivalence testing between a CPS and
an automaton is high compared to that of the model checking. This is because
the number of the states of a synthesized automaton to be model-checked is
small, but a simulation of the system takes time; therefore, the computational
cost of equivalence testing, which requires many runs of simulations, is high.

Based on the above observation, we propose a method to optimize BBC
by reducing the number of equivalence tests. The basic observation is that the
number of the equivalence tests conducted by an execution of BBC is the number
of the transitions from (B) to (D) in Fig. 1; therefore, if we can reduce the number
of such transitions, the time spent for an execution of BBC is reduced.

To this end, we adapt BBC so that the model checking of a learned automaton
M̃ is conducted against a stronger specification ψ than the original ϕ. A model
checking with ψ tends to return a counterexample than it is checked against ϕ,
which promotes transition from (B) to (C) rather than to (D).

Figure 2 shows the workflow of the proposed method; the difference from the
original BBC is presented in red. If M̃ |= ϕ is successfully verified by a model

Efficient Black-Box Checking by Specification Strengthening 103

checker ((B) in Fig. 2), our procedure generates a stronger specification ψ and
applies a model checker to verify M̃ |= ψ ((B′) in Fig. 2). If the verification
fails with a counterexample σ, our procedure checks whether σ witnesses that
the original M violates the strengthened specification ψ ((C′) in Fig. 2). If it is
not the case, σ exhibits the difference between M and M̃ since σ does not drive
M to the violation of ψ but it does for M̃. Then, the learned automaton M̃ is
refined by using the new data σ ((A) in Fig. 2). If M̃ is verified to conform to ψ
or σ drives M to the violation of ψ, then our procedure conducts an equivalence
test ((D) in Fig. 2).

To generate a stronger specification ψ than ϕ, we define syntactic rewriting
rules to strengthen ϕ. The rules include, for example, rewriting of p ∨ q to p ∧ q,
where p and q are atomic propositions, and rewriting of an STL formula ♦Iϕ to
♦I′ϕ, where the interval I ′ is a subset of I. We define the strengthening relation
and prove its correctness.

We implemented our method as an extension of FalCAuN [37] that imple-
ments BBC for CPSs. To check the effectiveness of our method, we evaluated
our implementation using the Simulink model of an automatic transmission sys-
tem [19]. The result shows that our method is up to 66% faster than the original
BBC, which demonstrates the effectiveness of our method.

1.1 Related Work

Active automata learning has various applications in software engineering [18,
35], e. g., specification mining [12,31] and synthesis [25]. Black-box checking
(BBC) [32], which is also known as learning-based testing (LBT), is an appli-
cation of active automata learning for system testing. BBC has been used for
testing numerical software [28], distributed systems [29], and autonomous sys-
tems [23]. BBC is implemented in LBTest [30] and LearnLib [22,27].

As one of the quality assurance methods of CPSs, falsification [5,13] has
been attracting attention from both academia and industry. There are several
practical tools for falsification, for example, S-TaLiRo [3] and Breach [9]. See also
the report [11] of the annual friendly competition on the falsification problem.
There are various industrial case studies utilizing these tools for falsification.
Yamaguchi et al. [38] presents a case study that uses the falsification tool Breach
to find issues in automotive systems. Hoxha et al. [20] demonstrates falsification
on industrial size engine model using S-TaLiRo. Cameron et al. [6] uses S-TaLiRo
to search for violations of artificial pancreas controllers that automate insulin
delivery to patients with type-1 diabetes.

Robustness-guided falsification [13] is a widely-used technique to solve the
falsification problem with optimization, e. g., simulated annealing [24] and CMA-
ES [4]. Robustness-guided falsification reduces the falsification problem to mini-
mizing the quantitative satisfaction degree called robustness [10,14] of the speci-
fication ϕ in signal temporal logic (STL) [26]. Recently, BBC is also used for the
falsification of CPSs [37]. In [37], an equivalence testing dedicated to CPS falsi-
fication called robustness-guided equivalence testing is introduced. Robustness-

104 J. Shijubo et al.

guided equivalence testing tries to find a witness σ of M̃ �= M useful for the
falsification problem by minimizing the robustness.

Robust linear temporal logic (rLTL) [36] is an extension of LTL with 5-valued
semantics. rLTL is used to guarantee that a requirement violation due to a small
assumptions violation is small. The 5-valued semantics of rLTL is based on a
weakening of temporal operators in rLTL formulas related to our strengthening.

After recalling the preliminaries in Sect. 2, we introduce our enhancement of
BBC via model checking with strengthened specifications in Sect. 3. We show
the experimental evaluation in Sect. 4, and conclude in Sect. 5.

2 Preliminaries

For a set S, we denote its power set by P(S). For a set S, an infinite sequence
s = s0, s1, · · · ∈ Sω of S, and i, j ∈ N, i ≤ j, we denote the subsequence
si, si+1, . . . , sj ∈ S∗ by s[i, j]. For a set S, a finite sequence s ∈ S∗ of S, and an
infinite sequence s′ ∈ Sω of S, we denote their concatenation by s · s′.

2.1 Linear Temporal Logic

Linear temporal logic (LTL) [33] is a temporal logic which is commonly used to
describe temporal behaviors of systems.

Definition 1 (Syntax of linear temporal logic). For a finite set AP of
atomic propositions, the syntax of linear temporal logic is defined as follows,
where p ∈ AP and i, j ∈ N ∪ {∞} satisfying i ≤ j1.

ϕ,ψ ::= 	 | p | ¬ϕ | ϕ ∨ ψ | ϕ U[i,j) ψ | Xϕ

We denote the set of linear temporal logic formulas by LTL.

In addition to the syntax in Definition 1, we use the following syntactic
abbreviations of LTL formulas. Intuitively, ♦ϕ stands for “eventually ϕ holds”
and �ϕ stands for “globally ϕ holds”.

⊥ ≡ ¬	, ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)), ϕ → ψ ≡ (¬ϕ) ∨ ψ,

♦[i,j)ϕ ≡ 	 U[i,j) ϕ, �[i,j)ϕ ≡ ¬(♦[i,j)¬ϕ), ϕ U ψ ≡ ϕ U[0,∞) ψ

♦ϕ ≡ ♦[0,∞)ϕ, �ϕ ≡ �[0,∞)ϕ

The semantics of LTL formulas is defined by the following satisfaction relation
(π, k) |= ϕ. For an infinite sequence π, an index k, and an LTL formula ϕ,
(π, k) |= ϕ intuitively stands for “π satisfies ϕ at k”.

1 In the standard definition of LTL, the interval U[i,j) is always [0, ∞) and it is omitted.
We employ the current syntax to emphasize the similarity to STL. We note that this
does not change the expressive power.

Efficient Black-Box Checking by Specification Strengthening 105

Definition 2 (Semantics of linear temporal logic). For an LTL formula
ϕ, an infinite sequence π = π0, π1, · · · ∈ (P(AP))ω of subsets of atomic proposi-
tions, and k ∈ N, we define the satisfaction relation (π, k) |= ϕ as follows.

(π, k) |= 	
(π, k) |= p ⇐⇒ p ∈ πk

(π, k) |= ¬ϕ ⇐⇒ (π, k) � ϕ

(π, k) |= ϕ ∨ ψ ⇐⇒ (π, k) |= ϕ ∨ (π, k) |= ψ

(π, k) |= Xϕ ⇐⇒ (π, k + 1) |= ϕ

(π, k) |= ϕ U[i,j) ψ ⇐⇒ ∃l ∈ [k + i, k + j). (π, l) |= ψ

∧ ∀m ∈ {k, k + 1, . . . , l}. (π,m) |= ϕ

If we have (π, 0) |= ϕ, we denote π |= ϕ.

In this paper, we mainly use a subclass of LTL called safety LTL. Safety LTL
is a subclass of LTL whose violation can be witnessed by a finite sequence. The
existence of finite witness simplifies the application to BBC.

Definition 3 (safety LTL). An LTL formula ϕ is safety if for any infinite
sequence π ∈ (P(AP))ω satisfying π � ϕ, there is i ∈ N such that for any
prefix π[0, j] of π longer than i (i. e., j > i), and for any infinite sequence
π′ ∈ (P(AP))ω, we have π[0, j] · π′

� ϕ

2.2 LTL Model Checking

Model checking is a technique to verify the correctness of a system model M
against a specification ϕ. We utilize Mealy machines for system modeling and
LTL formulas for a specification ϕ.

Definition 4 (Mealy machine). For an input alphabet Σ and an output alpha-
bet Γ , a Mealy machine is a 3-tuple M = (L, l0,Δ), where L is the finite set
of locations, l0 ∈ L is the initial location, and Δ : (L × Σ) → (L × Γ) is the
transition function.

For a Mealy machine M = (L, l0,Δ) over Σ and Γ , the language L(M) ⊆
(Σ × Γ)ω is defined as follows.

L(M) = {(a0, b0), (a1, b1), · · · | ∃l1, l2, . . . ,∀i ∈ N.Δ(li, ai) = (li+1, bi)}
For an infinite sequence σ = (a0, b0), (a1, b1), · · · ∈ (Σ ×Γ)ω, we define pr1(σ) =
a0, a1, · · · ∈ Σω and pr2(σ) = b0, b1, · · · ∈ Γω. For a Mealy machine M, the
input language Lin(M) ⊆ Σω and the output language Lout(M) ⊆ Γω are
Lin(M) = {pr1(σ) | ∃σ ∈ L(M)} and Lout(M) = {pr2(σ) | ∃σ ∈ L(M)}.

In the model checking, we use a Mealy machine M with the output alphabet
Γ = P(AP) to model the system, and check if all the sequences in its language
L(M) satisfy the LTL formula ϕ. Moreover, if there is a sequence in the language
L(M) and violating the LTL formula ϕ, the model checker returns a sequence
witnessing the violation. The formal definition of model checking is as follows.

106 J. Shijubo et al.

Definition 5 (LTL model checking). Let Σ be the input alphabet and let AP
be the set of the atomic propositions. Given an LTL formula ϕ over AP and a
Mealy machine M over Σ and P(AP), LTL model checking decides if for any
π ∈ Lout(M), we have π |= ϕ. If there is σ ∈ L(M) satisfying pr2(σ) � ϕ,
the LTL model checker returns such σ. We denote ∀π ∈ Lout(M). π |= ϕ by
M |= ϕ.

In this paper, we utilize safety LTL formulas in Definition 3. For any safety
LTL formula ϕ with M � ϕ, there is a finite sequence σ ∈ (Σ × P(AP))∗ such
that for any σ′ ∈ (Σ × P(AP))ω satisfying σ ·σ′ ∈ L(M), we have pr2(σ ·σ′) �|=
ϕ. We use such a finite sequence σ as a witness of M � ϕ. For the discussion on
such a finite witness, we define the finite language Lfin(M) of a Mealy machine
M as Lfin(M) = {σ ∈ (Σ × P(AP))∗ | ∃σ′ ∈ (Σ × P(AP))ω. σ · σ′ ∈ L(M)}.

2.3 Signal Temporal Logic

Signal temporal logic (STL) [26] is a variant of LTL dedicated to representing
behaviors of real-valued signals. Although the standard definition is for contin-
uous-time signals, we employ discrete-time STL [14] since we use STL for BBC.

Definition 6 (signal). For a finite set Y of variables, a (discrete-time) signal
σ ∈ (RY)∞ is a finite or infinite sequence of valuations ui : Y → R. For a finite
signal σ = u0, u1, . . . , un−1 ∈ (RY)∗, we denote the length n of σ by |σ|.
Definition 7 (discrete-time STL). For a finite set Y of variables, the syntax
of STL is defined as follows, where y ∈ Y , 	
 ∈ {<,>}, c ∈ R, and i, j ∈
N ∪ {∞}.

ϕ,ψ ::= 	 | y 	
 c | ¬ϕ | ϕ ∨ ψ | ϕ U[i,j) ψ | Xϕ

Similarly to LTL, we use the following syntactic abbreviations.

⊥ ≡ ¬	, y ≥ c ≡ ¬(y < c), y ≤ c ≡ ¬(y > c), ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)),
ϕ → ψ ≡ (¬ϕ) ∨ ψ, ♦[i,j)ϕ ≡ 	 U[i,j) ϕ, �[i,j)ϕ ≡ ¬(♦[i,j)¬ϕ),
ϕ U ψ ≡ ϕ U[0,∞) ψ, ♦ϕ ≡ ♦[0,∞)ϕ, �ϕ ≡ �[0,∞)ϕ

The semantics of STL formulas is defined similarly to that of LTL formulas.
While the satisfaction of an LTL formula is defined for an infinite sequence
π ∈ (P(AP))ω of a set of atomic propositions, the satisfaction of an STL formula
is defined for an infinite signal σ ∈ (RY)∞. Each inequality constraint in an STL
formula is evaluated with the valuation ui in the signal σ, and the satisfaction
of the other formulas is defined inductively. Formally, the satisfaction relation
(σ, k) |= ϕ is inductively defined as follows, where ϕ is an STL formula over Y ,
σ ∈ (RY)ω is an infinite length signal over Y , and k ∈ N is an index.

Efficient Black-Box Checking by Specification Strengthening 107

(σ, k) |= 	
(σ, k) |= y > c ⇐⇒ uk(y) > c

(σ, k) |= y < c ⇐⇒ uk(y) < c

(σ, k) |= ¬ϕ ⇐⇒ (σ, k) � ϕ

(σ, k) |= ϕ ∨ ψ ⇐⇒ (σ, k) |= ϕ ∨ (σ, k) |= ψ

(σ, k) |= Xϕ ⇐⇒ (σ, k + 1) |= ϕ

(σ, k) |= ϕ U[i,j) ψ ⇐⇒ ∃l ∈ [k + i, k + j). (σ, l) |= ψ

∧ ∀m ∈ {k, k + 1, . . . , l}. (σ,m) |= ϕ

The notion of safety is defined similarly to that of LTL. Moreover, model
checking with an STL formula is defined similarly. The main difference is that
the output alphabet Γ of the Mealy machine M is not P(AP) but R

Y .

2.4 Active Automata Learning

Active automata learning is a class of algorithms to construct an automaton by
a series of interactions between the learner and a teacher. In L* [2] and TTT [21]
algorithms, the learner constructs the minimum DFA AU over Σ recognizing the
target language U ⊆ Σ∗ utilizing membership and equivalence questions to the
teacher.

In a membership question, the learner asks if a word w ∈ Σ∗ is a member of
U , i. e., w ∈ U . In an equivalence question, the learner asks if a candidate DFA
A recognizes the target language U , i. e., L(A) = U . In the equivalence question,
if we have L(A) �= U , the teacher returns a word w′ satisfying w′ ∈ L(A) � U
as a witness of M �= M̃, where L(A) � U is the symmetric difference, i. e.,
L(A) � U = (L(A) \ U) ∪ (U \ L(A)). We note that a Mealy machine M can
also be learned similarly. See e. g., [35].

Algorithm 1 outlines the L*-style active automata learning algorithm. In L*-
style active automata learning, the learning process proceeds in two repetitive
phases: candidate generation and equivalence testing. First, in the candidate
generation phase (lines 3 to 5), the learner asks several membership questions
to the teacher and constructs a candidate automaton. Once the automaton is
constructed, the learning process proceeds to the equivalence testing phase (lines
7 to 11). The learner asks an equivalence question, and if the teacher returns
a witness of inequivalence in line 10, the learning process returns to the first
phase.

For any (even black-box) system M, we can learn a Mealy machine M̃ approx-
imating the system behavior by implementing a teacher answering membership
and equivalence questions. It is usually easy to answer a membership question—
we can answer it by executing M. In contrast, it is not straightforward to answer
an equivalence question if the internal structure of the system M is unknown.
When we know the size of the automaton to represent the system M, we can uti-
lize conformance testing with the correctness guarantee, such as W-method [8]
and Wp-method [15]. However, we usually do not know the size of such an

108 J. Shijubo et al.

Algorithm 1: L*-style active automata learning
input : A teacher T that answers membership and equivalence questions of

target language U
output : The minimum DFA A satisfying U = L(A)

1 observations ← ∅
2 while � do

// Candidate generation phase

3 while ∃w. we need to know if w ∈ U to construct a candidate automaton A
from observations do

4 add (w, askMembershipQuestion(T, w)) to observations

5 A ← constructCandidateAutomaton(observations)
6

// Equivalence testing phase

7 if U = L(A) by equivalence question then
8 return A
9 else

10 w ← a witness of U �= L(A)
11 add (w, askMembershipQuestion(T, w)) to observations

automaton, and thus, we need an approximate method to test the equivalence
of the system M under learning and the candidate automaton M̃, e. g., by ran-
dom testing and mutation testing [1]. We note that, in general, these equivalence
testing methods execute the system M for many times, and tend to be time-
consuming when the system execution is expensive.

2.5 Black-Box Checking

Black-box checking (BBC) [32] is a testing method that combines active
automata learning and model checking to test if the given black-box system M
satisfies its specification ϕ. Given a black-box system M over an input alphabet
Σ and an output alphabet P(AP), and a safety LTL formula ϕ, BBC deems
M |= ϕ or returns a counterexample σ ∈ (Σ × P(AP))∗ such that for any
σ′ ∈ (Σ × P(AP))ω satisfying σ · σ′ ∈ L(M), we have pr2(σ · σ′) �|= ϕ.

Figure 1 outlines the workflow of BBC. BBC combines L*-style active
automata learning in Algorithm 1 and model checking. More precisely, can-
didate generation phase (lines 3 to 5 in Algorithm 1) corresponds to (A) in
Fig. 1, equivalence testing phase of active automata learning (lines 7 to 11 in
Algorithm 1) corresponds to (D) in Fig. 1, and model checking is used in (B) in
Fig. 1. First, we learn a Mealy machine M̃ approximating the behavior of the
system M under test ((A) in Fig. 1). We learn such a Mealy machine M̃ by the
candidate generation of active automata learning (lines 3 to 5 in Algorithm 1).
We note that the behavior of the learned Mealy machine M̃ may be different
from that of the system M under test.

Then, we check if we have M̃ |= ϕ by model checking ((B) in Fig. 1). If
M̃ �|= ϕ holds, the model checker returns a witness σ ∈ (Σ × P(AP))∗ of

Efficient Black-Box Checking by Specification Strengthening 109

M̃ �|= ϕ, and we feed σ to the system M under test to check if σ is a witness of
M �|= ϕ ((C) in Fig. 1). If σ witnesses M �|= ϕ, we conclude that M �|= ϕ holds,
and BBC returns σ as a counterexample. Otherwise, since we have σ ∈ Lfin(M̃)
and σ �∈ Lfin(M), σ differentiates M̃ and M, and we use σ to refine the learned
Mealy machine M̃.

If M̃ |= ϕ holds in the model-checking step ((B) in Fig. 1), we test if
the behavior of M̃ and M are similar enough by equivalence testing of active
automata learning ((D) in Fig. 1). If we find an input σ that differentiates M
and M̃, we use σ to refine the learned Mealy machine M̃. Otherwise, we deem
that M̃ and M are equivalent, and BBC returns M |= ϕ.

BBC for CPSs. To apply BBC to test a CPS M, we need a finite abstraction
of the real-valued input and output of M. Following [37], we utilize input and
output mappers I and O to bridge the real values for the CPS execution and
the finite values for the BBC. For a CPS model M over X and Y , we fix the
abstract input alphabet Σ and the atomic propositions AP, and define an input
mapper I : Σ → R

X assigning one valuation of the input signal to each a ∈ Σ
and an output mapper O : R

Y → P(AP) assigning a set of atomic propositions
to each valuation of the output signal. Typically, Σ is a finite subset of R

X and
I is the canonical injection, and AP is a set of predicates over Y and O assigns
their satisfaction.

3 BBC Enhanced via Model Checking with Strengthened
LTL Formulas

In this section, we show how we optimize BBC utilizing model checking with
strengthened LTL formulas. Figure 2 shows the workflow of our enhanced BBC.
The high-level strategy is to reduce the number of the equivalence testing ((D)
in Fig. 2) via model checking with a strengthened LTL formula ψ ((B′) and (C′)
in Fig. 2). Since, one equivalence test consists of many executions of the system
M under test, equivalence testing tends to be time-consuming if each execution
of M is expensive. In contrast, in BBC, the size of the learned Mealy machine
M̃ tends to be small, and the model checking may be relatively fast. Overall,
the workflow in Fig. 2 may be more efficient than the original workflow of BBC
in Fig. 1, which we experimentally confirm in Sect. 4.

3.1 Strengthening Relation of LTL Formulas

To formalize our strengthening of LTL formulas, we define the strengthening
relation � ⊆ LTL × LTL over LTL formulas. Given an LTL formula ϕ, we
strengthen it to another LTL formula ψ satisfying ϕ � ψ. The syntactic defini-
tion of � is suitable for the generation of the strengthened LTL formulas.

Definition 8 (Strengthening relation of LTL formulas). For LTL for-
mulas ϕ,ψ, � ⊆ LTL × LTL is the minimum relation satisfying the following.

110 J. Shijubo et al.

1. For any μ, ν ∈ LTL, we have (μ ∨ ν) � (μ ∧ ν).
2. For any μ ∈ LTL, we have ♦μ � �♦μ.
3. For any μ ∈ LTL, we have �♦μ � ♦�μ.
4. For any μ ∈ LTL, we have ♦�μ � �μ.
5. For any μ ∈ LTL and for any indices i, j ∈ N ∪ {∞} satisfying i < j, we

have ♦[i,j)μ � �[i,j)μ.
6. For any μ, ν ∈ LTL, we have (μ U ν) � (�μ ∧ �♦ν).
7. For any μ ∈ LTL and for any indices i, j, i′, j′ ∈ N ∪ {∞} satisfying [i, j) �

[i′, j′), we have ♦[i,j)μ � ♦[i′,j′)μ.
8. For any μ, ν ∈ LTL, if we have ν � μ, we have ¬μ � ¬ν.
9. For any μ, μ′, ν ∈ LTL satisfying μ � μ′, we have (μ ∨ ν) � (μ′ ∨ ν).

10. For any μ, ν, ν′ ∈ LTL satisfying ν � ν′, we have (μ ∨ ν) � (μ ∨ ν′).
11. For any μ, ν ∈ LTL satisfying μ � ν, we have Xμ � Xν.
12. For any μ, ν, ν′ ∈ LTL satisfying ν � ν′ and for any indices i, j ∈ N ∪ {∞}

satisfying i < j, we have (μ U[i,j) ν) � (μ U[i,j) ν′).
13. For any ϕ, μ, ψ ∈ LTL satisfying ϕ � μ and μ � ψ, we have ϕ � ψ.

We note that for the other operators than the ones in Definition 1, � is
defined using their definition as the syntactic abbreviation.

Example 1. For any p ∈ AP, we have �[0,2)p � �[0,10)p. This is because, by con-
dition 7 of Definition 8, we have ♦[0,10)¬p � ♦[0,2)¬p. By applying condition 8
of Definition 8, we obtain ¬♦[0,2)¬p � ¬♦[0,10)¬p. By definition of the syntactic
abbreviation, ¬♦[0,2)¬p � ¬♦[0,10)¬p is equivalent to �[0,2)p � �[0,10)p.

We have the following correctness by induction.

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ϕ and ψ satisfying ϕ � ψ, ψ is stronger than ϕ, i. e., for any π ∈
(P(AP))ω and k ∈ N, (π, k) |= ϕ implies (π, k) |= ψ. ��
Example 2. Let ϕexample = p1 ∨ ♦[0,10)p2, with p1, p2 ∈ AP. By condition 1 of
Definition 8, we have (p1∨♦[0,10)p2) � (p1∧♦[0,10)p2). Therefore, p1∧♦[0,2)p2 is
one of the candidates in the strengthening of ϕexample. By conditions 7 and 10 of
Definition 8, we have ♦[0,10)p2 � ♦[0,5)p2, and (p1 ∨ ♦[0,10)p2) � (p1 ∨ ♦[0,5)p2).
Therefore, p1 ∨ ♦[0,5)p2 is another candidate in the strengthening of ϕexample.
We note that by condition 7 of Definition 8, we have ♦[0,10)p2 � ♦[i′,j′)p2 for
any [i′, j′) � [0, 10), and in the strengthening, we have many candidates that are
different only in the interval in their temporal operator. For example, p1∨♦[0,8)p2,
p1∨♦[0,3)p2, and p1∨♦[0,1)p2 are the candidates in the strengthening of ϕexample .

3.2 BBC Enhanced via Model Checking with Strengthened
Formulas

We present how we enhance BBC utilizing model checking with strengthened
LTL formulas. In this section, we show the high-level scheme of our enhancement
and, in Sect. 3.3, we explain the design choice in our implementation. We fix the
system M under test and the specification ϕ ∈ LTL.

Efficient Black-Box Checking by Specification Strengthening 111

Algorithm 2: BBC enhanced via model checking with strengthened LTL
formulas
input : System M under test and an LTL formula ϕ
output : Returns � if BBC deems M |= ϕ, otherwise, a witness σ of M �|= ϕ

1 Ψ ← GenCandidate(ϕ) // Generate a subset Ψ of {ψ ∈ LTL | ϕ � ψ}
2 M̃ ← ConstructInitialMealy(M)
3 repeat

4 if M̃ � ϕ then

5 σ ← a witness of M̃ � ϕ
6 if σ witnesses M � ϕ then
7 return σ

8 else
9 foundWitness ← ⊥

10 Ψchosen ← ChooseFml(Ψ)
11 forall ψi ∈ Ψchosen do // Try the strengthened specifications

12 if M̃ � ψi then

13 σ ← a witness of M̃ �|= ψi

14 if σ witnesses M �|= ψi then
15 remove ψi from Ψ

16 else // σ is a witness of M̃ �= M
17 foundWitness ← �
18 break

19 if foundWitness = ⊥ then

20 if M̃
 M by equivalence testing then
21 return �
22 else

23 σ ← a witness of M̃ �= M
24 M̃ ← RefineMealy(M, σ)

25 until isTimeout()
26 return �

Figure 2 outlines our enhanced BBC scheme. When we have M̃ |= ϕ in (B) of
Fig. 2, before conducting the equivalence testing ((D) of Fig. 2), we try to find a
witness of M �= M̃ by a model checking with an LTL formula ψ satisfying ϕ � ψ
((B′) of Fig. 2). Since M̃ � ϕ implies M̃ � ψ, by model checking, we have more
chance to obtain a witness σ of M̃ �|= ψ than that of M̃ �|= ϕ. When ψ is much
stronger than ϕ, the witness σ of M̃ �|= ψ is also a witness of M �|= ψ. In such a
case, σ does not differentiate M̃ and M, and thus, we cannot use σ to refine M̃.
Nevertheless, we claim that if the LTL formula ϕ is strengthened appropriately,
we can often refine M̃ by such a witness σ. Moreover, the refinement by such a
witness σ tends to lead to a Mealy machine useful for falsification of ϕ, which is
observed in our experiment result in Sect. 4.

Algorithm 2 outlines our BBC enhanced via model checking with strength-
ened LTL formulas. In line 1, we generate the candidates Ψ of the strengthened
LTL formulas used in the model checking. After constructing the initial Mealy

112 J. Shijubo et al.

machine M̃ in line 2, we conduct model checking of M̃ with ϕ. When we have
M̃ � ϕ (line 4), we obtain a witness σ of M̃ � ϕ and check if σ also witnesses
M � ϕ by running M with σ as the input (line 6). When σ also witnesses
M � ϕ, we return σ as a result of BBC. Otherwise, we use σ to refine the leaned
Mealy machine M̃ (line 24).

When we have M̃ |= ϕ, we look for an input σ to refine M̃. In the original
BBC in Fig. 1, we try the equivalence testing to find such σ, In contrast, in order
to reduce the number of the equivalence testing, we conduct model checking of
M̃ with some of the LTL formulas ψ ∈ Ψ before trying the equivalence testing.
The strengthened LTL formulas Ψchosen is chosen by a function ChooseFml.
Although the stronger LTL formulas should be chosen before the weaker ones,
ChooseFml can be an arbitrary function to choose a finite set of the strengthened
specifications Ψchosen from Ψ . We note that the choice of GenCandidate and
ChooseFml defines the granularity of the strengthening of ϕ used in the model
checking, which may affect the effectiveness of our enhancement.

For each LTL formula ψi ∈ Ψchosen , we check if M̃ � ψi holds by model
checking in line 11. When M̃ � ψi holds (line 12), we obtain a witness σ of
M̃ � ψi. Then, we check if σ also witnesses M � ψi by running M with σ as
input (line 14). When σ also witnesses M � ϕi, we remove ψi from Ψ in line 15.
Otherwise, we use σ to refine the learned Mealy machine M̃ in line 24.

When for any ψi ∈ Ψchosen , we can not find σ to refine M̃, we fallback
to the normal loop of the BBC. Namely, we use equivalence testing to find a
witness σ of M �= M̃ in line 20. When equivalence testing deems M̃ and M
are equivalent, we return 	 as the result of BBC. Otherwise, equivalence testing
returns a witness σ of M̃ �= M, and we use σ to refine M̃ (line 24).

3.3 GenCandidate and ChooseFml in our implementation

Algorithm 3 shows our candidate generation algorithm GenCandidate. The can-
didates Ψ of the strengthened LTL formulas consists of ΨInt and ΨnoInt

2: ΨInt and
ΨnoInt are obtained by strengthening the operators with and without intervals.
They are constructed by GenIntFml and GenNoIntFml (in Algorithm 4), respec-
tively. Moreover, we remove ψi from ΨInt or ΨnoInt when ψi is removed from Ψ
in line 15 of Algorithm 2.

First, we use GenNoIntFml to construct ΨnoInt ⊆ {ψ ∈ LTL | ϕ � ψ}
that is constructed by inductively strengthening the operators without intervals.
For example, for ϕ = (�[2,6)p) ∨ ♦q, we have GenNoIntFml(ϕ) = {(�[2,6)p) ∧
♦q, (�[2,6)p) ∨ �q, (�[2,6)p) ∨ ♦�q, (�[2,6)p) ∨ �♦q}. We note that for any LTL
formula ϕ, GenNoIntFml(ϕ) is a finite set.

Then, we use GenIntFml to construct a finite set ΨInt of LTL formulas by
modifying the “Eventually” and “Globally” operators with intervals in ϕ. We
employ heuristics to take the midpoint of the lower or upper bound when shrink-
ing the interval. For example, let ϕ = (�[2,6)p) ∨ ♦q and the bound N of the

2 More precisely, ΨnoInt is a queue and its FIFO order is used in ChooseFml in Algo-
rithm 5.

Efficient Black-Box Checking by Specification Strengthening 113

Algorithm 3: The candidate generation GenCandidate in our implemen-
tation, where N ∈ N is the bound of the time horizon
1 Function GenCandidate(ϕ):

input : An LTL formula ϕ
output : The strengthened LTL formulas Ψ used in Algorithm 2

2 ΨnoInt ← GenNoIntFml(ϕ) // Strengthen the operators without

intervals

3 ΨInt ← GenIntFml(ϕ) // Strengthen the operators with intervals

4 return ΨnoInt ∪ ΨInt

5 Function GenIntFml(ϕ):
6 ΨInt ← ∅
7 switch the syntactic structure of ϕ do
8 case ϕ = �[i,j)μ do
9 i′ ← 0; j′ ← ∞

10 while [i, j) � [i′, j′) do
11 ΨInt ← ΨInt ∪ {�[i′,j′)μ}
12 if i > i′ then i′ ← � i+i′

2
; j′ ← N

13 else j′ ← � j+j′
2

�
14 case ϕ = ♦[i,j)μ do
15 ΨInt ← GenIntFml(�[i,i+1)μ)
16 i′ ← i; j′ ← i + 1
17 while [i, j) � [i′, j′) do
18 ΨInt ← ΨInt ∪ {♦[i′,j′)μ}
19 if i < i′ then i′ ← � i+i′

2
�

20 else j′ ← � j+j′
2

21 case ϕ = �μ do
22 ΨInt ← {�μ′ | μ′ ∈ GenIntFml(μ)}
23 case ϕ = μ ∨ ν do
24 ΨInt ← {μ′ ∨ ν | μ′ ∈ GenIntFml(μ)} ∪ {μ ∨ ν′ | ν′ ∈ GenIntFml(ν)}
25 case ϕ = μ ∧ ν do
26 ΨInt ← {μ′ ∧ ν | μ′ ∈ GenIntFml(μ)} ∪ {μ ∧ ν′ | ν′ ∈ GenIntFml(ν)}
27 return ΨInt

time horizon be N = 30. We start from [i′, j′) = [0,∞) (in line 9 of Algorithm
3) and repeatedly update the lower bound i′ to the midpoint of i and i′ (line
12) to generate an LTL formula with it. Namely, we generate (�[0,∞)p) ∨ ♦q,
(�[1,30)p)∨♦q, and (�[2,30)p)∨♦q. Once we have i = i′, we repeatedly update the
upper bound j′ to the midpoint of j and j′ (line 13), and use [i′, j′) for the LTL
generation. Namely, we generate (�[2,18)p) ∨ ♦q, (�[2,12)p) ∨ ♦q, (�[2,9)p) ∨ ♦q,
and (�[2,7)p) ∨ ♦q. By this construction, we have finer-grained strengthening
when the strengthened formula is closer to the original formula while ignoring
many strengthened formulas far from the original one for efficiency.

In ChooseFml (in Algorithm 5), we take one of the strongest LTL formulas in
ΨnoInt and take all the strongest LTL formulas in ΨInt. We note that the strength
of LTL formulas is a strict partial order, and there may be multiple strongest
specifications.

114 J. Shijubo et al.

Algorithm 4: Candidate generation by strengthening the operators with-
out intervals
input : An LTL formula ϕ
output : A queue ΨnoInt of LTL formulas that are obtained by strengthening

the operators without intervals in ϕ
1 Function GenNoIntFml(ϕ):
2 ΨnoInt ← () // ΨnoInt is a queue of strengthened specs

3 switch the form of ϕ do
4 case ϕ = μ ∨ ν do
5 push μ ∧ ν to ΨnoInt

6 forall μ′ ∈ GenNoIntFml(μ) do
7 push μ′ ∨ ν to ΨnoInt

8 forall ν′ ∈ GenNoIntFml(ν) do
9 push μ ∨ ν′ to ΨnoInt

10 case ϕ = ♦μ do
11 return (�μ, ♦�μ, �♦μ, ♦μ)
12 case ϕ = μ U ν do
13 return (�μ ∧ �ν, �μ ∧ ♦�ν, �μ ∧ �♦ν)
14 case ϕ = μ ∧ ν do
15 forall μ′ ∈ GenNoIntFml(μ) do
16 push μ′ ∧ ν to ΨnoInt

17 forall ν′ ∈ GenNoIntFml(ν) do
18 push μ ∧ ν′ to ΨnoInt

19 case ϕ = �μ do
20 forall μ′ ∈ GenNoIntFml(μ) do
21 push �μ′ to ΨnoInt

22 return ΨnoInt

Algorithm 5: Our implementation of ChooseFml

input : A set Ψ of the candidates of the strengthened LTL formulas consists
of ΨInt and ΨnoInt

output : A set Ψchosen of LTL formulas chosen from Ψ
1 Ψchosen ← ∅
2 Ψ ′

noInt ← ΨnoInt

// Find the first formula in ΨnoInt with no stronger formulas in

ΨnoInt

3 while Ψ ′
noInt �= ∅ do

4 pop ψ from Ψ ′
noInt

5 if ∀ψ′ ∈ Ψ ′
noInt. ψ �� ψ′ then

6 Ψchosen ← Ψchosen ∪ {ψ}
7 break

8 Ψchosen ← Ψchosen ∪ {ψ ∈ ΨInt | ∀ψ′ ∈ ΨInt. ψ �� ψ′}
9 return Ψchosen

Efficient Black-Box Checking by Specification Strengthening 115

4 Experiment

We conducted experiments to evaluate the efficiency of our BBC enhanced by
model checking with strengthened LTL formulas. We compared our method with
a tool FalCAuN [37] for robustness-guided BBC for CPSs. We implemented a
prototype tool based on FalCAuN in Java3.

4.1 Experiment Setup

As the CPS M under test, we used the Simulink model of an automatic transmis-
sion system [19], one of the standard models in the falsification literature. Given
a 2-dimensional signal of the throttle and the brake, the automatic transmission
model M returns a 3-dimensional signal of the velocity v, the engine rotation ω,
and the gear g. The range of the throttle and the brake are [0, 100] and [0, 325],
respectively. The domains of v and ω are positive reals, and the domain of g is
{1, 2, 3, 4}. As the specification, we used the set of the STL formulas in Table 1.
The STL formulas ϕ1 and ϕ2 are taken from [39], and ϕ3-ϕ5 are our original.
Since the length of the input and output signals in our experiment is less than
30, we let the bound N in Algorithm 3 be 30.

Since the input and the output of the system M under test are continuous,
we cannot directly apply BBC for the falsification of M. In our experiments, we
use the following discretization both in time and values. For the discretization in
time, we use fixed-interval sampling of every one second. For the discretization
of input values, we use the following 4 (= 2×2) values: the throttle is either 0 or
100, and the brake is either 0 or 325. For the discretization of output values, we
use the coarsest atomic propositions AP that is a partition of the output range
compatible with the inequalities in the STL formula in each benchmark. For
example, since the inequality constraints in the STL formula ϕ1 are v < 100 and
v > 75, the atomic propositions AP for ϕ1 is {v ≤ 75, 75 < v < 100, 100 ≤ v}.

Among the optimization methods supported by FalCAuN to search for a
counterexample in the equivalence testing, we use a genetic algorithm. Due to
the stochastic nature of a genetic algorithm, we executed each benchmark 50
times. For each execution, we measured the time and the number of the Simulink
executions to falsify the STL formula. We set the timeout of each execution to 4 h.
We experimented on a Google Cloud Platform c2-standard-4 instance (4 vCPUs
and 15.67 GiB RAM). We used Debian 10 buster and MATLAB R2020b.

4.2 Performance Evaluation

Table 2 shows the summary of the experiment results. Execution times are shown
in minutes. For each STL formula ϕi, we observe that, on average, our method
falsified ϕi in a shorter time than the baseline. Moreover, on average, the number
of Simulink executions of our method is smaller than that of baseline. Further-
more, the number of timeouts of our method is smaller than or equal to that

3 Our implementation is publicly available in https://github.com/MasWag/FalCAuN/
releases/tag/RV2021.

https://github.com/MasWag/FalCAuN/releases/tag/RV2021
https://github.com/MasWag/FalCAuN/releases/tag/RV2021

116 J. Shijubo et al.

Table 1. List of the STL formulas in our benchmarks

STL formula

ϕ1 �[0,26](v < 100) ∨ �[28,28](v > 75)

ϕ2 �((ω < 4770) ∨ (�[1,1](ω > 600)))

ϕ3 �((g > 3) ∨ (ω < 4775) ∨ ♦[0,2](g > 3))

ϕ4 �((g > 2) ∨ ((g < 2) U (v > 30)))

ϕ5 �((♦[0,3](ω < 4000)) ∨ (♦[0,3](v > 100)))

Table 2. Summary of the experiment result of 50 executions for our benchmarks.
The numbers T/N in each cell at “average” and “std. dev.” columns are the time T
[min.] to falsify the specification and the number N of Simulink executions to falsify
the specification. The number N in each cell at “timeout” column is the number N of
timeouts to falsify the specification. In this experiment, the timeout is 4 h. For each
benchmark ϕi, we highlight the best cell in average column in terms of the following
order: T/N is better than T ′/N ′ if and only if we have T < T ′ or we have both T = T ′

and N < N ′. For each benchmark, the cells of the smallest number of timeouts is
highlighted.

Our method Baseline (FalCAuN)

average std. dev. timeout average std. dev. timeout

ϕ1 19.29 / 6664.7 7.16 / 1962.7 0 26.70 / 9471.0 15.19 / 5412.2 0

ϕ2 54.89 / 19066.1 42.38 / 13609.3 5 78.71 / 27362.6 57.85 / 18761.1 13

ϕ3 16.43 / 6068.8 18.65 / 6622.2 1 17.35 / 6306.3 25.60 / 8195.7 1

ϕ4 2.53 / 957.0 1.08 / 478.6 0 7.48 / 2323.5 5.40 / 1683.2 0

ϕ5 4.92 / 1785.4 2.07 / 803.5 0 5.19 / 2003.4 2.31 / 904.5 0

of the baseline. Overall, the experiment results in Table 2 suggest that model
checking with strengthened STL formulas makes the BBC more efficient.

Although our method outperforms the baseline for all the STL formulas, we
also observe that the amount of acceleration differs among the formulas. For ϕ4,
our method was about 66% faster than the baseline, and acceleration was the
largest. This is because our method generates four strengthened specifications
by strengthening the “Until” operator in ϕ4. They guided the learning of an
automaton in BBC. For ϕ1 and ϕ2, acceleration by our enhancement was about
27% to 30%, which is significant but not as much as the one for ϕ4. This is
because our method generates many strengthened specifications by changing the
interval of the “Globally” operators while model checking with them guided the
Mealy machine learning in the BBC. Although many specifications are generated
by our specification strengthening, the falsification of the original specifications
in ϕ1 and ϕ2 is difficult and time consuming, the overhead due to the model
checking with many strengthened LTL formulas is not significant.

In contrast, for ϕ3 and ϕ5, our method was only about 5% faster than the
baseline. For ϕ3, by definition of the strengthening relation in Definition 8, falsi-
fication of most of the strengthened specifications requires the output signal to
violate both g > 3 and ω < 4775 (almost) at the same time, which is a falsifica-
tion of a disjunctive specification and tends to be difficult [34]. Since falsification

Efficient Black-Box Checking by Specification Strengthening 117

of most of the strengthened STL formulas is difficult, the improvement thanks
to the model checking with them is limited. One of the future directions to over-
come this issue is enhancing genetic algorithm-based equivalence testing, e. g.,
utilizing ranking [34]. Another direction is to strengthen the specification by
modifying the thresholds to make the specification strengthening finer-grained.

For ϕ5, since the original specification ϕ5 is not difficult and we can fal-
sify it relatively quickly, we cannot ignore the overhead of model checking with
the strengthened specifications. For such a situation, possible future work is an
improvement of the choice of the strengthened STL formulas, e. g., by perform-
ing binary search on the strengthening of specifications to reduce the number of
specifications to be model-checked.

5 Conclusions and Future Work

One of the issues in BBC for CPSs is its long execution time. In particular,
the execution time of the equivalence test tends to be the bottleneck because an
equivalence test consists of many system executions and each execution of a CPS
is time-consuming. To reduce the number of the equivalence tests, we proposed
an enhancement of BBC via model checking with strengthened specifications.
By model checking with an LTL formula ψ stronger than the original formula
ϕ, we have more chance to obtain a witness of the violation, and such a witness
tends to be helpful for the refinement of the learned Mealy machine M̃. Our
experiment result shows that our method accelerates BBC, and our method is
up to 66 % faster than the conventional BBC.

When the complexity of the original LTL formula ϕ is high, e. g., contain-
ing many temporal operators, the number of the strengthened formulas tends
to be huge. In such a case, our current naive choice of the LTL formulas to be
model checked, i. e., GenCandidate and ChooseFml in Algorithm 2, may cause
significant overhead. One of the future works is to optimize such a choice of the
model-checked formulas. For example, utilizing a binary search on the strength-
ened formulas or rewriting multiple operators in the original formula at one time
may reduce the number of the model checking execution. Another future work
is to investigate other kinds of specification strengthening. One example is to
change the threshold in the inequalities. Optimization of the robustness-guided
equivalence testing with recent falsification techniques, e. g., [34], is also future
work.

Acknowledgments. This work is partially supported by JST ACT-X Grant No.
JPMJAX200U, JSPS KAKENHI Grant Number 19H04084, and JST CREST Grant
Number JPMJCR2012, Japan.

References

1. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation
testing. J. Autom. Reasoning 63(4), 1103–1134 (2018). https://doi.org/10.1007/
s10817-018-9486-0

https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10817-018-9486-0

118 J. Shijubo et al.

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

4. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, Edinburgh, UK, 2–4 September 2005, pp. 1769–1776. IEEE (2005).
https://doi.org/10.1109/CEC.2005.1554902

5. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

6. Cameron, F., Fainekos, G., Maahs, D.M., Sankaranarayanan, S.: Towards a verified
artificial pancreas: challenges and solutions for runtime verification. In: Bartocci,
E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3 1

7. Casagrande, A., Piazza, C.: Model checking on hybrid automata. In: 15th Euromi-
cro Conference on Digital System Design, DSD 2012, Cesme, Izmir, Turkey, 5–8
September 2012, pp. 493–500. IEEE Computer Society (2012). https://doi.org/10.
1109/DSD.2012.87

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

9. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

11. Ernst, G., et al.: Arch-comp 2020 category report: falsification. In: Frehse, G.,
Althoff, M. (eds.) ARCH20. 7th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74,
pp. 140–152. EasyChair (2020). https://doi.org/10.29007/trr1, https://easychair.
org/publications/paper/ps5t

12. Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 206–225. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7 13

13. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of specifications and
its applications to falsification, parameter mining, and runtime monitoring with
S-TaLiRo. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
27–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 3

14. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

15. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Software Eng. 17(6), 591–603
(1991). https://doi.org/10.1109/32.87284

16. Hasuo, I.: Metamathematics for systems design - comprehensive transfer of formal
methods techniques to cyber-physical systems. New Gener. Comput. 35(3), 271–
305 (2017). https://doi.org/10.1007/s00354-017-0023-1

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1109/DSD.2012.87
https://doi.org/10.1109/DSD.2012.87
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/trr1
https://easychair.org/publications/paper/ps5t
https://easychair.org/publications/paper/ps5t
https://doi.org/10.1007/978-3-642-13675-7_13
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/32.87284
https://doi.org/10.1007/s00354-017-0023-1

Efficient Black-Box Checking by Specification Strengthening 119

17. Herber, P., Adelt, J., Liebrenz, T.: Formal verification of intelligent cyber-physical
systems with the interactive theorem prover KeYmaera X. In: Götz, S., Linsbauer,
L., Schaefer, I., Wortmann, A. (eds.) Proceedings of the Software Engineering 2021
Satellite Events, Braunschweig/Virtual, Germany, 22–26 February 2021. CEUR
Workshop Proceedings, vol. 2814. CEUR-WS.org (2021). http://ceur-ws.org/Vol-
2814/short-A3-2.pdf

18. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

19. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic require-
ments for automotive systems. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015,
Seattle, WA, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 25–30.
EasyChair (2014). https://easychair.org/publications/paper/4bfq

20. Hoxha, B., Abbas, H., Fainekos, G.E.: Using S-TaLiRo on industrial size auimm-
lertomotive models. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Interna-
tional Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015,
Seattle, WA, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 113–119.
EasyChair (2014). https://easychair.org/publications/paper/r8gZ

21. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

22. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

23. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems
using spatial and temporal requirements. In: Perrouin, G., Acher, M., Cordy, M.,
Devroey, X. (eds.) Proceedings of the 1st International Workshop on Machine
Learning and Software Engineering in Symbiosis, MASES@ASE 2018, Montpel-
lier, France, 3 September 2018, pp. 6–15. ACM (2018). https://doi.org/10.1145/
3243127.3243129

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

25. Lin, S.-W., Hsiung, P.-A.: Compositional synthesis of concurrent systems through
causal model checking and learning. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 416–431. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-06410-9 29

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

27. Meijer, J., van de Pol, J.: Sound black-box checking in the LearnLib. Innov. Syst.
Softw. Eng. 15(3–4), 267–287 (2019). https://doi.org/10.1007/s11334-019-00342-6

28. Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical soft-
ware. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16573-3 16

http://ceur-ws.org/Vol-2814/short-A3-2.pdf
http://ceur-ws.org/Vol-2814/short-A3-2.pdf
https://doi.org/10.1007/978-3-319-96562-8_5
https://easychair.org/publications/paper/4bfq
https://easychair.org/publications/paper/r8gZ
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1007/978-3-319-06410-9_29
https://doi.org/10.1007/978-3-319-06410-9_29
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s11334-019-00342-6
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-16573-3_16

120 J. Shijubo et al.

29. Meinke, K., Nycander, P.: Learning-based testing of distributed microservice archi-
tectures: correctness and fault injection. In: Bianculli, D., Calinescu, R., Rumpe,
B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 3–10. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-49224-6 1

30. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, Luxembourg, 18–22 March 2013, pp.
447–454. IEEE Computer Society (2013). https://doi.org/10.1109/ICST.2013.62

31. Nitto, E.D., Harman, M., Heymans, P. (eds.): Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
30 August–4 September 2015. ACM (2015). https://doi.org/10.1145/2786805

32. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chan-
son, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems, FORTE XII/PSTV XIX 1999, IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and Verification
(PSTV XIX), Beijing, China, 5–8 October 1999. IFIP Conference Proceedings, vol.
156, pp. 225–240. Kluwer (1999)

33. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

34. Sato, S., Waga, M., Hasuo, I.: Constrained optimization for falsification and
conjunctive synthesis. CoRR abs/2012.00319 (2020). https://arxiv.org/abs/2012.
00319

35. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

36. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Talbot, J., Regnier, L.
(eds.) 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
29 August–1 September 2016, Marseille, France. LIPIcs, vol. 62, pp. 10:1–10:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.
4230/LIPIcs.CSL.2016.10

37. Waga, M.: Falsification of cyber-physical systems with robustness-guided black-
box checking. In: Ames, A.D., Seshia, S.A., Deshmukh, J. (eds.) HSCC 2020:
23rd ACM International Conference on Hybrid Systems: Computation and Con-
trol, Sydney, New South Wales, Australia, 21–24 April 2020, pp. 11:1–11:13. ACM
(2020). https://doi.org/10.1145/3365365.3382193

38. Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining,
software model checking and simulation-based verification for industrial automo-
tive systems. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, 3–6 October 2016, pp.
201–204. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886680

39. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsifica-
tion of hybrid systems guided by monte Carlo tree search. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018). https://doi.org/10.
1109/TCAD.2018.2858463

https://doi.org/10.1007/978-3-662-49224-6_1
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1145/2786805
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://arxiv.org/abs/2012.00319
https://arxiv.org/abs/2012.00319
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1109/FMCAD.2016.7886680
https://doi.org/10.1109/TCAD.2018.2858463
https://doi.org/10.1109/TCAD.2018.2858463

Neural Predictive Monitoring Under
Partial Observability

Francesca Cairoli1(B), Luca Bortolussi1,2, and Nicola Paoletti3

1 Department of Mathematics and Geosciences, Università di Trieste, Trieste, Italy
francesca.cairoli@phd.units.it

2 Modeling and Simulation Group, Saarland University, Saarbrücken, Germany
3 Department of Computer Science, Royal Holloway University, London, Egham, UK

Abstract. We consider the problem of predictive monitoring (PM), i.e.,
predicting at runtime future violations of a system from the current state.
We work under the most realistic settings where only partial and noisy
observations of the state are available at runtime. Such settings directly
affect the accuracy and reliability of the reachability predictions, jeopar-
dizing the safety of the system. In this work, we present a learning-based
method for PM that produces accurate and reliable reachability predic-
tions despite partial observability (PO). We build on Neural Predictive
Monitoring (NPM), a PM method that uses deep neural networks for
approximating hybrid systems reachability, and extend it to the PO case.
We propose and compare two solutions, an end-to-end approach, which
directly operates on the rough observations, and a two-step approach,
which introduces an intermediate state estimation step. Both solutions
rely on conformal prediction to provide 1) probabilistic guarantees in the
form of prediction regions and 2) sound estimates of predictive uncer-
tainty. We use the latter to identify unreliable (and likely erroneous)
predictions and to retrain and improve the monitors on these uncer-
tain inputs (i.e., active learning). Our method results in highly accurate
reachability predictions and error detection, as well as tight prediction
regions with guaranteed coverage.

1 Introduction

We focus on predictive monitoring (PM) of cyber-physical systems (CPSs), that
is, the problem of predicting, at runtime, if a safety violation is imminent from
the current CPS state. In particular, we work under the (common) setting where
the true CPS state is unknown and we only can access partial (and noisy) obser-
vations of the system.

With CPSs having become ubiquitous in safety-critical domains, from
autonomous vehicles to medical devices [4], runtime safety assurance of these
systems is paramount. In this context, PM has the advantage, compared to tra-
ditional monitoring [6], of detecting potential safety violations before they occur,
in this way enabling preemptive countermeasures to steer the system back to
safety (e.g., switching to a failsafe mode as done in the Simplex architecture [18]).
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 121–141, 2021.
https://doi.org/10.1007/978-3-030-88494-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_7

122 F. Cairoli et al.

Thus, effective PM must balance between prediction accuracy, to avoid errors
that can jeopardize safety, and computational efficiency, to support fast execu-
tion at runtime. Partial observability (PO) makes the problem more challenging,
as it requires some form of state estimation (SE) to reconstruct the CPS state
from observations: on top of its computational overhead, SE introduces esti-
mation errors that propagate in the reachability predictions, affecting the PM
reliability. Existing PM approaches either assume full state observability [8] or
cannot provide correctness guarantees on the combined estimation-prediction
process [13].

We present a learning-based method for predictive monitoring designed to
produce efficient and highly reliable reachability predictions under noise and
partial observability. We build on neural predictive monitoring (NPM) [8,9], an
approach that employs neural network classifiers to predict reachability at any
given state. Such an approach is both accurate, owing to the expressiveness of
neural networks (which can approximate well hybrid systems reachability given
sufficient training data [26]), and efficient, since the analysis at runtime boils
down to a simple forward pass of the neural network.

We extend and generalize NPM to the PO setting by investigating two solu-
tion strategies: an end-to-end approach where the neural monitor directly oper-
ates on the raw observations (i.e., without reconstructing the state); and a two-
step approach, where it operates on state sequences estimated from observations
using a dedicated neural network model. See Fig. 1 for an overview of the app-
roach.

Independently of the strategy chosen for handling PO, our approach offers
two ways of quantifying and enhancing PM reliability. Both are based on confor-
mal prediction [5,34], a popular framework for reliable machine learning. First,
we complement the predictions of the neural monitor and state estimator with
prediction regions guaranteed to cover the true (unknown) value with arbitrary
probability. To our knowledge, we are the first to provide probabilistic guaran-
tees on state estimation and reachability under PO. Second, as in NPM, we use
measures of predictive uncertainty to derive optimal criteria for detecting (and
rejecting) potentially erroneous predictions. These rejection criteria also enable
active learning, i.e., retraining and improving the monitor on such identified
uncertain predictions.

Fig. 1. Overview of the NPM framework under partial observability. The components
used at runtime have a thicker border.

Neural Predictive Monitoring Under Partial Observability 123

We evaluate our method on a benchmark of six hybrid system models. Despite
PO, we obtain highly accurate reachability predictions (with accuracy above 99%
for most case studies). These results are further improved by our uncertainty-
based rejection criteria, which manage to preemptively identify the majority of
prediction errors (with a detection rate close to 100% for most models). In partic-
ular, we find that the two-step approach tends to outperform the end-to-end one.
The former indeed benefits from a neural SE model, which provides high-quality
state reconstructions and is empirically superior to Kalman filters [35] and mov-
ing horizon estimation [2], two of the main SE methods. Moreover, our method
produces prediction regions that are efficient (i.e., tight) yet satisfy the a priori
guarantees. Finally, we show that active learning not just improves reachability
prediction and error detection, but also increases both coverage and efficiency of
the prediction regions, which implies stronger guarantees and less conservative
regions.

2 Problem Statement

We consider hybrid systems (HS) with discrete time and deterministic dynamics
and state space S = V × Q, where V ⊆ R

n is the domain of the continuous
variables, and Q is the set of discrete modes.

vi+1 = Fqi(vi, ai, ti); qi+1 = Jqi(vi); ai = Cqi(vi); yi = μ(vi, qi) + wi, (1)

where vi = v(ti), qi = q(ti), ai = a(ti), yi = y(ti) and ti = t0 + i · Δt. Given a
mode q ∈ Q, Fq is the mode-dependent dynamics of the continuous component,
Jq is mode switches (i.e., discrete jumps), Cq is the (given) control law. Partial
and noisy observations yi ∈ Y are produced by the observation function μ and
the additive measurement noise wi ∼ W (e.g., white Gaussian noise).

Predictive monitoring of such a system corresponds to deriving a function
that approximates a given reachability specification Reach(U, s,Hf): given a
state s = (v, q) and a set of unsafe states U , establish whether the HS admit a
trajectory starting from s that reaches U in a time Hf . The approximation is
w.r.t. some given distribution of HS states, meaning that we can admit inaccu-
rate reachability predictions if the state has zero probability. We now illustrate
the PM problem under the ideal assumption that the full HS can be accessed.

Problem 1 (PM for HS under full observability). Given an HS (1) with state
space S, a distribution S over S, a time bound Hf and set of unsafe states
U ⊂ S, find a function h∗ : S → {0, 1} that minimizes the probability

Prs∼S
(
h∗(s) �= 1

(
Reach(U, s,Hf)

))
,

where 1 is the indicator function. A state s ∈ S is called positive w.r.t a predictor
h : S → {0, 1} if h(s) = 1. Otherwise, s is called negative.

124 F. Cairoli et al.

As discussed in the next section, finding h∗, i.e., finding a function approx-
imation with minimal error probability, can be solved as a supervised classifi-
cation problem, provided that a reachability oracle is available for generating
supervision data.

The problem above relies on the assumption that full knowledge about the
HS state is available. However, in most practical applications, state information
is partial and noisy. Under PO, we only have access to a sequence of past observa-
tions yt = (yt−Hp

, . . . , yt) which are generated as per (1), that is, by applying the
observation function μ and measurement noise to the unknown state sequence
st−Hp

, . . . , st.
In the following, we consider the distribution Y over Y Hp of the observations

sequences yt = (yt−Hp
, . . . , yt) induced by state st−Hp

∼ S, HS dynamics (1),
and iid noise wt = (wt−Hp

, . . . , wt) ∼ WHp .

Problem 2 (PM for HS under noise and partial observability). Given the HS
and reachability specification of Problem 1, find a function g∗ : Y Hp → {0, 1}
that minimizes

Pryt∼Y
(
g∗(yt

) �= 1
(
Reach(U, st,Hf)

))
.

In other words, g∗ should predict reachability values given in input only a
sequence of past observations, instead of the true HS state. In particular, we
require a sequence of observations for the sake of identifiability. Indeed, for gen-
eral non linear systems, a single observation does not contain enough information
to infer the HS state1.

The predictor g is an approximate solution and, as such, it can commit safety-
critical prediction errors. Building on [8], we endow the predictive monitor with
an error detection criterion R. This criterion should be able to preemptively
identify – and hence, reject – sequences of observations y where g’s prediction is
likely to be erroneous (in which case R evaluates to 1, 0 otherwise). R should also
be optimal in that it has minimal probability of detection errors. The rationale
behind R is that uncertain predictions are more likely to lead to prediction
errors. Hence, rather than operating directly over observations y, the detector
R receives in input a measure of predictive uncertainty of g about y.

Problem 3 (Uncertainty-based error detection under noise and partial observ-
ability). Given an approximate reachability predictor g for the HS and reach-
ability specification of Problem 2, and a measure of predictive uncertainty
ug : Y Hp → D over some uncertainty domain D, find an optimal error detection
rule, R∗

g : D → {0, 1}, that minimizes the probability

Pryt∼Y 1
(
g(yt) �= 1(Reach(U, st,Hf))

)
�= R∗

g(ug(yt)).

1 Feasibility of state reconstruction is affected by the time lag and the sequence length.
Our focus is to derive the best predictions for fixed lag and sequence length, not to
fine-tune these to improve identifiability.

Neural Predictive Monitoring Under Partial Observability 125

In the above problem, we consider all kinds of prediction errors, but the definition
and approach could be easily adapted to focus on the detection of only e.g., false
negatives (the most problematic errors from a safety-critical viewpoint).

The general goal of Problems 2 and 3 is to minimize the risk of making mis-
takes in predicting reachability and predicting predictions errors, respectively.
We are also interested in establishing probabilistic guarantees on the expected
error rate, in the form of predictions regions guaranteed to include the true
reachability value with arbitrary probability.

Problem 4 (Probabilistic guarantees). Given the HS and reachability specifica-
tion of Problem 2, find a function Γ ε : Y Hp → 2{0,1}, mapping a sequence of
past observations y into a prediction region for the corresponding reachability
value, i.e., a region that satisfies, for any error probability level ε ∈ (0, 1), the
validity property below

Pryt∼Y
(
1
(
Reach(U, st,Hf)

) ∈ Γ ε
(
yt

)) ≥ 1 − ε.

Among the maps that satisfy validity, we seek the most efficient one, meaning
the one with the smallest, i.e. less conservative, prediction regions.

3 Methods

In this section, we first describe our learning-based solution to PM under PO
(Problem 2). We then provide background on conformal prediction (CP) and
explain how we apply this technique to endow our reachability predictions and
state estimates with probabilistic guarantees (Problem 4). Finally, we illustrate
how CP can be used to derive measures of predictive uncertainty to enable error
detection (Problem 3) and active learning.

3.1 Predictive Monitoring Under Noise and Partial Observability

There are two natural learning-based approaches to tackle Problem 2 (see Fig. 2):

1. an end-to-end solution that learns a direct mapping from the sequence of
past measurements yt to the reachability label {0, 1}.

2. a two-step solution that combines steps (a) and (b) below:
(a) learns a state estimator able to reconstruct the history of full states st =

(st−Hp
, . . . , st) from the sequence of measurements yt = (yt−Hp

, . . . , yt);
(b) learns a state classifier mapping the sequence of states st to the reacha-

bility label {0, 1};

126 F. Cairoli et al.

yt=(yt−Hp ,...,yt) Reach(U,st,Hf)
(1) end-to-end

st=(st−Hp ,...,st)

(2.b) state-classifier(2.a) state-estimator

Fig. 2. Diagram of NSC under noise and partial observability.

Dataset Generation. Since we aim to solve the PM problem as one of super-
vised learning, the first step is generating a suitable training dataset. For this
purpose, we need reachability oracles to label states s as safe (negative), if
¬Reach(U, s,Hf), or unsafe (positive) otherwise. Given that we consider deter-
ministic HS dynamics, we use simulation (rather than reachability checkers
like [3,7,12]) to label the states.

The reachability of the system at time t depends only on the state of the
system at time t, however, one can decide to exploit more information and
make a prediction based on the previous Hp states. Formally, the generated
dataset under full observability can be expressed as DNPM = {(si

t, l
i)}N

i=1, where
si
t = (si

t−Hp
, si

t−Hp+1, . . . , s
i
t) and li = 1(Reach(U, si

t,Hf)). Under partial observ-
ability, we use the (known) observation function μ : S → Y to build a dataset
DPO−NPM made of tuples (yt, st, lt), where yt is a sequence of noisy observa-
tions for st, i.e., such that ∀j ∈ {t − Hp, . . . , t} yj = μ(sj) + wj and wj ∼ W.
The distribution of st and yt is determined by the distribution S of the initial
state of the sequences, st−Hp

.
We consider two different distributions: independent, where the ini-

tial states st−Hp
are sampled independently, thus resulting in independent

state/observation sequences; and sequential, where states come from temporally
correlated trajectories in a sliding-window fashion. The latter is more suitable for
real-world runtime applications, where observations are received in a sequential
manner. On the other hand, temporal dependency violates the exchangeability
property, which affects the theoretical validity guarantees of CP, as we will soon
discuss.

Starting from DPO−NPM , the two alternative approaches, end-to-end and
two-step, can be developed as follows.

End-to-End Solution. We train a one-dimensional convolutional neural net
(CNN) that learns a direct mapping from yt to lt, i.e., we solve a simple binary
classification problem. This approach ignores the sequence of states st. The
canonical binary cross-entropy function can be considered as loss function for
the weights optimization process.

Neural Predictive Monitoring Under Partial Observability 127

Two-Step Solution. A CNN regressor, referred to as Neural State Estimator
(NSE), is trained to reconstruct the sequence of states ŝt from the sequence of
noisy observations yt. This is combined with, a CNN classifier, referred to as
Neural State Classifier (NSC), trained to predict the reachability label lt from
the sequence of states st. The mean square error between the sequences of real
states st and the reconstructed ones ŝt is a suitable loss function for the NSE,
whereas for the NSC we use, once again, a binary cross-entropy function.

The network resulting from the combination of the NSE and the NSC maps
the sequence of noisy measurements into the safety label, exactly as required in
Problem 2. However, the NSE inevitably introduces some errors in reconstructing
st. Such error is then propagated when the NSC is evaluated on the reconstructed
state, ŝt, as it is generated from a distribution different from S, affecting the
overall accuracy of the combined net. To alleviate this problem, we introduce a
fine-tuning phase in which the weights of the NSE and the weights of the NSC
are updated together, minimizing the sum of the two respective loss functions.
In this phase, the NSC learns to classify correctly the state reconstructed by the
NSE, ŝt, rather than the real state st, so to improve the task specific accuracy.

Neural State Estimation. The two-step approach has an important additional
advantage, the NSE. In general, any traditional state estimator could have been
used. Nevertheless, non-linear systems make SE extremely challenging for exist-
ing approaches. On the contrary, our NSE reaches very high reconstruction pre-
cision (as demonstrated in the result section). Furthermore, because of the fine-
tuning, it is possible to calibrate the estimates to be more accurate in regions of
the state-space that are safety-critical.

3.2 Conformal Prediction for Regression and Classification

In the following, we provide background on conformal prediction considering
a generic prediction model. Let X be the input space, T be the target space,
and define Z = X × T . Let Z be the data-generating distribution, i.e., the
distribution of the points (x, t) ∈ Z. The prediction model is represented as a
function f : X → T . For a generic input x, we denote with t the true target
value of x and with t̂ the prediction by f . Test inputs, whose unknown true
target values we aim to predict, are denoted by x∗.

In our setting of reachability prediction, inputs are observation sequences,
target values are the corresponding reachability values. The data distribution Z
is the joint distribution of observation sequences and reachability values induced
by state st−HP

∼ S and iid noise vector wt ∼ WHp .
Conformal Prediction associates measures of reliability to any traditional

supervised learning problem. It is a very general approach that can be applied
across all existing classification and regression methods [5,34]. CP produces pre-
diction regions with guaranteed validity, thus satisfying the statistical guarantees
illustrated in Problem 4.

128 F. Cairoli et al.

Definition 1 (Prediction region). For significance level ε ∈ (0, 1) and test
input x∗, the ε-prediction region for x∗, Γ ε

∗ ⊆ T , is a set of target values s.t.

Pr
(x∗,t∗)∼Z

(t∗ ∈ Γ ε
∗) = 1 − ε. (2)

The idea of CP is to construct the prediction region by “inverting” a suitable
hypothesis test: given a test point x∗ and a tentative target value t′, we exclude t′

from the prediction region only if it is unlikely that t′ is the true value for x∗. The
test statistic is given by a so-called nonconformity function (NCF) δ : Z → R,
which, given a predictor f and a point z = (x, t), measures the deviation between
the true value t and the corresponding prediction f(x). In this sense, δ can
be viewed as a generalized residual function. In other words, CP builds the
prediction region Γ ε

∗ for a test point x∗ by excluding all targets t′ whose NCF
values are unlikely to follow the NCF distribution of the true targets:

Γ ε
∗ =

{
t′ ∈ T | Pr(x,t)∼Z (δ(x∗, t′) ≥ δ(x, t)) > ε

}
. (3)

The probability term in Eq. 3 is often called p-value. From a practical viewpoint,
the NCF distribution Pr(x,t)∼Z(δ(x, t)) cannot be derived in an analytical form,
and thus we use an empirical approximation derived using a sample Zc of Z.
This approach is called inductive CP [24] and Zc is referred to as calibration set.

Remark 1 (Assumptions and guarantees of inductive CP). Importantly, CP pre-
diction regions have finite-sample validity [5], i.e., they satisfy (2) for any sample
of Z (or reasonable size), and not just asymptotically. On the other hand, CP’s
theoretical guarantees hold under the exchangeability assumption (a “relaxed”
version of iid) by which the joint probability of any sample of Z is invariant to
permutations of the sampled points. Of the two observation distributions dis-
cussed in Sect. 2, we have that independent observations are exchangeable but
sequential ones are not (due to the temporal dependency). Even though sequen-
tial data violate CP’s theoretical validity, we find that the prediction regions
still attain empirical coverage consistent with the nominal coverage (see results
section), that is, the probabilistic guarantees still hold in practice (as also found
in previous work on CP and time-series data [5]).

Validity and Efficiency. CP performance is measured via two quantities: 1) valid-
ity (or coverage), i.e. the empirical error rate observed on a test sample, which
should be as close as possible to the significance level ε, and 2) efficiency, i.e. the
size of the prediction regions, which should be small. CP-based prediction regions
are automatically valid (under the assumptions of Remark 1), whereas the effi-
ciency depends on the chosen nonconformity function and thus the underlying
model.

CP for Classification. In classification, the target space is a discrete set of
possible labels (or classes) T = {�1, . . . , �c}. We represent the classification model
as a function f : X → [0, 1]c mapping inputs into a vector of class likelihoods,
such that the predicted class is the one with the highest likelihood2. Classification
2 Ties can be resolved by imposing an ordering over the classes.

Neural Predictive Monitoring Under Partial Observability 129

is relevant for predictive monitoring as the reachability predictor of Problem 2
is indeed a binary classifier (T = {0, 1}) telling whether or not an unsafe state
can be reached given a sequence of observation.

The inductive CP algorithm for classification is divided into an offline phase,
executed only once, and an online phase, executed for every test point x∗. In the
offline phase (steps 1–3 below), we train the classifier f and construct the cali-
bration distribution, i.e., the empirical approximation of the NCF distribution.
In the online phase (steps 4–5), we derive the prediction region for x∗ using the
computed classifier and distribution.

1. Draw sample Z ′ of Z. Split Z ′ into training set Zt and calibration set Zc.
2. Train classifier f using Zt. Use f to define an NCF δ.
3. Construct the calibration distribution by computing, for each zi ∈ Zc, the

NCF score αi = δ(zi).
4. For each label �j ∈ T , compute αj

∗ = δ(x∗, �j), i.e., the NCF score for x∗ and
�j , and the associated p-value pj

∗:

pj
∗ =

|{zi ∈ Zc | αi > αj
∗}|

|Zc| + 1
+ θ

|{zi ∈ Zc | αi = αj
∗}| + 1

|Zc| + 1
, (4)

where θ ∈ U [0, 1] is a tie-breaking random variable.
5. Return the prediction region Γ ε

∗ = {�j ∈ T | pj
∗ > ε}.

In defining the NCF δ, we should aim to obtain high δ values for wrong predic-
tions and low δ values for correct ones. Thus, a natural choice in classification
is to define δ(x, lj) = 1 − f(x)j , where f(x)j is the likelihood predicted by f for
class lj . Indeed, if lj is the true target for x and f correctly predicts lj , then
f(x)j is high (the highest among all classes) and δ(x, lj) is low; the opposite
holds if f does not predict lj .

CP for Regression. In regression we have a continuous target space T ⊆ R
n.

Thus, the regression case is relevant for us because our state estimator can be
viewed as a regression model, where T is the state space.

The CP algorithm for regression is similar to the classification one. In par-
ticular, the offline phase of steps 1–3, i.e., training of regression model f and
definition of NCF δ, is the same (with obviously a different kind of f and δ).

The online phase changes though, because T is a continuous space and thus,
it is not possible to enumerate the target values and compute for each a p-value.
Instead, we proceed in an equivalent manner, that is, identify the critical value
α(ε) of the calibration distribution, i.e., the NCF score corresponding to a p-value
of ε. The resulting ε-prediction region is given by Γ ε

∗ = f(x∗) ± α(ε), where α(ε)

is the (1 − ε)-quantile of the calibration distribution, i.e., the
ε · (|Zc| + 1)�-th
largest calibration score3.
3 Such prediction intervals have the same width (α(ε)) for all inputs. There are tech-

niques like [30] that allow to construct intervals with input-dependent widths, which
can be equivalently applied to our problem.

130 F. Cairoli et al.

A natural NCF in regression, and the one used in our experiments, is the
norm of the difference between the real and the predicted target value, i.e.,
δ(x) = ||t − f(x)||.

3.3 CP-Based Quantification of Predictive Uncertainty

We illustrate how to complement reachability predictions with uncertainty-based
error detection rules, which leverage measures of predictive uncertainty to pre-
emptively identify the occurrence of prediction errors. Detecting errors efficiently
requires a fine balance between the number of errors accurately prevented and
the overall number of discarded predictions.

We use two uncertainty measures, confidence and credibility, that are
extracted from the CP algorithm for classification. The method discussed below
was first introduced for NPM [8], but here this is extended to the PO case.

Confidence and Credibility. Let us start by observing that, for significance
levels ε1 ≥ ε2, the corresponding prediction regions are such that Γ ε1 ⊆ Γ ε2 .
It follows that, given an input x∗, if ε is lower than all its p-values, i.e. ε <
minj=1,...,c pj

∗, then the region Γ ε
∗ contains all the labels. As ε increases, fewer

and fewer classes will have a p-value higher than ε. That is, the region shrinks
as ε increases. In particular, Γ ε

∗ is empty when ε ≥ maxj=1,...,c pj
∗.

The confidence of a point x∗ ∈ X, 1−γ∗, measures how likely is our prediction
for x∗ compared to all other possible classifications (according to the calibration
set). It is computed as one minus the smallest value of ε for which the conformal
region is a single label, i.e. the second largest p-value γ∗:

1 − γ∗ = sup{1 − ε : |Γ ε
∗ | = 1}.

The credibility, c∗, indicates how suitable the training data are to classify
that specific example. In practice, it is the smallest ε for which the prediction
region is empty, i.e. the highest p-value according to the calibration set, which
corresponds to the p-value of the predicted class:

c∗ = inf{ε : |Γ ε
∗ | = 0}.

Note that if γ∗ ≤ ε, then the corresponding prediction region Γ ε
∗ contains

at most one class. If both γ∗ ≤ ε and c∗ > ε hold, then the prediction region
contains exactly one class, denoted as �̂∗, i.e., the one predicted by f . In other
words, the interval [γ∗, c∗) contains all the ε values for which we are sure that
Γ ε

∗ = {�̂∗}. It follows that the higher 1 − γ∗ and c∗ are, the more reliable the
prediction �̂∗ is, because we have an expanded range [γ∗, c∗) of significance values
by which �̂∗ is valid. Indeed, in the extreme scenario where c∗ = 1 and γ∗ = 0,
then Γ ε

∗ = {�̂∗} for any value of ε. This is why, as we will soon explain, our
uncertainty-based rejection criterion relies on excluding points with low values
of 1 − γ∗ and c∗. In binary classification problems, each point x∗ has only two

Neural Predictive Monitoring Under Partial Observability 131

p-values, one for each class, which coincide with c∗ (p-value of the predicted
class) and γ∗ (p-value of the other class).

Given a reachability predictor g, the uncertainty function ug can be defined
as the function mapping a sequence of observations y∗ into the confidence γ∗

and the credibility c∗ of g(y∗), thus ug(y∗) = (γ∗, c∗). In order to learn a good
decision rule to identify trustworthy predictions, we solve another binary classifi-
cation problem on the uncertainty values. In particular, we use a cross-validation
strategy to compute values of confidence and credibility over the entire calibra-
tion set, as it is not used to train the classifier, and label each point as 0 if it is
correctly classified by the predictor and as 1 if it is misclassified. We then train a
Support Vector Classifier (SVC) that automatically learns to distinguish points
that are misclassified from points that are correctly classified based on the values
of confidence and credibility. In particular, we choose a simple linear classifier
as it turns out to perform satisfactorily well, especially on strongly unbalanced
datasets. Nevertheless, other kinds of classifiers can be applied as well.

To summarize, given a predictor g and a new sequence of observations y∗,
we obtain a prediction about its safety, g(y∗) = l̂∗, and a quantification of its
uncertainty, u∗ = ug(y∗) = (γ∗, c∗). If we feed u∗ to the rejection rule Rg we
obtain a prediction about whether or not the prediction of g about y∗ can be
trusted.

3.4 Active Learning (AL)

NPM depends on two related learning problems: the reachabiliy predictor g and
the rejection rule Rg. We leverage the uncertainty-aware active learning solution
presented in [9], where the re-training points are derived by first sampling a large
pool of unlabeled data, and then considering only those points where the current
predictor g is still uncertain, i.e. those points which are rejected by our rejection
rule Rg. A fraction of the labeled samples is added to the training set, whereas the
remaining part is added to the calibration set, keeping the training/calibration
ratio constant. As a matter of fact, a principled criterion to select the most
informative samples would benefit both the accuracy and the efficiency of the
method, as the size of the calibration set affects the runtime efficiency of the
error detection rule.

The addition of such actively selected points results in a shift of the data
generating distribution, that does not match anymore the distribution of the test
samples. This implies that the theoretical guarantees of CP are lost. However, as
we will show in the experiments, AL typically results in an empirical increase of
the coverage, i.e., in even stronger probabilistic guarantees. The reason is that
AL is designed to improve on poor predictions, which, as such, have prediction
regions more likely to miss the true value. Improving such poor predictions
thus directly cause an increased coverage (assuming that the classifier remains
accurate enough on the inputs prior to AL).

132 F. Cairoli et al.

4 Experimental Evaluation

We evaluate both end-to-end and two-step approaches under PO on six bench-
marks of cyber-physical systems with dynamics presenting a varying degree of
complexity and with a variety of observation functions. We include white Gaus-
sian noise to introduce stochasticity in the observations.

4.1 Case Studies

– IP: classic two-dimensional non-linear model of an Inverted Pendulum on a
cart. Given a state s = (s1, s2), we observe a noisy measure of the energy of
the system y = s2/2 + cos(s1) − 1 + w, where w ∼ N (0, 0.005). Unsafe region
U = {s : |s1| ≥ π/6}. Hp = 1, Hf = 5.

– SN: a two-dimensional non-linear model of the Spiking Neuron action poten-
tial. Given a state s = (s1, s2) we observe a noisy measure of s2, y = s2 + w,
with w ∼ N (0, 0.1). Unsafe region U = {s : s1 ≤ −68.5}. Hp = 4, Hf = 16.

– CVDP: a four-dimensional non-linear model of the Coupled Van Der
Pol oscillator [15], modeling two coupled oscillators. Given a state s =
(s1, s2, s3, s4) we observe y = (s1, s3) + w, with w ∼ N (0, 0.01 · I2). Unsafe
region U = {s : s2 ≥ 2.75 ∧ s2 ≥ 2.75}. Hp = 8, Hf = 7.

– LALO: the seven-dimensional non-linear Laub Loomis model [15] of a class
of enzymatic activities. Given a state s = (s1, s2, s3, s4, s5, s6, s7) we observe
y = (s1, s2, s3, s5, s6, s7)+w, with w ∼ N (0, 0.01 · I6). Unsafe region U = {s :
s4 ≥ 4.5}. Hp = 5, Hf = 20.

– TWT: a three-dimensional non-linear model of a Triple Water Tank. Given
a state s = (s1, s2, s3) we observe y = s + w, with w ∼ N (0, 0.01 · I3). Unsafe
region U = {s : ∨3

i=1si �∈ [4.5, 5.5]}. Hp = 1, Hf = 1.
– HC: the 28-dimensional linear model of an Helicopter controller. We observe

only the altitude, i.e. y = s8 + w, with w ∼ N (0, 1). Unsafe region U = {s :
s8 < 0}. Hp = 5, Hf = 5.

Details about the case studies are available in the Appendix A of [11].

4.2 Experimental Settings

Implementation. The workflow can be divided in steps: (1) define the CPS mod-
els, (2) generate the synthetic datasets DPO−NPM (both the independent and
the sequential version), (3) train the NPM (either end-to-end or two-step), (4)
train the CP-based error detection rules, (5) perform active learning and (6)
evaluate both the initial and the active NPM on a test set. From here on, we
call initial setting the one with no active learning involved. The technique is
fully implemented in Python4. In particular, PyTorch [25] is used to craft, train
and evaluate the desired CNN architectures. Details about the CNN architec-
tures and the settings of the optimization algorithm are described in Appendix
4 The experiments were performed on a computer with a CPU Intel x86, 24 cores and

a 128 GB RAM and 15 GB of GPU Tesla V100.

Neural Predictive Monitoring Under Partial Observability 133

D of [11]. The source code for all the experiments can be found at the following
link: https://github.com/francescacairoli/Stoch NSC.git.

Datasets. For each case study we generate both an independent and a sequential
dataset.

– Independent: the train set consists of 50K independent sequences of states
of length 32, the respective noisy measurements and the reachability labels.
The calibration and test set contains respectively 8.5K and 10K samples.

– Sequential: for the train set, 5K states are randomly sampled. From each
of these states we simulate a long trajectory. From each long trajectory we
obtain 100 sub-trajectories of length 32 in a sliding window fashion. The
same procedure is applied to the test and calibration set, where the number
of initial states is respectively 1K and 850.

Data are scaled to the interval [−1, 1] to avoid sensitivity to different scales.
While the chosen datasets are not too large, our approach would work well even
with smaller datasets, resulting however in lower accuracy and higher uncer-
tainty. In these cases, our proposed uncertainty-based active learning would rep-
resent the go-to solution as is designed for situations where data collection is
particularly expensive.

Computational Costs. NPM is designed to work at runtime in safety-critical
applications, which translates in the need of high computational efficiency
together with high reliability. The time needed to generate the dataset and to
train both methods does not affect the runtime efficiency of the NPM, as it
is performed only once (offline). Once trained, the time needed to analyse the
reachability of the current sequence of observations is the time needed to evalu-
ate one (or two) CNN, which is almost negligible (in the order of microseconds on
GPU). On the other hand, the time needed to quantify the uncertainty depends
on the size of the calibration set. This is one of the reasons that make active
learning a preferable option, as it adds only the most significant points to the
dataset. It is important to notice that the percentage of points rejected, meaning
points with predictions estimated to be unreliable, affects considerably the run-
time efficiency of the methods. Therefore, we seek a trade-off between accuracy
and runtime efficiency. Training the end-to-end approach takes around 15 min.
Training the two-step approach takes around 40 min: 9 for the NSE, 11 for the
NSC and 20 min for the fine-tuning. Making a single prediction takes around
7 × 10−7 s in the end-to-end scenario and 9 × 10−7 s in the two-step scenario.
Training the SVC takes from 0.5 to 10 s, whereas computing values of confidence
and credibility for a single point takes from 0.3 to 2 ms. Actively query new data
from a pool of 50K samples takes around 5 min.

Performance Measures. The measures used to quantify the overall performance
of the NPM under PO (both end-to-end and two-step) are: the accuracy of the
reachability predictor, the error detection rate and the rejection rate. We seek
high accuracies and detection rates without being overly conservative, meaning

https://github.com/francescacairoli/Stoch_NSC.git

134 F. Cairoli et al.

keeping a rejection rate as low as possible. We also check if and when the sta-
tistical guarantees are met empirically, via values of coverage and efficiency. We
analyse and compare the performances of NPM under PO on different configu-
rations: an initial and active configuration for independent states and a tempo-
rally correlated (sequential) configuration. Additionally, we test the method for
anomaly detection.

4.3 Results

Initial Setting. Table 1 compares the performances of the two approaches to
PO-NPM via predictive accuracy, detection rate, i.e. the percentage of predic-
tion errors, either false-positives (FP) or false-negatives (FN), recognized by the
error detection rule, and the overall rejection over the test set. We can observe
how both methods work well despite PO, i.e., they reach extremely high accu-
racies and high detection rate. However, the two-step approach seems to behave
slightly better than the end-to-end. As a matter of fact, accuracy is almost always
greater than 99% with a detection rate close to 100.00. The average rejection
rate is around 11% in the end-to-end scenario, and reduces to 9% in the two-
step scenario, making the latter less conservative ant thus more efficient from a
computational point of view. These results come with no surprise, because, com-
pared to the end-to-end one, the two-step approach leverages more information
available in the dataset for training, that is the exact sequence of states.

Table 1. Initial results: Acc. is the accuracy of the PO-NPM, Det. the detection rate,
Rej. the rejection rate of the error detection rule and FN (FP) is the number of detected
false negative (positive) errors.

Model End-to-end Two-step

Acc. Det. FN FP Rej. Acc. Det. FN FP Rej.

SN 97.72 94.30 79/88 136/140 11.30 97.12 95.49 53/54 222/234 19.98

IP 96.27 93.48 148/155 153/167 27.32 98.42 91.14 81/91 63/66 10.01

CVDP 99.19 100.00 30/30 51/51 5.75 99.68 100.00 17/17 15/15 3.51

TWT 98.93 95.51 18/20 67/69 7.45 98.93 96.26 52/56 51/51 10.46

LALO 98.88 99.11 66/66 45/46 7.39 99.24 100.00 52/52 24/24 6.11

HC 99.63 100.00 19/19 15/15 8.47 99.84 100.00 8/8 8/8 4.03

Benefits of Active Learning. Table 2 presents the results after one iteration of
active learning. Additional data were selected from a pool of 50K points, using
the error detection rule as query strategy. We observe a slight improvement in
the performance, mainly reflected in higher detection rates and smaller rejection
rates, with an average that reduces to 8% for the end-to-end and to 6% for the
two-step.

Neural Predictive Monitoring Under Partial Observability 135

Table 2. Active results (1 iteration): Acc. is the accuracy of the PO-NPM, Det. the
detection rate, Rej. the rejection rate of the error detection rule and FN (FP) is the
number of detected false negative (positive) errors.

Model End-to-end Two-step

Acc. Det. FN FP Rej. Acc. Det. FN FP Rej.

SN 98.06 94.87 81/88 104/107 9.80 98.41 100.00 55/55 104/104 12.00

IP 99.47 87.91 150/166 119/140 15.44 98.75 92.86 63/69 52/56 7.72

CVDP 99.10 95.55 43/46 43/44 4.81 99.69 100.00 19/19 12/12 2.48

TWT 99.04 100.00 45/45 62/62 10.45 99.07 94.62 44/49 44/44 6.20

LALO 98.79 96.69 87/90 30/31 6.88 99.27 100.00 40/40 33/33 4.28

HC 99.86 100.00 5/5 9/9 2.35 99.79 100.00 17/17 4/4 2.73

Probabilisic Guarantees. In our experiments, we measured the efficiency as the
percentage of singleton prediction regions over the test set. Table 3 compares
the empirical coverage and the efficiency of the CP prediction regions in the
initial and active scenario for both the end-to-end and two-step classifiers. The
confidence level is set to (1 − ε) = 95%. Figure 6 in Appendix C of [11] shows
coverage and efficiency for different significance levels (ranging from 0.01 to 0.1).
CP provides theoretical guarantees on the validity, meaning empirical coverage
matching the expected one of 95%, only in the initial setting. As a matter of fact,
with active learning we modify the data-generating distribution of the training
and calibration sets, while the test set remains the same, i.e., sampled from the
original data distribution. As a result, we observe (Table 3) that both methods in
the initial setting are valid. In the active scenario, even if theoretical guarantees
are lost, we obtain both better coverage and higher efficiency. This means that
the increased coverage is not due to a more conservative predictor but to an
improved accuracy.

Table 3. Coverage and efficiency for both the approaches to PO-NPM. Initial results
are compared with results after one active learning iteration. Expected coverage 95%.

Model End-to-end Two-step

Initial Active Initial Active

Cov. Eff. Cov. Eff. Cov. Eff. Cov. Eff.

SN 95.12 95.70 97.19 98.50 94.80 99.54 97.32 98.37

IP 95.30 89.31 96.60 99.62 94.85 94.92 97.28 97.88

CVDP 95.73 95.73 98.00 98.02 95.63 95.63 98.31 98.34

TWT 96.43 96.43 99.99 97.26 96.60 96.97 99.66 97.20

LALO 94.59 94.61 97.28 98.52 94.66 94.66 97.48 97.55

HC 95.03 95.03 97.65 97.65 94.97 94.97 97.69 97.69

136 F. Cairoli et al.

Table 4 shows values of coverage and efficiency for the two separate steps
(state estimation and reachability prediction) of the two-step approach. Recall
that the efficiency in the case of regression, and thus of state estimation, is given
by the volume of the prediction region. So, the smaller the volume, the more
efficient the regressor. The opposite holds for classifiers, where a large value of
efficiency means tight prediction regions. It is interesting to observe how active
learning makes the NSC reach higher coverages at the cost of more conserva-
tive prediction regions (lower efficiency), whereas the NSE coverage is largely
unaffected by active learning (except for TWT). Reduction in NSC efficiency,
differently from the two-step combined approach, is likely due to an adaptation
of the method to deal with and correct noisy estimates. Such behaviour suggests
that the difficulty in predicting the reachability of a certain state is independent
of how hard it is to reconstruct that state5.

Table 4. Coverage and efficiency for the two steps of the two-step approach. NSC is
a classifier, whereas NSE is a regressor. Initial results are compared with results after
one active learning iteration. Expected coverage 95%.

Model NSC NSE

Initial Active Initial Active

Cov. Eff. Cov. Eff. Cov. Eff. Cov. Eff.

SN 94.82 99.51 97.23 90.12 94.49 1.361 95.18 1.621

IP 94.51 99.69 97.23 91.63 94.65 3.064 95.44 3.233

CVDP 95.60 95.64 98.25 98.32 95.37 0.343 96.40 0.358

TWT 96.68 96.98 98.72 95.61 95.07 0.770 100.00 1.366

LALO 94.88 98.18 98.01 80.86 95.29 0.6561 95.36 0.8582

HC 94.67 94.74 97.33 99.12 94.50 12.44 94.58 12.464

State Estimator. We compare the performances of the NSE with two traditional
state estimation techniques: Unscented Kalman Filters6 (UKF) [35] and Mov-
ing Horizon Estimation7 (MHE) [1]. In particular, for each point in the test
set we compute the relative error given by the norm of the difference between
the real and reconstructed state trajectories divided by the maximum range of
state values. The results, presented in full in Appendix E of [11], show how our
neural network-based state estimator significantly outperforms both UKF and
MHE in our case studies. Moreover, unlike the existing SE approaches, our state
estimates come with a prediction region that provides probabilistic guarantees
on the expected reconstruction error, as shown in Fig. 3.
5 We select re-training points based on the uncertainty of the reachability predictor; if

the SE performed badly on those same points, re-training would have led to a higher
SE accuracy and hence, increased coverage.

6 pykalman library: https://pykalman.github.io/.
7 do-mpc library: https://www.do-mpc.com/en/latest/.

https://pykalman.github.io/
https://www.do-mpc.com/en/latest/

Neural Predictive Monitoring Under Partial Observability 137

Fig. 3. Comparison of different state estimators on a state of the SN (top) and IP
(bottom) model. Blue is the exact state sequence, orange is the estimated one. (Color
figure online)

Sequential Data. All the results presented so far consider a dataset DPO−NPM of
observation sequences generated by independently sampled initial states. How-
ever, we are interested in applying NPM at runtime to systems that are evolving
in time. States will thus have a temporal correlation, meaning that we lose
the exchangeability requirement behind the theoretical validity of CP regions.
Table 5 shows the performance of predictor and error detection trained and tested
on sequential data. In general, accuracy and detection rates are still very high
(typically above 95%), but the results are on average worse than the indepen-
dent counterpart. The motivation could be two-fold: on one side, it is reasonable
to assume that a recurrent neural net would perform better on sequential data,
compared to CNN, on the other, the samples contained in the sequential dataset
are strongly correlated and thus they may cover only poorly the state space. The
table also shows values of coverage and efficiency of both the end-to-end and the
two-step approach. Even if theoretical validity is lost, we still observe empirical

Table 5. Sequential results: Acc. is the accuracy of the PO-NPM, Det. the detection
rate, Rej. the rejection rate, Cov. the CP coverage and Eff. the CP efficiency.

Model End-to-end Two-step

Acc. Det. Rej. Cov. Eff. Acc. Det. Rej. Cov Eff.

SN 94.96 85.83 19.74 93.93 97.73 90.37 81.93 26.59 95.01 88.66

IP 94.17 91.08 31.74 95.31 84.32 91.47 98.01 30.81 95.23 90.23

CVDP 98.97 99.12 7.97 94.88 94.92 98.33 98.20 9.89 94.89 95.19

TWT 96.95 95.33 16.84 93.42 94.52 95.74 92.72 23.52 93.60 96.16

LALO 98.99 97.75 7.18 95.93 97.08 99.26 100.00 5.37 95.78 95.80

HC 99.57 100.00 3.89 94.29 94.29 99.64 97.22 3.84 94.51 94.52

138 F. Cairoli et al.

coverages that match the nominal value of 95%, i.e., the probabilistic guarantees
are satisfied in practice.

Anomaly Detection. The data-generating distribution at runtime is assumed to
coincide with the one used to generate the datasets. However, in practice, such
distribution is typically unknown and subject to runtime deviations. Thus, we
are interested to observe how the sequential PO-NPM behave when an anomaly
takes place. In our experiments, we model an anomaly as an increase in the
variance of the measurement noise, i.e. W ′ = N (0, 0.25 · I). Figure 4 compares
the performances with VS without anomaly on a single case study (the other
case studies are shown in Appendix B of [11]). We observe that the anomaly
causes a drop in accuracy and error detection rate, which comes with an increase
in the number of predictions rejected because deemed to be unreliable. These
preliminary results show how an increase in the NPM rejection rate could be
used as a significant measure to preemptively detect runtime anomalies.

Fig. 4. Anomaly detection (TWT model). Dashed lines denotes the performances on
observations with anomaly in the noise. Blue is for the two-step approach, green for
the end-to-end. (Color figure online)

5 Related Work

Our approach extends and generalize neural predictive monitoring [8,9] to work
under partial observability. To our knowledge, the only existing work to focus
on PM and PO is [13], which combines Bayesian estimation with pre-computed
reach sets to reduce the runtime overhead. While their reachability bounds are
certified, no correctness guarantees can be established for the estimation step.
Our work instead provides probabilistic guarantees as well as techniques for
preemptive error detection. A related but substantially different problem is to
verify signals with observation gaps using state estimation to fill the gaps [20,33].

In [28] a model-based approach to predictive runtime verification is presented.
However, PO and computational efficiency are not taken into account. A problem
very similar to ours is addressed in [19], but for a different class of systems
(MDPs).

Learning-based approaches for reachability prediction of hybrid and stochas-
tic systems include [10,14,16,26,31,36]. Of these, [36] develop, akin to our work,
error detection techniques, but using neural network verification methods [17].

Neural Predictive Monitoring Under Partial Observability 139

Such verification methods, however, do not scale well on large models and sup-
port only specific classes of neural networks. On the opposite, our uncertainty-
based error detection can be applied to any ML-based predictive monitor.
Learning-based PM approaches for temporal logic properties [22,29] typically
learn a time-series model from past observations and then use such model to
infer property satisfaction. In particular, [29] provide (like we do) guaranteed pre-
diction intervals, but (unlike our method) they are limited to ARMA/ARIMA
models. Ma et al. [22] use uncertainty quantification with Bayesian RNNs to
provide confidence guarantees. However, these models are, by nature, not well-
calibrated (i.e., the model uncertainty does not reflect the observed one [21]),
making the resulting guarantees not theoretically valid8.

PM is at the core of the Simplex architecture [18,32] and recent extensions
thereof [23,27], where the PM component determines when to switch to the
fail-safe controller to prevent imminent safety violations. In this context, our
approach can be used to guarantee arbitrarily small probability of wrongly failing
to switch.

6 Conclusion

We presented an extension of the Neural Predictive Monitoring [9] framework
to work under the most realistic settings of noise and partially observability. We
proposed two alternative solution strategies: an end-to-end solution, predicting
reachability directly from raw observations, and a two-step solution, with an
intermediate state estimation step. Both methods produce extremely accurate
predictions, with the two-step approach performing better overall than the end-
to-end version, and further providing accurate reconstructions of the true state.
The online computational cost is negligible, making this method suitable for run-
time applications. The method is equipped with an error detection rule to prevent
reachability prediction errors, as well as with prediction regions providing prob-
abilistic guarantees. We demonstrated that error detection can be meaningfully
used for active learning, thereby improving our models on the most uncertain
inputs.

As future work, we plan to extend this approach to fully stochastic models,
investigating the use of deep generative models for state estimation. We will
further explore the use of recurrent or attention-based architectures in place of
convolutional ones to improve performance for sequential data.

References

1. Allan, D.A., Rawlings, J.B.: Moving horizon estimation. In: Raković, S.V., Levine,
W.S. (eds.) Handbook of Model Predictive Control. CE, pp. 99–124. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 5

8 The authors develop a solution for Bayesian RNNs calibration, but such solution in
turn is not guaranteed to produce well-calibrated models.

https://doi.org/10.1007/978-3-319-77489-3_5

140 F. Cairoli et al.

2. Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J.: Nonlinear
predictive control and moving horizon estimation - an introductory overview. In:
Frank, P.M. (ed.) Advances in Control, pp. 391–449. Springer, London (1999).
https://doi.org/10.1007/978-1-4471-0853-5 19

3. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of the 3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems (2016)

4. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
5. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal Prediction for Reliable

Machine Learning: Theory, Adaptations and Applications. Newnes, London (2014)
6. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a

survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

7. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

8. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 8

9. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring and a comparison of frequentist and Bayesian approaches. Int. J.
Softw. Tools Technol. Transf. (2021). https://doi.org/10.1007/s10009-021-00623-1

10. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

11. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial
observability. In: Feng, L., Fisman, D. (eds.) RV 2021, LNCS 12974, pp. 121–141.
Springer, Cham (2021)

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

13. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehi-
cle models using Bayesian estimation and reachability analysis. In: International
Conference on Intelligent Robots and Systems (IROS) (2020)

14. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application
to reachability computations. In: Proceedings of the 45th IEEE Conference on
Decision and Control, pp. 3034–3039. IEEE (2006)

15. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: EPiC Series
in Computing (2020)

16. Granig, W., Jakšić, S., Lewitschnig, H., Mateis, C., Ničković, D.: Weakness mon-
itors for fail-aware systems. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020.
LNCS, vol. 12288, pp. 283–299. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57628-8 17

17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

18. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. ACM Trans. Embedded Comput. Syst. (TECS) 15(2), 1–27 (2016)

https://doi.org/10.1007/978-1-4471-0853-5_19
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-32079-9_8
https://doi.org/10.1007/s10009-021-00623-1
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-030-57628-8_17
https://doi.org/10.1007/978-3-030-57628-8_17

Neural Predictive Monitoring Under Partial Observability 141

19. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for Markov decision pro-
cesses. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 553–
576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 26

20. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 9

21. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using
calibrated regression. In: International Conference on Machine Learning, pp. 2796–
2804. PMLR (2018)

22. Ma, M., Stankovic, J.A., Bartocci, E., Feng, L.: Predictive monitoring with logic-
calibrated uncertainty for cyber-physical systems. CoRR abs/2011.00384v2 (2020)

23. Mehmood, U., Stoller, S.D., Grosu, R., Roy, S., Damare, A., Smolka, S.A.:
A distributed simplex architecture for multi-agent systems. arXiv preprint
arXiv:2012.10153 (2020)

24. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural
networks. In: Tools in Artificial Intelligence. InTech (2008)

25. Paszke, A., et al.: Automatic differentiation in Pytorch. In: NIPS-W (2017)
26. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural

state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 25

27. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 97–114. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 6

28. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.:
Predictive runtime verification of timed properties. J. Syst. Softw. 132, 353–365
(2017)

29. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with
probabilistic guarantees. In: Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, pp. 266–267. ACM (2019)

30. Romano, Y., Patterson, E., Candès, E.J.: Conformalized quantile regression. arXiv
preprint arXiv:1905.03222 (2019)

31. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based
approximate reachability with guarantees applied to safe trajectory tracking. arXiv
preprint arXiv:1803.03237 (2018)

32. Sha, L., et al.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28
(2001)

33. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

34. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer, Boston (2005). https://doi.org/10.1007/b106715

35. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estima-
tion. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158. IEEE
(2000)

36. Yel, E., et al.: Assured runtime monitoring and planning: toward verification of
neural networks for safe autonomous operations. IEEE Robot. Autom. Mag. 27(2),
102–116 (2020)

https://doi.org/10.1007/978-3-030-81688-9_26
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9
http://arxiv.org/abs/2012.10153
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6
http://arxiv.org/abs/1905.03222
http://arxiv.org/abs/1803.03237
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/b106715

A Compositional Framework
for Quantitative Online Monitoring

over Continuous-Time Signals

Konstantinos Mamouras(B), Agnishom Chattopadhyay, and Zhifu Wang

Rice University, Houston, TX 77005, USA
{mamouras,agnishom,zfwang}@rice.edu

Abstract. We investigate online monitoring algorithms over dense-time
and continuous-time signals for properties written in metric temporal
logic (MTL). We consider an abstract algebraic semantics based on com-
plete lattices, which subsumes the Boolean (qualitative) semantics and
the real-valued robustness (quantitative) semantics. Our semantics also
extends to truth values that are partially ordered and allows the model-
ing of uncertainty in satisfaction. We propose a compositional approach
for the construction of online monitors based on a class of infinite-state
deterministic signal transducers that (1) are allowed to produce the out-
put signal with some bounded delay relative to the input signal, and
(2) do not introduce unbounded variability in the output signal. A key
ingredient of our monitoring framework is a novel efficient algorithm for
sliding-window aggregation over dense-time signals.

Keywords: Online monitoring · Signal temporal logic (STL) ·
Quantitative semantics · Cyber-physical systems (CPS) · Transducers

1 Introduction

Metric temporal logic (MTL) [38] and signal temporal logic (STL) [41] are exten-
sions of linear temporal logic (LTL) that have been widely used for specifying
properties over the execution traces of cyber-physical systems (CPS). These
traces are commonly represented as dense-time or continuous-time signals. Both
MTL and STL have been extensively used as specification formalisms in the
context of monitoring, where a system trace of finite duration is examined to
determine whether it satisfies the desired temporal specification.

Our focus here is on online monitoring, where the system trace is presented
incrementally, i.e., in a streaming fashion. This contrasts to the setting of offline
monitoring, where the system trace is available in its entirety at the beginning
of the computation. We choose MTL as the specification formalism, and we con-
sider its interpretation over signals whose domain is the set of rational numbers
(dense time) or the real numbers (continuous time). Our goal is to provide a
unifying semantic and algorithmic framework that encompasses (1) the tradi-
tional Boolean semantics and the associated monitoring with qualitative (i.e.,
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 142–163, 2021.
https://doi.org/10.1007/978-3-030-88494-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_8

Quantitative Online Monitoring over Continuous-Time Signals 143

Boolean) verdicts, and (2) the real-valued quantitative semantics for MTL (also
called robustness semantics) and the corresponding quantitative online monitors.

There is a wealth of proposals for quantitative semantics for MTL, such as
[3,23,27]. We consider here the spatial robustness semantics of Fainekos and
Pappas [26,27]. This uses the set of the extended real numbers, denoted by
R±∞ = R ∪ {−∞,∞}, as the domain of truth values. A positive number indi-
cates truth, a negative number indicates falsity, and zero is ambiguous. Disjunc-
tion (resp., existential quantification) is interpreted as max (resp., supremum),
and conjunction (resp., universal quantification) is interpreted as min (resp.,
infimum). Two quantitative semantic notions are considered in [27]. The first
one is the robustness degree degree(ϕ,x) of a signal x w.r.t. a formula ϕ, which
is defined in a global way using distances between signals. This is the primary
semantics, as it captures the intuitive idea of the degree of satisfaction using
distances. The second notion is the robustness estimate ρ(ϕ,x) of a formula ϕ
w.r.t. a trace x, which is defined by induction on the structure of ϕ. As the
name suggests, the robustness estimate approximates the robustness degree; it
is, in fact, an under-approximation (see Theorem 13 in page 4268 of [27]). The
robustness estimate of [27] has been used in prior work on online monitoring
[19,20], as it is amenable to efficient evaluation. For this reason, we will be using
here the robustness estimate, not the robustness degree.

The robustness semantics of [27] can be generalized to other notions of quanti-
tative truth values, as has already been done in [18] using an algebraic semantics
based on bounded distributive lattices (where “join”/sup/� generalizes max and
“meet”/inf/� generalizes min). The algebraic framework of [18] was developed
for discrete-time signals only, since the considered class of lattices supports only
finitary suprema and infima. For this reason, it is not appropriate for interpret-
ing temporal formulas over dense-time or continuous-time signals. The seman-
tics of [18] has been generalized further in [45] by considering semirings as truth
domains, again in the context of discrete-time signals.

In this paper, we consider the class of complete lattices, infinitary algebraic
structures of the form (V,

⊔
,
�

), where
⊔

is an arbitrary join/supremum oper-
ation (which models disjunction, existential quantification) and

�
is an arbi-

trary meet/infimum operation (which models conjunction, universal quantifi-
cation). The class of complete lattices contains B = {⊥,�} (the Boolean val-
ues), and the lattice (R±∞, sup, inf) of extended real numbers. The lattice of
intervals with join given by

⊔
i[ai, bi] = [supi ai, supi bi] and meet given by�

i[ai, bi] = [infi ai, infi bi] is an especially interesting example, as it can be used
to model uncertainty in the truth value: an element [a, b] indicates that the truth
value lies somewhere within this interval.

Using the algebraic quantitative semantics described in the previous para-
graph, we introduce a compositional framework for online monitoring over dense-
time and continuous-time signals. In order to ensure compositionality, we con-
sider monitors that are infinite-state deterministic signal transducers. A key
difference from other approaches is that our monitors do not require the input
and output to be perfectly synchronized, but they can compute with some delay

144 K. Mamouras et al.

(or negative delay). That is, it is possible that the output signal falls behind the
input signal (positive delay), or that the output signal is ahead of the input sig-
nal (negative delay). We distinguish those monitors where the delay is bounded
and fixed throughput the computation. More specifically, we introduce a typing
judgment f : delay = d, where d ∈ R, which says that the monitor f has a fixed
bounded delay d during the entire course of the computation. This concept has
been explored in [47] for discrete-time signal transducers. Another key feature of
our approach is that we distinguish monitors that do not introduce unbounded
variability. More specifically, we use a typing judgment {ivar = k}f{ovar = �} to
indicate that if the monitor f receives an input signal whose variability (number
of value changes per time unit) is bounded above by k, then the variability of its
output signal is bounded above by �. The two properties of bounded delay and
bounded signal variability are essential for constructing efficient monitors.

The monitoring of temporal formulas written in MTL (with unbounded past-
time and bounded future-time connectives) can be reduced to a small number
of computational primitives. An important fact is that we need two distributiv-
ity laws for lattices. Using the distributivity of finite meets over arbitrary joins
(resp., finite joins over arbitrary meets) we show that the monitoring of the
connective S[a,b] (resp., the dual connective S̄[a,b]) can be reduced to an online
aggregation over a sliding window. For every MTL formula, we construct an
online monitor by composing the following basic monitors: (1) map(op), which
applies the function op pointwise, (2) aggr(init , op), which performs a running
aggregation, (3) emit(v, dt), which emits an initial signal prefix with value v
and duration dt , (4) ignore(dt), which removes an initial prefix of duration
dt from the input signal, and (5) wnd(dt , 1⊗,⊗), which performs an associative
aggregation ⊗ over a sliding window of duration dt . Monitors are composed
using two dataflow combinators: (1) serial composition f >> g, and (2) parallel
composition par(f, g). The space efficiency of the monitors hinges on the preser-
vation of bounded delay and bounded variability. The time efficiency relies on a
novel sliding-window aggregation algorithm with O(1) amortized time-per-item.
The algorithm achieves this efficiency by maintaining partial aggregates of the
window and reusing them as much as possible as the window slides forward.

We provide an implementation of our monitoring framework in Rust. Our
experiments show that our monitors scale reasonably well and they compare
favorably against the monitoring tool Reelay [52]. We chose Reelay for compar-
ison because (1) it supports dense-time traces as input, (2) it uses a temporal
semantics for specifications that is consistent with ours, and (3) it is implemented
in a low-overhead compiled language (C++).

2 Algebraic Semantics with Complete Lattices

In this section, we present a quantitative semantics for MTL that uses complete
lattices for the truth values. Using algebraic reasoning, we show that the tem-
poral connectives of MTL can be rewritten into equivalent forms that suggest a
simple approach for online monitoring. In particular, we show later in Proposi-
tion 4 that some distributivity laws are needed to deal with the “Since” temporal

Quantitative Online Monitoring over Continuous-Time Signals 145

connective and its dual. Using the distributivity of finite meets over arbitrary
joins (resp., finite joins over arbitrary meets) we can reduce the monitoring of
S[a,b] (resp., its dual S̄[a,b]) to a sliding-window join (resp., meet). This suggests
the class of (co)infinitely distributive complete lattices as an appropriate alge-
braic generalization of the Boolean and real-valued semantic domains.

A lattice is a partial order in which every two elements have a least upper
bound and a greatest lower bound. We will use an equivalent algebraic definition.
A lattice (V,�,�) is a set V together with associative and commutative binary
operations � and �, called join and meet respectively, that satisfy the absorption
laws, i.e., x � (x � y) = x and x � (x � y) = x for all x, y ∈ V . Define the relation
≤ as follows: x ≤ y iff x � y = y for all x, y ∈ A. The relation ≤ is a partial
order. It also holds that x ≤ y iff x � y = x. A lattice V is said to be bounded
if there exists a bottom element ⊥ ∈ V and a top element � ∈ V such that
⊥ � x = x and x � � = x (equivalently, ⊥ ≤ x ≤ �) for every x ∈ V . Let V be
a bounded lattice. It is easy to check that x � � = � and x � ⊥ = ⊥ for every
x ∈ V . A lattice V is said to be distributive if x � (y � z) = (x � y) � (x � z) and
x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ V .

Example 1. Consider the two-element set B = {�,⊥} of Boolean values, where
� represents truth and ⊥ represents falsity. The set B, together with disjunction
as join and conjunction as meet, is a bounded and distributive lattice. The set
T = {⊥, ?,�} can be endowed with bounded lattice structure in a unique way
so that ⊥ ≤ ? ≤ �. It can be easily verified that T is distributive. The structure
T is used to give a three-valued interpretation of formulas (? is inconclusive).

The set R of real numbers, together with min as meet and max as join,
is a distributive lattice. However, (R,max,min) is not a bounded lattice. It is
commonplace to adjoin the elements ∞ and −∞ to R so that they serve as the
top and bottom element respectively. The structure (R±∞,max,min,−∞,∞) is
a bounded distributive lattice. We interpret the max-min lattice R±∞ as degrees
of truth, where positive means true and negative means false.

A complete lattice is a partially ordered set V in which all subsets have both
a supremum (join) and an infimum (meet). For a subset S ⊆ V , the join is
denoted by

⊔
S and the meet is denoted by

�
S. Notice that

⊔ ∅ is the bottom
element of V and

� ∅ is the top element of V . We say that V is infinitely
distributive if x � (

⊔
i∈Iyi) =

⊔
i∈I(x � yi) for every index set I (finite meets

distribute over arbitrary joins). We say that V is co-infinitely distributive if
x � (

�
i∈Iyi) =

�
i∈I(x � yi) for every index set I (finite joins distribute over

arbitrary meets). We will say that V is (co)infinitely distributive if it is both
infinitely and co-infinitely distributive. The lattices B and R±∞ are complete
and (co)infinitely distributive.

Example 2 (Uncertainty). We will consider now an example of quantitative
semantics that goes beyond linear orders, and therefore it cannot be directly
handled by prior monitoring frameworks based on truth values from B or R±∞.

Suppose we want to identify a notion of quantitative truth values in situations
where we interpret formulas over a signal x(t) that is not known with perfect

146 K. Mamouras et al.

Fig. 1. Quantitative semantics for MTL based on complete lattices.

accuracy, but we can put an upper and lower bound on each sample, i.e., a ≤
x(t) ≤ b. For example, suppose that we know that 99.9 ≤ x(0) ≤ 100.1 and we
want to evaluate the atomic predicate p = “x ≥ 99” at time 0. The truth value
can be taken to be the interval [0.9, 1.1] in this case, since there is uncertainty
in the distance of signal value from the threshold.

In order to model this kind of uncertainty, we consider the set I(R±∞)
of intervals of the form [a, b] with a ≤ b and a, b ∈ R±∞. An interval
[a, b] ⊆ R±∞ can be thought of as an uncertain truth value (it can be any
one of those contained in [a, b]). For an arbitrary family of intervals [ai, bi] we
define

⊔
i[ai, bi] = [supi ai, supi bi] and

�
i[ai, bi] = [infi ai, infi bi]. The structure

(I(R±∞),
⊔

,
�

) is a (co)infinitely distributive complete lattice.
The lattice I(R±∞) is a partial order and therefore does not fit in existing

monitoring frameworks that consider only linear orders (e.g., the max-min lattice
R±∞ of the extended reals and the associated sliding-max/min algorithms).

Let T be the time domain . This can be chosen to be either Q≥0, the set of
nonnegative rational numbers, or R≥0, the set of nonnegative real numbers.

An A-valued infinite signal is a function x : T → A. We write ISig(A) to
denote the set of all A-valued infinite signals. An A-valued finite signal is a
function x : [0, t) → A or x : [0, t] → A, where t ∈ T . We denote the set of all
A-valued finite signals by FSig(A). We write Sig(A) = FSig(A) ∪ ISig(A). The
duration of a finite signal x : [0, t) → A or x : [0, t] → A is |x| = t. The duration
of an infinite signal x : T → A is |x| = ∞. The empty signal is ε : ∅ → A.

We will consider formulas of Metric Temporal Logic (MTL) interpreted over
signals with domain T . We consider a set D of signal values, a complete lattice
V whose elements represent quantitative truth values, and unary quantitative
predicates p : D → V . We write 1, 0 : D → V for the predicates given by
1(d) = � and 0(d) = ⊥ for every d ∈ D. The set MTL(D,V) of temporal
formulas is built from the atomic predicates p : D → V using the Boolean
connectives ∨ and ∧, the unary temporal connectives PI , HI , FI , GI , and the
binary temporal connectives SI , S̄I , UI , ŪI , where I is an interval of the form [s, t]
or [t,∞) with s, t ∈ T . For every temporal connective X ∈ {P,H,S, S̄,F,G,U, Ū},
we write Xt as an abbreviation for X[t,t] and X as an abbreviation for X[0,∞).

Quantitative Online Monitoring over Continuous-Time Signals 147

Fig. 2. Equivalences between temporal formulas.

We interpret the formulas in MTL(D,V) over traces from Sig(D) and at spe-
cific time points. For the interpretation function ρ : MTL(D,V)×Sig(D)×T →
V , the value ρ(ϕ,x, t) is defined when t ∈ dom(x). The base case is ρ(p,x, t) =
p(x(t)) and the rest are shown in Fig. 1. We say that the formulas ϕ and ψ are
equivalent, and we write ϕ ≡ ψ, if ρ(ϕ,x, t) = ρ(ψ,x, t) for every x ∈ Sig(D) and
t ∈ dom(x). For every formula ϕ and every interval I, it holds that PIϕ ≡ 1SI ϕ,
HIϕ ≡ 0 S̄I ϕ, FIϕ ≡ 1 UI ϕ, and GIϕ ≡ 0 ŪI ϕ. So, the temporal connectives
PI ,HI ,FI ,GI can be defined as abbreviations in terms of SI , S̄I ,UI , ŪI .

Lemma 3. Let D be a set of data items and V be a complete lattice. The
identities of Fig. 2 hold for all formulas ϕ,ψ ∈ MTL(D,V).

The identities of Fig. 2 are shown using the axioms of complete lattices. The
identities below can reduce the monitoring of S[a,b]/S̄[a,b] to P[a,b]/H[a,b].

ϕ S[0,b] ψ ≡ P[0,b]ψ ∧ (ϕ S ψ) (1)
ϕ S[a,b] ψ ≡ P[a,b]ψ ∧ (ϕ S[a,∞) ψ) (2)

ϕ S̄[0,b] ψ ≡ H[0,b]ψ ∨ (ϕ S̄ ψ) (3)

ϕ S̄[a,b] ψ ≡ H[a,b]ψ ∨ (ϕ S̄[a,∞) ψ) (4)

Earlier occurrences of this idea are found in [25] (for the Boolean semantics) and
in [22] (for the real-valued quantitative semantics), where the authors consider
the future-time form ϕ U[a,b] ψ ≡ F[a,b]ψ ∧ (ϕ U[a,∞) ψ). Prior work on efficient
monitoring [19] uses an algorithm based on it. Specifically, [19] uses a sliding-
max algorithm [39], which can be applied to the lattice R±∞ and other similar
linear orders, but is not applicable to partial orders.

Proposition 4. Let D be a set and V be a complete lattice. Then, we have:

(1) If V is infinitely distributive, then the identities (1) and (2) hold.
(2) If V is co-infinitely distributive, then the identities (3) and (4) hold.

Proposition 4 suggests the class of (co)infinitely distributive complete lat-
tices as an appropriate algebraic generalization of R±∞ for efficient quantitative
online monitoring, as the monitoring of S[a,b] and S̄[a,b] can be reduced to sliding
aggregations (for which we present an efficient algorithm later in Fig. 7).

3 Monitors

In this section, we define the class of transducers that we will use for online
monitoring. We consider infinite-state deterministic signal transducers. The

148 K. Mamouras et al.

transducers that we use operate on representations of piecewise constant signals,
which are alternating sequences of points and open (left-open and right-open)
segments. Our transducers are allowed to have output that is not perfectly syn-
chronized with the input, that is, the output can either fall behind or run ahead
of the input. We distinguish those transducers that have a bounded and fixed
delay and we use a typing judgment f : delay = d to indicate that the trans-
ducer f has fixed delay d. We also distinguish those transducers that do not
introduce unbounded variability into the output signal. More specifically, we use
a typing judgment of the form {ivar = k}f{ovar = �} to indicate that if the
monitor f receives input with variability at most k then it will produce output
with variability at most �.

Let A be a set. We define the set Item(A) = {Pt(a) | a ∈ A} ∪ {Seg(a, dt) |
a ∈ A and dt ∈ T} of data items. A data item is either a point of the form Pt(a),
where a ∈ A, or an open segment of the form Seg(a, dt), where a ∈ A and dt ∈ T
is a time delta. When no confusion arises we write a instead of Pt(a), and adt

instead of Seg(a, dt). We also consider PCSig(A) = Pt(A) · (Seg(A, T) ·Pt(A))∗ ·
({ε} ∪ Seg(A, T)) ⊆ Item(A)∗, the set of alternating point-segment sequences of
data items that start with a point. An element of PCSig(A) represents a finite
piecewise constant signal. We will use the term trace to refer to elements of
Item(A)∗ in order to differentiate them from the signals that they represent. For
a trace x, we write |x| ∈ N to denote its length, that is, the number of items
that is contains. We write dur(x) ∈ T to denote its duration, that is, the total
amount of time that it spans. More formally, dur(ε) = 0, dur(xa) = dur(x) and
dur(xadt) = dur(x) + dt for every x ∈ Item(A)∗, a ∈ A and dt ∈ T .

We define the variability of a trace x ∈ Item(A)∗ as the maximum number
of items that fall within any one time interval of unit duration. For example, the
variability of the trace ab1 cd1 is 3, and the variability of the trace ab0.5 cd0.5ef0.5

is 5. Intuitively, the variability is the maximum number of times that the value
of the signal can change within any one unit interval.

Let A and B be sets. A monitor of type M(A,B) is a state machine f =
(St, init, o, next, out), where St is a set of states, init ∈ St is the initial state,
o ∈ Item(B)∗ is the initial output, next : St × Item(A) → St is the transition
function, and out : St × A → Item(B) is the output function. The monitor
denotes the transduction �f� : Item(A)∗ → Item(B)∗. We require additionally
that a monitor respects the representation of piecewise constant signals, that is:
�f�(x) ∈ PCSig(B) for every x ∈ PCSig(A). In other words, if the input stream
is an alternating sequence of points and segments, then so is the output stream.

In Fig. 3 we give several examples of simple monitors that can be used as
building blocks. The monitor map(op) applies the function op : A → B ele-
mentwise. The monitor aggr(b, op) applies a running aggregation to the input
trace that is specified by the initial aggregate b ∈ B and the aggregation function
op : B×A → B (similar to the fold combinator used in functional programming).
The monitor emit(v, t) emits a (left-closed, right-open) segment with duration
t ∈ T and value v ∈ A upon initialization and then echoes the input trace. The
monitor ignore(t) discards the initial (left-closed, right-open) signal segment
of duration t ∈ T and proceeds to echo the rest of the signal. The monitor

Quantitative Online Monitoring over Continuous-Time Signals 149

Fig. 3. Basic building blocks for constructing temporal quantitative monitors.

wnd(Δ, 1⊗,⊗) (described later in Fig. 6 and Fig. 7 with pseudocode) performs
an aggregation, given by the associative function ⊗ : A × A → A, over a sliding
window of time duration Δ. The value 1⊗ is a left and right identity for ⊗. We
combine monitors using the operations

f : M(A,B) g : M(B,C)
f >> g : M(A,B)

f : M(A,B) g : M(A,C)
par(f, g) : M(A,B × C)

serial composition >> and parallel composition par. In the serial composition
f >> g the output signal of f is propagated as input signal to g. In the parallel
composition par(f, g) the input signal is copied to two concurrently executing
monitors f and g and their output signals are combined. Both combinators >>
and par are given by variants of the product construction on state machines. In
the case of par the output traces of f and g may not be synchronized (one may be
ahead of the other), which requires buffering in order to properly align them. This
amount of buffering is bounded when the input signal and the monitors satisfy
the conditions that ensure bounded variability of their outputs. A construction
similar to the one for par is described in [47] (in a discrete-time setting). Some
of the basic monitors of Fig. 3 are similar to queries of the StreamQL language
[37], which has been proposed for the processing of streaming time series.

Monitors and Delay. Let f : M(A,B) be a monitor. We define the delay of the
monitor f at x ∈ PCSig(A) to be the signed time duration delay(f)(x) = dur(x)−
dur(f(x)). We say that f has a fixed (positive) delay d if delay(f)(x) = dur(x)
when dur(x) ≤ d and delay(f)(x) = d when dur(x) > d. We indicate this by
writing f : delay = d. Similarly, we say that f has a fixed (negative) delay −d if
delay(f)(x) = −d for every x. We indicate this by writing f : delay = −d.

150 K. Mamouras et al.

Fig. 4. Typing judgments for the preservation of finite variability.

All the monitors defined in Fig. 3 have a fixed (positive or negative) delay.
Moreover, the combinators >> and par preserve this property.

map(op) : delay = 0 aggr(b, op) : delay = 0 emit(v, t) : delay = −t

ignore(t) : delay = t wnd(Δ, 1⊗,⊗) : delay = 0

f : delay = s g : delay = t

f >> g : delay = s + t

f : delay = s g : delay = t

par(f, g) : delay = max(s, t)

This means that any monitor built from the basic ones (monitors of Fig. 3 and
Fig. 7) using serial and/or parallel composition has fixed delay.

Monitors and Input/Output Variability. We are especially interested in
monitors that do not introduce unbounded variability in their output. For a
monitor f : M(A,B) we write the typing judgment {ivar = k}f{ovar = �} to
indicate that for every input trace x ∈ PCSig(A) with variability at most k, the
output trace f(x) of the monitor has variability at most �. In other words, this
says that the monitor does not introduce unbounded variability.

Lemma 5. The typing judgments of Fig. 4 hold.

None of the monitors of Fig. 3 introduces unbounded variability. Moreover,
the combinators >> and par preserve this property. The typing judgments of
Fig. 4 imply that every monitor built from the basic ones (Fig. 3) using >> and
par preserves the bounded variability of the input signal.

Bounded Memory Footprint. Notice that map(op) and emit(v, t) are state-
less, which means that they need no memory. The monitor aggr(b, op) needs one
memory location to store the running aggregate. The monitor ignore(t) needs
one memory location for a clock that records the amount of time that has passed
since the start of the computation. The sliding-window monitor wnd(Δ, 1⊗,⊗)
needs 2·Δ·Var memory locations, where Var is the variability of the input trace,
for the buffers bufL, bufR, bufL agg used by the sliding window algorithm (see
Fig. 6 and Fig. 7 later). The combinator >> does not require additional memory.
The combinator par, on the other hand, needs buffers that can store pending
input from either input channel. Consider the monitoring par(f1, f2) with

f1 : delay = d1 {ivar = k}f1{ovar = �1}
f2 : delay = d2 {ivar = k}f2{ovar = �2}.

Quantitative Online Monitoring over Continuous-Time Signals 151

If d2 ≥ d1 (the second channel is behind the first channel), then we need a buffer
of size �d2 − d1� · �1 for buffering the first channel. If d1 ≥ d2 (the first channel
is behind the second channel), then we need a buffer of size �d1 − d2� · �2 for
buffering the second channel.

Notice that both bounded delay and bounded variability are crucial for
putting a bound of the size of buffers used by par and wnd.

4 MTL Monitoring

In this section, we will see how temporal formulas are translated into monitors
using the combinators of Sect. 3. Since we focus in this paper on online monitor-
ing, we restrict attention to the future-bounded fragment of MTL, where the
future-time temporal connectives are bounded. That is, every UI connective is
of the form U[a,b] for a ≤ b < ∞ (and similarly for FI , GI , ŪI).

For an infinite input signal x, the output of the monitor for the time instant
t should be ρ(ϕ,x, t), but the monitor has to compute it by observing only a
finite prefix of x. In order for the output value of the monitor to agree with the
standard temporal semantics over infinite traces we may need to delay an output
item until some part of the future input is seen. For example, in the case of F1p
we need to wait for one time unit: the output at time t is given after the input
item at time t + 1 is seen. In other words, the monitor for F1p has a delay (the
output is falling behind the input) of one time unit. Symmetrically, we can allow
monitors to emit output early when the correct value is known. For example,
the output value for P1p is ⊥ in the beginning and the value at time t is already
known from time t − 1. So, we also allow monitors to have negative delay (the
output is running ahead of the input). The function dl : MTL → T gives the
amount of delay required to monitor a formula. It is defined by dl(p) = 0 and

dl(ϕ ∧ ψ) = max(dl(ϕ), dl(ψ)) dl(ϕ S[a,b] ψ) = max(dl(ϕ), dl(ψ)) − a

dl(ϕ S[a,∞) ψ) = max(dl(ϕ), dl(ψ)) − a dl(ϕ U[a,b] ψ) = max(dl(ϕ), dl(ψ)) + b.

TL(ϕ) is a signal transducer. If dl(ϕ) = 0, the TL(ϕ) is transducer where the input
and output signals are perfectly synchronized. If dl(ϕ) > 0, then TL(ϕ) emits
no output for the first dl(ϕ) time units and then behaves like a synchronized
transducer. If dl(ϕ) < 0, then TL(ϕ) emits a signal prefix of duration dl(ϕ) upon
initialization and continues to behave like synchronized transducer.

The identities of Fig. 2 suggest that MTL monitoring can be reduced to a
small set of computational primitives. The primitives of Sect. 3 are sufficient to
specify the monitors, as shown in Fig. 5. We write π1 : A × B → A for the left
projection and π2 : A × B → B for the right projection. Observe that the tem-
poral connectives X[0,∞) are encoded with aggr (running aggregation), whereas
the temporal connectives X(0,∞) are encoded with aggrV (a slight variant of
running aggregation). The connectives Pa and Ha are encoded using emit. The
connective P[0,a] (resp., H[0,a]) is encoded using the sliding-window monitor wnd
of Fig. 7, where the sliding aggregation is � (resp., �). Similarly, the connectives

152 K. Mamouras et al.

Fig. 5. Online monitors for bounded-future MTL formulas.

X[0,a), X(0,a], X(0,a) can be encoded with a sliding aggregation that is a minor
variant of the algorithm of Fig. 7 (the only difference is how the leftmost and
rightmost points of the window are handled). Each connective of the form X〈a,b〉
is reduced to the connectives Xa and X〈0,b−a〉. The “since” connectives S[a,∞),
S[0,b], S[a,b] are reduced to other simpler temporal connectives. The future con-
nectives Fa and Ga are encoded using ignore. The connective F[a,b] is encoded
using Fb and P[0,b−a], and similarly for G[a,b]. Finally, the “until” connective U[a,b]

is reduced to U[0,b−a], which in turn is monitored using a sliding-window aggre-
gation that we describe below. The connectives U[0,b), U(0,b], U(0,b) are handled
similarly.

Let x ∈ Sig(D). If dur(x) ≥ t+a then ρ(ϕU[0,a]ψ,x, t) = ρ(ϕUψ,x|[t,t+a], 0),
where x|[t,t+a] is the restriction of x to the interval [t, t + a] (also translated so
that the left endpoint is at 0). So, we can implement a monitor for the connective
U[0,a] by computing U over a window of duration exactly a time units.

Proposition 6 (Aggregation for Until). Let V be a (co)infinitely distribu-
tive complete lattice. For every piecewise constant trace x ∈ PCSig(V × V)
whose underlying sequence of values is val(x) = (x0, y0)(x1, y1) . . . (xn, yn) ∈
(V × V)+, the value ρ(π1 U π2,x, 0) can be written as an aggregate of the form
π2((x0, y0) ⊗ (x1, y1) ⊗ · · · ⊗ (xn, yn)).

Quantitative Online Monitoring over Continuous-Time Signals 153

Fig. 6. Auxiliary functions for the sliding-window aggregation algorithm of Fig. 7.

154 K. Mamouras et al.

Fig. 7. Sliding aggregation over a continuous-time signal with wnd(Δ, 1⊗, ⊗).

Proposition 6 justifies the translation of U[0,b] into the monitor shown in
Fig. 5. Now, we will describe the data structure that performs the sliding aggre-
gation, which is used in wnd(Δ, 1⊗,⊗). The implementation is shown in Fig. 6
(state, initialization of monitor, auxiliary functions) and Fig. 7 (transition when
a point or a segment is received). Suppose that the current window (of duration
Δ) is bufL · bufR, where bufL = [x1, x2, . . . , xm] and bufR = [xm+1, . . . , xm+n].
That is, the window is split into two buffers: bufL (left buffer) contains older
elements, and bufR (right buffer) contains newer elements. We maintain a buffer
of partial aggregates for the older elements: bufL agg = [y1, y2, . . . , ym], where
yi = xi ⊗ · · · ⊗ xm. We also maintain the aggregate aggR = xm+1 ⊗ · · · ⊗ xm+n

of the right buffer. So, the overall aggregate (for the entire window) is agg =
y1 ⊗ aggR. When a new point Pt(a) arrives, we add it to the right buffer, we
update aggR and agg , and we evict the oldest point from the window. When a
new open segment Seg(a, dt) arrives, we add it to the right buffer, update aggR,
agg and the current duration of the window, and then we evict as many old
items as necessary in order to bring the window back to its desired duration
Δ. Whenever the left buffer becomes empty, we convert the entire right buffer
into a left buffer by performing all partial aggregations from right to left. We
call this a “reversal” and it requires O(n) applications of ⊗, where n is the
size of window. If the variability of the input signal is bounded by a constant,

Quantitative Online Monitoring over Continuous-Time Signals 155

Fig. 8. Performance of our monitoring tool for various lattices of truth values.

then a reversal occurs only once every Θ(n) items. So, the algorithm needs O(1)
amortized time-per-item.

Theorem 7. Let D be a set of signal values, V be a (co)infinitely distributive
complete lattice, and ϕ : MTL(D,V) be a bounded-future formula. Assuming
that the input signal has variability that is bounded by a constant, the monitor
TL(ϕ) : M(D,V) uses memory that is exponential in |ϕ|.
Proof. The algorithm needs memory that is exponential in the size of ϕ because
of the connectives of the form X[a,∞) and X[a,b]. The monitor uses buffers of
size proportional to a or b − a (there is a multiplicative factor corresponding
to variability). Since the constants a, b are written in binary notation, we need
space that is exponential in the size.

Every temporal connective is implemented in TL(ϕ) as a sub-algorithm that
uses constant amortized time-per-item. This hinges on the algorithm of Fig. 7,
which is used for X[0,b] where X ∈ {P,H,S,U}. As discussed earlier, this sliding-
window algorithm needs O(1) amortized time-per-item.

5 Experiments

We have implemented the monitoring framework of Sect. 4 as a library in Rust,
and we have compared our implementation with the monitoring tool Reelay [52].
We chose Reelay for the comparison because it supports dense-time traces and
uses a semantics for temporal formulas that is consistent with ours. Additionally,
Reelay is implemented as a C++ library, which makes the comparison with our
Rust library more fair because both Rust and C++ are low-overhead compiled
languages. We leave as future work the comparison with other monitoring tools
(such as RTAMT [48], Breach [21], and S-TaLiRo [11]).

In our Rust implementation, we represent the values from the truth domain
R±∞ using 64-bit floating-point numbers. In Fig. 8, we show the performance of
our tool when four different truth domains are used. We consider the lattice of

156 K. Mamouras et al.

Fig. 9. Micro benchmarks w.r.t. different variability

Boolean values, the lattice R±∞ of the extended real numbers, and the lattice
I(R±∞) of intervals from Example 2. We also consider a variant of the lattice
I(R±∞), labeled as “most-likely” in Fig. 8, which contains triples of the form
〈a,m, b〉 with a ≤ m ≤ b with the interpretation that m is the most likely value
and [a, b] is the interval within which the value lies.

In Fig. 9, we show the time performance of the monitors with respect to
the variability of the monitored signal (number of samples per time unit). We
consider the formulas X[0,1], X1, X[1,2], X[1,∞) where X ∈ {P,S}. The time per-
formance of our tool is independent of the specific signal being monitored, so we
show the performance for only one kind of input signal (sinusoidal). The perfor-
mance of Reelay, on the other hand, depends on the input signal. We therefore
consider three different input signals: monotonically increasing, monotonically
decreasing, and sinusoidal. It is desirable to have a monitoring algorithm which
processes items at a fixed rate regardless of variability. We observe this behavior
with our tool, and with Reelay in the case of sinusoidal input.

We have used the profiling tool Valgrind [51] to analyze the memory con-
sumption of the monitors. In Fig. 9, we show the peak memory usage of the
monitors as a function of the variability of the input signal. For Reelay, we
report the performance for three different signals. The memory consumption
of our monitor is independent of the values of the input signal (but is depen-
dent on the sampling), so we have only reported the performance for the sinu-
soidal input signal. For our monitor, we see that the memory consumption for

Quantitative Online Monitoring over Continuous-Time Signals 157

Fig. 10. Case studies from the automotive domain

P[0,1],P[1,2],S[0,1],S1,S[1,2],S[1,∞) increases linearly with variability. This is what
we expect to observe because a larger signal variability leads to a larger number
of elements for a window of fixed time duration, all of which need to be stored.
For our monitor, the amount of memory allocated for P1 and P[1,∞) is roughly
constant. This is because the corresponding monitors do not allocate buffers.
In the case of Reelay, we observe an increase in memory consumption for cer-
tain input signals. We also notice that Reelay uses at least 100 KB of memory,
even for signals of low variability. We believe that this can be attributed to the
complex interval-map data structures that Reelay uses from the Boost libraries
[28].

We also consider two benchmarks from the automotive domain suggested in
[33,34]. The system traces are generated from Simulink models using simulation.
One of the benchmarks involves an automatic transmission system which has
two input signals (a throttle and a brake) and three output signals: the gear
sequence, the engine rotation speed (in rpm, denoted ω) and the vehicle speed
(denoted v). We use a sawtooth wave of frequency 0.5 Hz for the throttle and
a square wave of 0.1 Hz for the brake. We run the simulation for (a simulated
time of) 300 s in Simulink and export the data for monitoring with our tool. The
formulas that we consider are: A1 = H[0,30](ω < 4000), A2 = P[0,45](v > 70),
A3 = H[27,57]P[0,13](v > 65), A4 = P[60,100](v > 90) → P[70,100](ω > 3000), A5 =
H[0,40](v < 100) ∧ H[0,40](ω < 4000), A6 = P[0,40]((v > 80) → H[0,40](ω > 4000)).
The second benchmark involves a fuel control system which has a throttle and
outputs the fuel flow rate (denoted λ) and the air-fuel ratio (denoted ϕ). We
use a sawtooth wave as before for the throttle. The formulas that we consider
are F1 = H[0,49]P[0,1](λ > 0), F2 = ¬(¬H[0,1](ϕ < 1.0) ∧ P[1,3](ϕ > 1.0)). The
experimental results for these two benchmarks are shown in Fig. 10.

All experiments were executed on a laptop with a 2.3 GHz Intel Core i7 10610
CPU with 16 GB of memory. Each reported value for time-per-item is the mean
of 20 experiment trials. The whiskers in the plots indicate the standard deviation
across all trials. Each reported value for memory consumption corresponds to
one measurement, since the memory measurements are consistent across trials.

6 Related Work

Metric interval temporal logic (MITL) [5] was proposed as a restriction of MTL
[38] in which non-singular intervals (i.e., intervals of the form [a, a]) were disal-

158 K. Mamouras et al.

lowed. Maler and Nickovic [41] proposed STL as an extension of MITL with the
aim of monitoring properties of continuous signals. In that paper, STL was pre-
sented as a dense future-time logic with bounded intervals along with predicates
over real-valued signals. An offline monitoring algorithm was also discussed with
the assumption that the interpretation of each predicate has bounded variabil-
ity (i.e., changes at most a constant number of times in each interval of fixed
length). In [43], the models are restricted to signals whose time domain can be
covered by left-closed right-open intervals. We consider a larger class of signals
by representing our time domain in the form of a sequence of alternating points
and open segments.

Fainekos and Pappas [27] defined a robustness semantics which quantifies
the degree to which a given signal satisfies a specification. This semantics was
generalized in [18] by using bounded distributive lattices for truth domains. The
present paper employs a similar semantics, where complete lattices are used to
accommodate dense and continuous time. The papers [35,45] consider two dif-
ferent algebraic semantics of temporal formulas using semirings, both of which
only apply to the discrete-time setting. In [53], a dense-time online monitor-
ing framework is presented with quantitative semiring-based semantics using
weighted automata. In the frameworks given by [35] and [53], the semantics is
based on shortest distances (i.e., standard semantics of weighted automata) as
opposed to an inductive definition on formula structure like ours.

In [13,16] some generalizations of the Boolean semantics to finite lattices
are considered in the context of runtime verification. It is worth noting that
the standard algorithms used for Boolean semantics can be easily adopted to a
semantics using finite lattices with a small number of elements. However, this is
not the case with the infinite lattices, such as (R±∞, sup, inf), that we consider.
The problem of parametric identification for STL [12] (where the syntax of STL
is extended with symbolic parameters) is related to the problem of monitoring
when the truth values are sets of possible parameter assignments/valuations.
In this setting, the truth values form a complete lattice with union as join and
intersection as meet. This suggests a relationship to our algebraic framework.

Timed automata [4] are a formalism for specifying real-time properties of
systems. A discussion of the past and future fragments of MITL and their con-
nection to timed automata can be found in [43]. The notion of a temporal tester
is used in [31,42]. Temporal testers [49] are transducers which output the truth
value of a temporal formula at each position. In these papers, the authors provide
a compositional framework to construct testers from MITL formulas. We also
consider a compositional transducer framework here, but our model of compu-
tation is more general and can support online quantitative monitoring that goes
beyond temporal logic (e.g., general running and sliding-window aggregations
with aggr and wnd respectively).

The line of work on SRV (Stream Runtime Verification) [32,50] is also rel-
evant, because SRV languages can be used to encode quantitative monitoring
algorithms. The stream-based specification language RTLola [30] provides a con-
struct for aggregation over a sliding window. In contrast to our sliding windows,

Quantitative Online Monitoring over Continuous-Time Signals 159

RTLola relies on the periodic partitioning and pre-aggregation along the time
axis (an idea described earlier in [40]) in order to reduce the space requirements.
So, the output signal can be viewed as a fixed-rate approximation of the desired
sliding aggregation. This technique is therefore not suitable for implementing
the temporal connectives (e.g., P[0,b] and H[0,b]) of the logical formalism that we
consider here. The StreamLAB tool [29], which is used for monitoring cyber-
physical systems, uses RTLola as its specification language. Closely related to
the aforementioned works on SRV are other formalisms and domain-specific lan-
guages for data stream processing. Quantitative regular expressions (QREs) [46]
(see also [7] and [10]) have been used to express algorithms for medical mon-
itoring [1,2]. The relationship between QREs and automata-theoretic models
with registers is investigated in [6,8,9]. The synchronous languages [14,15,17]
are based on Kahn’s dataflow [36] and have been used for embedded controller
design.

Originally, discussions involving offline monitoring, such as in [22] have only
consisted of future-time connectives. This choice is made because the temporal
formulas are interpreted at the beginning of the trace. In the context of online
monitoring, however, different approaches have been taken towards future tem-
poral connectives. While [20] assumes the availability of a predictor to inter-
pret future connectives, [24] considers robustness intervals: the tightest intervals
which cover the robustness of all possible extensions of the available trace prefix.
The tool Reelay [52] uses only past-time temporal connectives. The tool RTAMT
[48] pastifies a future-time formula by converting it into a past-time formula. The
inductive definition of pastification is detailed in [44].

It was observed in [22] that the key ingredient for efficiently monitoring STL
is an online algorithm for calculating the maximum/minimum over a sliding
window. The commonly used algorithm [39] maintains a so-called monotonic
wedge of values. In contrast, we use a more general algorithm, which applies to
any associative aggregation (not only max/min) and does not require the domain
of values to be totally ordered.

7 Conclusion

We have presented a new efficient algorithm for the online monitoring of
MTL properties over dense-time and continuous-time signals. We have used an
abstract algebraic semantics based on complete lattices satisfying certain infini-
tary distributivity laws, which can be instantiated to the widely-used Boolean
(qualitative) and robustness (quantitative) semantics, as well as to other par-
tially ordered truth values. Our monitoring framework is compositional in the
sense that we construct monitors from formulas using a set of combinators on
monitors. A key feature that enables compositionality and efficiency in our frame-
work is the use of monitors that are deterministic signal transducers with asso-
ciated typing judgments for ensuring that: (1) each monitor has a bounded
and fixed delay, and (2) each monitor produces output of bounded variability
given input of bounded variability. We have provided an implementation of our

160 K. Mamouras et al.

algebraic monitoring framework, and we have shown experimentally that our
monitors scale reasonably well and are competitive against the tool Reelay [52].

Acknowledgments. This research was supported in part by US National Science
Foundation award 2008096.

References

1. Abbas, H., Alur, R., Mamouras, K., Mangharam, R., Rodionova, A.: Real-time
decision policies with predictable performance. Proc. IEEE Spec. Issue Des. Autom.
Cyber-Phys. Syst. 106(9), 1593–1615 (2018). https://doi.org/10.1109/JPROC.
2018.2853608

2. Abbas, H., Rodionova, A., Mamouras, K., Bartocci, E., Smolka, S.A., Grosu,
R.: Quantitative regular expressions for arrhythmia detection. IEEE/ACM Trans.
Comput. Biol. Bioinf. 16(5), 1586–1597 (2019). https://doi.org/10.1109/TCBB.
2018.2885274

3. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

6. Alur, R., Fisman, D., Mamouras, K., Raghothaman, M., Stanford, C.: Streamable
regular transductions. Theoret. Comput. Sci. 807, 15–41 (2020). https://doi.org/
10.1016/j.tcs.2019.11.018

7. Alur, R., Mamouras, K.: An introduction to the StreamQRE language. Dependable
Softw. Syst. Eng. 50, 1–24 (2017). https://doi.org/10.3233/978-1-61499-810-5-1

8. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In: Leib-
niz International Proceedings in Informatics (LIPIcs), ICALP 2017, vol. 80, pp.
112:1–112:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.112

9. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. Proc.
ACM Progr. Lang. 3(POPL), 50:1–50:31 (2019). https://doi.org/10.1145/3290363

10. Alur, R., Mamouras, K., Ulus, D.: Derivatives of quantitative regular expressions.
In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 75–95. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 4

11. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

12. Bakhirkin, A., Ferrère, T., Maler, O.: Efficient parametric identification for STL.
In: HSCC 2018, New York, NY, USA, pp. 177–186. ACM (2018). https://doi.org/
10.1145/3178126.3178132

13. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/logcom/
exn075

https://doi.org/10.1109/JPROC.2018.2853608
https://doi.org/10.1109/JPROC.2018.2853608
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.1016/j.tcs.2019.11.018
https://doi.org/10.1016/j.tcs.2019.11.018
https://doi.org/10.3233/978-1-61499-810-5-1
https://doi.org/10.4230/LIPIcs.ICALP.2017.112
https://doi.org/10.1145/3290363
https://doi.org/10.1007/978-3-319-63121-9_4
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075

Quantitative Online Monitoring over Continuous-Time Signals 161

14. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the SIGNAL language and its semantics. Sci. Comput. Pro-
gram. 16(2), 103–149 (1991). https://doi.org/10.1016/0167-6423(91)90001-E

15. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://
doi.org/10.1016/0167-6423(92)90005-V

16. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers,
C.: Decentralized asynchronous crash-resilient runtime verification. In: Deshar-
nais, J., Jagadeesan, R. (eds.) Leibniz International Proceedings in Informat-
ics (LIPIcs), CONCUR 2016, vol. 59, pp. 16:1–16:15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/
LIPIcs.CONCUR.2016.16

17. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: POPL 1987, New York, NY, USA, pp. 178–188.
ACM (1987). https://doi.org/10.1145/41625.41641

18. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal
logic with quantitative semantics. In: Deshmukh, J., Ničković, D. (eds.) RV 2020.
LNCS, vol. 12399, pp. 383–403. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60508-7 21

19. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

20. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

21. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

22. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

23. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

24. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

25. D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
68–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3 7

26. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

27. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.4230/LIPIcs.CONCUR.2016.16
https://doi.org/10.4230/LIPIcs.CONCUR.2016.16
https://doi.org/10.1145/41625.41641
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-540-30206-3_7
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12
https://doi.org/10.1016/j.tcs.2009.06.021

162 K. Mamouras et al.

28. Faulhaber, J.: Boost library documentation: interval container library (2021).
https://www.boost.org/doc/libs/1 76 0/libs/icl/doc/html/index.html. Accessed
20 Aug 2021

29. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

30. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017). http://arxiv.org/abs/1711.03829

31. Ferrère, T., Maler, O., Ničković, D., Pnueli, A.: From real-time logic to timed
automata. J. ACM 66(3), 19:1–19:31 (2019). https://doi.org/10.1145/3286976

32. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

33. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: Frehse, G., Althoff, M. (eds.) ARCH@CPSWeek 2014,
2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014). https://
doi.org/10.29007/xwrs

34. Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., Kobayashi, Y., Fainekos, G.:
Towards formal specification visualization for testing and monitoring of cyber-
physical systems. In: International Workshop on Design and Implementation of
Formal Tools and Systems. DIFTS 2014 (2014)

35. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: An algebraic framework for run-
time verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11),
2233–2243 (2018). https://doi.org/10.1109/TCAD.2018.2858460

36. Kahn, G.: The semantics of a simple language for parallel programming. Inf. Pro-
cess. 74, 471–475 (1974)

37. Kong, L., Mamouras, K.: StreamQL: a query language for processing stream-
ing time series. Proc. ACM Program. Lang. 4(OOPSLA), 183:1–183:32 (2020).
https://doi.org/10.1145/3428251

38. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

39. Lemire, D.: Streaming maximum-minimum filter using no more than three compar-
isons per element. CoRR abs/cs/0610046 (2006). http://arxiv.org/abs/cs/0610046

40. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005). https://doi.org/10.1145/1058150.1058158

41. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

42. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009 2

43. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 20

44. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 95–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73368-3 12

https://www.boost.org/doc/libs/1_76_0/libs/icl/doc/html/index.html
https://doi.org/10.1007/978-3-030-25540-4_24
http://arxiv.org/abs/1711.03829
https://doi.org/10.1145/3286976
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.29007/xwrs
https://doi.org/10.29007/xwrs
https://doi.org/10.1109/TCAD.2018.2858460
https://doi.org/10.1145/3428251
https://doi.org/10.1007/BF01995674
http://arxiv.org/abs/cs/0610046
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11603009_2
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1007/978-3-540-73368-3_12

Quantitative Online Monitoring over Continuous-Time Signals 163

45. Mamouras, K., Chattopadhyay, A., Wang, Z.: Algebraic quantitative semantics for
efficient online temporal monitoring. In: Groote, J.F., Larsen, K.G. (eds.) TACAS
2021. LNCS, vol. 12651, pp. 330–348. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72016-2 18

46. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE:
modular specification and efficient evaluation of quantitative queries over streaming
data. In: PLDI 2017, New York, NY, USA, pp. 693–708. ACM (2017). https://doi.
org/10.1145/3062341.3062369

47. Mamouras, K., Wang, Z.: Online signal monitoring with bounded lag. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. (2020). https://doi.org/10.1109/TCAD.
2020.3013053

48. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

49. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 11

50. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

51. The Valgrind Developers: Valgrind: an instrumentation framework for building
dynamic analysis tools (2021). https://valgrind.org/. Accessed 20 Aug 2021

52. Ulus, D.: The Reelay monitoring tool (2020). https://doganulus.github.io/reelay/.
Accessed 20 Aug 2020

53. Waga, M.: Online quantitative timed pattern matching with semiring-valued
weighted automata. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS,
vol. 11750, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29662-9 1

https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-540-69850-0_11
https://doi.org/10.1007/978-3-030-03769-7_9
https://valgrind.org/
https://doganulus.github.io/reelay/
https://doi.org/10.1007/978-3-030-29662-9_1
https://doi.org/10.1007/978-3-030-29662-9_1

Nested Monitors: Monitors as Expressions
to Build Monitors

Felipe Gorostiaga1,2,3(B) and César Sánchez1

1 IMDEA Software Institute, Madrid, Spain
{felipe.gorostiaga,cesar.sanchez}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain
3 CIFASIS, Rosario, Argentina

Abstract. Stream runtime verification (SRV) is a formalism to express
monitors as relations between typed input streams (observations) and
typed output streams (data verdicts). In SRV, the actual data opera-
tions are separated from the temporal dependencies, therefore general-
izing monitoring algorithms for temporal logics into the computation of
richer verdicts. In this paper we study a new and powerful feature, which
consists of lifting the execution of monitors to functions that can be used
in defining expressions of enclosing specifications. At runtime, the outer
monitor invokes the inner monitor passing a list of input events, called
a slice. We present nested monitors for synchronous streams and for
real-time event streams, allowing the elegant description of many speci-
fications of interest, while still keeping the resources bounded.

We formally describe nested monitors and slices, and illustrate the
practical application in many real-life examples, including electrocardio-
gram analysis (QRS), quantitative Metric Temporal Logic and arbitrary
robustness of Signal Temporal Logic specifications.

1 Introduction

Runtime verification (RV) is a dynamic technique for software quality assur-
ance that consists of generating a monitor from a formal specification. At run-
time, the monitor inspects traces of the execution of the system under analy-
sis, detecting violations of the specification. Motivated by the counterparts in
static verification, early RV specification languages were based on temporal log-
ics [3,14,28], regular expressions [35], timed regular expressions [1], rules [2], or
rewriting [33]. Stream runtime verification (SRV), pioneered by Lola [10], defines
monitors declaratively by equations that define the dependencies between out-
put streams of results and input streams of observations, where the types of the
streams and operations can be rich types of data. Unlike logical techniques,
that compute Boolean verdicts, SRV allows rich observations and verdicts.

This work was funded in part by the Madrid Regional Government under
project “S2018/TCS-4339 (BLOQUES-CM)”, by Spanish National Project “BOSCO
(PGC2018-102210-B-100)”.
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 164–183, 2021.
https://doi.org/10.1007/978-3-030-88494-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_9&domain=pdf
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-030-88494-9_9

Nested Monitors 165

Examples include counting events, specifying and computing robustness values,
generating models, quantitative verdicts and calculating target spatial coordi-
nates. See [10,11,17,23] for examples illustrating the expressivity of SRV lan-
guages. The keystone of SRV is to separate two concerns: the temporal depen-
dencies and the data manipulated. The temporal dependencies are inspired by
the algorithms to monitor temporal logics which essentially capture the order of
operations in monitoring algorithms. The data manipulation describes how to
perform each individual operation and each element of storage that the monitor
handles.

Different temporal algorithms exist for different notions of time. Early SRV
works consider streams to be synchronized sequences of data (like in LTL seman-
tics), so data observed in different streams at the same index in their sequences
are considered to have occurred at the same time. Examples of synchronous SRV
formalisms include the original Lola [10] and systems like Copilot [31]. Other for-
malisms that can be easily described using SRV include Mission-time LTL [32]
and Functional Reactive Programming (FRP) [16]. Synchronous languages, like
Lustre [27], Esterel [5] and Signal [21] also define relations between input and
output values but these are designed to express behaviors so they assume causal-
ity and forbid future references, while in SRV future references are allowed to
describe monitors that depend on future observations.

There have been approaches to extend SRV to real-time event streams,
including RTLola [19], TeSSLa [9] and Striver [23], which consider streams to be
sequences of timed events. Events contain data and are time-stamped with the
instant of time at which the data is produced (either observed or generated).
The time stamps of a stream must be monotonically increasing, but the events
at a given index in two different streams can have arbitrary time stamps. These
formalisms are known as asynchronous or real-time SRV. See [22] for a expres-
siveness comparison between synchronous time and asynchronous SRV. The data
stored and computed is modeled as data types (data theories in the jargon of
SRV) whose implementation is independent of the model of time. Most system
include a handful of wired data types (e.g. [9,10,18]) but others study how to
transparently incorporate data-types from programming languages [6].

The first contribution of this paper is nested specifications: using specifica-
tions to create a new data type which can be used in enclosing specifications.
In this manner one can write new functions on sequences of data as an SRV
specification which is invoked dynamically. The idea to decompose monitors
into sub-monitors is not new. For example, in [12] the authors automatically
derive cooperating monitors from a given definition, but this technique does not
add expressivity to the data type language. The main concern in [12] is decen-
tralized and distributed execution, which has also been studied in the context
of RV [4,15,20] and SRV [11]. In this paper we consider expressivity and not
decentralized execution. Nested specifications are particularly useful (1) when
the caller monitor can invoke nested monitors with sub-traces of the original
trace, which we model using slices; and (2) when the slice can be processed
incrementally by the nested monitor to anticipate the computation of its ver-

166 F. Gorostiaga and C. Sánchez

dict. Nested specifications can be used both in synchronous and asynchronous
SRV languages. Slices in languages like Lustre or Python allow dealing with
collections of values in a convenient way, but these collections cannot refer to
values of streams at different moments in time. Our slices are more similar to
the notion of trace slicing in RV [8], in which slices correspond to sub-traces of a
trace. We allow the definition and the early manipulation of slices that are par-
tially known because some of their elements will only be known in the future. We
show an implementation of these extensions for the formalisms Lola and Striver
as reference languages of synchronous and asynchronous SRV respectively, (but
the core ideas can be applied to other SRV formalisms easily). In synchronous
SRV, the definition of a stream s can refer to future element of s or of other
streams, with a syntactic restriction to ensure that every self-referential stream
exclusively depends on previous or on future values. If all the self-referential
streams in a specification depend exclusively on previous values, the specifica-
tion is called efficiently monitorable. Specifications that only use present and
past offsets, in which every stream is resolved immediately, are known as very
efficiently monitorable. Note that efficiently monitorable specifications still allow
future references as long as all self-referential streams end-up referring to past
values. In efficiently monitorable specifications for every stream there is a con-
stant upper-bound on time after which the stream will be resolved (the latency
of the stream), a property known as bounded lag (as a particular case, very-
efficiently monitorable specifications are 0 bounded lagged). Efficiently moni-
torable specifications are trace-length independent and can be monitored with
bounded resources that can be calculated statically [10,34]. In all previous SRV
efforts, if cyclic future offsets are allowed, specifications are assumed to not have
bounded lag, and are only given semantics for finite traces. A second contribution
of this paper is a notion of dynamic bounded lag in which streams can refer to
other streams in the future with an offset that is not bounded a-priori but that is
determined dynamically, which guarantees that the amount of resources neces-
sary to monitor a specification is slice-sizes dependent. If an upper bound for the
sizes of the slices can be calculated beforehand, then the specification is again
trace-length independent. Since dynamic bounded specifications have semantics
for future unbounded time domains, these specifications cannot be expressed in
previous SRV formalisms. A third contribution of this paper is two implemen-
tations of nested monitors in HLola [24] and in HStriver [25]. We illustrate how
these novel features enable specifications using several examples including QRS
complex detection, quantitative semantics of the Metric Temporal Logic (MTL)
and robustness of Signal Temporal Logic (STL) specifications.

The rest of the paper is structured as follows. Section 2 briefly revisits two
SRV languages, Lola (for synchronous time) and Striver (for real-time asyn-
chronous event streams). In Sect. 3 we present nested monitors and slices and
in Sect. 4 we illustrate these features in action in several examples. Section 5
presents an empirical evaluation. Finally, Sect. 6 concludes.

Nested Monitors 167

2 Preliminaries

We briefly revisit SRV for synchronous and for real-time event streams.

Time and Streams. A synchronous stream is a sequence of length L of values
from a data domain, where L may be a finite number or ω for infinite sequences.
We refer to the value at the n-th position in a sequence z as z(n). For example,
the sequence co2 = [350, 360, 289, 320, 330] contains samples of the level of CO2
in the air (measured in parts-per-million). In this sequence co2(0) = 350 and
co2(2) = 289. A real-time stream is a succession of events (t, d) where d is a
value from a value domain (as in synchronous streams) and t is a time-stamp.
Time-stamps are elements of a temporal domain (for example R, Q or Z), a set
whose elements are totally ordered. The interpretation of the time domain is to
serve as a common clock to all the streams manipulated by a monitor (inputs and
outputs). Time-stamps in every legal event stream are monotonically increasing.
Given an element t in the temporal domain of an event stream r, we use r(t)
to refer to the value with time-stamp t in r. For example, the event-stream
tv_status = {(1.5, off), (4.0, on), (6.0, off), (7.5, on), (8.0, off)} indicates when a
television is turned on or off. The event (4.0, on) in tv_status indicates that the
TV is switched on at time 4.0. In this paper we use stream both for synchronous
and event streams when it is clear from the context.

Data Theories. Streams are typed using multi-sorted first-order theories (which
we call data theories). A type has a collection of symbols used to construct
expressions, together with an interpretation of these symbols. The domain of a
type is the set of values. Theories are interpreted in the sense that every function
symbol f is both a constructor—used to build expressions (in the term algebra
used to build expressions)—and an evaluator (that produces actual elements in
the domain, which is the semantic interpretation of the function). We assume
that every type D has a constructor if · then · else · that given a Boolean
expression and two expressions of type D constructs a term of type D.

Lola is a synchronous SRV language, whose specifications declare the rela-
tion between output sequences (verdicts) and input sequences (observations).
Similarly, Striver is a real-time SRV language, whose specifications describe the
relation between output event-streams and input event-streams. We describe
these formalisms separately. Due to space constraints we only introduce these
languages concisely. See [10,23,26] for rigorous formal descriptions of Lola and
Striver.

Lola: SRV for Synchronous Streams. Given a set of (typed) stream variables,
Lola stream expressions consists of:

(1) offsets v[k, d] where v is a stream variable of type D, k is an integer number
and d a value from D, and

(2) function applications f(t1, . . . , tn) using constructors f applied to previously
defined stream expression t1, . . . , tn of the right types.

Note that constants are 0-ary functions symbols. A stream variable v represents
a sequence of the domain of the type of v. The intended meaning of an offset

168 F. Gorostiaga and C. Sánchez

expression v[−1, d] is to capture the value of sequence v in the previous position
(or value d if there is no such previous position, that is, at the beginning). The
particular case for an offset with k = 0 requires no default value as the index is
always guaranteed to be within the range of the sequence, in which case we use
v[now]. A Lola specification consists of a set I of input stream variables, a set O of
output stream variables, and a set of defining equations, yi = ei, one per output
variable yi ∈ O where ei is a stream expression of the same type as yi that can
use stream variables from I and O. The defining equations describe the relation
between input and output streams. The dependency graph of a specification
captures the dependency between streams and is built as follows: (i) there is
a vertex for every variable in I ∪ O, and (ii) there is an edge from u to v of
weight k if the expression v[k, d] appears in the definition of u. Cycles of negative
weight represent self-references to previous values, and cycles of positive weight
represent self-references to future values. Legal specifications do not contain
cycles of zero weight.

Example 1. The specification “the mean level of CO2 in the air in the last 3
instants” can be expressed as follows where denom calculates the number of
instants that are taken into account:
input Double co2

output Double denom = (min 2 denom[-1|0]) + 1
output Double mean = (co2[-2|0] + co2[-1|0] + co2[now]) / denom[now]

In this specification I = {co2} and O = {denom, mean}. ��

The semantics of Lola is defined in terms of valuations which consist of one
sequence ρx for each stream variable x, all of the same length L (where L can
be finite or ω). Note that ρx(n) is the value at position n of sequence ρx. A
valuation induces a unique evaluation of all expressions [[ex]] as follows:

− For offsets: [[v[i, c]]](j) =

{
[[v]](j + i) if 0 ≤ j + i < L

c otherwise
− For functions: [[f(e1, . . . , ek)]](j) = f([[e1]](j), . . . , [[ek]](j))

Note that f on the left hand side of the semantic definition of a function repre-
sents the syntactic representation of the function while the f on the right hand
side represents the function evaluator.

We say that a valuation ρ satisfies a Lola specification ϕ whenever every out-
put variable yx satisfies its defining equation ex, i.e. when yx = [[ex]]. See [10] for
a more rigorous explanation of valuations, which cannot be included here due to
space constraints. Note how these semantics capture when a candidate valuation
is an evaluation model, but the intention of a Lola specification is to compute the
unique output sequences given input sequences. Efficient online monitoring algo-
rithms can be generated for a specification depending on its dependency graph.
If there are only negative cycles the specification can be monitored efficiently
with bounded resources, and every stream will be determined in bounded time
(see [10,34]), a property called bounded lag. These specifications, called effi-
ciently monitorable have semantics for finite and infinite streams. If there are

Nested Monitors 169

positive cycles, then the specification only has semantics for finite traces and
resources cannot be bound statically. In this paper we give semantics for infinite
traces, for a sub-class of specifications with dynamic bounded future accesses,
which we call dynamic bounded lag.

Striver: SRV for Real-Time Event Streams. Striver adapts Lola to real-
time event streams. One step offsets are modified to fetch the next or previous
event in the referred stream, and can be composed to access the next of the next
event, the previous of the previous event, etc. Striver specifications define, for
every output stream, (1) a ticking expression which captures when the stream
may contain an event, as well as (2) a value expression that (just like in Lola)
provides a value at the ticking instants. Concretely, there are three kinds of
expressions in Striver:

– Ticking Expressions, which indicate the times at which a stream may produce
an event. Ticking expressions can be {c} for a specific time point c, or the
ticking times of another stream s, unmodified with the operator ticksOf s,
delayed by a constant k with shift k s, or delayed by the value of the stream
itself with delay s. Ticking expression can be combined using ∪.

– Offset Expressions, which are the language construct that allows referring
to the time instants when a given stream x contains an event. The basic
offset expression is t, which represents the current instant. Given an offset
expression τ and a stream x, we can build new offset expressions as follows.
x«τ represents the last instant at which x ticked in the past of τ . For example,
the expression x«x«t represents the second to last event of x with respect to
the current time. The expression x<˜τ is similar but also considers τ as a
candidate instant. Analogously, x»τ refers to the first future instant at which
x contains an event (with x>˜τ the variant that considers the present).

– Value Expressions, like in Lola, compute values. The simplest value expres-
sions are constants to represent values in the domain of the type. Then, x(τ)
provides the value of stream x at instant τ , which must be an offset expres-
sion for x. The atomic constructor notick is used to refrain from generating
an event at a candidate ticking instant. The atomic expression cv allows
accessing the value of an event in the ticking expression of the stream, useful
when the event is shifted. Finally, values can be combined with constructor
functions f of the appropriate types to compute new values.

We use x[<t|d] and x[~t|d] as syntactic sugar to refer to the most recent
event in x (mimicking x[−1, d] and x[now] from Lola).

A Striver specification consists of one value expression Vy and one ticking
expression Ty for each output stream of the appropriate type. For example, the
property “count for how long has the tv been on” can be expressed as follows,
where stream variable tv_on computes the result.

input TV_Status tv

output Int tv_on:
ticks = ticksOf tv
val = if tv[<t|off] == on then tv_on[<t|0] + (t - tv«t) else 0

170 F. Gorostiaga and C. Sánchez

The stream tv_on is computed at the times at which there is an event in tv as
follows: its value is either

– 0 if the tv was previously off, or
– the previous value of tv_on plus (t−tv«t) (the difference in time from the

previous time-stamp of a tv event) if the tv was previously on.

Therefore, the stream is tolerant to events that do not change the tv status. ��
The semantics of Striver are also defined denotationally. Given real-time event

streams for all events, ticking expressions a can be resolved to sets of instants
[[a]], offset expressions can be resolved to instants in time (or the corresponding
-out or +out value) and expressions e can be resolved to a data value [[e]], using
the events fetched via offset expressions and the interpreted functions. Finally, a
set of event-streams is an evaluation model if for every output stream variable y,
the candidate event-stream ρy satisfies both the ticking equation and the value
equation (see [23] for details):

ρy = {(t, d) | t ∈ [[Ty]] and d = [[Vy]](t)}

Similar definitions of dependency graph, efficient monitorability, etc. can be
adapted for Striver specifications. Efficiently (trace length independent) online
monitoring algorithms also exist for Striver for its efficiently monitorable frag-
ment [23].

3 Nested Monitors and Slices

3.1 Nested Monitors and Slices in Lola

Slices. To introduce slices in Lola, we extend the syntax with the operator x[:n],
where x is a stream and n is an integer expression (which is not necessarily a
constant). The semantics of the expression x[:n] is the following:

[[x[:n]]](j) def= [ρx(j), . . . , ρx(j + k)] where k = [[n]](j)

assuming that k ≥ 0, otherwise the slice is the empty list []. Essentially, a slice
is a consecutive sequence of n elements of x starting at the current position
(where n is an integer value, for example, read from an integer input stream).
Since a slice expression x[:n] only refers to present and future values of x, this
expression generates a dependency with a non-negative weight, which is not
possible to calculate or bound statically. Therefore, we extend the dependency
graph with a new kind of edge y →+ x when the defining expression of y contains
x[:n]. A →+ edge precludes the calculation of the latency of y and a bound
to the memory required by the monitor. The notion of well-formedness in [10]
states that “a Lola specification is well-formed if there is no closed-walk with
total weight zero in its dependency graph.” Well-formed specifications are well-
defined in the sense that for every collection of input sequences there is a unique
collection of output sequences, which is a soundness requirement. For infinite

Nested Monitors 171

sequences, a specification is well-formed if every closed-walk in the dependency
graph has a negative total-weight. Otherwise, it cannot be guaranteed that every
expression has a unique value. Therefore, translating slice edges into a self-loop
would disallow semantics for infinite traces. We adapt these definitions for slices.

Definition 1. A Lola specification with slices is well-formed if it contains no
zero-weight cycles and the sum of weights in any cycle containing slice edges is
strictly positive. A well-formed Lola specification with slices is very-well-formed
if no cycle contains a slice edge.

The following lemma justifies this definition.

Lemma 1. Let ϕ be a Lola specification with slices. If ϕ is well-formed then it
is well defined for finite sequences. If ϕ is very-well-formed it is well defined both
for finite and infinite sequences.

The main idea of the proof is that in well-formed specifications for finite streams,
and in very-well-formed specifications for infinite streams, a stream at a given
instant only depends on a finite number of streams and positions.

Nested Monitors. Nested monitors allow spawning and executing monitors
dynamically, collecting the result in each invocation and using it as a value in
the caller monitor. This extension involves minimum changes to the language,
because it mainly consists of lifting specifications to become new constructor
symbols that extend data theories.

Consider the following specification, which calculates whether input numeric
streams r and s will cross within the following 50 instants. We define a topmost
specification as follows:

input Double r,s
output Bool willCross = runSpec (crossspec r[:50] s[:50])

The output stream willCross invokes the nested specification crossspec with
the slices containing the next 50 events of r and s as input. We will usually use
slices as input streams for inner specifications.

Defining an inner specification involves giving it a name and adding an extra
clause: return x when y where x is a stream of any type and y is a Boolean
stream. The type of the stream x determines the type of the value returned
when the specification is invoked dynamically. Optionally, parameters can be
provided when defining the inner specification. Once we have defined a speci-
fication spec, we can execute it using the reserved keyword runSpec, providing
the necessary parameters and lists of values for the input streams, in the order
in which they are defined in the inner specification. In our example, we define
the nested specification crossspec as follows:

innerspec Bool crossspec

input Double r,s
output Bool cross = sgn(r[now] - s[now]) != sgn(r[-1|r[now]] - s[-1|s[now]])

return cross when cross

172 F. Gorostiaga and C. Sánchez

The output stream cross simply checks that the relative order of the
streams r and s changes. When an inner specification with a return clause
return x when y is executed, the computation will return the value of the
stream x at the first time y becomes true, or the last value of x if y never holds
in the execution. As a consequence, if y becomes true in the middle of an exe-
cution, the monitor does not have to run until the end to compute a value and
can anticipate the result. This opens the door to evaluate the inner specification
incrementally as new elements of the input slice are available, and return the
outcome as soon as it is definite. We call this behavior slice anticipation. The
maximum length of the input slice considered is determined by the minimum
length of the inputs to the inner spec, which have to be finite and non-empty
(as slices are), but they can have different lengths in different invocations.

The return clause in our example returns true as soon as a signal crossover
is detected, and returns false if the stream cross never becomes true.

Example 2. The following specification reimplements the previous example using
the type richness of the language to compute how far in the future the signals will
crossover, avoiding running the inner specification for the following n instants:

input Double r,s
output Bool willCross = will[now] > 0
output Int will = if will[-1|0] > 1 then will[-1|] - 1 else runSpec crossspec2 r[:50] s[:50]

In this case, we define the output stream willCross as equivalent to the fact that
the streams will cross in the future. The definition of the intermediate stream
will works in two stages. First, if at the previous instant we knew there was
going to be a crossover in n > 1 instants, then it returns n − 1. Otherwise, it
invokes the inner monitor with the slices to calculate how far in the future the
streams will cross (and if they will cross at all).

innerspec Int crossspec2

input Double r,s
output Bool cross = sgn(r[now] - s[now]) != sgn(r[-1|r[now]] - s[-1|s[now]])
output Int instantN = instantN[-1|0] + 1
output Int ret = if cross[now] then instantN[now] else 0

return ret when cross

The inner specification returns the current instant (on its own recollection of
time) at which a crossover happens, and 0 if there is no crossover. The returned
instant number at which there will be a crossover within the inner specification
indicates in the outer specification how far in the future it will happen. ��

Impact of the Extensions. In Lola [10,34] if the dependency graph of a specifi-
cation contains cycles of positive weight, then the specification is non-efficiently
monitorable, which means that some output streams may require waiting an
unbounded number of instants to be resolved. The incorporation of slices intro-
duces a new class of specifications: those in which the resources necessary for
the computation of every value in the output streams can be calculated at run-
time when the value is about to be computed. We call these dynamic bounded
lag specifications. Note that efficiently monitorable specifications and very effi-
ciently monitorable specifications are dynamic bounded lag (the value is even

Nested Monitors 173

known statically). Past-time specifications (which contain no cycles of positive
weight) that use slices are dynamic bounded lag specifications but are not neces-
sarily efficiently monitorable.

We say that specifications that are not dynamic bounded lag are unbounded
resource specifications. The following table summarizes the new classification of
specifications, where we mark the new class identified:

Dependency graph Class
Only negative edges Very efficiently monitorable
Only negative cycles, no · →+ · edges Efficiently monitorable
Only negative cycles Dynamic bounded lag
Any legal graph Unbounded resources

3.2 Extensions in Striver

Using the rich expressive power of Striver we can define a stream ws that contains
the events of a stream s in a window of length w as shown in the following
program on the left. The output stream ws updates the list of events when an
event of s is leaving the sliding window of events (i.e., when s is producing a

output [(Time, a)] ws =
ticks = ticksOf s U shift (-w) s
val = let (mold, mnew) = cv

prevls = ws [<t|[]]
nextls = if mold == null then prevls

else tail prevls
in if mnew == null then nextls

else nextls ++ [(t+w, mnew)]

value); and also uses the shift operator
to retrieve the future values of the stream
s and incorporate them to the sliding win-
dow. As a consequence, it is not necessary
to extend Striver with an extra operator
to implement slices as slices can be imple-
mented by a simple translation defining a

parametric auxiliary stream slice (a, b) x that returns the timestamped values
of the stream x within the interval (a, b] along with the last value of x before
a. However, in practice the incorporation of nested specifications and slices as
libraries in the language greatly simplifies some stream definitions when we let
x[a:b] be syntactic sugar to refer to slices.

The syntax for nested monitors in Striver is very similar to Lola. We define
inner specifications with a name and an extra return clause, with the difference
that the returned value may be null, if the returned stream x did not generate a
value before the termination stream became true. Again, we run the defined inner
specification using the function runSpec, providing the necessary parameters and
lists of timestamped values for the input streams and, as in the case of Lola, we
will usually use slices as input streams for inner specifications.

Example 3. Consider input numeric streams x and y, and the specification of
whether the maximum value of x is lower than the minimum value of y within

input Double x,y
output Bool separable:

ticks = ticksOf xs U ticksOf ys
val = runSpec

maxx_lt_miny xs[~t|[]] ys[~t|[]]
where xs = x[0:50] ; ys = y[0:50]

the following 50 time units. In the out-
put stream separable we define two aux-
iliary streams xs and ys using slices and
we use their values as the input streams
of the inner specification maxx_lt_miny,

174 F. Gorostiaga and C. Sánchez

which is defined as follows. In the inner specification we define one auxil-
iary stream max_x to calculate the historical maximum of x (within the slice)
and one auxiliary stream min_y to calculate the historical minimum of y.

innerspec Bool maxx_lt_miny
input Double x,y
output Double max_x:

ticks = ticksOf x
val = max cv max_x[<t|cv]

output Double min_y:
ticks = ticksOf y
val = min cv min_y[<t|cv]

output Bool ret:
ticks = ticksOf min_y U ticksOf max_x
val = max_x[~t|infty] < min_y[~t| infty]

output Bool stop:
ticks = ticksOf ret
val = not cv

return ret when stop

The output Boolean stream ret checks that the historical maximum of x stays
below the minimum of the historical minimum of y. The specification returns
false as soon as the property is violated, and true if it always holds. ��

4 Nested Monitors and Slices in Action

We have extended two implementations of Lola and Striver (namely HLola and
HStriver1) with nested monitors and slices. Both HLola and HStriver were writ-
ten in Haskell and compiled with the version Glasgow Haskell Compiler, version
8.6.5 (see [6,24,25] for implementation details). In this section we illustrate how
nested monitors and slices work in practice. A more advanced use case is the
implementation of Kalman filter to predict trajectories of UAV in actual flight
missions, described in [37].

QRS Complex Detection. We have implemented an electrocardiagram (ECG)
analysis algorithm, in particular the Pan–Tompkins algorithm for real time QRS
complex detection [30] (following [36] as reference ad-hoc code). Following our
specification we can monitor the signal online, with an amount of memory that
can be calculated statically. The specification declares output streams that itera-
tively transform the input signal as determined by the algorithm using statistics
to detect peaks. We show below a snippet of the specification. The full spec-
ification2 is 44 lines (while the reference implementation in Python uses 316
lines).

use innerspec headismax

input Double ecg_measurement
input Int timestamp

define Double convolved = ...
define [Double] rprev50 = shift rprev50[-1| replicate 50 (-0.000001)] convolved[now]

where shift r x = x:init r
define Bool peak_candidate = convolved[now] > 0.35

&& headisspike rprev50[now] && headisspike convolved[:50]
where headisspike slice = runSpec (headismax slice)

define Bool ispeak = ...
define Bool isqrs = ...
output Bool is_qrs_peak = isqrs[now] && ispeak[now]

1 HLola and HStriver are available at http://github.com/imdea-software.
2 Available at https://software.imdea.org/hlola/specs.html along with examples input

and output events.

http://github.com/imdea-software
https://software.imdea.org/hlola/specs.html

Nested Monitors 175

The specification follows an architecture of pipes and (stateful) filters. The
stream convolved performs a convolution over a sliding window of fifteen instants
of the square of the successive input value differences. A nested monitor checks
if the current value of convolved is greater than all its previous 50 values (stored
in rprev50) and its following 50 values, passed in peak_candidate. Finally, the
output stream is_qrs_peak indicates if there is a peak in the ECG. The inner

innerspec Bool headismax

input Double vals

output Double head = head[-1|vals[now]]
output Bool ret = head[now] >= vals[now]
output Bool stop = not ret[now]

return ret when stop

specification that assesses if the first value
of an input stream is the maximum of the
whole trace is shown on the left. Due to
slice anticipation, the monitor produces
the values at every instant as soon as pos-
sible. The following plot shows an ECG

input signal and the peaks that the monitor detects (as black dots).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·107

1

2

3

Timestamp

M
ea
su
re
m
en
t

MTL and Dynamic MTL. It is well known that Lola can define MTL properties
by unrolling intervals. However, the size of the resulting specification is propor-
tional to the width of the intervals. Using the nested monitors and slices, we
have written an MTL library that allows specifications of constant size regard-
less of interval width. With these extensions, the width of the window can be of
variable lookahead and use adaptive memory, as we show in Sect. 5. Moreover,
the result at every instant is computed as soon as the minimum information is
available, many times without requiring the whole interval (responsiveness speed
is preserved).

library DynMTL
use innerspec mtluntilspec

output Bool until <(Int, Expr Int) (a,eb)> <Stream Bool phi> <Stream Bool psi> =
untilaux (a,eb) phi psi [a| until (0, eb + a) phi psi[now]]

output Bool untilaux <(Int, Expr Int) (a,eb)> <Stream Bool phi> <Stream Bool psi> =
let winphis = phi [:eb-a] ; winpsis = psi [:eb-a]
in runSpec (mtluntilspec winphis winpsis)

The parametric stream untilaux creates two slices of the future values of ϕ and
ψ and runs the nested monitor mtluntilspec over them. The parametric stream
until shifts the values of untilaux and handles the corner cases. The inner

innerspec Bool mtluntilspec

input Bool phi, psi

output Bool stop = psi[now] ||
not phi[now]

return psi when stop

specification mtluntilspec is defined on the left.
This specification simply returns the value of ψ
whenever it becomes true or ϕ becomes false. If
this never happens, or if it happens at the last
instant, the last value of ψ is returned.

176 F. Gorostiaga and C. Sánchez

QMTL. We have defined a library for Quantitative MTL (QMTL), a more
general version of MTL, which encompasses the original qualitative semantics,
and provides quantitative semantics as well [7]. We first have defined a class

class Lattice x where
sqcup :: x −> x −> x
sqcap :: x −> x −> x
opt_top :: Maybe x
opt_bottom :: Maybe x

in Haskell, shown on the left, to encapsulate
the concepts of a Lattice and we have given two
instances of lattices for Boolean and quantita-
tive semantics. A Lattice consists of two oper-
ators: � and �; with optional absorbing ele-
ments 	 and ⊥ respectively. We then define an

instance for Bool and an instance for every numeric type as follows:
instance Lattice Bool where
sqcup = (||)
sqcap = (&&)
opt_top = Just True
opt_bottom = Just False

instance (Ord a, Num a) => Lattice a where
sqcup = max
sqcap = min
opt_top = Nothing
opt_bottom = Nothing

We finally define the library for QMTL for any Lattice:

library QMTL

use innerspec foldspec
use innerspec foldaccumspec

output Lattice a => a eventually <(Int, Int) (x,y)> <Stream a phi> = let
win = slidingwin (x,y) phi in
if win == [] then opt_bottom else runSpec (foldspec sqcup opt_top win)

output Lattice a => a always <(Int, Int) (x,y)> <Stream a phi> = let
win = slidingwin (x,y) phi in
if win == [] then opt_top else runSpec (foldspec sqcap opt_bottom win)

output Lattice a => a since <(Int, Int) (x,y)> <Stream a phi> <Stream a psi> = let
phis = slidingwin (x,y) phi
psis = slidingwin (x,y) psi
in runSpec (foldaccumspec sqcup sqcap opt_top phis psis)

output Lattice a => a since_overline <(Int, Int) (x,y)> <Stream a phi> <Stream a psi> = let
phis = slidingwin (x,y) phi
psis = slidingwin (x,y) psi
in runSpec (foldaccumspec sqcap sqcup opt_bottom phis psis)

In this specification, eventually and always aggregate the values in the sliding
window with the operators � and � respectively. If the absorbent element of the
corresponding operator is found in the middle of the slice, then it is returned
immediately as an optimization. This behavior is captured by the nested speci-
fication foldspec:

innerspec a foldspec <(a->a->a) op> <Maybe a mabs>

input a vals

output a ret = if instantN[now] === 1 then vals[now] else op ret [-1|] vals[now]
output Bool stop = ret[now] === abs

return ret when stop

Similarly, since and since_overline maintain the consecutive operation of ϕ
along the window and combine it the current value of ψ, aggregating the results.
If the value to return becomes the absorbent element mid-trace, then it is
returned immediately, captured by the nested specification

Nested Monitors 177

innerspec a foldaccumspec <(a->a->a) op1> <(a->a->a) op2> <Maybe a mabs>

input a phi
input a psi

output a accum_phi = if instantN[now] === 1 then phi[now] else op2 accum_phi[-1|] phi[now]
output a ret = let val = op2 psi[now] accum_phi[now] in

if instantN[now] === 1 then val else op1 ret[-1|] val
output Bool stop = ret[now] === abs

return ret when stop

The concrete types are instantiated automatically for each use of the library.

Robustl STL. We use the extensions in HStriver to define the quantitative seman-
tics of the Signal Temporal Logic STL [13]. We show here x U[a,b] y for which
we define two slices: the slice of the events of x in [t, t + b] and the slice of the
events of y in [t+ a, t+ b]. Whenever an event enters or leaves any of the slices,
we need to recompute the value of the stream. Since we treat the events of a
stream as its change points, we use the value of the last event in the past of the
slices to remember the value of the signal at the beginning of the sliding window,
which we add to the slice timestamping it with t in x and t+ a in y. Finally, we
execute the nested specification robustuntilspec with the resulting slices. This
specification maintains the historical minimum of x (within the slice), compares
them with each value of y, and returns the historical maximum of the results.

innerspec Int robustuntilspec

input Int xs, ys

output Bool never:
ticks = {0}
val = False

output Int xmins:
ticks = ticksOf xs
val = min xmins[<t|maxBound] cv

output Int theMins:
ticks = ticksOf xmins U ticksOf ys
val = min ys[~t|maxBound] xmins[~t|maxBound]

output Int theMaxMin:
ticks = ticksOf theMins
val = max theMaxMin[<t|minBound] cv

return theMaxMin when never

library RobustSTL
use innerspec robustuntilspec

define Int until <(Time, Time) (a,b)>
<Stream Int x>
<Stream Int y>:

ticks = ticksOf xs U ticksOf ys
val = runSpec (robustuntilspec xls yls)
where

xs = x[0:b]
ys = y[a:b]
xls = stampFst t xs[~t|(Nothing, [])]
yls = stampFst (t+a) ys[~t|(Nothing, [])]
stampFst _ (Nothing, r) = r
stampFst ts (Just v, r) = (ts,v):r

5 Empirical Evaluation

In this section we report an empirical evaluation, executed on a MacBook Pro
with a Dual Core Intel-i5 at 2.5 GHz with 8 GB of RAM running MacOS
Catalina. We evaluate empirically the following hypotheses:

– (H1) An MTL specification uses constant memory throughout its execution
if the data does not allow slice anticipation in the middle of an interval. This
holds for both the original and the new version of the MTL library.

– (H2) The direct implementation of MTL that does not use slices consumes
more memory than the implementation of MTL with slices.

178 F. Gorostiaga and C. Sánchez

– (H3) In both versions of MTL the memory consumption is affected by whether
the result can be slice-anticipated. If (H2) holds, this is even more prominent
in the sliceful version since memory consumption is smaller. Therefore, mem-
ory consumption is only upper-bounded by a constant and the actual (lower)
memory usage cannot be fully predicted.

– (H4) For the sliceful version of MTL, a dynamic variation in the size of a
slice for a trace of non-slice-anticipable data has an impact on the memory
consumption.

– (H5) The memory consumption for ECG oscillates periodically within a range
due to slice anticipation, as a special case of (H3).

– (H6) The concrete type instantiation in the usage of the QMTL library does
not affect memory consumption.

– (H7) Unlike in Lola, the memory consumption of running a RobustSTL spec-
ification in Striver, with fixed window size and non-slice-anticipable data,
depends on the event rate. With a fixed event rate, the memory consumption
is constant, while with a varying event rate, the memory consumption varies
accordingly.

To evaluate these hypotheses we have carried out the following experiments.

– Experiment MTL I. In this experiment, we run the MTL specification
ϕ U(0,w) ψ with window sizes w = 10, 50, 100 with data that prevents slice
anticipation and we measure the memory as input is processed. We replicate
the experiments for both versions of the MTL library, the naive version with
unrolling and the version with slices. The results are shown in Fig. 1(a) which
shows that memory consumption is constant for any window size and library
implementation, validating (H1). We also observe that memory consumption
for w = 50, 100 using the original MTL implementation (the two topmost
lines in the graph) is greater, which validates (H2).

– Experiment MTL II. In this experiment, we run the previous MTL spec-
ification with window sizes w = 10, 20, . . . , 100 over data that prevents slice
anticipation in both versions of the MTL library and we measured the aver-
age memory consumption. The results are shown in Fig. 1(b). The blue bars
show the memory usage for the sliceful version of MTL, and the red bars,
the memory usage for the direct version that does not use slices. The figure
shows that memory grows with the window size, but it does so more rapidly
for the MTL version with no slices, which validates (H2).

– Experiment MTL III. This experiment studies the impact of slice anticipa-
tion on memory usage. We run the previous MTL specification with a window
size of w = 250 for both versions, with data that is immediately anticipable
at the beginning and at the end of the trace, and data that is not anticipable
in the middle. As can be seen in Fig. 1(c) and (d), the memory consumption
grows when the value is not susceptible to slice anticipation, confirming (H3).
For the sliceful version of the MTL library with only non-anticipable data,
reported in Fig. 1(c), the memory consumption is bounded by the worst case
scenario, represented by the blue line, which fluctuates in the range [0.95, 1].

Nested Monitors 179

Fig. 1. Outcomes of the empirical evaluation (Color figure online)

180 F. Gorostiaga and C. Sánchez

– Experiment MTL IV. In this experiment we run the monitor for the MTL
specification with dynamically varying window (which can only be done for
the slicefull version) and non-anticipable data. We set a window size w of 5 at
the beginning and at the end of the trace, and 500 in the middle. This results
in an increase of the memory consumption, as shown in Fig. 1(e). We have
also included a run with a constant w = 500 to show that it is a boundary
on the memory requirement. This experiment confirms (H4).

– Experiment ECG. This experiment consists on the analysis of the memory
consumption of the QRS complex detection for ECG. The result is shown in
Fig. 1(f), which shows that the memory increases and decreases periodically
(within a certain range), due to the anticipability of the data every time a
peak is found. This validates (H5).

– Experiment QMTL. This is the last experiment using HLola, where we
run the QMTL specification ϕ S(0,10) ψ for two instances of the Lattice class:
Bool and Double, with non-anticipable data as input. The result is shown in
Fig. 1(g), where we see that the concrete type does not affect the memory
consumption, which confirms (H6).

– Experiment HStriver (RobustSTL). Finally, we have executed the
RobustSTL specification ϕ U(0,5) ψ using HStriver with varying event-rate
in ϕ and ψ. The event rate is 2 events per seconds at the beginning and at
the end of the trace, but 200 events per second in the middle, which results
in an increase of the memory consumption, as shown in Fig. 1(h). We also
show the execution of the specification with a constant event rate of 2, which
results in a constant memory consumption. This confirms (H7).

6 Conclusions

We have introduced two extensions of SRV, nested specifications and slices, both
for synchronous and real-time and implemented them in HLola and HStriver.
These extensions make many specifications more concise and easier to read. In
turn, we have captured a new class of dynamically bounded lag specifications,
where streams can depend unboundedly on the future but still have semantics
for infinite inputs. We have used these extensions to implement a QRS com-
plex detection algorithm, MTL, QMTL and robustness specifications for STL.
The empirical evaluation shows that memory usage is predictable and, in the
case of MTL, outperforms previous implementations in those cases where previ-
ous implementations existed. Future work includes evaluating quantitative STL
properties for a powertrain control verification from [29], where input signals are
precomputed from a MatLab simulation.

Nested Monitors 181

References

1. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002). https://doi.org/10.1145/506147.506151

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_5

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011). https://doi.org/10.1145/
2000799.2000800

4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9_10

5. Berry, G.: The foundations of Esterel. In: Proof, Language, and Interaction: Essays
in Honour of Robin Milner, pp. 425–454. MIT Press (2000)

6. Ceresa, M., Gorostiaga, F., Sánchez, C.: Declarative stream runtime verification
(hLola). In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 25–43.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_2

7. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal
logic with quantitative semantics. In: Deshmukh, J., Ničković, D. (eds.) RV 2020.
LNCS, vol. 12399, pp. 383–403. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60508-7_21

8. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2_23

9. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5_10

10. D’Angelo, B.: LOLA: runtime monitoring of synchronous systems. In: Proceedings
of the 12th International Symposium of Temporal Representation and Reasoning
(TIME 2005), pp. 166–174. IEEE CS Press (2005). https://doi.org/10.1109/TIME.
2005.26

11. Danielsson, L.M., Sánchez, C.: Decentralized stream runtime verification. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 185–201.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_11

12. Delaval, G., Girault, A., Pouzet, M.: A type system for the automatic distribution
of higher-order synchronous dataflow programs. SIGPLAN Not. 43(7), 101–110
(2008). https://doi.org/10.1145/1379023.1375672

13. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

14. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6_3

15. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Proceed-
ings of the 26th ACM SIGSOFT Internaional Symposium on Software Testing
and Analysis (ISSTA 2017), pp. 125–135. ACM (2017). https://doi.org/10.1145/
3092703.3092723

https://doi.org/10.1145/506147.506151
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-030-32079-9_11
https://doi.org/10.1145/1379023.1375672
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1145/3092703.3092723
https://doi.org/10.1145/3092703.3092723

182 F. Gorostiaga and C. Sánchez

16. Eliot, C., Hudak, P.: Functional reactive animation. In: Proceedings of ICFP 2007,
pp. 163–173. ACM (1997). https://doi.org/10.1145/258948.258973

17. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9_10

18. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

19. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017)

20. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5_6

21. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987.
LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18317-5_15

22. Gorostiaga, F., Danielsson, L.M., Sánchez, C.: Unifying the time-event spectrum
for stream runtime verification. In: Deshmukh, J., Ničković, D. (eds.) RV 2020.
LNCS, vol. 12399, pp. 462–481. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60508-7_26

23. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_16

24. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream
runtime verification. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS,
vol. 12652, pp. 349–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72013-1_18

25. Gorostiaga, F., Sánchez, C.: HStriver: a very functional extensible tool for the
runtime verification of real-time event streams. In: FM 2021 (2021, to appear)

26. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams
with the Striver language. Int. J. Softw. Tools Technol. Transfer 23, 157–183
(2021). https://doi.org/10.1007/s10009-021-00605-3

27. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991). https://
doi.org/10.1109/5.97300

28. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_24

29. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control (HSCC 2014), pp. 253–262. ACM
(2014). https://doi.org/10.1145/2562059.2562140

30. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans.
Biomed. Eng. BME-32(3), 230–236 (1985). https://doi.org/10.1109/TBME.1985.
325532

31. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_26

https://doi.org/10.1145/258948.258973
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1109/5.97300
https://doi.org/10.1109/5.97300
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1007/978-3-642-16612-9_26

Nested Monitors 183

32. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_24

33. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

34. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_9

35. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
In: Sokolsky, O., Viswanathan, M. (eds.) Electronic Notes in Theoretical Computer
Science, vol. 89. Elsevier (2003)

36. Sznajder, M., Łukowska, M.: Python online and offline ECG QRS detector based
on the Pan-Tomkins algorithm, July 2017. https://doi.org/10.5281/zenodo.826614

37. Zudaire, S., Gorostiaga, F., Sánchez, C., Schneider, G., Uchitel, S.: Assumption
monitoring using runtime verification for UAV temporal task plan executions. In:
Proceedings of IEEE International Conference on Robotics and Automation (ICRA
2021). IEEE (2021)

https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.5281/zenodo.826614

Diamont: Dynamic Monitoring
of Uncertainty for Distributed

Asynchronous Programs

Vimuth Fernando(B), Keyur Joshi, Jacob Laurel, and Sasa Misailovic

University of Illinois Urbana-Champaign, Urbana, USA
{wvf2,kpjoshi2,jlaurel2,misailo}@illinois.edu

Abstract. Many application domains including graph analytics, the
Internet-of-Things, precision agriculture, and media processing operate
on noisy data and/or produce approximate results. These applications
can distribute computation across multiple (often resource-constrained)
processing units. Analyzing the reliability and accuracy of such appli-
cations is challenging, since most existing techniques operate on specific
fixed error models, check for individual properties, or can only be applied
to sequential programs.

We present Diamont, a system for dynamic monitoring of uncertainty
properties in distributed programs. Diamont programs consist of dis-
tributed processes that communicate via asynchronous message pass-
ing. Diamont includes datatypes that dynamically monitor uncertainty
in data and provides support for checking predicates over the monitored
uncertainty at runtime. We also present a general methodology for verify-
ing the soundness of the runtime system and optimizations using canon-
ical sequentialization.

We implemented Diamont for a subset of the Go language and eval-
uated eight programs from precision agriculture, graph analytics, and
media processing. We show that Diamont can prove important end-to-
end properties on the program outputs for significantly larger inputs
compared to prior work, with modest execution time overhead: 3% on
average and 16.3% at maximum.

1 Introduction

Many emerging distributed applications operate on inherently noisy data
or produce approximate results [41]. Emerging edge applications, including
autonomous robotics and precision agriculture, routinely need to deal with
noise from their sensors. Machine learning applications regularly encounter
datasets that contain a high degree of noise, or other irregularity. Further-
more, the rise of highly-parallel and often heterogeneous systems have brought
forth new challenges in overcoming bottlenecks in computation and communica-
tion between processing units. Many prominent systems adopted approximation
in communication, e.g., MapReduce’s task dropping [16], TensorFlow’s preci-
sion reduction [43], or Hogwild’s synchronization-eschewing stochastic gradient
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 184–206, 2021.
https://doi.org/10.1007/978-3-030-88494-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_10

Diamont 185

descent [31]. Also, researchers explored various non-conventional architectures
and networks-on-chip [7,17,30,42].

To cope with different kinds of uncertainty, researchers developed several
static and run-time analyses that quantify the level of noise, reliability, or accu-
racy. We survey the existing techniques in Sect. 7. These existing techniques
suffer from one or more of the following problems: 1) they have been devel-
oped only for sequential programs, 2) they are either imprecise (static analyses)
or lack guarantees on result quality and soundness of monitoring code (empir-
ical analyses), or 3) their applicability is limited – a single analysis is defined
exclusively for a specific source of uncertainty (e.g., an unreliable instruction or
a noisy sensor) and cannot be combined with others. Directly extending and
generalizing the existing frameworks to a distributed setting can lead to subtle
problems and/or run-time inefficiencies. An intriguing question is how to design
a general analysis framework that will overcome these challenges, thus enabling
a flexible and precise uncertainty analysis for parallel computations.

Our Work. We present Diamont, the first system for sound, precise and efficient
runtime monitoring of uncertainty in distributed applications. Diamont offers a
flexible runtime system for specifying and verifying uncertainty bounds in the
face of various sources of uncertainty. Diamont supports programs consisting
of distributed processes that communicate via asynchronous message-passing.
Each process communicates with the others using strongly-typed communication
channels through the common send and receive communication primitives.
Diamont includes multiple language constructs for dynamic monitoring:

– Dynamic types and data channels: The developer specifies the vari-
ables that need to be dynamically monitored by annotating them using the
dynamic type qualifier. In addition, Diamont introduces dynamic channels
that use specialized communication primitives to reliably transfer the moni-
toring information.

– Runtime Monitoring of Uncertainty: Diamont maintains uncertain
intervals for dynamically monitored variables – these map variables to a max-
imum error bound and a probability that the error is within the bound. Dia-
mont propagates this uncertainty through computations. It can precisely do
so even for individual array elements and unbounded loops – factors that usu-
ally reduce precision of existing analyses like Parallely [19] and DECAF [6].

– Checkers: Diamont’s check statement evaluates logical predicates over the
program state and the monitored uncertainty to report violations. For exam-
ple, the check can verify whether the magnitude of a variable’s error is less
than a developer-defined threshold. Using Diamont’s checks, developers can
decide if further attention should be given to the results. If the uncertainty of
a result is acceptable at runtime, developers can avoid costly error checking
and correction mechanisms.

We implemented Diamont for a distributed fragment of the Go language,
extended with the dynamic type and check statements. Diamont performs static
analysis at the level of an intermediate representation (IR) extracted from the Go

186 V. Fernando et al.

code. It generates instrumented Go code with dynamic monitoring implemented
via a Go library.

Diamont also presents a set of optimizations to reduce the runtime overhead
arising from the monitoring of uncertain intervals throughout and across pro-
cesses. These optimizations include: 1) combining static analysis with dynamic
monitoring 2) approximating dynamically monitored uncertainty of arrays,
3) moving check statements across processes, and 4) using compiler techniques
such as constant propagation and dead-code elimination. These optimizations
give Diamont a significant advantage over direct extensions of systems like
Decaf [6] or AffineFloat [13] to parallel programs. However, developers who try
to manually implement such run-time system optimizations that span multiple
processes can easily make subtle errors.

Verified Runtime and Optimizations. We prove the soundness of the Dia-
mont runtime and optimizations. Soundness of a Diamont program means that
if the execution passes a variable uncertainty check, then the uncertainty of the
variable is within the bound specified in the check statement. An optimization
is sound if all check failures in a program are also guaranteed to occur in its
optimized version.

Diamont’s runtime system is sound for programs that satisfy the symmetric
nondeterminism property [3] – i.e., each receive statement must have a unique
matching send statement, or a set of symmetric matching send statements. Many
common parallel patterns in data analytics applications [19,34] satisfy this prop-
erty. We use canonical sequentialization [3,19], which rewrites a symmetrically
nondeterministic parallel program to an equivalent sequential program. We can
then prove soundness of runtime monitoring on the sequentialized program.
Lastly, we show that this soundness proof also applies to the original parallel
program.

Through sequentialization, Diamont can also automatically verify type safety
and the absence of deadlocks of programs caused by approximations, the runtime
system, or optimizations that change communication patterns.

Results. We applied Diamont on eight parallel applications. These real-world
applications come from the domains of graph analytics, precision agriculture, and
media processing. We modeled four sources of uncertainty: noisy communication,
precision reduction (compression), noisy inputs, and timing errors.

We showed that Diamont can verify important end-to-end properties for all
applications. In particular, we looked at four error probability predicates of end
results, three error magnitude predicates, and one predicate on both error prob-
ability and magnitude. These properties cannot be validated by existing static
techniques [10,19,26].

Our optimizations reduced the runtime overhead of Diamont with respect to
the unmonitored program. Directly extending existing sequential runtime anal-
yses to parallel settings leads to overheads between 30–80%. Our optimizations
reduced the overhead to a geomean of 3% and maximum of 16.3% while satisfying
strict predicates. We show that these overheads remain low and the communi-
cation of monitoring data is minimized even when the input size increases, espe-

Diamont 187

1 var Q [NUMSENSORS] process; var R [NUMWORKERS] process

2 type point struct {/*@dynamic*/ temperature, humidity float64 }

3
4 func Manager { // declarations & setup skiped to preserve space

5 for i, IoTDevice := range(Q) { data[i] = receive(IoTDevice) }

6 centers = // randomly pick some nodes

7 for i, Worker := range(R) { send(Worker, data) }

8 for j:=0; j<ITERATIONS; j++ {

9 for _, Worker := range(R) { send(Worker, centers) }

10 for i, Worker := range(R) { newcenters[i] = receive(Worker) }

11 centers = AverageOverThreads(newcenters)

12 }

13 checkArr(centers, 1, 0.99, 4, 0.99)

14 }

15
16 func IoTDevice {

17 /*@dynamic*/ var temperature, humidity float64

18 tempVal, tempErr, tempConf := readTemperature()

19 humidVal, humidErr, humidConf := readHumidity()

20 temperature = track(tempVal, tempErr, tempConf)

21 humidity = track(humidVal, humidErr, humidConf)

22 send(Manager, point{temperature, humidity})

23 }

24
25 func Worker {

26 var data [NUMSENSORS] point

27 var centers, newcenters [NUMCENTERS] point

28 /*@dynamic*/ var assign [PERTHREAD] int

29 data = receive(Manager)

30 for iter:=0; iter<ITERATIONS; iter++ {

31 centers = receive(Manager)

32 newcenters = kmeansKernel(data, centers, assign)

33 send(Manager, newcenters)

34 } }

Fig. 1. K-means algorithm in a smart agriculture setup in the Go language

cially for applications that implement intensive communication. These results
demonstrate that even in the face of both uncertainty and significant paral-
lelism, runtime monitoring is still practical.

Contributions. The paper makes several contributions:

– Diamont. Diamont is a system for dynamically monitoring uncertainty prop-
erties in strongly-typed, message-passing, asynchronous programs. We show
that Diamont can soundly monitor uncertainty (error probability and mag-
nitude).

– Optimizations for reducing overhead. We present several optimizations
that reduce the overhead of performing runtime monitoring across processes.

– Implementation. We implement Diamont’s analysis and runtime system
with optimizations for a subset of Go.

– Evaluation. We evaluate Diamont on 8 benchmarks. We show that Diamont
can verify important correctness properties with small runtime overheads.

188 V. Fernando et al.

2 Example

We consider a scenario from precision agriculture [20]. Multiple low-power
embedded systems with sensors are distributed across a field to monitor changes
in the environment. Each embedded system (e.g., Raspberry Pis) can read the
temperature, humidity, or other properties using their sensors. It can perform
limited local processing of the readings, and periodically sends those results to
a server for further (typically more expensive) analysis.

Figure 1 shows an implementation of the application in Go. The program
has multiple parallel processes that communicate over typed channels using the
Diamont API using matched send and receive statements (E.g., Lines 5, 22).
The Manager process coordinates the computation.

The process group Q is of a set of processes running on embedded systems
IoTDevice1,...,NUMSENSORS that read sensor values and communicate the data
to the Manager. Each IoTDevice gathers and stores datapoints using the struct
point from Line 2. The /*@dynamic*/ annotation indicates that the fields of
point are of dynamic type. Diamont monitors the uncertainty of dynamic vari-
ables at runtime.

The Manager process first gathers sensor data (Line 5) from each IoTDevice.
Then it performs a distributed k-means clustering analysis using the processes
in the group R. The Manager picks a set of random points as the initial cluster
centers (Line 6). Next, over ITERATIONS iterations, it updates the cluster centers
(Lines 8–12).

Each Worker process from the group R processes a subset of the data points
to calculate new cluster centers (Lines 30–33) for that subset. The Manager
combines the partial results from each Worker and redistributes them (Line 11).

2.1 Sources of Uncertainty

Approximate Sensors. Sensors are often noisy (e.g., the AM2302-DH22 rela-
tive humidity and temperature sensor has an error range of ±0.5 ◦F for temper-
ature and ±2%RH for humidity reading [24]). Each process in Q calculates the
error of its sensors while reading the value at Lines 18 and 19. This error calcu-
lation can come from the sensor specification (e.g. [24]). Next, Lines 20 and 21
initialize dynamic variables using the sensor value and error.

Approximate Communication. We also consider the impact of communica-
tion over noisy channels (Line 7, 9), prevalent in situations where sensors are
deployed in remote areas (E.g., [45]). Messages in such channels can be corrupted
with a small probability [29]. Instead of implementing costly error correction
mechanisms, a developer may choose to deal with potentially incorrect data to
save resources.

An uncertainty model ψ provides parameters such as the probability of
message corruption. For example, ψ(Manager, Worker, dynamic float<64>) =
1 − 10−7 indicates that the probability of corruption of a dynamic float<64>
type message from Manager to Worker is 10−7. The specification is modeled after
the ones from [5,10,37].

Diamont 189

2.2 Verification

Properties. We wish to verify that the final values of centers are close to
the true cluster centers with high probability. We encode this requirement in the
checkArr statement in Line 13. This check specifies a maximum error magnitude
and probability for each dynamic field in the struct. This program has features
that make static verification using tools such as Parallely [19] challenging:

– The error specification of the sensors may not be known a priori. Additionally,
prior static verification techniques require worst-case bounds for the number
of loop iterations and the number of processes. Using worst-case estimates
for these in a static analysis will invalidate many correct programs.

– Parallely treats entire arrays as single variables, and thus array analysis accu-
mulates errors even across two different array locations. Consequently, the
conservative static estimate of uncertain intervals quickly expands to unus-
able levels for any sufficiently large number of sensors for our example.

Workflow. Diamont combines static and dynamic analyses to verify safety and
accuracy properties at runtime. Figure 2 shows the workflow for generating an
instrumented program in Diamont. Given a Go program, Diamont 1) translates
it to Diamont-IR, 2) sequentializes the program to statically verify type safety,
deadlock-freeness, and the applicability of the runtime analysis, and 3) pro-
duces an instrumented version of the original Go program with an uncertainty
map for each process. The sequentialized version of the code in Fig. 1 is in
Appendix F [18].

The uncertainty map of a process maintains a conservative uncertain inter-
val for each dynamic local variable. Uncertain intervals are stored as pairs 〈d, r〉
indicating that the maximum error of the associated variable is ≤ d with prob-
ability ≥ r. The default uncertain interval is 〈0, 1〉 (no error with 100% confi-
dence). Developers can use track statements (E.g., Line 20) to use external error
specifications within Diamont. When a dynamic variable is updated, Diamont
also updates the uncertain interval. Diamont’s instrumentation 1) initializes the
uncertain interval of the data in IoTDevice, 2) communicates the uncertain
interval across process boundaries, 3) propagates this uncertainty through com-
putations, and 4) checks the uncertain interval of the array at the end of the
program against a developer-specified bound.

We verified this system for a setting with 128 sensors and a set of 8 workers
performing the k-means computation over 10 iterations. As more and more com-
putations containing unreliable values affect the centers array, the uncertain
interval of individual elements widens. However, the specification is still satisfied.

Overhead. Diamont’s instrumentation adds runtime overhead. To reduce over-
head, Diamont applies optimizations such as constant propagation, dead code
elimination, and simplification of monitoring uncertainty in arrays. To reduce
overhead when transmitting arrays, Diamont transmits the maximum uncer-
tainty among the elements of the array as the uncertainty of every element

190 V. Fernando et al.

Fig. 2. Diamont workflow

of the array. This allows Diamont to only communicate one uncertain inter-
val across processes, while maintaining high analysis precision in other parts
of the program. These optimizations reduce Diamont’s overhead from 42% to
3.2%. Increasing the number of sensors does not significantly increase overhead
(Sect. 6.3). Even for 2–8x larger data, the overhead remains below 5%.

3 Diamont System

Diamont takes as input a Go program and an uncertainty model. Diamont first
converts the program to the Diamont-IR and verifies important safety properties
necessary to ensure that the runtime system will be sound. Finally, Diamont
generates instrumented Go code. The full syntax and semantics of Diamont are
available in Appendix A [18].

3.1 Syntax

Go Language. Diamont supports a subset of the Go Programming Language
(matching the features of Diamont-IR along with external functions that do not
perform communication) extended with an API for distributed communication
and annotations in comments for type qualifiers.

Diamont-IR. Diamont’s intermediate representation supports a strongly typed
imperative language with primitives for asynchronous communication. Diamont
extends the syntax of Parallely [19] with support for the additional dynamic
type. Figure 3 defines the subset of Diamont syntax dealing with dynamic data.
Here, d refers to reals, r to probabilities, n to positive integers, x, y to variables,
and a to array variables. The full syntax includes conditionals, loops, operations
on arrays, and structs.

Types. Diamont’s type qualifiers explicitly split data into either precise (no
uncertainty), dynamic (uncertainty monitored at runtime), or approx (uncer-
tain but unmonitored). Diamont’s type system ensures that uncertainties in
executions do not cause errors in critical program sections and ensures that
the dynamic monitoring is sound by avoiding control flow divergence. Using
type inference, Diamont automatically annotates some variables as dynamic to
reduce programmer burden.

Diamont 191

m, v ∈ N∪F∪{∅} values
Exp → m | 〈m,v〉 | x expressions

| Exp op Exp
AEx → d | d·x | d·a[Exp+] affine

| AEx ±AEx expressions
q → precise |approx type

|dynamic qualifiers
t → int<n> |float<n> basic types

T → q t |q t [] |struct T+ types
P → [S]α process

| Π.α :X [S]α process group
| P‖P parallel comp

S → T x | T a[n+] declarations
| x = Exp assignment
| dyn-send(α,T ,x) send dynamic
| x = dyn-recv(α,T) receive dynamic
| x = rdDyn(y) read dynamic map
| x = endorse(y) cast to precise
| x = track(y, 〈d, r〉+) initiate monitoring
| x = Exp? Exp :Exp conditional choice
| check(AEx, 〈d, r〉+) check error
| checkArr(a, 〈d, r〉+) check array error

Fig. 3. Diamont-IR syntax extensions (full language contains conditionals, loops and
function calls)

Communication. Processes communicate by sending and receiving messages
over typed channels. For each pair of processes, Diamont provides a set of logical
sub-channels for communication, further split by message type (μ). A send state-
ment asynchronously sends a value to another process using a unique process
identifier. The receiving process uses the blocking receive statement to read
the message. Diamont supports communication of dynamic type data through
dyn-send and dyn-recv statements, which also send the monitored uncertainty
using reliable channels.

Type Conversion. To explicitly convert a variable to dynamic type, the devel-
oper or compiler can use a track statement (x = track(y, 〈d, r〉)), which sets the
uncertain interval to 〈d, r〉. track statements can be used to initiate monitoring
for variables updated by external functions, or to incorporate informal specifi-
cations (e.g., from a datasheet) into Diamont. Similarly, the endorse statement
(x = endorse(y)) converts an approx or dynamic variable to a precise variable,
usually after a user-defined check (similar to EnerJ [37]). The rdDyn intrinsic
(rdDyn(x)) can be used to read the monitored uncertainty of a dynamic variable.

Uncertainty Model (ψ). It specifies the reliability/accuracy of program com-
ponents (e.g., the probability of message corruption or the probability that a
sensor fails).

Specifications. Diamont exposes the following statements to check specifica-
tions of dynamically monitored variables.

– check(AEx, 〈d, r〉): It checks if an affine expression AEx has a maximum error
≤ d with probability ≥ r. If the specification is not satisfied, the check fails.

– checkArr(a, 〈d, r〉): It checks if the dynamically monitored uncertainty for
each element in array a satisfies the specification.

While this version of Diamont stops the execution if a check fails, it can
be extended to trigger a recovery mechanism instead [1,15,22]. Aloe [22] repre-

192 V. Fernando et al.

S-Assign-Dyn
(x,.,.)∈D 〈e,σ,h〉��v

d=〈calc-eps(e,D), calc-del(e,D)〉
D

′ =D[x �→d] 〈nb, 〈1〉〉=σ(x) h
′ =h[nb �→v]

〈x = e,〈σ,h〉,μ,D〉 1−→ψ 〈skip,〈σ,h
′〉,μ,D

′〉

S-DynSend
μ[〈α,β,Dt〉]=md μ

′ =μ[〈α,β,Dt →�〉 md++D[y]]
〈[dyn-send(β,t,y)]α,〈σ,h〉,μ,D〉

1−→ψ 〈[send(β,t,y)]α,〈σ,h〉,μ′
,D〉

S-DynReceive
μ[〈β,α,Dt〉]=d ::md μ

′ =μ[〈β,α,Dt →�〉 md] db =〈d.ε, d.δ×ψ(β,α,t)〉 D
′ =D[x �→db]

〈[x = dyn-recv(β,t)]α,〈σ,h〉,μ,D〉 1−→ψ 〈[x = receive(β,t)]α,〈σ,h〉,μ′
,D

′〉

S-Check-Fail
calc-eps(AEx,D)>d ∨ calc-del(AEx,D)<r

〈check(AEx , d, r),〈σ,h〉,μ,D〉 1−→ψ 〈skip,⊥,μ,D〉

S-Cast
〈n′

b, 〈1〉〉=σ(y) h[n′
b]=m m

′ =cast(T,m)
〈nb, 〈1〉〉=σ(x) h

′ =h[nb �→m
′]

d=〈cast-eps(x,y,D), D[y].δ〉 D
′ =D[x �→d]

〈x = (dynamic T)y,〈σ,h
′〉,μ,D

′〉
1−→ψ 〈skip,〈σ,h

′〉,μ,D
′〉

Fig. 4. Semantics of dynamic monitoring (selection)

sents recoverable computations with blocks of the form try {...} check (...)
recover {...}. Using this construct, Diamont can recover the execution if a
check fails, and calculate the effect of (possibly imperfect) checks and recovery
mechanisms on uncertainty. Formalization of recovery for distributed programs,
however, is out of scope of this paper.

Structs. The programmer can specify the uncertainty of each field of a struct
in a track statement by using multiple 〈d, r〉 pairs. The programmer can check
each field of a struct in check and checkArr statements in a similar manner.

3.2 Diamont Semantics

Semantics for precise and approx data in Diamont are the same as those from
Parallely[19]. For dynamic data, the compiler adds instructions to monitor their
uncertain intervals alongside the original program instructions.

References, Frames, Stacks, and Heaps. A reference is a pair
〈nb, 〈n1, ..., nk〉〉 ∈ Ref that contains a base address nb ∈ Loc and dimension
descriptor 〈n1, ..., nk〉 denoting the location and dimension of variables in the
heap. A frame σ ∈ E = Var → Ref maps program variables to references. A
heap h ∈ H = N → N ∪ F ∪ {∅} is a finite map from addresses to values (Inte-
gers, Floats or the special empty message [∅]). Each process i maintains its own
private environment consisting of a frame and a heap 〈σi, hi〉 ∈ Λ = {H×E}∪⊥,
where ⊥ is considered to be an error state.

Uncertainty Map. For each process, Diamont defines an uncertainty map (D)
to attach each variable with a uncertain interval, consisting of a maximum abso-
lute error (ε), and a probability/confidence (δ) that the true error is below ε.

Local Semantics. The small-step relation 〈s, 〈σ, h〉, μ, D〉 p−→ψ 〈s′, 〈σ′, h′〉, μ′, D′〉
defines a process in the program evaluating in its local frame σ, heap h,

Diamont 193

calc-eps(e,D)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 e is a constant
D[x] eε. is a variable x

D[x].ε+D[y].ε e is x ± y

|x|×D[y].ε+|y|×D[x].ε+D[x].ε×D[y].ε e is x × y

∞ e is x ÷ y ∧ 0∈ [y±D[y].ε]
(|x|×D[y].ε+|y|×D[x].ε)

(|y|×(|y|−D[y].ε))
e is x ÷ y ∧ 0
∈ [y±D[y].ε]

calc-del(e,D) = max(0,(Σx∈ρ(e)D[x].δ)−(|ρ(e)|−1))

cast-eps(x,v,D) = max(max(x+D[x].ε,v+D[x].ε)−v,v−min(x−D[x].ε,v−D[x].ε)))

Fig. 5. Runtime for dynamic monitoring of uncertainty

uncertainty map D, and the global channel set μ. Figure 4 presents a selection
of the semantics.

– Initialization: Each dynamic variable is initialized by setting the maximum
error ε to 0 and the confidence δ to 1.

– Expressions: The S-Assign-Dyn rule in Fig. 4 is applied when a dynamic
variable is updated by assigning it an expression e. We use a big-step evalua-
tion relation of the form 〈e, σ, h〉�� v to compute the result of the expression.
Diamont supports typical integer and floating point operations.
For dynamic variables, in addition to the assigned variable, Diamont updates
its interval using the uncertain interval arithmetic defined in Fig. 5. The
calc-eps function is used to calculate an expression’s maximum error. The
confidence in this maximum error is then computed using calc-del (ρ(e)
returns the list of variables used in an expression e.) To avoid any assump-
tions about the independence of the uncertainties (prior approaches such as
[6] restrictively assumed all the operations and probability of failures are
independent) Diamont uses the conservative union bound.

– Communication: When sending dynamic variables of type T to another pro-
cess (rule S-DynSend), Diamont uses special channels (DT) that are assumed
to be fully reliable to communicate the relevant uncertain intervals before
sending the data.1 At the receiver (rule S-DynReceive), Diamont updates
the local uncertainty map. Diamont assumes the channel failure rate is inde-
pendent of the message content and reduces the confidence based on the
failure rate defined in the Uncertainty Model.

– Precision Manipulation: Diamont monitors the errors introduced to pro-
grams through cast statements that change the precision of values of the same
general type (int or float). In the rule S-Cast, the added error is calculated
using the cast-eps(x,v,D) function using the casted value v and the original
variable x. Confidence remains the same.

1 ++ denotes adding a element to the end of the message queue.

194 V. Fernando et al.

– Conditionals: For branching on dynamic values, Diamont supports an oper-
ator x = cond? e1 : e2 (conditional choice) where cond compares a dynamic
value against a threshold. We check if the entire interval associated with the
value is greater or less than the threshold. If neither case is true, we compute
both expressions and the interval of x becomes the smallest closed interval
that contains all possible intervals.

– Checks: If a check fails, the Diamont program transitions into an error state
(Fig. 4 rule S-Check-Fail). To prevent such check failures, the user can imple-
ment error recovery mechanisms.

Global Semantics. We define a global configuration as 〈ε, μ, ω, P 〉, consisting
of a global environment ε ∈ Env = Pid
→ Λ, a set of typed channels μ ∈
Channel = Pid×Pid×Type → V al∗, global uncertainty map ω ∈ Pid
→ D, and

the program P . Small step transitions of the form (ε, ω, μ, P)
α,r−→ψ (ε′, ω′, μ′, P ′)

define a process α taking a step and thus changing the global configuration. Inter-
process communication happens using the typed channels – though processes
adding to and reading from the relevant queue. Complete semantics are available
in Appendix A.

3.3 Soundness of Runtime Monitoring

Diamont’s runtime system works across distributed processes. We use Canon-
ical Sequentialization [3] to simplify our reasoning about the soundness of the
runtime system. Canonical sequentialization uses the assumption that correct
programs tend to be well-structured to generate a sequential program that over-
approximates the semantics of a parallel program. If such a sequentialized pro-
gram can be generated, then the parallel program is deadlock-free, and local
safety properties that hold for the sequentialized program also hold for the par-
allel program.

To be sequentializable, the parallel program must be symmetrically nonde-
terministic – each receive statement must only have a single matching send
statement, or a set of symmetric matching send statements2. We use a set of
rewrite rules of the form Γ,S, P � Γ ′,S ′, P ′ to rewrite a parallel program P

to a sequential program S ′ step by step (the rules are available in Appendix C).
The context Γ is used as a symbolic set of messages in flight, and P ′ is the part of
the parallel program that remains to be rewritten. The sequentialization process
applies the rewrite steps until the entire program is rewritten to S ′. We extend
the results from prior work [3,19] to show that rewrite rules maintain equiva-
lent behavior between the original parallel program and the generated sequential
program, i.e., they both produce the same environment and uncertainty map at
the halting states of the programs.

2 Many popular parallel application patterns (e.g. Map, Reduce, Scatter-Gather, Sten-
cil) exhibit symmetric non-determinism [3,19]. Further, programs satisfying this
property can be less error-prone [3].

Diamont 195

S=[]

P= int α.n = 1 [r] 0;
send(β, int, α.n);

[]
α

‖ int β.x;
β.x = receive(α, int);

[]
β

�∗ S=
int α.n = 1 [r] 0;
int β.x;
β.x = α.n;

⎡
⎣

⎤
⎦

P=[skip;]

Fig. 6. Canonical sequentialization: an example of the rewriting process.

Figure 6 shows a small program with inter-process communication (P) and its
canonical sequentialization (S) generated using the rewrite rules. We show that
the existence of a canonical sequentialization guarantees that uncertain inter-
vals are not affected by the different possible interleavings of processes during
execution, allowing us to generate correct monitoring code.

In contrast, consider the following program where the process α has a receive
statement that receives from two other processes:

α.res = receive(∗);
[]

α
‖ β.out = func1();

send(α, β.out);

[]

β

‖ γ.out = func2();
send(α, γ.out);

[]

γ

The final value of res depends on the runtime interleavings and it is difficult
to generate monitoring code at compilation time that soundly calculates an
uncertain interval combining all possible interleavings. Therefore, we limit our
analysis only to programs with canonical sequentializations and prove that the
runtime is sound.

We use the notation developed in Chisel [26] to state the following sound-
ness theorem. Recall that Diamont’s runtime monitors two properties for each
dynamic variable x: (1) the maximum possible error magnitude (D[x].ε) and (2) a
probability (D[x].δ) that the precise value of x is within x±D[x].ε. The notation
Δ(x) denotes the true error of a variable x, and �R∗[E]�(σ, ϕ) denotes the true
probability that an environment σ sampled from the environment distribution ϕ
satisfies the error comparison E.

Theorem 1 (Soundness of dynamic monitoring). For programs not con-
taining track and endorse statements, for all statements s, and for all x
s.t. Θ � x : dynamic t, Θ � s : Θ′ and 〈s, 〈σ,D, ϕ〉〉 ⇓ 〈s′, 〈σ′,D′, ϕ′〉〉
=⇒ �R∗[D′[x].ε ≥ Δ(x)] �(σ′, ϕ′) ≥ D′[x].δ

First, we use induction over the sequential subset of Diamont to show that,
if the program s type checks, and evaluates in the global environment σ and
uncertainty map D to s′, resulting in the environment σ′ and uncertainty map
D′, then, for all dynamic variables x, the true error of x is at most by D′[x].ε with
probability at least D′[x].δ. This indicates that we soundly over-approximate the
uncertainty of x.

Next, we utilize canonical sequentialization to prove that the theorem holds
for the parallel subset of the language as well. First, we extend the results
from [19] to prove that if we can rewrite a parallel program P into a sequen-
tial program S, then P and S have equivalent behavior. We use this fact to
reason that our proof of soundness for the sequential subset of Diamont is also

196 V. Fernando et al.

1 dyn-send(β, dynamic t, α.in);
2 α.out = dyn-recv(β, dynamic t);
3 check(α.out, dcheck, rcheck);

[]
α

‖
4 β.dat = dyn-recv(α, dynamic t);
5 // spec: 〈d ≥ Δ(res),r*R∗[(di ≥Δ(dat))] 〉
6 β.res = fn(β.dat);
7 dyn-send(α, dynamic t, β.res);

⎡
⎣

⎤
⎦

β

⇓
8 check(α.in, di, 0);
9 send(β, approx t, α.in);

10 α.tmp = receive(β, approx t);
11 α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
12 check(α.out, dcheck, rcheck);

⎡
⎢⎢⎣

⎤
⎥⎥⎦

α

‖
13 β.dat = receive(α, approx t);
14 //〈d ≥ Δ(res),r*R∗[(di ≥Δ(dat))] 〉
15 β.res = fn(β.dat);
16 send(α, approx t, β.res);

⎡
⎣

⎤
⎦

β

Fig. 7. Optimizations using static analysis in Diamont.

applicable to parallel programs that can be canonically sequentialized. There-
fore, Theorem 1 holds and our overall analysis is sound (full proof is available in
Appendix D).

Our analysis only applies to programs with track and endorse statements if
developers use them in a sound manner. For track statements, developers must
ensure that the bounds they provide are a sound over-approximation of the true
uncertainty at that program point. As in prior work [37], by inserting endorse
statements, developers certify that treating the relevant approx or dynamic value
as precise is always safe and will not result in undesirable behavior.

4 Optimizations for Reducing Overhead

We implemented several optimizations that transform the programs to reduce
the overhead of dynamic monitoring and proved them to be sound.

Communication. When communicating large dynamic type arrays, Diamont
must also communicate the uncertain interval for each array element, result-
ing in a large communication overhead. One way to reduce this overhead is to
calculate a single conservative approximation of the set of uncertain intervals
for the array elements. For example, the maximum error of any element of an
array can be soundly over-approximated by the largest maximum error among
all of its elements (similarly, the smallest error confidence). The process send-
ing the data calculates the conservative approximation while using the regular
communication primitives for the data. At the end it sends the conservatively
approximate uncertain interval. At the receiver, this uncertain interval is taken
as the uncertain interval of each element in the received array and the compiler
adds track statements to restart dynamic monitoring.

This optimization does not approximate the uncertain interval of the array
at all program points, rather it affects only communication statements. Even
with the resulting loss in precision of the analysis, Diamont still achieves better
results than existing static analyses which use a single uncertain interval for
arrays through the entire program.

Diamont 197

Utilizing Static Analysis. We can further reduce overheads by exploiting
common communication patterns. For example, the program at the top of Fig. 7
contains a remote procedure call. Process α sends an input to process β, which
applies the function fn to the input and returns the value. Transferring uncertain
intervals along with the data can become expensive if many such calls are made.

We use existing static analysis techniques [10,19,26] to analyze only the
remote function call and generate function specifications (precise semantics are
in Appendix A Fig. 9), even if they are unable to analyze the entire program.
Consider the transformed program at the bottom of Fig. 7. Using the specifica-
tion, Diamont produces the same behavior as the original program by generating
code to 1) check if the specification requirements are satisfied (Line 8), 2) trans-
fer the data as approx type (Line 9), 3) compute without dynamic monitoring,
and 4) re-initialize dynamic monitoring using the error guarantees from the spec-
ification (Line 11).

This optimization can be safely used when the function performs no com-
munication and has no other side effects. However, it may not be possible to
verify some static specifications at runtime. For example: the runtime will not
be able to calculate R∗[di ≥ Δ(dat)] for some values for di. Therefore, this
optimization may introduce some imprecision to the dynamic monitoring.

Early Checking. For a subset of instructions we can perform static analysis to
stop runtime monitoring earlier. We perform this task by moving up the check
to the earliest possible location using a set of rewrites. This rewrite rule is one
such example:

α.x = α.a + α.b;
check(AExp, d, r);

[]
⇒ check(AExp[(α.a+α.b)/α.x], d, r);

α.x = α.a + α.b;

[]

In this rule, Diamont looks for a check immediately following an addition. Since
the error magnitude of the result of the addition is the sum of the error magni-
tudes of the variables that are being added, we can substitute the result variable
α.x in the check with α.a + α.b. As the calc-del function of the runtime looks
for the set of variables in the specification (AExp), the error probability is cal-
culated correctly as well. Diamont can now safely move the check before the
addition.

These re-write rules closely follow the static analysis as defined and proven
sound in [19] for the sequential subset of the language (Appendix D.2.2). This
optimization reduces updates to the uncertainty map as monitoring can be
stopped after the check is performed. However, it can only be applied when
the check refers to variables from a single process. Further, the check cannot be
moved up if error calculations depend on the value of variables (as in multipli-
cation/division).

Debloating and Compiler Optimizations. Diamont further reduces over-
head by using constant propagation and dead code elimination to remove unnec-
essary updates to the uncertainty map. In addition, Diamont eliminates either
error magnitude monitoring or confidence monitoring based on the checks in

198 V. Fernando et al.

sseq =
β.dat = α.in;
β.res = fn(β.dat);
α.out = β.res;
check(α.out, dcheck, rcheck);

⎡
⎣

⎤
⎦ sseq

opt =

check(α.in, di, 0);
β.dat = α.in;
β.res = fn(β.dat);
α.tmp = β.res;
α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
check(α.out, dcheck, rcheck);

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Fig. 8. Example sequentializations used in the proofs

the program. For example, if all checks require the error magnitude to be zero
(reliability in [10]) Diamont will only calculate confidence at runtime.

4.1 Soundness

For each optimization we show that both the original program (s) and the opti-
mized version (sopt) produce the same behavior, i.e., if the original program
fails a check, the optimized version is also guaranteed to fail. Canonical sequen-
tialization makes such proofs easier. Formally, we define the soundness of an
optimization as follows:

Definition 1 (Optimization soundness). For a program s and its optimized
version sopt, 〈s, 〈σ, h〉, μ, D〉 ∗−→ψ 〈s′,⊥, , 〉 =⇒ 〈sopt, 〈σ, h〉, μ, D〉 ∗−→ψ

〈s′′,⊥, , 〉
This definition states that if there is an execution where the original program

s starting from an environment σ, heap h, uncertainty map D, and the global
channel set μ evaluates to s′ and enters into the error state (⊥), the optimized
version sopt starting from the same state σ, heap h, and D must also enter the
error state (even if the final channel or uncertainty map states differ).

For each optimization, we show that the pairs s and sopt are sound according
to this definition. Consider the static analysis based optimization in Fig. 7. Prov-
ing the soundness of this optimization requires us to show that the two parallel
programs produce the same result with regards to the dynamic monitoring. We
can simplify this process significantly by using sequentialization. We first show
that the two versions of the program can be sequentialized to sseq and sseq

opt in
Fig. 8. These sequentializations produce final environments that are equivalent
to the original versions as proven in Lemma 1 (Appendix C). We can now sim-
plify the proof to reasoning over the two sequential programs sseq and sseq

opt . We
can next argue over all executions resulting in a check failure in sseq and show
that they result in a check failure in sseq

opt (The full proofs are in Appendix D).

5 Methodology

Implementation and Testing Setup. We parsed and translated Go programs
written using a library of Diamont primitives to Diamont-IR using ANTLR. We

Diamont 199

Table 1. Benchmarks, verified properties, and runtime monitoring overhead for Dia-
mont. Baselines: �:Decaf, †:AffineFloat

Benchmark Pattern Uncertainty source Verified property Overhead

Baseline Diamont

PageRank Scatter-Gather Noisy Channel checkArr(pagerank, 0, 0.9912) 30%� 3.63%

SSSP Scatter-Gather Noisy Channel checkArr(distance, 0, 0.9925) 33%� 2.31%

BFS Scatter-Gather Noisy Channel checkArr(visited, 0, 0.9925) 30%� 4.06%

SOR Stencil Precision Reduction checkArr(output, 1.19 × 10−7, 1) 60%† 3.49%

Sobel Stencil Precision Reduction checkArr(output, 2.38 × 10−7, 1) 71%† 9.71%

Matrix Mult. Map Precision Reduction checkArr(product, 6.6 × 10−6, 1) 80%† 16.27%

Kmeans-Agri Map Noisy Channel, Input checkArr(centers, 〈1.5, 0.9948〉, 〈2,0.9948〉) 42%�† 3.32%

Regression Map-Reduce Timing Error check(alpha, 0, 0.99)∧check(beta, 0, 0.99) 37%� 0.45%

used Python to sequentialize Diamont programs for checking properties such
as type safety and deadlock-freedom, and then for generating instrumented Go
code. We implemented distributed communication using RabbitMQ 3.8.7. We
ran our experiments on a machine with a Xeon E5-1650 v4 CPU, 32 GB RAM,
and Ubuntu 18.04. Each benchmark consisted of 8–10 worker processes.

Benchmarks. We implemented a set of popular parallel benchmarks from prior
literature that exhibit diverse parallel patterns and verified properties that quan-
tify uncertainty in their executions (Table 1). We looked at the following bench-
marks:

– PageRank, SSSP, BFS: Graph benchmarks commonly used in distributed Big
Data applications. PageRank is used for search result optimization [27]. Single
Source Shortest Path is used to make data routing decisions. Breadth First
Search is used to find connected components in graphs. From CRONO [2].

– SOR: A kernel for successive over-relaxation. Used to extrapolate the state
of a system over time. From Chisel [26].

– Sobel: Sobel edge-detection filter. From AxBench [44].
– Matrix Mult.: Multiplies two square matrices. Each worker process computes

a subset of rows of the product.
– Kmeans-Agri: Partitions n-dimensional input points into k clusters (Sect. 2).
– Regression: Performs distributed linear regression on 2-D data. Each worker

performs regression on a subset of data. The master thread averages the
results.

Inputs. The inputs for each benchmark used for our experiments are shown in
Appendix E. For Sect. 6.3, we used larger inputs created by increasing the size
of the array, the number of samples, or by using a larger input graph.

Sources of Uncertainty. Noisy channels occasionally corrupt data sent over
them (used for PageRank, SSSP, BFS, and Kmeans-Agri). We use a corrup-
tion rate of 10−7. Precision reduction reduces floating point precision from
64-bit to 32-bit during communication only to save bandwidth (used in SOR,
Sobel, Matrix Mult.). The input provided to the program itself can have inher-
ent uncertainty. For Kmeans-Agri, we assume a 50:50 mixture of two different

200 V. Fernando et al.

temperature-humidity sensors with different error specifications. Timing errors
can cause the program to use stale or incomplete values (used for Regression).

Baselines. We compare the runtime of Diamont with optimizations to a baseline
which is a straightforward parallel implementation of an existing static analysis
via Diamont (either Decaf [6] or AffineFloat [13] without roundoff errors).

6 Evaluation

6.1 Can We Verify Important Uncertainty Properties Using
Diamont?

For each benchmark, we used Diamont to verify the properties shown in Col-
umn 3 of Table 1. Diamont successfully verified these properties on the final
output of the program. Each check places an error magnitude and confidence
bound on a single variable. For arrays each element must satisfy these bounds.
For PageRank, SSSP, and BFS, the bounds ensure that key graph properties
are calculated exactly ≥99% of the time per node. For SOR, Sobel and Matrix
Mult., the bounds limit the maximum error of the output due precision reduc-
tion. Kmeans-Agri was discussed in the example. For Regression, the bounds
ensure that the output line parameters are correct ≥99% of the time (high con-
fidence is desirable for predictive models).

Parallely [19] cannot verify these properties. Diamont’s dynamic analysis of
arrays and unbounded loops more effectively handles irregular input structure
(e.g., graphs), which had to be conservatively bounded for static analysis. This
allowed us to verify stronger properties for significantly bigger inputs than previ-
ously possible for existing reliability and accuracy static analyses. We observed
that, even in the presence of errors, the error magnitude of the final outputs of
our programs was acceptable.

Optimizations can affect the precision of the analysis. This effect is prominent
in benchmarks with irregular computations (graph benchmarks). However, in our
benchmarks, we found that baseline and optimized Diamont could verify nearly
the same uncertainty bounds. For example, for BFS, Diamont could verify a
confidence of 0.999 when using the baseline version. For benchmarks with regular
computation patterns, such as SOR and Regression, there was no significant
change.

In summary, Diamont verifies important end-to-end uncertainty properties that
cannot be verified using existing static analyses.

6.2 What Are the Overheads Associated with Diamont?

Columns 4 and 5 of Table 1 present the overhead of the baseline and optimized
Diamont benchmarks respectively. Time for I/O and setup is excluded. Over-
head is calculated as the percentage increase in runtime w.r.t. an unmonitored
benchmark.

Diamont 201

Size Baseline Diamont
2x 69.1% 8.68%
4x 84.4% 10.2%
6x 93.7% 14.1%
8x 91.8% 12.9%

Fig. 9. Input size vs. Overhead. Table shows geomean overheads across programs.

In our benchmarks, the runtime is dominated by communication, as is com-
mon in many distributed settings. In most cases, the runtime overhead for com-
puting the uncertain intervals is a small fraction of the total runtime. Error
magnitude calculation requires more computation than error confidence (see
Fig. 5). As a result, overhead for error magnitude benchmarks (SOR, Sobel,
Matrix Mult.), is higher. This was especially true for the computationally inten-
sive Matrix Mult.

Optimization Impact. The Regression benchmark used a statically verified
kernel error specification to eliminate monitoring. The communication optimiza-
tion contributes around 98% of savings in all other benchmarks. Debloating also
provided significant speedups. For example, without debloating PageRank is
3.9x slower and Sobel is 3.3x slower (our baseline is comparable to Diamont
with debloating).

Are the Overheads Justified? Approximations have led to significant sav-
ings in prior work: 1) Communication: up to 62% performance improvement in
approximate NoCs [11,17], and 2) Computation: 2x speedup in loop perfora-
tion [40], 2.7x speedup in Paraprox [34], and up to 1.3x speedup from reduced
precision in Precimonious [33]. As Diamont’s post-optimization overhead is lower
than the speedups from these approximations, it can be used in conjunction with
them to provide guarantees on the quality of results while still getting speedups.

In summary, With optimization, overhead of Diamont analysis is at most 16.3%
for our benchmarks, with a geomean of 3.04%.

6.3 How Does Diamont Overhead Depend on the Program Inputs?

Figure 9 shows the effect of input size on Diamont overhead. The X-Axis shows
the relative input size and the Y-Axis shows overhead. The dashed and solid
lines show the unoptimized baseline and optimized Diamont versions respec-
tively. Each marker indicates a different benchmark. Overall, the overhead of

202 V. Fernando et al.

the optimized versions is significantly lower than the baseline versions. Most
optimized versions have an overhead less than 25% for all inputs. The table in
Fig. 9 shows the geomean of the overhead across all benchmarks for different
relative input sizes. While baseline overhead increases to an average of 94%,
optimized overhead only reaches 14%.

For Matrix Mult., computation increases faster with input size than com-
munication (O(n3) vs. O(n2)). Thus the major source of overhead becomes the
computation of the monitored uncertainty, rather than communication. This
benchmark illustrates that Diamont is more useful in cases where the program
is communication-bound.

The unoptimized baseline also sends significantly more data (3x to 5x) com-
pared to the optimized version. This is due to the array communication opti-
mization. The communication overhead of the optimized version is negligible.

In summary, as input size grows, the improvement caused by optimizations on
Diamont runtime performance increases over the baseline runtime system.

7 Related Work

Several analyses are related (in part) to Diamont’s functionality, as shown in
Table 2. Columns 2–4 indicate whether the analysis is static, empirical (sampling-
based), or runtime based. Columns 5–6 indicate support for error confidence
(reliability) and error magnitude (accuracy) analysis. Column 9 indicates if the
system can support multiple sources of uncertainty. In contrast to all these anal-
yses, Diamont is the only one flexible enough to simultaneously support multiple
analyses and approximation sources, and in addition, extending these to parallel
programs.

Static Analyses for Approximate Programs. Though multiple static anal-
yses target approximate programs (e.g., [8,9,12,23,26,28,35,37]), most relevant
to Diamont is Parallely [19], which retains the limitations of the underlying
static analyses requiring developers to provide bounds on loop iterations, array
sizes, and number of processes. In contrast, Diamont successfully combines static
and dynamic analysis and works on a real language (Go), which jointly allow
for verification of much larger benchmarks. Additionally, Diamont also extends
sequentialization for dynamic conditions.

Dynamic Analysis and Runtime Monitoring. DECAF [6] performs
dynamic reliability verification through type inference. Our work avoids
DECAF’s strict independence assumptions by adding reliabilities instead of mul-
tiplying (both bounds are close in practice). Ringenburg et al. [32] propose offline
and online approaches to monitor the quality of programs, using methods such
as dataflow techniques and comparison to the precise program. Diamont instead
propagates uncertain intervals during both static and dynamic phases, allowing
it to monitor uncertainty with greater precision. Maderbacher et al. [25] focus on
precisely correcting bitflips with minimal checks. In contrast, Diamont monitors
uncertainty from many sources in programs that can tolerate some error.

Diamont 203

Table 2. Comparison of Related Work. (�* indicate analyses that monitor confidence
intervals, which is another interpretation of Diamont’s uncertain intervals)

Method Static Empirical Runtime Reliability Accuracy Verified Parallel Multi-Source

Diamont � × � � � � � �
Parallely � × × � � � � �
Rely � × × � × � × ×
Chisel � � × � � � × �
DECAF � × � � × � × ×
EnerJ � � × × × � × ×
AffineFloat � × � × � � × ×
PAssert × � � �* �* � × ×
Uncertain<T> × � � �* �* × × ×

AffineFloat [13] and Ceres [14] provide dynamic analysis for numerical error.
Herbgrind [38] locates possible sources of numerical error. These tools measure
floating point roundoff errors, but have high overhead. Diamont focuses on ana-
lyzing error from casting and external sources e.g., sensors. Uncertain〈T〉 [4] used
an early form of uncertain intervals, however they use sampling to determine
error. Statistical model checking tools [39] can provide statistical guarantees on
program properties expressed in a temporal logic. PAssert [36] and AxProf [21]
statistically verify at development time a single probabilistic assertion at the end
of the program. In contrast, Diamont supports many checks at different points
in the program at runtime.

8 Conclusion

The past decade brought many techniques for developing new approximations
and analyzing uncertainty for specific scenarios, but much less work has been
done in integrating these diverse concepts in a unifying, rigorous, and extensi-
ble framework. Diamont aims to pave the way toward that goal – it supports
multiple uncertainty sources (input noise, variable-precision code, errors in com-
munication, and unreliability in hardware), combines static analysis and dynamic
monitoring, supports a significant fragment of the Go language, and operates on
several emerging applications (precision agriculture, graph analytics, and media
processing).

We demonstrated the benefit of our analysis and optimizations by reducing
the execution overhead to 3% on average (16.3% maximum). We believe this
work can serve as a starting point for sound runtime systems in domains that
need to rigorously handle uncertainty, such as robotics or the Internet-of-Things.

Acknowledgements. We thank the anonymous reviewers for their useful suggestions.
The research presented in this paper was supported in part by NSF Grants No. CCF-
1846354, CCF-1956374, CCF-2028861, and CCF-2008883, USDA Grant No. NIFA-
2024827, and a gift from Facebook.

204 V. Fernando et al.

References

1. Achour, S., Rinard, M.: Energy efficient approximate computation with Topaz. In:
OOPSLA (2015)

2. Ahmad, M., Hijaz, F., Shi, Q., Khan, O.: CRONO: a benchmark suite for multi-
threaded graph algorithms executing on futuristic multicores. In: IISWC (2015)

3. Bakst, A., Gleissenthall, K.v., Kici, R.G., Jhala, R.: Verifying distributed programs
via canonical sequentialization. In: OOPSLA (2017)

4. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain <T>: a first-order type
for uncertain data. In: ASPLOS (2014)

5. Boston, B., Gong, Z., Carbin, M.: Leto: verifying application-specific hardware
fault tolerance with programmable execution models. In: OOPSLA (2018)

6. Boston, B., Sampson, A., Grossman, D., Ceze, L.: Probability type inference for
flexible approximate programming. In: OOPSLA (2015)

7. Boyapati, R., Huang, J., Majumder, P., Yum, K.H., Kim, E.J.: APPROX-NoC: a
data approximation framework for network-on-chip architectures. In: ISCA (2017)

8. Carbin, M., Kim, D., Misailovic, S., Rinard, M.: Proving acceptability properties
of relaxed nondeterministic approximate programs. PLDI 47, 169–180 (2012)

9. Carbin, M., Kim, D., Misailovic, S., Rinard, M.: Verified integrity properties for
safe approximate program transformations. In: PEPM (2013)

10. Carbin, M., Misailovic, S., Rinard, M.: Verifying quantitative reliability for pro-
grams that execute on unreliable hardware. In: OOPSLA (2013)

11. Chen, Y., Louri, A.: An approximate communication framework for network-on-
chips. IEEE Trans. Parallel Distrib. Syst. 31, 1434–1446 (2020)

12. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy-
framework for analysis and optimization of numerical programs. In: TACAS (2018)

13. Darulova, E., Kuncak, V.: Trustworthy numerical computation in Scala. In: OOP-
SLA (2011)

14. Darulova, E., Kuncak, V.: Certifying solutions for numerical constraints. In:
Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 277–291. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2 27

15. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: an architectural framework
for software recovery of hardware faults. ISCA 38, 497–508 (2010)

16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
OSDI (2004)

17. Fernando, V., Franques, A., Abadal, S., Misailovic, S., Torrellas, J.: Replica: a
wireless manycore for communication-intensive and approximate data. In: ASPLOS
(2019)

18. Fernando, V., Joshi, K., Laurel, J., Misailovic, S.: Appendix to Diamont (2021).
https://vimuth.github.io/diamont/appendix.pdf

19. Fernando, V., Joshi, K., Misailovic, S.: Verifying safety and accuracy of approxi-
mate parallel programs via canonical sequentialization. In: OOPSLA (2019)

20. Golubovic, N., Krintz, C., Wolski, R., Sethuramasamyraja, B., Liu, B.: A scalable
system for executing and scoring K-means clustering techniques and its impact on
applications in agriculture. Int. J. Big Data Intell. 6, 163–175 (2019)

21. Joshi, K., Fernando, V., Misailovic, S.: Statistical algorithmic profiling for random-
ized approximate programs. In: ICSE (2019)

22. Joshi, K., Fernando, V., Misailovic, S.: Aloe: verifying reliability of approximate
programs in the presence of recovery mechanisms. In: CGO (2020)

https://doi.org/10.1007/978-3-642-35632-2_27
https://vimuth.github.io/diamont/appendix.pdf

Diamont 205

23. Lahiri, S., Haran, A., He, S., Rakamaric, Z.: Automated differential program veri-
fication for approximate computing. Technical report (2015)

24. Liu, T.: Datasheet for AM2302 Sensor (2020). https://cdn-shop.adafruit.com/
datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf

25. Maderbacher, B., Karl, A.F., Bloem, R.: Placement of runtime checks to counter-
act fault injections. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 241–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7 13

26. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.: Chisel: reliability- and
accuracy-aware optimization of approximate computational kernels. In: OOPSLA
(2014)

27. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Technical report (1999)

28. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI (2015)

29. Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks.
J. Netw. Syst. Manag. 15, 171–190 (2007). https://doi.org/10.1007/s10922-007-
9062-0

30. Ranjan, A., Venkataramani, S., Fong, X., Roy, K., Raghunathan, A.: Approximate
storage for energy efficient spintronic memories. In: DAC 2015 (2015)

31. Recht, B., Re, C., Wright, S., Niu, F.: HOGWILD: a lock-free approach to paral-
lelizing stochastic gradient descent. In: Advances in Neural Information Processing
Systems (2011)

32. Ringenburg, M., Sampson, A., Ackerman, I., Ceze, L., Grossman, D.: Monitoring
and debugging the quality of results in approximate programs. In: ASPLOS (2015)

33. Rubio-González, C., et al.: Precimonious: tuning assistant for floating-point preci-
sion. In: SC (2013)

34. Samadi, M., Jamshidi, D.A., Lee, J., Mahlke, S.: Paraprox: pattern-based approx-
imation for data parallel applications. In: ASPLOS (2014)

35. Sampson, A., et al.: Accept: a programmer-guided compiler framework for practical
approximate computing. Technical report (2015)

36. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: PLDI (2014)

37. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
EnerJ: approximate data types for safe and general low-power computation. In:
PLDI (2011)

38. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding root causes of
floating point error. In: PLDI (2018)

39. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

40. Sidiroglou, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance
vs. accuracy trade-offs with loop perforation. In: FSE (2011)

41. Stanley-Marbell, P., et al.: Exploiting errors for efficiency: a survey from circuits
to applications. ACM Comput. Surv. J. 53, 1–39 (2020)

42. Stevens, J.R., Ranjan, A., Raghunathan, A.: AxBA: an approximate bus architec-
ture framework. In: ICCAD (2018)

43. TensorFlow Developers: Tensorflow (2021). https://doi.org/10.5281/zenodo.
5159865. https://www.tensorflow.org

https://cdn-shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf
https://cdn-shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf
https://doi.org/10.1007/978-3-030-60508-7_13
https://doi.org/10.1007/978-3-030-60508-7_13
https://doi.org/10.1007/s10922-007-9062-0
https://doi.org/10.1007/s10922-007-9062-0
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.5281/zenodo.5159865
https://doi.org/10.5281/zenodo.5159865
https://www.tensorflow.org

206 V. Fernando et al.

44. Yazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., Lotfi-Kamran, P.: AxBench:
a multiplatform benchmark suite for approximate computing. IEEE Design Test
34(2), 60–68 (2017)

45. Zhuang, W., Chen, X., Tan, J., Song, A.: An empirical analysis for evaluating the
link quality of robotic sensor networks. In: WCSP (2009)

Assumption-Based Runtime Verification
of Infinite-State Systems

Alessandro Cimatti, Chun Tian(B), and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,ctian,tonettas}@fbk.eu

Abstract. Runtime Verification (RV) basically means monitoring an
execution trace of a system under scrutiny and checking if the trace
satisfies or violates a specification. In Assumption-Based Runtime Veri-
fication (ABRV), runtime monitors may be synthesized from not only the
specification but also a system model (either full or partial), which rep-
resents the assumptions on which the input traces are expected to follow.
With assumptions the monitor can additionally check if the input traces
actually follow the assumptions. Some previous research has shown that
monitors under assumptions can be more precise or even predictive, while
non-monitorable specifications may become monitorable under assump-
tions.

The question of synthesizing runtime monitors for finite-state sys-
tems and propositional or first-order temporal logics, with or without
assumptions, has mostly been answered by prior work. For monitoring
infinite-state systems, however, most existing approaches focus on sup-
porting parametric or first-order specifications while they cannot be eas-
ily extended to support assumptions.

This paper presents a general solution for ABRV of infinite-state sys-
tems by a reduction of RV problems to LTL Model Checking (MC), which
is further based on Satisfiability Modulo Theories and other techniques.
When First-Order Quantifier Elimination (QE) is also available, the cor-
responding algorithm can be greatly optimized. This solution is general
because in theory any LTL MC (and QE) algorithms can be used, and the
supported types of infinite-state variables also depend on these under-
lying algorithms. In particular, the relatively expensive model checking
can be minimized by a modified version of Bounded Model Checking
algorithm which performs model checking incrementally on each input
of the monitor.

1 Introduction

Runtime Verification (RV) [15,20] is a lightweight verification technique aiming
at monitoring the execution trace of a system under scrutiny (SUS) and checking
if the trace satisfies or violates a specification. The central task in RV is monitor
synthesis, i.e. generating from the specification a runtime monitor, which takes
a run (execution trace) from the SUS and outputs verdicts for each states of the

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 207–227, 2021.
https://doi.org/10.1007/978-3-030-88494-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_11

208 A. Cimatti et al.

run. Although a specification1 exists within the context of a system model, i.e.
the abstraction of the system being specified, the current taxonomy for classify-
ing RV tools [21] does not consider synthesizing runtime monitors from a system
model, in addition to the specification.

Assumption-Based Runtime Verification (ABRV) [13] extends the traditional
Runtime Verification (RV) [20,29] by additionally assuming an underlying sys-
tem model that the input traces are expected to follow. The resulting runtime
monitor checks if, under the assumptions given by the model, the SUS execution
satisfies or violates the property (and additionally if the execution is compliant
with the assumption). Prior research [13,24,28] has shown that, for certain com-
binations of models and properties, assumption-based monitors are more precise
(i.e. arriving at a conclusion based on the assumption while traditional monitors
would be inconclusive), or even predictive (i.e. arriving at a conclusion before
the input trace actually says so). In particular, if the monitor would never have
reached a conclusive verdict, it might do so because of the assumption. Another
advantage of the assumption-based approach is the possibility of monitoring
properties over partially-observable systems, capturing as the assumption the
relationship between observable and internal states of the SUS.

The question of synthesizing runtime monitors for finite-state systems and
propositional temporal logics, with or without assumptions, has mostly been
answered by prior work [1,4,13]. In particular, for ABRV, there exist effective
automata-based approaches using Binary Decision Diagrams (BDD) [7] to rep-
resent belief states, i.e., the set of automata states where the system can be
according to a sequence of (partial) observations.

In the case of infinite-state systems, of which the state variables may have
infinite domains (such as integer, rational and real variables), the correspond-
ing RV problem (i.e. monitoring LTL) can be in theory resolved by evaluating
the property (Boolean) propositions over the non-Boolean variables. Going from
propositional to first-order temporal logic (or even further), existing work mostly
put a focus on supporting things like parametric specifications [34] or specifica-
tions with first-order quantifiers [23].

This paper presents a general new approach for ABRV of infinite-state sys-
tems (the related algorithms can also be applied to finite-state systems). Instead
of relying on BDDs, which is used by NuRV [14] (the previous tool implementa-
tion of ABRV), the idea is based on Satisfiability Modulo Theories (SMT) [2]. We
show how to reduce RV problems directly to SMT-based LTL Model Checking
(MC) problems, then solvable by model checkers like nuXmv [8]. This solution
is general because in theory any LTL MC (and QE) algorithms can be used, and
the supported types of infinite-state variables also depend on these underlying
algorithms. For the LTL semantics over finite traces, which is also the semantics
of monitoring outputs, our choice is still based on LTL3 [1] with respect to extra

1 According to [21], a specification is a concrete description of a property (a partition
of traces) using a well-defined formalism (like LTL). However, this difference is not
very important here, and thus we use the words “property” and “specification”
interchangeably for the rest of this paper.

Assumption-Based RV of Infinite-State Systems 209

verdicts (out-of-model) due to RV assumptions. In comparison with other possi-
ble LTL semantics for RV purposes [3], it turns out that, with our choice, there
exists a simple and elegant reduction from RV to MC problems. If, additionally,
First-Order Quantifier Elimination [33] is also available (for the chosen first-order
theory), the corresponding algorithm can be greatly optimized, without seeing
the monotonically growing of SMT formulas during the monitoring. In this case,
the algorithm keeps track of a belief state, representing all states in which the
system can be according to the assumption after a sequence of observation. The
RV problem is then reduced to checking, after each observation, the emptiness
checking of symbolic automata with the belief states as initial conditions.

However, there are performance bottlenecks in MC- or SMT-based RV
approaches, in comparison with BDD-based approaches, because both model
checking and quantifier elimination are computationally heavy. To this purpose,
we extend the basic RV-MC reductions with optimizations that perform (rela-
tively cheap) incomplete checks instead of the more expensive model checking
calls. One such optimization is to always check first the literal emptiness of the
belief state by SMT solvers, the other is to use the incomplete plain Bounded
Model Checking (BMC) [5], with improved encodings for the full class of LTL
properties [12], only for detecting counterexamples (the plain use). With these
significantly faster checks, the full IC3-based model checker [10] is now rarely
called (at most twice in each run).

To obtain some empirical results, we have implemented our algorithms in a
new version of NuRV, which is based on nuXmv and MathSAT SMT solver [11]
(MathSAT provides some quantifier elimination procedures). We present an
experimental evaluation of the performance of the basic monitoring algorithms
and various optimizations. Results on the best optimized algorithm seem to be
promising for practical applications.

Outline of the Paper. In Sect. 2 we recall some related concepts and definitions.
In Sect. 3, we describe an example of ABRV with infinite-state assumptions.
In Sect. 4 we give two basic RV algorithms and prove their correctness proofs.
Furthermore, Sect. 4.3 discusses various optimizations of the basic algorithms.
Some experimental evaluations and results are given in Sect. 5. Finally, we discuss
related work in Sect. 6 and conclude the paper in Sect. 7.

2 Preliminaries

2.1 Satisfiability Modulo Theory

We work in the setting of Satisfiability Modulo Theory (SMT) [2] and LTL Mod-
ulo Theory (see, e.g., [9]). First-order formulas are built as usual by proposition
logic connectives, a given set of variables V and a first-order signature Σ, and
are interpreted according to a given Σ-theory T . We assume to be given the
definition of M, s |=T ϕ where M is a Σ structure, s is a value assignment to the
variables in V , and ϕ is a formula. Whenever M is clear from contexts we omit
it and simply s |=T ϕ. With slight abuse of notations, we also use an assignment

210 A. Cimatti et al.

s = {x1 �→ v1, . . . , xn �→ vn} to represent the corresponding formula, i.e., the
conjunction

∧
i(xi = vi). We sometimes write φ(V) or φ(V1, V2) instead of φ to

highlight that the free variables of formula φ belong to V or V1 ∪ V2, respec-
tively. Arbitrary first-order theories can be supported by our RV algorithm, as
long as the underlying SMT solver and model checker support them. For illus-
trating purposes, we only consider LRA, the theory of linear arithmetics with
real numbers.

2.2 First-Order Quantifier Elimination

First-order quantifier elimination [33] methods, which convert formulas into T -
equivalent quantifier-free formulas, are parts of many SMT solvers (e.g., Z3, Yices
and MathSAT) for checking the satisfiability of quantified formulas. Hereafter we
will omit the words “first-order” and only call it “quantifier elimination” or QE.
Formally speaking, if α(V1 ∪ V2) is quantifier-free formula (of the theory T) built
by variables from the set V1 ∪ V2, the role of quantifier elimination is to convert
the first-order formula ∃V1.α(V1 ∪ V2) into an T -equivalent formula β(V2), where
β is quantifier-free and is built by only variables from V2. Quantified elimination
is possible only for some first-order theories. In practice, for LRA, most SMT
solvers use methods like Fourier-Motzkin [27], Ferrante-and-Rackoff [22] or Loos-
and-Weispfenning [30]. Note that QE procedures do not guarentee any kind of
boundedness of the resulting formulas.

2.3 Fair Transition System

Infinite-state systems (used as RV assumptions) in this paper are described
as Fair Transition Systems (FTS) [32], denoted by 〈V,Θ, ρ,J 〉, where V =
{x1, . . . , xn} is a finite set of variables, Θ the initial condition, ρ the transition
relation, and J a (finite) set of justice conditions. (Θ, ρ and each element of
J are quantifier-free T -formulas). Given an FTS K = 〈V,Θ, ρ,J 〉, a state s
of K is just a value assignment of variables in V . Any formula using variables
in V can be interpreted as the set of states satisfying the formula. Θ and each
J ∈ J are such formulas, while ρ is a formula about V and its primed ver-
sion V ′ = {x′

1, . . . , x
′
n} indicating the relationship between the current and next

states. If s is an assignment to V , s′ is the corresponding assignment to V ′ such
that s′(v′) = s(v) for all v ∈ V .

The forward image of a set of states ψ(V) on ρ(V, V ′) is a formula

fwd(ψ(V), ρ(V, V ′))(V) =̇ (∃V. ρ(V, V ′) ∧ ψ(V))[V/V ′] (1)

where [V/V ′] denotes the substitution of (free) variables in V ′ with the corre-
sponding one in V . The existential quantifiers in forward images can be elimi-
nated by QE procedures.

A fair path σ = s0s1 · · · of K is an infinite sequence of states such that: (1)
s0 |=T Θ(V); (2) for each i, si ∪ s′

i+1 |=T ρ(V, V ′); (3) for each J ∈ J there
are infinitely many i such that si |=T J(V). Let L(K) be the set of all fair
paths of K. Sometimes we write σi for the zero-indexed i-th element of σ, i.e.
σ = σ0σ1 A trace is a finite or infinite sequence of value assignments of V .

Assumption-Based RV of Infinite-State Systems 211

2.4 Linear Temporal Logic

In this paper, we consider properties specified in first-order quantifier-free Linear
Temporal Logic (LTL) [31] with both future and past operators. The set of LTL
formulas can be inductively defined as follows:

ϕ ::= true
∣
∣ α

∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ Yϕ

∣
∣ ϕSϕ

where the (quantifier-free) formula α is built by a set of variables V and a first-
order signature Σ, and is interpreted according to a Σ-theory T . The temporal
operator X stands for next, U for until, Y for previous, and S for since. Other
logical constants and operators like false, ∧, → and ↔ are used as syntactic
abbreviations with their standard meanings in propositional logic. We also use
the metric operators Xn and F≤k here defined as an abbreviations: X0ϕ := ϕ,
Xk+1ϕ := XXkϕ for k ≥ 0, and F≤kϕ :=

∨
0≤i≤k X

iϕ.
The semantics of LTL formulas over infinite traces are standard for proposi-

tional and temporal operators (see, e.g. [13] for the full definitions). For atoms
the semantics is reduced to the theory-specific semantics:

σ, i |= α(V, V ′) iff σi ∪ σ′
i+1 |=T α(V, V ′)

Any LTL formula can be translated into an equivalent FTS such that the
set of fair paths of the FTS, when projected to V , coincides with the set of
infinite traces satisfying the same LTL formula. Here we use essentially the same
LTL translation algorithm in [13] (Sect. 2) except that the atomic formulas are
translated syntactically as Boolean variables. Note that, for any LTL formula ϕ
and its negation ¬ϕ, their LTL translations (as FTS) only differ at the initial
conditions (this property is indeed leveraged in all our RV algorithms to be
presented in this paper).

2.5 Assumption-Based Runtime Verification

The definition of the ABRV problem and the related ABRV-LTL semantics
adopted in this paper are essentially the same as in the authors’ previous paper
for the finite-state case [13]. There are some minor changes for the support of
infinite-state systems and non-Boolean variables.

Let K be an FTS as the RV assumption on the behavior of the SUS. When
the SUS is partially observable, the monitor has only partial information on the
actual state of the SUS. For simplicity purposes we assume that the monitor
receives a sequence of value assignments for a subset O of all state variables V
of the FST K (see [13] for a more general setting). A trace over O, also called a
trace of observations, is a finite or infinite sequence of value assignments of O.

Given a finite trace u over O, the set of fair paths compatible with u is defined
below: (roughly speaking, each ui is a subset of variable assignments of σi)

LK(u) =̇
{
σ ∈ L(K)

∣
∣ ∀i < |u|. σi |=T ui

}
. (2)

212 A. Cimatti et al.

The LTL semantics of ϕ over the finite trace u at index i, having four possible
values: conditionally true (�a), conditionally false (⊥a), inconclusive (?) and
out-of-model (×), is defined below:

�u, i |= ϕ�K
4 =̇

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

×, if LK(u) = ∅
�a, if LK(u) �= ∅ and ∀w ∈ LK(u). w, i |= ϕ

⊥a, if LK(u) �= ∅ and ∀w ∈ LK(u). w, i |= ¬ϕ

?, otherwise.

(3)

In the finite-state ABRV, we also consider a Boolean reset signal that is used
to reset the index used as reference to evaluate the property. In this paper, to
simplify the presentation, we omit this additional feature (although it is imple-
mented and supported by the tool implementation) and define the infinite-state
ABRV problem as the problem of constructing a function (as runtime monitor)
taking a finite trace u over O and returning an ABRV-LTL verdict:

MK
ϕ (u) =̇ �u, 0 |= ϕ�K

4 . (4)

3 Motivating Example

In this section, we describe a use case of ABRV with an infinite-state assumption
using a simple example of a temperature controller. Consider a system that heats
the water in a tank until reaching the temperature of 100. The temperature is
represented by a real variable t. The internal state of the system, which may
be heating or not, is represented by the Boolean variable h. The command to
switch on the heating system is represented by s, while f represents a fault that
switches off the system permanently. Let us define a system model K with the
following formulas:

– Initial condition: t = 0 (the temperature is initially 0)
– Transition conditions (implicitly conjoined):

• t′ ≥ 0 ∧ t′ ≤ 100 (the temperature always remains between 0 and 100)
• h → ((t = 100 ∧ t′ = 100) ∨ (10 ≤ t′ − t ≤ 20)) (if the system is heating,

the temperature increases by a rate between 10 and 20 or remains 100 if
it already reached that temperature)

• ¬h → ((t = 0 ∧ t′ = 0) ∨ (−20 ≤ t′ − t ≤ −10)) (if the system is not
heating, the temperature decreases by a rate between −20 and −10 or
remains 0 if it already reached that temperature)

• h → (h′ ↔ ¬f) (if the system is heating, it remains so unless there is a
fault)

• (¬h) → (h′ ↔ (s ∧ ¬f)) (if the system is not heating and is not faulty,
then it can be switched on with the command s)

• f → f ′ (the fault is permanent)

Assumption-Based RV of Infinite-State Systems 213

Suppose we can only observe the temperature and the switching command,
and that we want to monitor the following property: ϕ1 = G(s → F(t = 100))
(whenever the heating system is switched on, the temperature will eventually
reach the temperature of 100). The assumption that the system behaves accord-
ing to K can be exploited by the ABRV monitor to deduce things like, whenever
the temperature decreases there was a fault and so the temperature will never
reach the desired level. Thus the monitor can detect the violation of a property
which, without assumptions, would not be monitorable.

More specifically, consider the finite trace of observations u = {t �→ 0, s �→
�}, {t �→ 20, s �→ ⊥}, {t �→ 10, s �→ �}. Since, without considering the assump-
tion, there is a continuation of u satisfying ϕ1 and one violating ϕ1, a standard
RV monitor is inconclusive (the output is ?). Considering K as assumption, all
fair paths of K compatible with u violate ϕ. Thus, �u, 0 |= ϕ1�

K
4 = ⊥a.

As an additional example, consider a stronger property G(s → F≤7(t =
100)), i.e., whenever the heating system is switched on, the temperature will
reach 100◦ within 7 steps. In this case, from the assumption on the rates of the
temperature, the ABRV monitor can deduce that after a number of steps, if the
temperature is still low, it will not reach t = 100 in time. For example, if after 4
steps, the temperature is still less than 40, even with the maximum rate, it will
not reach 100 in other 3 steps. Thus, at runtime the monitor can say that the
property is violated 3 steps in advance.

4 ABRV Algorithms for Infinite-State Systems

4.1 ABRV Reduced to Model Checking

We first revisit the relationship between runtime verification and model checking,
as clarified in [28], to conceive a trivial solution ABRV based on calling a model
checker at every observation.

Given an FTS K as the RV assumption, a set of observable variables O,
an LTL formula ϕ as the monitoring property, and a finite trace u over O, let
Su be an FTS whose fair paths are those compatible with u (formally, an FTS
such that L(Su) = LU (u), where U = 〈V,�,�, ∅〉 is the FTS with an universal
language). Then we have by (4),

MK
ϕ (u) = �u, i |= ϕ�K

4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

×, if K × Su |= ϕ and K × Su |= ¬ϕ

�a, if K × Su |= ϕ and K × Su �|= ¬ϕ

⊥a, if K × Su �|= ϕ and K × Su |= ¬ϕ

?, otherwise.

(5)

From this equation, we can derive a simple monitor called monitor1, which
calls the model checker twice for each input state. It is also depicted in Fig. 1,
where the output is defined as in (5).

214 A. Cimatti et al.

Fig. 1. ABRV reduced to MC

Fig. 2. ABRV reduced to MC and QE

4.2 ABRV Reduced to MC and Quantifier Elimination

In monitor1 the entire input trace (the prefix received so far) must be encoded
into a model (i.e. an FTS) Sμ, and obviously the model checker is called on
increasingly bigger problems linear to the length of the trace prefix. In practice
monitor1 will be too slow after receiving even a small number of input states.
The key for getting a better RV algorithm is to find a way to maintain some
internal status which is updated by each input state in the trace. For automata-
based RV monitors, the status is the location of monitor automata. For rewriting-
based RV approaches, the status is the current form of the monitoring property
after rewriting.

Recall in the finite-state ABRV algorithm [13], the BDD-based symbolic mon-
itor keeps track of two belief states rϕ and r¬ϕ as the possible internal locations
of automata K × Tϕ and K × T¬ϕ (K is the RV assumption, Tϕ and T¬ϕ are
LTL translations of ϕ and ¬ϕ, resp.), reachable with fair paths compatible with
the input trace. These states are updated at each input. Since previous input
states are not accessible by the algorithm, and the belief states as BDDs have
bounded memory consumption, the RV algorithm given in [13] is trace-length
independent [17], i.e. having bounded memory consumption (with also a time
complexity linear to the length of the trace prefix).

The monitor monitor2 detailed in Algorithm 1 is very similar to the symbolic
algorithm given [13]. Instead of representing formulas as BDDs, now we directly
operate on raw formulas involving any type of variables. (However, in the worse
case these formulas have unbounded sizes).

Assumption-Based RV of Infinite-State Systems 215

Table 1. Output Table of Fig. 2 and Algorithm 1

¬�K × Tϕ(rϕ) |= false� ¬�K × Tϕ(r¬ϕ) |= false� MK
ϕ (·)

� � ?

� ⊥ �a

⊥ � ⊥a

⊥ ⊥ ×

Algorithm 1: The RV monitor for infinite-state systems
1 function monitor2(K =̇ 〈VK , ΘK , ρK , JK〉, ϕ, u)
2 Tϕ =̇ 〈Vϕ, Θϕ , ρϕ, Jϕ〉 := ltl translation(ϕ); // χ(ϕ) is in Θϕ

3 T¬ϕ =̇ 〈Vϕ, Θ¬ϕ, ρϕ, Jϕ〉 := ltl translation(¬ϕ);
4 V := VK ∪ Vϕ;
5 〈rϕ, r¬ϕ〉 := 〈ΘK ∧ Θϕ, ΘK ∧ Θ¬ϕ〉;
6 if |u| > 0 then
7 〈rϕ, r¬ϕ〉 := 〈rϕ ∧ u0, r¬ϕ ∧ u0〉;
8 for 1 � i < |u| do
9 rϕ := quantifier elimination(V , ρK ∧ ρϕ ∧ rϕ) ∧ ui;

10 r¬ϕ := quantifier elimination(V , ρK ∧ ρϕ ∧ r¬ϕ) ∧ ui;

11 b1 := ¬model checking(〈V, rϕ, ρK ∧ ρϕ, JK ∪ Jϕ〉, false);
12 b2 := ¬model checking(〈V, r¬ϕ, ρK ∧ ρϕ, JK ∪ Jϕ〉, false);
13 if b1 ∧ b2 then return ? ; // inconclusive

14 else if b1 then return �a; // conditionally true

15 else if b2 then return ⊥a; // conditionally false

16 else return ×; // out of model

The inputs of the algorithm are the RV assumption K (as an FTS), the
monitoring property ϕ and a finite input trace u. See also Fig. 2, where K ×
Tϕ(rϕ) is an abbreviation of 〈V, rϕ, ρK ∧ ρϕ,JK ∪ Jϕ〉. At first, ϕ and ¬ϕ are
translated into two FTS Tϕ and T¬ϕ (line 2–3). The initial conditions of Tϕ and
T¬ϕ, namely Θϕ and Θ¬ϕ are respectively in the form χ(ϕ) ∧ ξ and ¬χ(ϕ) ∧ ξ,
where χ(ϕ) restricts the paths to satisfy ϕ and ξ initializes the encoding of past
operators.

Initially, the belief states rϕ and r¬ϕ are the initial conditions of Tϕ and
T¬ϕ, composed with the initial condition of K (line 5). The first input state u0

is directly intersected with belief states (line 7). The forward images of current
belief states are computed and then intersected with the current input state ui

(line 9–10).
The undefined function quantifier elimination can be any (first-order)

quantifier elimination procedure (for more details, see Sect. 2.2) such that

quantifier elimination(V , α(V ∪ V ′)) =̇ (∃V.α(V ∪ V ′))[V/V ′] = β(V) (6)

216 A. Cimatti et al.

where [V/V ′] substitutes the prefixed formula with all variables in V ′ to the
corresponding variables in V . All variables in V must be eliminated from
∃V.α(V, V ′). β(V) as the outcome of quantifier elimination is quantifier-free.

The main difference with the previous BDD-based algorithm (Algorithm 1
of [13]) is the treatment of fair states. For BDD-based FTS, the set of fair states
can be computed a priori (by algorithms like Emerson-Lei [19]) and intersected
with the belief states whenever they are computed. However, for infinite-state
FTS represented by raw formulas this is impossible. Thus rϕ and r¬ϕ may have
non-fair states in them. To check their (non)emptiness w.r.t. fair states, we
leverage LTL model checking, by checking LTL formula false on the model K×Tϕ

(or K × T¬ϕ, resp.) with rϕ (or r¬ϕ, resp.) as the initial condition (line 11–12).
Here is the idea: if the model checking returned � saying for all fair paths in
the input model the LTL property “false” holds (which is impossible), then the
only possibility is that the input model actually does not have any fair path, i.e.
the belief state is empty. The output of the monitor w.r.t. the model checking
results (line 13–16) is summarized in Table 1.

The correctness of Algorithm 1 is given by the following theorem: (the proof
is omitted due to page limits.)

Theorem 1. The function monitor2 given in Algorithm 1 correctly implements
the ABRV monitor MK

ϕ (·).

4.3 Optimizations

In this section, we present few simple optimizations that reduce unnecessary
(complete) MC calls, which are computationally expensive, or to replace them
with relatively-cheap incomplete MC calls, which can only be used to detect
counterexamples, e.g. the plain Bounded Model Checking (BMC). (Also note
that, for infinite-state systems, the property may be violated but no lasso-shaped
counterexample exists; in this case, neither BMC or the full IC3-IA algorithm
can find it). The following 4 basic optimizations, namely o1–o4, are identified:

o1 If the monitor has already reached conclusive verdicts (�a or ⊥a), then for
the runtime verification of the next input state at most one MC call is need.
In fact, in this case, one of the belief states rϕ or r¬ϕ becomes empty, while
empty belief states can only lead to empty belief states by forward image
computations. Furthermore, if the monitor has reached the verdict × (out-
of-model), then it will maintain the same verdict, thus in this case no more
MC (and QE) calls are necessary.

o2 Before calling model checkers to detect the emptiness of a belief state (w.r.t.
fairness), an SMT checking can be done first, to check if the belief state
formula can be satisfied or not. If the SMT solver returns UNSAT, then it
means the formula is equivalent to ⊥, then there is no need to further call
model checkers to detect its emptiness.

o3 When monitor2 is used as online monitor, the same LTL properties are sent
to LTL model checkers with different models and are internally translated

Assumption-Based RV of Infinite-State Systems 217

into equivalent FTS. The translation can be done just once as part of the
RV algorithm, if the involved model checkers can be modified to take pre-
translated tableaux instead of LTL properties.

o4 Some model checking algorithms such as IC3-IA are more effective in prov-
ing properties, while others such as BMC can be used in practice to find
counterexamples. This optimization is to call the incomplete plain BMC (or
any other MC procedure which detects counterexamples) before calling a
complete model checker such as IC3-IA. Note that the BMC bound param-
eter max k can be chosen arbitrarily without hurting the correctness of the
entire RV algorithm: if the counterexample does exist but BMC fails to find
it due to a small max k, the next complete MC call will still find it and
lead to the same monitoring output as in the algorithm without this BMC
optimization.

One may think that the calls of complete model checkers (IC3 IA) are a bot-
tleneck rendering the whole idea infeasible. In fact, given all above optimizations
we can prove that IC3 IA is called at most twice for each input trace:

Theorem 2. Assuming BMC always find the counterexample whenever it exists,
IC3 IA is called at most twice in the “online” version of Algorithm 2 with all
optimizations.

Proof. Without loss of generality, we analyze how the values of b1 and b2 change
during the verification of a typical trace:

1. Initially b1 = b2 = � (so that the verdict is ?). This means that both calls of
check nonemptiness (at line 13–14) return �, which further means that the
underlying call to model checking (line 22) returns ⊥, i.e. BMC is involved
returning ⊥ (counterexamples found).

2. If the monitor maintains the current verdict (?), we have b1 = b2 = �, and
two BMC calls are performed, each returning ⊥.

3. At the moment when the monitor firstly returns �a, we have b1 = �, b2 = ⊥,
i.e. the call to check nonemptiness at line 14 returns ⊥. There are two
possibilities:

– The belief state r¬ϕ is literally ⊥ or unsatisfiable, detected by SMT (line 20)
due to [o2]. No call to IC3 IA in this case.

– The call to model checking (line 22) returns �, which means IC3 IA is
called once (after BMC fails to find a counterexample.)

4. If the monitor maintains the current verdict (�a), IC3 IA will not be called
again, because it is disabled by [o1] (at line 14) when b2 = ⊥.

5. At the moment when the monitor firstly returns ×, we have b1 = b2 = ⊥ (the
value of b1 changed). check nonemptiness returns ⊥ is line 13. Either SMT
is called (line 20) when rϕ is unsatisfiable (due to [o2]), or IC3 IA is called
internally by model checking (line 22) returning �.

6. From now on, no BMC nor IC3 IA is called, as they are all disabled by [o1],
and the monitor maintains the verdict × (out of model).

Thus, in summary IC3 IA is called at most twice for any input trace. ��

218 A. Cimatti et al.

Algorithm 2: The optimized version of Algorithm 1
1 function monitor2 optimized(K =̇ 〈VK , ΘK , ρK , JK〉, ϕ, u)
2 Tϕ =̇ 〈Vϕ, Θϕ , ρϕ, Jϕ〉 := ltl translation(ϕ); // χ(ϕ) is in Θϕ

3 T¬ϕ =̇ 〈Vϕ, Θ¬ϕ, ρϕ, Jϕ〉 := ltl translation(¬ϕ);
4 V := VK ∪ Vϕ;
5 〈rϕ, r¬ϕ〉 := 〈ΘK ∧ Θϕ, ΘK ∧ Θ¬ϕ〉;
6 if o1 then b1 := b2 := � ;
7 if o3 then F := ltl translation(

(∧
ψ∈JK∪Jϕ

GFψ
) → false) ;

8 if |u| > 0 then
9 〈rϕ, r¬ϕ〉 := 〈rϕ ∧ u0, r¬ϕ ∧ u0〉;

10 for 1 � i < |u| do
11 rϕ := quantifier elimination(V , ρK ∧ ρϕ ∧ rϕ) ∧ ui;
12 r¬ϕ := quantifier elimination(V , ρK ∧ ρϕ ∧ r¬ϕ) ∧ ui;

13 if o1 → b1 then b1 := check nonemptiness(rϕ) ;
14 if o1 → b2 then b2 := check nonemptiness(r¬ϕ) ;
15 if b1 ∧ b2 then return ? ; // inconclusive

16 else if b1 then return �a; // conditionally true

17 else if b2 then return ⊥a; // conditionally false

18 else return ×; // out of model

19 function check nonemptiness(r)
20 if o2 ∧ (SMT(r) = unsat) then return ⊥ ;
21 else
22 return ¬model checking(〈V, r, ρK ∧ ρϕ, JK ∪ Jϕ〉, o3 ? F : false)

23 function model checking(M , ψ)
24 if o4 then
25 if BMC(M , ψ) = ⊥ then return ⊥; // counterexample found

26 else // max k reached

27 return IC3 IA(M , ψ)

28 else return IC3 IA(M , ψ);

4.4 ABRV Reduced to Model Checking and Incremental BMC

Further optimizations can be done by leveraging the incrementality of Bounded
Model Checking occurred in Algorithm 2, where the function BMC are called
as incomplete preliminary steps before the full IC3 IA calls. In the following
discussions we assume the audience is familiar with the internal work of BMC
algorithms (otherwise see [5] and [12]).

We first define a BMC encoding of the belief states after a sequence of obser-
vations u0u1 · · · un, denoted by bs(u0u1 · · · un). These are inductively given by

bs(u0)(V) = I(V) ∧ u0(V), (7)

bs(u0u1 · · · ui+1)(V) = fwd
(
bs(u0u1 · · · ui)(V), T (V, V ′)

)
(V) ∧ ui+1(V). (8)

Assumption-Based RV of Infinite-State Systems 219

The following theorem shows the relation between the belief states and a
BMC encoding conjoined with the sequence of observations:

Theorem 3 (Equisatisfiability). When k > 1, the following two formulas

I(V0) ∧ u0(V0) ∧
k−1∧

j=0

[
T (Vj , Vj+1) ∧ uj+1(Vj+1)

]
, (9)

and
bs(u0u1 · · · uk)(V) (10)

are equi-satisfiable.

Now comes the second part of this idea: there is also no need to restart BMC
inner loop from 0 (to the maximal bound k) after asserting a new observation.
This is because, whenever the BMC inner loop stops at a value k in the previous
call, all SMT formulas corresponding in steps i < k are UNSAT, and they are
still UNSAT after asserting anything new.2

In Algorithm 3 we gave the pseudo code of the optimized RV monitor based
on incremental BMC. There are several undefined functions (methods) used here
(to be given later in Algorithm 4 and 5):

– init nonemptiness for creating a persistent SMT solver instance,
– update nonemptiness for checking the nonemptiness of the belief states after

a new observation,
– reset nonemptiness for resetting the SMT solver, cleaning up all existing

observations.

Here the code is given in object-oriented styles, with two instances of SMT solvers
created by init nonemptiness. Others methods operates on these instances,
possibly with further arguments.

The correctness of Algorithm 3 (relative to the correctness of undefined
methods) can be seen by a comparison with Algorithm 1. Now the computa-
tion of belief states from a sequence of observations is done in a new function
compute belief states on the object, which holds a sequence of observations
asserted by each call of update nonemptiness.

In Algorithm 4 the code of init nonemptiness and reset nonemptiness are
given. Note that, although new BMC solver instances are created from just the
initial condition and transition relation for simplification purposes, the actual
code also needs the translation of LTL property

(∧
ψ∈JK∪Jϕ

GFψ
)

→ false
as in Algorithm 2. The unrolling of this translated formula at time i, as the
ending terms of BMC encodings, will be simply presented as [[F]]i in the related
code (update nonemptiness). The BMC solver object has some extra member
variables, whose purposes are given in the comments of reset nonemptiness.
Whenever SMT solving is needed, it is done on the member variable problem.
2 In the ideal case (when BMC stopped by having found a counterexample, and the

overall monitoring verdicts is conclusive), the monitor only needs to call SMT solver
once to decide the next monitoring output.

220 A. Cimatti et al.

Algorithm 3: The optimized RV monitor based on incremental BMC
1 function bmc monitor(K =̇ 〈VK , ΘK , ρK , JK〉, ϕ, u, max k, window size)
2 Tϕ =̇ 〈Vϕ, Θϕ , ρϕ, Jϕ〉 := ltl translation(ϕ); // χ(ϕ) is in Θϕ

3 T¬ϕ =̇ 〈Vϕ, Θ¬ϕ, ρϕ, Jϕ〉 := ltl translation(¬ϕ);
4 V := VK ∪ Vϕ;
5 e1 := init nonemptiness(ΘK ∧ Θϕ , ρK ∧ ρϕ);
6 e2 := init nonemptiness(ΘK ∧ Θ¬ϕ, ρK ∧ ρϕ);
7 if |u| > 0 then
8 b1 := update nonemptiness(e1, u0);
9 b2 := update nonemptiness(e2, u0);

10 for 1 � i < |u| do
11 b1 := update nonemptiness(e1, ui);
12 b2 := update nonemptiness(e2, ui);

13 if b1 ∧ b2 then return ? ; // inconclusive

14 else if b1 then return �a; // conditionally true

15 else if b2 then return ⊥a; // conditionally false

16 else return ×; // out of model

17 function compute belief states(e)
18 r := e.I(V);
19 for i ← 0 to e.n do
20 if i = 0 then r := r ∧ e.observations[i](V);
21 else
22 r := quantifier elimination(V , r ∧ T (V, V ′))

∧ e.observations[i](V);

23 return r;

The core of incremental BMC algorithm for RV, update nonemptiness, is
finally given in Algorithm 5.

5 Experimental Evaluation

The RV algorithms presented in this paper have been implemented in
NuRV [14]3. The usefulness of RV assumptions has been explored in previous
papers (see, e.g., Sect. 5 of [13]), thus the focus of experimental evaluations here
is mainly at the correctness and performance of ABRV algorithms for infinite-
state systems. All performance results are obtained on a MacBook Pro laptop
with an 8-core Intel Core i9 (2.3 GHz).

The correctness of these RV algorithms, beside the related theorems and
proofs, lies also on the fact that, for each input trace (and RV assumptions)
being tested, all five RV algorithms (monitor1, monitor1 optimized, monitor2,
monitor2 optimized, and bmc monitor) give the same results (except that

3 The official site of NuRV is now at https://es-static.fbk.eu/tools/nurv/.

https://es-static.fbk.eu/tools/nurv/

Assumption-Based RV of Infinite-State Systems 221

Algorithm 4: Methods for checking (non)emptiness (part 1)
1 function init nonemptiness(I, T)

2 e := new BMC solver with initial formula I and transition relation T ;
3 reset nonemptiness(e, I);
4 return e;

5 procedure reset nonemptiness(e, I)
6 e.problem := I(V0); // the initial formula unrolled at time 0

7 e.observations := []; // an array holding observations

8 e.n := 0; // the number of observations

9 e.map := {}; // a hash map from time to (unused) observations

10 e.k := 0; // the number of unrolled transition relations

11 e.max k := max k; // a local copy of max k

monitor1 and monitor1 optimized only give the verdicts for the last state of
the input trace). Below we mainly focus on their (relative) performance.

5.1 Tests on the Motivating Example (Sect. 3)

The actual monitoring results on the motivating example in Sect. 3 are the
same with those expected. The total execution time for the offline monitor-
ing of the two sample properties on the three-state sample trace u is about: 2.3
s (monitor1 optimized), 13 s (monitor2 optimized) and 0.9 s (bmc monitor).
Note that monitor1 optimized is faster than monitor2 optimized mostly
because the input trace is very short and it only needs to output the verdict
for the last input state. On the other hand, the BMC search bound (max k) in
bmc monitor was set to 50, while the execution time can be shorten to 0.6 s if
max k were set to 30.

5.2 Tests on Dwyer’s LTL Patterns

We use again Dwyer’s LTL patterns [18] (55 in total4) as the main LTL bench-
mark, which comes from a wide coverage of practical specifications and has a
good coverage on different kind of LTL properties. The original patterns involve
six Boolean variables p, q, r, s, t, z, and to adapt them for infinite-state scenarios
we have changed to use one integer variable i and one real variable x for the
replacements of q and r: q ↔ 0 � i and r ↔ 0.0 � x. Then we generated random
traces where i ∈ [−500, 500] and x ∈ [−0.500, 0.500] are uniformly chosen, such
that q and r become random in the original patterns. Furthermore, we choose a
model with fairness as the RV assumptions, in which the p-transition (i.e., from
¬p to p) happens at most 4 times. The purpose of this assumption is to force the
monitor to arrive at × verdicts at certain moments, so that the related monitors
could go through different verdicts as much as possible.

4 See also https://matthewbdwyer.github.io/psp/patterns/ltl.html.

https://matthewbdwyer.github.io/psp/patterns/ltl.html

222 A. Cimatti et al.

Algorithm 5: Methods for checking (non)emptiness (part 2)
1 function update nonemptiness(e, o)
2 e.map[e.n] = o; // store new observation in the map

3 e.observations[e.n + +] = o; // store new observation in the list

4 for (k, v) : e.map do
5 if k � e.k then
6 e.problem := e.problem ∧ v(Vi);
7 delete e.map[k];

8 result := ?;
9 while e.k � e.max k and result = ? do

10 i := e.k;
11 if SMT(e.problem)= unsat then
12 result := ⊥; // literally empty believe states

13 break

14 if SMT(e.problem ∧ [[F]]i)= sat then
15 result = �; // counterexample found (nonempty)

16 break

17 e.problem := e.problem ∧ e.T (Vi, Vi+1);
18 if e.map[i + 1] exists then
19 e.problem := e.problem ∧ e.map[i + 1](Vi+1);
20 delete e.map[i + 1];

21 e.k + +;

22 e.max k + +; // increase the search bound for next calls

23 if e.k > window size or result = ? then
24 r := compute belief states(e);
25 reset nonemptiness(e, r);

26 if result = � or result = ⊥ then
27 return result;

28 else
29 return ¬IC3 IA(〈V, r, e.T, JK ∪ Jϕ〉, false);

Figure 3 gives the relative performance of all five RV algorithms on Pattern
49 (s, t responds to p after q until r, results are similar for other patterns), a
complex property for showing the performance of RV algorithms in practical. The
monitors are generated under the above chosen assumptions, which is expressed
as an infinite-state model. The length of input traces increases from 1 to 30. Each
plot represents the average time of a monitor spent on certain length of three
random traces. We found that 1) the optimizations on monitor1 and monitor2
indeed work; 2) bmc monitor is about 10x faster than monitor2 optimized,
which is again about 10x faster than monitor1 optimized. Note that these
relative performance (“10x faster”) between different monitors is based middle-
sized traces: if the trace is too short, usually monitor1 is faster.

Assumption-Based RV of Infinite-State Systems 223

Fig. 3. Performance of five RV algorithms on Pattern 49

Figure 4 additionally shows the relative performance between bmc monitor
and monitor2 optimized. For each LTL pattern, the two monitors with the
fairness assumptions take 10 random traces as input, each with 50 states. The x-
and y-axes of each plot (identified by pattern ID) corresponds to the overall time
spent on the two monitors. For most patterns (and also on average), bmc monitor
is about 10x faster than monitor2 optimized.

Fig. 4. Performance of bmc monitor and monitor2 optimized on all patterns

224 A. Cimatti et al.

6 Related Work

Despite the vast literature on SAT- and SMT-based symbolic model checking [6],
currently there are only few works on applying SAT/SMT solvers to Runtime
Verification. One of the prominent approaches in this direction is the one on
Monitoring Modulo Theories (MMT) [16] for monitoring Temporal Data Logic
(TDL): propositional LTL extended with first-order quantifiers and theories.
MMT is implemented on top of the Z3 SMT solver. The SMT solver in MMT is
mainly to deal with first-order quantifiers of TDL. In [35], SMT solvers are used
to monitor partially synchronous distributed systems. In this work, SMT solvers
evaluate partially observable formulas that contain non-observable variables that
can have any possible value. However, in this work the SMT formula is generated
in highly domain-specific ways and is directly treated as the monitoring property,
without temporal extensions.

The relationship between MC and RV has been explored in previous research.
The value of models (as RV assumptions) in synthesizing better monitors was
first reported in [28]. Adapting existing model checkers for RV purposes is a
natural idea for reducing the costs of tool development from scratch. Similar
with NuRV (which is adapted from nuXmv), the DIVINE model checker was
adapted to perform runtime verification [26]. We consider the predictive feature
of ABRV monitors as a side effect of the assumption-based approach, but there
exist dedicated work on predictive semantics of runtime monitors, e.g. [36].

Belief states have been used in planning under partial observability. See, for
example, the work of in [25], from which we borrow the idea of representing them
with symbolic formulas. To the best of our knowledge, our approach is the first
attempt to combine them with the evaluation of temporal properties for RV.

7 Conclusion

ABRV is a recently proposed framework for RV based on the definition of some
assumption on the SUS behavior, which is exploited by the runtime monitor
to achieve early detection, prediction and partial observability. The framework
has been extended in this paper to assumptions defined as infinite-state system,
where infinite-state belief states are represented as quantifier-free first-order for-
mulas and the emptiness checkings are reduced to SMT-based model checking.
We start from a trivial reduction from RV to MC, and eventually obtained an
highly optimized RV algorithm, based on Incremental BMC. The final version
is hundreds of times faster than the initial one.

As observed in [35], a “major question regarding the use of SMT solvers
in performing runtime monitoring is whether they are fast enough.” We argue
that, for some partially-observable systems, like planets explorers, where the
frequency of observations is low, there is a trade-off between the required speed
of the monitor and the complexity of the assumptions needed to reason on the
non-observable parts. In the future, we plan to investigate such trade-off in
realistic scenarios. We will also consider real-time temporal properties with timed

Assumption-Based RV of Infinite-State Systems 225

assumptions and address the problem of generating monitor’s code taking into
account infinite-state assumptions.

References

1. Arafat, O., Bauer, A., Leucker, M., Schallhart, C.: Runtime verification revisited.
Technical report TUM-I0518, Technische Universität München, München (2005)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, pp. 825–885. IOS Press, January 2009. https://doi.
org/10.3233/978-1-58603-929-5-825

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/logcom/
exn075

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14–64 (2011). https://doi.org/10.1145/
2000799.2000800

5. Biere, A., Cimatti, A., Clarke Jr, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Advances in Computers: Highly Dependable Software, pp. 117–148.
Academic Press (2003)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (2008). https://doi.org/10.1007/3-540-49059-0 14

7. Bryant, R.E.: Binary decision diagrams. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8 7

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: SMT-based satis-
fiability of first-order LTL with event freezing functions and metric operators. Inf.
Comput. 272, 104502 (2020). https://doi.org/10.1016/j.ic.2019.104502

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 4

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

12. Cimatti, A., Pistore, M., Roveri, M., Sebastiani, R.: Improving the encoding of LTL
model checking into SAT. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp.
196–207. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47813-2 14

13. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 165–184. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9 10

14. Cimatti, A., Tian, C., Tonetta, S.: NuRV: a nuXmv extension for runtime ver-
ification. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
382–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 23

https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/3-540-47813-2_14
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_23

226 A. Cimatti et al.

15. Colin, S., Mariani, L.: 18 run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005). https://doi.org/10.
1007/11498490 24

16. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw.
Tools Technol. Transf. 18(2), 205–225 (2015). https://doi.org/10.1007/s10009-015-
0380-3

17. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 231–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 15

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420. ACM Press, New York (1999). https://doi.
org/10.1145/302405.302672

19. Allen Emerson, E., Lei, C.-L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp.
21–36. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16078-7 62

20. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 34, 141–175 (2013). https://doi.org/10.3233/978-1-
61499-207-3-141

21. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

22. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975). https://doi.org/10.
1137/0204006

23. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

24. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 3–18. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60508-7 1

25. Hoffmann, J., Brafman, R.I.: Contingent planning via heuristic forward search with
implicit belief states. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) Proceedings
of the Fifteenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2005), 5–10 June 2005, Monterey, California, USA, pp. 71–80. AAAI
(2005). http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php

26. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verification
and back. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 225–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 14

27. Khachiyan, L.: Fourier-Motzkin elimination method. In: Floudas, C., Pardalos,
P. (eds.) Encyclopedia of Optimization, pp. 1074–1077. Springer, Boston (2009).
https://doi.org/10.1007/978-0-387-74759-0 187

28. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2 10

29. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

https://doi.org/10.1007/11498490_24
https://doi.org/10.1007/11498490_24
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1137/0204006
https://doi.org/10.1137/0204006
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-60508-7_1
http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1007/978-0-387-74759-0_187
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1016/j.jlap.2008.08.004

Assumption-Based RV of Infinite-State Systems 227

30. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993). https://dblp.org/rec/journals/cj/LoosW93

31. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

32. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

33. Marcja, A., Toffalori, C.: Quantifier elimination. In: Marcja, A., Toffalori, C. (eds.)
A Guide to Classical and Modern Model Theory, pp. 43–83. Springer, Dordrecht
(2003). https://doi.org/10.1007/978-94-007-0812-9 2

34. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–
232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 14

35. Tekken Valapil, V., Yingchareonthawornchai, S., Kulkarni, S., Torng, E., Demirbas,
M.: Monitoring partially synchronous distributed systems using SMT solvers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 277–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 17

36. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

https://dblp.org/rec/journals/cj/LoosW93
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-94-007-0812-9_2
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1007/978-3-319-67531-2_17
https://doi.org/10.1007/978-3-642-28891-3_37

Short Papers and Tool Papers

Differential Monitoring

Fabian Muehlboeck(B) and Thomas A. Henzinger

IST Austria, 3400 Klosterneuburg, Austria
{fabian.muehlboeck,tah}@ist.ac.at

Abstract. We argue that the time is ripe to investigate differential mon-
itoring, in which the specification of a program’s behavior is implicitly
given by a second program implementing the same informal specification.
Similar ideas have been proposed before, and are currently implemented
in restricted form for testing and specialized run-time analyses, aspects
of which we combine. We discuss the challenges of implementing differ-
ential monitoring as a general-purpose, black-box run-time monitoring
framework, and present promising results of a preliminary implementa-
tion, showing low monitoring overheads for diverse programs.

Keywords: Run-time verification · Software engineering · Implicit
specification

1 Introduction

Run-time verification has a major advantage on static verification: it is easier to
decide whether one particular run of a program conforms to a specification than
reasoning about all possible runs. While some run-time verification frameworks
are based on similar techniques as static approaches [3,16], run-time verification
also allows us to focus on end-to-end properties of the program, by checking
the correctness of the response of a program to some input while ignoring its
inner workings. Such a black-box approach is especially appealing if the pro-
gram source is unavailable, or untrusted. However, for long-running and stateful
programs, which transform input streams into output streams, the complete
specification of the program’s end-to-end behavior may itself become compli-
cated and can amount to essentially writing the program a second time, often
in a more cumbersome language that is also slower to execute.

Differential monitoring is the idea of running different versions of the same
program in parallel, duplicating any external inputs and merging any outputs
after checking them for equivalence. In this way, each program acts as an end-to-
end specification for the other. On a system with enough idle hardware resources,
this represents a natural method for improving software quality and security
through redundancy and over-engineering.

Supported in part by Austrian Science Fund (FWF) grant Z211-N23 (Wittgen-
stein Award).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 231–243, 2021.
https://doi.org/10.1007/978-3-030-88494-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_12&domain=pdf
http://orcid.org/0000-0003-1548-0177
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-030-88494-9_12

232 F. Muehlboeck and T. A. Henzinger

The underlying idea is not new—it dates back to the 1960s [8,9] under the
name of n-version programming. The closest current incarnation of this concept
is called n-version execution [4,11,26,41], where the system calls of the executed
programs need to match (almost) exactly. Hence, the differences between the
programs must be minimal and typically are variations on possible memory lay-
outs to catch (often security-related) memory over/underflow errors, or updated
versions of the original program that should largely behave the same.

In contrast, differential testing [15,24,32] exploits true diversity of implemen-
tations to find bugs with respect to a common specification, e.g. for compilers [42]
or SQL-databases [40]. However, differential testing mainly applies to finite (and
not necessarily parallel) runs in a controlled environment.

We argue that the time is ripe to explore the idea of running and monitoring
truly diverse versions of the same program in parallel: the two versions could be
written by independent development teams, in different languages, implement-
ing different algorithms, against a common input-output interface. In this way,
run-time monitoring can increase the trust in the correctness of programs and
program updates without looking into the internals of the different implementa-
tions: if both independent implementations yield the same results, our confidence
increases that the results are correct. On the other hand, if the monitor discov-
ers a run-time discrepancy, a warning can be issued. This set-up presupposes,
of course, that the duplication and monitoring can be done with little overhead.
This can be the case, for example, if there are available hardware resources such
as unused cores (/nodes) on a processor (cluster), or if the gain in confidence is
worth the extra hardware, such as in safety-critical applications (where redun-
dancy has long been a dominant paradigm) or in finance.

In comparison to traditional run-time monitoring, no formal specification of
the program is needed in order to monitor it: on any given input, the expected
outputs of one implementation are generated by the second implementation,
and vice versa. The main overhead of differential monitoring comes from code
comparing these outputs. Given sufficient operating system support, much of
this work can be done when the program is paused anyway, such as during
file operations. Preliminary benchmarks on a modified Linux kernel to monitor
such file operations show very low overheads from monitoring and merging the
outputs, even if the two implementations are written in different languages.

The main challenge for differential monitoring is that one implementation
may overconstrain the expected behavior of the other implementation, mainly
due to acceptable non-determinism and differences in timing, but also due to
acceptable differences in system calls. Therefore, a differential monitor may also
need a specification of how the output streams of two equivalent implementa-
tions may differ for the same input stream, and how the monitor can check and
enforce such an equivalence run-time, for example, by delaying an implementa-
tion to let the other implementation catch up. The complexity of the monitor
is proportional to the amount of acceptable differences in a program’s behav-
iors. The specification and monitoring/enforcement of equivalence relations on
input/output traces is an important area for future work; for now, we describe
a relatively simple version of our vision, and how to extend it in the future.

Differential Monitoring 233

The main goal of the present paper is to demonstrate that for a practical def-
inition of behavioral equivalence—essentially, trace equality where individual
inputs/outputs can be delayed by the monitor—the equivalence monitoring can
be performed on real systems with a very modest overhead.

In summary, differential monitoring is a low-cost, black-box, on-line, and
end-to-end run-time verification method requiring redundant hardware but no
or little formal specification. These properties make it ideal for scenarios where
one seeks to gain confidence in or improve the quality of continuously running
software by using otherwise unused or easily obtainable hardware resources.

The rest of the paper is organized as follows:

– In Sect. 2, we review the current state of the art in related fields, and discuss
how differential monitoring builds upon and extends it.

– In Sect. 3, we discuss the logical setup of differential monitoring and its main
challenges.

– Finally, in Sect. 4, we present the results of preliminary experiments on dif-
ferentially monitored programs written in different languages.

2 Background and Related Work

n-Version Programming/Execution. Running several versions of the same
program in parallel to improve software reliability dates back to the 1970s
[8,9,14,18,20,30]. Chen and Avizienis [8,9] rely on the cooperation of the var-
ious versions of the program: part of the process of n-version programming is
to specify interesting kinds of data, and points of synchronization where each
version explicitly presents that data to a coordinator process, who then judges
which versions have produced correct data (via some voting mechanism, for
example) and which need to either be aborted or otherwise corrected. Once this
coordination step is complete, the (correct) versions can resume their work.

Modern works on n-version execution [4,6,11,12,26,34,41] follow this model
in the sense that system calls and their arguments are the synchronization points
and interesting data, respectively. Thus, correct versions of the same program
generate the same sequence of system calls with the same arguments, including
not only outputs, but also any form of reads: only one process actually reads; the
results are shared with the others. This naturally side-steps the main challenges
of differential monitoring we discuss in Sect. 3. However, it requires the different
versions to be very closely related, to a point where it is implausible for the
versions to be developed independently, or in different programming languages.

Though limited in this way, n-version execution can be used to guard against
memory-related safety and security problems by varying memory layouts of data
structures, including the stack, between versions [4,12,26,41]. Another scenario
in which two programs are related sufficiently closely are program updates: n-
version execution can be used to have an oracle for regression testing, and also
to update running programs in the middle of processing requests [6,34].

234 F. Muehlboeck and T. A. Henzinger

While the core idea of differential monitoring is the same as that of n-version
programming, the technical and theoretical environment is vastly different today,
and our proposed blueprint and the challenges we discuss in Sect. 3 reflect this.
Like n-version execution, we focus on the interactions of programs with the
environment rather than arbitrary program state in order to both provide a
less intrusive interface and exploit modern hardware/operating system architec-
ture, but unlike n-version execution, we seek to recover the idea of truly diverse
implementations.

Differential Testing. Differential Testing [15,24,32] is a well-known technique
to test programs for which multiple versions exist. A large number of automati-
cally generated test inputs are fed to n > 1 supposedly equivalent programs. Any
differences detected in their output indicate possible bugs that need to be inves-
tigated. This technique has been fruitfully applied to finding bugs in Javascript
debuggers [31], C compilers [42], and SQL databases [37,38,40].

DiffStream [27] is a framework supporting differential testing of stream out-
puts, which is closely related to our implementation of differential monitoring.
They key technical difference is that differential monitoring does not only track
and compare a set of (potentially unbounded) streams, but also needs to help
programs stay in sync (see Sect. 3). For system calls and other events, the atom-
icity of stream elements can itself be in need of specification, as one system call
may be equivalent to a sequence of several other ones. Finally, DiffStream ignores
the question of what to output for equivalent but unequal streams.

Knight and Leveson [28,29] took issue with the claim that independently
produced programs contain independent errors. Their experiments showed that
faults exhibited by programs written independently by different programmers
to the same specification are not completely independent. As a result, n-version
execution has dropped high-level correctness claims, instead focusing on targeted
variations (which are thus not independent of each other) of a program, and thus
finding errors related to those variations. On the other hand, differential testing
shows that a large variety of bugs can be found (and eliminated) by simply
comparing the outputs of different but supposedly equivalent programs.

Run-Time Verification/Monitoring. Run-time verification (RV) is the gen-
eral area of monitoring and possibly enforcing that a given program satisfies
some properties, typically related in some way to the program’s overall cor-
rectness [2,25]. In RV, a program generates a trace of interesting events, and a
specification of the program’s behavior allows us to build a monitor that checks
such a trace of interesting events for whether it (possibly or definitely) conforms
to the specification. A considerable body of work exists on various specification
languages based on linear temporal logic and similar logics [1,5,7,13,23,35],
and there are specification languages specifically for properties of streams [39],
but these languages are interpreted over individual traces, rather than tuples
of traces produced by supposedly equivalent programs. Especially in the area

Differential Monitoring 235

Program 1

Program 2

Equivalence
Checker

Output
Processor

Input
Processor

Input 2

Input 1

Output 2

Output 1

Output 2

Output 1

Verdict

Environment

Output
Input

Monitor State

* * *

Fig. 1. The logical parts of differential monitoring

of security, languages like Hyper-LTL [10] are used on sets of traces (or, often-
times, pairs of traces). However, similar to n-version execution, hyperlogics are
usually interpreted over sets (or pairs) of traces that are generated by multiple
executions of a single (often reactive or otherwise nondeterministic) program.

In process algebra, there has been much work on trace equivalence and other
equivalence relations for comparing individual behaviors [19,21,22], but com-
paratively little attention to the online monitoring and enforcement of these
equivalences. The definition of distinguishability in DiffStream [27] echoes some
of our concerns. Interestingly, enforcement [17] has been a concern of n-version
programming [8,9], which implements it by voting among the different versions.

3 Challenges

The goal of differential monitoring is to provide a low-cost, black-box, end-
to-end run-time verification method, where the low cost relates to both the
effort required in terms of specification and any run-time overhead caused by
monitoring. There are two key challenges here: first, that an executable program
may over-specify the desired behavior of the other program; second, how much
“enforcement” a differential monitor may perform, say, by delaying or reordering
inputs to the monitored programs, and by “merging” outputs of the monitored
program (e.g., interpolation of different outputs, or voting for n ≥ 3 programs).
These challenges are two sides of the same coin, with the monitor trying to ensure
that the monitored programs run independently as if they were running alone,
yet are kept sufficiently in sync to produce equivalent results. A more advanced
differential monitor may adjust scheduling decisions by the operating system, or
try to synchronize the effects of some otherwise nondeterministic system calls.

Figure 1 shows the logical parts of a differential-monitoring setup: typically,
a program would receive its inputs from and send its outputs to some environ-
ment, including the rest of the system it is running on as well as any network
or other devices it has access to. The differential monitor inserts itself into this
relationship on both ends, and additionally does this for two programs at once.
The input processor is the part of the monitor that handles any input the mon-
itored programs receive. By default, it simply duplicates any inputs it receives

236 F. Muehlboeck and T. A. Henzinger

and forwards them to both programs. The equivalence checker receives the out-
puts of both programs and checks them for equivalence, which by default simply
means equality. Finally, the output processor produces the output that is finally
sent to the environment. If equivalence is defined as equality, its default behav-
ior is to send the output of one of the programs to the environment as long as
the equivalence checker’s verdict is positive, and some error message aborting
the programs when the verdict becomes negative. However, for more complex
notions of input processing, output equivalence, output merging, and error han-
dling can be specified. All three components may communicate with each other
via some notion of monitor state.

Each program may expect to see the effects of its output in the environment.
Thus the monitor may have to slow down the inputs and/or outputs of the faster
program to let the slower program catch up. In general, a differential monitor
should prevent either program from being confronted with an environment state
it does not expect, keeping up the illusion that it is running alone. Beyond using
additional memory to buffer input or output elements as in DiffStream [27],
differential monitors may need additional power and resources to ensure that
the different programs’ interactions with their environment do not get too out-
of-sync. Kallas et al. [27] already recognized that some parts of the output (for
example, timings and random numbers) may have to be relaxed or ignored for
equivalence checking, though deciding on the “merged” output may be harder.

In differential monitoring, the program specification is replaced by the moni-
tor specification, which ought to be simpler. All three components of a differential
monitor have to be accompanied by a specification defining exactly when and
how to defer, transform, deem equivalent, and merge any inputs or outputs. The
precise form and power of such specifications, and of the monitors implementing
them (e.g., their memory needs), will be an interesting area of research, as will
be the automatic synthesis of differential monitors from formal specifications.

4 Experimental Results

In this section, we report on experiments evaluating the feasibility of differential
monitoring and the overheads it causes in practice based on a simple framework.

Experimental Setup. To test the basic overheads of running two programs
side-by-side, duplicating inputs and comparing outputs, we modified a current
version of the Linux kernel to support an additional system call that activates
monitoring for a pair of processes and any of their children. In particular, we
watch the basic file operations of these processes. When a file is opened, we
determine whether its operations need to be monitored. For example, regular
files opened in a read-only fashion can be ignored and any further interactions
of the programs with them incur no overhead. On the other hand, non-seekable
files (pipes, the user’s terminal, etc.) need the monitor to provide the same data
to both processes. Finally, files opened for writing are monitored to ensure that
both programs write the same data to them.

Differential Monitoring 237

In terms of our model from Sect. 3, the input processor duplicates all inputs
(mostly reads from the standard input) by buffering the result of the faster
reader to also provide it to the second process. The equivalence checker checks
the bytes written out for equality; neither monitored writes nor reads need to
match exactly in terms of how many bytes are read/written in a single system
call—the monitor will proceed as far as possible. The input processor holds up
the faster program by not returning from the write system call until all bytes a
process wanted to write have been matched and sent to the environment. If the
output of the two programs does not match, the monitor aborts both programs—
this is of course the most extreme measure that could be taken, but suffices for
our goal of measuring overheads in the case where both programs are correct. We
did test that our monitor indeed stops programs that do not produce equivalent
output, and does so before actually printing that output.

Our benchmarks often write a large number of small output lines in rapid
succession. For this case, an optional, experimental optimization allows the faster
program to continue execution until it gets too far ahead, buffering writes in
the meantime. This is valid when programs do not need to see the effects of
their outputs on the environment immediately and expect the writes to always
succeed, as is the case for our test programs, or, for example, web servers. In
general, a monitor specification would specify in what cases this optimization
can be applied. By default, our benchmarks run without this optimization.

This simple prototype of course does not capture the full complexity of the
specifications eventually needed to run more complex programs side-by-side, but
it lets us explore the overheads of what we believe are the most common cases
in differential monitoring. To this end, we wrote several small benchmark pro-
grams in C, Java, and Python, sometimes using different algorithms between the
programs, and ran them in various pairings and alone to compare the slowdowns
caused by our monitor. Due to space constraints, some data on our experiments
is only contained in the technical report [33]. As the relevant metric we compare,
for each pairing of programs, the wall-clock time of running the pairing against
the wall-clock time of the slower program (which is a natural lower bound for
the pairing). All benchmarks were run on a minimal Gentoo installation using
our modified kernel on an Intel(R) Core(TM) i5-4690K processor with 16GiB
RAM and a mid-level SSD.

Main Benchmark: Primes. Consider verifying programs that should answer
queries about whether a given number n is prime or what the nth prime number
is. Any black-box attempt to verify the outputs of such a program invariably
needs to do a similar amount of work as the original program.

For this benchmark, we picked two algorithms to determine primality: the
Sieve of Eratosthenes and the Baillie-PSW [36] primality test. We implemented
the former in C and the latter in Java. The programs have two modes. In inter-
active mode, they accept a stream of queries for either the n-th prime number or
whether a given number n is prime, and produce a corresponding answer. In non-
interactive mode, they simply enumerate all the primes up to a certain index,

238 F. Muehlboeck and T. A. Henzinger

In
te
ra
ct
iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O
Sm

l
Q
s C C 3.11s 3.11s 3.13s 0.56% 3.13s 0.69%

C Java 3.11s 3.82s 3.87s 1.31% 3.80s -0.33%
Java Java 3.82s 3.82s 3.84s 0.69% 3.92s 2.74%

L
rg

Q
s C C 1.83s 1.83s 1.87s 1.94% 1.84s 0.35%

C Java 1.83s 2.32s 2.36s 1.79% 2.33s 0.63%
Java Java 2.32s 2.32s 2.48s 7.17% 2.33s 0.56%

N
on

-I
nt
er
ac
ti
ve

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 0.40s 0.40s 0.43s 8.06% 0.42s 4.53%
C Java 0.40s 0.66s 0.69s 4.80% 0.67s 2.74%
C Java-E 0.40s 0.28s 0.56s 39.80% 0.47s 17.63%
C Python 0.40s 4.22s 4.25s 0.75% 4.32s 2.35%
Java Java 0.66s 0.66s 0.77s 17.75% 0.69s 5.10%
Java Java-E 0.66s 0.28s 0.77s 16.68% 0.68s 3.66%
Java Python 0.66s 4.22s 4.42s 4.72% 4.33s 2.70%
Java-E Java-E 0.28s 0.28s 0.38s 33.33% 0.31s 7.94%
Java-E Python 0.28s 4.22s 4.32s 2.31% 4.35s 3.20%
Python Python 4.22s 4.22s 4.49s 6.48% 4.33s 2.57%

Fig. 2. Benchmark results for primes

in our case up to the 10 000th prime. For that mode, we also included another
Java (“Java-E”) and a Python implementation of the Sieve of Eratosthenes.

Figure 2 shows the average running times (in seconds) of 20 runs for each lan-
guage on its own (WT-1/WT-2) and in a paired monitored setting (WT), and the
corresponding overhead. For the interactive mode, in one run we generated 300
queries with n < 4 000, and in the other, we generated 10 000 such queries with
n < 500, trading off internal computation time vs. interaction with the system.
As we see, the overhead is negligible for the fewer requests where both programs
spend more time simply computing the response, while it is still relatively low
for programs where our monitoring code is invoked more often. The overheads
for the non-interactive version are significantly higher—they are writing signif-
icantly more lines than the interactive version in less time; the write-buffering
optimization mentioned above (results shown in the “-O” columns) drastically
improves our results. Overall, Java seems to suffer the most from being run side-
by side with another program; however, this is also true for just running the
Java program twice at the same time without monitoring. We believe the cause
to be the optimization behavior of the JVM, which spawns around 12 threads
for these single threaded applications. In so far as the negative overhead of the
C/Java pairing is not a measuring artifact, it is likely for similar reasons as the
negative overheads for the Echo benchmark discussed below.

Sort. For this benchmark, we implemented Insertion-Sort in C, Merge-Sort in
Java, and Quicksort in Python. In interactive mode, they accept three sorts of
commands: one to add a number to a currently maintained list, one to print the
list in sorted order, and one to clear the maintained list. The input we generate

Differential Monitoring 239

In
te
ra
ct
iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 1.47s 1.47s 1.56s 6.54% 1.49s 1.77%
C Java 1.47s 1.52s 2.62s 72.63% 1.57s 3.19%
C Python 1.47s 1.51s 2.05s 35.78% 1.55s 2.85%
Java Java 1.52s 1.52s 2.77s 81.91% 1.60s 5.13%
Java Python 1.52s 1.51s 3.81s 150.46% 1.64s 8.19%
Python Python 1.51s 1.51s 2.28s 50.81% 1.55s 2.55%

N
on

-I
nt
er
ac
ti
ve

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 5.55s 5.55s 5.84s 5.23% 5.74s 3.52%
C Java 5.55s 0.52s 6.22s 12.07% 5.84s 5.24%
C Python 5.55s 0.54s 5.88s 5.96% 5.67s 2.30%
Java Java 0.52s 0.52s 1.11s 114.45% 0.75s 44.70%
Java Python 0.52s 0.54s 1.26s 132.56% 0.70s 29.61%
Python Python 0.54s 0.54s 0.84s 54.80% 0.64s 17.34%

Fig. 3. Benchmark results for sort

for interactive mode sorts the list on roughly every 10th command, and clears it
after roughly every 6 of those, which makes for relatively short lists, but still a
high output-to-input ratio. In non-interactive mode, the programs read in a list
of 100 000 numbers from a file, sort it, and print the result. As an interesting
variation, we give each program a different permutation of the same list—as this
does not affect the results of sorting those lists, the programs still produce the
same out. In this way, this benchmark simulates different ways in which programs
may keep private data. The net result of this setup is that the programs do a
batch of reading first (except for the C program, whose insertion sort is running
while reading the list), followed by a large burst of writes (this is also true for the
C program). As we can see in Fig. 3, the high rates of writes for both modes can
cause quite extreme overheads, which again can be brought down significantly
with our write-buffering optimization.

Further Benchmarks. We only briefly describe our other two benchmark
programs here. More details on them can be found in the technical report [33].

Echo. Echo was intended to be a worst-case benchmark for our framework: the
programs written in C, Java, and Python simply read text from the standard
input line by line and write it back to the standard output, thus maximally using
both our input-splitting and output-comparing facilities. Overheads for Echo
reached 67.50% for two Java programs (10.26% for two C programs), which fell
to 10.05% (−1.24% for C-C) using our writer-buffering optimization. The same
optimization made all other pairings produce negative overhead, as it turned out
that the programs were now parallelizing the reading IO operations.

Mod-Squares. Mod-squares was designed to simulate single-threaded computa-
tional activity that is not parallelizable and works in constant memory, thus
eliminating any sort of resource constraints other than the extra computation

240 F. Muehlboeck and T. A. Henzinger

and coordination caused by the monitor. At its core, it simply squares a (hard-
coded constant) number some number of times, always modulo some other num-
ber. The highest overhead, again in the Java-Java pairing, was 34.42% (the C-C
pairing had 4.20%), which the write-buffering optimization reduced to 7.45% (or
0.22% for C-C).

Discussion. Our benchmarks tested a general framework to monitor the IO
operations of programs written in different programming languages. Previous
work would have been unable to do so, as works in multi-version execution [26,
41] depend on the programs making the exact same system calls, which would
already be violated by the Java and Python virtual machines’ startup activities,
while DiffStream [27] works on a different level of abstraction and does not
consider having to delay outputs. The overheads we saw for our main benchmark
are relatively low, and naturally somewhat related to the ratio of work a program
does to how often it interacts with its environment and thus the monitor. The
other benchmarks we ran consider various worst-case scenarios with extremely
heavy interaction with the monitor; overheads in these benchmarks go up to
150% in extreme cases. These extreme overheads go down to 45% with our
write-buffering optimization, showing that there is much room for optimizations
both in our basic implementation and in exploiting monitoring specifications to
allow for more efficient processing of those particular cases.

5 Conclusion

Differential Monitoring has the potential to be a comparatively light-weight
runtime-verification method that is able to check programs’ end-to-end behav-
ior in an efficient way, simply through redundancy and overengineering. Similar
efforts have both a long history and recent activity, and the ubiquitousness of
multi-core hardware suggests that the approach can be applied in many scenar-
ios without too much of a performance penalty. For complicated programs, the
lack of formal specification is not absolute, but turned upside down: a differ-
ential monitor may need a specification of two programs potential differences,
which should be comparatively small in any case. The precise formalisms for
such a specification will draw heavily on existing work on runtime monitoring
but pose some interesting challenges on their own, including for their eventual
implementation. However, we believe that these challenges can be overcome,
thereby significantly adding to the toolbox that runtime verification offers its
users to increase the quality of software.

Acknowledgement. The authors would like to thank Borzoo Bonakdarpour, Derek
Dreyer, Adrian Francalanza, Owolabi Legunsen, Matthew Milano, Manuel Rigger,
Cesar Sanchez, and the members of the IST Verification Seminar for their helpful
comments and insights on various stages of this work, as well as the reviewers of RV’21
for their helpful suggestions on the actual paper.

Differential Monitoring 241

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics. Lecture Notes in Computer Science, vol. 10457. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and
TLTL. ACM Trans. Softw. Eng. Methodol. 20(4) (2011). https://doi.org/10.1145/
2000799.2000800

4. Berger, E.D., Zorn, B.G.: DieHard: probabilistic memory safety for unsafe lan-
guages. In: PLDI 2006, p. 158–168. Association for Computing Machinery, New
York (2006). https://doi.org/10.1145/1133981.1134000

5. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Time-triggered runtime ver-
ification. Formal Methods Syst. Design 43(1), 29–60 (2013). https://doi.org/10.
1007/s10703-012-0182-0

6. Cadar, C., Hosek, P.: Multi-version software updates. In: HotSWUp 2012, pp. 36–
40 (2012). https://doi.org/10.1109/HotSWUp.2012.6226615

7. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

8. Chen, L., Avizienis, A.: N-version programming: a fault-tolerance approach to
reliability of software operation. In: FTCS 1978, vol. 1, pp. 3–9 (1978)

9. Chen, L., Avizienis, A.: N-version programming: a fault-tolerance approach to
reliability of software operation. In: FTCS 1995, ‘Highlights from Twenty-Five
Years’, p. 113ff (1995). https://doi.org/10.1109/FTCSH.1995.532621

10. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

11. Coppens, B., Sutter, B.D., Volckaert, S.: Multi-variant execution environments.
In: Larsen, P., Sadeghi, A. (eds.) The Continuing Arms Race: Code-Reuse Attacks
and Defenses, pp. 211–258. ACM/Morgan & Claypool (2018). https://doi.org/10.
1145/3129743.3129752

12. Cox, B., et al.: N-Variant systems: a secretless framework for security through
diversity. In: USENIX-SS 2006. USENIX Association, USA (2006). https://
www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-
secretless-framework-security-through

13. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.
1507246

14. Elmendorf, W.: Fault-tolerant programming. In: FTCS 1972, pp. 79–83 (1972)
15. Evans, R.B., Savoia, A.: Differential testing: a new approach to change detection.

In: ESEC-FSE companion 2007, pp. 549–552. Association for Computing Machin-
ery, New York (2007). https://doi.org/10.1145/1295014.1295038

16. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https://doi.org/
10.1007/s10009-011-0196-8

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1007/s10703-012-0182-0
https://doi.org/10.1007/s10703-012-0182-0
https://doi.org/10.1109/HotSWUp.2012.6226615
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1145/3129743.3129752
https://doi.org/10.1145/3129743.3129752
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1295014.1295038
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8

242 F. Muehlboeck and T. A. Henzinger

17. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

18. Fischler, M.A. et al.: Distinct software: an approach to reliable computing. In: 2nd
USA-Japan Computer Conference, pp. 1–7 (1975)

19. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-04293-9

20. Girard, E., Rault, J.: A programming technique for software reliability. In: IEEE
Symposium on Computer Software Reliability, pp. 44–50 (1973)

21. Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990). https://doi.org/10.1007/BFb0039066

22. van Glabbeek, R.J., et al.: The linear time—branching time spectrum II. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57208-2 6

23. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36742-7 19

24. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude
to formal verification. In: ICSE 2007, pp. 621–631. IEEE Computer Society, USA
(2007). https://doi.org/10.1109/ICSE.2007.68

25. Havelund, K., Reger, G., Roşu, G.: Runtime verification past experiences and
future projections. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 532–562. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 25

26. Hosek, P., Cadar, C.: VARAN the unbelievable: an efficient N-version execution
framework. In: ASPLOS 2015, pp. 339–353. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2694344.2694390

27. Kallas, K., Niksic, F., Stanford, C., Alur, R.: DiffStream: differential output testing
for stream processing programs. PACMPL 4(OOPSLA) (2020). https://doi.org/
10.1145/3428221

28. Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Trans. Softw. Eng. 12(1), 96–
109 (1986). https://doi.org/10.1109/TSE.1986.6312924

29. Knight, J.C., Leveson, N.G.: A reply to the criticisms of the Knight & Leveson
experiment. ACM SIGSOFT Softw. Eng. Notes 15(1), 24–35 (1990). https://doi.
org/10.1145/382294.382710

30. Kopetz, H.: Software redundancy in real time systems. In: IFIP Congress 1974, pp.
182–186. North-Holland (1974)

31. Lehmann, D., Pradel, M.: Feedback-directed differential testing of interactive
debuggers. In: ESEC/FSE 2018, pp. 610–620. Association for Computing Machin-
ery, New York (2018). https://doi.org/10.1145/3236024.3236037

32. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107
(1998). http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

33. Muehlboeck, F., Henzinger, T.A.: Differential monitoring. Technical report 9946,
IST Austria (2021). https://research-explorer.app.ist.ac.at/librecat/record/9946

https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1007/978-3-319-91908-9_25
https://doi.org/10.1007/978-3-319-91908-9_25
https://doi.org/10.1145/2694344.2694390
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1145/382294.382710
https://doi.org/10.1145/382294.382710
https://doi.org/10.1145/3236024.3236037
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://research-explorer.app.ist.ac.at/librecat/record/9946

Differential Monitoring 243

34. Pina, L., Andronidis, A., Hicks, M., Cadar, C.: MVEDSUA: higher availability
dynamic software updates via multi-version execution. In: ASPLOS 2019, pp. 573–
585. ACM (2019). https://doi.org/10.1145/3297858.3304063

35. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

36. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109. Math.
Comput. 35(151), 1003–1026 (1980)

37. Rigger, M., Su, Z.: Detecting optimization bugs in database engines via non-
optimizing reference engine construction. In: ESEC/FSE 2020, pp. 1140–1152.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3368089.3409710

38. Rigger, M., Su, Z.: Finding bugs in database systems via query partitioning.
PACMPL 4(OOPSLA) (2020). https://doi.org/10.1145/3428279

39. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

40. Slutz, D.R.: Massive stochastic testing of SQL. In: VLDB 1998, pp. 618–622. Mor-
gan Kaufmann (1998). http://www.vldb.org/conf/1998/p618.pdf

41. Volckaert, S., De Sutter, B., De Baets, T., De Bosschere, K.: GHUMVEE: efficient,
effective, and flexible replication. In: Garcia-Alfaro, J., Cuppens, F., Cuppens-
Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp. 261–277.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37119-6 17

42. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: PLDI 2011, pp. 283–294. Association for Computing Machinery, New
York (2011). https://doi.org/10.1145/1993498.1993532

https://doi.org/10.1145/3297858.3304063
https://doi.org/10.1007/11813040_38
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://doi.org/10.1007/978-3-030-03769-7_9
http://www.vldb.org/conf/1998/p618.pdf
https://doi.org/10.1007/978-3-642-37119-6_17
https://doi.org/10.1145/1993498.1993532

Ortac: Runtime Assertion Checking
for OCaml (Tool Paper)

Jean-Christophe Filliâtre1(B) and Clément Pascutto1,2

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France
{jean-christophe.filliatre,clement.pascutto}@lri.fr

2 Tarides, 75005 Paris, France

Abstract. Runtime assertion checking (RAC) is a convenient set of
techniques that lets developers abstract away the process of verifying
the correctness of their programs by writing formal specifications and
automating their verification at runtime.

In this work, we present ortac, a runtime assertion checking tool for
OCaml libraries and programs. OCaml is a functional programming lan-
guage in which idioms rely on an expressive type system, modules, and
interface abstractions. ortac consumes interfaces annotated with type
invariants and function contracts and produces code wrappers with the
same signature that check these specifications at runtime. It provides
a flexible framework for traditional assertion checking, monitoring mis-
behaviors without interruptions, and automated fuzz testing for OCaml
programs.

This paper presents an overview of ortac features and highlights its
main design choices.

Keywords: Runtime assertion checking · OCaml · Software
engineering

1 Introduction

OCaml is a general-purpose programming language featuring imperative, func-
tional, and object-oriented paradigms. OCaml code is structured into modules.
Each module comes with an interface, which exposes some of its contents (e.g.
types, functions, or exceptions) and ensures a proper abstraction barrier. OCaml
features an expressive type system that provides strong guarantees. An OCaml
program will never try dereferencing a null pointer, for instance. Yet, it does
not protect against programming errors such as accessing arrays out of their
bounds, incorrectly implementing an algorithm, etc. Thus, good practices of
software engineering apply to OCaml as well, including rigorous testing using
technologies such as QuickCheck or fuzzing. We extend this toolset with ortac, a
runtime assertion checking tool for OCaml. This tool is still under development.
It is an open-source project available at https://github.com/ocaml-gospel/ortac.
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 244–253, 2021.
https://doi.org/10.1007/978-3-030-88494-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_13&domain=pdf
http://orcid.org/0000-0002-5658-7731
https://github.com/ocaml-gospel/ortac
https://doi.org/10.1007/978-3-030-88494-9_13

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 245

We build upon Gospel, a behavioral specification language for OCaml [9].
Interfaces are annotated with formal specification, such as function contracts,
type models and invariants, and logical definitions. Our tool consumes these
interfaces and produces wrappers that check the Gospel function contracts and
type invariants at runtime while maintaining the abstraction barrier. This paper
presents an overview of ortac features and highlights its main design choices.

A critical feature of ortac is the identification of the executable subset
of Gospel. Indeed, Gospel was not explicitly designed for runtime assertion
checking—it is also used for deductive verification of OCaml code via the Why3
platform [13]—and annotations may contain unbounded quantifiers or uninter-
preted logical symbols. In the process, ortac ignores anything that is not exe-
cutable.

We address several features of OCaml that are challenging for runtime asser-
tion checking. For instance, ortac suitably wraps OCaml functors (modules
parameterized over modules) to ensure proper usage of their parameters. Inter-
esting issues also arise in Gospel specification. For instance, contracts can express
that a function is responsible for verifying a precondition, which coincides with
a defensive programming idiom. In that case, the ortac wrapper checks that the
function indeed performs this verification. Another convenient feature of Gospel
is a structural, polymorphic equality. Consequently, ortac has to identify uses
of this equality that can be implemented and checked at runtime.

We start with a motivating example (Sect. 2). Then we describe the tool
architecture and discuss some technical aspects of ortac (Sect. 3). We conclude
with related work (Sect. 4) and perspectives (Sect. 5).

2 Overview and Motivating Example

Let us illustrate the workflow of ortac on a simple OCaml module for modular
arithmetic. Our interface is contained in a modular.mli file shown in Fig. 1. The
corresponding implementation in modular.ml is omitted as its contents is not
used by ortac. The Modular module is parameterized by a Modulus module,
and exposes an abstract type t and three functions: a constructor of int, an
exponentiation power, and a division div.

Invoking the ortac executable on modular.mli produces a new module
implementation in modular rtac.ml containing a wrapper around the imple-
mentation, with the same interface as the unwrapped module. The generated
code depends on the unwrapped module at runtime as it calls the original func-
tions, but its implementation is not used nor altered during the generation.
The generated code also depends on an external lightweight support library:
ortac-runtime. We illustrate this procedure in Fig. 2. The client code can then
freely call this wrapper, either in testing code or fuzzing code, or directly in
production.

For instance modular.mli declares a function power that takes two argu-
ments x and n. Its contract consists of two clauses. The checks clauses specifies
a dynamic precondition n >= 0, meaning that the function must verify this

246 J.-C. Filliâtre and C. Pascutto

1 module type Modulus = sig

2 val m : int

3 (*@ ensures m > 0 *)

4 end

5

6 module Modular (M : Modulus) : sig

7 type t = private { v : int }

8 (*@ invariant 0 <= v < M.m *)

9

10 val of_int : int -> t

11 (*@ r = of_int x

12 requires x >= 0

13 ensures r.v = x mod M.m *)

14

15 val power : t -> int -> t

16 (*@ r = power x n

17 checks n >= 0

18 ensures r.v = (pow x.v n) mod M.m *)

19

20 val div : t -> t -> t

21 (*@ q = div x y

22 ensures x.v = (y.v * q.v) mod M.m

23 raises Division_by_zero -> y.v = 0 *)

24 end

Fig. 1. Modular module interface (modular.mli).

modular.mli

modular.ml

modular rtac.mli

modular rtac.ml

ortac-runtime

Client code

copy

ortac

User provided Automatic generation

Automatically generated Runtime dependency

Provided with ortac

Fig. 2. Workflow using ortac.

property in its implementation and raise Invalid argument if it is not met. The
ensures clause is a postcondition, stating that r.v = (pow x.v n) mod M.m
holds in the post-state, after calling the function. Therefore, modular rtac.ml
also contains a power function, with the same arguments, and verifies the con-
tract with the following steps before returning the result:

– Call the original unwrapped power with arguments x and n, and keep the
result in r.

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 247

– Check that if n is negative, the call raised the Invalid argument exception,
and that no exception was raised otherwise.

– Check that the postcondition r.v = (pow x.v n) mod M.m holds.

Note that Gospel’s semantics is defined using mathematical integers. In the
formula above, the functions pow and mod operate over arbitrary-precision inte-
gers and machine integers r.v, x.v, n, and M.m are implicitly promoted to
arbitrary-precision integers by the Gospel type-ckecker.

If any of these verification steps fails during the execution of the client, the
contract is violated, and the instrumented code reports the error precisely using
the location of the contract and the clauses that failed:

$./client
File "modular.mli", lines 15-18, characters 2-43:
Runtime error in function ‘power’:
- the post-condition ‘r.v = (pow x.v n) mod M.m’ was violated.

3 Code Generation and Tool Architecture

In this section, we describe the translation of Gospel’s formulas into Boolean
OCaml expressions (Sect. 3.1). We then show how they are combined to generate
function wrappers that check contracts and invariants (Sect. 3.2). Finally, we
provide a few highlights on the modularity of ortac and how it helps developers
customize its behavior (Sect. 3.3).

3.1 Translating Formulas

Gospel is a tool-agnostic specification language: one can use it for both Deductive
Verification (DV) and Runtime Verification (RV). Because of this, most formulas
are not executable. For instance, they may contain unbounded quantifiers or
logical symbols that are axiomatized but not implemented. The first step of the
generation consists of identifying the executable subset of these specifications
and compiling them into Boolean OCaml expressions whenever possible. In this
process, ortac ignores formulas that do not translate and emits a warning to
the user.

Mathematical Integers. As mentioned in the previous section, integers in spec-
ifications use mathematical, arbitrary precision arithmetic. We use the zarith
library to implement integers with these semantics with a marginal performance
cost. It uses native integers whenever possible and GMP integers when needed.
This implies that the instrumented code detects discrepancies between machine
computations and their mathematical counterpart, and thus report overflows to
the user.

Quantifiers. The use of exists and forall quantifiers in formulas generally
makes them non-executable, because the quantifier domain may be unbounded.
However, ortac identifies some bounded quantifiers patterns, such as forall i.
<term> <= i < <term> -> ..., and properly translates them.

248 J.-C. Filliâtre and C. Pascutto

Equality. Gospel provides a logical equality that lets developers write easy to
read formulas with the = operator. Although OCaml provides a polymorphic
structural equality function, its use is limited. Its semantics may not coincide
with the logical equality in the specification, and its execution may fail or diverge
on functional or cyclic values. Instead, ortac leverages the type-checking infor-
mation to generate safe monomorphic equality functions whenever the type per-
mits.

Gospel Standard Library. Specifications can use functions from the Gospel stan-
dard library, an interface containing purely logical declarations for arithmetic
operations and data containers such as arrays, bags, or maps. To execute them,
ortac-runtime provides an implementation of this library using the most appro-
priate data structures. Some of these data structures require additional infor-
mation to be implemented efficiently. For instance, an implementation of maps
based on balanced trees requires a total order over the elements. In those cases,
we use the same approach as for equality and derive them from the typing infor-
mation when possible.

Undefineness and Runtime Exceptions. After ortac translates a formula into
an OCaml expression, it is still possible that its execution raises an exception,
e.g., due to a division by zero or an array access out of bounds written in the
specification. We catch any such failure in the wrapper and report it accordingly
to the user.

3.2 Wrapping the Functions

After identifying and translating the executable subset of the specification for-
mulas, ortac generates a wrapper around each function from the interface. Let
us illustrate the translation schema on a generic example with two declarations,
contained in a module Original. In the following, <X> denotes the translation
of an executable formula X, and <failure> includes the code reporting the spec-
ification violations to the user.

1 type t = ...
2 (*@ invariant I *)
3

4 val f : t -> t
5 (*@ r = f x
6 checks C
7 requires P
8 ensures Q
9 raises E -> R *)

The wrapper for f first verifies that the pre-state satisfies the preconditions
and the invariants on input values. We also compute special checks preconditions
at this point, but nothing is reported yet, since we expect the wrapped function
itself to raise an exception in that case.

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 249

1 let f x =
2 if not <I x> then <failure>;
3 if not <P> then <failure>;
4 let c = <C> in
5 ...

The wrapper then calls the unwrapped function and examines any raised
exception. In any exceptional function exit, the wrapper checks the invariants
on the input values.

– If f raises an Invalid argument exception, reporting the checks precondi-
tion C was not met, the wrapper indeed checks that property.

– If f raises an exception registered in a raises clause, the associated postcon-
dition is checked along with checks clauses: in case of a violation, f should
raise Invalid argument instead.

– Finally, we consider any other exception a violation of the specification, since
all possibly raised exceptions should appear in a raises clause.

4 ...
5 let r = try Original.f x with
6 | Invalid_argument _ ->
7 if c then <failure>;
8 if not <I x> then <failure>
9 | E ->

10 if not c then <failure>;
11 if not <R> then <failure>;
12 if not <I x> then <failure>
13 | e ->
14 if not c then <failure>;
15 <failure>
16 in
17 ...

If f exits normally, we check that c is verified—otherwise, f should have
raised an exception—along with the postcondition Q, and invariants on both the
inputs (when modified) and outputs. Finally, we return the value computed by
f.

16 ...
17 if not c then <failure>;
18 if not <Q> then <failure>;
19 if not <I r> then <failure>;
20 r

Note that our wrappers only test function calls that go through this inter-
face, because only the interface contains specifications; the wrappers never check
internal calls, including for recursive functions. For instance, if the function f
calls a function g internally, then the wrapper for f still calls the original g, and

250 J.-C. Filliâtre and C. Pascutto

not its wrapper. However, when ortac wraps a functor module F(A) = B, both
the argument module A and the output module B are wrapped, and thus internal
calls from B to A are checked.

3.3 A Modular Architecture

On top of the wrapper generator, ortac provides a framework for using the
generated code in multiple settings. Its modular architecture lets contributors
write custom frontends that control various aspects of the generated code.

Failure Modes. By defining the exact contents of the <failure> code, frontends
can set up various reporting strategies. For instance, effectively failing solely on
preconditions enables ortac to only check the correct usage of the library by the
client. One can also easily define a monitor-only mode, where errors are logged
but do not interrupt the execution of the program.

Custom Code. Arbitrary code can come along with the wrapper. For instance,
this allows frontend developers to integrate it into a test framework or expose
it with a different interface. Frontends can also redefine or extend the runtime
library used by the instrumented code.

The ortac framework comes with a default frontend that immediately fails
when a failure occurs to report it as soon as possible, as shown in Sect. 2. We also
provide a fuzzing frontend, which pipes the instrumented code into an american
fuzzy lop [1] powered executable that feeds the library with random inputs to
find specification violations without the presence of user-written client code.

4 Related Work

Runtime assertion checking techniques have been implemented for many lan-
guages, with various design choices. Eiffel [17] is the first introduction of behav-
ioral contract-based specifications in a programming language, together with
runtime checking. JML [7,10] is a behavioral specification language for Java,
(mostly) executable by design and thus amenable to runtime assertion checking,
e.g., OpenJML [11]. SPEC# [3] extends the C# programming language with
support for function contracts. AsmL [4,5], then Code Contracts [2], implement
similar yet less intrusive approaches for the .NET Framework. SPARK [16] also
integrates program specifications into its host language, Ada. Frama-C [19] pro-
vides runtime assertion checking for C with its E-ACSL plugin [12,20], which
identifies and translates an executable subset of ACSL [6].

JML initially enforced machine arithmetic [10] before adding support for
mathematical integers [8], and now uses the latter by default. SPARK also sup-
ports both modes but uses machine arithmetic by default. E-ACSL only supports
mathematical integers, with significant optimisations [15] to limit the perfor-
mance overhead. ortac supports mathematical integers by default, although it
enables frontends to override this behavior to use machine arithmetic instead.

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 251

A distinctive feature of ortac is that is implements a rather large logical
library, namely the Gospel standard library. Other runtime assertion checking
tools either come with a very small logical library (e.g., SPARK) or only provide
an annotated subset of the programming standard library (e.g., libc for E-ACSL
or the Java standard library for OpenJML).

When it comes to undefineness—undefined or exceptional behaviors arising
in formulas—ortac is similar to E-ACSL and SPARK, and raises exceptions
when the evaluation of a formula fails. JML, on the other hand, substitutes
undefined values with an arbitrary value of the correct type.

Note that while some tools provide powerful instrumentations to detect
pointer unsafety, the type system of OCaml provides such guarantees natively
in the language. In particular, ortac does not need to support a valid(p)
construct—like E-ACSL does [14]—for user code nor Gospel formulas and avoids
the subsequent overhead on the assertion checking generated code.

5 Conclusion and Perspectives

We presented ortac, a non-invasive runtime assertion checking tool for OCaml,
based on formal specifications of module interfaces.

The project is under active development, and we are adding many features
that extend the expressiveness of the tool. In particular, we are currently focused
on supporting type models, which let the developers abstract their types with
logical projections. We also plan to leverage Gospel’s equivalent clauses to
verify program equivalence and extend the support for user-provided functions
such as equality and comparison.

We are already using ortac on industrial quality code developed at Tarides,
namely in some components of Irmin, a distributed database built on the same
principles as Git. First, it provides an additional, more formal documentation
of some OCaml functions. Second, it alleviates the writing of tests, since the
properties to be checked are written only once and are attached to the interface
instead of the test cases. Last, ortac generates code that is integrated into a
model-based fuzzing framework based on afl-fuzz [1] and Monolith [18], which
further simplifies the testing process by automatically generating relevant test
cases.

Currently, our use of ortac is limited to pre-deployment testing. We still
need to measure the overhead of the runtime verification to determine if ortac-
instrumented code can be deployed in contexts where performance is important.

References

1. afl-fuzz—American fuzzy lop. https://lcamtuf.coredump.cx/afl/
2. Barnett, M.: Code contracts for .NET: runtime verification and so much more.

In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 16–17. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 2

https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/978-3-642-16612-9_2

252 J.-C. Filliâtre and C. Pascutto

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

4. Barnett, M., Schulte, W.: Contracts, components, and their runtime verification
on the.net platform. Technical report MSR-TR-2002-38, April 2002. https://
www.microsoft.com/en-us/research/publication/contracts-components-and-their-
runtime-verification-on-the-net-platform/

5. Barnett, M., Schulte, W.: Runtime verification of .NET contracts, vol. 65, pp. 199–
208. Elsevier (2003). https://www.microsoft.com/en-us/research/publication/
runtime-verification-of-net-contracts/

6. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C specification language (2008)

7. Burdy, L., et al.: An overview of JML tools and applications. Elec-
tron. Notes Theor. Comput. Sci. 80, 75–91 (2003). https://doi.org/10.
1016/S1571-0661(04)80810-7. https://www.sciencedirect.com/science/article/pii/
S1571066104808107. www.jmlspecs.org Eighth International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 2003)

8. Chalin, P.: JML support for primitive arbitrary precision numeric types: definition
and semantics. J. Object Technol. 3, 57–79 (2004)

9. Charguéraud, A., Filliâtre, J.C., Lourenço, C., Pereira, M.: GOSPEL -providing
OCaml with a formal specification language. In: FM 2019–23rd International Sym-
posium on Formal Methods, Porto, Portugal, October 2019. https://hal.inria.fr/
hal-02157484

10. Cheon, Y., Leavens, G.: A runtime assertion checker for the java modeling language
(JML), January 2002

11. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

12. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for
static and dynamic analysis of C programs. In: Proceedings of the ACM Sym-
posium on Applied Computing, pp. 1230–1235, March 2013. https://doi.org/10.
1145/2480362.2480593

13. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

14. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for run-
time assertion checking of C programs. In: Legay, A., Bensalem, S. (eds.) RV 2013.
LNCS, vol. 8174, pp. 167–182. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40787-1 10. https://hal-cea.archives-ouvertes.fr/cea-01834990

15. Kosmatov, N., Maurica, F., Signoles, J.: Efficient runtime assertion checking for
properties over mathematical numbers. In: Deshmukh, J., Ničković, D. (eds.) RV
2020. LNCS, vol. 12399, pp. 310–322. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60508-7 17

16. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

17. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://www.microsoft.com/en-us/research/publication/contracts-components-and-their-runtime-verification-on-the-net-platform/
https://www.microsoft.com/en-us/research/publication/contracts-components-and-their-runtime-verification-on-the-net-platform/
https://www.microsoft.com/en-us/research/publication/contracts-components-and-their-runtime-verification-on-the-net-platform/
https://www.microsoft.com/en-us/research/publication/runtime-verification-of-net-contracts/
https://www.microsoft.com/en-us/research/publication/runtime-verification-of-net-contracts/
https://doi.org/10.1016/S1571-0661(04)80810-7
https://doi.org/10.1016/S1571-0661(04)80810-7
https://www.sciencedirect.com/science/article/pii/S1571066104808107
https://www.sciencedirect.com/science/article/pii/S1571066104808107
https://www.jmlspecs.org
https://hal.inria.fr/hal-02157484
https://hal.inria.fr/hal-02157484
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1145/2480362.2480593
https://doi.org/10.1145/2480362.2480593
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-40787-1_10
https://doi.org/10.1007/978-3-642-40787-1_10
https://hal-cea.archives-ouvertes.fr/cea-01834990
https://doi.org/10.1007/978-3-030-60508-7_17
https://doi.org/10.1007/978-3-030-60508-7_17
https://doi.org/10.1109/2.161279

Ortac: Runtime Assertion Checking for OCaml (Tool Paper) 253

18. Pottier, F.: Strong automated testing of OCaml libraries. In: Journées Franco-
phones des Langages Applicatifs (JFLA), February 2021. http://cambium.inria.
fr/∼fpottier/publis/pottier-monolith-2021.pdf

19. Signoles, J., Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Yakobowski, B.:
Frama-C: a software analysis perspective, vol. 27 (2012). https://doi.org/10.1007/
s00165-014-0326-7

20. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for
safety and security of C programs (tool paper). In: RV-CuBES (2017). https://doi.
org/10.29007/fpdh

http://cambium.inria.fr/~fpottier/publis/pottier-monolith-2021.pdf
http://cambium.inria.fr/~fpottier/publis/pottier-monolith-2021.pdf
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.29007/fpdh
https://doi.org/10.29007/fpdh

Gaussian-Based Runtime Detection
of Out-of-distribution Inputs for Neural

Networks

Vahid Hashemi2 , Jan Křet́ınský1 , Stefanie Mohr1(B) ,
and Emmanouil Seferis1,2

1 Technical University of Munich, Munich, Germany
mohr@in.tum.de

2 AUDI AG, Ettingerstr. 60, 85057 Ingolstadt, Germany

Abstract. In this short paper, we introduce a simple approach for run-
time monitoring of deep neural networks and show how to use it for
out-of-distribution detection. The approach is based on inferring Gaus-
sian models of some of the neurons and layers. Despite its simplicity, it
performs better than recently introduced approaches based on interval
abstractions which are traditionally used in verification.

1 Introduction

Learning deep neural networks (DNN) [2] has shown remarkable success in prac-
tically solving a large number of hard and previously intractable problems. How-
ever, direct applications in safety-critical domains, such as automated driving,
are hindered by the lack of practical methods to guarantee their safety, e.g.
[3,4]. This poses a serious problem for industrial adoption of DNN-based sys-
tems. Companies struggle to comply with safety regulations such as SOTIF [19],
both due to lack of techniques to demonstrate safety in the presence of DNN as
well as due to the actual lack of safety, e.g. accidents in automated cars due to
errors in DNN-based perception system used [5].

One of the key requirements is the ability to detect novel inputs [20], for
which the DNN has not been trained and thus the only responsible answer is
“don’t know”. Such inputs are also called out-of-distribution (OOD) examples
[10]. Whenever such inputs occur, an alarm should be raised announcing the
unreliability of the current output of the DNN, so that rectifying actions can
be taken. Various runtime monitors for this task have already been proposed
recently. Cheng et al. [1] monitor which subsets of neurons in a given layer
are activated for known inputs; whenever a very different subset is activated,
an alarm is raised. Henzinger et al. [16] monitor activation values of neurons
and envelop the tuples into hyper-boxes (multidimensional intervals) along the

This research was funded in part by the DFG research training group CONVEY (GRK
2428), the DFG project 383882557 - Statistical Unbounded Verification (KR 4890/2-
1), the project Audi Verifiable AI, and the BMWi funded KARLI project (grant
19A21031C).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 254–264, 2021.
https://doi.org/10.1007/978-3-030-88494-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_14&domain=pdf
http://orcid.org/0000-0002-9167-7417
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0002-8630-3218
https://doi.org/10.1007/978-3-030-88494-9_14

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 255

program analysis tradition; whenever a very different tuple is observed (outside
of the boxes), an alarm is raised.

In this short paper, we propose a very light-weight and scalable approach.
Similarly to [16], we monitor the activation values. However, instead of discrete
and exact enveloping, we learn a more continuous and fuzzy representation of
the recorded experienece, namely a Gaussian model of each monitored neuron.
Whenever many neurons have sufficiently improbable activation values on the
current input, we raise an alarm. Surprisingly, our simple monitor is equally or
even more accurate than the similar state-of-the-art [16] even though we take no
correlation of the activation values of different neurons into account and instead
we monitor each of the neurons separately, in contrast to the multi-dimensional
boxes of [16].

Our Contribution can be summarized as follows:

– We present a new and simple method for OOD detection based on Gaussian
models of neuron activation values.

– We show that our method performs better than state-of-the-art techniques
for out-of-distribution (OOD) detection.

Related Work. In our work, we focus on the detection of OOD-inputs,
arguably [10] one of the major problems in AI safety.

State of the Art. A recent work by Henzinger et al. [16] is very similar to our
approach. The authors consider the neuron activations of one layer for all samples
of the training data. For each class in the dataset, they collect the activation
vectors of the class samples, and cluster them using k-Means [17]. They increase
the number of clusters successively, until the relative improvement drops below
a given threshold τ . For each cluster, they construct a box abstraction that
contains all samples of that cluster. In the end, each class in the data corresponds
to a set of boxes. Finally, during testing, they check whether the activation vector
of a new sample is contained in one of the boxes of its predicted class; if not,
they raise an alarm. This approach can be extended to more layers, by taking
the element-wise boolean AND of the layer “decisions”. That is, an input is
accepted if only if it is contained in the abstractions of all monitored layers.
While the idea of looking at the activations of neurons in a layer is similar to
our approach, the difference is in the detection of OOD samples. In contrast to
using box-abstractions, we use Gaussian models. This reflects better the actual
distribution of values of the neurons, as can be seen in Sect. 4.2.

OOD-Detection. Previous works have suggested, for example, using the maxi-
mum class probability or the entropy of the predicted class distribution as an
OOD indicator [11], or training a classifier to distinguish clean and perturbed
data, using ensembles of classifiers trained on random shuffles of the training
data [12]. Besides, two popular approaches closely resemble the methods of run-
time monitoring, namely ODIN [13] and the Mahalanobis-based detector [14].
ODIN first applies temperature scaling on the softmax outputs of a DNN to

256 V. Hashemi et al.

reduce the standard DNN overconfidence, and then applies a small adversarial–
like perturbation of the input. If after that the maximum class score is below
some threshold, the sample is considered to be OOD.

In contrast, the detector of [14] measures the probability density of a test sam-
ple by using a distance-based classifier. Another line of work involves generative
models for OOD detection, attempting to model the distribution of the data,
such as in [15]. By definition, OOD detection runs at test time, and thus many
proposed approaches can be viewed under this setting. Other related approaches
include using Bayesian learning methods [9], which can output prediction uncer-
tainties, DNN testing [3], which are methods attempting to find problematic
inputs, or building DNN architectures that are robust by construction, for exam-
ple using interval bound propagation, abstract interpretation, or other methods
[6–8].

2 Preliminaries

2.1 Deep Neural Networks

DNNs come in various architectures suitable for different tasks, however, at the
core, they are composed of multiple layers of computation units called neurons.
The task of a neuron is to read an input, calculate a weighted sum, apply a
function called the activation function on it and output the result, called the
activation value. We number the layers 1, 2, . . . , L where layer 1 is called the
input layer, layers 2, . . . (L − 1) are called the hidden layers and layer L is called
the output layer.

More formally, given an input �x to the DNN, we have:

�h1 = �x

�hl+1 = �φl+1(�hl) l = 2, ..., L

where φl
i(�x) defines the element-wise computation of the neurons i = 1, ..., Nl

in layer l. The details of the computation are not necessary to understand the
following work.

DNN can perform various tasks, the most usual being classification and
regression. Whereas the first type labels its input with a category from a finite
subset of classes, the second type outputs non discrete but real values. We con-
sider only classification DNNs in this work. Neuron activations are vectors of
activation values produced by neurons in some layer of a DNN. It is generally
believed that layers closer to the output encode more complex features. This
result has been supported by our results, which can be seen in Table 1. We refer
to hl

i i = 1, ..., Nl as the activation of neuron i in layer l.

3 Our Solution Approach

In this section, we discuss our approach for synthesizing an OOD detector
based on Gaussian models. In statistics, Gaussian models are used to model
the behavior of data samples. We adapt this idea to model the behavior of a
neuron by a Gaussian model.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 257

Consider a DNN as a classifier that distinguishes between {c1, ..., cNL
} = C

classes. One layer l of this DNN contains Nl neurons. For each class co ∈ C in
the training data set, we feed samples xco

j , j = 1, ...,m, into the network, and
record the activations nco

i (xj) of each neuron for i = 1, ..., Nl.
We collect those vectors �nco

i , and calculate the mean and standard deviation,
μco
i , σco

i of these values for each monitored neuron. We assume that the distribu-
tion of these values is approximately Gaussian. Thus, we expect the majority of
samples to fall within the range [μco

i −kσco
i , μco

i +kσco
i], where k is typically a value

close to 2, containing 95% of the samples. During testing, we feed a new sample
x to the DNN. We then do the following: we record the class c that our DNN pre-
dicts on x, and also retrieve the neuron activation values nc

i (x). We check if the
activations of each neuron i falls within its range for the predicted class.

More formally, we check if

∀i = 1, ..., Nl : nc
i (x) ∈ [μc

i − kσc
i , μ

c
i + kσc

i] (1)

For a better understanding, we have the intuition depicted in Fig. 1. The data in
the plot is random but shall give an idea of how the approach works. There are
two neurons that output different values, which are depicted as black dots. On
the one hand, they are shown in a 2D-plane, which is used for the abstraction of
Henzinger et al.; on the other hand, they are shown projected onto one dimension
next to the axes, for our approach. The approach of Henzinger et al. fits interval
boxes to the values that the neurons can take. The interval boxes are drawn in
blue. Our approach calculates intervals based on fitted Gaussians. The mean of
the Gaussian is depicted as a red cross next to the neuron activations. The red
line marks the interval that we consider as good for the neuron.

Fig. 1. This is an intuition of the Gaussian models on neuron activations. Black dots
mark the values of the neurons. Once, in a 2D-plane together with the blue boxes that
represent the abstraction of Henzinger et al., and once projected to one dimension only.
The red lines mark the interval [μc

i − kσc
i , μ

c
i + kσc

i] for the two neurons respectively.
Those intervals are the basis for our approach of OOD-detection. (Color figure online)

258 V. Hashemi et al.

Each neuron “votes” independently if the new sample is valid or not. Samples
within the distribution are expected to obtain a large number of votes, while
OOD samples should obtain less. Thus, we collect the votes of all neurons, and
then we compare them to a threshold; if they are below it, we consider x as an
OOD sample, otherwise we consider it as correct. In that way, we can detect
OOD inputs at runtime.

Note that this approach can also be extended to use multiple layers. For
this, we compute the votes for each of the monitored layers. If they are below
the threshold in at least one of the layers, we flag the sample as OOD.

An issue here is finding appropriate voting thresholds. For that, we use a
suitable validation set. Normally, we should not make assumptions for the OOD
data, and assume that we do not have access to them. In this case, we can use
a suitable surrogate validation set, containing another unrelated dataset, e.g.
adversarial examples or noisy images. In case we monitor more than one layer,
the voting thresholds are computed individually for each layer.

4 Experiments

In this section, we analyze the experimental results of our approach. We will
apply our approach for OOD detection to some example datasets and DNNs.
We use the setting of Henzinger et al. [16], and we compare our result with
theirs.

4.1 Datasets and Training

There are 4 datasets on which we evaluate our approach: MNIST, F-MNIST,
CIFAR-10 and GTSRB (German Traffic Sign Recognition Benchmark) [18].

– MNIST is a dataset that contains images of digits. They shall be classified
into ten classes, i.e. 0, ..., 9.

– F-MNIST consists of images of clothes, which shall also be classified into ten
categories.

– CIFAR-10 is made of images of ten distinct classes from different settings.
– GTSRB contains images of German traffic signs that can be categorized into

43 classes.

All of the four datasets are used for classification. We train two different
architectures of DNNs, NN1 and NN2, with the architectures of [16]. Those are:

– NN1: Conv(40), Max Pool, Conv(20), Max Pool, FC(320), FC(160), FC(80),
FC(40), FC(k)

– NN2: BN(Conv(40)), Max Pool, BN(Conv(20)), Max Pool, FC(240), FC(84),
FC(k)

Here, FC is a fully connected layer, Conv is a convolutional layer, MaxPool is
2 × 2 max pooling, and BN is batch normalization. The activation function is
always the RELU. NN1 was trained 10 epochs for MNIST, and 30 for F-MNIST,
while NN2 was trained 200 epochs for CIFAR-10 and 10 for GTSRB. A learning

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 259

rate of 10−3 and batch size 100 were used during training. NN1 is used for
MNIST and F-MNIST, while NN2 is used for CIFAR-10 and GTSRB.

The evaluation is performed on two measures: the detection rate (DTERR)
and the false alarm rate (FAR). The detection rate counts how many samples
were correctly marked as OOD out of all OOD inputs. The false alarm rate (also
known as Type-1-error) counts how many samples were marked as OOD but are
not OOD, out of all marked inputs.

4.2 Gaussian Assumption

In this work, we used Gaussian distributions in order to approximate the output
of each neuron. To verify that this is a valid assumption, we show in the following
the distribution of values of the neurons.

We pick each dataset and select one random neuron from one of the monitored
layers. Then, we plot the histogram of that neuron’s output. We also show the
Gaussian distribution we would expect to have, according to the measured μ
and σ (Fig. 2).

(a) MNIST layer 0 (b) MNIST layer 1 (c) MNIST layer 2

(d) F-MNIST layer 0 (e) F-MNIST layer 1 (f) F-MNIST layer 2

(g) CIFAR layer 0 (h) CIFAR layer 1 (i) CIFAR layer 2

(j) GTSRB layer 0 (k) GTSRB layer 1 (l) GTSRB layer 2

Fig. 2. Histogram of neuron outputs, along with the Gaussian distribution with the
sample mean and variance.

260 V. Hashemi et al.

We see that there are some small differences. For some neurons, the Gaus-
sian assumption is very accurate, e.g. f, h, k, and l. For some other cases the
histograms indicate a slightly different behavior, e.g. a, d, e, g, i. However, in
general they show that the neuron’s outputs follow more a Gaussian behavior
than a uniformly distributed one. It seems especially that the problem is rather
that the parameters μ and σ do not exactly fit the true underlying Gaussian. One
could think of calculating the parameters differently, or even using other models
in future. Overall, the assumption that the neuron’s outputs are Gaussian-like
seems to be true.

4.3 Evaluation Steps

Following the setting of Henzinger et al., we perform the following steps for each
dataset: we train the DNN for the first k classes of the dataset, and consider
the rest as OOD. This results, for example, in a DNN that was only trained on
the digits from 0 to 5. Digits from 6 to 9 are considered as OOD. Having now
constructed the networks and datasets in this way, we can apply our approach,
and compare the results with the ones of Henzinger et al.. We monitor all linear
hidden layers of the DNNs for both approaches. We use the interval [μ−2σ, μ+2σ]
for each neuron and class label, while for Henzinger’s approach, we use the
parameters mentioned in their paper. Note that the monitor of Henzinger et
al. outputs boolean values (e.g. x is inside or outside of the boxes), while ours
outputs numerical scores (e.g. number of “votes” for an input x). In order to
be able to compare the two approaches, we have to select a threshold for our
approach, in order to convert its output to a boolean value (e.g. votes(x) < τ ⇒
OOD).

For this, we set the threshold at a quantile of the in-distribution data, so
that the FAR is similar to the one of [16]. For example, for a quantile q = 50%,
we set the voting threshold in a way that 50% of the known in-distribution data
pass through. Having set the FARs on a similar level, we can then compare the
detected errors of the approaches.

In the case where we monitor more than one layer, we use the same quantile
q in every one of them, and then combine votes as described before, i.e. x is
accepted if the votes of each layer are above the corresponding threshold. Having
a different quantile threshold for every layer improves performance, but might
also be prone to overfitting. Note also that the threshold q is not the same across
experiments: in each run, we modify it in order to match the FAR of [16] on that
particular experiment. The results are shown in Fig. 3.

Each of the datasets has its own plot, where we have in red the values that
the approach of [16] achieves, and in blue the values of our approach. For both of
them, we measure the detection rate (DTERR) shown as a solid line in the left
plot, and the false alarm rate (FAR) shown as a dashed line in the right plot.
We see that the performance of our approach is mostly comparable or better
than [16]. Especially, on CIFAR, our approach clearly outperforms the approach
of Henzinger et al. in terms of the detection rate.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 261

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Comparison between the approaches of Henzinger et al. and ours, for the cases
of MNIST, F-MNIST, CIFAR, and GTSRB datasets. Here, DTERR and FAR are
shown in separate diagrams. The number of classes on which the network was trained
is depicted on the x axis.

262 V. Hashemi et al.

Overall, our approach seems promising and shows already good results. How-
ever, we also have to indicate some problems with both approaches, namely the
occasional low detection rate or high false alarm rates. This is problematic for
industrial applications, and shows us the difficulties involved, and the need for
stronger approaches.

4.4 Parameter Study

In this section, we perform a study on the parameters of our approach. For
simplicity, we focused on the MNIST dataset. The DNN in this case was thus
NN1 with a total of eight layers. We want to particularly investigate the effects
of the number of layers.

Table 1. Results on different layers, and different combination of layers. The evaluation
is performed on the detection rate and the false alarm rate. Layers closer to the output
layer show a higher detection rate than layers earlier in the DNN. The combination of
several layers only results in a small improvement compared to the usage of only one
layer.

At first, we look at different layers in the DNN. The fifth layer seems to
contain less important information in comparison to layer six, seven, and eight.
When we only monitor layer five, the DTERR is almost 20% lower as for the
other layers, while the FAR does not change significantly. We can thus verify
the intuition that the features of the later layers in a DNN are more meaningful.
If we combine the voting of several layers, we can see that the detection rate is
slightly increased. Especially, the bad DTERR of 44% by only using layer five
can be drastically improved by adding the knowledge of layer six, namely to 70%;
while the FAR even decreases slightly. The combination of other layers can still
increase the DTERR up to 80.0%, however, it comes with a slightly higher false
alarm rate. Thus, for a more light-weight approach, it could be recommended to
stick with fewer layers. Additionally, there may also be another different voting
system for several layers, e.g. incorporate a weighted voting system for the layers
and granting later layers more influence on the result.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 263

5 Outlook

A natural next step would be to use additional information given by the cor-
relation between the neurons. So far, we only considered the Gaussians of each
neuron independently.

Instead, we can consider a subset of neurons nk ∈ S and fit a joint Gaussian
distribution N(μS , ΣS) on them. This subset can be an entire layer, where we
fit a Gaussian distribution on the entire vector of layer activations, but it can
also be a smaller subset of neurons. This offers the advantage of reduced com-
putations, and an easier estimation of the covariance matrix (which is hard in
high dimensions). The approach is flexible, and allows us to consider arbitrary
subsets of neurons with varying sizes. Predictions can then be combined again
by voting. For multidimensional Gaussian distributions, a simple threshold with
μ and σ is no longer possible. Instead, one can use the Mahanalobis distance,
M2(x) = (x−μ)TΣ−1(x−μ), which is a notion of distance from the distribution
center. A suitable threshold for M(x) is then to be calculated.

Besides, for a subset of neurons, a more precise model that can be used
is a mixture of Gaussians. This might be more accurate since the Gaussian
distributions as above are only imprecise approximations of the true distribution,
while in contrast, Gaussian mixture models can approximate any probability
distribution to any precision.

6 Conclusion

In this work, we considered the problem of runtime monitoring of DNNs, which
forms an important step towards applying deep learning to safety-critical sys-
tems. Specifically, we focused on the sub-problem of OOD detection, and devel-
oped a lightweight detection method based on Gaussian models of neuron acti-
vation values. This can be extended in various ways as described before, and
gives more accurate results than the recent work of Henzinger et al. [16]. Inter-
estingly, the results suggest that reflecting correlation of the activation values
(as in [16]) is less important than handling outliers through voting on learnt
models (as here). Actually, the rigid and complete coverage by the boxes does
not seem as adequate as the learnt approximations.

While we showed already a good efficiency on OOD inputs, the industrial
requirements suggest that further improvements are necessary to reach real-
world applicability. Our preliminary results invite further investigation along
these directions. In particular, runtime monitoring by more complex probabilistic
models, such as Gaussian mixtures, or using DNN-based probability estimation
methods such as Normalizing Flows seem very promising.

References

1. Cheng, C.-H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. DATE (2019). https://arxiv.org/abs/1809.06573

https://arxiv.org/abs/1809.06573

264 V. Hashemi et al.

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).
https://www.deeplearningbook.org/

3. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks.
CoRR (2018). https://arxiv.org/abs/1812.08342

4. Ortega, P., Maini, V.: Building safe artificial intelligence: specification,
robustness, and assurance. Deep Mind blog (2018). https://medium.com/
@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

5. Wikipedia: List of self-driving car fatalities. Wikipedia article (2018). https://en.
wikipedia.org/wiki/List-of-self-driving-car-fatalities

6. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: ICML (2018). https://arxiv.org/abs/1711.00851

7. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. In: NIPS (2018). https://arxiv.org/abs/1810.12715

8. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: ICML (2018). https://files.sri.inf.ethz.ch/website/
papers/icml18-diffai.pdf

9. McAllister, R., et al.: Concrete problems for autonomous vehicle safety: advantages
of bayesian deep learning. In: IJCAI (2017). https://www.ijcai.org/Proceedings/
2017/661

10. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR (2016). https://arxiv.org/abs/1606.06565

11. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: ICLR (2017). https://arxiv.org/abs/
1610.02136

12. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: NIPS (2017). https://arxiv.org/
abs/1612.01474

13. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: ICLR (2018). https://arxiv.org/abs/1706.02690

14. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In: NIPS (2018). https://arxiv.org/
abs/1807.03888

15. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: NeurIPS
(2019). https://arxiv.org/abs/1906.02845

16. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. In: ECAI (2020). https://arxiv.org/abs/1911.09032

17. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

18. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recog-
nition benchmark: a multi-class classification competition. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1453–1460 (2011)

19. ISO/PAS 21448. Road vehicles - Safety of the intended functionality. https://www.
iso.org/obp/ui/#iso:std:70939:en

20. Pimentel, M.A.F., Clifton, D.A., Clifton, L.A., Tarassenko, L.: A review of novelty
detection. Signal Process. 99, 215–249 (2014)

https://www.deeplearningbook.org/
https://arxiv.org/abs/1812.08342
https://medium.com/@deepmindsafetyresearch/ building-safe-artificial-intelligence-52f5f75058f1
https://medium.com/@deepmindsafetyresearch/ building-safe-artificial-intelligence-52f5f75058f1
https://en.wikipedia.org/wiki/List-of-self-driving-car-fatalities
https://en.wikipedia.org/wiki/List-of-self-driving-car-fatalities
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1810.12715
https://files.sri.inf.ethz.ch/website/papers/icml18-diffai.pdf
https://files.sri.inf.ethz.ch/website/papers/icml18-diffai.pdf
https://www.ijcai.org/Proceedings/2017/661
https://www.ijcai.org/Proceedings/2017/661
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1706.02690
https://arxiv.org/abs/1807.03888
https://arxiv.org/abs/1807.03888
https://arxiv.org/abs/1906.02845
https://arxiv.org/abs/1911.09032
https://www.iso.org/obp/ui/#iso:std:70939:en
https://www.iso.org/obp/ui/#iso:std:70939:en

Parallel and Multi-objective Falsification
with Scenic and VerifAI

Kesav Viswanadha1(B), Edward Kim1, Francis Indaheng1, Daniel J. Fremont2,
and Sanjit A. Seshia1

1 University of California, Berkeley, USA
kesav@berkeley.edu

2 University of California, Santa Cruz, USA

Abstract. Falsification has emerged as an important tool for
simulation-based verification of autonomous systems. In this paper, we
present extensions to the Scenic scenario specification language and
VerifAI toolkit that improve the scalability of sampling-based falsifi-
cation methods by using parallelism and extend falsification to multi-
objective specifications. We first present a parallelized framework that is
interfaced with both the simulation and sampling capabilities of Scenic
and the falsification capabilities of VerifAI, reducing the execution
time bottleneck inherently present in simulation-based testing. We then
present an extension of VerifAI’s falsification algorithms to support
multi-objective optimization during sampling, using the concept of rule-
books to specify a preference ordering over multiple metrics that can
be used to guide the counterexample search process. Lastly, we evaluate
the benefits of these extensions with a comprehensive set of benchmarks
written in the Scenic language.

Keywords: Runtime verification · Formal methods · Falsification ·
Cyber-physical systems · Autonomous systems · Parallelization

1 Introduction

The growing adoption of autonomous and semi-autonomous cyber-physical sys-
tems (CPS) such as self-driving vehicles brings with it pressing questions about
ensuring their safety and reliability. In particular, the increasing use of artificial
intelligence (AI) and machine learning (ML) components requires significant
advances in formal methods, of which simulation-based formal analysis is a key
ingredient [25].

Even with notable development in simulators and methods for simulation-
based verification, there are four practical issues which require further advances
in tools. First, simulation time can be a huge bottleneck, as falsification is typi-
cally done with high-quality, realistic simulators such as CARLA [13], which can
be computation-intensive. Second, modeling interactive, multi-agent behaviors
using general programming languages like Python can be very time-consuming.
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 265–276, 2021.
https://doi.org/10.1007/978-3-030-88494-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_15

266 K. Viswanadha et al.

Third, autonomous systems usually need to satisfy multiple properties and met-
rics, with differing priorities, and convenient notation is needed to formally spec-
ify these. Fourth, we need to develop specification and sampling methods for
falsification that can support multiple objectives. These issues have all been
addressed in this paper with a series of features aimed at improving the scala-
bility of falsification methods, both in terms of execution time and the richness
of objectives that can be specified and falsified.

There has been prior work that addresses these four issues separately. There
have been several ideas for falsification or, conversely, optimization of CPS sub-
ject to multiple objectives [5,6,10,22,30]. There are other tools that address
simulation-based testing of CPS, including in a parallel context [3,4,21]. There
has also been some prior work on exploration methods for constrained falsifica-
tion [29]. However, these methods tend to either focus on testing specific CPS
components (as opposed to full closed-loop CPS) or require complex code to use
in a practical setting. More importantly, to our knowledge, no prior work has
jointly addressed all of these issues and demonstrated these in a single tool. In
this paper, we do so by extending the open-source VerifAI toolkit [14].1 Veri-
fAI is reasonably mature, having been demonstrated in multiple industrial case
studies [15,18]. Our contributions to the toolkit support:

1. Parallelized falsification, running multiple simulations in parallel;
2. Falsification using the latest version of the Scenic formal scenario specifi-

cation language, extending support to the “dynamic” features of Scenic for
modeling interactive behaviors [17];

3. The ability to specify for falsification multiple objectives with priority order-
ings;

4. A multi-armed bandit algorithm that supports multi-objective falsification,
and

5. Evaluation of these extensions with a comprehensive set of self-driving sce-
narios.

These contributions have had a profound impact on the capabilities of Veri-
fAI. With parallel falsification, we were able to cut down drastically on execution
time, achieving up to 5× speedup over the current falsification methods in Veri-
fAI using 5 parallel simulation processes. Using the multi-objective multi-armed
bandit sampler, we were able to find scenarios which falsify five objectives at the
same time.

2 Background

Scenic is a probabilistic programming language [7,16,17] that allows users to
intuitively model probabilistic scenarios for multi-agent systems. A concrete
scenario is a set of objects and agents, together with values for their static

1 Documentation of the extensions covered in this paper is available at:
https://verifai.readthedocs.io/en/kesav-v-multi-objective/.

https://verifai.readthedocs.io/en/kesav-v-multi-objective/

Parallel and Multi-objective Falsification 267

attributes, initial state, and parameters of dynamic behavioral models describ-
ing how their attributes evolve over time. In other words, a concrete scenario
defines a specific trace. The state of each object or agent, such as a car, includes
its semantic properties such as its position, orientation, velocity, color, model,
etc. We refer to the vector of such semantic properties as a semantic feature vec-
tor ; the concatenation of the semantic feature vectors of all objects and agents
at a given time instant defines the overall semantic feature vector at that time.
Agents also have behaviors defining a (possibly stochastic) sequence of actions
for them to take as a function of the state of the simulation at each time step. A
Scenic program defines a distribution over concrete scenarios: by sampling an
initial state and then executing the behaviors in a simulator, many different sim-
ulations can be obtained from a single Scenic program. Scenic provides a gen-
eral formalism to express probabilistic scenarios for multiple domains, including
traffic and other scenarios for autonomous vehicles, which can then be executed
in a number of simulators including CARLA [13]. In previous work on Veri-
fAI [14], the tool supported an earlier version of Scenic without interactive,
behavioral specifications. In this paper, we provide full support for Scenic’s
newer dynamic features.

VerifAI is a Python toolkit that provides capabilities for verification of AI-
based systems [8]. A primary capability is falsification, the systematic search
for inputs to a system that falsify a specification given in temporal logic or
as a cost function. VerifAI can use Scenic as an environment modeling lan-
guage, sampling from the distribution over semantic feature vectors defined by a
Scenic program to generate test cases. It then simulates these cases according
to the dynamics specified in the Scenic program, obtaining trajectories for each
object. For a more detailed description of VerifAI’s falsification capabilities
and interface with dynamic scenarios specified in the Scenic language, please
see [17].

After simulating a test case, VerifAI evaluates the system’s specification
over the obtained trajectory, saving the results for offline analysis. These results
are also used to guide further falsification, specifically by VerifAI’s active sam-
plers, such as the cross-entropy sampler [24]. These samplers use the history
of previously generated samples and their outcomes in simulation to drive the
search process to find more counterexamples.

3 Parallel Falsification

In the typical pipeline used by a VerifAI falsifier driven by a Scenic program,
semantic feature vectors (parameters) are generated using samplers in either
Scenic or VerifAI These parameter values are then sent by the VerifAI server
to the client simulator to configure a simulation and generate a corresponding
trajectory. This trajectory is then evaluated by the monitor, deemed either a
safe example or a counterexample, and added to the corresponding table in the
falsifier. Naturally, a bottleneck of this process is the generation of the trajectory
in the simulator, as this is a rather compute-intensive task that can take a minute
or more per sample, depending on the scenario description.

268 K. Viswanadha et al.

We present an improvement on this pipeline by parallelizing it using the
Python library Ray [19], which encapsulates process-level parallelism optimized
for distributed execution of computation-intensive tasks. Figure 1 illustrates the
new setup: we instantiate multiple instances of the simulator and open multiple
Scenic server connections from VerifAI to the simulator instances for perform-
ing simulations (the connections now being bidirectional so that the behavior
models in the Scenic program can respond to the current state of the simula-
tion). We then aggregate the results of these simulations into a single error table
documenting all the counterexamples found during falsification.

VERIFAI Falsifier SCENIC Server

Simulator

Simulator

Monitor

Monitor

... trajectories

Fig. 1. Parallelized pipeline for falsification using VerifAI.

Fig. 2. Left: example rulebook over functions ρ1 . . . ρ6 [11]. Right: graph G used in
experiments.

4 Multi-objective Falsification

There are typically many different metrics of interest for evaluating autonomous
systems. For example, there are many well-known metrics used in the
autonomous driving community to measure safety: no collisions, obeying traffic
laws, and maintaining a minimum safe distance from other objects, among oth-
ers [28]. It is also natural to assert, for example, that it is more important to
avoid collisions than to follow traffic laws. We now discuss how to specify these
metrics and their relative priorities.

Parallel and Multi-objective Falsification 269

4.1 Specification of Multiple Objectives Using Rulebooks

Let ρ(x) be a function mapping a simulation trajectory generated by Scenic or
VerifAI to a vector-valued objective, where ρj(x) is defined as the value of the
j-th metric. Censi et al. [11] have developed a way to specify preferences over
these metrics using a rulebook denoted by R – a directed acyclic graph (DAG)
where the nodes are the metrics and a directed edge from node i to node j means
ρi(x) is more important than ρj(x). We denote this using the >R operator, e.g.
ρi >R ρj .

Figure 2 shows an example of a rulebook over six metrics ρ1, . . . , ρ6. In this
example, we can make several inferences, such as ρ1 is more important than
ρ3, ρ3 is more important than ρ4, and ρ5 is more important than ρ3. However,
there are also many pairs of objective components that cannot be compared;
for example ρ1 and ρ5. We would like to have a way to order objective vectors
to know which values are maximally violating of the specification during active
sampling. Because of these indeterminate incomparisons, the rulebook R only
allows for a partial ordering � over the objective vectors. Intuitively, we can
think of this partial ordering as preferring examples that have lower values of
higher priority objectives since we are trying to minimize the values of each
objective for falsification. However, if there is any other indeterminate or higher
priority objective that has a higher value, the � relation does not hold. To satisfy
these properties, we define our � operator as follows:

ρ(x1) � ρ(x2) � ∀i
(
ρi(x2) < ρi(x1) =⇒ ∃j �= i (ρj >R ρi ∧ ρj(x1) < ρj(x2))

)

As an example, consider our rulebook from Fig. 2. Let ρ(x1) =
[
1 1 1 1 1 1

]T ,

and ρ(x2) =
[
1 1 2 1 0 1

]T . In this case we have ρ(x2) � ρ(x1) because ρ5(x2) <
ρ5(x1), and even though ρ3(x2) > ρ3(x1), ρ5 >R ρ3 according to the rulebook,
so the comparison of ρ5 for the trajectories takes precedence. Since the rulebook
defines a partial ordering over values of ρ, it is possible to have two trajectories
x1 and x2 such that ρ(x1) �� ρ(x2) and ρ(x2) �� ρ(x1). In such cases, both values
of ρ are maintained in the sampling algorithm; see below for more details.

4.2 Multi-objective Active Sampling

When performing active sampling to search for unsafe test inputs, we need a spe-
cialized sampler to support having multiple objectives to guide the search pro-
cess. Most of the samplers previously available in VerifAI focused either entirely
on exploration of the search space or entirely on exploitation to find unsafe
inputs; we present a sampler that balances these and builds up increasingly-
violating counterexamples in the multi-objective case.

The Multi-armed Bandit Sampler. We present a more robust version of
VerifAI’s cross-entropy sampler called the multi-armed bandit sampler ; the idea
of this sampler is to balance the trade-off between exploitation and exploration.
To understand the motivation for the sampler, we first look at the formulation of
the multi-armed bandit problem. Consider a bandit which has multiple lotteries,

270 K. Viswanadha et al.

or “arms”, to choose from, each being a random variable offering a probabilistic
reward. The bandit does not know ahead of time which arm gives the highest
expected reward, and must learn this information by efficiently sampling various
arms, while also maximizing average earned reward during the sampling process.

Carpentier et al. [9] present the Upper Confidence Bound (UCB) Algorithm
that effectively balances both of these goals, subject to a confidence parameter δ,
by sampling the arm j that minimizes a quantity Qj dependent on the number
of timesteps t, the number of times the arm j was sampled Tj(t−1), the observed
reward of arm j given by μ̂j , and the confidence parameter δ:

Qj = μ̂j +

√
2

Tj(t − 1)
ln

(
1
δ

)

Qualitatively, this works as a balance between exploitation of the reward distri-
bution learned so far (the first term), and exploration of seldom-sampled arms
(the second term). We can easily see that this can be readily adapted to our
cross-entropy sampler in VerifAI, which splits the range of each sampled vari-
able into N equally spaced buckets, which can be considered the “arms”. We
take μ̂j to be the proportion of counterexamples found in bucket j.

To compute μj for a vector-valued objective, we present the following incre-
mental algorithm which builds up counterexamples that falsify more and more
objectives (according to the priority order) over time. The steps of this algo-
rithm are as follows. This assumes that the sampler is responsible for generating
a d-dimensional feature vector.

Setup

1. Split the range of each component of the feature vector into N buckets, as in
the cross-entropy sampler.

2. Initialize matrix T of size d × N where Tij will keep track of the number of
times that bucket j was visited for variable xi.

3. Initialize a dictionary c mapping each maximal counterexample found so far
to a matrix cb of size d × N where cb,ij counts how many times sampling
bucket j for variable xi resulted in the specific counterexample b.

4. Sample from each bucket once initially, updating c and T according to the
update algorithm described below. The purpose of this is to avoid division by
zero when computing Q, as Tj(t − 1) = 0 at initialization [2].

Sampling

1. Compute a matrix μ̂ where μ̂ij represents the observed reward from sampling
bucket j for variable i by taking

∑
b cb,ij .

2. Compute a matrix Q based on the upper confidence bound formula above.
For the confidence parameter, we use a time-dependent value of 1

δ = t.
3. To sample xi, take the bucket j∗ = arg maxj Qij . Break ties uniformly at

random. This is a key step in the sampling process as it is frequently the case
initially that several buckets will have the exact same Qj value, so we need

Parallel and Multi-objective Falsification 271

to avoid bias towards any specific bucket. Sample uniform randomly within
the range represented by bucket j∗.

Updating Internal State

1. Given the objective vector value ρ, we compute our vector of booleans b as
described above.

2. If b does not exist in the dictionary c and is among the set of maximal
counterexamples found so far, i.e. ∀b′ ∈ c, b′ �� b as defined by the rulebook
R, add b as a key to the dictionary c and initialize its value as 0d×N .

3. For any b′ ∈ c such that b � b′, remove b′ from c.
4. Increment the count cb at each position cb,ij for the bucket j sampled from

xi.

5 Evaluation

We present a set of experiments designed to evaluate (i) the speedup in sim-
ulation time that we expect to see from parallelization; (ii) the benefits of the
multi-armed bandit sampler in balancing exploration and exploitation; and (iii)
the improved capabilities of falsification to support multiple objectives. We have
developed a library of Scenic scripts2 based on the list of pre-crash scenarios
described by the National Highway Traffic Safety Administration (NHTSA) [20].
For a list of the scenarios, see [27]. These scripts cover a wide variety of common
driving situations, such as driving through intersections, bypassing vehicles, and
accounting for pedestrians.

We selected 7 of these scenarios, running the VerifAI falsifier on each one
in CARLA [13] for 30 min, with individual simulations limited to 300 timesteps
(∼30 s). For all of these scenarios, the monitor specifies that the centers of the
ego vehicle and other vehicles must stay at least 5 m apart at all times. This
specification means that counterexamples approximately correspond to collisions
or near-collisions. All parallelized experiments were run using 5 worker processes
to perform simulation.

Figure 3 shows the results of running these scenarios with a variety of config-
urations. First, across the scenarios, we observed a 3–5x speedup in the number
of simulations using 5 parallel simulation processes. The variation in the number
of samples generated can be attributed to termination conditions set in Scenic,
which terminate simulations early if specific conditions are met. For some of these
scenarios, termination occurred much sooner on average than other scenarios,
leading to more simulations finishing in 30 min. These values also serve as par-
tial evidence of the effectiveness of the multi-armed bandit sampler compared to
cross-entropy, as the proportion of counterexamples found is comparable for the
two samplers despite the increased exploration component in the multi-armed
bandit sampler.
2 Full listing and source code of these Scenic scripts is available at: https://gith

ub.com/BerkeleyLearnVerify/Scenic/tree/kesav-v/multi-objective/examples/carla/
Behavior Prediction.

https://github.com/BerkeleyLearnVerify/Scenic/tree/kesav-v/multi-objective/examples/carla/Behavior_Prediction
https://github.com/BerkeleyLearnVerify/Scenic/tree/kesav-v/multi-objective/examples/carla/Behavior_Prediction
https://github.com/BerkeleyLearnVerify/Scenic/tree/kesav-v/multi-objective/examples/carla/Behavior_Prediction

272 K. Viswanadha et al.

Fig. 3. Comparison of (i) the serial and parallel versions of the falsifier for cross-entropy
and Halton sampling and (ii) the multi-armed bandit sampler with the cross-entropy
and Halton samplers all in parallel. The orange part of the bars represent the number
of counterexamples found out of the total number of samples. (Color figure online)

To validate the scalability and explorative aspect of parallelized falsification,
we present two metrics in Table 1. The first metric is the speedup factor, which
is the ratio of the number of sampled scenarios in parallel versus serial falsi-
fication, averaged across the Halton and cross-entropy samplers. We are also
interested in a metric of coverage of the scenario search space, as this ensures
that a wide range of scenarios are tested by falsification. To this end, we present
the confidence interval width ratio metric. This metric is computed by generat-
ing a 95% confidence interval [12] which provides a lower and upper bound on
the probability that a randomly generated scenario results in unsafe behavior.
Since confidence intervals are generated with the assumption of uniform random
sampling, we only compute them for the serial and parallel Halton samplers
since they are an approximation of random sampling. We take the ratio of the
widths of the intervals in the parallel versus serial case to compare how tight we
are able to make the bound in each case with the same level of confidence. The
width of the interval in the parallel case is significantly smaller - up to half the
width of the serial case. Since the width of the interval is proportional to 1/

√
n

for n samples, this makes intuitive sense and can be viewed as having double
the coverage of the search space.

Figures 3 and 4 show the qualitative benefits of the multi-armed bandit sam-
pler. The number of counterexamples generated by the multi-armed bandit sam-
pler is higher than for the Halton sampler, but only slightly lower than cross-
entropy. However, we can clearly see that multi-armed bandit sampling achieves

Parallel and Multi-objective Falsification 273

Table 1. The speedup factor and confidence interval width ratio metrics for the 7
scenarios.

Scenario # 1 2 3 4 5 6 7

Speedup factor 3.96 4.27 3.87 4.27 2.73 3.26 5.04

CI width ratio 0.51 0.48 0.48 0.53 0.61 0.56 0.44

a balance between number of counterexamples and their diversity that cross-
entropy and Halton do not.

Fig. 4. Comparison of points sampled for cross-entropy, MAB, and Halton samplers.

To demonstrate the effectiveness of the multi-objective multi-armed bandit
sampler in falsifying multiple objectives, we used a Scenic program that instan-
tiates the ego vehicle, along with m adversarial vehicles at random positions with
respect to a 4-way intersection and has all of them drive towards the intersec-
tion and either go straight or make a turn. The monitor, similarly to before,
specifies metric components ρj which say the ego vehicle must stay at least
5 m away from vehicle j. We use the following three rulebooks: a completely
disconnected graph representing no preference ordering, a linked list structure
L � ρ1 >R ρ2 >R ... >R ρ5 representing a total ordering, and the graph G on
the right in Fig. 2. We found that when using L or G, we were able to falsify 4 of
the 5 objectives with serial falsification, and all 5 objectives in the parallel case.
When having no preference ordering, we were able to falsify 3 of the 5 objectives
with serial falsification and 4 of the 5 objectives in the parallel case. By contrast,
when we combined all of these objectives in disjunction as one single objective
(such that only falsifying all 5 objectives is considered unsafe), the cross-entropy
sampler was unable to find any counterexamples.

We have also tested these methods in experiments with the LGSVL simula-
tor [23]. Using a multi-objective specification with a variety of common driving
situations, we were able to generate a wide range of test cases that cover much
of the space of possible scenarios. These experiments were run with Apollo, an
open-source autonomous driving software stack [1]. We discovered a number of
bugs in Apollo using these new capabilities of VerifAI and Scenic, such as

274 K. Viswanadha et al.

issues with stopping for pedestrians and properly avoiding encroaching vehi-
cles [26].

6 Conclusion and Future Work

The extensions to Scenic and VerifAI we report in this paper address impor-
tant problems in simulation-based falsification. First, we cut down significantly
on execution time by supporting parallel simulations. Second, we allow the sim-
ple specification of high-level yet complex scenarios using the interface between
dynamic Scenic and VerifAI. Third, we support multi-objective specification
through the formalism of rulebooks. Lastly, we are able to falsify these multi-
objective specifications in a way that is intuitive and scalable using the multi-
armed bandit sampler. We hope these extensions prove useful to developers of
autonomous systems.

There are a few directions for future work. For example, it might be interest-
ing to see if generating random topological sorts of the rulebooks to create total
ordering works well in practice. One could also run covariance analysis on the
features to determine if they can be jointly optimized for better active sampling.
Further comparison and analysis across other competing active and passive sam-
plers is needed. Lastly, there has been some work in connecting these ideas to
real-world testing [18], but especially with multi-objective falsification, this is an
interesting future direction. In an industry setting, it may also be worthwhile to
scale up parallel falsification even further to run on cloud instances for increased
efficiency, which is technically possible but yet to be implemented.

Acknowledgments. This work is partially supported by NSF grants 1545126 (VeHI-
CaL), 1646208 and 1837132, by the DARPA contracts FA8750-18-C-0101 (AA) and
FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, and by Toyota under the iCy-
Phy center.

References

1. Apollo: Autonomous Driving Solution. http://apollo.auto/. Accessed 22 July 2021
2. The upper confidence bound algorithm, September 2016. https://banditalgs.com/

2016/09/18/the-upper-confidence-bound-algorithm/
3. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-

bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(2s) (2013). https://doi.org/10.1145/2465787.2465797

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Araujo, H., Carvalho, G., Mousavi, M.R., Sampaio, A.: Multi-objective search for
effective testing of cyber-physical systems. In: Ölveczky, P.C., Salaün, G. (eds.)
SEFM 2019. LNCS, vol. 11724, pp. 183–202. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30446-1 10

http://apollo.auto/
https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-30446-1_10
https://doi.org/10.1007/978-3-030-30446-1_10

Parallel and Multi-objective Falsification 275

6. Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxeberria, L.: Employing multi-
objective search to enhance reactive test case generation and prioritization for
testing industrial cyber-physical systems. IEEE Trans. Industr. Inf. 14(3), 1055–
1066 (2018). https://doi.org/10.1109/TII.2017.2788019

7. BerkeleyLearnVerify: Berkeleylearnverify/scenic. https://github.com/
BerkeleyLearnVerify/Scenic

8. BerkeleyLearnVerify: Berkeleylearnverify/verifai. https://github.com/
BerkeleyLearnVerify/VerifAI

9. Carpentier, A., Lazaric, A., Ghavamzadeh, M., Munos, R., Auer, P.: Upper-
confidence-bound algorithms for active learning in multi-armed bandits. In: Kivi-
nen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS
(LNAI), vol. 6925, pp. 189–203. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24412-4 17

10. Castro, L.I.R., Chaudhari, P., Tumova, J., Karaman, S., Frazzoli, E., Rus, D.:
Incremental sampling-based algorithm for minimum-violation motion planning.
CoRR abs/1305.1102 (2013). http://arxiv.org/abs/1305.1102

11. Censi, A., et al.: Liability, ethics, and culture-aware behavior specification using
rulebooks. CoRR abs/1902.09355 (2019). http://arxiv.org/abs/1902.09355

12. Clopper, C.J., Person, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika 26(4), 404–413 (1934). https://doi.org/10.
1093/biomet/26.4.404

13. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

14. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

15. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with verifai.
CoRR abs/2005.07173 (2020). https://arxiv.org/abs/2005.07173

16. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: Proceedings of the 40th annual ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), June 2019

17. Fremont, D.J., et al.: Scenic: a language for scenario specification and data gener-
ation. CoRR abs/2010.06580 (2020). https://arxiv.org/abs/2010.06580

18. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: from
simulation to the real world. In: 23rd IEEE International Conference on Intelligent
Transportation Systems (ITSC), September 2020

19. Moritz, P., et al.: Ray: a distributed framework for emerging AI applications. CoRR
abs/1712.05889 (2017). http://arxiv.org/abs/1712.05889

20. Najm, W.G., Smith, J.D., Yanagisawa, M.: Pre-crash scenario typology for crash
avoidance research, April 2007. https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-
crash scenario typology-final pdf version 5-2-07.pdf

21. Qin, X., Aréchiga, N., Best, A., Deshmukh, J.V.: Automatic testing and falsifica-
tion with dynamically constrained reinforcement learning. CoRR abs/1910.13645
(2019). http://arxiv.org/abs/1910.13645

22. Ramezani, Z., Eddeland, J.L., Claessen, K., Fabian, M., Åkesson, K.: Multiple
objective functions for falsification of cyber-physical systems. IFAC-PapersOnLine
53(4), 417–422 (2020)

https://doi.org/10.1109/TII.2017.2788019
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/VerifAI
https://doi.org/10.1007/978-3-642-24412-4_17
https://doi.org/10.1007/978-3-642-24412-4_17
http://arxiv.org/abs/1305.1102
http://arxiv.org/abs/1902.09355
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://arxiv.org/abs/2005.07173
https://arxiv.org/abs/2010.06580
http://arxiv.org/abs/1712.05889
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
http://arxiv.org/abs/1910.13645

276 K. Viswanadha et al.

23. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driv-
ing. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–6 (2020).https://doi.org/10.1109/ITSC45102.2020.9294422

24. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of the 15th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, HSCC 2012,
pp. 125–134. Association for Computing Machinery, New York (2012). https://doi.
org/10.1145/2185632.2185653

25. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. ArXiv
e-prints, July 2016

26. Viswanadha, K., et al.: Addressing the IEEE AV test challenge with Scenic and
VerifAI. In: The IEEE Third International Conference on Artificial Intelligence
Testing (2021)

27. Viswanadha, K., Kim, E., Indaheng, F., Fremont, D.J., Seshia, S.A.: Parallel and
multi-objective falsification with Scenic and VerifAI. CoRR abs/2107.04164 (2021).
https://arxiv.org/abs/2107.04164

28. Wishart, J., et al.: Driving safety performance assessment metrics for ADS-
equipped vehicles, April 2020. https://doi.org/10.4271/2020-01-1206

29. Zhang, Z., Arcaini, P., Hasuo, I.: Hybrid system falsification under (in) equality
constraints via search space transformation. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst. 39(11), 3674–3685 (2020)

30. Zhou, X., Gou, X., Huang, T., Yang, S.: Review on testing of cyber physical sys-
tems: methods and testbeds. IEEE Access 6, 52179–52194 (2018). https://doi.org/
10.1109/ACCESS.2018.2869834

https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
https://arxiv.org/abs/2107.04164
https://doi.org/10.4271/2020-01-1206
https://doi.org/10.1109/ACCESS.2018.2869834
https://doi.org/10.1109/ACCESS.2018.2869834

A Theoretical Framework for
Understanding the Relationship Between

Log Parsing and Anomaly Detection

Donghwan Shin1(B) , Zanis Ali Khan1 , Domenico Bianculli1 ,
and Lionel Briand1,2

1 University of Luxembourg, Luxembourg, Luxembourg
{donghwan.shin,zanis-ali.khan,domenico.bianculli,lionel.briand}@uni.lu

2 University of Ottawa, Ottawa, Canada

Abstract. Log-based anomaly detection identifies systems’ anomalous
behaviors by analyzing system runtime information recorded in logs.
While many approaches have been proposed, all of them have in common
an essential pre-processing step called log parsing. This step is needed
because automated log analysis requires structured input logs, whereas
original logs contain semi-structured text printed by logging statements.
Log parsing bridges this gap by converting the original logs into struc-
tured input logs fit for anomaly detection.

Despite the intrinsic dependency between log parsing and anomaly
detection, no existing work has investigated the impact of the “quality”
of log parsing results on anomaly detection. In particular, the concept
of “ideal” log parsing results with respect to anomaly detection has not
been formalized yet. This makes it difficult to determine, upon obtaining
inaccurate results from anomaly detection, if (and why) the root cause
for such results lies in the log parsing step.

In this short paper, we lay the theoretical foundations for defining the
concept of “ideal” log parsing results for anomaly detection. Based on
these foundations, we discuss practical implications regarding the iden-
tification and localization of root causes, when dealing with inaccurate
anomaly detection, and the identification of irrelevant log messages.

Keywords: Log parsing · Log analysis · Anomaly detection

1 Introduction

Logs record the critical state and events of the system at runtime, providing
valuable information for monitoring and troubleshooting. Further, logs are often
the only data available that record the system’s runtime behavior. Therefore, to

This work has received funding from the Celtic-Next project CRITISEC and NSERC
of Canada under the Discovery and CRC programs. Donghwan Shin was partially sup-
ported by the Basic Science Research Programme through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (2019R1A6A3A03033444).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 277–287, 2021.
https://doi.org/10.1007/978-3-030-88494-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_16&domain=pdf
http://orcid.org/0000-0002-0840-6449
http://orcid.org/0000-0002-3935-2148
http://orcid.org/0000-0002-4854-685X
http://orcid.org/0000-0002-1393-1010
https://doi.org/10.1007/978-3-030-88494-9_16

278 D. Shin et al.

ensure the reliability of a system, log-based anomaly detection has been widely
studied with the aim of automatically deciding if the logs contain any anomalous
patterns that do not conform to the expected behavior of the system [9].

While many approaches have been proposed for log-based anomaly detec-
tion, all of them have in common an essential pre-processing step called log
parsing. This step is needed because automated log analysis requires structured
input logs, whereas collected logs are usually free-formed or semi-structured text
strings printed by logging statements (e.g., printf(), logger.info()) included
in the source code. Log parsing essentially consists in converting collected logs
into structured input logs (e.g., by identifying the message templates correspond-
ing to the various log entries); it is an active research topic that has received
considerable attention [6,9,25].

Despite advances in log parsing and log-based anomaly detection, to the best
of our knowledge, no existing work has thoroughly investigated the impact of the
“quality” of log parsing results on anomaly detection. In particular, the concept
of “ideal” log parsing results with respect to anomaly detection has not been
defined and formalized yet. The lack of such a conceptual framework makes it
difficult, when performing empirical studies on anomaly detection techniques, to
determine if the root causes of inaccuracies in anomaly detection are due to the
limitations of log parsing techniques.

In this short paper, we propose a theoretical framework for defining and dis-
cussing what are ideal log parsing results for anomaly detection. In particular, we
consider log parsing as an information abstraction process that converts collected
logs into structured logs. Since automated anomaly detection relies on structured
logs, its best operating conditions are when the minimum amount of information
that is necessary to distinguish normal from abnormal behaviors is present in
such logs. To this end, we formally define the concepts of distinguishability and
minimality, which further lead to the definition of ideal log parsing results. We
also discuss practical implications related to log parsing and anomaly detection
and present future research directions derived from our theoretical framework.

The rest of the paper is organized as follows. Section 2 explains the notations
and basic definitions that will be used throughout the paper. Section 3 formal-
izes the key concepts regarding ideal log parsing results for anomaly detection.
Section 4 discusses practical implications of the proposed theoretical framework.
Section 5 discusses related work. Section 6 concludes the paper and provides
directions for future work.

2 Preliminaries

This section introduces basic notations and concepts that will be used through-
out the paper.

We use uppercase letters to denote collections (i.e., sets and sequences) and
lowercase letters to denote elements in a collection. Specifically, {. . . } denotes
a set and 〈. . . 〉 denotes a sequence. For simplicity, we use the same notation |S|
to denote the cardinality of a set S and the length of a sequence S.

On the Relationship Between Log Parsing and Anomaly Detection 279

Index Log Message

1 Receiving block blk 471078 src: /1.2.3.4:56 dest: /1.2.3.4:78

2 Receiving block blk 471078 src: /4.3.2.1:65 dest: /4.3.2.1:78

... ...
14 Verification succeeded for blk 471078

Fig. 1. Example from HDFS Logs [10]

Definition 1 (Log Messages and Logs). A log message m is a string printed
by a logging statement in the source code. A log l is a finite sequence of log
messages, denoted by l = 〈m1,m2, . . . ,mn〉.
For instance, Fig. 1 shows a simplified1 example from the actual log produced
by running HDFS [10]. In this case, the example log can be denoted by lex =
〈m1,m2, . . . ,m14〉 where m14 is the string “Verification succeeded for
blk 471078”.

Definition 2 (Normal and Abnormal Logs). For a set of logs L, a log l ∈ L
is said to be normal if and only if it represents a normal behavior of the system.
Otherwise, l is said to be abnormal. Normal and abnormal logs are denoted by
Ln ⊆ L and La ⊆ L, respectively; for a given L and the corresponding Ln and
La, we have Ln ∩ La = ∅ and Ln ∪ La = L.

Notice that Definition 2 is independent from the nature of anomalies (e.g., point
and collective [3]). The definition only assumes that normal and abnormal behav-
iors of the system are known and distinguishable in logs. This assumption can
be easily satisfied when the accuracy of anomaly detection techniques, includ-
ing log parsing techniques, are evaluated in controlled experiments using known
benchmarks; furthermore, enhancing the quality of logs to distinguish normal
and abnormal behaviors has been actively studied [12,22–24]. In the rest of the
paper we adopt this definition and make its underlying assumption.

3 Ideal Log Parsing Results for Anomaly Detection

3.1 Log Parsing as Abstraction

Intuitively, log parsing is a process that converts original logs composed of free-
formed messages into structured logs, by extracting key information from indi-
vidual log messages. For example, some log parsing approaches, such as Drain [8]
and MoLFI [15], may extract key information from m1 in Fig. 1 as an event tem-
plate “Receiving block <*> src: <*> dest <*>” characterizing the event of
1 In general, logs may contain extra information, such as timestamps and logging levels

(e.g., info, debug) for individual log messages. However, we omit such information
since log parsing deals with log messages characterizing the states or events of the
system.

280 D. Shin et al.

receiving a block, where symbol <*> indicates the position of a parameter value
determined at runtime. With respect to these approaches, all messages that
match the template, such as m2 in Fig. 1, represent the same event of receiving
a block. In this sense, we can consider log parsing as an abstraction process that
generates “abstract” key information that represents multiple “specific” mes-
sages. Notice that different log parsing approaches yield different abstraction
results (not even necessarily in the form of templates). For example, a log pars-
ing approach that simply counts the number of tokens would abstract m1 as the
integer 7 (as m1 contains seven tokens). To keep our presentation general, we
introduce an abstraction function τ that represents a log parsing approach.

Definition 3 (Log Parsing as an Abstraction Function). Given a set of
log messages M and a generic set of parsing results A, a log parsing approach
can be represented as an abstraction function τ : M → A.

Notice that the definition of A is left generic, to accommodate different types of
results yielded by log parsing techniques.

Using the concept of τ , the results obtained by a parsing approach can be
seen as an abstraction of the original log itself.

Definition 4 (Abstraction of Log). Given an abstraction function τ repre-
senting a log parsing approach and a log l = 〈m1,m2, . . . ,mn〉, the abstraction
of l using τ , denoted by τ∗(l), is defined as τ∗(l) = 〈τ(m1), τ(m2), . . . , τ(mn)〉.
In other words, τ∗ can be considered as an abstraction function for a log,
extended from τ . Similarly, we can further extend τ∗ to consider a set of logs as
follows.

Definition 5 (Abstraction of Set of Logs). Given an abstraction function
τ representing a log parsing approach and a set of logs L, the abstraction of L
using τ , denoted by τ∗∗(L), is defined as τ∗∗(L) = {τ∗(l) | l ∈ L}.
Based on these definitions, τ∗∗(L) represents the results of using a log parsing
approach (abstracted by τ) on a set of logs L; in our context, it represents the
structured input logs provided as input to an anomaly detection approach.

Running Example. To better understand the above definitions, let us con-
sider a set of logs Lex = {l1, l2, l3} where l1 = 〈ma,mb,mc〉, l2 = 〈mb,ma,mc〉,
and l3 = 〈ma,mb,md〉 and each message in {ma,mb,mc,md} is different from
the others. Let us assume to use a log parsing approach that yields an inte-
ger value, such that both ma and mb are mapped to 1 while mc and md are
mapped to 2 and 3, respectively. We can represent the log parsing approach
as the abstraction function τex defined such that τex(ma) = τex(mb) = 1,
τex(mc) = 2, and τex(md) = 3. Using τex, we can see that the abstraction of l1 is
τ∗
ex(l1) = 〈τex(ma), τex(mb), τex(mc)〉 = 〈1, 1, 2〉. Similarly, τ∗

ex(l2) = 〈1, 1, 2〉
and τ∗

ex(l3) = 〈1, 1, 3〉. As a result, the abstraction of Lex is τ∗∗
ex (Lex) =

{τ∗
ex(l1), τ∗

ex(l2), τ∗
ex(l3)} = {〈1, 1, 2〉, 〈1, 1, 3〉}.

On the Relationship Between Log Parsing and Anomaly Detection 281

This example shows that different logs (e.g., l1 and l2) can be indistinguish-
able when abstracted using a certain log parsing approach. This is directly related
to one of the key concepts for defining the ideal log parsing results for anomaly
detection, which will be detailed in the next section.

3.2 Ideal Log Parsing Results

As described above, log parsing abstracts L to τ∗∗(L), possibly resulting in
different logs indistinguishable from each other as a result of abstraction. For the
main anomaly detection step that takes τ∗∗(L) as input, if normal and abnormal
logs are indistinguishable in τ∗∗(L), then it is impossible to correctly identify
abnormal behaviors from it. It is thus important to formalize the concept of
distinguishability of log parsing results:

Definition 6 (Distinguishability of Log Parsing Results). Given a non-
empty set of normal logs Ln ⊂ L and a non-empty set of abnormal logs La ⊂ L
(where Ln ∪ La = L and Ln ∩ La = ∅), an abstraction function τ distinguishes
Ln and La if and only if τ∗∗(Ln) ∩ τ∗∗(La) = ∅. In this case, τ∗∗(L) is called
d-maintaining (maintaining the distinguishability) between Ln and La.

In other words, d-maintaining log parsing results maintain the distinction
between Ln and La after the abstraction of log parsing. For our running exam-
ple used in Sect. 3.1, let us additionally consider Ln = {l1, l2} and La = {l3}.
Since τ∗∗

ex (Ln) = {〈1, 1, 2〉} and τ∗∗
ex (La) = {〈1, 1, 3〉}, τ∗∗

ex (Ln)∩τ∗∗
ex (La) = ∅, and

therefore τ∗∗
ex (Lex) is d-maintaining between Ln and La.

However, distinguishability is only a necessary condition for log parsing
results to be ideal. For example, if we consider an abstraction function τ= such
that τ=(m) = m for every message m, τ∗∗

= (L) is d-maintaining between arbi-
trary Ln and La (since τ∗∗

= (Ln) = Ln, τ∗∗
= (La) = La, and Ln ∩ La = ∅ by

definition). However, τ∗∗
= (L) does not represent the ideal log parsing results

because τ= does not produce an actual abstraction (since it is just defined as
the identity function). Indeed, as long as log parsing results maintain the distin-
guishability between Ln and La, a higher degree of abstraction (i.e., mapping
more messages to the same parsing result) leads to better operating conditions
for anomaly detection, as it minimizes the “information” contained in the struc-
tured input logs (i.e., the log parsing results) that must be analyzed by the main
anomaly detection step. Furthermore, since anomaly detection is largely based
on Machine Learning (ML) [9], including Clustering, Support Vector Machine
(SVM), and Long Short-Term Memory (LSTM), the abstraction of log pars-
ing can significantly improve the learning performance of anomaly detection by
reducing dimensionality (i.e., the number of features)2. Therefore, we should
additionally consider the concept of minimality of the information contained in
log parsing results.

2 This is because distinct τ(m) for each message m that appear in L can lead to one or
more dimensions. In ML, dimensionality reduction is an essential topic to improve
predictive power [1].

282 D. Shin et al.

To formalize the minimality concept, we first need to define the information
contained in log parsing results. Since the core of log parsing is to abstract
individual messages, we consider the information contained in τ∗∗(L) in terms
of its unique entities (i.e., abstracted messages) as follows.

Definition 7 (Information in Log Parsing Results). Given a set of logs L
and an abstraction function τ , the information contained in L as abstracted by
τ , denoted by I(L, τ), is defined as I(L, τ) =

⋃
l∈L{τ(m) | m ∈ l}.

For our running example, the information contained in Lex abstracted by τex is
I(Lex, τex) = {τex(ma), τex(mb), τex(mc), τex(md)} = {1, 2, 3}, meaning that τex
reduces the information from {ma,mb,mc,md} to {1, 2, 3} through abstraction.

Using I(L, τ), we can define the concept of ideal log parsing results by con-
sidering both distinguishability and minimality as follows.

Definition 8 (Minimal Distinguishable Log Parsing Results). Given a
non-empty set of normal logs Ln ⊂ L and a non-empty set of abnormal logs
La ⊂ L (where Ln ∪ La = L and Ln ∩ La = ∅), we say that τ∗∗(L) is minimally
d-maintaining between Ln and La if and only if (1) τ∗∗(L) is d-maintaining
between Ln and La and (2) there is no abstraction function τ ′ such that τ ′∗∗(L)
is d-maintaining and |I(L, τ ′)| < |I(L, τ)|.
Taking the running example again, τ∗∗

ex (Lex) is d-maintaining (but not min-
imally) because there exists τnew such that (1) τ∗∗

new(Lex) is d-maintaining
and (2) |I(Lex, τnew)| < |I(Lex, τex)|. Specifically, if τnew(ma) = τnew(mb) =
τnew(mc) = 12 and τnew(md) = 3, then τ∗∗

new(Ln) = {〈12, 12, 12〉}, τ∗∗
new(La) =

{〈12, 12, 3〉}, I(Lex, τnew) = {12, 3}; therefore τ∗∗
new(Ln) ∩ τ∗∗

new(La) = ∅ and
|I(Lex, τnew)| = |{12, 3}| = 2 is less than |I(Lex, τex)| = |{1, 2, 3}| = 3. How-
ever, τ∗∗

new(Lex) is minimally d-maintaining because there is no τ ′ such that
|I(L, τ ′)| = 1 and τ ′∗∗(L) is d-maintaining. As a result, τ∗∗

new(Lex) represents the
ideal log parsing results for anomaly detection.

4 Applications

4.1 Localization of the Causes of Inaccurate Anomaly Detection

When anomaly detection accuracy is not 100% (i.e., some abnormal behaviors
are not correctly detected or some normal behaviors are incorrectly detected
as abnormal), it is important to know exactly where the problem lies (in the
log parsing step, in the main anomaly detection step, or in both), in order to
improve the results. Using our theoretical framework, we can localize the cause
of inaccurate anomaly detection results. Specifically, for a set of normal logs Ln

and a set of abnormal logs La, we can distinguish the following three cases.

Case 1. If the log parsing results is minimally d-maintaining between Ln and La,
the main anomaly detection step must be the cause of the inaccuracy, because
the log parsing results are ideal for anomaly detection.

On the Relationship Between Log Parsing and Anomaly Detection 283

Case 2. If the log parsing results is d-maintaining between Ln and La but not
minimally so, a perfect anomaly detection approach could achieve pinpoint accu-
racy. However, as discussed in Sect. 3.2, making the log parsing results minimally
d-maintaining could significantly increase anomaly detection accuracy.

Case 3. Otherwise, inaccurate anomaly detection results are inevitable due to
the low-quality log parsing results. We can further investigate the issue of log
parsing results by focusing on exactly what prevents the log parsing results from
being d-maintaining between Ln and La.

The above characterization has important implications for researchers who
want to assess the accuracy of their anomaly detection approaches. As non-
ideal log parsing results decrease anomaly detection accuracy, it is recommended
to use ideal log parsing results in controlled experiments to properly assess the
performance of a technique, independently of log parsing. Also, if possible, using
various log parsing results including minimally d-maintaining, d-maintaining but
not minimal, and non-d-maintaining ones, would provide a better picture on how
anomaly detection would work in practice, depending on the quality of the log
parsing results.

4.2 Removal of Unnecessary Log Messages for Anomaly Detection

As discussed in Sect. 3.1, some messages become indistinguishable through the
abstraction of log parsing. One may wonder whether simply removing some of the
messages could contribute to further reduce the amount of information contained
in the log parsing results. Indeed, in our running example, τ∗∗

y (Lex) remains
minimally d-maintaining even if we remove ma and mb from Lex. However, this
is not always true. For example, consider a normal log ln = 〈mx,my〉 and an
abnormal log la = 〈my〉. While we can consider an abstraction function τ such
that τ(mx) = τ(my) and τ∗(ln) �= τ∗(la), removing mx from the logs makes ln
and la indistinguishable. This example shows that, though there are messages
that can be abstracted to the same entity, it does not necessarily mean that one
of them can be removed without affecting anomaly detection accuracy.

Notice that existing log parsing techniques do not reduce the length of indi-
vidual logs3. However, we know, as discussed above, that having minimal infor-
mation necessary to distinguish normal and abnormal logs is the best operating
condition for anomaly detection. In this sense, further research is needed to
develop an automated approach for “greedy” log parsing techniques that not
only abstract but also remove log messages to achieve minimality while main-
taining the distinguishability of the results.

3 Though the length of logs can be reduced in a pre-processing step by omitting certain
messages or events based on domain knowledge, this is independent from log parsing,
which just abstracts messages.

284 D. Shin et al.

5 Related Work

To the best of our knowledge, there is no existing work that provides a frame-
work to formalize the concept of ideal log parsing results for anomaly detection.
This is mainly because most of the existing log parsing approaches, includ-
ing AEL [11], Drain [8], IPLoM [14], LenMa [18], LFA [17], LogCluster [20],
LogMine [7], LogSig [19], MoLFI [15], SHISO [16], SLCT [21], Spell [5], and
Logram [4], have been proposed as general-purpose approaches rather than spe-
cialized for anomaly detection. The accuracy of all these approaches has been
assessed with respect to the logging statements that produce individual mes-
sages. For example, the execution of the logging statement printf("retry "
+ i) in the source code, when the program variable i evaluates to 1, will gen-
erate the log message “retry 1”. Then a log parsing approach is expected to
reconstruct the form of the logging statement as a template “retry <*>” with-
out accessing the source code, where symbol “<*>” indicates the position of
the parameter value (i.e., “1”). In other words, the ground truth used to assess
the accuracy of general-purpose log parsing is determined based on the logging
statements that generated the input logs. On the other hand, there is no ground
truth that guarantees the best operating conditions for anomaly detection. To
address this challenge, we provide a theoretical foundation to precisely define
key concepts, including the distinguishability and minimality of ideal log pars-
ing results.

6 Conclusion and Future Research Directions

In this short paper, we proposed a theoretical framework that formalizes the con-
cepts of distinguishability and minimality, showing that log parsing results that
minimally maintain distinguishability between normal and abnormal logs pro-
vide the best operating conditions for anomaly detection. Using our theoretical
framework, we also identified practical implications for researchers regarding the
root causes for inaccuracy in anomaly detection and the removal of log messages
that are unnecessary for anomaly detection.

Several future research directions can be derived from our theoretical frame-
work.

Efficient Ideal Log Parsing for Experiments. We saw that having ideal log pars-
ing results is important in controlled experiments to properly identify the cause of
inaccurate anomaly detection results. However, getting ideal log parsing results
for a given set of logs is not that simple since, for the logs containing n unique
log messages, the number of all possible log parsing results (i.e., the number
of all possible abstraction functions) is equal to the Bell number Bn (i.e., the
number of all partitions of a set of size n) [2]. Indeed, the problem of identify-
ing the ideal log parsing results can be regarded as an optimization problem to
minimize the amount of information contained in the log parsing results while
maintaining distinguishability between normal and abnormal logs. Also, there is

On the Relationship Between Log Parsing and Anomaly Detection 285

additional information that is potentially relevant to address this problem, such
as the similarity between messages. Therefore, developing an efficient approach
is an appealing research direction. We plan to extend the theoretical framework
to measure the degree of distinguishability and minimality of given log pars-
ing results and use such measures as fitness functions in meta-heuristic search
algorithms [13] to find optimal log parsing results for anomaly detection.

Log Parsing Approaches Tailored to Anomaly Detection. Since ideal log parsing
results for anomaly detection require different properties than those sought by
general-purpose log parsing approaches, solutions tailored to anomaly detection
are called for. Notice that, to be used in practice, these approaches should be able
to generate near-ideal log parsing results without being provided with normal
and abnormal labels.

Empirical Studies. While we formalize the concepts of ideal log parsing results
for anomaly detection, the impact of log parsing on anomaly detection in prac-
tice remains unclear. Therefore, to better understand such impact in real-world
applications, more empirical studies investigating the relationship between log
parsing and anomaly detection results are required.

Run-time Applications. The theoretical framework can also be used in an online
setting where logs are produced at runtime (e.g., in the context of stream verifica-
tion). For example, online log parsing techniques, such as Drain [8], dynamically
update log parsing results given streaming logs. Therefore, as long as normal and
abnormal behaviors are distinguished in logs, one could monitor the quality of
log parsing results for anomaly detection at runtime by considering distinguisha-
bility and minimality. Opportunities for applications in such diverse settings are
open.

References

1. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press (2012), https://dl.acm.org/doi/book/10.5555/3360093

2. Aigner, M.: A characterization of the bell numbers. Discret. Math. 205(1), 207–210
(1999). https://doi.org/10.1016/S0012-365X(99)00108-9

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 1-58 (2009). https://doi.org/10.1145/1541880.1541882

4. Dai, H., Li, H., Chen, C.S., Shang, W., Chen, T.: Logram: efficient log parsing
using n-gram dictionaries. IEEE Trans. Softw. Eng. 1 (2020). https://doi.org/10.
1109/TSE.2020.3007554

5. Du, M., Li, F.: Spell: streaming parsing of system event logs. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 859–864. IEEE, Barcelona,
Spain (2016)

6. El-Masri, D., Petrillo, F., Guéhéneuc, Y.G., Hamou-Lhadj, A., Bouziane, A.: A
systematic literature review on automated log abstraction techniques. Inf. Softw.
Technol. 122, 106276 (2020). https://doi.org/10.1016/j.infsof.2020.106276

https://dl.acm.org/doi/book/10.5555/3360093
https://doi.org/10.1016/S0012-365X(99)00108-9
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1016/j.infsof.2020.106276

286 D. Shin et al.

7. Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., Mueen, A.: Logmine: fast
pattern recognition for log analytics. In: Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge Management, pp. 1573–1582.
Association for Computing Machinery, Indianapolis, IN, USA (2016)

8. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40. IEEE, Honolulu, HI, USA (2017)

9. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log
analysis for reliability engineering. CoRR abs/2009.07237 (2020). https://arxiv.
org/abs/2009.07237

10. He, S., Zhu, J., He, P., Lyu, M.R.: Loghub: a large collection of system log datasets
towards automated log analytics (2020)

11. Jiang, Z.M., Hassan, A.E., Flora, P., Hamann, G.: Abstracting execution logs to
execution events for enterprise applications. In: 2008 The Eighth International
Conference on Quality Software, pp. 181–186. IEEE, Oxford, UK (2008)

12. Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Which variables should i
log? IEEE Trans. Softw. Eng. 47(9), 2012–2031 (2019). https://doi.org/10.1109/
TSE.2019.2941943

13. Luke, S.: Essentials of Metaheuristics. Lulu, second edn. (2013), available for free
at http://cs.gmu.edu/∼sean/book/metaheuristics/

14. Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using
iterative partitioning. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1255–1264. Association
for Computing Machinery, New York, NY, USA (2009)

15. Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnauskas, R.: A search-
based approach for accurate identification of log message formats. In: 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC),
pp. 167–16710. ACM, Association for Computing Machinery, Gothenburg, Sweden
(2018)

16. Mizutani, M.: Incremental mining of system log format. In: 2013 IEEE Interna-
tional Conference on Services Computing, pp. 595–602. IEEE, Santa Clara, CA,
USA (2013)

17. Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types for mining
software system logs. In: 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pp. 114–117. IEEE, IEEE, Cape Town, South Africa
(2010)

18. Shima, K.: Length matters: clustering system log messages using length of words
(2016)

19. Tang, L., Li, T., Perng, C.S.: Logsig: Generating system events from raw textual
logs. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, pp. 785–794. ACM, New York, NY, USA (2011)

20. Vaarandi, R., Pihelgas, M.: Logcluster - a data clustering and pattern mining
algorithm for event logs. In: 2015 11th International Conference on Network and
Service Management (CNSM), pp. 1–7. IEEE, Barcelona, Spain (2015). https://
doi.org/10.1109/CNSM.2015.7367331

21. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. In:
Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM
2003)(IEEE Cat. No. 03EX764), pp. 119–126. IEEE, Kansas City, MO, USA (2003)

https://arxiv.org/abs/2009.07237
https://arxiv.org/abs/2009.07237
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
http://cs.gmu.edu/~sean/book/metaheuristics/
https://doi.org/10.1109/CNSM.2015.7367331
https://doi.org/10.1109/CNSM.2015.7367331

On the Relationship Between Log Parsing and Anomaly Detection 287

22. Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M.M., Tang, X., Zhou, Y., Savage,
S.: Be conservative: enhancing failure diagnosis with proactive logging. In: 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
12), pp. 293–306. USENIX Association, Hollywood, CA (October 2012). https://
www.usenix.org/conference/osdi12/technical-sessions/presentation/yuan

23. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosabil-
ity via log enhancement. ACM Trans. Comput. Syst. 30(1), 1-28 (2012). https://
doi.org/10.1145/2110356.2110360

24. Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: Log20: fully
automated optimal placement of log printing statements under specified overhead
threshold. In: Proceedings of the 26th Symposium on Operating Systems Princi-
ples, pp. 565–581. SOSP 2017, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3132747.3132778

25. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 121–130.
IEEE, Madrid, Spain (2019)

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/yuan
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1145/3132747.3132778

Specification and Runtime Verification
of Temporal Assessments in Simulink

Akshay Rajhans(B) , Anastasia Mavrommati , Pieter J. Mosterman,
and Roberto G. Valenti

MathWorks, Natick, MA 01760, USA
{arajhans,amavromm,pmosterm,rvalenti}@mathworks.com

Abstract. Formalization of specifications is a key step towards rigor-
ous system design of complex engineered systems such as cyber-physical
systems. Temporal logics are a suitable expressive formalism for cap-
turing temporal specifications. However, since engineers and practition-
ers are often unfamiliar with the symbols and vocabulary of temporal
logic, informal natural-language specifications still are used abundantly
in practice. This tool paper presents the Temporal Assessments feature
in SimulinkR© TestTM that strives to achieve the best of both worlds. It
provides graphical user interfaces and visual examples for users to inter-
actively create temporal specifications without the need to author logical
formulae by hand, yet any user-authored temporal assessment is a valid
logical formula in an internal representation. Iterative folding of clauses
enables the specification to be presented to read like English language
sentences. Key highlights of the feature along with examples of authoring
and runtime verification of temporal logic specifications are presented.

Keywords: Formal specifications · Temporal logic · Runtime
verification · Model-based design · Simulink · Simulink test

1 Introduction

Model-Based Design of complex engineered systems involves the creation of com-
putational models and perfecting them as much as possible before building actual
physical prototypes where design iterations and finding and fixing mistakes
can be costly. Requirement specifications are useful for establishing correctness
of design models. However, these specifications are often captured in natural-
language sentences in enumerated lists (e.g., in a spreadsheet). Such informal
specifications and can be incomplete, ambiguous, and inconsistent among each
other.

Temporal logics such as the Signal Temporal Logic [9] are a formal alternative
naturally suited for dense-time continuous or hybrid domain behavior evolutions
seen in engineered systems, including cyber-physical systems. The research com-
munity has seen broad adoption of such logics for specification and runtime
verification: a representative list of relevant work includes [3,4,6,8,11,12,14].
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 288–296, 2021.
https://doi.org/10.1007/978-3-030-88494-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_17&domain=pdf
http://orcid.org/0000-0003-4549-8837
http://orcid.org/0000-0003-1809-2647
http://orcid.org/0000-0002-7745-7362
https://doi.org/10.1007/978-3-030-88494-9_17

Specification and Runtime Verification of Temporal Assessments in Simulink 289

Yet, industrial adoption by practitioners has remained a challenge. One key bar-
rier is the lack of familiarity with logical symbols and formulae. For example, in
his HSCC 2015 Keynote, Deshmukh calls out formal requirements engineering
as a “grand challenge” and mentions “[h]ow do [control designers] convey their
intentions without using formalisms?” as a “[k]ey challenge for Toyota, Bosch,
and others” towards that grand challenge [5]. As examples of additional barriers
to adoption, Kapinski posits that “[o]ne reason why formal requirements have
not yet been adopted by industry is that they can be difficult to create and
debug” and that “[a] remaining challenge is in creating methods to visualize, or
otherwise elucidate, the envelope (or complete set) of behaviors specified by the
requirements.” [2].

Starting with Release R2019a, SimulinkR© TestTM offers a new Logical and
Temporal Assessments functionality1 that aims to address some of these chal-
lenges and make formal specifications more accessible to engineers and prac-
titioners. It provides a mechanism for authoring logical and temporal specifi-
cations via a graphical user interface (GUI) by simply filling out pre-existing
template patterns, that is, without the need to write out a logical formula by
hand. This interface provides visual representations of hypothetical passing and
failing behaviors at authoring time as visual feedback to the user. Evaluation of
specifications involves simulation of a SimulinkR© model specified as the system
under test (SUT). Hierarchical subexpression tree evaluation provides a visual
mechanism for the user to investigate assessment, and failing examples provide
graphical and textual explanation of failures. The rest of this paper presents key
details about authoring and evaluation of specifications using this functionality.

2 Authoring Temporal Specifications

We begin by covering some preliminaries.

2.1 Preliminaries

SimulinkR© is a graphical Model-Based Design environment for modeling, simu-
lation, and automatic code generation of engineered systems, including cyber-
physical systems. Simulink models are directed graphs with blocks forming nodes
of the graph and signal lines forming the edges of the graph. Formal definitions
of Simulink models and blocks can be found elsewhere [13] and are dropped from
this paper for brevity.

Blocks may have internal continuous-time and/or discrete-time state(s) that
are updated as per the corresponding differential and/or difference equations.
As a software implementation, each block must define its output method, and
may define update and/or derivative methods to realize the corresponding equa-
tions as applicable. Simulink’s execution engine calls these methods in a pre-
determined order in a loop, called the simulation loop, until the simulation stop
time is reached [7].
1 https://www.mathworks.com/help/sltest/ug/temporal-assessments.html.

https://www.mathworks.com/help/sltest/ug/temporal-assessments.html

290 A. Rajhans et al.

Signal lines are buffered values computed by the output ports of the driving
blocks every time the output method gets called. In between such consecutive
output method calls, the last computed value is held until a new value overwrites
it. Note that for discrete-time blocks, this is a zero-order hold implementation,
which is actually a continuous-time signal with possible discontinuities.

2.2 Authoring Temporal Assessments via a UI Element

Fig. 1. UI Element for Authoring Logical and Temporal Assessments.

Logical and temporal specifications can be authored in structured English from
pre-existing templates and patterns. Figure 1 shows a user interface (UI) element
for authoring specifications. Clicking on ‘Add Assessment’ lets the user choose
from pre-existing templates and patterns to construct a specification. The left
half of the window in Fig. 1 depicts a mechanism for users to author specifica-
tions. Shown are a couple of new assessments with highlighted fields for the user
to interactively select variations and/or enter expressions, as well as a couple of
filled out and folded assessments that read like English language sentences.

Table 1 depicts the three classes of template patterns available for users to
author. Custom formula captures if a given Boolean expression holds over all sim-
ulation time. Bounds check collection provides a set of frequently-used instances
of custom formula, where the expression is whether a given signal value or a
derived expression always stays above, below, inside, and outside bounds, with

Specification and Runtime Verification of Temporal Assessments in Simulink 291

Table 1. Template Pattern Classes

Template Pattern Class Equivalent Logical Formula

Bounds Check � (signal satisfies bound constraint)

Custom Formula � ϕ

Trigger Response � (ϕ1 → ♦ ϕ2)

Table 2. Bounds check patterns and variations.

Pattern Equivalent Logical Formula Strict Variation(s)

Always less than � (x < ub) � (x ≤ ub)

Always greater than � (x > lb) � (x ≥ lb)

Always inside bounds � ((x < ub) ∧ (x > lb)) � ((x ≤ ub) ∧ (x > lb))

� ((x < ub) ∧ (x ≥ lb))

� ((x ≤ ub) ∧ (x ≥ lb))

Always outside bounds � ((x > ub) ∨ (x < lb)) � ((x ≥ ub) ∨ (x < lb))

� ((x > ub) ∨ (x ≤ lb))

� ((x ≥ ub) ∨ (x ≤ lb))

Boolean combination of strict and/or non-strict inequalities (indicated using
corresponding check-boxes) tabulated in Table 2.

Trigger response is a class of frequently-used temporal formulas of the type
� (ϕ1 → ♦[a,b] ϕ2). The various combinations of triggers, response delays, and
responses are tabulated in Table 3. Note that a logical condition becoming true
captures the rising edge of the evaluation of the expression from false to true.
This is typically not supported out-of-the-box in as an atomic expression in log-
ics, but is a shorthand, similar in spirit to rise and fall operators [10], provided to
the user who would otherwise need to construct a compound clause themselves.
Similarly, an expression staying true for a specified period is another shorthand
that absorbs a temporal operator within it. The three flavors of response delay
form the implications →, → ♦[0,b], and → ♦[a,b] respectively.

The flavors for response conditions include when an expression evaluates to
true at the point of evolution as well as those where it evaluates to true and stays
true for a range of time intervals. Additionally, there is also an until operator
where a condition evaluates to true and stays true until a different condition
becomes true. This is a timed until, so there is a maximum timeout period that
the user can specify.

2.3 Visual Representation

The top right corner of Fig. 1 shows a visual representation of a fictitious trace
that would pass the selected lower bounds check. The user can regenerate addi-
tional passing and failing visuals including ones with a dynamic lower bound

292 A. Rajhans et al.

Table 3. Trigger response pattern (ϕ1 → ♦[a,b] ϕ2) and its variations

Element Variation

Trigger (ϕ1) whenever <condition1> is true

<condition1> becomes true

<condition1> becomes true and stays true for at least

<condition1> becomes true and stays true for at most

<condition1> becomes true and stays true for between

Response delay
(→ ♦[a,b])

with no delay

with a delay of at most

with a delay of in between

Response (ϕ2) <condition2> must be true

<condition2> must stay true for at least

<condition2> must stay true for at most

<condition2> must stay true for between

<condition2> must stay true until <condition3> becomes

true

in order to get a visual intuition about the kind of specification they are enter-
ing. Note that these fictitious traces are not the actual behaviors of the SUT
model since at authoring time SUT simulation is not invoked. Appropriate visual
examples are also available for other templates such as trigger-response.

2.4 Symbol Resolution

The bottom right corner of Fig. 1 shows the symbol mapping UI element, where
the symbols appearing in authored assessments can be mapped to either a signal
in the SUT model or to an expression. The named symbol velocity is shown
to be mapped to a signal in the SUT model, whereas the symbols tau and
eps1 are mapped to simply their defined constant values. (In an alternative
implementation, they could have instead been mapped to workspace variables).

2.5 Example

As a running example, let us consider a bouncing ball model in Simulink (exam-
ple model sldemo bounce that ships with the product) [1] as the SUT. We
express a logical bounds-check condition PositionAlwaysNon-negative, which
checks that the position of the ball always stays non-negative. This specification
is intended to be a sanity check that the model has been constructed correctly.
Additionally, we author a trigger-response specification No-Chattering, which
checks whether after each bounce, within a small time period ε1, whether the
velocity remains positive for at least a specified finite time period of τ seconds.
Figure 2 shows the two authored specifications folded to read as English sen-
tences.

Specification and Runtime Verification of Temporal Assessments in Simulink 293

Fig. 2. Example specifications for a bouncing ball model.

3 Runtime Verification of Temporal Assessments

Runtime verification of the logical and temporal assessments invokes a simu-
lation of the SUT and checks whether the simulation trace satisfies the spec-
ifications. Figure 3 depicts a passing evaluation of the sanity-check condition
PositionAlwaysNon-negative defined in Sect. 2.5. The UI shows the assess-
ments, the symbols used in the assessment (in this case only position), and a
foldable subexpression evaluation tree.

Fig. 3. Satisfaction of PositionAlwaysNon-negative.

The assessment No-Chattering from Sect. 2.5 turns out to be not satisfied
by the SUT. Figure 4 shows a portion of the UI where we see a pictorial and
textual explanation of the failure. There is at least one point in simulation time
(at 20.35 s) where the response condition of (velocity > 0) does not stay true
for at least τ s. The explanation provides the exact simulation time within less
than τ s from the trigger plus a delay of ε1 when it becomes false. It turns out
there are 94 other simulation times when the assessment also evaluates to false,

294 A. Rajhans et al.

and the left and right arrows let the user navigate to other failure points in time
and read the corresponding failure explanation.

Fig. 4. Graphical and textual explanation of failure of No-Chattering.

Figure 5 shows another portion of the failing assessment UI which shows the
foldable and expandable subexpression evaluation tree. The top trace shows the
evaluation of the overall assessment resulting in fail, pass, and untested values
over time. In case of trigger response formulas, since they take the form of an
implication (ϕ1 → ϕ2), the formula can be vacuously true when the trigger
precondition ϕ1 evaluates to false. All such points in time are shown in gray
(untested value), whereas shown in green (pass value) are those where the
trigger condition ϕ1 evaluates to true and the response condition ϕ2 evaluates
to true. All the failing points towards the end of the simulation are shown in red
(fail value) where the trigger condition ϕ1 evaluates to true but the response
condition ϕ2 evaluates to false. Such an expression tree helps the user narrow
down the sources of failure in time (by zooming into the x axis as depicted) as
well as, in subexpressions and thereby in corresponding SUT elements they are
mapped to in order to debug the failures more quickly.

4 Discussion

This tool paper presented the new logical and temporal assessments function-
ality in Simulink Test which aims to make formal specifications accessible to
practitioners who may not be familiar with logic symbols and vocabulary. A
graphical user interface enables users to enter formal specifications without the
need to write out logical formulas by hand. Iterative folding of subexpressions
enables the formulas to be read like English language sentences. Yet, because
these are syntactically correct formulas by construction, they are formal and
unambiguous. Symbols used in the formulas can be mapped to expressions or
signals from a Simulink system-under-test model.

The design choices made in developing this functionality are based on the
voice of our industry practitioner customers since the early days of development.
For example, the supported classes of template patterns strive to achieve the
balance between expressivity (capture most commonly used specifications) and

Specification and Runtime Verification of Temporal Assessments in Simulink 295

Fig. 5. Violation of non-chattering specification with a detailed expression tree of
assessment evaluation.

simplicity (keep it intuitive for practitioners). Visualization examples provide
additional feedback to the user about whether the specification they are author-
ing is the one they have in mind. Lastly, the deliberate use of the untested value
is another such design choice because showing such vacuously true instances as
pass is non-intuitive to practitioners.

Our hope is that this new functionality facilitates broader mainstream adop-
tion of formal specifications by industry practitioners.

Acknowledgments. Contributions by Dr. Jean-François Kempf and Dr. Khoo Yit
Phang to an earlier extended abstract on this topic are gratefully acknowledged.

References

1. Simulation of a bouncing ball. http://www.mathworks.com/help/simulink/
examples/simulation-of-a-bouncing-ball.html

2. Allgöwer, F., et al.: Position paper on the challenges posed by modern applications
to cyber-physical systems theory. Nonlinear Anal. Hybrid Syst 34, 147–165 (2019)

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

4. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: CPSDebug:
automatic failure explanation in CPS models. Int. J. Softw. Tools Technol. Transf.
(2021). https://doi.org/10.1007/s10009-020-00599-4

http://www.mathworks.com/help/simulink/examples/simulation-of-a-bouncing-ball.html
http://www.mathworks.com/help/simulink/examples/simulation-of-a-bouncing-ball.html
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/s10009-020-00599-4

296 A. Rajhans et al.

5. Deskhmukh, J.: Will future cars have formally verified powertrain control software?
In: Keynote Talk, 18th International Conference on Hybrid Systems: Computa-
tion and Control (2015). Slides: https://www.cs.utexas.edu/∼deshmukh/Papers/
Talks/hsccKeynote.pptx

6. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

7. Han, Z., Mosterman, P. J., Zander, J., Zhang, F.: Systematic management of sim-
ulation state for multi-branch simulations in Simulink. In: Proceedings of the Sym-
posium on Theory of Modeling and Simulation (TMS), pp. 84–89 (2013)

8. Hoxha, B., Mavridis, N., Fainekos, G.: VISPEC: a graphical tool for elicitation
of MTL requirements. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3486–3492 (2015)

9. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

10. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transf. 15, 247–268 (2013)

11. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 303–319. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 18

12. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

13. Akshay Rajhans and Pieter J. Mosterman. Graphical modeling of hybrid dynamics
with Simulink and Stateflow. In Proc. of the ACM International Conference on
Hybrid Systems: Computation and Control (HSCC) 2018, p. 84–89

14. Ulus, D.: Online monitoring of metric temporal logic using sequential networks
(2019). https://arxiv.org/abs/1901.00175

https://www.cs.utexas.edu/~deshmukh/Papers/Talks/hsccKeynote.pptx
https://www.cs.utexas.edu/~deshmukh/Papers/Talks/hsccKeynote.pptx
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-89963-3_18
https://doi.org/10.1007/978-3-030-59152-6_34
https://arxiv.org/abs/1901.00175

PerceMon: Online Monitoring
for Perception Systems

Anand Balakrishnan1(B), Jyotirmoy Deshmukh1, Bardh Hoxha2,
Tomoya Yamaguchi2, and Georgios Fainekos3

1 University of Southern California, Los Angeles, USA
{anandbal,jdeshmuk}@usc.edu

2 TRINA, Toyota Motor NA R&D, Ann Arbor, USA
{bardh.hoxha,tomoya.yamaguchi}@toyota.com

3 Arizona State University, Tempe, USA
fainekos@asu.edu

Abstract. Perception algorithms in autonomous vehicles are vital for
the vehicle to understand the semantics of its surroundings, including
detection and tracking of objects in the environment. The outputs of
these algorithms are in turn used for decision-making in safety-critical
scenarios like collision avoidance, and automated emergency braking.
Thus, it is crucial to monitor such perception systems at runtime. How-
ever, due to the high-level, complex representations of the outputs of
perception systems, it is a challenge to test and verify these systems,
especially at runtime. In this paper, we present a runtime monitoring
tool, PerceMon that can monitor arbitrary specifications in Timed Qual-
ity Temporal Logic (TQTL) and its extensions with spatial operators.
We integrate the tool with the CARLA autonomous vehicle simulation
environment and the ROS middleware platform while monitoring prop-
erties on state-of-the-art object detection and tracking algorithms.

Keywords: Perception monitoring · Autonomous driving · Temporal
logic

1 Introduction

In recent years, the popularity of autonomous vehicles has increased greatly.
With this popularity, there has also been increased attention drawn to the var-
ious fatalities caused by the autonomous components on-board the vehicles,
especially the perception systems [16,24]. Perception modules on these vehi-
cles use vision data from cameras to reason about the surrounding environment,
including detecting objects and interpreting traffic signs, and in-turn used by
controllers to perform safety-critical control decisions, including avoiding pedes-
trians. Due to the nature of these systems, it has become important that these
systems be tested during design and monitored during deployment.

Signal temporal logic (STL) [17] and Metric Temporal Logic (MTL) [11] have
been used extensively in verification, testing, and monitoring of safety-critical
c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 297–308, 2021.
https://doi.org/10.1007/978-3-030-88494-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_18

298 A. Balakrishnan et al.

systems. In these scenarios, typically there is a model of the system that is
generating trajectories under various actions. These traces are the used to test if
the system satisfies some specification. This is referred to as offline monitoring,
and is the main setting for testing and falsification of safety-critical systems.
On the other hand, STL and MTL have been used for online monitoring where
some safety property is checked for compliance at runtime [6,19]. These are used
to express rich specifications on low-level properties of signals outputted from
systems.

The output of a perception algorithm consists of a sequence of frames, where
each frame contains a variable number of objects over a fixed set of categories,
in addition to object attributes that can range over larger data domains (e.g.
bounding box coordinates, distances, confidence levels, etc.). STL and MTL
can handle mixed-mode signals and there have been attempts to extend them
to incorporate spatial data [3,13,18]. However, these logics lack the ability to
compare objects in different frames, or model complex spatial relations between
objects.

Timed Quality Temporal Logic (TQTL) [5], and Spatio-temporal Quality
Logic (STQL) [14] are extensions to MTL that incorporate the semantics for
reasoning about data from perception systems specifically. In STQL, which is
in itself an extension of TQTL, the syntax defines operators to reason about
discrete IDs and classes of objects, along with set operations on the spatial
artifacts, like bounding boxes, outputted by perception systems.

In this project, we contribute the following:

1. We show how TQTL [5] and STQL [14] can be used to express correctness
properties for perception algorithms.

2. An online monitoring tool, PerceMon1, that efficiently monitors STQL speci-
fications. We integrate this tool with the CARLA simulation environment [8]
and the Robot Operating System (ROS) [20].

Fig. 1. The PerceMon online monitoring pipeline.

Related Work. S-TaLiRo [2,10], VerifAI [9] and Breach [7] are some exam-
ples of tools used for offline monitoring of MTL and STL specifications. The
presented tool, PerceMon, models its architecture similar to the RTAMT [19]
online monitoring tool for STL specifications: the core tool is written in C++
with an interface for use in different, application-specific platforms.
1 https://github.com/CPS-VIDA/PerceMon.git.

https://github.com/CPS-VIDA/PerceMon.git

PerceMon: Online Monitoring for Perception Systems 299

2 Spatio-Temporal Quality Logic

Spatio-temporal quality logic (STQL) [14] is an extension of Timed Quality Tem-
poral Logic (TQTL) [5] that incorporates reasoning about high-level topological
structures present in perception data, like bounding boxes, and set operations
over these structures.

STL has been used extensively in testing and monitoring of control systems
mainly due to the ability to express rich specifications on low-level, real-valued
signals generated from these systems. To make the logic more high-level, spatial
extensions have been proposed that are able to reason about spatial relations
between signals [3,12,13,18]. A key feature of data streams generated by per-
ception algorithms is that they contain frames of spatial objects consisting of
both, real-values and discrete-valued quantities: the discrete-valued signals are
the IDs of the objects and their associated categories; while real-valued signals
include bounding boxes describing the objects and confidence associated with
their identities. While STL and MTL can be used to reason about properties
of a fixed number of such objects in each frame by creating signal variables to
encode each of these properties, it is not possible to design monitors that handle
arbitrarily many objects per frame.

TQTL [5] is a logic that is specifically catered for spatial data from per-
ception algorithms. Using Timed Propositional Temporal Logic [4] as a basis,
TQTL allows one to pin or freeze the signal at a certain time point and use
clock variables associated with the freeze operator to define time constraints.
Moreover, TQTL introduces a quantifier over objects in a frame and the ability
to refer to properties intrinsic to the object: tracking IDs, classes or categories,
and detection confidence. STQL [14] further extends the logic to reason about
the bounding boxes associated with these objects, along with predicate func-
tions for these spatial sets, by incorporating topological semantics from the S4u
spatio-temporal logic [12].

Definition 1 (STQL Syntax [14]). Let Vt be a set of time variables, Vf be a
set of frame variables, and Vo be a set of object ID variables. Then the syntax
for STQL is recursively defined by the following grammar:

ϕ ::= ∃{id1, id2, . . .}@ϕ | {x, f}.ϕ

| � | ¬ϕ | ϕ ∨ ϕ | © ϕ | –© ϕ | ϕ U ϕ | ϕ S ϕ

| C TIME − x ∼ t | C FRAME − f ∼ n

| C(idi) = c | C(idi) = C(idi) | P(idi) ≥ r | P(idi) ≥ r × P(idj)
| {idi = idj} | {idi �= idj} | ∃�Ω | Π

Ω ::= ∅ | U | BB(id1) | Ω | Ω 	 Ω

Π ::= Area(Ω) ≥ r|Area(Ω) ≥ r × Area(Ω)
| ED(idi,CRT, idj ,CRT) ≥ r | Θ ≥ r | Θ ≥ r × Θ

Θ ::= Lat(idi,CRT) | Lon(idi,CRT)
CRT ::= LM | RM | TM | BM | CT

300 A. Balakrishnan et al.

Here, idi ∈ Vo (for all indices i), x ∈ Vt, and f ∈ Vf . In the above grammar
r is a real-valued constant that allows for the comparison of ratios of object
properties.

In the above grammar, ¬ϕ and ϕ ∨ ϕ are, respectively, the negation and
disjunction operators from propositional logic while © ϕ, –© ϕ, ϕUϕ, and ϕSϕ
are the temporal operators next, previous, until, and since respectively. The
above grammar can be further used to derive the other propositional operators,
like conjunction (ϕ ∧ ϕ), along with temporal operators like always (�ϕ) and
eventually (♦ϕ), and their past-time equivalents holds (–�ϕ) and once (-♦ϕ).
In addition to that, STQL extends these by introducing freeze quantifiers over
clock variables and object variables. {x, f}.ϕ freezes the time and frame that the
formula ϕ is evaluated, and assigns them to the clock variables x and f , where
x refers to pinned time variables and f refers to pinned frame variables. The
constants, C TIME,C FRAME refer to the value of the time and frame number
where the current formula is being evaluated. This allows for the expression
x − C TIME and f − C FRAME to measure the duration and the number of
frames elapsed, respectively, since the clock variables x and f were pinned. The
expression ∃{id1}@ϕ searches over each object in a frame in the incoming data
stream—assigning each object to the object variable id1—if there exists an object
that satisfies ϕ. The functions C(id) and P(id) refer to the class and confidence
the detected object associated with the ID variable. In addition to these TQTL
operations, bounding boxes around objects can be extracted using the expression
BB(id) and set topological operations can be defined over them. The spatial
exists operator ∃�Ω checks if the spatial expression Ω results in a non-empty
space or not. Quantitative operations like Area(·) measure the area of spatial
sets; ED computes the Euclidean distances between references points (CRT) of
bounding boxes; and Lat and Lon measure the latitudinal and longitudinal offset
of bounding boxes respectively. Here, CRT refers to the reference points—left,
right, top, and bottom margins, and the centroid—for bounding boxes. Due to
lack of space, we defer defining the formal semantics of STQL to Appendix A
and also refer the readers to [14] for more extensive details.

3 PerceMon: An Online Monitoring Tool

PerceMon is an online monitoring tool for STQL specifications. It computes the
quality of a formula ϕ at the current evaluation frame, if ϕ can be evaluated
with some finite number of frames in the past (history) and delayed frames from
the future (horizon).

The core of the tool consists of a C++ library, libPerceMon, which provides
an interface to define an STQL abstract syntax tree efficiently, along with a gen-
eral online monitor interface. The PerceMon tool works by initializing a monitor
with a given STQL specification and can receive data in a frame-by-frame man-
ner. It stores the frames in a first-in-first-out (FIFO) buffer with maximum size
defined by the horizon and history requirement of the specification. This enables

PerceMon: Online Monitoring for Perception Systems 301

(a) General architecture for PerceMon.
The frontend component is a generic wrap-
per around libPerceMon, the C++ library
that provides the online monitoring func-
tionality, for example, a wrapper for ROS,
a parser from some specification language,
or a Python library.

(b) Architecture of the integration of
PerceMon with the CARLA autonomous
vehicle simulator and ROS middleware
platform.

Fig. 2. The design of the PerceMon tool allows us to define application-specific wrap-
pers to interface with the core libPerceMon, thereby increasing portability of the tool
for use in various environments.

fast and efficient computation of the quality of the formula for the bounded
horizon. An overview of the architecture can be seen in Fig. 2a.

The library, libPerceMon, designed with the intention to be used with
wrappers that convert application-specific data to data structures supported
by the library (signified by the “Frontend” block in the architecture presented
in Fig. 2a). In the subsequent section, we show an example of how such an integra-
tion can be performed by interfacing libPerceMon with the CARLA autonomous
vehicle simulator [8] via the ROS middleware platform [20].

3.1 Integration with CARLA and ROS

In this section, we present an integration of the PerceMon tool with the CARLA
autonomous vehicle simulator [8] using the ROS middleware platform [20]. This
follows the example of [9] and [26] which interface with CARLA, and [19], where
the tool interfaces with the ROS middleware platform for use in online monitor-
ing applications.

The CARLA simulator is an autonomous vehicle simulation environment that
uses high-quality graphics engines to render photo-realistic scenes for testing such
vehicles. Pairing this with ROS allows us to abstract the data generated by the
simulator, the PerceMon monitor, and various perception modules as streams
of data or topics in a publisher-subscriber network model. Here, a publisher
broadcasts data in a known binary format at an endpoint (called a topic) without
knowing who listens to the data. Meanwhile, a subscriber registers to a specific
topic and listens to the data published on that endpoint.

302 A. Balakrishnan et al.

In our framework, we use the ROS wrapper for CARLA2 to publish all
the information from the simulator, including data from the cameras on the
autonomous vehicle. The image data is used by perception modules—like the
YOLO object detector [22] and the DeepSORT object tracker [25]—to publish
processed data. The information published by these perception modules can in-
turn be used by other perception modules (like using detected objects to track
them), controllers (that may try to avoid collisions), and by PerceMon online
monitors. The architectural overview can be seen in Fig. 2b.

The use of ROS allows us to reason about data streams independent of the
programming languages that the perception modules are implemented in. For
example, the main implementation of the YOLO object detector is written in
C/C++ using a custom deep neural network framework called Darknet [21],
while the DeepSORT object tracker is implemented in Python. The custom
detection formats from each of these algorithms can be converted into standard
messages that are published on predefined topics, which are then subscribed to
from PerceMon. Moreover, this also paves the way to migrate and apply Perce-
Mon to any other applications that use ROS for perception-based control, for
example, in the software stack deployed on real-world autonomous vehicles [15].

4 Experiments

(a) In this scenario, the configuration is
such that the sun has set. In a poorly lit
road, a cyclist tries to cross the road.

(b) Here, a partially occluded pedestrian
decides to suddenly cross the road as the
vehicle cruises down the street.

Fig. 3. The presented scenarios simulated in CARLA aim to demonstrate some com-
mon failures associated with deep neural network-based perception modules. These
include situations where partially occluded objects are not detected or tracked prop-
erly, and situations where different lighting conditions cause mislabeling of detected
objects. In both the above scenarios, we also add some passive vehicles to increase the
number of objects detected in any frame. This allows us to compute the time it takes
to compute the satisfaction values from the monitor as the number of objects that need
to be checked increases.

2 https://github.com/carla-simulator/ros-bridge/.

https://github.com/carla-simulator/ros-bridge/

PerceMon: Online Monitoring for Perception Systems 303

In this section, we present a set of experiments using the integration of PerceMon
with the CARLA autonomous car simulator [8] presented in Sect. 3.1. We build
on the ROS-based architecture described in the previous section, and monitor
the following perception algorithms:

– Object Detection: The YOLO object detector [22,23] is a deep convolutional
neural networks (CNN) based model that takes as input raw images from the
camera and outputs a list of bounding boxes for each object in the image.

– Object Tracking : The SORT object tracker [25] takes the set of detections
from the object detector and associates an ID with each of them. It then tries
to track each annotated object across frames using Kalman filters and cosine
association metrics.

We use the OpenSCENARIO specification format [1] to define scenarios in
the CARLA simulation that mimic some real-world, accident-prone scenarios,
where there have been several instances where deep neural network based per-
ception algorithms fail at detecting or tracking pedestrians, cyclists, and other
vehicles. To detect some common failure cases, we initialize the PerceMon mon-
itors with the following specifications:

Consistent Detections. ϕ1 : For all objects in the current frame that have
high confidence, if the object is far away from the margins, then the object must
have existed in the previous frame too with sufficiently high confidence.

ϕ1 := ∀{id1}@{f}. ((ϕhigh prob ∧ ϕmargins) ⇒ –© ϕexists)
ϕhigh prob := P(id1) > 0.8
ϕmargins := Lon(id1,TM) > c1 ∧ Lon(id1,BM) < c2

∧ Lat(id1, LM) > c3 ∧ Lat(id1,RM) < c4

ϕexists := ∃{id2}. ({id1 = id2} ∧ P(id2) > 0.7)

(1)

Object detection algorithms are known to frequently miss detecting objects in
consecutive frames or detect them with low confidence after detecting them with
high confidence in previous frames. This can cause issues with algorithms that
rely on consistent detections, e.g., for obstacle tracking and avoidance. The above
formula checks this for objects that we consider “relevant” (using ϕmargins), i.e.,
the object is not too far away from the edges of the image. This allows us to filter
false alarms from objects that naturally leave the field of view of the camera.

Smooth Object Trajectories. ϕ2 : For every object in the current frame, its
bounding box and the corresponding bounding box in the previous frame must
overlap more than 30%.

ϕ2 := ∀{id1}@{f1}. (–© (∃{id2}@{f2}. ({id1 = id2} ⇒ ϕoverlap)))

ϕoverlap :=
Area(BB(id1) � BB(id2))

Area(BB(id1))
≥ 0.3

(2)

In consecutive frames, if detected bounding boxes are sufficiently far apart, it is
possible for tracking algorithms that rely on the detections to produce incorrect
object associations, leading to poor information for decision-making.

304 A. Balakrishnan et al.

We monitor the above properties for scenarios described in Fig. 3, and check
for the time it takes to compute the satisfaction values of the above properties.
As each scenario consists of some passive or non-adversarial vehicles, the number
of objects detected by the object detector increases. Thus, since the runtime for
the STQL monitor is exponential in the number of object IDs referenced in
the existential quantifiers, this allows us to empirically measure the amount of
time it takes to compute the satisfaction value in the monitor. The number of
simulated non-adversarial objects are ranged from 1 to 10, and the time taken
to compute the satisfaction value for each new frame is recorded. We present
the results in Table 1, and refer the readers to [14] for theoretical results on
monitoring complexity for STQL specifications.

Table 1. Compute time for different properties, with increasing number of objects.

Average Number of Objects Average Compute Time (s)

ϕ1 ϕ2

2 7.0 × 10−6 7.3 × 10−6

5 1.4 × 10−5 2.3 × 10−5

10 5.4 × 10−4 6.3 × 10−4

5 Conclusion

In this paper, we presented PerceMon, an online monitoring library and tool for
generating monitors for specifications given in Spatio-temporal Quality Logic
(STQL). We also present a set of experiments that make use of PerceMon’s
integration with the CARLA autonomous car simulator and the ROS middleware
platform.

In future iterations of the tool, we hope to incorporate a more expressive
version of the specification grammar that can reason about arbitrary spatial
constructs, including oriented polygons and segmentation regions, and incorpo-
rate ways to formally reason about system-level properties (like system warnings
and control inputs).

Acknowledgment. This work was partially supported by the National Science Foun-
dation under grant no. CNS-2039087 and grant no. CNS-2038666, and the tool was
developed with support from Toyota Research Institute North America.

A Semantics for STQL

Consider a data stream ξ consisting of frames containing objects and annotated
with a time stamp. Let i ∈ N be the current frame of evaluation, and let ξi
denote the ith frame. We let ε : Vt ∪ Vf → N ∪ {NaN} denote a mapping from a
pinned time or frame variable to a frame index (if it exists), and let ζ : Vo → N

be a mapping from an object variable to an actual object ID that was assigned

PerceMon: Online Monitoring for Perception Systems 305

by a quantifier. Finally, we let O(ξi) denote the set of object IDs available in the
frame i, and let t(ξi) output the timestamp of the given frame.

Let �ϕ� be the quality of the STQL formula, ϕ, at the current frame i, which
can be recursively defined as follows:

– For the propositional and temporal operations, the semantics simply follows
the Boolean semantics for LTL or MTL, i.e.,

���(ξ, i, ε, ζ) = �
�¬ϕ�(ξ, i, ε, ζ) = ¬�ϕ�(ξ, i, ε, ζ)

�ϕ1 ∨ ϕ2�(ξ, i, ε, ζ) = �ϕi�(ξ, i, ε, ζ) ∨ �ϕ2�(ξ, i, ε, ζ)
�© ϕ�(ξ, i, ε, ζ) = �ϕ�(ξ, i + 1, ε, ζ)
� –© ϕ�(ξ, i, ε, ζ) = �ϕ�(ξ, i − 1, ε, ζ)

�ϕ1 U ϕ2�(ξ, i, ε, ζ) =
∨

i≤j

⎛

⎝�ϕ2�(ξ, j, ε, ζ) ∧
∧

i≤k≤j

�ϕ1�(ξ, k, ε, ζ)

⎞

⎠

�ϕ1 S ϕ2�(ξ, i, ε, ζ) =
∨

j≤i

⎛

⎝�ϕ2�(ξ, j, ε, ζ) ∧
∧

j≤k≤i

�ϕ1�(ξ, k, ε, ζ)

⎞

⎠

– For constraints on time and frame variables,

�x − C TIME ∼ c�(ξ, i, ε, ζ) =

{
�, if ε(x) − t(ξi) ∼ c

⊥, otherwise.

�f − C FRAME ∼ c�(ξ, i, ε, ζ) =

{
�, if ε(f) − i ∼ c

⊥, otherwise.

– For operations on object variables,

�{idj = idj}�(ξ, i, ε, ζ) =

{
�, if ζ(idj) = ζ(idk)
⊥, otherwise.

�C(idj) = c�(ξ, i, ε, ζ) =

{
�, if O(ξi)(ζ(idj)).class = c

⊥, otherwise.

�C(idj) = C(idk)�(ξ, i, ε, ζ) =

⎧
⎪⎨

⎪⎩

�, if O(ξi)(ζ(idj)).class
= O(ξi)(ζ(idk)).class

⊥, otherwise.

�P(idj) ∼ r�(ξ, i, ε, ζ) =

{
�, if O(ξi)(ζ(idj)).prob ∼ r

⊥, otherwise.

�P(idj) ∼ r × P(idk)�(ξ, i, ε, ζ) =

⎧
⎪⎨

⎪⎩

�, if O(ξi)(ζ(idj)).prob ∼ r

×O(ξi)(ζ(idk)).prob
⊥, otherwise.

306 A. Balakrishnan et al.

– For the area, latitudinal offset, and longitudinal offset,

�Area(T1) ∼ r� =

{
�, if Area(U(T1, ξ, ζ)) ∼ r

⊥, otherwise.

�Lat(id1,CRT1) ∼ r�(ξ, i, ε, ζ) =

{
�, if flat(id1,CRT1, ξ, i, ε, ζ) ∼ r

⊥, otherwise.

�Lon(id1,CRT1) ∼ r�(ξ, i, ε, ζ) =

{
�, if flon(id1,CRT1, ξ, i, ε, ζ) ∼ r

⊥, otherwise.

where, ∼∈ {<,>,≤,≥}, and
• flat computes the lateral distance of the CRT point of an object identified

by O(ζ(id1)) from the Longitudinal axis;
• flon computes the longitudinal distance of the CRT point of an object

identified by O(ζ(id1)) from the Lateral axis; and
• U(T , ξ, ζ) is the compound spatial object created after set operations on

bounding boxes (defined below).
– And, finally, for the spatial existence operator,

� ∃� T �(ξ, i, ε, ζ) =

{
�, if U(T , ξ, ζ) �= ∅
⊥, otherwise.

Here, the compound spatial function, U is defined as follows:

U(∅, ξ, ζ) = ∅
U(U, ξ, ζ) = U

U(BB(id), ξ, ζ) = ζ(id).bbox

U(T , ξ, ζ) = U \ U(T , ξ, ζ)
U(T1 	 T2, ξ, ζ) = U(T1, ξ, ζ) ∪ U(T2, ξ, ζ)

References

1. ASAM OpenSCENARIO Specification. Technical report, ASAM e. V. (March
2021). https://www.asam.net/standards/detail/openscenario/

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools, pp. 66–73. VAL-
UETOOLS 2014, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (December 2014). https://doi.org/10.4108/icst.
Valuetools.2014.258183

https://www.asam.net/standards/detail/openscenario/
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.4108/icst.Valuetools.2014.258183
https://doi.org/10.4108/icst.Valuetools.2014.258183

PerceMon: Online Monitoring for Perception Systems 307

4. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156 35

5. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception
systems for autonomous vehicles using quality temporal logic. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 23

6. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

7. Donzé, A., Jin, X., Deshmukh, J.V., Seshia, S.A.: Automotive systems requirement
mining using breach. In: 2015 American Control Conference (ACC), pp. 4097–4097
(July 2015). https://doi.org/10.1109/ACC.2015.7171970

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR
(October 2017). http://proceedings.mlr.press/v78/dosovitskiy17a.html

9. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

10. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of specifications and
its applications to falsification, parameter mining, and runtime monitoring with
S-TaLiRo. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
27–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 3

11. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021

12. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the
computational complexity of spatio-temporal logics. In: Proceedings of the 16th
AAAI International FLAIRS Conference, pp. 460–464. AAAI Press (2003)

13. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Gros, R., Belta, C.: SpaTeL: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
pp. 189–198. HSCC 2015, Association for Computing Machinery (2015). https://
doi.org/10.1145/2728606.2728633

14. Hekmatnejad, M.: Formalizing Safety, Perception, and Mission Requirements for
Testing and Planning in Autonomous Vehicles. Ph.D. thesis, Arizona State Uni-
versity (2021)

15. Kato, S., et al.: Autoware on board: enabling autonomous vehicles with embedded
systems. In: 2018 ACM/IEEE 9th International Conference on Cyber -Physical
Systems (ICCPS), pp. 287–296 (April 2018). https://doi.org/10.1109/ICCPS.2018.
00035

16. Lee, T.B.: Report: Software bug led to death in Uber’s self-driving crash
(May 2018). https://arstechnica.com/tech-policy/2018/05/report-software-bug-
led-to-death-in-ubers-self-driving-crash/

17. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

https://doi.org/10.1007/11590156_35
https://doi.org/10.1007/978-3-030-03769-7_23
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1109/ACC.2015.7171970
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1109/ICCPS.2018.00035
https://doi.org/10.1109/ICCPS.2018.00035
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

308 A. Balakrishnan et al.

18. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 2

19. Nickovic, D., Yamaguchi, T.: RTAMT: Online Robustness Monitors from STL.
arXiv:2005.11827 [cs] (May 2020). http://arxiv.org/abs/2005.11827

20. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

21. Redmon, J.: Darknet: Open source neural networks in c (2013–2016). http://
pjreddie.com/darknet/

22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: uni-
fied, real-time object detection . In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://www.
cv-foundation.org/openaccess/content%5Fcvpr%5F2016/html/Redmon%5FYou
%5FOnly%5FLook%5FCVPR%5F2016%5Fpaper.html

23. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs] (April 2018). http://arxiv.org/abs/1804.02767

24. Templeton, B.: Tesla In Taiwan Crashes Directly Into Overturned Truck, Ignores
Pedestrian, With Autopilot On (June 2020). https://www.forbes.com/sites/
bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-
truck-ignores-pedestrian-with-autopilot-on/

25. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a
deep association metric. In: 2017 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 3645–3649 (September 2017). https://doi.org/10.1109/ICIP.
2017.8296962

26. Zapridou, E., Bartocci, E., Katsaros, P.: Runtime verification of autonomous driv-
ing systems in CARLA. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS,
vol. 12399, pp. 172–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-60508-7 9

https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
http://arxiv.org/abs/2005.11827
http://arxiv.org/abs/2005.11827
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.cv-foundation.org/openaccess/content%5Fcvpr%5F2016/html/Redmon%5FYou%5FOnly%5FLook%5FCVPR%5F2016%5Fpaper.html
https://www.cv-foundation.org/openaccess/content%5Fcvpr%5F2016/html/Redmon%5FYou%5FOnly%5FLook%5FCVPR%5F2016%5Fpaper.html
https://www.cv-foundation.org/openaccess/content%5Fcvpr%5F2016/html/Redmon%5FYou%5FOnly%5FLook%5FCVPR%5F2016%5Fpaper.html
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1007/978-3-030-60508-7_9
https://doi.org/10.1007/978-3-030-60508-7_9

Tutorial Paper

Formal Analysis of AI-Based Autonomy:
From Modeling to Runtime Assurance

Hazem Torfah1(B), Sebastian Junges1, Daniel J. Fremont2,
and Sanjit A. Seshia1

1 University of California, Berkeley, USA
{torfah,sjunges,sseshia}@berkeley.edu
2 University of California, Santa Cruz, USA

dfremont@ucsc.edu

Abstract. Autonomous systems are increasingly deployed in safety-
critical applications and rely more on high-performance components
based on artificial intelligence (AI) and machine learning (ML). Run-
time monitors play an important role in raising the level of assurance
in AI/ML-based autonomous systems by ensuring that the autonomous
system stays safe within its operating environment. In this tutorial,
we present VerifAI, an open-source toolkit for the formal design and
analysis of systems that include AI/ML components. VerifAI provides
features supporting a variety of use cases including formal modeling
of the autonomous system and its environment, automatic falsification
of system-level specifications as well as other simulation-based verifica-
tion and testing methods, automated diagnosis of errors, and automatic
specification-driven parameter and component synthesis. In particular,
we describe the use of VerifAI for generating runtime monitors that
capture the safe operational environment of systems with AI/ML com-
ponents. We illustrate the advantages and applicability of VerifAI in
real-life applications using a case study from the domain of autonomous
aviation.

1 Introduction

In recent years, there has been an increase in autonomous and semi-autonomous
systems operating in complex environments and relying on artificial intelligence
(AI) and machine learning (ML) components to perform challenging tasks in
perception, prediction, planning, and control. However, the unpredictability and
opacity of AI/ML-based components has hindered the deployment and adoption
of autonomous systems in safety-critical applications. To raise the level of assur-
ance in autonomous systems, it is thus important to understand under which

This work is partially supported by NSF grants 1545126 (VeHICaL), 1646208 and
1837132, by the DARPA contracts FA8750-18-C-0101 (AA) and FA8750-20-C-0156
(SDCPS), by Berkeley Deep Drive, by the Toyota Research Institute, and by Toyota
under the iCyPhy center.

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 311–330, 2021.
https://doi.org/10.1007/978-3-030-88494-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88494-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-88494-9_19

312 H. Torfah et al.

environment conditions the behavior of an AI/ML-based component is trusted
to keep the system in a safe state. Runtime monitors can help monitor environ-
ment conditions to maintain situational awareness, and are also useful for tasks
such as hardware failure detection, sensor validation, performance evaluation,
and system health management. Thus, runtime monitors are indispensable in
the deployment of autonomy in cyber-physical systems (CPS).

Developing techniques to automatically construct runtime monitors that
accurately capture the safe operating conditions of AI/ML-based components
is a key challenge in the quest for safe and reliable autonomous systems [40].
It is particularly important to capture conditions that ensure that system-level
safety specifications are met. Traditionally, monitors are constructed from formal
specifications given in some logical formalism, which poses a problem in the set-
ting of autonomous systems: while the requirements on the system are typically
well-understood and easily formalized, the conditions on the environment under
which the system will be correct are not (fully) known. Consider, for example,
an ML-based perception module in an autonomous car used for tracking speed
signs. The perception module is trained on a data set of labeled images of signs,
but correct behavior of the module may depend on other factors such as the
velocity of the car or the weather. Analyzing the module in isolation with this
data set does not tell us anything about its behavior under such environment
factors. One instead needs to construct a model of the system’s environment and
its other components, and analyze the behavior of the module in that context.
There is an urgent need for a systematic approach for understanding at design
time how AI/ML-based components behave in complex environments, and from
this analysis, constructing reliable runtime monitors that ensure AI/ML-based
components are only executed under their safe operation conditions.

In this tutorial, we present such an approach based on VerifAI [11], an
open-source toolkit for the formal design and analysis of systems that include
AI or ML components. We explore the various features of VerifAI through
its capabilities of generating runtime monitors for capturing the safe operation
environment of AI/ML-based components. VerifAI provides multiple features
including (i) formal modeling of autonomous systems and their environment;
(ii) formal specification of AI-based autonomous systems; (iii) falsification, fuzz
testing, and other simulation-based runtime verification methods; (iv) computa-
tional methods for diagnosing and explaining the success and failure of AI/ML-
based autonomous systems; (v) specification-driven synthesis of parameters for
AI-based autonomy, and (vi) techniques for runtime monitoring and assurance.
We present the complete pipeline of VerifAI, from modeling the environment
of a system to generating the corresponding runtime assurance modules.

VerifAI follows a data-driven approach to learning monitors. Data is gen-
erated using VerifAI’s simulation-based runtime verification techniques. Ver-
ifAI allows us to analyze AI/ML-based components using system-level specifi-
cations. To scale to complex high-dimensional feature spaces, VerifAI operates
on an abstract semantic feature space. This space is typically represented using
Scenic, a probabilistic programming language for modeling environments [17].

Formal Analysis of AI-Based Autonomy 313

Using Scenic, we can define scenarios, distributions over spatial and temporal
configurations of objects and agents, in which we want to deploy and analyze a
system. By simulating the system in the different sampled scenes and applying
the formal analytical backends of VerifAI, we can create the training data sets
needed for building the monitors.

Once the training data is created, specialized algorithms for learning different
types of monitors can be applied. We discuss the different types of learning
algorithms for learning monitors from data. These vary from exact algorithms to
statistical approaches such as PAC-based learning algorithms with their passive
and active variants. We discuss the advantages and disadvantages of the these
algorithms with respect to our setting.

VerifAI has been applied in several real case studies including with indus-
trial partners (e.g., see [16,19]). We report on one case study from the domain of
autonomous aviation, in collaboration with Boeing [16]. We analyzed TaxiNet, an
experimental autonomous aircraft taxiing system developed by Boeing for the
DARPA Assured Autonomy project. In a previous effort using VerifAI [16],
we falsified the system, diagnosed root causes for a variety of identified failure
cases, and generated synthetic data to retrain the system, eliminating several
of these failures and improving performance overall. In this paper, we build on
this case study to describe the automated pipeline needed for the construction
of runtime monitors for AI/ML-based systems and illustrate the advantages and
applicability of VerifAI in generating such monitors.

Outline. The rest of this paper is organized as follows. We start with a motivating
example from the domain of autonomous aviation. In Sect. 3 we present the
general architecture of VerifAI and its ability to model environments using
the Scenic language. Section 4 introduces the process of generating data for
learning runtime monitors. In Sect. 5 we discuss and compare the different types
of data-driven monitor learning algorithms and discuss some of the monitors
we learned with these algorithms. In Sect. 6 we integrate the monitors into an
architecture for runtime assurance. We conclude with a discussion of important
desiderata for runtime monitors and directions for future work.

2 Motivating Example: Autonomous Aircraft Taxiing

Consider the scenario of an airplane taxiing along a runway depicted in the
images in Fig. 1. This scenario is based on a challenge problem provided by
Boeing in the DARPA Assured Autonomy program. The plane is equipped with
a perception module, a deep neural network called TaxiNet, that based on images
captured by a camera mounted on the plane estimates the cross-track error
(CTE), i.e., the left-right offset of the plane from the centerline of the runway.
The estimated values are forwarded to a controller that adjusts the steering angle
of the plane in order to track the centerline.

The deep neural network is a black box, with no further information provided
about what images were used to train the network nor any knowledge about

314 H. Torfah et al.

Fig. 1. Example input images to TaxiNet, rendered in X-Plane, showing a variety of
lighting and weather conditions [16].

potential gaps in the training set and corresponding potential failure cases. Our
goal is to construct and equip the system with a monitor that captures the
conditions under which the deep neural network is expected to behave correctly
and alert the system about any violation to switch in time to more trustworthy
safe components (such as human control).

Many factors can influence the behavior of the deep neural network, and
often are not considered in the training process. For example, while TaxiNet
was trained on images, its behavior may depend on high-level parameters such
as weather conditions (like overcast or rain), time of day, the initial airplane
position and heading on the runway, the frequency of skid marks on the ground,
or the velocity of the airplane. We refer to these factors as semantic features
(discussed further in the next section). For our goal, these features must be
measurable and monitorable at run time.

Once we fix the semantic features which we intend to use to monitor the neu-
ral network, the next step is to establish a connection between values of these
semantic features and the value of a system-level specification. For example, the
system-level specification could be one requiring that the CTE value should not
be larger than 2.5 m over more than 10 time steps. A monitor for validating
the performance of the deep neural network is one that based on the seman-
tic features predicts whether the system-level specification will be violated. For
example, under rainy weather conditions, the monitor might predict that the net-
work will consistently yield poor CTE estimates and lead to the plane deviating
too far from the centerline.

To establish such a connection, we need a systematic approach that allows us
to find the environment conditions under which the aircraft significantly devi-
ates from the centerline when using the deep neural network. We need to explore
the diverse set of scenarios possible under different instantiations of the afore-
mentioned semantic features. We need to analyze the executions of the system
to identify distinct failure cases and diagnose potential root causes resulting in

Formal Analysis of AI-Based Autonomy 315

Simulator

Search Evaluator

Abstract
Feature
Space

Trace
Table

Analysis

system
description

environment
model

(Scenic)

system
specification
(e.g. MTL)

training
data

Fig. 2. The architecture of VerifAI.

unsafe CTE values. Lastly, we need to deploy the right learning techniques that
based on data generated by the exploration and analysis processes, learn a mon-
itor that predicts a faulty behavior of the system. With VerifAI we provide a
toolkit that includes all the necessary features for learning such a monitor.

3 The VerifAI Framework

VerifAI follows a paradigm of formally-driven simulation, using formal mod-
els of a system, its environment, and its requirements to guide the generation
of testing and training data [11]. The high-level architecture of VerifAI is
shown in Fig. 2. To use VerifAI, one first writes an environment model which
defines the space of environments that the system should be tested or trained
against. Simple models can be specified by manually defining a set of environ-
ment parameters and their corresponding ranges; more sophisticated models can
be built using the Scenic probabilistic modeling language, as we will describe
below. In either case, the environment model defines an abstract semantic fea-
ture space, representing environments as vectors in a space of semantic features
such as object positions and colors. Such a space can have much lower dimen-
sion than the “concrete feature space” of inputs to the system (e.g. the space of
images for our aircraft taxiing scenario), and it ensures that any counterexam-
ples we find are semantically meaningful, unlike traditional adversarial machine
learning [12]. On the other hand, actually testing the system requires turning
abstract features into low-level sensor data, for which we depend on a simulator.
In order to support a variety of application domains, VerifAI provides a generic
simulator interface allowing it to make use of any simulator which supports the
desired domain of systems and environments.

Once the abstract feature space has been defined, VerifAI can search the
space using a variety of algorithms suited to different applications. These include

316 H. Torfah et al.

1 # Time: from 6am to 6pm. (+8 to get GMT, as used by X-Plane)

2 param zulu_time = (Range(6, 18) + 8) * 60 * 60

3
4 # Rain: 1/3 of the time.

5 # Clouds: types 3-5 for rain; otherwise any type.

6 clouds_and_rain = Discrete({

7 (Uniform(0, 1, 2, 3, 4, 5), 0): 2, # no rain

8 (Uniform(3, 4, 5), Range(0.25, 1)): 1. # 25%-100% rain

9 })

10 param cloud_type = clouds_and_rain[0]

11 param rain_percent = clouds_and_rain[1]

12
13 # Plane: up to 8m to left/right of the centerline,

14 # 2000m down the runway, and 30 degrees to left/right.

15 ego = Plane at Range(-8, 8) @ Range(0, 2000),

16 facing Range(-30, 30) deg

Fig. 3. Scenic runway taxiing scenario (updated slightly from [16]).

passive samplers which seek to evenly cover the space, such as low-discrepancy
(Halton) sampling, as well as active samplers which use the history of past tests
to identify parts of the space more likely to yield counterexamples. Each point
sampled from the abstract feature space defines a concrete test case which we
can execute in the simulator. During the simulation, VerifAI monitors whether
the system has satisfied or violated its specification, which can be provided as
a black-box monitor function or in a more structured representation such as a
formula of Metric Temporal Logic [27]. VerifAI uses the quantitative semantics
of MTL, allowing the search algorithms to distinguish between safe traces which
are closer or farther from violating the specification. The results of each test can
be used to guide future tests as mentioned above, and are also saved in a table
for offline analysis, including monitor generation.

To enable modeling the complex, heterogeneous environments of cyber-
physical systems, VerifAI accepts environment models written in the Scenic
domain-specific probabilistic programming language [17]. A Scenic program
defines a distribution over configurations of physical objects and their behaviors
over time. For example, Fig. 3 shows a Scenic program for a runway taxiing
scenario used in our previous case study [16]. This program specifies a variety
of semantic features including time of day, weather, and the position and orien-
tation of the airplane, giving distributions for all of them (with cloud type and
rain percentage being correlated, for example). While this scenario only involves
a single object, Scenic’s convenient syntax for geometry and support for declar-
ative constraints make it possible to define much more complex scenarios in a
concise and readable way (see [17] for examples). Scenic also supports modeling
dynamic behaviors of objects, with syntax for specifying temporal relationships
between events and composing individual scenarios into more complex ones [18].
Finally, Scenic is also simulator- and application-agnostic, being successfully

Formal Analysis of AI-Based Autonomy 317

Mapping

Evaluator

Trace Table Analysis

Segmentation Disambiguation training
data

Fig. 4. Training data generation

used in a variety of CPS domains besides aviation including autonomous driv-
ing [19], robotics [17], and reinforcement learning agents for simulated sports [3].
In all these applications, the formal semantics of Scenic programs allow them
to serve as precise models of a system’s environment.

4 Training Data Generation

In this section, we discuss the generation of training (and testing) data for the
data-driven generation of monitors. The training data for a monitor M is pro-
vided as a table of labeled traces of the form (σ, �), where σ is a sequence of
events from the space of inputs over which the target monitor is defined, and
� is a truth value indicating whether σ should be accepted or rejected by M .
Training data in this form is generated from the execution runs of several simu-
lations through a process consisting of three phases, mapping, segmentation, and
disambiguation, as depicted in Fig. 4.

4.1 Mapping

The role of the mapper is to establish the connection between the sequence of
events collected during a simulation and the inputs to the monitor. In general,
the mapper consists of:

– Projections: mapping a sequence of simulation events to a (sub)set of events
that can be reliably observed at runtime. A monitor must be defined over
inputs that are observable by the system during runtime. Properties of other
entities in the environment may be known during simulation, but not during
runtime. Thus, the data collected at runtime must be projected to a stream
of observable data. We especially want to project the data onto reliable and
trustable data. Some data may be observable, but should not be used by a
monitor because it is not based on reliable hardware or because it typically
is unreliable in the particular scenario at hand. For example, a monitor for

318 H. Torfah et al.

validating the confidence in the TaxiNet camera-based neural network can be
based on the data of the weather condition and the time of day, whereas it
might be better to refrain from using the images captured by the camera or
the output of the neural network perception module.

– Filters: mapping traces to other traces using transformation functions that
may have an internal state (based on the history of events). Beyond project-
ing, we may use the data available at runtime to estimate an unobservable
system or environment state by means of filtering approaches and then use
this system state (or statistics of this state) as an additional observable entity.
For example, to validate the conditions for TaxiNet, we may want to use data
computed based on an aggregate model that evaluates the change in the head-
ing of the airplane. A filtering approach must (implicitly or explicitly) use a
model that connects the observed traces with the notion of a system state
based on the dynamics: in our example, the definition of the aggregate. The
model does not need to be precise, although the quality of the monitor surely
benefits from added precision. Furthermore, uncertainty in the model may be
made explicit, be it nondeterministic [22], stochastic [44], or both [26]. These
filters can also be based on neural networks [7].

At all times, mappers should preserve the order of events as received from the
evaluator.

4.2 Segmentation

Once the sequence of events from the simulator have been transformed to traces
over adequate input data, they are forwarded to a segmentation process. The
result of the segmentation process is a table of pairs (σ, �) where σ is an infix of
a trace received from the mapper and � defines the behavior of the ideal monitor
Mtrue upon observing a sequence of input data σ.

Extracting Segments (Windowing). Rather than considering traces from
the initial (simulation) state, a sliding window approach can be used to generate
traces σ of fixed length starting in any state encountered during the simulation.
This approach is important to avoid generating monitors that overly depend on
the initial situation or monitors that (artificially) depend on outdated events. For
example, the behavior of TaxiNet may depend on the size of skid mark patches
along the runway. Small patches may not cause major errors in the CTE values
or perhaps only for a short recoverable period of time. Larger regions of skid
marks may however cause a series of errors that could lead the airplane to leave
the runway. A monitor for TaxiNet should check for continuous regions of skid
marks over a fixed period of time. Therefore, the monitor does not need the
entire history of data, as the plane will recover from small patches, but the
monitor should switch from TaxiNet to manual control when the plane drives
over a long region of skid marks. In general, the length of segments needs to
be tuned based on the application at hand and the frequency in which data is

Formal Analysis of AI-Based Autonomy 319

received. We remark that the loss of information due to ignoring events earlier
in the history can be partially alleviated by adding a state estimate to the trace
using an appropriate filter in the mapping phase.

Computing Labels. When determining the labels � for each of the extracted
segments σ, one needs to take into account the requirement that monitors for
validating safe operation conditions must be predictive [8,9], i.e., after observing
σ, the verdict of the monitor is one that predicts whether the safe operation
conditions will hold in the future. In our TaxiNet scenario, we want the monitor
to alert the system in advance, such that the airplane does not deviate much
from the centerline in the (near) future. Segments should thus be associated
with the behavior of the plane a few steps into the future. The latter can be
characterized with respect to a prediction horizon, usually defined based on the
time needed for executing certain contingency plans to ensure the system stays
safe. Once a prediction horizon of length n is determined, a segment is labeled
with the truth value corresponding to evaluating some property ϕ up to n steps
into the future (along the original simulation run). The property ϕ is defined
over the events of traces received from the evaluator, and may be different from
the system-level property used by the evaluator. In particular, it could be an
aggregation over the labels computed by the evaluator, e.g., defining a threshold
for the allowable number of deviations from the centerline over a period of time.

4.3 Disambiguation

After the table of training data is created by the segmentation process it can
be forwarded to any learning algorithm that generates a suitable artifact for
the monitor. In the next section, we elaborate on this generation process and
discuss what features one might need to consider in choosing the artifact. In
general, the data resulting from the mapping and segmentation process may be
ambiguous, i.e., the table may include pairs (σ, �) and (σ′, �′) where σ = σ′ but
� �= �′. In this way, learned monitors can fail to be completely consistent with
the data; depending on the learning method used, such inconsistencies can lead
to undefined behavior. To further guide the learning process, one may want to
apply a preprocessing step, a disambiguation algorithm, that resolves ambiguity
in the data set. Such preprocessing can be either conservative and always label
a trace as violating a safety property if any pair labels it as violating, or take a
more quantitative approach (e.g. if labels are MTL robustness values, averaging
all such values for the trace).

5 Monitor Generation

In this section, we discuss different ways to translate the available data from
a simulation interface and high-level system description into a monitor Msyn.
In particular, we aim to construct an efficiently-computable function that for
any trace σ yields whether the monitor should issue an alert, i.e., Msyn(σ) ∈ B.

320 H. Torfah et al.

We wish to construct this monitor from the training data (and the simulation
interface) outlined in the previous section. Furthermore, the simulation-based
environment described above allows us to compare against the ideal monitor
Mtrue and define quality metrics in terms of false positives, false negatives, etc.
with respect to a sampled set of traces.

5.1 Learning Methods

In general, we can distinguish between exact and approximate learning methods,
on the one hand, and passive versus active learning on the other.

Exact and Approximate Learning. We start with a comparison between
exact and approximate learning and explain why approximate learning is more
suitable for our setting.

Exact Learning. In exact learning [23,48], the idea is to learn an artifact match-
ing the labeled samples, i.e., Msyn = Mtrue. The guarantee that these approaches
typically deliver is that they yield the simplest (and according to Ockham’s
razor, the best) explanation for the training data. If the training data were to
be exhaustive, the monitor would be perfect. Using exact learning algorithms in
our setting, however, comes with two main challenges. First, the training data
is in most cases noisy, whereas many efficient exact learning algorithms require
noise-free data. Such an assumption is unrealistic in our setting, even if the sys-
tem is deterministic, due to quantization and nondeterminism in the simulator.
While nondeterminism can be resolved by a disambiguation process (as outlined
in the previous section) and using methods such as in [1], this will result in very
conservative monitors that are not robust to noisy data. Second, the presence of
multiple sensors may yield a large alphabet size, which poses a serious challenge
even for state-of-the-art learning algorithms [1,30]. For example, looking at the
training data generated for TaxiNet, even if we further discretize the data by
splitting the time of day into 16 different hours (counting night times as one), 6
types of clouds, 4 rain levels, 8 intervals for the initial position of the plane, and
a simple binary flag for the skid marks, we already obtain an alphabet size of
6144. Finer discretizations necessary for high-quality monitors would have even
larger alphabets.

Approximate Learning. To construct monitors that are more robust to noisy
data, we may rely on approximate learning methods that learn an optimal mon-
itor for the training data with respect to a quantitative objective (e.g. the mis-
classification rate). The literature includes a plethora of techniques for learning
optimal artifacts, including but not limited to, techniques for learning decision
trees [6,34], decision lists [36], or neural networks [5]. The typical guarantee for
a monitor generated using these methods is a statistical one, often in the form
of a probably approximately correct (PAC) monitor [49]. That is, assuming a
sufficient amount of training data from the simulator, the generated monitor

Formal Analysis of AI-Based Autonomy 321

will with high probability be (optimally) correct on most of the traces observed
at runtime. While approximately correct monitors do admit false negatives and
false positives, by adequately defining the weights of the quantitative objective
we may bias the learning process towards false positives. In the TaxiNet example,
we used an algorithm for learning decision trees and increased the weights cor-
responding to the false positives. This allowed for the learning of monitors that
triggered more false alarms, but resulted in a fewer number of misclassifications
of dangerous situations where the plane left the runway.

Active Versus Passive Learning. Both exact and approximate learning can
be either active or passive. In our setting, passive learning is simpler to apply
than active learning. We briefly mention some of the challenges.

Passive Learning. Passive learning starts from a data set collected a priori.
This data would typically follow the distribution as specified in the environment
model. However, the training set can be primed to include more negative exam-
ples (even if they rarely occur). In particular for passive learning, it is interesting
to further prepare the data, e.g., by taking a windowed approach. The major
downside of exact passive learning is its NP-hardness in the presence of a large
alphabet (set of events) [33].

Active Learning. In active learning, the learner adaptively runs the simulations.
Thus, the data is no longer pre-selected: rather, we give the learner direct access
to the simulator. The challenge here is that we then must produce a simula-
tion that after mapping and segmentation yields a particular requested trace. A
naive workaround for this problem is to run the simulator until such a trace is
found and heavily rely on caching. While generally, such an approach is not fea-
sible, there are cases where the observation trace contains enough information
to control the simulation accordingly: e.g., consider a car where the observa-
tion is throttle and steering, or a setting where we only vary the initial (static)
part of the environment. Furthermore, most learners select traces that accelerate
learning (possibly ignoring properties of the trace such as its relative likelihood).
This selection scheme can pose a challenge for creating monitors for rare events.
Finally, while (approximate) active learners are typically more data-efficient than
passive learners, their statistical guarantees are weaker.

5.2 Learning Monitors for TaxiNet

We used VerifAI in experiments implementing the aircraft taxiing example
introduced in Sect. 2. For a given deep neural network implementing the per-
ception module, we used VerifAI to learn a monitor which decides, based on
the initial configuration of the airplane, weather conditions, time of day, and
skid marks, whether to use an autopilot dependent on the perception module
or switch to manual control. In the following, we provide some details on the
experimental setup and results.

322 H. Torfah et al.

Fig. 5. Example runs using TaxiNet without and with learned monitor. On the left:
TaxiNet without learned monitors. On the top right: TaxiNet with monitor learned
using mapper 1. On the bottom right: TaxiNet with monitor learned using mapper 2.
Note that that the deviation from the centerline is greater on the left than on the right

Experimental Setup. Our setup uses VerifAI’s interface to the X-Plane
flight simulator [35]. The perception module was executed as part of a closed-
loop system whose computations were sent to a client running inside X-Plane.
As a client, we used X-Plane Connect [45], an X-Plane plugin providing access to
X-Plane’s “datarefs”. These are named values which represent simulator state,
such as the positions of aircraft and weather conditions, etc.

The deep neural network was trained on images collected from several X-
Plane simulations, where each image was labeled with the CTE value observed
in that image. The images were taken from a camera mounted on the right wing
facing forward, as shown in Fig. 1. The environment was modelled by the Scenic
program depicted in Fig. 3, originally used to falsify and retrain TaxiNet in [16].
The evaluator used the MTL specification ϕ = [0,10] (CTE < 2.5), requiring
that the plane get within 2.5 m of the centerline within 10 s and maintain that
maximum CTE for the entire simulation. We used the robust semantics for
MTL, subsequently mapping positive robustness values (including 0) to true
and negative values to false. To label the traces for monitor learning, we used a
smoothed version of our specification designed to ignore short-term violations:
specifically, we defined the label to be true when the property ϕ was true at
least 8 out of 10 times in the 10 time steps following the prediction horizon of 5
time steps. Traces from 500 simulations were annotated with the truth value of
the smoothed specification at each time step. We then applied a procedure for
learning optimal decision trees over this training data.

Learned Monitors. We used two mappers for constructing two types of moni-
tors. The first mapper used a segment length of 1 and filtered out all simulation

Formal Analysis of AI-Based Autonomy 323

data except for the weather conditions, the time of day, and the initial con-
figuration, thereby covering all static factors. Using this mapper, our approach
resulted in a monitor that mainly issued alerts in the afternoon, between 12
pm and 6 pm, in clear weather conditions. This matched our observation (also
made in [16]) that the perception module did not behave well under these con-
ditions, leading the airplane to exit the runway in most simulations (see the top
row of Fig. 5 for an example). During these times we noticed that the shadow
of the airplane confused the perception module, which was an indication that
the neural network may have not been trained on data during these times and
weather conditions. In fact, in very cloudy weather conditions during the after-
noon, where no shadow can be observed, the number of alerts by the monitor
decreased drastically. This result is in line with the manual analysis performed
in [16]. There, the TaxiNet network was retrained on images during these times
and weather conditions, which successfully eliminated the negative influence of
shadows and yielded more robust performance.

Continuing our experiments, we further noticed that even after integration of
the learned monitor, in many simulations the plane deviated from the centerline
and left the runaway near markers indicating 1000 ft down the runway (shown in
the bottom left image in Fig. 5). This showed that the static features filtered by
the first mapper were not enough to characterize the safe operating conditions
of the perception module. To overcome this problem, we implemented a second
mapper that additionally includes information about the skid marks on the run-
way (using a segment length of 10). Indeed, close to the 1000 foot markers, the
runway had a long region of black skid marks that covered the white centerline,
resulting in images on which TaxiNet produced wrong values. Using data that
included information about the skid marks, our approach was able to learn a
monitor that after driving for a period of 10 time steps over a skid mark region,
issued an alert forcing a switch to the safe controller (manual control), which
maneuvered the airplane back to the center (as shown in the bottom right image
in Fig. 5). As soon as the plane left this region, the monitor switched back to
using TaxiNet.

6 Runtime Assurance

Runtime assurance (enforcement) techniques aim to ensure that a system meets
its (safety) specification at runtime [9,13,38]. Abstractly speaking, a runtime
assurance module modifies the behavior of the system when necessary so that
the system remains in a safe state. The key ingredient of runtime assurance
components is a monitor (also referred to as decision module, shield or mask) that
triggers a modification in the system’s outputs. Realizations of runtime assurance
vary, and span from suppressing [2] to manipulating the system’s executions [42].

In the setting where the goal is to evaluate the performance of a black-box
component, as in the case of TaxiNet, runtime assurance is realized by switching
to a provably-safe operating mode, i.e., switching to a verified controller that,
although it may potentially be less performant than the black-box, is guaran-
teed to enforce the safety properties of the system. A prominent example of

324 H. Torfah et al.

Advanced
Controller

Safe
Controller

Decision
Module

• Plant

•

•

Fig. 6. The Simplex architecture

such a runtime assurance architecture is the Simplex architecture [42], which has
been used in many domains, especially avionics [41] and robotics [31]. A run-
time assurance module based on Simplex, depicted in Fig. 6, typically consists
of two controllers, an advanced controller (AC) and a safe controller (SC), and a
decision module that implements a switching logic between the AC and SC. The
AC is used for operating the system under nominal circumstances. The SC is a
certified backup controller that takes over operating the system when anomalies
in the behavior of the AC or its safe operating conditions are detected. An SC for
TaxiNet could stop the plane and/or ask for human intervention. The decision
module decides whether it is necessary to switch from the AC to the SC to keep
the system in a safe state and when to switch back to the AC to utilize the high
performance of the AC to optimally achieve the objectives of the system. In our
TaxiNet example, the decision module is realized by the learned monitor, the
AC is a controller that is built on top of the TaxiNet neural network, and the
safe controller is a simple mock controller mimicking human control.

When realizing a runtime assurance architecture like Simplex, we should keep
the following aspects of the implementation of the decision module in mind:

– the decision module should execute asynchronously, i.e., it should be able to
trigger a switch whenever necessary.

– the decision module should aim to use the AC as much as possible without
violating safety, i.e., it should switch from SC to AC (AC to SC) as often
(little) as possible.

– the decision module needs to be efficient, i.e., it needs to provide, as early as
possible, a correct assessment to switch between the AC and SC.

To this end, programming frameworks are needed to implement runtime assur-
ance modules that are guaranteed to satisfy these criteria. An example of such
a framework is Soter [9,43], a runtime assurance framework for building safe
distributed mobile robots. A Soter program is a collection of asynchronous
processes that interact with each other using a publish-subscribe model of com-
munication. A runtime assurance (RTA) module in Soter consists of a safe

Formal Analysis of AI-Based Autonomy 325

controller, an advanced controller, and a decision module. Soter allows pro-
grammers to construct RTA modules in a modular way with specified timing
behavior, combining provably-safe operation with the feature of using AC when-
ever safe so as to achieve good performance. A key advantage of Soter is that
it also allows for straightforward integration of many monitoring frameworks.

The design and implementation of the decision module is critical to achieve
principled switching between the AC and SC that keeps performance penalties
to a minimum while retaining strong safety guarantees. Monitors can be defined
and implemented using a variety of frameworks [10,14,15,21,28,29,32], ranging
from automata and logics to very expressive programming languages with a
trade-off between expressivity and efficiency guarantees. The choice of monitor
language depends on the requirements of the application and constraints of the
implementation platform.

7 Discussion

We have seen how to use VerifAI and Scenic to learn runtime monitors for
autonomous systems, and how these monitors help to achieve runtime assurance.
In this last section, we discuss a more general wish list for such monitors and
prospects for additional learning methods to explore.

7.1 Desiderata for Effective Monitors

Runtime monitors for autonomous systems should satisfy several different crite-
ria in order to be useful in practice. While our criteria align partially with those
given in [37] for runtime monitors in general, we will see some differences. We
also emphasize that our desiderata are not strict requirements: indeed, to the
best of our knowledge, no current formalism or method achieves them fully.

Implementability. A monitor should be realizable on the target system and be
executable during runtime. This requires that all data the monitor depends on
is available and that the monitor can compute the resulting alerts with in a
response time sufficient for the system to take corrective action.

Regarding the availability of the inputs, we remark that while we may eval-
uate monitor performance during simulation by taking into account the ground
truth or unobservable data, the real monitor cannot. This concern necessitated
the mapping and disambiguation phases in our discussion above.

On the real system, monitor performance is an additional factor. Promptness
(i.e., the lag of the monitor) and memory-efficiency (are sufficient resources avail-
able) are well-known concerns [14]. In particular, complex numerical or iterative
monitor definitions can be problematic, as are huge lookup tables. However, to
put these concerns into perspective, we remark that many AI-based controllers
are themselves more resource-consuming than traditional embedded controllers.
To ensure performance, a first step is limiting the history-dependency through

326 H. Torfah et al.

segmentation. A second step is to limit the size of the artifact, which most learn-
ing formalisms support (e.g., limiting the depth of the tree or the size of the
network during learning). While we provide monitors in an executable format,
compilation onto a real system is currently beyond the scope of our tool.

Quantitative Correctness. Achieving absolute correctness, i.e., ensuring that
Msyn(σ) = Mtrue(σ) for all possible traces σ, is unrealistic as it would require an
exhaustive search through the joint behaviors of the system and its environment.
Indeed, AI-based components are most helpful in settings such as perception
where correct behavior is difficult to capture in a formal specification, so that
there is little hope for fully-correct monitors. A popular approach in verification
when full correctness is out of reach is to generate an over-approximate (sound)
monitor that only admits a one-sided error. However, such monitors are gener-
ally too conservative. Conservative monitors yield many alarms, which typically
leads to their outputs being disregarded, defeating their purpose. Rather, we
advocate to allow two-sided errors, but to discount false positives over false neg-
atives. Thus, while our monitors do tend to almost always raise an alarm when
necessary, they may still err on the conservative side.

To reduce quantitative error, one possibility is to increase the amount of
simulation data, thereby covering corner cases with a higher probability. This is
not the only option: in order to avoid indistinguishability of various traces, it can
also be helpful to increase the variety of data that may be used by the monitor,
as we saw in Sect. 5.2. A third possibility is to increase the expressivity of the
monitor formalism: relatively simple models such as decision lists, trees, and
finite automata may not be able to adequately capture the underlying dynamics
determining system safety in a compact monitor. More elaborate frameworks
such as RTLola [4,14,46] deliver more flexibility in defining a monitor, while
still ensuring a performant implementation as described above.

Trustworthiness. Monitors for autonomous systems which are quantitatively cor-
rect in the sense above do not come with the same hard guarantees that many
specification-based monitors provide. However, in order to alleviate weaknesses
of the system, they must be more trustworthy than the system itself. For vali-
dation and certification, monitors can be inspected either manually or by verifi-
cation and other tools. A level of explainability or (machine-)interpretability is
thus a central aspect that must be considered when constructing monitors that
come with statistical or empirical correctness claims [47]. One approach that
VerifAI supports is to simulate the system including its monitor, generating
concrete examples of monitor failures using falsification. However, we observe
that to some extent, explainability trades off with increasing the quantitative
correctness of the tool, as monitors based on a plethora of inputs can be harder
to understand and analyze. To better understand the trade-offs, one can use
techniques for exploring the Pareto-optimal space of monitors [47].

Formal Analysis of AI-Based Autonomy 327

7.2 Monitor Refinement and Synthesis

Beyond classical learning approaches, an alternative is the use of (oracle-guided)
inductive synthesis [24,25], e.g., counterexample-guided inductive synthesis to
learn a monitor by querying an oracle. Such an approach can be used as an
extension of active or passive learning algorithms, or alone.

Inductive synthesis is heavily used in the context of programming languages
but can also be used for perception modules and control [20]. Rather than learn-
ing a program, we learn a monitor. The main idea here is that rather than
learning a complete monitor, we have a skeleton of the monitor that may be
extracted from domain specific knowledge or learned. In our aviation example,
we might search for a monitor that combines the forward speed and estimated
CTE and compares this to some threshold. The question to find a monitor then
is to find a function of forward speed, CTE and a threshold.

Rather than first collecting the training data offline, an inductive synthesis
solver will typically assume some candidate monitor and then use an oracle
(here, VerifAI) to evaluate the system with and without the monitor to find
false positives and false negatives. These samples are counterexamples that can
be used to refine the candidate monitor into a more accurate monitor. We remark
that the criteria for the synthesis loop to accept a monitor can either be as in
the exact learning case, or PAC-based.

Another direction for monitor synthesis is the paradigm of introspective envi-
ronment modeling (IEM) [39,40]. In IEM, one considers the situation where the
agents and objects in the environment are substantially unknown, and thus the
environment variables are not all known. In such cases, we cannot easily define
a Scenic program for the environment. The only information one has is that
the environment is sensed through a specified sensor interface. One seeks to syn-
thesize an assumption on the environment, monitorable on this interface, under
which the desired specification (e.g. safety property) is satisfied. While very pre-
liminary steps on IEM have been taken [39], significant work remains to be done
to make this practical, including efficient algorithms for monitor synthesis and
the development of realistic sensor models that capture the monitorable inter-
face.

Acknowledgments. The authors are grateful to Johnathan Chiu, Tommaso Dreossi,
Shromona Ghosh, Francis Indaheng, Edward Kim, Hadi Ravanbakhsh, Marcell
Vazquez-Chanlatte, and Kesav Viswanadha for their valuable contributions to the
VerifAI project. We also thank the team at Boeing helping to define the TaxiNet
challenge problem including especially Dragos D. Margineantu and Denis Osipychev.

References

1. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state
communication protocols using regular inference with abstraction. Formal Methods
Syst. Des. 46(1), 1–41 (2014). https://doi.org/10.1007/s10703-014-0216-x

2. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement
via suppressions. In: CONCUR. LIPIcs, vol. 118, pp. 34:1–34:17 (2018)

https://doi.org/10.1007/s10703-014-0216-x

328 H. Torfah et al.

3. Azad, A.S., et al.: Scenic4RL: programmatic modeling and generation of reinforce-
ment learning environments. CoRR, abs/2106.10365 (2021)

4. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embed. Comput. Syst. 18(5s),
88:1–88:24 (2019)

5. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 8

6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

7. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial
observability. CoRR, abs/2108.07134 (2021)

8. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehi-
cle models using Bayesian estimation and reachability analysis. In: IROS, pp. 2111–
2118. IEEE (2020)

9. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: a runtime
assurance framework for programming safe robotics systems. In: IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN) (2019)

10. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

11. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

12. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 3–26. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 1

13. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst.
Des. 38(3), 223–262 (2011)

14. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

15. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24(2), 101–127 (2004)

16. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 122–134.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 6

17. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: PLDI (2019)

18. Fremont, D.J., et al.: Scenic: a language for scenario specification and data gener-
ation (2020)

19. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: from
simulation to the real world. In: ITSC (2020)

20. Ghosh, S., Pant, Y.V., Ravanbakhsh, H., Seshia, S.A.: Counterexample-guided syn-
thesis of perception models and control. In: American Control Conference (ACC),
pp. 3447–3454. IEEE (2021)

https://doi.org/10.1007/978-3-030-32079-9_8
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-53288-8_6

Formal Analysis of AI-Based Autonomy 329

21. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

22. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Trans. Autom. Control 43(4), 540–554 (1998)

23. Isberner, M., Steffen, B., Howar, F.: LearnLib tutorial - an open-source Java library
for active automata learning. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 358–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 25

24. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE (1), pp. 215–224. ACM (2010)

25. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

26. Junges, S., Torfah, H., Seshia, S.A.: Runtime Monitors for Markov Decision Pro-
cesses. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 553–
576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 26

27. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

28. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: SAC, pp. 1925–1933. ACM
(2018)

29. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

30. Mens, I.-E., Maler, O.: Learning regular languages over large ordered alphabets.
Log. Methods Comput. Sci. 11(3) (2015)

31. Phan, D., Yang, J., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for
mobile robots with limited sensing and limited information about moving obstacles.
Formal Methods Syst. Des. 51(1), 62–86 (2017). https://doi.org/10.1007/s10703-
016-0265-4

32. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

33. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993)

34. Ross Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
35. Laminar Research. X-Plane 11 (2019). https://www.x-plane.com/
36. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
37. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced

application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019)

38. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

39. Seshia, S.A.: Introspective environment modeling. In: Finkbeiner, B., Mariani, L.
(eds.) RV 2019. LNCS, vol. 11757, pp. 15–26. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32079-9 2

40. Seshia, S.A., Sadigh, D., Shankar Sastry, S.: Towards Verified Artificial Intelligence.
arXiv e-prints (2016)

https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-319-23820-3_25
https://doi.org/10.1007/978-3-319-23820-3_25
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-030-81688-9_26
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10703-016-0265-4
https://doi.org/10.1007/s10703-016-0265-4
https://doi.org/10.1007/978-3-642-16612-9_26
https://www.x-plane.com/
https://doi.org/10.1007/978-3-030-32079-9_2
https://doi.org/10.1007/978-3-030-32079-9_2

330 H. Torfah et al.

41. Seto, D., Ferriera, E., Marz, T.: Case study: development of a baseline controller
for automatic landing of an F-16 aircraft using linear matrix inequalities (LMIs).
Technical report CMU/SEI-99-TR-020, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2000)

42. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
43. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on ROS: a run-time

assurance framework on the robot operating system. In: Deshmukh, J., Ničković,
D. (eds.) RV 2020. LNCS, vol. 12399, pp. 184–194. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-60508-7 10

44. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

45. Teubert, C., Watkins, J.: The X-Plane Connect Toolbox (2019). https://github.
com/nasa/XPlaneConnect

46. Torfah, H.: Stream-based monitors for real-time properties. In: Finkbeiner, B.,
Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 91–110. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32079-9 6

47. Torfah, H., Shah, S., Chakraborty, S., Akshay, S., Seshia, S.A.: Synthesizing pareto-
optimal interpretations for black-box models. In: FMCAD. IEEE (2021)

48. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
49. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-642-29860-8_15
https://github.com/nasa/ XPlaneConnect
https://github.com/nasa/ XPlaneConnect
https://doi.org/10.1007/978-3-030-32079-9_6

Author Index

Abbas, Houssam 3
Azzopardi, Shaun 81

Balakrishnan, Anand 297
Basnet, Niraj 3
Bianculli, Domenico 23, 277
Bonakdarpour, Borzoo 3
Bortolussi, Luca 121
Briand, Lionel 277

Cairoli, Francesca 121
Chattopadhyay, Agnishom 142
Cimatti, Alessandro 207

Dauer, Johann C. 62
Dawes, Joshua Heneage 23
Deshmukh, Jyotirmoy 297

Fainekos, Georgios 297
Fernando, Vimuth 184
Filliâtre, Jean-Christophe 244
Finkbeiner, Bernd 62
Fremont, Daniel J. 265, 311

Gorostiaga, Felipe 164

Hashemi, Vahid 254
Henzinger, Thomas A. 42, 231
Hoxha, Bardh 297

Indaheng, Francis 265

Joshi, Keyur 184
Junges, Sebastian 311

Khan, Zanis Ali 277
Kim, Edward 265
Křetínský, Jan 254

Laurel, Jacob 184
Lukina, Anna 42

Mamouras, Konstantinos 142
Mavrommati, Anastasia 288
Misailovic, Sasa 184
Mohr, Stefanie 254
Momtaz, Anik 3
Mosterman, Pieter J. 288
Muehlboeck, Fabian 231

Pace, Gordon 81
Paoletti, Nicola 121
Pascutto, Clément 244

Rajhans, Akshay 288

Sánchez, César 164
Schapachnik, Fernando 81
Schilling, Christian 42
Schirmer, Sebastian 62
Schneider, Gerardo 81
Seferis, Emmanouil 254
Seshia, Sanjit A. 265, 311
Shijubo, Junya 100
Shin, Donghwan 277
Suenaga, Kohei 100

Tian, Chun 207
Tonetta, Stefano 207
Torfah, Hazem 311

Valenti, Roberto G. 288
Viswanadha, Kesav 265

Waga, Masaki 100
Wang, Zhifu 142

Yamaguchi, Tomoya 297

	Preface
	Organization
	Contents
	Regular Papers
	Predicate Monitoring in Distributed Cyber-Physical Systems
	1 Introduction
	1.1 Our Solution and Contributions

	2 Model of Computation
	2.1 Signal Model
	2.2 Signal Transmission to the Monitor

	3 The Predicate Monitoring Problem
	4 SMT-Based Monitoring Algorithm
	4.1 Retiming Functions
	4.2 SMT Formulation

	5 Exploiting the Knowledge of System Dynamics
	6 Case Studies and Evaluation
	6.1 Case Studies
	6.2 Experimental Setup
	6.3 Analysis of Results

	7 Related Work
	8 Conclusion
	References

	Specifying Properties over Inter-procedural, Source Code Level Behaviour of Programs
	1 Introduction
	2 Background: Control-Flow Temporal Logic
	2.1 Symbolic Control-Flow Graphs
	2.2 Dynamic Runs
	2.3 Examples of CFTL Specifications

	3 iCFTL: Inter-procedural CFTL
	3.1 Systems of Multiple Procedures
	3.2 Inter-procedural Dynamic Runs
	3.3 Syntax of iCFTL
	3.4 Examples

	4 A Semantics for iCFTL
	4.1 Finding Bindings
	4.2 Evaluation at a Binding
	4.3 The Semantics Function

	5 Monitoring
	6 Instrumentation
	6.1 Inspection of the Quantifiers
	6.2 Inspection of the Atoms
	6.3 Filtering Dynamic Runs
	6.4 Lookup During Monitoring
	6.5 Implications for Complexity

	7 Case Study
	8 Related Work
	9 Conclusion
	References

	Into the Unknown: Active Monitoring of Neural Networks
	1 Introduction
	2 Related Work
	3 Background and Assumptions
	4 Approach
	4.1 Quantitative Monitor
	4.2 Active Monitoring Algorithm

	5 Experiments
	5.1 Benchmark Datasets
	5.2 Experimental Setup
	5.3 Experimental Results

	6 Conclusion and Future Work
	References

	Monitoring with Verified Guarantees
	1 Introduction
	2 Runtime Monitoring with Lola
	3 Assumptions and Assertions
	4 Application Experience in Avionics
	5 Conclusion
	References

	On the Specification and Monitoring of Timed Normative Systems
	1 Introduction
	2 Background
	2.1 Temporal Logics, Timed Logics and Complexity
	2.2 Formalisation of Normative Systems: Deontic Logics

	3 Interpreting Timed Norms
	4 Monitoring Norms and Timed Norms
	4.1 Monitorability
	4.2 Monitor Synthesis

	5 Conclusions
	References

	Efficient Black-Box Checking via Model Checking with Strengthened Specifications
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 LTL Model Checking
	2.3 Signal Temporal Logic
	2.4 Active Automata Learning
	2.5 Black-Box Checking

	3 BBC Enhanced via Model Checking with Strengthened LTL Formulas
	3.1 Strengthening Relation of LTL Formulas
	3.2 BBC Enhanced via Model Checking with Strengthened Formulas
	3.3

	4 Experiment
	4.1 Experiment Setup
	4.2 Performance Evaluation

	5 Conclusions and Future Work
	References

	Neural Predictive Monitoring Under Partial Observability
	1 Introduction
	2 Problem Statement
	3 Methods
	3.1 Predictive Monitoring Under Noise and Partial Observability
	3.2 Conformal Prediction for Regression and Classification
	3.3 CP-Based Quantification of Predictive Uncertainty
	3.4 Active Learning (AL)

	4 Experimental Evaluation
	4.1 Case Studies
	4.2 Experimental Settings
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	A Compositional Framework for Quantitative Online Monitoring over Continuous-Time Signals
	1 Introduction
	2 Algebraic Semantics with Complete Lattices
	3 Monitors
	4 MTL Monitoring
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Nested Monitors: Monitors as Expressions to Build Monitors
	1 Introduction
	2 Preliminaries
	3 Nested Monitors and Slices
	3.1 Nested Monitors and Slices in Lola
	3.2 Extensions in Striver

	4 Nested Monitors and Slices in Action
	5 Empirical Evaluation
	6 Conclusions
	References

	Diamont: Dynamic Monitoring of Uncertainty for Distributed Asynchronous Programs
	1 Introduction
	2 Example
	2.1 Sources of Uncertainty
	2.2 Verification

	3 Diamont System
	3.1 Syntax
	3.2 Diamont Semantics
	3.3 Soundness of Runtime Monitoring

	4 Optimizations for Reducing Overhead
	4.1 Soundness

	5 Methodology
	6 Evaluation
	6.1 Can We Verify Important Uncertainty Properties Using Diamont?
	6.2 What Are the Overheads Associated with Diamont?
	6.3 How Does Diamont Overhead Depend on the Program Inputs?

	7 Related Work
	8 Conclusion
	References

	Assumption-Based Runtime Verification of Infinite-State Systems
	1 Introduction
	2 Preliminaries
	2.1 Satisfiability Modulo Theory
	2.2 First-Order Quantifier Elimination
	2.3 Fair Transition System
	2.4 Linear Temporal Logic
	2.5 Assumption-Based Runtime Verification

	3 Motivating Example
	4 ABRV Algorithms for Infinite-State Systems
	4.1 ABRV Reduced to Model Checking
	4.2 ABRV Reduced to MC and Quantifier Elimination
	4.3 Optimizations
	4.4 ABRV Reduced to Model Checking and Incremental BMC

	5 Experimental Evaluation
	5.1 Tests on the Motivating Example (Sect.3)
	5.2 Tests on Dwyer's LTL Patterns

	6 Related Work
	7 Conclusion
	References

	Short Papers and Tool Papers
	Differential Monitoring
	1 Introduction
	2 Background and Related Work
	3 Challenges
	4 Experimental Results
	5 Conclusion
	References

	Ortac: Runtime Assertion Checking for OCaml (Tool Paper)
	1 Introduction
	2 Overview and Motivating Example
	3 Code Generation and Tool Architecture
	3.1 Translating Formulas
	3.2 Wrapping the Functions
	3.3 A Modular Architecture

	4 Related Work
	5 Conclusion and Perspectives
	References

	Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks

	3 Our Solution Approach
	4 Experiments
	4.1 Datasets and Training
	4.2 Gaussian Assumption
	4.3 Evaluation Steps
	4.4 Parameter Study

	5 Outlook
	6 Conclusion
	References

	Parallel and Multi-objective Falsification with Scenic and VerifAI
	1 Introduction
	2 Background
	3 Parallel Falsification
	4 Multi-objective Falsification
	4.1 Specification of Multiple Objectives Using Rulebooks
	4.2 Multi-objective Active Sampling

	5 Evaluation
	6 Conclusion and Future Work
	References

	A Theoretical Framework for Understanding the Relationship Between Log Parsing and Anomaly Detection
	1 Introduction
	2 Preliminaries
	3 Ideal Log Parsing Results for Anomaly Detection
	3.1 Log Parsing as Abstraction
	3.2 Ideal Log Parsing Results

	4 Applications
	4.1 Localization of the Causes of Inaccurate Anomaly Detection
	4.2 Removal of Unnecessary Log Messages for Anomaly Detection

	5 Related Work
	6 Conclusion and Future Research Directions
	References

	Specification and Runtime Verification of Temporal Assessments in Simulink
	1 Introduction
	2 Authoring Temporal Specifications
	2.1 Preliminaries
	2.2 Authoring Temporal Assessments via a UI Element
	2.3 Visual Representation
	2.4 Symbol Resolution
	2.5 Example

	3 Runtime Verification of Temporal Assessments
	4 Discussion
	References

	PerceMon: Online Monitoring for Perception Systems
	1 Introduction
	2 Spatio-Temporal Quality Logic
	3 PerceMon: An Online Monitoring Tool
	3.1 Integration with CARLA and ROS

	4 Experiments
	5 Conclusion
	A Semantics for STQL
	References

	Tutorial Paper
	Formal Analysis of AI-Based Autonomy: From Modeling to Runtime Assurance
	1 Introduction
	2 Motivating Example: Autonomous Aircraft Taxiing
	3 The VerifAI Framework
	4 Training Data Generation
	4.1 Mapping
	4.2 Segmentation
	4.3 Disambiguation

	5 Monitor Generation
	5.1 Learning Methods
	5.2 Learning Monitors for TaxiNet

	6 Runtime Assurance
	7 Discussion
	7.1 Desiderata for Effective Monitors
	7.2 Monitor Refinement and Synthesis

	References

	Author Index

