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Preface

Welcome to NLPCC 2021, the tenth CCF International Conference on Natural Lan-
guage Processing and Chinese Computing. Following the success of previous con-
ferences held in Beijing (2012), Chongqing (2013), Shenzhen (2014), Nanchang
(2015), Kunming (2016), Dalian (2017), Hohhot (2018), Dunhuang (2019), and
Zhengzhou (2020), this year’s NLPCC was held in Qingdao, a beautiful coastal city in
East China. As a premier international conference on natural language processing and
Chinese computing, organized by the CCF-NLP (Technical Committee of Natural
Language Processing, China Computer Federation, formerly known as Technical
Committee of Chinese Information, China Computer Federation), NLPCC 2021 serves
as an important forum for researchers and practitioners from academia, industry, and
government to share their ideas, research results, and experiences, and to promote their
research and technical innovations in the fields.

The fields of natural language processing (NLP) and Chinese computing (CC) have
boomed in recent years. Following NLPCC’s tradition, we welcomed submissions in
ten areas for the main conference: Fundamentals of NLP; Machine Translation and
Multilinguality; Machine Learning for NLP; Informtion Extraction and Knowledge
Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social
Media and Sentiment Analysis; NLP Applications and Text Mining; Multimodality and
Explainability. On the submission deadline, we were thrilled to have received a record
number of 446 valid submissions to the main conference.

After a rigid review process, out of 446 submissions (some of which were with-
drawn or rejected without review due to format issues or policy violations), 104 papers
were finally accepted to appear in the main conference, where 89 were written in
English and 15 in Chinese, resulting in an acceptance rate of 23.3%. Among them, 72
submissions were accepted as oral papers and 32 as poster papers. Specifically, ten
papers were nominated by our area chairs for the best paper award. An independent
best paper award committee was formed to select the best papers from the shortlist.
This proceedings includes only the accepted English papers; the Chinese papers will
appear in the ACTA Scientiarum Naturalium Universitatis Pekinensis. In addition to
the main proceedings, three papers were accepted to the Student workshop, 22 papers
were accepted to the Evaluation workshop, and two papers were accepted to the
Explainable AI (XAI) workshop.

We were honored to have four internationally renowned keynote speakers—Rada
Mihalcea (University of Michigan), Yanchao Bi (Beijing Normal University), Sebas-
tian Riedel (University College London and Facebook AI Research), and Graham
Neubig (Carnegie Mellon University)—share their findings on recent research progress
and achievements in natural language processing.

We would like to thank all the people who have contributed to NLPCC 2021. First
of all, we would like to thank our 20 area chairs for their hard work recruiting
reviewers, monitoring the review and discussion processes, and carefully rating and



recommending submissions. We would like to thank all 432 reviewers for their time
and efforts to review the submissions. We are very grateful to Tim Baldwin, Chin-Yew
Lin, Kang Liu, Deyi Xiong, and Yue Zhang for their participation in the best paper
committee. We are also grateful for the help and support from the general chairs, Tim
Baldwin and Jie Tang, and from the organization committee chairs, Zhumin Chen,
Pengjie Ren, and Xiaojun Wan. Special thanks go to Yu Hong and Ruifang He, the
publication chairs, for their great help. We greatly appreciate all your help!

Finally, we would like to thank all the authors who submitted their work to NLPCC
2021, and thank our sponsors for their contributions to the conference. Without your
support, we could not have such a strong conference program.

We were happy to see you at NLPCC 2021 in Qingdao and hope you enjoyed the
conference!

October 2021 Lu Wang
Yansong Feng
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Abstract. Up to date, various neural-based methods have been pro-
posed for joint mention span detection and coreference resolution. How-
ever, existing studies on coreference resolution mainly depend on men-
tion representations, while the rest spans in the text are largely ignored
and directly eliminated. In this paper, we aim at investigating whether
those eliminated spans are totally worthless, or to what extent they can
help improve the performance of coreference resolution. To achieve this
goal, we propose to refine the representation of mentions with global
spans including these eliminated ones leveraged. On this basis, we fur-
ther introduce an additional loss term in this work to encourage the
diversity between different entity clusters. Experimental results on the
document-level CoNLL-2012 Shared Task English dataset show that the
eliminated spans are indeed useful and our proposed approaches show
promising results in coreference resolution.

Keywords: Coreference resolution · Representation learning ·
Document-level cohesion analysis

1 Introduction

As an important role in text understanding, coreference resolution is the task
of identifying and clustering mention spans in a text into several clusters where
each cluster refers to the same real world entity. With the increasing popu-
lation of neural networks, varied neural-based approaches have been proposed
for coreference resolution [4,5,8–13,23–25] so far. Among these studies, Lee et
al. [12] first propose an end-to-end neural model apart from syntactic parsers.
After that, the coreference resolution task is much liberated from complicated
hand-engineered methods, and more and more studies [9–11,13,25] have been
proposed to refine the coreference resolution model of Lee et al. [12]. In general,
neural-based studies usually perform coreference resolution in two stages: (i) a
mention detector to select mention spans from all candidate spans in a document
and (ii) a coreference resolver to cluster mention spans into corresponding entity
clusters. In this way, the manually annotated cluster labels are well employed
for both mention detection and clustering.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-88480-2_1
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Although previous studies have achieved certain success in coreference reso-
lution in recent years, these studies perform mention clustering heavily rely on
the mention representations selected at the first stage for mention clustering,
while the rest spans in each piece of text are largely filtered and directly elim-
inated. Considering that, we naturally raise the question: Are those eliminated
spans worthless for coreference resolution? On the one hand, the mention spans
selected by the mention scoring function are usually isolated with each other
in format. Besides, eliminating these “worthless” spans only depending on the
mention scoring function may aggravate the notorious error propagation prob-
lem in the pipeline workflow of coreference resolution. On the other, previous
studies improve the performance of coreference resolution either from feature
designing or model architecture perspectives, while the progress of improving on
data utilization remains hysteretic. As far as we know, these eliminated spans
have not been explored so far. Under this condition, we aim at increasing the
data utilization rate and investigating to what extent these eliminated spans can
help improve the performance of coreference resolution.

To achieve the above goal, based on the two-stage neural model of Lee et
al. [12], we propose a mention representation refining strategy to well lever-
age the spans that highly related to the mention for representation enhancing.
Following this way, the contribution of our approach is two-fold: (i) using the
global spans (both mention spans and the eliminated spans) with high utiliza-
tion rate to provide auxiliary information for mention representation enhancing;
(ii) equipping the isolated mention representations with context-aware correla-
tions through the trade-off among global spans in the document. In addition, to
make full use of the annotated training instances, we utilize an additional loss
term to learn from both positive and negative samples to encourage the diver-
sity between different entity clusters. Notably, we also explore the effects of two
different contextualized word embeddings (i.e., ELMo [17] and BERT [7]) in this
paper for comparison. Experimental results on the document-level CoNLL-2012
English dataset show that our way of reusing these eliminated spans is quite
useful for the coreference resolution task, and our approach shows promising
results when compared with previous state-of-the-art methods.

2 Background

Task Definition. Following previous studies [8–13,25], we cast the task of
coreference resolution as an antecedent selection problem, where each span is
assigned with an antecedent in the document. Specifically, given a span i, the
possible antecedents are Yi = {ε, 1, 2, ..., i − 1} (i.e., a dummy antecedent ε and
all preceding spans). The non-dummy antecedent refers to the coreference link
between span i and its antecedent yi (yi �= ε). The dummy antecedent denotes the
coreference link between span i and ε, which represents two possible scenarios:
(i) span i is not an entity mention or (ii) span i is an entity mention but not
coreferent with any previous span.
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Baseline. In this work, the baseline model [12] we use for coreference resolution
learns a distribution P (yi) over the antecedents of each span i:

P (yi) =
eS(i,yi)

∑
y′∈Y (i) eS(i,y′) (1)

where S(i, j) represents a pairwise score for the coreference link between span i
and span j. And the pairwise coreference score S(i, j) is calculated based on the
mention scores of i and j (i.e., Sm

i and Sm
j which denote whether the spans i

and j are mentions or not) and the joint compatibility score of i and j (i.e., Sa
i,j

which denotes whether mention j is an antecedent of mention i or not). And the
final pairwise coreference score is written as:

S(i, j) = Sm
i + Sm

j + Sa
i,j (2)

Given the vector representation gi for each possible span i, the mention score
of span i and the antecedent score between spans i and j can be calculated as:

Sm
i = Wm · FFNNm(gi) (3)

Sa
i,j = Wa · FFNNa([gi, gj , gi ◦ gj , φ(i, j)]) (4)

where gi is obtained via bidirectional LSTM models that learn context-dependent
boundary and head representations, Wm and Wa denote two learnable parameter
matrixes, ◦ denotes the element-wise multiplication, FFNN(·) denotes a feed-
forward neural network, and the antecedent score Sa

i,j is calculated through
explicit element-wise similarity of each span, gi ◦ gj , and a feature vector φ(i, j)
that encodes speaker and genre information from the metadata and the distance
between spans i and j.

3 Coreference Resolution with Enhanced Mention
Representation

Motivated by previous studies [11,12,25], we inherit the architecture that com-
bines mention detection and coreference scoring for coreference resolution. Par-
ticularly, as stated before, we propose to reuse the spans that are eliminated at
the mention detection stage to enhance the representation of mention spans for
better coreference resolution performance.

3.1 Mention Detection

At the mention detection stage, we take the text spans within a certain length
limitation as potential mention spans. Following previous studies, we take word-,
character- and context-level information for span representation [12]. Moreover,
we also incorporate the syntactic structural information (e.g. the path, siblings,
degrees, and category of the current node) for representation enhancing [11]:

si = [hbi,hei, x̂i,fi] (5)
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Fig. 1. Mention representation refining for coreference resolution. Here, FMS and FAS

refer to the mention scoring function and antecedent scoring function respectively, and
ck denotes an independent entity cluster.

where hi is the contextual representation of input xi = [wi, ci] (wi means the
word embedding vector and ci means the character embedding vector). x̂i is the
weighted sum of the word representations that contained in the span i, where
the attention weights are learned through the Head-finding attention mechanism,
and one can refer to [12] for the detailed process of calculating x̂i. And fi denotes
the syntactic structural feature vector.

After that, we use a feedforward scoring function for mention determination
as Lee et al. [12] did:

Sm
i = Wm · FFNNm(si) (6)

Then, the spans that assigned with high attention scores are selected as the
resulting mention spans, noted by mi.

3.2 Coreference Resolving with Global Spans Perceived

After obtaining the mention representation, the following coreference scoring
stage aims to determine the antecedent for each mention. In order to reduce the
problem of error propagation in the pipeline workflow of coreference resolution,
we propose to further enhance the mention representation with context-aware
correlations. To achieve this, we propose to extract information from both men-
tions and all the eliminated spans to help refine the obtained mention represen-
tations, as illustrated in Fig. 1.

Concretely, we use a pointer net (PTR-NET) [21] in this work to extract
the context-aware information from the spans that are strongly related to the
current mention. More formally, we extract context information and project it
into a parallel mention vector space as:

ui,t = V T tanh(W1st + W2mi) (7)
αi = softmax(ui) (8)

m′
i =

∑
αi,t · st, t ∈ {1, ..., n} (9)

where st denotes the representation of the t-th span, mi refers to the represen-
tation of the i-th mention, V T , W1 and W2 are learnable parameter matrixes,
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αi,t denotes the relevancy of each span, and m′
i denotes the context-aware repre-

sentation for the mention i in the parallel mention vector space. In this manner,
(i) the spans that strongly related to the current mention are well leveraged to
exploit context information and (ii) the correlations between eliminated spans
and mentions are well learned through the trade-off among spans in the text
during the attention calculation process.

After achieving the parallel mention representations mi and m′
i, we add a

gated model between them for information communication, corresponding to g
in Fig. 1. And the enhanced mention representation is formulated as:

fi = δ(Wf [mi,m′
i]) (10)

m∗
i = fi ◦ mi + (1 − fi) ◦ m′

i (11)

where fi is a learnable vector for information filtering, ◦ denotes the element-wise
multiplication, and m∗

i refers to the integrated mention representation.
Then, the pairwise antecedent score is calculated based on the integrated

mention pairs. Following previous work [12], the coreference score is generated
by summing up the mention score and the pairwise antecedent score as:

Sa
i,j = Wa · FFNNa([m∗

i ,m
∗
j ,m

∗
i ◦ m∗

j ,φ(i,j)]) (12)

S(i, j) = Sm
i + Sm

j + Sa
i,j (13)

where Sa
i,j denotes the antecedent score between spans i and j, and S(i, j)

denotes the final coreference score.

4 Model Training

Previous studies usually cluster candidate mentions only depending on gold clus-
ter labels. Differently, based on the loss objective of Lee et al. [12], we introduce
an additional loss term to maximize the distance between different entity clus-
ters to encourage the diversity. Concretely, we make the loss term learn from
both positive and negative samples, and the loss objective can be formulated as:

L = −log
N∏

i=1

∑

ŷ∈Y (i)∩GOLD(i)

P (ŷ) + log
N∏

i=1

∑

ŷ /∈Y (i)∩GOLD(i)

P (ŷ) (14)

P (ŷ) =
eS(i,ŷ)

∑
y′∈Y (i) eS(i,y′) (15)

where S(i, ŷ) denotes the coreference score of the coreference link between span
i and its antecedent ŷ, and GOLD(i) denotes the set of entity mentions in the
cluster that contains span i. If span i does not belong to any clusters, or if all
gold antecedents have been pruned, GOLD(i) equals {ε}. Through the proposed
approach, the training instances are well utilized to cluster entity mentions and
at the same time increase the diversity between different mention clusters.
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5 Experimentation

5.1 Experimental Settings

Datasets. We carry out several experiments on the English coreference reso-
lution data from the CoNLL-2012 Shared Task [18]. The dataset contains 2802
documents for training, 343 documents for validation, and 348 documents for
testing with 7 different genres (i.e., newswire, magazine articles, broadcast news,
broadcast conversations, web data, conversational speech data, and the New Tes-
tament). All the experimental data can be downloaded at https://cemantix.org/
conll/2012/data.html.

Model Settings. We used three kinds of word representations for experimenta-
tion, i.e., (i) the fixed 300-dimensional GloVe [16] vectors and the 50-dimensional
Turian [19] vectors, (ii) the 8-dimensional character embeddings learned from
CNNs, where the window sizes of the convolution layers were 3, 4, and 5 char-
acters respectively, and each layer consists of 50 filters, and (iii) two kinds of
1024-dimensional contextualized word representations provided by ELMo [17]
and BERT [7]. The model hyper-parameters were directly borrowed from Lee et
al. [12] for fair comparison.

Metrics. We report the Precision, Recall, and F1 scores based on three popular
coreference resolution metrics, i.e., MUC [20], B3 [1], and CEAFφ4 [14]. And
we report the averaged F1-score as the final CoNLL score.

5.2 Experimental Results

In this paper, we select the model of Lee et al. [12] as our baseline system.
We borrow the system implemented by Kong and Fu [11] for experimentation
in two reasons: (i) Kong and Fu [11] incorporate varied syntactic structural
features (e.g., the path, siblings, degrees, and category of the current node) into
the model of Lee et al. [12] to better capture hierarchical information for span
representation. (ii) Their implemented system can well reduce computational
complexity whose training speed is 6 times faster than that of Lee et al. [12].
Moreover, we enhance their system by applying the ELMo embedding to it for
better comparison. We report the results of the original and enhanced baseline
systems of Kong and Fu [11] for performance comparison. Moreover, following
previous work, we also present the performances of recent systems for reference,
and the overall results are shown in Table 1.

From the results we can find that (i) Comparing our approach (line 10) with
the baseline systems (lines 8 and 9), our method performs better on all the
three metrics, which suggests the great effectiveness of our proposed method
in utilizing all spans including the eliminated ones for coreference resolution.
And the contextualized ELMo also helps improve the performance to a certain
extent. (ii) Comparing our system with previous state-of-the-art methods, ours

https://cemantix.org/conll/2012/data.html
https://cemantix.org/conll/2012/data.html
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Table 1. Performance comparison on coreference resolution. Sign “†” means the ELMo
representation is used and “‡” means the powerful Bert model is employed. Compared
with the enhanced baseline system, our performance improvements on F1 are statisti-
cally significant with p < 0.05.

MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Wu et al. [24] ‡ 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1

Wiseman et al. [23] 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

Clark and Manning [5] 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Clark and Manning [4] 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

Lee et al. [12] 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

Lee et al. [13] † 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0

Zhang et al. [25] 79.4 73.8 76.5 69.0 62.3 65.5 64.9 58.3 61.4 67.8

Baseline [11] 80.5 73.9 77.1 71.2 61.5 66.0 64.3 61.1 62.7 68.6

Baseline [11] † 80.8 79.3 80.0 71.2 68.7 70.0 66.4 66.3 66.4 72.1

Ours † 81.8 80.0 80.9 72.6 70.0 71.3 68.1 67.9 68.0 73.4

-additional loss 80.9 80.6 80.8 70.6 70.6 70.6 67.2 67.9 67.5 73.0

outperforms most of the systems except the Bert-based model of Wu et al. [24].
(iii) Comparing our system under different model settings (the last two lines)
we find that the additional loss term we use can improve the performance of
coreference resolution to some extent, especially on the B3 indicator. The overall
results above indicate that our proposed methods are useful and can well increase
the utilization rate of the coreference resolution data.

5.3 Analysis on Context-Aware Word Representations

In this subsection, we present our insight on exploring a better pre-trained word
representation. More theoretically, we aim to figure out a question: Which kind
of context-aware embeddings is better for coreference resolution? With this in
mind, we employ two kinds of popular contextualized word representations (i.e.,
ELMo [17] and BERT [7]) for analysis. Briefly review:

– ELMo. Peters et al. [17] hold the view that word representation should con-
tain rich syntactic and semantic information and be able to model polysemous
words. On this basis, they provide the contextualized ELMo for word repre-
sentation by training bidirectional LSTMs on a large-scale corpus.

– BERT. Devlin et al. [7] present two new pre-training objectives, i.e.,
the “masked language model (LM)” for word-level representation and the
“next sentence prediction” for sentence-level representation. In essence, Bert
achieves a good feature representation of words by running the self-supervised
learning method on the basis of massive training data.

Comparing the two kinds of contextualized word embeddings above: (i) ELMo
is better for feature-based methods, which transfers specific downstream NLP
tasks to the process of pre-training to produce the word representations, so
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Fig. 2. Performance comparison between ELMo and Bert on coreference resolution.

as to obtain a dynamic word representation that changes constantly according
to the context; (ii) Bert prefers fine-tuning methods, which fine-tunes network
parameters to produce better word representation for specific downstream NLP
tasks. Previous Bert-based work [24] has proven the great effectiveness of fine-
tuning the Bert model in coreference resolution. Different from them, in this
work, we analyze the effects of static features extracted by pre-trained LMs. To
achieve this, we employ ELMo and Bert models to generate static context-aware
embeddings and then apply them to the coreference resolution task. Performance
comparison between the two kinds of word vectors are detailed in Fig. 2.

Usually, the context features generated by ELMo are known to be shallower
than that generated by Bert. But the results show that the Bert-based corefer-
ence resolution system performs relatively worse than the ELMo-based one. In
other words, the shallow-level features defeat deep-level ones in our coreference
resolution experiments. One possible reason for this result is that the ELMo-
based shallow context features are more easily understood and utilized by the
resolution system while the Bert-based deep context features could be too much
for the model to use directly. Nevertheless, fine-tuning the Bert model can trans-
form the informative and complicated context information into a task-specific
one for better understanding, which explains the recent success in fine-tuning
Bert for better coreference resolution [24].

5.4 Case Study

To qualitatively analyze the mention representation refining process, we pro-
vide a visualization of the span pointing process, as shown in Fig. 3. From the
example, there exit two entity clusters with different background colors. Here,
we present the top three spans that are particularly relevant to each mention
(i.e., M1 and M2) for reference. Obviously, both mentions, M1 and M2, are pro-
nouns and they pay much attention to those spans that semantically related
to them (e.g., Violence between Israelis and Palestinians). However, most of
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these spans with high scores are eliminated during the mention detection stage
in previous studies, which much hinders the interaction between mentions and
mention-related spans. Fortunately, in this work, the pointer mechanism [21] is
well utilized to detect these mention-related spans, and the selected spans are
reused for mention representation refining. It is worth noting that mention rep-
resentation refining is effective especially for pronoun mentions with ambiguous
meanings, e.g., the two mentions its and them in the example. And the proposed
method can give these mentions more accurate context-aware representation for
better coreference resolution.

Fig. 3. Example of the mention-related span selection process, where text fragments of
the same color (“Violence ...” and “its” are colored in orange; “Israeli ...” and “them”
are colored in blue) belong to the same cluster. And the solid lines denote the scores
of the most possible three spans assigned for each mention.

6 Related Work

Before the population of neural networks, traditional machine learning methods
have a long history in the coreference resolution task. In general, three main-
stream methods have been proposed: 1) Mention-pair models [2,15] to determine
if a pair of mentions are coreferent by training binary classifiers. 2) Mention-
ranking models [4,6,22] to score all previous candidate mentions for current
mention and select the most possible one as its antecedent. 3) Entity-mention
models [3,5,23] to determine whether the current mention is coreferent with
a preceding, partially-formed mention cluster. Although these methods have
achieved significant performance gains, they still suffer from one major drawback:
their complicated hand-engineered rules are difficult to adapt to new languages.

With the rapid spread of neural network in recent years, varied researchers
turned to neural-based methods. Lee et al. [12] proposed the first end-to-end
neural-based system that liberates coreference resolution from the complicated
hand-engineered methods. Zhang et al. [25] proposed to improve the performance
of coreference resolution by using a biaffine attention model to score antecedents
and jointly optimize the two sub-tasks. Lee et al. [13] proposed an approxi-
mation of higher-order inference using the span-ranking architecture from Lee
et al. [12] in an iterative manner. Kong and Fu [11] proposed to improve the
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resolution performance by incorporating various kinds of structural information
into their model. Kantor and Globerson [10] proposed to capture properties of
entity clusters and use them during the resolution process. Most recently, Fei
et al. [8] presented the first end-to-end reinforcement learning based coreference
resolution model. Joshi et al. [9] and Wu et al. [24] proposed to improve the
performance of coreference resolution with the help of the state-of-the-art Bert.

7 Conclusion

In this paper, we aim at increasing the data utilization rate and exploring the
value of those spans eliminated at the mention detection stage. On this basis,
we proposed a mention representation refining strategy where spans that highly
related to the mentions are well leveraged through a pointer network for represen-
tation enhancing. Moreover, we introduced an additional loss term to encourage
the diversity between different entity clusters. Notably, we also performed exper-
iments on different contextualized word embeddings to explore the effectiveness
of them on coreference resolution. Experimental results on the document-level
CoNLL-2012 Shared Task English dataset indicate that these eliminated spans
are indeed useful and our proposed approach can achieve much better results
when compared with the baseline systems and competitive results when com-
pared with most previous studies in coreference resolution.
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Abstract. The macro-level discourse parsing, as a fundamental task of
macro discourse analysis, mainly focuses on converting a document into
a hierarchical discourse tree at paragraph level. Most existing methods
follow micro-level studies and suffer from the issues of semantic represen-
tation and the semantic interaction of the larger macro discourse units.
Therefore, we propose a macro-level discourse parser based on the depen-
dency graph convolutional network to enhance the semantic representa-
tion of the large discourse unit and the semantic interaction between
those large discourse units. Experimental results on both the Chinese
MCDTB and English RST-DT show that our model outperforms several
state-of-the-art baselines.

Keywords: Macro discourse parsing · Graph convolutional network ·
Dependency graph

1 Introduction

Discourse parsing aims to study the internal structure of a document and under-
stand the nuclearity and relation between discourse units (such as phrases, sen-
tences, and paragraphs). It has been widely used in various natural language
processing applications, such as summarization [16] and event extraction [4].

As one of the famous theories in discourse parsing, Rhetorical Structure The-
ory (RST) [20] represents a document as a hierarchical discourse tree. Commonly,
the research on discourse parsing can be divided into two levels: micro and macro
levels. The micro-level mainly studies the structure within or between sentences,
while the macro-level mainly studies the structure between paragraphs.

We take a macro discourse tree as an example, as shown in Fig. 1. The leaf
nodes are paragraphs, which are called Paragraph-level Discourse Units (PDUs).
The directed edge indicates that the node is a nucleus and the undirected edge
indicates that the node is a satellite. The internal node has a relation label that
is the discourse relation between discourse units. In this paper, we mainly focus
on the construction of macro Chinese discourse trees.

With the success of the micro-level [17,18], the macro discourse parsing [5,
10,11] always follows the micro level. However, it faces more challenges because
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 15–26, 2021.
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Fig. 1. An example of the macro discourse tree. This document contains five paragraphs
(i.e., five PDUs from P1 to P5)

of the larger size of discourse units, i.e., PDUs. Jiang et al. [11] mentioned that
the average token lengths of the leaf nodes in Chinese MCDTB [13] and English
RST-DT [1] are 22 and 8 at micro level, respectively, while these figures are
100 and 52 at macro level. The larger discourse units bring two challenges to
macro discourse parsing. The first is how to model the semantic representation
of a large macro discourse unit, and the second is how to model the semantic
interaction between large macro discourse units.

Some previous works [10,11] modeled the semantic representation and seman-
tic interaction of discourse units via the pre-trained model BERT. Due to the
limited ability of BERT to process long text, it is difficult to capture the core
semantics of the macro discourse unit that often contains a lot of redundant
information. Besides, although BERT uses a self-attention mechanism to model
the semantic interaction of discourse units, the self-attention mechanism can
only capture the dependencies between words but not word groups. However,
it is also important for the dependencies between word groups to model the
semantic interaction between discourse units.

Recently, some studies [19,26] have succeeded in achieving enhanced semantic
representation or semantic interaction by incorporating syntactic information.
Syntax provides structural information representing human understanding of
the text and is helpful to obtain the core information from discourse units.

To represent the core information of macro discourse units, we propose a root-
oriented approach to obtain the internal topic graph from the original depen-
dency tree. By integrating the internal topic graphs of discourse units, we can
enhance the semantic representation of large discourse units and alleviate the
first challenge. To address the second challenge, we propose a topic interaction
mechanism to obtain the interactive topic graph between discourse units. It mod-
els the dependencies between word groups in different discourse units based on
the topic consistency and topic correlation. Finally, we combine the internal topic
graph and interactive topic graph and feed them into the graph convolutional
network to obtain the enhanced semantics representation of large discourse units
and the semantic interaction between large discourse units.
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2 Related Work

In English, RST-DT [1] is one of the popular discourse corpora. The research of
discourse parsing on this corpus has two levels: micro-level and macro-level.

Most of the work focuses on the micro level. Hernault et al. [8] proposed a
HILDA parser, which uses the Support Vector Machine (SVM) and constructs
the discourse structure tree with the bottom-up algorithm. Joty et al. [14] and
Feng and Hirst [6] proposed models using Conditional Random Field (CRF)
for discourse parsing. With the development of neural networks, Ji and Eisen-
stein [9] adopted neural network for discourse parsing and achieve comparable
performance. Recently, some works [17,18] introduced the pointer network to
the micro discourse parser that got close to human performance.

However, only a few works on RST-DT focus on the macro level. Sporleder
and Lascarides [23] built macro discourse trees on the bottom-up algorithm after
pruning and revising the original discourse trees on RST-DT.

In Chinese, the MCDTB [13] is the only available macro Chinese discourse
corpus. Zhou et al. [27] mined semantic interaction among discourse units
through the multi-view word-pair similarity model and constructed discourse
structure tree through the shift-reduce algorithm. Fan et al. [5] adopted a pointer
network, which performs well at the micro level, to construct the discourse struc-
ture tree with a top-down algorithm. Jiang et al. [10] proposed the method of
global backward reading and the local reverse reading to mine the semantics
between discourse units and constructed the discourse structure tree by using
the shift-reduce algorithm. Jiang et al. [11] proposed a method based on topic
segmentation and achieved the SOTA performance. It first splits a document into
several sections using the topic boundaries that the topic segmentation mecha-
nism detects. Then it builds a discourse sub-tree using the shift-reduce algorithm
in each section and sequentially forms a whole tree for a document.

Q1 S1

S2

BERT

BIβ

BERT

BIγ

BERT

BIα

BMαBMγBMβ

Concentrate

Classifier

internal 
topic graph

intialized by BERT

Graph Convolutional Network

internal 
topic graph

interactive 
topic graph

S2S1

mean pooling

Fig. 2. The architecture of our proposed model DGCNParser-TS.
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3 Basic Model: MDParser-TS

Since our work is based on MDParser-TS [11], we first introduce MDParser-TS in
this section. The basic model MDParser-TS includes two components, the topic
segmentation and the macro discourse Parser. In the stage of topic segmentation,
MDParser-TS first segment a document into several sections according to their
different topics. In the stage of discourse parsing, MDParser-TS first constructs
the naked structure tree inside and between sections and then recognizes the
nuclearity and relationship of the node in the tree individually.

MDParser-TS used the shift-reduce algorithm to build a discourse structure
tree. To decide whether to shift or reduce, MDParser-TS proposed an action
classifier TM-BERT by considering three adjacent discourse units from the top
two PDUs of the stack S1 and S2 and the first PDUs of the queue Q1. As shown
on the left of Fig. 2, TM-BERT employs pairs of α(S1, S2) and β(S2, Q1) for
semantic matching but also matches the across-DUs pair γ(S1, Q1), as shown in
the following equation.

BMk = BERT (BIk), k ∈ {α, β, γ} (1)

where BI is the input of BERT, BM is the embedding of [CLS] position in the
output of BERT. Then, the triple semantic match output (BMα, BMβ , BMγ)
is concentrated and fed into a Softmax layer to get the probabilities of action
(Shift or Reduce).

4 Chinese Macro Discourse Parsing on Dependency
Graph Convolutional Network

Our model DGCNParser-TS is based on MDParser-TS [11], and we incorporate
the internal topic graph and the interactive topic graph into a graph convolu-
tional network to TM-BERT to enhance the semantic representation of large
discourse units and the semantic interaction between large discourse units in
macro discourse parsing. The overall framework is shown in Fig. 2. Our app-
roach consists of three parts, as shown on the right of Fig. 2: 1) Internal topic
graph Construction. 2) Interactive topic graph Construction. 3) Dependency
Graph Convolutional Network.

4.1 Internal Topic Graph Construction

We propose a root-oriented method based on a dependency tree to obtain the
core contents as the internal topic graph. Specifically, let P = {s1, s2, ..., sn}
denote a discourse unit P where si is the i-th sentences in this unit and n is the
sentence number. We first use LTP tools [2] to obtain the dependency tree dti
of each sentence si in the discourse unit P . For each dependency tree dti, we
do the following operations: a) we search the root node (e.g., “met” in Fig. 3)
and nodes connected with it (e.g., there are six nodes connected with “met” in
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Fig. 3. An example to obtain the internal topic graph.

Fig. 3); b) we obtain the nodes that have a subject-predicate (e.g., “Li Lanqing”
in Fig. 3) and verb-object relationship (e.g., “Pierre Bourque” in Fig. 3) with
root; c) the root node is used as the predicate to form the core contents as the
internal topic graph with the subject-verb-object form, as shown in Fig. 3.

In Fig. 3, the sentence above is the original sentence and the sentence below is
its core content following the above method. Besides, if it doesn’t form a subject-
predicate-object form, we keep the whole dependency tree as the internal topic
graph. A discourse unit with multiple sentences that form its internal topic graph
by connecting the root nodes of internal topic graphs of adjacent sentences.

Fig. 4. An example to obtain the interact topic graph where S1 and S2 are the sentences
of two discourse units, respectively.

4.2 Interactive Topic Graph Construction

The construction of the interactive topic graph between discourse units consists
of two parts, one is to model the topic consistency, and the other is to model
the topic correlation.
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Topic Consistency. By constructing interactive edges of the same topic in differ-
ent discourse units, the interaction of related topics centered on the same topic
can be enhanced. We keep the two-hop of the same topics (we used nouns as
topics) for different discourse units according to dependency trees and construct
interactive edges for the same topics. As shown in Fig. 4, the topic “World Expo”
appears in different sentences simultaneously, and we construct the interactive
edges of the topic “World Expo”.

Topic Correlation. We construct interactive edges between different topics in
different discourse units by using external knowledge. External knowledge has
achieved effects in recognition of the implicit discourse relation [7]. Inspired by
this, we obtain the set of external knowledge from CN-DBpedia [25], expressed
in KG. Topic1 = {w1

1, w
1
2, · · · , w1

m} and Topic2 = {w2
1, w

2
2, · · · , w2

m} are topic
sets from different discourse units. for words pair (w1

i , w2
j ), where w1

i ∈ Topic1,
w2

i ∈ Topic2. If (w1
i , w2

j ) ∈ KG, then we construct interactive edges for different
topics in the same way as the topic consistency. As shown in Fig. 4, we can
obtain the knowledge of (China, province, Yunnan) from KG, and “China” and
“Yunnan” appear in different sentences, so we construct the interactive edge
between topic “China” and “Yunnan”.

4.3 Dependency Graph Convolutional Network

Nodes Initialization. Given a discourse unit pair P 1 and P 2, where P 1 =
{w1

1, w
1
2, · · · , w1

m}, P 2 = {w2
1, w

2
2, · · · , w2

n}. We feed P 1 and P 2 into BERT
in the form of [CLS]P 1[SEP ]P 2[SEP ] to obtain the semantic representation
P H1 = {h1

1, h
1
2, · · · , h1

m} and P H2 = {h2
1, h

2
2, · · · , h2

n}. The initialized node
representation of the dependency graph convolutional network is as follows.

H0 = {h1
1, h

1
2, · · · , h1

m, h2
1, h

2
2, · · · , h2

n} (2)

Adjacency Matrix Construction. We can directly transform the internal
topic graph and the interactive topic graph into an adjacency matrix. Given
an adjacency matrix A ∈ R

l×l where Aij = 1 if the word i is connected with
the word j and l = m + n. Considering that BERT is trained by characters in
Chinese, there is an inconsistency with Chinese words. A Chinese word usually
consists of more than one character. Inspired by Meng et al. [21], we connect
all characters once when there are edges between words. Following the idea of
self-looping [15], we added an identity matrix I and then A = A + I.

Graph Convolutional Operation. In order to make information flow better,
we add the residual connection to our model. Hence, the output of (i+1)-th layer
is calculated as follows.

Hi+1 = σ(Norm(A)HiW i) + Hi (3)
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where Norm is the normalized function, σ is the activation function RELU. The
output of the last layer is H l ∈ R

(m+n)×dh , where m, n are the sequence lengths
of P 1 and P 2, respectively. Then, we use the mean pooling to obtain H ′, the final
outputs of GCN, where H ′ ∈ R

dh . Finally, Hc, the semantic representation of the
[CLS] token from the pre-trained model, is added to obtain the final enhanced
semantic representation between P 1 and P 2 as follows.

Hf = H ′ + Hc (4)

4.4 Classifier

Following the idea of TM-BERT [11], we consider the information of three adja-
cent discourse units. The enhanced semantic representations of discourse unit
pairs (S1, S2), (S2, Q1) and (S1, Q1) are Hf

1 , Hf
2 and Hf

3 , respectively.
We combine the three enhanced semantic representations and feed them to a

Softmax layer to obtain the probabilities of action (Shift or Reduce), as follows.

y = Softmax([Hf
1 ,Hf

2 ,Hf
3 ]) (5)

When the action is predicted as Reduce, we feed Hf
1 to the Relation classifier

and the Nuclearity classifier respectively to get the relation and the nuclearity
between the discourse units (S1, S2).

5 Experimentation

In this section, we first describe the dataset and experimental settings and then
evaluate our model and several baselines on Chinese MCDTB dataset. Finally,
we report the experimental results.

5.1 Dataset and Experimental Settings

Our experiments are primarily evaluated on the Macro Chinese Discourse Tree-
bank (MCDTB) [13]. Following previous work [11], there is 80% data (576 doc-
uments) for training and 20% data (144 documents) for testing and we report
the micro-averaged F1 score for Span, Nuclearity, Relation.

We set the number of GCN layers as 2. The dimension of the input layer,
hidden layer and output layer of GCN is set as 768 (dh=768). We set the training
epoch as 5, the learning rate as 1e-5 and the batch as 4. We use a Geforce Nvidia
1080Ti and adopt the gradient accumulation manner for training.

5.2 Baselines

To evaluate the performance of our DGCNParser-TS, we compare it with the
following two types of benchmarks: w/o pre-trained model and w/ pre-trained
model.
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Table 1. The performance comparison (in micro-F1) between our DGCNParser-TS
and the baselines. Superscript * indicates that we reproduce the model. We did three-
time experiments and reported the average performance.

Model Span Nuclearity Relation

w/o pre-trained model

LD-CM 54.71 48.38 26.28

MVM 56.11 47.76 27.67

PNGL 58.42 – –

w/ pre-trained model

TM-BERT* 61.82 51.62 32.30

PDParser-GBLRR* 65.38 55.64 35.39

MDParser-TS* 66.92 56.26 37.24

DGCNParser-TS(ours) 69.24 57.96 38.79

w/o Pre-trained Model
LD-CM [12]: By using manual features, a conditional random field is used to
predict the structure. MVM [27]: It models the semantics of discourse units from
three perspectives and proposes a word-pair similarity mechanism to measure
the semantics of discourse units. PNGL [5]: It is based on the pointer network,
which alleviates the insufficiency of the encoding layer to capture long-distance
dependency by introducing a local interaction module.

w/ Pre-trained Model
TM-BERT [10]: The pre-trained model BERT encodes three adjacent discourse
units to predict the action (Shift or Reduce). PDParser-GBLRR [10]: It pro-
poses the method of global backward reading and the local reverse reading to
mine the semantics between discourse units. MDParser-TS [11]: It proposes
a method based on topic segmentation and achieves the SOTA performance on
MCDTB.

5.3 Experimental Results

Table 1 shows the performance comparison between our model DGCNParser-TS
and all the baselines. From Table 1 we can find out that our DGCNParser-
TS outperforms all baselines on all three tasks: Span, Nuclearity and Relation.
These results indicate the effectiveness of combining the internal topic graph
and interactive topic graph to obtain the enhanced semantics representation of
large discourse unit and the semantic interaction between large discourse units.

TM-BERT only uses the pre-trained model to obtain the semantic represen-
tation of discourse units, which has surpassed all the methods that do not use
the pre-trained model. Compared with TM-BERT, PDParser-GBLRR improves
the performance of constructing discourse structure trees by further mining the
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semantics of discourse units. MDParser-TS adopts the idea of topic segmentation
to achieve the benchmark of SOTA.

Compared with the best baseline MDParser-TS, our model DGCNParser-TS
enhances the semantic representation and semantic interaction of discourse units
via dependency graph convolutional network and improves the micro-F1 score
by 2.32, 1.70, and 1.55 on the discourse tree construction (Span), nuclearity
recognition (Nuclearity), and relation classification (Relation), respectively.

6 Analysis

In this section, we first give the analysis on the proposed internal topic graph
and interactive topic graph. Then we report the experiment on another dataset
RST-DT.

6.1 Analysis on Internal Topic Graph

To prove the effectiveness of our root-oriented internal topic graph construction
mechanism, we compare it with the other three methods to obtain the internal
topic graph as follows.

– Original topic graph. We obtain the internal topic graph of a discourse
unit by preserving all the nodes and edges of the original dependency tree.

– Verb-oriented topic graph. We preserve all the nodes in the dependency
tree whose part of speech is a verb and all the nodes connected to them.

– Noun-oriented topic graph. We preserve all the nodes in the dependency
tree whose part of speech is a noun and all the nodes connected to them.

The experimental results are shown in Table 2, where MDParser-TS is our
baseline. There is a slight performance improvement on the task Span when inte-
grated the internal topic graph from the original dependency tree (+Original).
Compared with the original topic graph (+Original), the verb-oriented topic
graph (+Verb-oriented) and the noun-oriented topic graph (+Noun-oriented)
improves more obviously on the task Span. The above two kinds of topic graphs
keep some relatively important dependency structures between words from dif-
ferent perspectives, enhancing the semantic representation of discourse units.
Our root-oriented internal topic graph (+Root-oriented) keeps the most impor-
tant dependency structures between words of discourse units in the form of
subject-verb-object and obtains a stronger semantic representation of the dis-
course units.

6.2 Analysis on Interactive Topic Graph

In this paper, we construct the interactive topic graph from two aspects of
the topic consistency and topic correlation. To explore the effectiveness of our
method on the topic consistency and the topic correlation, we conducted abla-
tion experiments shown in Table 3. It shows that removing topic consistency or
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Table 2. The comparison (Micro-F1) of
different approaches to obtain the inter-
nal topic graph on the task Span.

Approach Span

MDParser-TS 66.92

+Original 67.23

+Verb-oriented 67.54

+Noun-oriented 67.69

+Root-oriented (ours) 68.16

Table 3. Ablation experiments for inter-
active topic graph on the task Span.

Approach Span

DGCNParser-TS 69.24

w/o topic consistency 68.62

w/o topic correlation 68.46

w/o topic consistency
and topic correlation

68.16

topic correlation will result in a performance decrease. Specifically, if the topic
consistency or the topic consistency is removed from our model DGCNParser-
TS, its Micro-F1 score will drop by 0.78 or 0.62, respectively. If both of them are
removed, the performance will drop by 1.08, indicating that their combination
complements each other in enhancing the semantic interaction of discourse units.

6.3 Experimentation on English RST-DT

To verify the generalization of the proposed model, we also evaluate our model
on the English RST-DT. We use Stanford Parser [3] to obtain the dependency
tree and use WordNet [22] to obtain external knowledge. The data division and
pro-processing are the same as Jiang et al. [11], and the results at the macro
level are shown in Table 4.

Table 4. The performance comparison on the RST-DT at the macro level. Superscript
* indicates we reproduce the model.

Approach Span Nuclearity Relation

SL04 34.29 – –

WL17 37.40 28.83 18.70

MDParser-TS* 41.56 33.77 23.12

DGCNParser-TS (ours) 43.37 34.55 23.63

There are three baselines in Table 4 as follows: SL04 [23] builds the macro
discourse trees with the bottom-up algorithm after pruning and revising the
original discourse trees on RST-DT. WL17 [24] designs a pipeline two-stage
parsing method and uses the shift-reduce algorithm to construct discourse struc-
ture trees. MDParser-TS [11] is one of the SOTA models at the macro level
on RST-DT.

Compared with the best baseline MDParser-TS, our DGCNParser-TS
improves the micro-F1 scores by 1.81, 0.78, 0.51 on Span, Nuclearity and Rela-
tion separately, which also proves the effectiveness of our model on English macro
discourse parsing.
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7 Conclusion

In this paper, we propose a macro-level discourse parser based on the depen-
dency graph convolutional network to enhance the semantic representation of a
discourse unit and the semantic interaction between discourse units. Our model
achieves the SOTA performance in macro discourse parsing both on the MCDTB
and RST-DT datasets. In the future, we will explore a more accurate action
classifier based on the graph convolutional network to improve macro discourse
parsing performance further.
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Abstract. Sememe is the minimum unambiguous semantic unit in human lan-
guage. Sememe knowledge bases(SKB) have been proven to be effective in many
NLP tasks. Categorial sememe, indicating the basic category of word sense to
bridge the lexicon and semantics, is indispensable in SKB. However, manual cat-
egorial sememe annotation is costly. This paper proposes a new task to automati-
cally build SKB: English-Chinese Word Pair Categorial Sememe Prediction. The
bilingual information is utilized to resolve the ambiguity challenge. Our method
proposes the sememe space, in which sememes, words, and word senses are
represented as vectors with interpretable semantics, to bridge the semantic gap
between sememes and words. Extensive experiments and analyses validate the
effectiveness of the proposed method. Using this method, we predict categorial
sememes for 113,014 newword senses, and the predictionMAP is 85.8%. Further
we conduct expert annotations based on prediction results and increase HowNet
nearly by 50%. We will publish all the data and code.

1 Introduction

Sememes are defined as the minimum unambiguous indivisible semantic units of human
languages in the field of linguistics [1]. Sememe knowledge bases (SKBs), in which
the meanings of words or word senses are described by a pre-defined closed set of
sememes, benefit various NLP tasks, e.g., word sense disambiguation [3], word embed-
ding enhancement [6], semantic composition [5], relation extraction [15], event detec-
tion [14], sentiment analysis [4] and textual adversarial attack [16]. Categorial sememe,
indicating the basic category of word sense to bridge the lexicon and semantics, is indis-
pensable in SKB. For example, three senses of word kid in Fig. 1 are distinguished by
three categorial sememes, i.e., human, tease, and livestock.

HowNet is a widely used bilingual SKB that is manually developed by linguists.
Specifically, HowNet consists of two parts, the sememe taxonomy and the word
(sense) dictionary [13]. The sememe taxonomy is composed of 2,214 sememes and
116 semantic relations, which are organized in the form of taxonomy, as illustrated
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 27–39, 2021.
https://doi.org/10.1007/978-3-030-88480-2_3
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in Fig. 1(b)1. The word (sense) dictionary contains over 210,000 word senses, each of
which is described by one categorial sememe and its extended elaborations. The cate-
gorial sememe indicates the basic category of word sense in sememe taxonomy, and the
extended elaborations further illustrate the meaning of word sense through the semantic
relations with the corresponding sememes.

Fig. 1. Sememe definition for word “kid” and Sememe taxonomy fragment

In Fig. 1(a), the sememe definition for word sense “ kid” corresponds
to natural language description: “ kid” is a junior human who belongs to
a family. We can augment word sense “ kid” with sememe-level common
sense from its categorial sememe “ human”, e.g., ( think, agent, kid),
( kid, HostOf, wisdom). Therefore, the categorial sememe is critical to word
sense definition and can benefit many NLP tasks with common sense reasoning.

Nowadays new words and phrases are emerging every day and the semantic mean-
ings of existing concepts keep changing. Human annotating categorial sememes for
new words is extremely time-consuming and labor-intensive2. Although there emerged
a series of recent works that tried to automatically predict the sememe set for new
words [7–9], they neither recognized the categorial sememe among the sememe set
nor distinguished multiple senses of polysemous words. In this paper, we expect to
develop a technique for automatic categorial sememe prediction. Such a non-trivial
task poses the following two problems: 1) Categorial sememe indicates the basic cate-
gory of word sense. Polysemy is pervasive in human language, e.g., almost 2/3 of total
senses in HowNet come from polysemous words. Therefore, it is difficult to identify all
word senses of new words. 2) Unlike sememe set prediction that only relates words to
sememes, categorial sememe prediction needs to make a bridge over new words, word
senses and sememes.

Inspired by [10,11], we introduce cross-lingual information to dissect polysemous
words. HowNet also uses Chinese-English parallel word pairs to represent word senses,
and preliminary statistic shows that 98.09% of all 221540 word pairs are unambiguous.
Therefore, we assume that a Chinese-English bilingual word pair has an unambiguous
word sense. So we formalize a new task, i.e., categorial sememe prediction for English-
Chinese word pairs (ECCSP).

1 The sememes are described in a Knowledge Database Mark-up Language, and can be parsed
and used according to the language grammar.

2 HowNet construction took linguists over 30 years.
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To better model word, word sense and sememe, we propose an explainable semantic
space named sememe space, where each dimension corresponds to a sememe. Hence
the sememes of a word sense can be interpreted once its representation in sememe space
is obtained. For a word sense in HowNet, we achieve its representations by composing
its categorial sememe and extended elaborations in sememe space, and further calculate
word representation in sememe space by aggregating all its senses. For a new word pair,
we approximate its sememe representation using collaborative filtering and predict the
categorial sememe.

The main contributions in this paper can be summarized as follows:

– We introduce a new task of categorial sememe prediction for English-Chinese word
pairs, which leverages cross-lingual information to alleviate polysemy in single lan-
guage.

– We propose the sememe space, where each dimension has explainable semantic
meaning. Then we utilize the word sense definition in HowNet to achieve word and
word sense representations, create a mapping from pre-trained word vector space to
sememe space, and predict the categorial sememe for new word pairs using collab-
orative filtering.

– Extensive experiments and analysis validate the effectiveness of the proposed
method. Using this method, we predict categorial sememes for 113,014 new word
senses from Oxford English-Chinese dictionary and the prediction MAP is 85.8%.
Further we conduct expert annotations based on prediction results.

2 Task Formalization

HowNet is an online common-sense knowledge base unveiling the inter-conceptual and
inter-attribute of concepts connoted in lexicons of the Chinese and their English equiv-
alent [12]. In HowNet, word senses are encoded by 2,214 primitive concepts called
sememes and 116 semantic relations. In this section, we will formally define sememe,
semantic relation, and word sense in HowNet, and then introduce the ECCSP task.

Fig. 2. Sememe definition for “ chorus”

Definition 1 (Sememe). A sememe is an unambiguous indivisible semantic unit for
human languages. Let s denote a sememe, e.g., “ human”, “ think”, we repre-
sent the sememes in HowNet as a set S = {s1, s2, . . . , sn} where n = 2, 214.

Definition 2 (Semantic Relation). Semantic relations are used to describe the seman-
tics of the word pairs and sememes e.g., agent. We represent the semantic relation set
as R = {r1, r2, . . . , rm} where m = 116.
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Definition 3 (Word Sense with Sememe Definition). A word sense is represented
as a bilingual parallel word pair p = (wz|we) with the wz and we denote Chinese
word and English word respectively. Each word sense p in HowNet is defined by two
parts, i.e., its categorial sememe s̃p ∈ S, which indicates the basic class it belongs to,
and extended elaborations attaching to the categorial sememe. The elaborations can be
parsed into a triple set T = {(h, r, t)|h, t ∈ S; r ∈ R}, |T | = 7282. Figure 2 illustrates
the triple set of “ chorus”.

Definition 4 (ECCSP). We use Hp = {pi}N1
i=1 and Dp = {pj}N2

j=1 to represent the
HowNet word pair set and target word pair set(without sememe information). Hp ∩
Dp = ∅. Given sememe set S, Hp, and Dp, bilingual categorial sememe prediction is
to predict the categorial sememe s̃p for each word pair p ∈ Dp.

From the above definitions, how to eliminate the semantic gap between sememes
and word senses remains the key and challenging issue to solve the novel task. In this
paper, we put efforts on the following two problems to tackle this issue: 1) properly
model words, word senses and sememes using unstructured contextual texts and struc-
tured HowNet definitions; 2) make prediction via the interactions between word senses
and sememes.

3 Methodology

In this section, we introduce the proposed novel model for ECCSP. Our model creates
an explainable semantic space (named as sememe space Os). Once the vector repre-
sentations of words or word senses in Os are obtained, their sememe semantics can be
easily interpreted. Words and word senses in HowNet can be embedded into the Os

using their structured definitions. Unlike HowNet, the words and word senses in Dp

do not have structured definitions. So their representations in Os cannot be directly
achieved. Fortunately, words in HowNet andDp share the same representations in con-
textual word embeddings space (named as word vector space O), which can be utilized
as a bridge between Dp and Os. Although we cannot directly obtain the representa-
tions in Os for words and word senses in Dp, we can use similar words to achieve
an approximation. Figure 3 presents the overall framework. We use Hz = {wz

i }N3
i=1,

He = {we
j}N4

j=1 to represent the Chinese word set and English word set in HowNet.

Correspondingly, Dz = {wz
i }N5

i=1 and De = {we
j}N6

j=1 represent the Chinese word set
and English word set in Dp.

Fig. 3.Model framework.
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Next, we first introduce the construction of word vector space O and sememe space
Os, then present the word and word sense representations in HowNet and Dp, and
finally show the details of model training and prediction.

3.1 Word Vector Space O and Sememe Space Os

Word embedding, which maps words into continuous low-dimensional vector space,
has been widely used in various NLP tasks. Here we denote such space as word vector
space O. Each vector in O reflects the co-occurrence probability of the context, but
cannot be interpreted, i.e., each dimension in O represents a latent and inexplicable
semantic meaning.

To explicitly represent words and word senses, we construct another semantic space
based on sememes defined in HowNet, and thus name it as sememe spaceOs. Sememes
are finite and explicit. People can use a limited sememe set to describe all word senses.
Each sememe is the smallest indivisible unambiguous semantic unit and cannot be
described by other sememes. Therefore, we let each dimension inOs denote a sememe,
and the original 2,214 sememes constitute the base vectors of Os (i.e., ∀si ∈ S, Vsi is
a one-hot vector). Words and word senses are represented as vectors in Os, which have
sememe semantics.

3.2 HowNet in Sememe Space Os

In this section, we present how to represent words and word senses in HowNet using
the sememe space in previous section.

HowNet Word Sense Representation. As defined in Sect. 2, each word sense pi in
HowNet is defined by categorial sememe s̃pi

∈ S and extended elaborations Tpi
, Tpi

⊂
T . The extended elaborations attaching to the categorial sememe is to define the word
sense. So, ∀(s̃pi

, rj , tj) ∈ Tpi
, ∀(hk, rk, s̃pi

) ∈ Tpi
, (rj , tj) and (hk, rk, )can be seen as

descriptions for pi. The semantic that each description expresses is modeled as a vector
in Os, i.e., V(rj ,tj) and V(hk,rk,) are independent variables that need to be learned. So
we achieve:

Vpi
= Vs̃pi

+
∑

(hj ,rj ,tj)∈Tpi
,hj=s̃pi

V(rj ,tj) +
∑

(hk,rk,tk)∈Tpi
,tk=s̃pi

V(hk,rk,),∀pi ∈ Hp

(1)
e.g., the word sense pi = ( chorus) in Fig. 2 can be represented as:

V chorus = V community + V perform, agent, + V ,domain, entertainment

Due to the incompleteness of manual annotations, for the extended elaborations,
people have annotated less than they actually exist, e.g., there are 114,876 word senses
whose extended elaborations are empty. Therefore, we add a variable for each word
sense to represent its missing information. And the final version is:

Vpi = Vs̃pi
+

∑

(hj ,rj ,tj)∈Tpi
,hj=s̃pi

V(rj ,tj)
+

∑

(hk,rk,tk)∈Tpi
,tk=s̃pi

V(hk,rk,)
+ V s

pi
, ∀pi ∈ Hp

(2)
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e.g., the word sense pi = ( chorus) in Fig. 2 can be represented as:

V chorus = V community + V perform, agent,

+ V ,domain, entertainment + V s
chorus

HowNet Word Representation. In HowNet, a word corresponds to single or multiple
word senses, and we use Pwz

i
and Pwe

i
to denote the word sense set that a Chinese word

wz
i or an English word we

i corresponds to respectively, e.g., for English word w
e
i =“kid”

in Fig. 1, its corresponding word sense set Pwe
i
={( kid),( . To

model a word in Os, we calculate the average semantics of the word senses it corre-
sponds to, i.e., the representations of a Chinese word wz

i and an English word we
i are:

Vwz
i
=

∑
pj∈Pwz

i

Vpj

|Pwz
i
| ,∀wz

i ∈ Hz

Vwe
i
=

∑
pj∈Pwe

i

Vpj

|Pwe
i
| ,∀we

i ∈ He

(3)

3.3 Target Data in Sememe Space Os

In this part, we will show how to model target words and target word senses in Os.

Target Word Representation. As it is verified in [7], similar words should have sim-
ilar sememes. We assume that similar words are more likely to have similar categorial
sememes based on their work and data observation. A few counterexamples still exist,
but this is why we need further study for the task. Although we cannot directly obtain the
representations in Os for words in Dz and De, we can use similar words to achieve an
approximation. As stated in Sect. 3.1, word embeddings in O reflects the co-occurrence
probability of the context, and words that are semantically similar are more likely to
have similar contexts. Therefore, we use an idea similar to collaborative filtering, seek-
ing similar words from HowNet to represent words in Dz and De. Representations
obtained by this way are denoted as V d

wz
i
and V d

we
i
:

V d
wz

i
=

∑

wz
j ∈Hz

cos(wz
i ,w

z
j ) · Vwz

j
· crj ,∀wz

i ∈ Dz

V d
we

i
=

∑

we
j∈He

cos(we
i ,w

e
j ) · Vwe

j
· crj ,∀we

i ∈ De
(4)

where bolded wz
j , w

e
j are the pre-trained embedding vectors in O for wz

j and we
j .

cos(·, ·) returns the cosine similarity of input vectors. Vwz
i
and Vwe

i
are Hownet word

representations in Os. c ∈ (0, 1) is a hyper-parameter that represent the descending
factor, and rj is the descend rank of word similarity. The idea behind crj is that, we
want to pay more attention on the most similar words.
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Target Word Sense Representation. The sememe space we proposed is interpretable,
each dimension of the vector in the space represents a corresponding weight score of
one sememe. So for word senses in Dp, we use the average semantics of the corre-
sponding Chinese and English words to calculate their representations in Os, denoted
as V d

p . Various combination ways can be employed, and we simply choose their sum,
i.e.,

V d
pi

= V d
wz

i
+ V d

we
i
,∀pi ∈ Dp (5)

3.4 Training and Prediction

In this section, we introduce the model prediction and training.

Prediction. As defined in Sect. 3.1, there is one-to-one correspondence between dimen-
sions and sememes in sememe space Os. Therefore, once we obtained the represen-
tations in Os for p ∈ Dp using Eq. 5, we can easily predict its categorial sememe
by assuming score(sj |p) ∝ V d

p [j]. We use p̃p to represent the predicted categorial
sememe. So we have:

p̃p = sj ,

where j = argmax
j

V d
p [j]

(6)

Note that all vectors are normalized after the operation in previous equations.

Training. The goal of training is to learn all of the different triple descriptions V(,rj ,tj),
V(hk,rk,) and word pair related supplementary information V s

p in Eq. 2, so that we can
properly represent words and word senses in HowNet. At first, we randomly initialize
these variables, and calculate the words and word senses vectors in Os using Eqs. 2
and 3. Then, for each word sense p in HowNet, we assume not to know its categorial
sememe s̃p, and make prediction to get predicted categorial sememe p̃p using Eqs. 4
and 5. The objective is to make correct prediction, i.e., to minimize the following loss
function:

L =
∑

p∈P

s̃p ⊗ p̃p (7)

where ⊗ is the XOR operator, which returns 0 when the two sememes are the same and
1 otherwise.

During training, if s̃p ⊗ p̃p = 1, we need to adjust V(rj ,tj), V(hk,rk,) and V s
p to

make V d
p closer to Vs̃p . Our gradient direction is not based on the derivative of the loss

function, when s̃p ⊗ p̃p = 1, we use Vs̃p as the gradient direction of V d
p in Eq. 5 and use

gradient descent method to update V(rj ,tj), V(hk,rk,) and V s
p .

4 Experiment

In this section, we evaluate the proposed method. We first introduce the datasets and
experiment settings, then report the overall results, and finally investigate several fac-
tors such as training set ratio, POS tags, ambiguity, and descending factor that might
influence the prediction.
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4.1 Datasets

HowNet and Oxford. Since we propose a novel task, and no benchmark datasets for
categorial sememe prediction have been made available, we construct the evaluation
datasets based on HowNet and Oxford English-Chinese Dictionary3.

Word Vector Space. Our proposed method requires both Chinese and English words to
have embeddings in word vector space O, so we seek the publicly available pre-trained
word vectors:

– For Chinese words, we choose the model from Tencent AI Lab4, which consists of
about 8 million words and phrases.

– For English words, we use the Glove5 vectors, which contains 1.9 million words and
phrases trained from 42 billion tokens.

After filtering out those word pairs that are not present in O, we achieve the statistics
in Table 1. H and OX represent HowNet and Oxford Dictionary respectively. OX-H
represents the Oxford Dictionary after filtering out the word pairs in HowNet.

Annotations. For HowNet dataset, all word pairs have sememe semantics, we can
arbitrarily split the dataset for training and testing. For the Oxford Dictionary, we ran-
domly select 1000 word pairs from those that are not in HowNet (denoted as “OX-H”
in Table 1), and invite 5 experts who are proficient in Chinese, English and HowNet to
annotate categorial sememes for them to construct the test data in Oxford.

Table 1. Datasets statistics

Data Words Word pairs

Chinese English Total Exist in O

H 104,027 118,347 208,276 93,081

OX 91,296 189,889 355,234 137,864

OX-H – – – 113,014

Table 2. Overall results

Method HowNet Oxford

MAP Hit@1 Hit@3 MAP Hit@1 Hit@3

Basic 0.827 0.748 0.892 0.737 0.627 0.826

SPWE+ 0.742 0.687 0.800 0.649 0.596 0.706

SPWE* 0.746 0.694 0.800 0.648 0.596 0.700

SS-RE 0.847 0.775 0.907 0.820 0.727 0.905

SS 0.858 0.790 0.919 0.843 0.757 0.919

4.2 Experiment Settings

Baseline Methods. We denote our model using sememe space as SS. To evaluate its
effectiveness, we compare it with the following methods:

3 We use the New Oxford English-Chinese Dictionary, second edition published by Shanghai
foreign language education press in 2013.

4 https://ai.tencent.com/ailab/nlp/embedding.html.
5 https://nlp.stanford.edu/projects/glove/.

https://ai.tencent.com/ailab/nlp/embedding.html
https://nlp.stanford.edu/projects/glove/
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– Basic: It is a straightforward model. In the basic model, we solve the problem with
a classification model, which takes the Chinese word vector and the English word
vector inO as features and outputs the categorial sememe via the softmax regression
method.

– SPWE variants: SPWE is state-of-the-art mono-lingual sememe prediction model
proposed in [7], whose idea is like collaborative filtering:

score(sk|pi) =
∑

pj∈Hp

sim(pi, pj) · Mjk · crj (8)

The notations Hp and crj are the same as those in Eq. 4. M is the word pair-
categorial sememe matrix, where Mij is equal to 1 if the word pair pi has the cate-
gorial sememe sj in HowNet, otherwise Mij is equal to 0. The key factor is how to
measure the word pair similarity, and we adapt the mono-lingual word similarity to
word pairs, and achieve the following two versions:
SPWE+:

sim(pi, pj) = cos(wz
i ,w

z
j ) + cos(we

i ,w
e
j )

SPWE*:
sim(pi, pj) = cos(wz

i ,w
z
j ) ∗ cos(we

i ,w
e
j )

– SSVariants: In order to verify the validity of the sememe space, we also compare SS
with its simplified version by ignoring the extended elaborations and supplementary
information in Eq. 2 (thus denoted as SS-RE), i.e., the vector of word sense in Os is
a one-hot constant vector inherited from the categorial sememe.

Evaluation Protocol. For each word pair, our model outputs the score of all sememes
in descending order. We use mean average precision (MAP), Hit@1 and Hit@3 as eval-
uation metrics, where Hit@n represents the correct categorial sememe appears in the
top n of the list.

Parameter Settings. To make the comparison fair, all methods use the same word vec-
tor space O described previously. The dimensions of Chinese and English pre-trained
word vectors are 200 and 300 respectively. We set c in Eq. 4 to 0.5, and use the top 100
most similar objects in the collaborative filtering steps. The default ratio of training,
validation and test set is 8:1:1 within HowNet. The learning rate is 0.3, and we stop
training when the loss on validation set does not drop.

4.3 Overall Results

Table 2 shows the overall results, from which we can find that our proposed SS model
outperforms all single models on both datasets, which proves its rationality and effec-
tiveness. Specifically,

– Comparison with SPWE variants: SS, SPWE+ and SPWE* are all based on the
collaborative filtering framework, but SS far exceeds the other two models. The
difference is that SPWE+ and SPWE* do not use the sememe space, but directly
use the similarity between word pairs for prediction. Thus, the results confirm the
significance of the sememe space.
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– Comparison with its variants: SS outperforms SS-RE, indicating that the extended
elaborations and supplementary information can enrich the word pair semantic mod-
eling. Meanwhile, SS-RE outperforms all other models except SS, which also vali-
dates the rationality and effectiveness of the sememe space. Furthermore, compared
with SS, SS-RE ignores the extended elaborations and supplementary information,
and thus does not require training. Therefore, if a simple and efficient model is
needed, SS-RE will be a good choice.

4.4 Results on Different POS Tags

Figure 4(a) shows the results of different POS tags in HowNet datasets. Accordingly,
Table 3 presents the number of word pairs and corresponding categorial sememes.

Intuitively, the prediction (classification) is easier with a small number of categorial
sememes. From Fig. 4(a), adjectives, verbs and adverbs all conform to this law, but the
nouns do not. At first, we assume that the large number of noun word pairs provide
sufficient training for the model. However, the best performing adverb has the least
word pairs, so the number of word pairs is not the only cause of performance. Another
possible reason from the linguistic perspective is that nouns are not very abstract and
easier to be expressed by semantic combination.

Fig. 4. Results on different experiment settings

4.5 Results on Different Ambiguity Degrees

As mentioned and used in Sect. 3.2, a word corresponds to single or multiple word pairs
and each word pair has a categorial sememe, so a word may have multiple different
categorial sememes. We define the total number of unique categorial sememes owned
by a word as its word ambiguity degree. A word pair has a Chinese word and an
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English word. We use the larger of the two word ambiguity degrees as the word pair
ambiguity degree. Table 4 shows the number of word pairs with different ambiguity
degrees in HowNet test data.

Table 3. POS tags statistics of test data

POS Tag adj Verb Noun adv

# word pair 1,874 1,960 4,849 505

# s̃p 1,107 790 1,273 448

Table 4. Ambiguity degrees of test data

Ambiguity degree 1 2 3 4 ≥ 5

# word pair 3,717 2,386 1,270 730 1,205

4.6 Effect of Descending Factor c

From the results shown in Fig. 4(b), it can be found that ambiguity has an impact on the
prediction. Intuitively, the more ambiguous the word pair is, the more difficult it is to
predict. The results are in good agreement with such common sense.

The descending factor in Eq. 4 controls the descending speed of the word weight. A
smaller c results in a faster descending weight, which means that the prediction result
mainly focuses on the top few words in the similarity ranking list. And a larger c indi-
cates the prediction depends on more similar words in the ranking list. Figure 4(c)
presents the results with c ranging from 0.3 to 0.8. The results show that, whether c
is too small or too large, the prediction results will drop. The reason is that, using only
a few words (small c) causes insufficient information utilization, while using too many
words will introduce noise.

4.7 Effect of Training Set Ratio

In this experiment, we first sample a certain ratio of data as a training set, and the
remaining data is divided into a validation set and a test set according to 1:1. Figure 4(d)
shows the effect of training set ratio. It can be seen that both SS and SS-RE model
have very good robustness, and the performance declines slowly as the training data
decreases.

4.8 Categorial Sememe Knowledge Base

We select 113,014 English-Chinese word pairs that do not exist in HowNet from the
Oxford bilingual dictionary, and use SS to predict. Then we create annotation website6

and invite experts to manually correct all prediction results. Each word pair is corrected
by three linguistic experts. We published the expanded data and provided online predic-
tion services on the website7.

6 http://166.111.68.66:3080/AnnoTool/.
7 http://thukeg.gitee.io/categorial sememe/.

http://166.111.68.66:3080/AnnoTool/
http://thukeg.gitee.io/categorial_sememe/
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5 Related Work

Most researchers focus on the application of SKB, but pay little attention to how to auto-
matically build it. Recently, few works attempted to automatically build the SKB [7–9].
[7] used collaborative filtering and matrix factorization to learn relationships between
sememes and words to predict the sememe set for each word. [8] utilized cross-lingual
information and employed word representation learning and collaborative filtering to
predict the sememe set for each word. [9] incorporated characters for Chinese word
sememe prediction which is not universal for all languages.

Except for low prediction accuracy, all the previous works have two limitations.
Firstly, these methods did not recognize which one is the categorial sememe, and
neglected semantic relations as well. Secondly, one word could have multiple word
senses. Previous works treated all words as unambiguous words to predict.

6 Conclusion and Future Work

In this paper, we introduced a new task of ECCSP and used cross-lingual informa-
tion to address the word sense ambiguity. We proposed the sememe space, where each
dimension has explainable semantic meaning and proposed several models based on
sememe space and word vector space. We evaluated our models with HowNet and
Oxford English-Chinese Dictionary. The results revealed the effectiveness and signifi-
cance of our models and we expanded HowNet nearly by 50%.

We will explore the following directions in the future: (1) We will explore bet-
ter methods to learn vectors in sememe space. Various combination strategies can be
employed when an object has multiple sources of information, and we simply choose
their normalized sum in this paper. (2) Sememes are the minimum unambiguous seman-
tic units of human languages, which are believed to be universal for all languages. Both
Chinese and English in our experiment are used by a large number of people, and we
will explore to add sememe knowledge to other languages. (3)The limited sememe set
are used to express all word senses. The sememe space use sememe as basis vector. We
will try to apply sememe space to other NLP tasks.

Acknowledgement. This work is supported by the NSFC Youth Project (62006136), and grants
from the Institute for Guo Qiang, Tsinghua University (2019GQB0003) and Huawei Inc.
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Abstract. Discourse parsing has attracted more and more attention
due to its importance on Natural Language Understanding. Accord-
ingly, various neural models proposed and have achieved certain suc-
cess. However, due to the scale limitation of corpus, outstanding per-
formance still depends on additional features. Different from previous
neural studies employing simple flat word level EDU (Elementary Dis-
course Unit) representation, we improve the performance of discourse
parsing by employing cohesion information (In this paper, we regard lex-
ical chain and coreference chain as cohesion information) enhanced EDU
representation. In particular, firstly we use WordNet and a coreference
resolution model to extract lexical and coreference chain respectively
and automatically. Secondly, we construct EDU level graph based on
the extracted chains. Finally, using Graph Attention Network, we incor-
porate the obtained cohesion information into EDU representation to
improve discourse parsing. Experiments on RST-DT, CDTB and STAC
show our proposed cohesion information enhanced EDU representation
can benefit both written and dialogue discourse parsing, compared with
the baseline model we duplicated.

Keywords: Discourse parsing · Cohesion information · GAT · Written
and dialogue text

1 Introduction

Discourse parsing aims to identify the relations and discover the discourse struc-
ture between discourse units. Due to the ability of providing the overall organi-
zation of an article, discourse parsing plays a central role in various downstream
tasks, such as dialogue understanding [20], text categorization [10], and text
summarization [22].

For written text, discourse parsing mainly based on the Rhetorical Structure
Theory (RST), using hierarchical tree to represent the discourse structure. All
illustrated in Fig. 1 (a), each leaf node in the constituency-based tree corresponds
to an Elementary Discourse Unit (EDU). Each pair of related adjacent discourse
units will be merged by specific rhetorical relations to form upper-layer Discourse
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 40–52, 2021.
https://doi.org/10.1007/978-3-030-88480-2_4
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Fig. 1. (a) a written text example and its constituency-based tree structure from RST-
DT Corpus; (b) a dependency-based graph structure for a dialogue text example from
STAC Corpus.

Unit (DU) recursively. Moreover, each DU is assigned with either nucleus or
satellite according to the importance.

By contrast, multi-party dialogue text which has more complex discourse
structure in nature, uses dependency-based Directed Acyclic Graph (DAG) to
express the structure of the text. As shown in Fig. 1 (b), EDUs1 are directly
linked without forming upper-layer structure.

Early studies on discourse parsing mainly donated their efforts on construct-
ing handcraft features [8,12,13,16], due to the corpus size limitation. Recent
studies turn to top-down approaches for better leverage global document con-
text. However, discourse parsing still has a long way to go.

In this paper, we put our sight on modeling discourse cohesion for better
written and dialogue discourse parsing. Theoretically, discourse cohesion mainly
consists of lexical cohesion, reference, ellipsis, substitution and conjunction. Lex-
ical chain and coreference chain are regarded as cohesion information in this
work. First, we duplicate three models as baseline. Second, cohesion information
is obtained with the help of external tools. Third, we integrate the cohesion infor-
mation into EDU representation with the help of two Graph Attention Network
[21], and utilize a fusion layer to fuse all the obtained representations. Finally,
the model employ the representation with cohesion information to identify the
relations and structure for both written and dialogue texts.

Experimental results on the RST-DT, CDTB and STAC corpora show that
our approach is effective for both written discourse constituency parsing and
dialogue discourse dependency parsing.

2 Related Work

In the literature, previous work on written discourse parsing mainly consist of
two categories, i.e., bottom-up [8,9,12,13,16] and top-down [11,24] frameworks.

For the first category, discourse parser builds a tree by merging two adjacent
discourse units into a large one recursively from bottom to up, where nuclearity
and rhetorical relations were labeled simultaneously. Feng et al. [8] proposed

1 In the dialogue text, each utterance corresponds to an EDU.
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a two-stage bottom-up greedy parser with CRF as local classifier. Ji et al. [9]
and Li et al. [13] focus on better representation using feed forward network
and hierarchical neural network. Li et al. [12] proposed a recursive framework
to jointly model distributed representation for discourse parsing. Yu et al. [16]
build a transition-based parser with implicit syntactic features.

For the second category, by recursively splitting a larger text span into two
small ones, discourse parser can build a tree in top-down fashion, where nucle-
arity and rhetorical relation were determined at the same time. Zhang et al. [23]
introduced a unified neural architecture toward discourse rhetorical structure,
which achieved competitive performance on both Chinese and English without
any handcrafted features. Kobayashi et al. [11] proposed a neural top-down dis-
course parser in three granularities, i.e., document, paragraph and sentence level.

Previous studies for dialogue discourse dependency parsing can be divided
into two categories. The first-class models parse discourse dependency structure
in two stages. These approaches [1,17] predict the local probability of depen-
dency relation for each possible combination of EDU pairs, and then apply a
decoding algorithm to construct the final structure. Afantenos et al. [1] used
Maximum Spanning Trees (MST) to construct a dependency tree. Perret et al.
[17] further used Integer Linear Programming (ILP) to construct a dependency
graph. For the second category [18], discourse parser predicts dependency rela-
tion and constructs the discourse structure jointly and alternately. Shi et al. [18]
proposed a sequential model based on neural network and utilized the currently
constructed structure in dependency prediction.

Although neural networks have been widely applied in discourse parsing,
the state-of-the-art model still relies on handcrafted features. We found that
the cohesion information which can benefit this task has not received much
attention. In this paper, we propose a Graph Attention Network based model to
incorporate cohesion information into EDU representation, and use the updated
representation for discourse parsing.

3 Baseline Model

In order to verify the effect of our proposed method of using cohesion information
to enhanced EDU representation, we duplicate three baseline models: A top-
down and a bottom-up model for written discourse parsing, a deep sequential
model for dialogue discourse parsing. In this section, we will first introduce the
EDU encoder and then give a brief introduction to these three models.

3.1 Attention-Based EDU Encoder

Given an EDU with m words w1, · · · , wm, where wj is the vector concatenated by
word embedding and POS embedding of the j−th words, we use a bidirectional
GRU (BIGRU) [5] to encode EDU, obtaining h1, · · · , hm. We concatenate the
last states in both direction of the BiGRU into x′. According to our common
sense, the importance of each word in EDUs is usually different. On this basis, a
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learnable vector q is implemented to calculate the weight assigned to each word.
The detail is formulated as

wi =
qThi∑n
j=1 qThj

(1)

xk = (x′ + wihi) (2)

where α = {α1, ·, αm} denotes the output weight of a softmax function with
wi, · · · , wm as inputs, hi corresponds to the output of embedding of each token
in an EDU encoding by BiGRU. In this way, representation for EDUs in an
entire discourse are generated, denoted as Xo = {x1, · · · , xn}.

3.2 Top-Down Baseline Model

For RST discourse parser based on Top-Down approach, we refer to the top-
down model proposed by Zhang et al. [23]. The model mainly consists of two
parts: Hierarchical Split Point Encoding and Top-Down Split Point Ranking.

Hierarchical Split Point Encoding. For split point2 representation, Zhang
et al. [23] used a hierarchical RNN-CNN architecture in their paper. Firstly,
each EDU representation x1, · · · , xn was obtained by Attention-based Encoder.
Then, another BiGRU is used to model EDU context. Finally, a CNN with a
window size of 2 and stride size of 1 is used to encode split point.

Top-Down Split Point Ranking. After obtaining split point representations,
an encoder-decoder is used to rank the split points. During encoding, the split
point vectors which obtained previously are taken as inputs to the BiGRU
encoder, obtaining H0,H1, · · · ,Hn−2

3. During decoding, a uni-GRU with an
internal stack is used to control the split point ranking process. At the j-th
step, the tuple (B, E) is popped from the stack and we enter the concatenated
cj = (HB ;HE) into the decoder for dj . After that, three biaffine function [6]
based classifiers will be used to predict structure, nuclearity and relation respec-
tively.

3.3 Bottom-Up Baseline Model

The Bottom-Up approach mainly include two kinds categories, i.e., Probabilistic
CKY-like approaches and transition-based approaches. In this work, we build a
bottom-up baseline model based on the latter one.

2 The split position between any two neighboring EDUs is called the split point.
3 There will be n − 2 split points for n EDUs.
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Fig. 2. The general architecture for our CGGAN model

Shift-Reduce Discourse Parsing. A shift-reduce parser maintains a stack
and a queue; Initially the stack is empty and the first EDU x1 is at the front
of the queue. The parser then choose either to shift the element which is the
front of the queue onto the top of the stack, or to reduce the top two elements
on the stack in a discourse relation. The reduce operation must choose the type
of relation and decide which element is nucleus.

3.4 Deep Sequential Baseline Model

For dialogue discourse dependency parsing, we duplicate the deep sequential
model proposed by Shi et al. [18]. Their baseline model consists of two parts:
Non-Structured Representation Construction, Link and Relation Prediction.

Non-structured Representation Construction. For each EDU ui, firstly
we use the attention-based EDU encoder to get EDU representation x1, · · · , xn.
Then, these representation is taken as input to a global BiGRU encoder and the
hidden states of BiGRU are viewed as the non-structured global representation
of EDUs.

Link and Relation Prediction. For each EDU ui, the link predictor pre-
dicts its parent node pi, and the relation classifier categorizes the corresponding
relation type ri. In particular, the link predictor is a 2-class classifier and the
relation predictor is a 16-class classifier.

4 Cohesion Modeling

In this section, we introduce the Cohesion Guided Graph Attention Network
(CGGAN) for cohesion information modeling. The CGGAN includes four parts:
(1) Auto Cohesion Information Extraction (2) Graph Construction (3) Cohesion
Modeling (4) Fusion Layer, as shown in Fig. 2.
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4.1 Auto Cohesion Information Extraction

As mentioned before, the lexical and coreference chain are regraded as cohesion
information in this work. We will introduce how to extract cohesion information
in this section.

Auto Lexical Chain Extraction. Lexical chain are sequences of semantically
related words [15], which describe the lexical cohesion structure of an entire
article. In this work, we use WordNet and Tongyici cilin (Cilin for short) to define
word senses, relations and semantics for English and Chinese corpus respectively.
Only nouns are selected as candidate words for lexical chain computation.

For English Corpus, we use the path similarity4 for word similarity com-
putation; for Chinese corpus, the method proposed by Zhu et al. [25] will be
used to calculate Chinese word similarity. A threshold is set as a filter to select
words for lexical. For a given document, we achieve a corresponding lexical set,
Cl = {Cl1, Cl2, · · · , Cln}, where Cli = {Wi1,Wi2, · · · ,Win} and Wim means the
m-th word of the i-th chain.

Auto Coreference Chain Extraction. Coreference chain is a set of mentions
which refer to the same entity in the real world. In this work, we employ a
coreference resolution model (CRM) proposed by Kong et al. [7] to detect all
the coreference chains in a document for both English and Chinese Corpus. In
particular, as the dialogue coreference resolution is still in its infancy, we also
use this CRM to analyze the coreference chains of dialogue texts. Finally, the
coreference chain set Cc = {Cc1, Cc2, · · · , Ccn} will be obtained, where Cci =
{Mi1,Mi2, · · · ,Min} and Mim means the m-th mention of the i-th chain.

4.2 Graph Construction

We propose a Lexical Graph (GL) and a Coreference Graph (GC) built upon
discourse units. Algorithm 4.2 describes how to construct both Graph5. For
each chain, all the discourse units containing the element6 of same chain will be
connected. This iterate over all the lexical chains to generate the final Graph
(GL or GC). In particular, GL and GC are symmetric and self-loop is added to all
the nodes.

Given the constructed graph G = (V,E), the nodes V correspond to the
EDUs in a document, and the edges E correspond to either the lexical chain
or coreference chain. We then use Graph Attention Network [21] to update the
representation of all EDUs, based on the built graph.
4 A word similarity calculation method provided by WordNet, return a score between

0 and 1, denoting how similar two word senses are, based on the shortest path that
connects the senses. Moreover, when there is no path between two senses, −1 will
be returned.

5 we use the same method to build lexical and coreference graph.
6 In order to simplify the expression, the word and mention in lexical and coreference

chain are collectively referred to as element.
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Algorithm 1. Construction of the Cohesion Graph G
Require: Cohesion Chain C = {C1, C2, · · · , Cn};

elements for each chain Ci = {Wi1, · · · ,Wim}
Initialize the Graph G without any edge G[∗][∗] = 0
for i = 0 to n do

Collect the location of all occurrences{Wi1, · · · ,Wim}
to L = {l1, · · · , lm}
for j = 1 to m do

G[j][j] = 1
for k = 1 to m do

G[j][k] = 1
end for

end for
end for
return Constructed Graph G

4.3 Cohesion Modelling

As shown in Fig. 2, firstly we obtain the EDU representation Xo =
{x1, x2, · · · , xn} which is the output of the EDU Encoder. The CGGAN is
applied to integrate cohesion information into EDU representation before it is
used for discourse parsing. The nodes in the CGGAN are initialized by the orig-
inal EDU representation xi ∈ Xo respectively.

Graph Attention Networks (GAT) [21], leveraging masked self-attention lay-
ers to assign different importance to neighboring nodes. Formula 3–6 show the
process of representation updating of node i in lexical and coreference graph.

zi = Wxi (3)

eij = LeakyReLU(A(zi; zj)) (4)

aij =
exp(eij)∑

k∈Ni
exp(eik)

(5)

x′
i = σ

( ∑

j∈Ni

aijzij

)
(6)

Where ; represents concatenate operation, W and A are learnable parameters of
the model, Ni means all the neighbors of node i and σ is the activation function.

We use two different GAT layers to incorporate GL and GC into EDU repre-
sentations. Given EDU representation of a document Xo, we will get two kinds
of updated representation Xl and Xc, which are integrated with lexical and
coreference chain respectively.

4.4 Fusion Layer

Now, we get the updated representations Xl and Xc using Graph Attention
Network. We propose a fusion layer to fuse these two representation with the
original one Xo.
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Firstly, the attention score between the updated representation and the orig-
inal one is calculated. Then, the scores will be taken as the weight of the updated
representation, when added with the original one.

αl = softmax(Wl(Xo;Xl) + bl)) (7)

αc = softmax(Wc(Xo;Xc) + bc)) (8)

Xf = Xo + αl ∗ Xl + αc ∗ Xc (9)

Where ; is concatenate operation, Wl, Wc, bl, bc are learnable parameters.

5 Experiments

5.1 Datasets

In this work, the written discourse parsing is experimented on two datasets,
Rhetorical Structure Theory Discourse Treebank (RST-DT) [4] and Chinese
Connective-driven Discourse Treebank (CDTB) [14]. What’s more, STAC is used
as the benchmark corpus for dialogue discourse parsing.

• The RST-DT corpus is composed of 385 articles from the Wall Street Journal
(WSJ), where 347 and 38 articles for training and testing respectively. Fol-
lowing previous work [24], we randomly select 34 articles from training set as
validation.

• In the CDTB corpus, each paragraph is annotated as a discourse tree. The
entire corpus is divided into three parts, i.e., 2002, 105, 229 CDT trees for
training, validation and testing.

• The STAC corpus [2]7 annotated according to Segmented Discourse Repre-
sentation Theory (SDRT) [3]. Following previous studies [1,17,18], we trans-
formed SDRT structure to dependency structure by eliminating CDUs. After
that, training set contains 1062 dialogues, while testing set consists of 111
dialogues, and we retained 10% of the training set for validation.

5.2 Metric

To evaluate the parsing performance, we use three standard ways to measure the
performance. We use 18, 16, 16 fine-grained relations for RST-DT, CDTB, STAC
respectively, as Zhang et al. [18,24]. Following previous work, micro averaged F1

score is the evaluate metric of RST-DT and STAC, while macro averaged F1

score for CDTB.

5.3 Experimental Result

Baseline Result. Table 1 shows the detailed performance of our duplicated
baseline model. It should be emphasized that we mainly explore the effect of
cohesion information in discourse parsing for both written and dialogue texts in
this paper. All results in subsequent section are based on the duplicated models.
7 Following previous study, we used the version released on March 21, 2018.



48 J. Wang et al.

Table 1. Results of baseline model on RST-DT, CDTB and STAC. “T2D” and “B2U”
denotes our simplified architecture in Top-Down and Bottom-Up fashion.

System S N R F

EN
T2D 66.7 54.7 44.6 44.0

B2U 67.1 55.3 43.7 43.3

CN
T2D 84.4 57.0 53.4 45.6

B2U 83.6 55.5 50.3 47.1

System Link Link&Relation

EN DSM 71.1 53.6

Table 2. Results for RST-DT, CDTB and STAC. “LC”, “CC”, “LC&CC” mean add
lexical chain or coreference chain, or both of them respectively.

System S N R F System S N R F

CN

T2D 84.4 57.0 53.4 45.6 B2U 83.6 55.5 50.3 47.1

+LC 85.5 57.7 53.7 46.4 +LC 84.5 55.8 51.5 47.4

+CC 85.4 58.0 53.8 46.9 +CC 84.8 56.4 51.7 47.2

+LC&CC 85.7 58.4 54.5 47.3 +LC&CC 85.4 56.6 52.4 47.9

EN

T2D 66.7 54.7 44.6 44.0 B2U 67.1 55.3 43.7 43.3

+LC 67.2 55.2 45.3 44.2 +LC 67.6 55.6 44.6 44.2

+CC 66.9 55.2 45.2 44.3 +CC 67.8 55.9 44.6 44.5

+LC&CC 67.5 55.8 45.8 44.9 +LC&CC 68.2 56.3 45.3 44.9

System Link Link&Relation

DSM 71.1 53.6

+LC 71.3 54.3

+CC 72.3 54.8

+LC&CC 72.5 55.2

Contribution of Cohesion. As emphasized before, we explore the effect of
cohesion information in discourse parsing by integrating the cohesion information
into the EDU representation. Lexical chain (LC), coreference chain (CC) and all
of them (LC&CC) will be incorporated into the baseline model respectively. By
analysing the experimental results in Table 2, we can draw the conclusions as
following:

• Lexical chain and coreference chain can effectively improve the performance
of discourse parsing in all four indicators, compared with the baselines. And
there is a certain complementary between them, when these two kinds of
chains are added at the same time, the effect can be further improved.

• In the written text, in comparison with the top-down approach, the per-
formance of bottom-up can be improved more obvious. This is because the



Multi-level Cohesion Information Modeling for Better Discourse Parsing 49

updated representation show more help to the detection of the structure and
relations between the low-level nodes, While the top-down approach has lost
part of the cohesion information when constructing the split point represen-
tation.

• In dialogue text, it is obvious that the Link and Link&Rel are both improved
by 1.4% and 1.6%.

• For the reason of the much lower discourse tree, Chinese discourse parsing
can get more benefits from cohesion information (each tree contains 4.2 EDUs
on average [19]), improving greatly than English.

Table 3. Results of different chain length. 0 mean that chain is not used, 3, 5, ∞
means that the length of the chain is limit to 3 and 5, ∞ means do not limit chain’s
length.

LC CC LC&CC

Length S N R F S N R F S N R F

EN

T2D

0 66.7 54.7 44.6 44.0 66.7 54.7 44.6 44.0 66.7 54.7 44.6 44.0

3 66.9 54.7 44.9 44.3 67.0 55.1 44.9 44.2 67.3 55.8 45.4 44.4

5 67.2 55.2 45.3 44.2 66.9 55.4 45.2 44.3 67.5 55.8 45.8 44.9

∞ 66.4 54.2 44.3 43.9 66.5 53.9 44.6 44.3 66.7 54.9 44.7 44.2

B2U

0 67.1 55.3 43.7 43.3 67.1 55.3 43.7 43.3 67.1 55.3 43.7 43.3

3 67.4 55.1 44.2 44.0 67.5 55.9 44.4 44.1 67.8 56.1 44.8 44.5

5 67.6 55.6 44.6 44.2 67.8 55.9 44.9 44.5 68.2 56.3 45.3 44.9

∞ 66.9 55.4 43.5 43.4 67.3 55.2 43.9 43.7 67.9 55.6 44.2 43.9

CN

T2D

0 84.4 57.0 53.4 45.6 84.4 57.0 53.4 45.6 84.4 57.0 53.4 45.6

3 85.5 57.7 53.7 46.4 85.4 58.0 53.8 46.9 85.7 58.4 54.5 47.3

5 85.3 57.6 53.4 46.5 85.4 57.8 53.5 46.3 85.5 58.1 54.3 46.8

∞ 84.7 56.8 52.8 45.2 84.7 57.1 53.1 45.7 85.0 57.4 53.6 46.1

B2U

0 83.6 55.5 50.3 47.1 83.6 55.5 50.3 47.1 83.6 55.5 50.3 47.1

3 84.5 55.8 51.5 47.4 84.8 56.4 51.7 47.2 85.4 56.6 52.4 47.9

5 84.0 55.4 50.8 47.2 64.2 55.9 51.3 47.0 85.2 56.2 52.1 47.6

∞ 83.6 55.2 50.4 46.9 83.8 55.9 50.5 47.1 84.1 55.8 50.8 47.3

LC CC LC&CC

Length Link Link&Rel Link Link&Rel Link Link&Rel

DSM

0 71.1 53.6 71.1 53.6 71.1 53.6

3 71.1 54.0 71.7 54.3 71.8 55.0

5 71.3 54.3 72.3 54.8 72.5 55.2

∞ 71.3 54.2 72.0 54.6 72.0 55.2

Impact of Cohesion Chain Length. Generally, we believe that the structure
and relation between EDUs have a strong connection with the distance between
EDUs. The cohesion between two EDUs while are far apart is prone to be noisy.
Therefore, we manually set a length limitation when use lexical and coreference



50 J. Wang et al.

chains to build graph. From the results in Table 3, the following conclusions can
be drawn:

• When the length of chains is not limited, a lot of noise is contained, leading
to little improvement or even negative performance. On the contrary, after
limiting the length of the chain, the integration of cohesion information can
bring obviously positive improvement.

• In particular, in written text, the length of 3 is the more appropriate chain
length limit for Chinese discourse parsing, and 5 for English. For the reason
that the English discourse tree is annotated by discourse, while Chinese is
annotated by paragraph.

• For dialogue texts, compared to a smaller length limit, a larger limitation is
more conducive to the effect of mining cohesion information, even if there
is no limit. This is because the relation in the dialogue might exist between
two EDUs that are far apart. Reducing the length of the chain will result in
the ineffective cohesion information when identify the relation between two
EDUs with a larger span.

In general, the results indicate that the unlimited use of lexical chains may
provide noise-filled conduction which is not applicable for cohesion information
modeling, and an optimal distance value can maximize the effectiveness of cohe-
sion information in discourse parsing.

6 Conclusion

In this research, we explored the effect of cohesion information on discourse
parsing. Particularly, the Graph Attention Network is used to integrate the cohe-
sion information into the EDU representation. Experimentation on the RST-DT,
CDTB and STAC shows the great effectiveness of our proposed approach. Owing
to the effective ascension, we will focus on exploring other cohesion information
on discourse parsing.
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Abstract. Correctly identifying the types of propositions helps to
understand the logical relationship between sentences, and is of great sig-
nificance to natural language understanding, reasoning and generation.
However, in previous studies: 1) Only explicit propositions are concerned,
while most propositions in texts are implicit; 2) Only detect whether it
is a proposition, but it is more meaningful to identify which proposition
type it belongs to; 3) Only in the encyclopedia domain, whereas proposi-
tions exist widely in various domains. We present ProPC, a dataset for in-
domain and cross-domain propositions classification. It consists of 15,000
sentences, 4 different classifications, in 5 different domains. We define two
new tasks: 1) In-domain proposition classification, which is to identify the
proposition type of a given sentence (not limited to explicit proposition);
2) Cross-domain proposition classification, which takes encyclopedia as
the source domain and the other 4 domains as the target domain. We
use the Matching, Bert and RoBERTa as our baseline methods and run
experiments on each task. The result shows that machine indeed can
learn the characteristics of various types of propositions from explicit
propositions and classify implicit propositions, but the ability of domain
generalization still needs to be strengthened. Our dataset, ProPC, is
publicly available at https://github.com/NLUSoCo/ProPC.

Keywords: proposition in NLP · In-domain classification ·
Cross-domain classification

1 Introduction

Propositions are defined as the meaning of declarative sentences in linguistics
and logic, which can be identified true or false. The “meaning” here is understood
as a non-linguistic entity shared by all sentences with the same meaning [17]. In
this paper, we directly use propositions to refer to the statement representation
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of propositions. Natural language contains a large number of propositions. The
ones guided by complete logical connectives are called explicit propositions [1],
otherwise we call them implicit propositions. We mainly focus on four types
of propositions: Categorical proposition, Conjunctive proposition, Hypothetical
proposition and Disjunctive proposition.

Fig. 1. An example involving the four types of propositions in our dataset and their
logical relationship between sentences. Here, the first three sentences framed by dashed
lines are implicit propositions, the others are explicit propositions. The definition of
propositions we will explain in Sect. 2.

When we apply the general definition of propositions to NLP area, we find
that about 81% statements can be mapped to propositions and their correspond-
ing types in 100 randomly selected sentences within 5 domains. As is shown in
Fig. 1, identifying the types of propositions correctly supports capturing the
logical relationship between sentences. Propositions can thus assist natural lan-
guage understanding, reasoning and generation, and promote the development
of related tasks, such as reading comprehension, text inference, and text sum-
marization.

The research on propositions in linguistics and logic has already been very
in-depth [2,3,18], but in NLP has not been carefully explored. [1] introduced
the concept of propositions into NLP, proposed the task of proposition iden-
tification, and constructed a dataset of explicit propositions by using trigger
keywords, which is restricted to the encyclopedia field. However, in natural lan-
guage, propositions exist widely in various domains, and implicit propositions
(like the first three sentences in the Fig. 1), exist more widely than explicit
propositions. Moreover, identifying the proposition type is more valuable than
just detecting whether it is a proposition. In addition, there are problems such
as the absence of keywords or the incorrect position of keywords, so the types of
propositions cannot be determined only according to the keywords or even the
language forms.
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In this paper, we introduce a new dataset to further enable in-domain and
cross-domain proposition classification tasks. The in-domain proposition classi-
fication is to identify the proposition type of a given sentence, which includes
implicit propositions. The cross-domain proposition classification takes encyclo-
pedia as the source domain and the other 4 domains as the target domain.
For cross-domain data, we select the four popular domains in the current NLP,
including medical, law, news, and finance, and extract the data from the answer
sets of commonly used question-and-answer datasets in these domains. We built
the ProPC dataset through large-scale manual annotation, and conduct a series
of experiments to evaluate it.

We use Matching, Bert [6], and RoBERTa [15], as our baseline methods to
experiment on each task. The results show that models can classify propositions
to some extent, but are still lacking in the overall logic of sentences, and the
ability to domain generalization also need to be strengthened.

The main contributions of this paper can be summarized as follows: 1) We
redefine the proposition in NLP and propose two new tasks: in-domain and
cross-domain proposition classification; 2) We present a dataset, ProPC, for the
two tasks, which contains 15,000 manually annotated statements; 3) We use
several baselines to conduct experiments and analyze the results, and we find
that although AI did not do well in cross-domain tasks, it can indeed classify
propositions to a certain extent.

2 Dataset Construction

To explore the in-domain and cross-domain propositions classification, we intro-
duce a new dataset (ProPC) consisting of declarative sentences in various
domains manually annotated for their classification. The overall construction
process of the data set is shown in the Fig. 2 (a). In this section we first discuss
the redefinition of the proposition in NLP, and subsequently present the data
acquisition and annotation process as well as statistics of the dataset.

2.1 Proposition Definition

In linguistics and logic, propositions are defined as the meaning of declarative
sentences, and the “meaning” here is not related to language forms [17]. Different
propositions contain different logical relationships, which can be expressed with
some keywords. When the concept of proposition [1] is put forward into NLP,
these keywords are regarded as the features and the basis to classify propositions.
However, the basis of proposition classification should be based on semantic logic
rather than language form, so we redefine the proposition in NLP as follows:

Categorical Proposition: Make a direct and unconditional judgment on
whether an object logically contains a certain property and whether it belongs
to a certain category.
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Fig. 2. Dataset construction and annotation workflow overview.

Conjunctive Proposition: A kind of compound proposition, which reflects the
simultaneous existence of several situations or properties of objects, and logically
has a conjunctive relationship.
Hypothetical Proposition: A kind of compound proposition, which contains
a previous or tentative explanation, and logically has a conditional relationship.
Disjunctive Proposition: A kind of compound proposition, which reflects the
fact that at least one existence of either conditions or properties of objects, and
logically has a disjunctive relationship.
Explicit Proposition: A proposition guided by logical keywords1, and the key-
words are complete and at the right positions.
Implicit Proposition: A proposition that is not an explicit proposition, which
means that a statement guided by logical keywords, once the keywords at wrong
positions or partly missing, it may also be an implicit proposition2.

2.2 Data Acquisition

Explicit propositions with logical constants are easier to judge the type than
those implicit propositions who don’t have enough guiding keywords. [1] not
only introduce the concept of proposition into NLP, but also construct a dataset
based on logical keywords. Therefore, we use this dataset as our source of explicit
propositions and randomly crawled sentences containing implicit propositions
from the same domain, Baidu Encyclopedia. Among them, explicit propositions
are directly derived from the above data, while the homologous data are non-
repeated data extracted randomly from Baidu Encyclopedia. For cross-domain
data, we select four popular domains in the current NLP, including medical,
law, news and finance. The data in the news domain is obtained from the offi-
cial website of the People’s Daily. And for other domains, question-and-answer

1 Logical keywords, like “all...are...”, “both...and...”, “if...,then...”, “either...or...”, etc.
2 for example, “if you don’t fight, you fail”, here the logical keywords should be

“if...then”, it lose a “then”, so it is an implicit proposition.
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datasets are more common and the sentences in them are relatively daily and
standardized (few tone words and few unsmooth sentences). We obtained the
data from the answer sets of commonly used question-and-answer datasets in
these domains, which is webMedQA [4], lawzhidao [19] and financezhidao [20].

After cleaning and segmenting the obtained text, the collected set consist
of 15,000 statements, in which 10,000 for encyclopedia domain data only with
logical keywords, 1,000 for encyclopedia domain data with implicit propositions,
and 1,000 data for each of the other 4 fields.

2.3 Data Annotation

Our annotation is divided into three parts: annotation training, trial annota-
tion and formal annotation. Before organizing the annotation, we analyzed and
labeled some extracted statements, and completed the annotation standard for
proposition classification based on natural language processing (not looking at
keywords but looking at the sentence logic), and identified 120 statements as the
benchmark for annotation training and trial annotation.

The annotation was conducted by 8 undergraduate and graduate students.
They first received the annotation training, which provided the project back-
ground introduction and annotation specification explanation, and carried out
the annotation demonstration of 20 sentences to further explain the specific
process of annotation.

Trial Annotation. In the trial annotation part, 8 annotator labelled the 100
encyclopedia statements (contains both explicit and implicit propositions) with
the abovEIdentified labels to ensure that the annotator understand the annota-
tion specifications. The consistency test results show that there was good con-
sistency among the 8 annotator (Fleiss Kappa [5] = 0.7278), and the accuracy of
each annotator reached more than 80% (compared with the identified labels). We
also conducted a pairwise cross-validation(contains each type and each domain of
our dataset). The statements labeled by each annotator has duplicate annotation
statements with each other annotators (the number of repetitions in each part
is equal), and the agreement rate between each two annotator is also greater
than 80%. All these indicate that the trained annotator has understood the
annotation specification and can proceed to the next step, formal annotation.

Formal Annotation. The formal annotation process is divided into three
stages: only the encyclopedia statements with logical keywords, the encyclo-
pedia statements that conform to the natural distribution (containing implicit
propositions), and the other four domains that conform to the natural distribu-
tion. Figure 2 (b) shows the overall annotation process. While labeling the data,
we also conduct experiments at the same time. We find that the accuracy of the
model did not increase much after the amount of data reached 5,700. Therefore,
in order to reduce manual consumption and improve annotation efficiency we
only take 10,000 data for annotation in the first stage. In the remaining stages,
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we have also double-checked the labeling results of each annotator every two
days to ensure the quality of the dataset.

The resulting set of annotations consists of 10,000 encyclopedia statements
with logical keywords(not all explicit propositions), 1,000 encyclopedia state-
ments contains implicit propositions(conforms to the original distribution of
various propositions in natural language), 1,000 news statements, 1,000 med-
ical statements, 1,000 law statements and 1,000 finance statements, for a total
of 15,000 statements.

2.4 Dataset Analysis

There are a total of 5 distinct domains including medical, law, news, finance and
encyclopedias, and a total of 4 distinct classifications in the ProPC dataset. The
entire dataset contains 15,000 sentences, the encyclopedia data guided by logical
keywords contains 10,000 sentences, and the remaining 5 parts each contain 1,000
sentences.

Table 1. The proportion of explicit and implicit propositions in ProPC dataset propo-
sitions. Among them, the disjunctive proposition has no implicit form [9].

EK EI News Medical Law Finance

Category 1368 168 264 262 322 52

Conjunctive 3920 471 598 431 337 392

Hypothetical 2023 102 28 58 145 163

Disjunctive 235 15 5 7 6 3

Not 2454 244 105 242 190 390

Total 1, 0000 1, 000 1, 000 1, 000 1, 000 1, 000

In this paper, we use “EK” denotes encyclopedia data with logical keywords
(not all explicit propositions), “EI” denotes encyclopedia data contains implicit
propositions (conforms to the original distribution of various propositions in nat-
ural language), “N” denotes news data, “M” denotes medical data, “L” denotes
law data and “F” denotes finance data, “Not” denotes a sentence which is not
a proposition. Table 1 shows the overall distribution of propositions in ProPC,
which indicates that propositions exist widely in natural language and occupy a
considerable proportion.

Figure 3 shows the percentage of implicit propositions in different domains
and types, we can observed that statements guided by logical keywords also
can be implicit propositions, and this kind of situation occurs most often on
the conjunctive propositions. Besides, implicit propositions exist more widely
in natural language no matter what kind of domains or types, and almost all
category propositions tend to be implicit propositions.
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Fig. 3. The percentage of implicit propositions in the propositions of various domains
and types.

Table 2 shows the average sentence length of each domain and type. The
average length of sentence is 40.048. In respect of type, the average length of
sentence of category propositions is the smallest of all. In respect of domain, the
average length of sentence of finance is the maximal of all.

Table 2. Average sentence length in each domain of ProPC dataset.

EK EI News Medical Law Finance Total

Category 22.676 44.393 29.352 20.592 22.981 46.135 25.203

Conjunctive 44.171 57.098 55.299 33.044 31.154 59.013 45.687

Hypothetical 27.903 32.480 34.964 30.520 27.469 50.607 29.717

Disjunctive 40.443 48.530 41.600 22.714 32.833 35.667 40.085

Not 45.498 58.963 34.000 30.529 28.200 77.679 47.599

Total 38.168 52.779 48.511 28.659 27.437 64.183 40.048

Table 3 shows the standard train, validation and test folds of the ProPC
dataset. For EK, the dataset is divided according to the ratio of training: verifi-
cation: testing = 8:1:1, and for the rest, we directly use them as the test sets.

3 Experiments

3.1 Baseline Methods

Matching. This baseline simply matches statements based on the logical key-
words corresponding to the different classes, which establishes the corresponding
template for each class by regular expression and then matches the statements
one by one. We believe this method may indicates the effect bias of the machine
on nature distributed statements when only explicit propositions are studied.
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Table 3. Statistics of train, validation and test folds of ProPC dataset. Note: ‘EK’
denotes encyclopedia data with logical keywords, ‘EI’ denotes encyclopedia data with
implicit propositions, ‘N’ denotes news data, ‘M’ denotes medical data, ‘L’ denotes law
data and ‘F’ denotes finance data.

Train (EK) Val (EK) Test (EK) Test (EI) Test (N) Test (M) Test (L) Test (F)

Category 1086 133 149 168 264 262 322 52

Conjunctive 3118 400 402 471 598 431 337 392

Hypothetical 1622 211 190 102 28 58 145 163

Disjunctive 192 22 21 15 5 7 6 3

Not 1982 234 238 244 105 242 190 390

Total 8000 1, 000 1, 000 1, 000 1, 000 1, 000 1, 000 1, 000

Bert. Both in-domain and cross-domain proposition classifications can be
regarded as a multi-class problem. Bert [6] is one of the most popular mod-
els for text classification. For text classification tasks, Bert uses the final hidden
state h of the first token [CLS] as the representation of the entire sequence, and
add a simple softmax classifier to the upper layer to predict the probability of
label c:

p(c|h) = softmax(Wh) (1)

where W is the task-specific parameter matrix. We fine-tune all the parameters
from BERT as well as W jointly by maximizing the log-probability of the correct
label, and use the fine-tuned Bert [7] as our baseline to test these two tasks.

RoBERTa. RoBERTa [15] has a similar backbone architecture to Bert, is
another popular SOTA model after Bert. It differs from Bert mainly in the fol-
lowing aspects. First, a larger batch was used to conduct more in-depth training
on larger datasets; Second, no longer use NSP(Next Sentence Prediction) task;
Third, dynamically change the MASK mode of training data [16]. In addition,
RoBERTa has made remarkable achievements in many tasks and datasets. So
we also used the fine-tuned RoBERTa as one of our baseline models.

3.2 Experimental Setup

We use the BERT-base-Chinese model [8] and RoBERTa-wwm-ext model [16],
as our base models, fine-tune them for 10 epochs over all the reviews data, and
save the best model on the validation set for testing. Hyper-parameter details
for each baseline can be found at https://github.com/NLUSoCo/ProPC. During
our experiments, we use F1-score as the main evaluation metric, weighted across
all the classes.

3.3 Results and Analysis

Task 1: In-Domain Proposition Classification. We conduct three sets of
experiments in encyclopedia domain to explore the proposition classification of

https://github.com/NLUSoCo/ProPC
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the mode (Table 4). For Bert and RoBERTa, We first train the model on EK,
and then use the trained model to test EK and EI data. Table 4 shows the
results. We observe that: The Matching method’s results are not good in each
set of experimental data, which indicates that it is insufficient to focus only on
logic keywords to classify statements, and it is of certain practical significance
to construct implicit data sets that conform to natural distribution. Bert and
RoBERTa can indeed learn the features of the different proposition types, and
the features it learned from explicit propositions can be generalized to implicit
proposition classification. The features of category and conjunctive propositions
are more noticed by the model, whereas the model has a poor ability to judge
disjunctive propositions. This may be due to the relatively small proportion of
disjunctive propositions in the dataset, resulting in insufficient training.

Table 4. The performance of the models on in-domain tasks. Note: W-F1: weighted
average F1-score, EK: encyclopedia data with logical keywords, EI: encyclopedia data
with implicit proposition, EW: EK without logic keywords. cat: category proposition,
Con: conjunctive proposition, Hyp: Hypothetical proposition, Dis: disjunctive proposi-
tion.

Cat Con Hyp Dis Not W-F1

EK Matching 0.6042 0.2913 0.2959 0.1184 0.103 0.3741

Bert 0.8591 0.8550 0.8350 0.5833 0.5143 0.7970

RoBERTa 0.8125 0.8557 0.8302 0.4826 0.5723 0.7502

EI Matching 0.3761 0.4210 0.3294 0.1471 0.1080 0.3182

Bert 0.6617 0.8100 0.5882 N/A 0.6860 0.7438

RoBERTa 0.6541 0.8492 0.5962 0.1250 0.6904 0.7609

Task 2: Cross-Domain Proposition Classification. For the cross-domain
part, we treat the encyclopedia as the source domain and news, medical, law and
finance as the target domain. Our modal is tuned on source domain and tested on
the target domain. As is shown in Table 5, we conduct four experiments on Task
2, and obtain the following observations: The overall results of cross-domain tasks
are not as good as that of in-domain tasks. The ability of domain generalization
needs to be strengthened, while the attention of model to each classification is
similar to Task 1. Among them, the closest domain to encyclopedia is news.
This may be caused by the data source, because the source of the news corpus
is the People’s Daily, and the language is more standardized and close to the
encyclopedia, while the other three corpora are extracted from the QA datasets,
which means the language is more colloquial.

4 Related Work

Proposition analysis has been among active areas of research in both linguis-
tics and logic. [10] define the concept of linguistic logic, expounds the status of
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Table 5. The performance of the models on cross-domain tasks. Note: W-F1: weighted
average F1-score, EK: encyclopedia data with logical keywords, N: news data, M: med-
ical data, L: Law data, F: finance data. cat: category proposition, Con: conjunctive
proposition, Hyp: Hypothetical proposition, Dis: disjunctive proposition.

Cat Con Hyp Dis Not W-F1

N Matching 0.5121 0.6590 0.0710 N/A 0.0953 0.5331

Bert 0.6937 0.7976 0.5079 0.2857 0.3529 0.7128

RoBERTa 0.6643 0.8342 0.6000 0.2500 0.2816 0.7166

M Matching 0.4544 0.2700 0.1900 0.0451 0.1230 0.2760

Bert 0.6024 0.6357 0.3699 0.2000 0.4611 0.5663

RoBERTa 0.6936 0.7198 0.5182 0.1311 0.3745 0.6084

L Matching 0.4553 0.3081 0.3790 0.0681 0.0384 0.3131

Bert 0.5607 0.5524 0.5665 0.2857 0.4224 0.5308

RoBERTa 0.6600 0.6032 0.6439 0.1905 0.4133 0.5863

F Matching 0.1333 0.4700 0.4562 0.0222 0.1170 0.3112

Bert 0.4000 0.5626 0.5926 N/A 0.6601 0.5954

RoBERTa 0.4922 0.6350 0.6222 0.1436 0.6278 0.6188

linguistic logic, comb the methods of studying linguistic logic, and explain the
significance of studying linguistic logic. [11] distinguish orthodox logic from nat-
ural language logic. [12] study from semantics, grammar, pragmatics, rhetoric
and other fields, deeply explored the relationship between logic and linguistics,
and affirmed the importance of logic for language understanding.

However, The research on proposition in NLP is still less. [1] is directly related
to this area about explicit proposition. They build an explicit proposition cor-
pus and proposes two tasks: the automatic explicit proposition recognition and
the essential explicit proposition ingredients analysis. [13] proposes an analogi-
cal reasoning task on Chinese, build dataset CA8 for this task, and explore the
influences of vector representations, context features, and corpora on analogi-
cal reasoning. [14] build a dataset based on news corpus, and explore the task
of recognizing the relationship between sentences in Chinese text. According
to whether there are textual connectives between text units, they divided the
relationship into explicit textual relationship and implicit textual relationship.

5 Conclusion

In this paper, we present two tasks, in-domain and cross-domain proposition clas-
sification. The in-domain proposition classification is to identify the proposition
type of a given statement include both explicit and implicit. The cross-domain
proposition classification takes encyclopedia as the source domain and each of
the other 4 domains as the target domain. To enable research on this 2 tasks,
we introduce a novel dataset, ProPC, consist of explicit and implicit proposition
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drawn from different sources. We use the Matching, Bert and RoBERTa methods
as our baselines to run experiments on each of the tasks. Results of our experi-
ments indicates that machine can identify proposition types to a certain extent,
but still lacks attention to the logic level of sentences, and its domain generaliza-
tion ability needs to be further strengthened. In the future, we will continue to
expand the size of the dataset, optimize the model, and explore more methods
for domain generalization.
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Abstract. Discourse topic structure is the key to the cohesion of the dis-
course and reflects the essence of the text. Current Chinese discourse corpus
are constructed mainly based on rhetoric and semantic relations, which ignore
the functional information in discourse. To alleviate this problem, we intro-
duce a new Chinese discourse analysis dataset called CTRD, which stands for
Chinese Theme-Rheme Discourse dataset. Different from previous discourse
banks, CTRD was annotated according to a novel discourse annotation scheme
based on the Chinese theme-rheme theory and thematic progression patterns
from Halliday’s systemic functional grammar. As a result, we manually annotated
525 news documents from OntoNotes 4.0 with a Kappa value greater than 0.6.
And preliminary experiments on this corpus verify the computability of CTRD.
Finally, we make CTRD available at https://github.com/ydc/ctrd.

Keywords: CTRD · Discourse analysis · Theme-Rheme theory

1 Introduction

Discourse is a kind of text analysis granularity beyond words and sentences [29], which
plays a crucial role in natural language processing (NLP). However, many NLP appli-
cations like Neural Machine Translation (NMT) have not fully utilized contextual infor-
mation [15,31] and lead to negative results.

Figure 1 shows an error made by the state-of-the-art NMT system [27]. Where the
arrow represents the progression between clauses and the second line is the translation
result by the Google NMT system and the third line is the golden result. We can find
that NMT cannot deal with the omission of subject well, which the subject ”two cakes”
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Fig. 1. A normal Chinese example.

Fig. 2. A simple linear thematic progression example of systemic functional grammar.

is omitted in parentheses. Actually, this problem can be solved by introducing theme-
rheme theory and thematic progression patterns from Halliday’s systemic functional
grammar [7]. As shown in Fig. 2, according to the above two theories, the progression
pattern of the whole sentence is a simple linear progression. Specifically, the theme of
the second clause is the rheme of the previous clause. So, the plural (“were”) should be
used in the second clause.

In the past few years, the advent of large-scale collections of annotated data has
demonstrated a paradigm shift in the research community for NLP [4,8,19,20,32].
While most of the existing works on Chinese discourse corpora construction are based
on the framework of Rhetorical Structure Theory (RST) [14,23] and Penn Discourse
TreeBank (PDTB) [16,18], a few of them consider introducing functional grammar
information. On the other hand, recent works [22,25] have demonstrated the signifi-
cance of introducing theme-rheme information in document-level abstracting and NMT.
Hence, we present a Chinese Theme-Rheme Discourse dataset called CTRD, which
based on theme-rheme theory and thematic progression patterns to provide a new way
for Chinese discourse analysis. Some examples of CTRD are shown in Fig. 3.

In summary, we make the following contributions in this paper:

– We built a Chinese theme-rheme annotation scheme based on theme-rheme theory
and thematic progression patterns. And we have developed a collaborative annota-
tion tool to simplify the annotation work based on the annotation scheme.

– We manually annotated a Chinese Theme-Rheme Discourse Dataset (CTRD). To the
best of our knowledge, CTRD is the first dataset based on theme-rheme theory and
thematic progression patterns.

– We implemented a baseline model for automatic recognition of theme-rheme infor-
mation. In the ten-fold cross validation experiments of theme-rheme function type
recognition, our model achieves 79.77 F1-score on the test set, which demonstrates
the effectiveness of our annotation scheme.
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Fig. 3. Some examples from CTRD (simplified version).

2 Related Work

There are numerous theories that attempt to describe various discourse features from
different perspectives. In these theories, the RST based on the rhetorical relations was
widely accepted and applied. [2] annotated the RST Discourse Treebank (RST-DT)
based on RST. For Chinese, [17] released the Chinese news commentaries dataset
and [8] annotated Macro Chinese Discourse TreeBank (MCDTB). On the other hand,
inspired by discourse-level extension of lexicalized tree-adjoining grammar (D-LTAG)
[6], [18] annotated the PDTB, one of the most popular treebanks, and launched a series
of studies on it. PDTB emphasizes the role of connectives in rhetorical relations. [34]
annotated a Chinese discourse corpus called Chinese Discourse TreeBank (CDTB),
which including 500 documents.

Furthermore, the study based on entity relations has attracted many attentions from
researchers. Based on the OntoNotes Coreference Annotation Scheme (OCAS) [26],
OntoNotes dataset was released, which is a large discourse corpus including vari-
ous genres of text in three languages (English, Chinese, Arabic). [13] transferred the
theories from English to Chinese by integrated RST-DT and PDTB and proposed a
Connective-Driven Dependency Tree scheme. However, this method only considered
the discourse relationship within the paragraph and did not annotate the discourse rela-
tionship between paragraphs and the macro discourse information of the whole text [8].
[28] annotated a Chinese Discourse Topic Corpus (CDTC) to represent discourse topic
structure according to the theme-rheme theory, which the theme is the center of the
topic and the rheme is a series of descriptions of the theme.

Overall, the number and the scale of Chinese discourse corpus are relatively small
at present. Moreover, the existing discourse corpus still lack theme-rheme information
[28]. So it is necessary to construct a theme-rheme discourse corpus to promote the
development of discourse analysis.
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Table 1. Some examples of theme-rheme from three consecutive sentences. The themes are usu-
ally entities, such as organization (T1), location (T2) or name (T3), and the rhemes (R1-R3) are
the rest part of sentences expect themes.

Examples Theme Rheme

Sentence1 The conference(T1) was held in Vancouver. (R1)

Sentence2 Vancouver(T2) is an important port city in southwestern Canada. (R2)

Sentence3 Howard(T3) was invited to attend the meeting. (R3)

Table 2. The classification of theme and rheme in our annotation scheme.

Theme/Rheme Categories

Theme Topical theme (TOP)

Interpersonal theme (INT)

Textual theme (TXT)

Rheme Normal rheme (NOR)

Independent rheme (OMN)

3 Theory Basis

The annotation processes of CTRD follows two guiding theories: the theme-rheme the-
ory and the thematic progression patterns from Halliday’s systemic functional gramma.

3.1 The Theme-Rheme Theory

The theme defined by Halliday is the element which serves as the point of departure
of the message, and it represents the known or shared information from the immediate
context [7]. The rheme is the remaining information in the clause except the theme. And
it is not only a further supplement or interpretation of theme, but also the central part
of information [7]. In other words, we can consider that theme and rheme are known
information and new information respectively. So the theme provides the settings for
the rheme. As shown in Table 1, the boundary between theme and rheme is clear, a
theme is usually an entity word that represents the topic or subject of a sentence, while
a rheme always provides information for theme.

Moreover, Halliday subdivided theme into single theme and multiple theme. Sin-
gle theme is a whole independent unit which cannot be split into smaller units. While
multiple theme has internal structures that can be further divided into topical theme,
interpersonal theme and textual theme. Thus, as shown in Table 2, there are three kinds
of theme and two kinds of rheme in our annotation scheme. Topical theme is the first
experiential element of a clause whether it is a participant, circumstance or process.
Interpersonal theme is personal judgement on meaning of the speaker or writer. Textual
theme relates the meaning of the clause to the other parts of the text. For rheme, there
are two main forms, which are normal rheme and independent rheme. If a sentence has
no theme and the whole sentence consists of a single rheme, it is an independent rheme,
and other cases are normal rheme.
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Fig. 4. Four kinds of thematic progression pattern in our annotation scheme. Here are four exam-
ples of patterns. (a): He (T1) bought an iPhone (R1). It (T2) was designed by Apple Inc (R2).
Apple (T3) was founded by Steve Jobs (R3). (b): My brother (T1) lives America (R1). He (T2)
is an engineer (R2). He (T3) works for an Internet company (R3). (c): His father (T1) is a lawyer
(R1). His mother (T2) is a teacher (R2). His sister (T3) is an accountant (R3). (d): He (T1) has
two life goals (R1). One (T2) is to travel to 50 countries (R2). The other (T3) is to live to be 100
years old (R3).

3.2 The Thematic Progression Patterns

Most of the discourse are composed of two or more sentences in discourse analysis.
In these case, there will be some connections and changes between theme and theme,
rheme and rheme, and theme and rheme in different sentences. These connections and
changes are called progression.

Previous works summed up four basic patterns of thematic progression [1,9,21].
As shown in Fig. 4, simple linear progression notes an item in the rheme of the current
clause becomes the theme of the next clause. Thematic progression with a continuous
(constant) theme means that the item in the theme of the first clause is also selected as
the theme of the following clause. In the patterns of thematic progression with derived
themes, themes are derived from a hyper-theme. In the pattern of thematic progression
with a split rheme, a rheme may include several different information, each of informa-
tion may take up as the theme in several subsequent clauses.

These patterns are manifested through the connection between the themes and
rhemes in different sentences. Therefore, when we constructed the corpus, we also stip-
ulated the relationships between the themes and rhemes in the corpus.

4 Annotation Scheme

To meet the professional linguistic demand when annotating CTRD, we employed six
masters and two senior doctors who majored in linguistic. To simplify the process of
annotation, we designed and implemented a computer aided tool. To ensure annotation
quality, the whole annotation process has two main phases:

Initialization Annotation Phase. In this phase, the main goal is to teach masters how
to annotate and ensure the quality. Specifically, we selected a small extra dataset and
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Table 3. Two examples of our theme-rheme annotation.

labeled by masters, then the doctors will check the accuracy of each student’s annota-
tion. Only if someone reaches a certain accuracy, such as 95%, then the student will be
allowed to participate in the next phase.

Formal Annotation Phase. Each of the two graduate students formed a team, and each
team annotated 175 articles respectively. Then, the doctor checked and corrected the
annotated documents to ensure the consistency of annotations. The ambiguous label
was determined by the doctor. In this way, a total of 525 news articles were annotated.

4.1 Theme-Rheme Annotation Criteria

The theme was divided into three components, including topical component, interper-
sonal component and textual component. A theme unit may contain more than one com-
ponent, but its order has a certain regularity. The topical theme (TOP) mainly discuss
the experiential meaning of things, which is also the common boundary between theme
and rheme. The interpersonal theme (INT) is usually informative, modal or interrog-
ative words. Besides, INT can also appear in imperative sentences, which is intended
to strengthen the expression and highlight the tone or emotion of the sentences. The
textual theme (TXT) is divided into continuation conversation components and con-
junction components, which generally appears in the form of adverbials or adverbs and
indicating time or place (orientation or position).

The rheme was categorized as normal rheme (NOR) and independent rheme (OMN)
based on the characteristics of Chinese. The NOR means that a rheme and a theme
appear in a sentence simultaneously. And the most of rhemes were annotated as NOR.
On the contrary, the speakers may omit the theme and directly describe their opinion,
thus there is no theme in sentence. This type of rheme is called the independent rheme,
which usually accounts for a very small proportion in Chinese.

As shown in Table 3 Example 1, “ (but)”, “ (hope)” and “ (they)” are three
theme units, but they are different components of the theme. “ (but)” means a change
in the meaning of a sentence and assures coherence of the sentence. “ (hope)”
expresses tone of the speakers and interpersonal information. “ (they)” is the center
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of speaker discussion, expanding the sentence around this topic. Rheme “
(could cooperate with judicial investigation)” is a concrete behavior description of “
(they)”. As shown in Table 3 Example 2, an independent rheme is an entire sentence,
this elliptical phenomenon is very common in Chinese.

4.2 Thematic Progression Annotation Criteria

According to the description of theme-rheme theory above, the theme-rheme units can
be annotated directly by our auxiliary tools. But the thematic progression patterns are
implicit, which cannot be annotated with a single label. Thus, we scale this task to point
out the relationship between themes and rhemes in different sentences. To ensure the
standardization and consistency of annotations, we mainly follow three principles:

Forward Principle. As thematic progression patterns are generally promoted in a
forward-to-backward manner, we stipulate that theme or rheme in current clause can
only relate to theme or rheme in the previous clause when characterizing the relation-
ship between sentences.

Neighbor Principle. We argue that when a theme (or rheme) matches more than one
associate objects in different sentences, the unit in current clause should be related to
the nearest clause. For example, here are three sentences: S1, S2 and S3. We suppose
that T1, T2 and T3 are themes of these three sentences respectively and T1, T2 and
T3 have relations with each other. Then T3 should be only associated with T2, and T2
should be associated with T1, and T3 can not be associated with T1 directly.

Additional Relationships. We not only consider theme-rheme relationships, but also
consider the phenomenon such as anaphora, ellipsis, and coincidence. Relationship
annotating involves a binary object, both sides of the relationship must be different
components in a clause. There is no component pointing to itself, and object is not
empty in a binary object.

5 Statistics

To compare with existing researches and make it easier for others to follow our work,
instead of collecting theme-rheme information from unlimited internet web, we selected
525 news articles from OntoNotes4.0 which was consistent with [33]. Moreover, we
carefully considered the domains of OntoNotes4.0 and generality of our corpus, so
we guaranteed that CTRD covered newswire (News), broadcast news (BN), broadcast
conversation (BC), telephone conversation (Tele) and web data (Web). Besides, we did
not force the articles to have similar size, so each article contains numbers of sentences
varies from dozens to hundreds.

Our annotated CTRD has 45,591 sentences, and the average number of sentences is
86 per document. Each article contains at most 989 sentences and at least 10 sentences.
The average length of clause is 7, which indicates that news articles primarily focus on
the middle passage.

We counted the number of theme-rheme pairs (TRs) for each document in CTRD.
The maximum and minimum number of TRs are 1731 and 16, respectively. We found
56.6% of all documents contain 50 to 250 TRs, while 94.1% of all documents contain 16



72 B. Fu et al.

Table 4. Clause types statistics on CTRD.

Theme type Number Proportion Rheme type Number Proportion

Topical theme 25,389 32.8% Normal rheme 29,693 38.4%

Interpersonal theme 1,337 1.7% Independent rheme 6,879 8.9%

Textual theme 14,095 18.2%

Total themes 40,821 52.7% Total rhemes 36,572 48.3%

Table 5. Consistency of annotation on CTRD.

Indicators Theme-Rheme Function types Progression patterns

Agreement 91.87% 82.98% 87.46%

Kappa 0.837 0.718 0.753

to 450 TRs. AndWe also counted the proportion of the theme-rheme function types. The
number of topical themes is 25,389, accounting for 62.2%, which is the most among all
types of themes. This result indicates the structure of most Chinese sentences are topical
theme joined by rheme. This finding was consistent with the viewpoint of linguists [5],
which they believed the topical component is an important symbol to distinguish theme
from rheme in the same sentence.

As shown in Table 4, CTRD totally contains 40,821 themes and 36,572 rhemes,
which are close in number. While the top three types are topical theme, normal rheme
and textual theme. They accounted for 89.4% of the total number of TRs. In addition, we
analyzed the distribution of the patterns of thematic progression. The CTRD contains
15,938 continuous thematic progression patterns and 259 simple linear progression pat-
terns. Our statistical results show that the proportion of the thematic progression with
continuous theme is the most among the four patterns. This phenomenon denoted that
most of the Chinese discourse have an explicit central topic in the overall structure.
However, the number of the thematic progression pattern is small, accounting for only
one-third of all sentence pairs.

To test the reliability of the annotation, We evaluated inter-annotator agreement
from three aspects: theme-rheme, function types and thematic progression patterns. To
use a most conservative measure, we used the exact match criterion to calculate agree-
ment rates. Moreover, we also used the Kappa coefficient [3] as an evaluation of anno-
tation consistency to consider accidental consistency. We finally calculated the average
value of agreement rates and Kappa value of the 525 documents to assess our corpus.
As shown in Table 5, our corpus has an agreement rate above 80% and Kappa value
above 0.7 in theme-rheme, function types and thematic progression patterns. The cor-
pus has a good annotation quality when the Kappa value of annotation of the corpus is
greater than 0.6 [11]. And the results of the consistency indicated that the difficulty of
annotation is consistent with the number of annotation types. Specifically, the annota-
tion of function types (five types) is greater difficulty than theme-rheme (two types) and
thematic progression patterns (four types).
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Table 6. Hyper-parameter values of our neural model.

Parameter Value Parameter Value

Embedding size 256 Dropout 0.05

LSTM layer 2 L2 regularization 1e-8

Learning rate 0.015 Learning rate decay 0.05

LSTM hidden 1024 Batch size 8

Table 7. Ten-fold cross validation result of TR automatic recognition.

Model Set Theme-F1 Rheme-F1 Average

CRF Dev 78.69 89.00 83.85

Test 78.20 88.91 83.56

Ours Dev 87.04 93.46 90.25

Test 84.80 92.25 88.53

6 Experiments and Analysis

To give evidence of the computability of CTRD, we conduct a preliminary automatic
recognition research on the identification of theme-rheme (TR) and their function type.
We treated theme-rheme automatic recognition task as a sequence labeling problem
[24]. So, we use BIO tagging scheme and build a BiLSTM-CRF model that achieved
by NCRF++[30] to conduct experiments. Table 6 shows the values of hyper-parameters
for our neural model.

It should be noted that we also use traditional Conditional Random Fields (CRFs)
[12] as baseline model with the parameter C of 1.5, the feature window of 3, and the
rest of the parameters were taken default values. Standard precision, recall and F1-score
were used as evaluation metrics.

6.1 Theme-Rheme Automatic Recognition

For our annotation scheme, the theme is the beginning of the information and the rheme
is the remaining information in the clause except the theme. Therefore, we believe that
the research on automatic recognition of theme-rheme can lay a foundation for further
research like anaphora resolution [10]. In the ten-fold cross validation experiments of
theme-rheme automatic recognition on the CTRD, the performance of the development
set and test set are shown in Table 7.

The BiLSTM + CRF model significantly outperforms the baseline model, which
improves the average F1-score 6.40 and 4.97 respectively. We noted that theme auto-
matic recognition results of both two models are underperform rheme automatic recog-
nition results. The main reason is that the number of tokens in rheme were greater than
theme to cause the imbalance of label proportion. There are twice as many tokens in
rheme as in theme. Specifically, the number of tokens in rheme and theme accounted
for 65.83% and 34.17% respectively.
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Table 8. Ten-fold cross validation result of TR function type automatic recognition.

Model Set Precision Recall F1-Score

CRF Dev 74.49 74.15 74.32

Test 73.28 72.81 73.05

Ours Dev 82.23 81.95 82.09

Test 79.90 79.64 79.77

Table 9. Performance stratified by different function types.

Function types CRF Dev F1 Ours Dev F1

Topical theme 74.04 85.74

Interpersonal theme 62.39 80.48

Textual theme 64.51 77.73

Normal rheme 81.47 86.84

OMN rheme 29.54 39.14

Others 99.61 99.93

6.2 Function Types Automatic Recognition

As we mentioned in Sect. 3, theme can be divided into three categories and rheme can
be divided into two categories. Therefore, we conduct further automatic recognition
researches on TR function types. In the ten-fold cross validation experiments of function
type automatic recognition on the CTRD, the performance of the development set and
test set are shown in Table 8.

Our experiments demonstrate that our model significantly outperforms the baseline
model, which improves the F1-score by 7.77 and 6.72 respectively. To gain more insight
into the performance of our Bi-LSTM + CRF model, as shown in Table 9, we fetch the
model which perform best in the ten-fold and report its performance across the different
function types. We respectively take each of function type as positive example to com-
pute F1 score. Apparently, our model outperforms the CRF model on each Function
type recognition result.

The model performs best on recognition normal rheme and topic theme, which is
the commonest linguistic phenomenon in Chinese. The model is challenged more on
other function types (i.e., interpersonal theme), because the amount of these labels was
insufficient. It pointed out the future direction of our corpus expansion work.

7 Conclusion

In this paper, we propose a novel Chinese theme-rheme annotation scheme with the
introduction of theme-rheme theory and thematic progression patterns as a representa-
tion for Chinese discourse functional information. Moreover, we annotated the Chinese
Theme-Rheme Discourse Dataset (CTRD), which includes 525 news documents from
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OntoNotes4.0. Finally, we perform a range of automatic recognition experiments to
prove the appropriateness of annotation scheme and the computability of CTRD.
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Abstract. Most memory-based methods use encoded retrieved pairs as
the translation memory (TM) to provide external guidance, but there
still exist some noisy words in the retrieved pairs. In this paper, we pro-
pose a simple and effective end-to-end model to select useful sentence
words from the encoded memory and incorporate them into the NMT
model. Our model uses a novel memory selection mechanism to avoid
the noise from similar sentences and provide external guidance simul-
taneously. To verify the positive influence of selected retrieved words,
we evaluate our model on the single-domain dataset namely JRC-Acquis
and multi-domain dataset comprised of existing benchmarks including
WMT, IWSLT, JRC-Acquis, and OpenSubtitles. Experimental results
demonstrate our method can improve the translation quality under dif-
ferent scenarios.

Keywords: Neural machine translation · Selective translation memory

1 Introduction

Neural machine translation (NMT) with encoder-decoder framework yields the
state-of-the-art translation performance in recent years [2,10,27,30], especially
on large parallel corpora. Compared to phrase-based SMT explicitly manipulat-
ing phrases, NMT with the ability of capturing more complex functions has been
widely used to build many advanced translation systems, such as syntax-based
models [1,20], context-aware models [22,32], and multilingual models [9,36].

However, NMT suffers from catastrophic forgetting problem [11], where the
model tends to forget the translation of the low-frequency words or phrases and
can not handle the translation across different domains. When there exist over-
laps between the training corpus and the test set, one solution is the memory-
based NMT models [6,13,31,34], which retrieve similar sentence pairs from the
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Fig. 1. Example of the source (‘S’) and target (‘T’) sentence with their similar pair.
‘S-TM’ and ‘T-TM’ denote the similar source and target sentence retrieved from the
training corpus. The underlined words provide the external knowledge for translation,
while other words are irrelevant.

Fig. 2. Overview of our SelectNMT. Given the source sentence X, we retrieve the
similar sentence pairs from the bi-lingual corpus and select the top-1 result Φ1

X,Y =
{X1, Y 1}.

training corpus and use them to provide external guidance. But there still exist
some noisy words which are irrelevant to the translation and degrade the per-
formance. As shown in Fig. 1, the source piece “machinery and equipment” and
target translation “Maschinen und Ausrüstung” guide translation while others
are irrelevant and bring extra noise. Therefore, how to select useful retrieved
words and avoid extra noise is still a challenging problem (Fig. 2).

In this paper, we propose an end-to-end memory-based NMT model called
SelectNMT, which uses a novel selection mechanism to distinguish the impor-
tant words and incorporates them into the translation model. This selection
mechanism can select appropriate words from the retrieved sentence pairs as the
relevant knowledge to guide translation. This method avoids the disturbance
of irrelevant words and doesn’t require an additional SMT system. In particu-
lar, the multi-task framework can further encourage the model to select useful
information from memory. We jointly optimize a binary classification task of the
encoder and the translation task of the decoder.

To show the effectiveness of SelectNMT, our model is evaluated on the JRC-
Acquis dataset and significantly outperforms the Transformer baseline by an
average improvement of +6.79 BLEU points. Then, we construct a multi-domain
English-German corpus extracted from existing benchmarks, including JRC-
Acquis, OpenSubtitles, IWSLT-14, and WMT-14 bilingual corpora. Our method
also gains nearly +2.0 BLEU points on average demonstrating that our method
can be extended to the multi-domain scenario.
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2 Our Approach

2.1 Problem Definition

Given a source sequence X = (x1, . . . , xm) and a target sequence Y =
(y1, . . . , yn), we retrieve a set of similar sentence pairs ΦN

X,Y = {(X1, Y 1),
. . . , (XN , Y N )} using similarity metric, where ΦN

X = {X1,X2, . . . , XN} are
neighbors of the source sentence X, retrieved from the training corpus and
ΦN
Y = {Y 1, Y 2, . . . , Y N} are translations of the retrieved source sentences. The

target translation probability is built as:

P (Y |X) =
n∏

i=1

P (yi|X, y1, . . . , yi−1, ΦX,Y ; θ) (1)

where yi is the ith word of the target translation. θ are parameters of the NMT
model.

2.2 Retrieval Stage

The retrieval stage aims to search similar source sentences and target translations
from the training corpus. We leverage the widely-used search engine Lucene1 to
build the index and search similar sentences efficiently. Given a source sentence
X, we search its similar source sentences X1, . . . , XN and combine target sen-
tences Y 1, . . . , Y N as source-target pairs ΦN

X,Y = {(X1, Y 1), . . . , (XN , Y N )} in
the bilingual corpus. For each input sentence, we offline prepare M = 20 search-
ing results as candidates. Then we select top N retrieved sentences as the model
input ΦN

X,Y , i.e. source and target memory, where N ∈ [1,M ]. This is the same
as the previous work [3,13,34].

2.3 Machine Translation via Selective Context

Input Concatenation. Our model depends on the concatenation of the source
sentence and retrieved sentences. We explore three settings including the source
monolingual retrieved sentences, target monolingual retrieved sentences, and
bilingual retrieved pairs to perform a systematic study on this setup. The con-
figurations are listed below:

[X;ΦN
X ] → Y ; [X;ΦN

Y ] → Y ; [X;ΦN
X,Y ] → Y (2)

where “[;]” denotes concatenation operation. The Equations denote three set-
tings of the translation memory: S-TM, T-TM, and Bi-TM, where memory is
created by the source retrieved sentences, target retrieved sentences, and bilin-
gual retrieved pairs.

1 https://github.com/apache/lucene-solr/tree/master/lucene.

https://github.com/apache/lucene-solr/tree/master/lucene
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Segment Embedding. To distinguish the source sentence and retrieved sen-
tences, we introduce the segment embedding. Given the retrieved sentences ΦN

X,Y

and the source sentence X, we project them into the space of word embed-
dings, position embeddings, and segment embeddings. Finally, we feed the sum
of embeddings E into the encoder:

E = Ew + Ep + Es (3)

where Ew, Ep, and Es separately denote the word embedding input, position
embedding input, and the segment embedding input.

Encoder with Retrieved Sentences. The encoder can be split into several
unified self-attention layers and selection layers. The unified self-attention layers
are applied to encode the concatenation of the source sentence and its similar
pairs. While the selection layer is used to extract useful information and avoid
the noise of context.

Unified Transformer Layers. To incorporate the retrieved sentences ΦN
X,Y

into the NMT model, the input Ew + Ep + Es is encoded using the Transformer
encoder layers:

hL = [hL
x ;hL

r ] = TransformerEnc(Ew + Ep + Es) (4)

where L is the number of layers. hL
x = (hL

x1
, . . . , hL

xm
) and hL

r = (hL
r1 , . . . , h

L
rt)

separately denote the representations of the source sentence and the retrieved
sentence pairs.

Selection Layer. We use the weighted combinations of the L encoder layers
features to predict which retrieved words are selected. We define a vector W =
(w1, . . . , wL) ∈ R

L, which is learned during training.

hL+1 = Self-Attention(
L∑

i=1

aih
i) (5)

where ai is calculated by:

ai =
ewi

∑L
k=1 ewk

(6)

The weighted combinations hL+1 are used to select which retrieved words are
fed into the decoder by the binary classification:

δ = argmax softmax(Wsh
L+1) (7)

where Ws ∈ R
d×2 and δ = (δ1, . . . , δt) ∈ R

t, where t is the length of the retrieved
sentences. δj = 1 denotes the jth word, is selected, while δj = 0 denotes the jth

word is discarded. After the selection operation, the selected retrieved words
hidden states are hL+1

r = (hL+1
r1 , . . . , hL+1

rs ), where s is the length of selected
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Table 1. Evaluation results of different trained models on the En ↔ De, En ↔ Es,
and En ↔ Fr translation tasks on the JRC-Acquis dataset.

Model En-De En-Es En-Fr Avg.

← → ← → ← →
Transformer [27] 54.95 49.40 59.32 60.82 61.39 62.23 58.02

Transformer + Copy [13] 56.94 53.24 62.50 62.05 64.13 64.33 60.53

TM-Transformer [5] 59.48 55.65 62.82 65.73 66.06 66.88 62.77

Coupled encoder [6] 60.13 54.74 65.56 62.38 67.03 65.92 62.99

CSTM [3] 61.88 56.23 65.84 66.56 66.57 67.52 64.10

SelectNMT (our method) 62.23 56.85 66.67 67.08 67.54 68.48 64.81

words. In this work, we use 6 unified Transformer layers and 1 selection layer for
all experiments.

Decoder. Given the representations of the source sentence hL+1
x =

(hL+1
x1

, . . . , hL+1
xm

) and selected representations hL+1
r = (hL

r1 , . . . , h
L
rs), the con-

catenation is fed into the Transformer decoder as below:

yi = TransformerDec(yi−1, [hL+1
x ;hL+1

r ]) (8)

where yi is the ith prediction of the target.

2.4 Multi-task Learning Framework

The multi-task learning framework consists of main and auxiliary tasks. Herein,
we refer to the machine translation task as the main task and retrieved pieces
selection task as the auxiliary task. The overall loss function L sums the loss of
the main machine translation task LMT and that of the auxiliary selection task
LSEL:

L = LMT + λLSEL (9)

where λ is a hyper-parameter to control the learning of the selection task.

Machine Translation Task. The main task is the translation task trained on
the bilingual dataset D and retrieved pairs ΦN

X,Y with the cross-entropy loss:

LMT = EX,Y ∈D − log P (Y |X;ΦN
X,Y ) (10)

where ΦN
X,Y denotes the retrieved sentence pairs.

Selection Task. The auxiliary task forces the model to learn to select important
retrieved pieces. We use the vector δr = (δr1 , . . . , δrt) to indicate whether the
retrieved words (r1, . . . , rt) are selected. δri = 1 denotes the ith retrieved word
is selected, while δri = 0 denotes the word is discarded:

LSEL = EX,Y ∈D − log P (δgr |X;ΦN
X,Y ) (11)
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where the δgr is the ground-truth label. We simply assume that the ith word
in the source or target sentences is useful for the translation. Therefore, we set
δgri = 1 if the ith retrieved word in the source or target sentence, else δgri = 0.

3 Evaluation and Datasets

3.1 Evaluation

All datasets are tokenized with the Moses tokenizer [16] and mixed without
any sampling. We train each model for 40 epochs at least, and choose the best
checkpoint based on validation performance. BLEU points are computed with
tokenized output and references with multi-bleu.perl2 from Moses.

Table 2. Evaluation results on the En → De multiple domain dataset. The “Avg.”
column means the averaged result of the JRC-Acquis, WMT-14, OpenSubtitles, and
IWSLT-14 test sets.

En → De JRC-Acquis WMT-14 OpenSub IWSLT-14 Avg.

Transformer [27] 50.18 23.71 24.60 28.64 31.78

Transformer + Copy [13] 54.23 23.26 24.03 28.54 32.51

TM-Transformer [5] 57.15 22.32 24.74 28.21 33.10

Coupled encoder [6] 54.90 22.95 24.30 28.48 32.80

CSTM [3] 56.92 23.94 24.40 29.03 33.57

SelectNMT (our method) 57.84 23.72 24.38 29.11 33.76

Table 3. Evaluation results on De → En multiple test sets. The “Avg.” column means
the averaged result of the JRC-Acquis, WMT-14, OpenSubtitles, and IWSLT-14 test
sets.

De → En JRC-Acquis WMT-14 OpenSub IWSLT-14 Avg.

Transformer [27] 56.43 26.43 28.66 34.38 36.48

Transformer + Copy [12] 58.20 26.82 29.08 34.07 37.04

TM-Transformer [5] 62.87 25.08 28.37 34.64 37.74

Coupled encoder [6] 60.94 26.18 28.51 34.97 37.65

CSTM [3] 61.24 26.58 28.48 34.80 37.78

SelectNMT (our method) 63.21 26.70 28.70 35.53 38.54

3.2 Datasets

Single Domain. The JRC-Acquis dataset is used to evaluate our method,
including En-De, En-Es, and En-Fr language pairs. Following the previous work,3

the same split of the training, valid, and test data are used in our work. All
2 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-

bleu.perl.
3 https://github.com/jingyiz/Data-sampled-preprocessed.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/jingyiz/Data-sampled-preprocessed
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sentence pairs are tokenized by Moses [16] and encoded by BPE [24] with a
shared vocabulary of 40K symbols.

Multiple Domain. We construct an En-De heterogeneous dataset from a com-
bination of existing benchmarks, including the WMT-14 training data (1M sen-
tence pairs), the IWSLT-14 bilingual corpus (173K sentence pairs), JRC-Acquis
(797K sentence pairs) and OpenSubtitles (1M sentence pairs). For the WMT-14
dataset, we use newstest-2013 for validation and newstest-2014 for test. For the
IWSLT-14 benchmark, we use the tst2013 as the valid set and tst2014 as the
test set.

3.3 Training Details

We deploy Transformer base [27] for all experiments, which has 8 attention
heads, 512 embedding size with a dropout rate of 0.1. We use Adam [15] to train
all models, and apply label smoothing with an uncertainty of 0.1. All models are
trained on 8 NVIDIA V100 GPUs. We use the same retrieved sentence pairs for
all baselines. For the single-domain dataset, we separately train models of 6
directions on the bilingual dataset. The batch size is set as 6000 tokens in all
directions and the learning rate is set as 0.1. For the multi-domain dataset,
we accumulate the gradient for 2 iterations and then update model parameters
to simulate a 16-GPU environment.

3.4 Baselines

To compare our method with previous baselines, we reimplement the follow-
ing methods. Transformer [27] only encodes the source sentence for trans-
lation. Transformer + Copy [13] uses the copy mechanism on the Trans-
former architecture, which can copy words from retrieved target sentences. TM-
Transformer [5] based on the Transformer architecture augments the source
sentence with retrieved pairs through concatenation. Coupled Encoder [6]
encodes retrieved sentence pairs into NMT with an extra encoder. CSTM [3]
uses source-target memory to distinguish useful information from noise.

3.5 Results

Single Domain. In Table 1, we present the results of our method and other
baselines on 6 translation directions of the JRC-Acquis dataset. It is notice-
able that our proposed method significantly outperforms Transformer on aver-
age, which proves our method sufficiently selects the important information
from retrieved sentences. Transformer + Copy, which copies words from
retrieved target sentence, helps improve performance but not as much as TM-
Transformer. Compared with CSTM employing the cross-attention to circum-
vent the noise of retrieved sentences, our method gains better performance. It
shows that our method encodes semantic information by unified Transformer
layers on the encoder side.
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Table 4. Ablation experiments step by step on the En → De, En → Es, and En → Fr
translation tasks on the JRC-Acquis dataset. The “Avg.” column means the averaged
result of the 6 directions.

Operation En-De En-Es En-Fr Avg.

← → ← → ← →
SelectNMT 62.23 56.85 66.32 67.08 67.54 68.48 64.81

w/o Selection mechanism 61.45 56.18 64.52 66.02 67.39 67.14 63.45

w/o Segment embedding 59.48 55.65 62.82 65.73 66.06 66.88 62.77

Multiple Domain. Results of our method and other baselines on the En ↔
De translation task are listed in Table 2 and 3. TM-Transformer outperforms
the Transformer baseline on the JRC-Acquis test set but gets the worst per-
formance on the WMT benchmark. It indicates using all retrieved words leads
to worse performance when the retrieved sentences contain much irrelevant and
noisy information. Our method improves performance on all test sets, which indi-
cates that retrieved sentence pairs can provide useful information to improve the
generalization of the model on the multi-domain dataset.

4 Analysis

Ablation Study. To analyze the effect of each component of SelectNMT, we
conduct an ablation study on the JRC-dataset. Table 4 summarizes the results
of the ablation study. We first ablate the selection mechanism and there is a
decrease of 1.06 BLEU points. This means that the selection mechanism is impor-
tant to avoid the noise of TM. Then, we ablate the segment embedding and there
is another decrease of 0.98 BLEU points, showing the need to distinguish the
source sentence and retrieved sentences.

Table 5. Different memory settings on the JRC-Acquis dataset. “No-TM” denotes
no translation memory is used. “S-TM” and “T-TM” denote the source and target
monolingual retrieved sentences. “Bi-TM” denotes using bilingual retrieved sentences.

En-De En-Es En-Fr

← → ← → ← →
No-TM 54.55 49.40 59.32 60.82 61.39 62.23

S-TM 55.32 49.16 59.29 61.74 62.73 63.83

T-TM 61.62 56.25 63.79 66.42 67.18 68.01

Bi-TM 62.23 56.85 66.67 67.08 67.54 68.48

Memory Usage. We report the performance of the only using source or tar-
get retrieved sentences in Table 5. “S-TM” denotes that the source monolingual
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Fig. 3. Visualization for a case of self-attention weights of the selection layer.

retrieved sentences ΦN
X are incorporated for our model. We further only use the

target monolingual sentences ΦN
Y as memory, which denoted as “T-TM”. “Bi-

TM” denotes using the source and target of retrieved pairs simultaneously. The
retrieved target sentences contribute greatly to the translation, around +4.47–
7.07 BLEU points, as they contain the translated pieces with high probability.
Besides, the source of retrieved pairs can also provide a positive contribution
since the source contains contextual information.

Attention Visualization. In Fig. 3, we observe the self-attention weights
between the source sentence and the retrieved sentences. First, we find that the
attention is a kind of alignment between source sentence and translation mem-
ory. For example, the two columns immediately following “[SRC]” (“Freu@@”,
“dian”) and the three columns immediately following “[TGT]” (“Freu@@”,
“d@@”, and “sche”), which are aligned with the source words (“Freu@@”,
“dian”), all show higher attention scores. Besides, words with high attention
scores also tend to be selected. In the experiment, we found that the above
words with higher attention scores were indeed selected. As we force “[SRC]”
and “[TGT]” to be selected by adding them to the labels, most of the attention
focuses on the delimiter “[SRC]” and “[TGT]”.

Retrieval Size. To investigate the influence of retrieval sizes on the translation
quality and the inference speed, we conduct experiments given the different
number of retrieved sentence pairs ΦN

X,Y (N ∈ [1, 8]) in the Fig. 4. We separately
test the BLEU scores on the valid set and the inference speed in the same setting
(NVIDIA GeForce GTX 1080Ti). With the increase of retrieval size, the BLEU
score increases and the inference speed decreases. Although TM with retrieval
size ≥ 3 can provide more meaningful pieces, the improvement of BLEU points is
minuscule and the inference speed decreases a lot. Therefore, we set the retrieval
size equal to 2 in this work.

Results on WMT. We conduct experiments on the 4.5M WMT-14 (En-De)
training data. The Transformer baseline (re-implemented by ourselves) without
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Fig. 4. The inference speed and performance of our method on the JRC-Acquis En →
De valid set.

memory gets 27.1 BLEU points. We find that our method only outperforms the
baseline by +0.1 BLEU points. The reason for the negligible improvement is
that the overlap between the test set and the training set is too little to retrieve
useful pieces for the translation.

Table 6. Comparison with other selection methods on the JRC-Acquis dataset.

En-De En-Es En-Fr

← → ← → ← →
SMT + Copy 56.11 50.67 62.20 60.03 64.16 63.32

SMT + Concat 56.05 51.92 61.26 62.38 62.26 65.92

Ours 62.23 56.85 64.52 67.08 67.54 68.48

Selection Method. Some works trying to use phrase tables or the outputs of
phrase based MT within NMT [34]. Therefore, we also compare our method with
the memory-based NMT using an alignment table. For each retrieved pair, we
first extract words and their target counterparts using the processed alignment
table. Then we concatenate the source sentence and retrieved pieces for the
translation. From Table 6, we observe that our method outperforms the baseline
by +3.26–6.17 BLEU points. The alignment table is limited by n-gram level
alignment and can not capture the contextual information compared with the
unified transformer layers.

Analysis of Low-Frequency Sentences. To verify the capability of mitigating
the catastrophic forgetting problem [11], we compare our method with Trans-
former in Fig. 5, where the test set is categorized by the sentence frequency. For
low- and medium-frequency sentences (≤75%), our method has +5.6–7.4 BLEU
points improvement over Transformer. For high-frequency sentences (>75%),
there is +3.5 BLEU points improvement, which shows that SelectNMT is more
helpful for low- and medium-frequency sentences than high-frequency sentences.
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Fig. 5. Comparison of our method with Transformer on sentences of different frequency
on the De → En translation tasks on the JRC-Acquis dataset.

Table 7. An example from the JRC-Acquis En → De test set. Our model SelectNMT
retrieved sentence pair from the JRC-Acquis training set.

Ground truth Source Plant- health treatments

Target Behandlung mit Pflanzenschutzmitteln

Neighbor Source under no circumstances may plant- health treatments
be applied to the fruit after harvest

Target nach ihrer Ernte dürfen die Äpfel auf keinen Fall
noch mit Pflanzenschutzmitteln behandelt werden

Translation Baseline Pflanzenschutzbehandlungen:

Ours Behandlungen bei Pflanzenschutzmitteln:

Case Study. A typical comparison of the Transformer baseline and our pro-
posed method is listed in Table 7. For example, our method correctly trans-
lates “Plant- health treatment” into “Behandlungen bei Pflanzenschutz”, which
appears in the retrieved pair, while the baseline model chooses “Pflanzen-
schutzbehandlu”. The retrieve sentence pair helps our model generate a trans-
lation with better pattern and style, which improves the overall consistency of
the translation.

5 Related Work

TM-SMT. The combination of translation memory (TM) and machine trans-
lation (MT) have already been used in statistical machine translation (SMT)
[14,18,23,26]. Furthermore, phrase-based SMT (PBSMT) systems are aug-
mented with TM by constraining the output to contain retrieved TM matches
[19] and enriching the phrase table [4,25,28]. Phrase table [7,17,33,35] requires
a separate SMT system.

TM-NMT. Neural machine translation (NMT) [2,10,27,30] with the ability of
capturing complex functions [1,9,20,22,32,36] has been used to build amounts
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of translation systems. The semi-parameter method finetunes NMT model on
each language pair at inference [8,21,29]. The non-parametric method discards
expensive gradient descent steps before translation [5,13,34]. The previous works
[3,6] use an extra encoder to handle the target sentence of TM with a gating
mechanism and N -gram level retrieval approach to improve the retrieval accu-
racy.

6 Conclusion

In this work, we propose an end-to-end memory-based NMT model called Select-
NMT, which focuses on the important retrieved pieces from noisy retrieved con-
text. Our model inputs the concatenation of the source sentences and retrieved
pairs at the same time. To avoid the extra noise, we introduce a selection mech-
anism to choose useful words from memory. Experimental results demonstrate
our model can effectively improve performance on the single-domain and multi-
domain dataset.
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Abstract. Machine translation quality estimation (QE) aims to eval-
uate the result of translation without reference. Existing approaches
require large amounts of training data or model-related features, lead-
ing to impractical applications in real world. In this work, we propose a
contrastive learning framework to train QE model with limited parallel
data. Concretely, we use denoising autoencoder to create negative sam-
ples based on sentence reconstruction. Then the QE model is trained to
distinguish the golden pair from the negative samples in a contrastive
manner. To this end, we propose two contrastive learning architectures,
namely Contrastive Classification and Contrastive Ranking. Experiments
on four language pairs of MLQE dataset show that our method achieves
strong results in both zero-shot and supervised settings. To the best of
our knowledge, this is the first trial of contrastive learning on QE.

Keywords: Quality estimation · Contrastive learning · Machine
translation

1 Introduction

Machine translation quality estimation (QE) aims to evaluate the quality of
machine translation automatically without golden reference [2], which has a wide
range of applications in post-editing and quality control for MT. The quality can
be measured with different metrics, such as DA (Direct Assessment) Score [8] or
HTER (Human-targeted Edit Rrror) [22].

The main challenge of QE is data scarcity. Current QE datasets cover only
a little proportion of language-pairs in limited domains, with only thousands of
triples (source sentence, machine translated sentence and human-assessed score)
for training. As an alternative, Fomicheva [7] treats QE as an unsupervised prob-
lem, and extracts useful information from the MT system as quality indicator.
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But their method highly relies on model-related features (such as attention dis-
tribution), which may be inaccessible in real-word scenarios.

To perform estimation without QE data or model-related features, we pro-
pose a contrastive learning framework, which enables us to perform zero-shot
learning on limited parallel data. Firstly, we use a generative pretrained model,
BART [16], to create negative samples based on parallel sentence-pairs. We cor-
rupt the reference text in the parallel data based on rules, and then reconstruct
the text using BART as a denoising autoencoder. Noise would be inevitably
introduced during the corruption-reconstruction, therefore the reconstructed
text can be deemed as negative samples. Multiple negative samples can be gener-
ated for one sentence-pair based on variations of different corruptions. Secondly,
we propose two contrastive learning architectures, namely Contrastive Classi-
fication (ConClass) and Contrastive Ranking (ConRank). Both methods learn
to differentiate the golden pair from negative samples, formalizing zero-shot QE
as a classification or ranking problem. Afterwards, the model could be directly
used for estimation, or further finetuned when QE data is available in supervised
setting.

We conduct experiments on four medium and low-resource language pairs
of MLQE dataset [24], and our method achieves high correlations with human
evaluation in both zero-shot and supervised settings, showing the potential of
contrastive learning on QE. Besides, BART-based denoising reconstruction to
produce negative samples is also a simple but effective paradigm for contrastive
learning in natural language processing.

Our contributions can be summarized as follows:
[1] We firstly propose to use contrastive learning on QE, formalizing zero-shot

QE as a classification or ranking problem;
[2] We firstly propose to use pre-trained denoising autoencoder to generate

negative samples for contrastive learning;
[3] Our method achieves valid results in both zero-shot and supervised set-

tings, without relying on massive parallel data or model-derived features.

2 Related Work

2.1 Machine Translation Quality Estimation

During the trending of deep learning in the field of natural language processing,
there are a few works aiming to integrate deep neural network into QE systems.
Kim [13] propose for the first time to leverage massive parallel machine trans-
lation data to improve QE results. They apply RNN-based machine translation
model to extract high-quality feature. Fan [6] replace the RNN-based MT model
with Transformer and achieve further improvement.

After the emergence of BERT [5], there are also a few works to leverage pre-
trained models on the task of QE [14,23]. Language models pre-trained on large
amounts of text documents are suitable for data-scarce QE task by nature, and
have led to significant improvements without complex architecture engineering.
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Also, some previous works propose to utilize massive parallel data to strengthen
the pretrained model, by performing masked language modeling (MLM) on bilin-
gual concatenated text, and then fine-tune the model on QE data [11,14]. But
MLM is expensive and time consuming. Besides, parallel data is not always
readily accessible, especially for some low-resource language pairs (e.g., Sinhala-
English and Nepali-English in our work).

Despite most models rely on artificial annotated data, Fomicheva [7] firstly
propose to apply QE in an unsupervised manner. They propose to fit human
DA scores with three categories of model-related features: A set of unsupervised
quality indicators that can be produced as a by-product of MT decoding; the
attention distribution inside the Transformer architecture; model uncertainty
quantification captured by Monte Carlo dropout. Since these methods are all
based on glass-box features, they can only be applied in limited scenarios where
inner exploration into the MT model is possible.

2.2 Contrastive Learning

Contrastive learning aims to learn a representation by contrasting positive pairs
and negative pairs, and has led to significant improvements in various domains
[1,3,10]. It is also widely investigated in natural language processing tasks: word
representation [19], language modeling [12], unsupervised word alignment [17],
caption generation [18], and machine translation [26]. Self-supervised contrastive
learning methods do not require any labeled data; instead they sample a mini
batch from unsupervised data and create positive and negative samples using
data augmentation techniques.

Recently, Wu [25] first propose to evaluate the summary qualities without ref-
erence summaries by unsupervised contrastive learning. They construct different
types of negative samples with respect to different aspects of the summary qual-
ities, and train the estimator with a ranking loss. But their construction is based
on hand-crafted rules, which is non-extensible and easily leads to unnatural text.

3 Our Method

3.1 Denoising Reconstructed Samples

The primary concern for contrastive learning is how to construct negative sam-
ples. While most of previous works rely on hand-crafted rules or machine trans-
lation [6,26], in this work, we propose to use BART [16], a pretrained denoising
autoencoder, to create negative samples, by reconstructing corrupted reference
text, as shown in Fig. 1. BART is trained by corrupting text with an arbitrary
noising function, and then learning to reconstruct the original text. This proce-
dure is conducted on massive monolingual data, enabling BART to reconstruct
a sentence with corrupted information.

Firstly, we start from parallel sentence pairs, and introduce four types of
corruption transformations to the reference text, i.e. token masking, replacement,



Contrastive Learning for Machine Translation Quality Estimation 95

Fig. 1. The denoising reconstruction procedure. The positive pair is from parallel data.
Pretrained BART is used to reconstruct corrupted text, and the corruption can be
different combinations of four transformations.

deletion and insertion. The corruption is implemented on text spans with lengths
drawn from a Poisson distribution with λ = 3 (except for deletion). The detailed
corruption procedure is depicted in Algorithm 1.

Secondly, the corrupted text is fed to BART to generate a reconstruction.
Noise would be inevitably introduced by the decoding procedure due to cor-
rupted information, but the reconstructed text is both grammatically fluent and
syntactically consistent with the original one. This serves as a decent start point
for contrastive learning. The reconstructed text combined with the correspond-
ing source text serves as the negative sample, while the original parallel pair
serves as the positive sample, as shown in Fig. 1.

We perform multiple corruption-reconstructions for each reference, with dif-
ferent corruption combinations, positions and ratios, leading to various negative
samples against one positive. Notice the corruption ratio can be used to control
the noise level. More corruption leads to more noise, and vise-versa, simulating
translated text with different qualities.

3.2 Contrastive Training

Intuitively, for a golden reference in parallel data, any noise would lead to a trans-
lation with comparatively lower quality. To better utilize the negative samples
to improve QE performance, we propose two contrastive learning architectures,
namely ConClass and ConRank, to enforce the model to distinguish golden and
noised pairs, as shown in Fig. 2.

Both architectures are based on multiple QE models with shared parameters.
Given the outstanding performance of pretrained model on QE task, we choose
XLM-RoBERTa (abbreviated as XLM-R) [4] as our back-bone QE model. XLM-
R is pretrained on massive multilingual data with optimized sampling schedule,
and has achieved state-of-the-art results on various multilingual tasks. We follow
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Algorithm 1. Text Corruption
Input: Input sentence x with N tokens, replace length rl ∈ {0, 1}, random ratio

rd ∈ [0, 1], random mask ratio rm ∈ [0, 1], and insertion ratio ri ∈ [0, 1].
Output: Corrupted sentence x′.
1: Draw J text spans from x with totally M tokens, where M = N × rd
2: for i = 1, 2, ..., J do
3: if rl = 0 then
4: Delete i-th text span.
5: else
6: Generate a random number f ∈ [0, 1].
7: if f > rm then
8: Replace i-th text span with mask token.
9: else

10: Replace i-th text span with a random token.
11: end if
12: end if
13: end for
14: Draw K positions from x, where K = (N + 1) × ri.
15: for i = 1, 2, ...,K do
16: Insert i-th position with a random token.
17: end for

Sun [24] to implement our QE model. The bilingual sentence pair is concatenated
as the way defined by the pretrained model, and the first hidden representation
is fed to a fully connected layer, to generate a logit as the estimation result.

Based on that, in ConClass, the logits for the positive pair and all negative
pairs are normalized as a probability distribution and formed into a multi-class
classification problem, with the loss function as:

L conclass = CrossEntropy(li, yi),

where li denotes the logit for the i-th pair and yi denotes its category.
In ConRank, the logit of the positive pair is trained to be higher than that

of the negative pair, with the loss function as:

L conrank = max(0, l′ − l + margin),

where l and l′ denote the logits of golden pair and negative pair, respectively,
and margin is a hyper-parameter.

By differentiating the golden and negative samples, we enforce our estimator
to capture various aspects of the translation quality. The trained estimator can
then be used to evaluate any source-translation pair directly in zero-shot setting.
Besides, it can also be further fine-tuned if QE data is available, in which the
learning criterion is defined as follow:

L supervised = |l − l̂|,
where l̂ denotes the generated logit, and l denotes the golden estimation. In that
case, our contrastive training could be regarded as a pretraining step.



Contrastive Learning for Machine Translation Quality Estimation 97

Fig. 2. Contrastive learning architecture. The left denotes ConClass model, and the
right denotes ConRank model. S and T denote source and target sentences, and h0

denotes the first hidden representation of XLM-R, and l denotes the evaluation logit
derived from h0. For ConClass, there are totally n pairs with 1 golden pair and n − 1
negative pairs each time, while for ConRank, there are 1 golden pair and 1 negative
pair each time. Single quotation denotes noised input or output. Notice parameters of
multiple models are shared in both architectures.

4 Experiments

4.1 Setup

Dataset. We use MLQE dataset [24] for evaluating the QE model. MLQE
dataset contains source-translation pairs and DA scores [8] for six language pairs,
from which we mainly focus on four medium and low-resource pairs, including
Romanian-English (Ro-En), Estonian-English (Et-En), Sinhala-English (Si-En)
and Nepali-English (Ne-En). We also use the training set of MLQE in supervised
scenario to finetune XLM-R.

For parallel data used for denoising reconstruction, we randomly sample 10k
from Europarl v81 for Ro-En and Et-En. For Si-En and Ne-En, we use parallel
sentences from [9], which contains roughly 8k for each direction.

Implementations. We implement our back-bone QE model with XLM-R based
on the framework of transformers2. We follow Sun [23] and re-implement their
system with XLM-R-base due to the limit of computation resource, while their
original implementation is on XLM-R-large.

For contrastive learning, we use BART-base to perform reconstruction, and
we try two architectures as depicted in Fig. 2. For ConClass, the sample number
n is set as 12, with 11 negative and 1 positive. For ConRank, samples in each
group are re-shuffled with contrastive pairs of 1 positive and 1 negative.

We adopt Adam optimizer [15] in both contrastive training and supervised
fine-tuning, and Pearson coefficient is used as the evaluation metric.

Baselines. In zero-shot setting, we compare with the top-2 methods of
Fomichewa [7], which is purely based on glass-box features.
1 http://data.statmt.org/wmt16/translation-task.
2 https://github.com/huggingface/transformers.

http://data.statmt.org/wmt16/translation-task
https://github.com/huggingface/transformers
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In supervised setting, we mainly compare with the reimplemented result of
Sun [23]. On Ro-en and Et-en, we also compare with the MT model-based meth-
ods of Kim [13] and Fan [6], for which we use the open-source implementation34

with the default hyper-parameters. The MT model is pre-trained with the par-
allel data of Europarl v8.5 We do not compare with them on Si-En and Ne-En
due to the absence of large-scale parallel data.

4.2 Results and Analysis

Table 1. Results on MLQE test set in zero-shot setting. D-TP and D-Lex-Sim refer
to the top 2 unsupervised methods of Fomicheva [7].

Model Ro-En Et-En Si-En Ne-En

Pearson MAE Pearson MAE Pearson MAE Pearson MAE

D-TP 0.693 – 0.642 – 0.460 – 0.558 –

D-Lex-Sim 0.669 – 0.612 – 0.513 – 0.600 –

ConClass 0.715 9.366 0.468 7.217 0.473 5.085 0.579 2.957

ConRank 0.694 5.210 0.508 3.081 0.511 4.016 0.556 3.374

Table 2. Results on MLQE test set in supervised setting. BASE refers to the supervised
method of Sun [23]. Postech and bi-expert denote the results of Kim [13] and Fan [6],
respectively. Notice the results of BASE are reimplemented by us with XLM-R-base,
and our method serves as a pretraining step for them in supervised setting.

Model Ro-En Et-En Si-En Ne-En

Pearson MAE Pearson MAE Pearson MAE Pearson MAE

postech 0.589 0.584 0.380 0.894 – – – –

bi-expert 0.674 0.502 0.505 0.713 – – – –

BASE 0.846 0.375 0.671 0.620 0.587 0.543 0.697 0.538

ConClass + BASE 0.850↑ 0.373 0.696↑ 0.611 0.619↑ 0.584 0.728↑ 0.620

ConRank + BASE 0.850↑ 0.394 0.693↑ 0.585 0.609↑ 0.612 0.723↑ 0.429

As we can see in Table 1, in zero-shot setting, we do not surpass the best results
of Fomichewa [7]. But our method does not rely on model-related features, while
their method fully depends on features extracted from the MT model (such as
attention distribution or uncertainty quantification), which may be difficult to
obtain in some scenarios, therefore our method is more practicable and exten-
sible. Moreover, with more data and bigger model, our zero-shot performance
could be further improved, which is not applicable for their method.
3 https://github.com/Unbabel/OpenKiwi.
4 https://github.com/lovecambi/qebrain.
5 http://data.statmt.org/wmt16/translation-task.

https://github.com/Unbabel/OpenKiwi
https://github.com/lovecambi/qebrain
http://data.statmt.org/wmt16/translation-task
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In supervised setting, as shown in Table 2, our method can improve the results
by a large margin for all language-pairs, with the help of only limited parallel
data and no additional QE data. As a contrast, MT model-based methods can
not provide a valid estimation due to the absence of large-scale parallel data.
Contrastive learning is helpful for the model to capture translation-related fea-
tures. With only limited parallel data, different kinds of translation errors can
be simulated by different combinations of corruptions, making the model more
robust and extensible.

4.3 Different Methods to Create Negative Samples

In this section, we want to study different methods to create negative samples in
our framework. There are roughly three methods to create negative samples in
QE, i.e. denoising reconstruction, rule-based method, and machine translation,
as exemplified in Table 3. We create different groups of negative samples with
different methods, and then use them for contrastive training.

Table 3. Negative samples for Romanian-English, created via denoising reconstruc-
tion (abbreviated as DR), rule-based method (abbreviated as RB), and the provided
machine translation (abbreviated as MT) model. Red denotes noise. Notice the rule-
based sample is unnatural and grammatically erroneous, while denoising reconstructed
text is grammatically valid and fluent. On the other hand, denoising reconstruction
introduces noise while not changing the syntactic structure, while the machine trans-
lated sample is syntactically inconsistent yet semantically correct.

Source Permiteţi-mi să reiterez şi să evidenţiez principalele puncte
din raportul meu

Reference Allow me to reiterate and highlight the main points of my
report

DR Allow special mention to reiterate and highlight the
representative of my article

RB Allow consort to reiterate and highlight the of main points my
report

MT Let me repeat and highlight the main points in my report

For denoising reconstruction, we try different combinations and ratios of
the four corruptions, and create multiple negative samples for each reference,
following the procedure of Fig. 1. The TER score [22] between each reconstructed
sample and its reference is calculated, and all samples are grouped into three
categories with low, medium and high TER scores, simulating translated results
with low, medium and high quality.

For rule-based method, we also corrupt the samples with different variations
of the corruptions (except for token masking, since the [mask] token does not
appear in real text), and group the results into three sets with low, medium
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and high TER scores. For machine translation, we use the MT model (which is
also used to generate the QE data) released by MLQE dataset [24] to translate
the source text in parallel data. We adjust the beam size to make sure different
groups contain the same number of samples.

Table 4. Pearson results on MLQE test set with different negative samples in zero-shot
setting. Avg-TER refers to the average TER score. DR, RB and MT denotes results
of denoising reconstruction, rule-based method and machine translation, respectively.
Low, medium and high denote the noise level.

Direction DR RB MT

Low Medium High Low Medium High

Ro-En avg-TER 0.132 0.299 0.561 0.128 0.303 0.565 0.316

ConClass 0.638 0.703 0.715 0.432 0.468 0.329 0.083

ConRank 0.537 0.552 0.578 0.409 0.441 0.317 0.328

Ne-En avg-TER 0.145 0.325 0.614 0.149 0.321 0.620 0.663

ConClass 0.422 0.516 0.549 0.318 0.317 0.204 0.230

ConRank 0.321 0.516 0.545 0.303 0.335 0.197 0.196

As shown in Table 4, reconstructed samples with TER too low are harmful
for contrastive learning. Too little noise means the sample is roughly correct,
and in that case, enforcing the model to distinguish them is meaningless. To
make sure the negative samples are truly “negative” is important for the model
to capture quality-related features.

Negative samples obtained via rule-based method also underperform. This is
because rule-based method always lead to unnatural text with evident grammat-
ical error, which is not consistent with the real MT error distribution. The QE
model can learn little knowledge about translation evaluation during contrastive
training, since it is too easy to distinguish the negative samples.

Negative samples generated by MT system lead to even outrageous results.
We believe this is because its semantic integrity and syntactic inconsistency,
which is captured by the model as mendacious clue when doing classification.
Actually, most translated candidates are semantically correct but syntactically
inconsistent [20]. In other words, they are also not really “negative”.

4.4 Compare with Metric-Based Method

Machine translation metrics, such as BLEU [21], aim to evaluate the translation
based on the reference text. As denoted by [6], given the noised target sentence
and its corresponding reference, pseudo QE score can be obtained by automatic
metrics, therefore zero-shot QE can be performed based on parallel data. Since
no real QE data is incorporated, we refer to it as metric-based zero-shot QE.
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We use the four groups of noised samples obtained in Sect. 4.3, and generate
BLEU scores using sacremoses.6 The BLEU score between negative samples and
references is used as pseudo QE score to train the QE model directly.

Table 5. Pearson results on MLQE test set with different zero-shot QE methods. We
release the best results of different contrastive learning architectures in both directions.
DR and MT denote the negative samples generated via denoising reconstruction and
machine translation, respectively.

Direction Method DR MT

Low Medium High

Ro-En Metric-based 0.606 0.682 0.688 0.324

Contrastive 0.638 0.703 0.715 0.083

Ne-En Metric-based 0.401 0.504 0.519 0.376

Contrastive 0.422 0.516 0.549 0.230

As shown in Table 5, the metric-based method does not outperform con-
trastive learning in both directions. Automatic metric itself is an approximation,
therefore the pseudo score is not suitable to be directly used as the learning
objective. On the contrary, contrastive learning transforms the regression prob-
lem into a ranking or classification problem, therefore the learning objective is
valid and unbiased.

Interestingly, for MT-based negative samples, the metric-based method out-
performs contrastive learning in both directions. We believe this is because BLEU
is designed to tackle the inconsistent morphological or syntactical structures
between MT-derived samples and references, adapting the metric-based pseudo
score to our scenario.

5 Conclusion

In this paper, we propose a contrastive learning framework, to utilize limited
parallel data to boost QE performance. We use denoising generative pretrained
model to reconstruct corrupted sentences, leading to various negative samples
with consistent error distribution and controllable noise. We also propose two
contrastive architectures, viewing QE as a classification or ranking problem.
Experimental results show our model achieves strong results in both zero-shot
and supervised settings.

Denoising pretrained model is especially useful for generating negative sam-
ples for quality estimation. In the future, we will transfer our framework to the
estimation of other generative tasks. We would also use denoising reconstructed
samples for the training of automatic post-editing.

6 www.github.com/alvations/sacremoses.

www.github.com/alvations/sacremoses
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Abstract. Transformer is currently the dominant method for sequence to
sequence problems. In contrast, RNNs have become less popular due to the lack
of parallelization capabilities and the relatively lower performance. In this paper,
we propose to use a parallelizable variant of bi-directional LSTMs (BiLSTMs),
namely sentence-state LSTMs (S-LSTM), as an encoder for sequence-to-sequence
tasks. The complexity of S-LSTM is only O(n) as compared to O(n2) of Trans-
former. On four neural machine translation benchmarks, we empirically find that
S-SLTM can achieve significantly better performances than BiLSTM and con-
volutional neural networks (CNNs). When compared to Transformer, our model
gives competitive performance while being 1.6 times faster during inference.

Keywords: Neural machine translation · Sentence-State LSTMs ·
Bi-directional LSTMs · CNN · Transformers

1 Introduction

Sequence encoding is the task for deriving dense representations for sequences of input
tokens. It plays a fundamental role in neural models for natural language processing,
where a sentence is naturally treated as token sequences. In the literature, three major
types of sequence encoders have been dominantly used, namely Recurrent Neural Net-
work (RNNs) [1,14,22,35], Convolutional Neural Networks (CNNs) [11,16], and self-
attention networks (SANs) [31,32,40]. In particular, bi-directional LSTMs (BiLSTMs)
[28], as the mostly adopted RNN variant, encode a sequence by executing a recurrent
function from left to right and another recurrent function from right to left to consider
bi-directional information flows. [28]. CNNs encode a sequence of input vectors by
using stacked layers of convolutional neural networks over local n-grams. SANs encode
each input token by linearly aggregating all input vectors using attention [1], with its
mostly adopted variant being Transformer [40].
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 104–115, 2021.
https://doi.org/10.1007/978-3-030-88480-2_9
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For classification [13,16,33] and structured prediction problems [20,23], all three
types of sequence encoders (and their variants) have been heavily investigated. For
example, for syntactic parsing [25], different RNNs [9] and SANs [39] have been thor-
oughly discussed for their relative advantages. For example, for sentiment classification,
numerous variants for both CNNs [16], RNNs [37] and SANs [44] have been investi-
gated. Recently, with the rise of pre-training techniques, Transformer-based language
model architectures [8,21,26] have become the dominant methods for these tasks.

For sequence-to-sequence modeling, in contrast, the number of variant architec-
tures that have been investigated for RNNs and CNNs are relatively much fewer com-
pared with variants of Transformer. In particular, for RNNs, the architecture of Bah-
danau et al. [1] has been the mostly used architecture, while for CNNs, the method of
Gehring et al. [11] has been one of the few structures considered. In contrast, for Trans-
former, a wide range of variants have been investigated [2,7,19]. One reason is that the
highly competitive performance of Transformer, which gives the state-of-the-art results
for machine translation, text summarization and other tasks such as dialogue genera-
tion [46]. On the other hand, there are potentially advantages of their CNN and RNN
counterparts which can be potentially useful. For instance, LSTMs have the strength of
avoiding gradient issues over large numbers of back-propagation. In fact, Chen et al. [4]
show that a combination of Transformer encoder and LSTM decoder can give highly
competitive results for machine translation when compared to Transformer.

The relative disadvantage of LSTM sequence-to-sequence models is that the highly
sequential encoder structure precludes parallelization. As a result, the time complex-
ity of bi-directional LSTM (BiLSTM) encoders is higher compared with Transformer
encoders. In addition, it has been shown that BiLSTMs face difficulty capturing long-
range dependencies due to large numbers of recurrent steps necessary for encoding a
large sequence. One alternative to BiLSTM encoding is sentence-state LSTM (S-LSTM
[47]), which has a parallel design of recurrent encoding functions, allowing efficient
sequence encoding and direct node communications by the introduction of a global
node. On classification and sequence labeling tasks, S-LSTM has been shown to give
strong results compared with BiLSTMs, CNNs and Transformers [47]. However, rela-
tively little work has been done to investigate S-LSTMs for sequence-to-sequence mod-
eling.

We fill this gap by considering RNN sequence-to-sequence models, which has the
S-LSTM encoder and a LSTM decoder. The model structure is shown in Fig. 1. Com-
pared with BiLSTM, S-LSTM updates hidden states of all words in parallel and is bet-
ter at modeling long-ranged dependency, thanks to the use of a global node. Compared
with Transformer, S-LSTM only requires linear time O(n) to encode n words, which
are significantly less compared to a quadratic complexity O(n2) for Transformer, and
thus potentially has better applicability to long input, which can be the case for docu-
ments [45], dialogue [24], etc.

Results on four machine translation benchmarks show that the S-LSTM sequence-
to-sequence model obtains competitive performance compared with Transformer, and
gives higher BLEU than the baseline BiLSTM and CNN sequence-to-sequence archi-
tectures. In addition, S-LSTM runs the fastest when compared to all the baseline
encoders, being 1.6 times faster than Transformer during inference. We release our
code at https://github.com/muyeby/S-LSTM-nmt.

https://github.com/muyeby/S-LSTM-nmt
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Fig. 1. Overview of the proposed model. The S-LSTM parameters are tied at different time steps.

2 Approach

Following previous work [1,40], the proposed model has an encoder-decoder archi-
tecture [35]. As shown in Fig. 1, given an input sentence X = {w1, w2, ..., wn}, the
encoder acts as a recurrent state transition function (named S-LSTM), which takes
as input a set of initial states {s01, s

0
2, ..., s

0
n, s0g}, and generates more abstract states

{st1, s
t
2, ..., s

t
n, stg} at each time step t, t ∈ [0, T ]. In particular, {st1, s

t
2, ..., s

t
n} denote

the states of input tokens and stg denotes a sentence-level state. The final sentence-level
state sTg is used to initialize the decoder network. The decoder generates a target token
sequence one by one. At each time step t, the attention mechanism is applied over the
final encoder hidden states {sT1 , sT2 , ..., sTn} and combined with the current hidden state
of the LSTM decoder to predict the next target word yt.

2.1 Sentence-State LSTM Encoder

We follow Zhang et al. [47] to build a S-LSTM model for sentence encoding. S-LSTM
can be regarded as a type of recurrent graph neural networks (GNNs, [18,34,41]) which
views a whole sentence as an input graph and performs information exchange between
words in an iterative manner. Figure 2(a) shows how nodes communicate with each
other when context window size is 1. Each word is connected with its neighbors and
the global node is connected with all words. At each time step, S-LSTM updates each
word state according to its local context and a sentence-level global feature. The global
state is computed based on all word states.

Formally, at step t, the S-LSTM updates a set of {st1, s
t
2, ..., s

t
n} and a sentence-level

global state stg simultaneously. The word hidden states {st1, s
t
2, ..., s

t
n} record features

for words {wt
1, w

t
2, ..., w

t
n} under the sentential context and are initialized by corre-

sponding word embeddings {x1, x2, ..., xn}. The global state stg records features for
the whole sentence and is initialized by an averaged-sum of initial word hidden states.
Following LSTM, each state st∗ is divided into a hidden state ht

∗ and a cell state ct∗.
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Fig. 2. Information exchange in S-LSTM and Transformer.

The former serves as working memory which carries information from immediately
previous events and new inputs while the latter stores long-term memory.

Word State Transition. Given the k-th word, S-LSTM calculates its context hidden
and cell states at time t as:

ht−1
l , ct−1

l = avg(ht−1
k−w, ..., ht−1

k−1),avg(c
t−1
k−w, ..., ct−1

k−1),

ht−1
r , ct−1

r = avg(ht−1
k+1, ..., h

t−1
k+w),avg(c

t−1
k+1, ..., c

t−1
k+w),

(1)

where w is the context window size, and ht−1
l , ht−1

r are left and right context hidden
states, ct−1

l , ct−1
r are left and right context cell states, respectively.

The hidden state ht
k is then calculated based on ht−1

k , ht−1
l , ht−1

r , ht−1
g and their

corresponding cell states ct−1
k , ct−1

l , ct−1
r , ct−1

g , as well as its word embedding xk:

mt
k = [ht−1

k , ht−1
l , ht−1

r , ht−1
g , xk],

i = σ(Wim
t
k + bi),

l = σ(Wlm
t
k + bl),

r = σ(Wrm
t
k + br),

f = σ(Wfmt
k + bf ),

d = σ(Wsm
t
k + bs),

o = σ(Wom
t
k + bo),

(2)

u = tanh(Wumt
k + bu),

l̂, r̂, f̂ , d̂ = softmax(l, r, f, d)

ctk = l̂ � ct−1
l + f̂ � ct−1

k + r̂

+ �ct−1
r + d̂ � ct−1

g ,

ĉtk = i � u + (1 − i) � ctk,

ht
k = o � tanh(ĉtk),

(3)

where σ denotes the sigmoid activation function, [ht−1
k , ht−1

l , ht−1
r , ht−1

g , xk] is the

vector concatenation of ht−1
k , ht−1

l , ht−1
r , ht−1

g and xk. l̂, r̂, f̂ , d̂ are gates control-
ling information from the left context cell, the current cell, the right cell and
the global cell respectively. i, o are input and output gates which control infor-
mation from the current input state ut

k and the current cell state ĉtk, respectively.
Wi,Wl,Wr,Wf ,Ws,Wo,Wu, bi, bl, br, bf , bs, bo and bu are model parameters.
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Table 1. Per-layer complexity, parallelizability and maximum path lengths for different layer
types. n is the sequence length, k is the kernel size of convolutions.

Layer Type Complexity Parallelizable Maximum path lengths

RNNs O(n) False O(n)

CNNs O(n) True O(logk(n))

SANs O(n2) True O(1)

S-LSTM O(n) True O(1)

Global State Transition. As shown in Fig. 2(a), the global state stg is updated based
on previous hidden states concerning all words and the global node as well as the cor-
responding cell states:

h̃g = avg(ht
1, h

t
2, ..., h

t
n),

fg = σ(Wgh
t−1
g + Vgh̃g + bg),

fk = σ(Wfht−1
g + Vfht−1

k + bf ),

∀k ∈ [1, n]

og = σ(Woh
t−1
g + Voh̃g + bo),

(4)

F = {fg, f1, ..., fn},

f̂g, f̂1, ..., f̂n = softmax(F ; τ)

ctg = f̂g � ct−1
g +

n∑

k=1

f̂k � ct−1
k ,

ht
g = og � tanh(ctg),

(5)

where avg is the average pooling function, τ is a temperature, which is applied to
logits to affect the final probabilities from the softmax function. fg, fk are forget gates
which aggregate information from the previous global and word cell states, respectively.
Wg, Vg,Wf , Vf ,Wo, Vo, bg, bf and bo are model parameters. It should be noted that the
transition function of global state and word states use independent model parameters.

2.2 Comparison with RNNs, CNNs and Transformer

As shown in Table 1, we compare S-LSTM with RNNs, CNNs and Transformers by
considering three aspects:

– The computational complexity per layer;
– Computational parallelism for sequence encoding;
– The maximum path length of the input sentence.

The first two items jointly determine the computational and memory cost of a sys-
tem. The third item assesses the capacity of learning long-range dependencies.

RNNs. Standard RNNs passes information from one end to the other along the sen-
tence. As a result, RNNs lack parallelizability and the time complexity of RNNs
scales with the input sentence length. In contrast, S-LSTM takes a whole sentence as
input, updating word states simultaneously. Therefore, S-LSTM is more time-efficient
than standard RNNs. In addition, RNNs are proven to be limited in modeling long
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sequences [38]. S-LSTM alleviate this issue by using a global node, which reduces
the maximum path length of arbitrary words to O(1), compared to RNNs with O(n).
Theoretically, S-LSTM can be more accurate when dealing with longer inputs.

Transformer and CNNs. The main difference between the S-LSTM layer and a stan-
dard Transformer layer can be two folds: 1) S-LSTM is based on gating and recurrent
mechanism while Transformer uses attention mechanism. 2) As shown in Fig. 2(b),
Transformer updates word hidden states based on the whole context, resulting in a com-
plexity ofO(n2). In contrast, S-LSTM use a local context together with a sentence-level
feature, which significantly reduces the time complexity from O(n2) to O(n). Simi-
lar to CNNs, S-LSTM updates word states using larger context with increasing time
steps. However, S-LSTM additionally considers sentence-level context, which makes
S-LSTM more powerful for modeling important long-term dependencies.

2.3 LSTM Decoder

Our system adopts a LSTM decoder, which takes the final encoder hidden states as input
and generates a target sentence in an auto-regressive manner. The decoder is composed
of a stack of L identical layers, each of which consisting of two sub-modules: 1) the
first one is a LSTM layer and 2) the second one is an attention layer which collects
information from encoder. Specifically, we initialize the hidden and cell states of LSTM
decoder using final state of the global node:

h̄l
0, c̄

l
0 = hT

g , cTg ,∀l ∈ [1, L]. (6)

At each time step t, the l-th decoder layer takes output hidden states of the preceding
layer as input and produce new hidden states as:

h̃l
t, c̃

l
t = LSTM(h̄l

t−1, c̄
l
t−1, h̄

l−1
t ),

h̄l
t = Attn(h̃l

t,M),
(7)

where Attn refers an attention function, M = {hT
1 , hT

2 , ..., hT
n} represents the final

encoder hidden states.
The final-layer decoder hidden states are used to predict the probability of a target

word:
P (yt|y<t,X) = softmax(Wdh̄

L
t ), (8)

where y<t = [y0, y1, ..., yt−1] and Wd is a parameter matrix.
Following recent NMT systems [40], we equip our method with absolute position

embeddings and feed forward layers to improve model capacity.

2.4 Training

Given a translation sentence pair 〈X,Y 〉 where Y = {y0, y1, ..., ym}, our model is
trained to minimize the cross-entropy loss:

� = −
m∑

t=1

log p(yt|y<t,X;Θ), (9)

where Θ is the set of model parameters.
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Table 2. Number of sentences of each dataset.

Setting NIST ZH → EN WMT16 EN ↔ RO IWSLT16 EN ↔ De IWSLT17 EN ↔ FR

Train 1.9M 606k 160k 236k

Dev 1.7k 2.0k 7.3k 9.5k

Test 1.4k/1.8k/1.1k 2.0k 6.8k 2.6k

3 Experiments

Dataset. We conduct experiments on NIST Chinese to English (NIST ZH → EN)
translation tasks as well as WMT16 English-to/from-Romanian (WMT16 EN ↔ RO),
IWSLT14 English-to/from-German (IWSLT14 EN ↔ DE) and IWSLT17 English-
to/from-French (IWSLT17 EN ↔ FR) datasets. For NIST ZH → EN, we use parts
of the bitext provided within NIST’12 OpenMT.1 We choose NIST MT06 as the vali-
dation set, and MT04, MT05, MT08 as the test sets. For WMT16 EN ↔ RO, we use
the same data for training and pre-processing as Sennrich et al. [29] but remove back-
translated sentences. We use newstest2016 for evaluation. For IWSLT14 EN ↔ DE, we
use fairseq script prepare-iwslt14.sh to split the train/dev dataset and merge the multi-
ple testsets dev2010, dev2012, tst2010-tst2012 for testing. For IWSLT17 EN ↔ FR, we
merge dev2010, tst2010-2015 for validation and tst2016, 2017 for evaluation. Table 2
lists the statistics of above datasets.

Experimental Settings. We implement our model following Transformer-base.
The hidden state size is set as 512, and feed-forward layer size is 2048 for NIST12 ZH
→ EN as well as WMT16 EN ↔ RO, and 1024 for other datasets. We use a dropout
of 0.1 on NIST ZH → EN and 0.3 on the other datasets. We select the context window
size from [1, 2, 3] and the softmax temperature from [1, 5, 10], based on validation loss.
We preprocess sentences using byte pair encoding ([30]; BPE), jointly learned from the
concatenation of the parallel training dataset only. We use the Adam optimizer [17] with
the same learning rate schedule strategy as Vaswani et al. [40] with 4k warmup steps.
The learning rate linearly increases from 1e−7 to 7e−4/5e−4 for NIST ZH→EN and the
other datasets, respectively. Each mini-batch consists of 4,096 source and target tokens
respectively. ALL experiments run on fairseq2 with 4 RTX 2080TI GPUs.

Evaluation. We use multi-bleu.perl to evaluate our model for a fair comparison with
previous systems. For NIST ZH → EN, we use beam size 4 and case-insensitive BLEU
scores. For other datasets, we use beam size 5 and report case-sensitive BLEU scores.

3.1 Main Results

Translation Quality. Table 3 shows the main results on the NIST ZH → EN dataset.
We compare our method with previous models based on BiLSTM, convolution [11] and

1 LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14, LDC2005T10, LDC2002E18,
LDC2007T09, LDC2004T08.

2 https://github.com/pytorch/fairseq/.

https://github.com/pytorch/fairseq/
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Table 3. BLEU score NIST ZH → EN dataset.

Model MT04 MT05 MT08 Average

BiLSTM 42.1 35.8 28.4 35.4

ConvS2S [11] 49.7 44.3 39.0 44.3

Transformer [40] 53.0 47.8 43.5 48.1

S-LSTM 52.3 47.9 43.6 47.9

Table 4. BLEU scores and Inference speedup (over Transformer) on benchmark datasets. “†”
indicates results are based on both parallel and back-translated corpus. “‡” means results are
based on our own implementations.

Model
WMT16 IWSLT14 IWSLT17 Average Speedup

EN → RO RO→EN EN → DE DE → EN EN → FR FR → EN – –

GRU [29] 23.9 27.8 – – – – – 0.7×‡

ConvS2S [11] 30.2† – – – – – – 0.8×
Transformer [40] 32.4 32.1 28.6 34.8 38.7 38.9 34.3 1.0×
S-LSTM 32.2 32.0 28.2 34.4 38.2 38.5 33.9 1.6×

self-attention [40]. Among previous systems, Transformer obtains the best results on all
testsets. Compared with Transformer, S-LSTM gives 0.7 lower BLEU score on MT04
but slightly better results on MT05 and MT08 testset. On average, S-LSTM gives a
BLEU score of 47.9, which is 0.2 lower than Transformer, but 12.5 and 3.6 points
higher than BiLSTM and ConvS2S, respectively.

Table 4 shows the BLEU scores on WMT16 EN ↔ RO, IWSLT14 EN ↔ DE and
IWSLT17 EN ↔ FR. Transformer gives the best results on all datasets, even outper-
forming ConvS2S which uses 2M additional back-translation data for training. S-LSTM
gives highly competitive BLEU scores compared to Transformer. In addition, S-LSTM
obtains BLEU scores of 32.2 and 32.0 on EN → RO and RO → EN, respectively, which
are significantly better than GRU and ConcS2S system.

In total, the results on above 4 benchmarks indicate that the S-LSTM architecture
is better than previous RNN and convolution based methods, and can be a competitive
alternative system in both large and small datasets.

Translation Speed. We also measure the translation speed, which is important in prac-
tical scenarios. As shown in the last column of Table 4, BiLSTM gives the slowest speed
because BiLSTM encoder requires sequential operations. ConvS2S is faster than BiL-
STM but slower than Transformer. The reason is that ConvS2S requires deeper encoder
and decoder for long-range information exchange, which slows down the translation
speed. S-LSTM gives the fastest speed, being 60% faster than Transformer. This is con-
sistent with our theoretical analysis in Sect. 2.2, showing the efficiency of S-LSTM.



112 X. Bai et al.

4 Analysis

We conduct an ablation study to assess the effectiveness of each component in S-LSTM,
and how does the number of recurrent step affects model performance.

4.1 Ablation Study

Table 5.Ablation Study onWMT16 RO→ EN.

Model BLEU

SLSTM 32.0

– global node 30.8

– global initialized decoder 31.6

– temperature 31.7
Fig. 3. Performance against model depth.

Table 5 shows BLEU scores on WMT16 RO → EN regarding different model struc-
tures. Specifically, we consider three configurations: 1) removing the global node; 2)
initializing the LSTM decoder states with zeros rather than sentence-level state and
3) removing the temperature parameter in Eq. 5. First, after removing the sentence-
level global node, S-LSTM loses sentence-level information and deteriorates into a
local model. This results in a performance decrease of 1.2, showing that the global
node is indispensable for S-LSTM. Second, using the sentence-level state to initialize
the decoder leads to improvements. The test BLEU score increase from 31.6 to 32.0.
Finally, the temperature parameter also has positive impact on model performance.

4.2 Effect of Recurrent Steps

We study the effect of recurrent steps on WMT16 RO → EN. As shown in Fig. 3, the
test BLEU becomes better with growing recurrent steps, increasing from 31.2 to 32.0.
This shows the effectiveness of recurrent information exchange in S-LSTM. When the
recurrent step is 12, our system reaches the peak performance, and the performance
starts to decrease with even more steps. A possible explanation for this is that too many
recurrent steps leads to overfitting, which can hurt the model performance.

5 Related Work

Our work is related to prior research on sequence-to-sequence learning and efficient
sequence encoding.
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5.1 Seq2seq Modeling

Seq2seq models, which follow an encoder-decoder paradigm [6,15,35], have shown
dominant performance in various sequence-to-sequence tasks such as machine transla-
tion (MT) and text summarization. Bahdanau et al. [1] introduces attention mechanism
into seq2seq framework and first surpass the performance of phrase-based MT using
RNN-based encoder and decoder. The RNN-based NMT approach (RNMT) quickly
becomes the standard paradigm for seq2seq tasks, followed by Wu et al. [43], which
achieves promising performance on multiple benchmark datasets. The major drawback
of RNMT models is failure for parallel training due to the inherently sequential nature
of RNN. To this end, ConvS2S [11] apply convolutional neural networks as basic blocks
for both encoder and decoder, allowing to fully parallel training. The ConvS2S is shown
to outperform RNMT models on both translation quality and training speed. However,
CNN models are weak in learning distant dependencies as only local features are cap-
tured in each layer [3,40]. Vaswani et al. [40] propose Transformer, which addresses
deficiencies in both RNN-based models and CNN-based models: (1) it avoids sequen-
tial dependencies and thus allows for parallel computing during training and (2) its
self-attention layer enables each position to connect to all other positions in a sequence.
Compared with Transformer, the proposed S-LSTM model maintains the ability of par-
allel training and long-dependency modeling, while efficiently updating word states
based on a local context as well as a sentence-level node.

5.2 Efficient Sequence Encoding

There have been many prior efforts on designing efficient sequential encoders. For
example, Cho et al. [6] introduce gated recurrent unit (GRU), which has less gates
than LSTM and merges the hidden and cell states. Szegedy et al. [36] and Gao et
al. [10] propose Grouped RNNs and CNNs, respectively, which reduce the number of
parameters as well as the computation complexity by group size. Transformer XL [7]
splits a input sequence into segments and uses a segment-level recurrence mechanism to
avoid long-range information exchange. Sparse-Transformer [5] uses pre-defined mask
patterns to compute subsets of the attention matrix. Star-Transformer [12] exploits a
star-shaped structure which reduces token connections from quadratic to linear. Roy et
al. [27] extend Sparse-Transformer by using learnable patterns to compute sub-attention
matrix. Reformer [19] replaces standard dot-product attention by one that uses locality-
sensitive hashing. Linformer [42] approximates standard attention matrix by a low-rank
one. Our work shares the same goal with above approaches. In particular, we focus on
a recurrent architecture and reduce the computation complexity to O(n).

6 Conclusion

We investigated a recurrent neural network structure for sequence to sequence model-
ing, using S-LSTM for the encoder and LSTM for the auto-regressive decoder. Results
on four machine translation datasets show that our system obtains 1.6 translation speed
up compared with Transformer, while giving comparable results. Our work shows that
recurrent neural networks can be a useful alternative to Transformer in neural sequence
modeling.
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Abstract. Ancient Chinese literatures are not only the unique cultural heritage
of China but also the treasures of world civilization. Nevertheless, it has become
quite difficult for modern people to comprehend or even create ancient works with
the evolution of language in the long history. Translation is therefore playing a
key role in bridging the two eras. This paper is to develop an automatic translation
method between ancient and modern Chinese literature. To start with, an open
sourced sentence level parallel corpus of ancient-modern Chinese is established
since there is no available parallel corpus open for use. As the seq2seq-based
machine translation models do not work well on this task, the pre-trained model
UNILM is then applied in our method considering the monolingual characteris-
tics of this task. Furthermore, the ancient Chinese pre-trained model - Guwen-
BERT is utilized to further improve the performance of the method. The quality
of translation is evaluated by both Human Evaluation and two automatic metrics:
a) case-sensitive BLEU scores and b) Imagery Conservation (I.C), which is first
developed in this paper. The experimental results under all metrics show that our
method can generate higher quality of translation.

Keywords: Guwen-UNILM · Ancient-Modern Chinese MT · Pre-trained
models

1 Introduction

Ancient Chinese literature, especially proses and poems, are not only the unique cultural
heritage of China but also the common treasures of the world civilization. Nevertheless,
it has become quite difficult for modern people to comprehend or even create these
ancient works with the evolution of language in long history. Several examples shown
in Fig. 1 indicate that the ancient Chinese is significantly different frommodern Chinese
though they share some common characters.

However, the translation of ancient Chinese texts usually requires the participation
of experts in the relevant field and involves lots of time and labor even for historians
and linguists. It becomes the luxury and scarce resources for ordinary people in modern
society to learn and enjoy the value of traditional Chinese culture from piles of retained
literatures in history. Moreover, the published translations by experts are almost all
ancient-to-modern. There are few reverse modern-to-ancient translations. It would be
very interesting for modern people to create their own works in ancient expression as
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 116–128, 2021.
https://doi.org/10.1007/978-3-030-88480-2_10
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Fig. 1. Examples of ancient-modern Chinese parallel texts. Intuitively, ancient Chinese language
tend to be more abbreviated.

an aesthetic exercise. The linguists can also benefit from the reverse translation to find
the clues for their research.

Machine Translation (MT) greatly relieves the human efforts in conversion between
two different languages and the quality of translation has also made a significant
improvement with the research on Neural Machine Translation (NMT), represented by
seq2seq [15] framework and Transformer [16] using self-attention mechanism. While
these models work well for bilingual translation, it is far from satisfactory when applied
to the monolingual task like translation between ancient and modern Chinese.

In summary, there is a strong need to develop a specific machine translation appli-
cation in the context of ancient Chinese.

The first challenge is the lack of ancient-modern Chinese parallel texts. The success
of NMT in bilingual translation largely relies on the huge number of available parallel
corpus while there are only few published ancient-to-modern translations with high
quality1 and the translators devoted to this area are also limited.

The second challenge comes from the language itself. The versatility of Chinese
characters in performing diverse functions in syntactical structure makes the ancient
expression concise but confusing. Besides, metaphor and imagery are widely used in
ancient Chinese to evoke sensory and emotional experiences, which is an advantage in
aesthetics but increases ambiguity in delivering message.

Accordingly, this paper made the following contributions by developing a method
named Guwen-UNILM, where Guwen means ancient Chinese.

First, we collected a large number of ancient Chinese texts and their correspond-
ing translated modern texts from several official ancient Chinese literature websites that
collect the authentic translation works. However, these translations are article-level par-
allel texts, which are too long and complicated for model training. For simplicity, we
then manually establish two fine-grained sentence-to-sentence parallel corpora on this
basis.2

Second, the UNILM [2] model initially proposed for natural language generation
tasks (e.g., generative question answering, abstractive summarization), is applied for
the first time on the translation task, as inspired by the characteristic that ancient Chi-
nese is usually concise and seems to be the summary of its corresponding modern ver-

1 Three Hundred Tang Poems,Mao Zedong Selected Poems and One Hundred 100 Sung Proses.
2 Our corpora and code are available at: https://www.github.com/cloudyskyy/Guwen-UNILM.

https://www.github.com/cloudyskyy/Guwen-UNILM
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sion. Based on BERT architecture, UNILM can only be trained on monolingual corpora
and hence suitable for monolingual machine translation. Moreover, UNILM can utilize
BERT parameters pre-trained on large monolingual corpora as its initial parameters,
thereby reducing the impact of insufficient parallel data.

Third, Guwen-BERT, the BERT model specifically pre-trained on a monolingual
corpus built from 15,694 ancient Chinese books containing 1.7 billion Chinese tokens,
is utilized to initialize the parameters of UNILM. Pre-training on ancient Chinese texts
in advance can help UNILM better adapt to the translation task and speed up the con-
vergence of the model.

Forth, an automatic evaluation metric: Imagery Conservation (I.C) is specially pro-
posed to evaluate the translation between ancient and modern Chinese.

Finally, our method achieves a significant improvement over the state-of-art on both
automatic evaluation metrics and human evaluation.

2 Related Work

The development of Machine Translation (MT) has shifted from the early Statistical
Machine Translation (SMT) [5,11] to Neural Machine Translation (NMT) with the
prevalence of deep learning in recent years. Great breakthroughs have been made with
the RNN-based [15] or CNN-based [6] NMT approaches to improve both the qual-
ity and capability of the MT. The attention mechanism [10,15] further enhances the
seq2seq framework and Transformer becomes one of the most outstanding NMT meth-
ods by using self-attention mechanism [17].

Although the NMT based methods can manage bilingual translation well in many
areas with great success, their performance in the monolingual context such as transla-
tion between ancient andmodern Chinese [20] are yet to be improved due to the shortage
of available parallel corpus that can be used for model training and the fact that the Chi-
nese characters in ancient expression can performmultiple syntactic role at various posi-
tions in a sentence with different meaning, which could confuse the translation model.
As the result, the pre-training is required to better learn the language representation.

Pre-trained models (PTMs) led by BERT [1] have achieved unprecedented success
in the field of Natural Language Processing (NLP). They can learn universal language
representation that will benefit downstream NLP tasks by modeling the masked pieces
in a sentence with plenty of corpora. Moreover, these models can be reused to mini-
mize the effort of training a new model for a new task. PTMs are frequently used in
Natural Language Understanding (NLU) tasks such as extractive question answering
[18], named entity recognition [14] and passage ranking [12] and recently have been
extended to NLG domain.

UNILM (Unified Language Model Pre-training for Natural Language Understand-
ing and Generation), developed by designing a unique self-attention mask matrix and
a set of novel cloze tasks, can be used to perform NLG task such as generative ques-
tion answering, abstractive summarization and question generation. Like other PTMs,
UNILM can only be applied on monolingual tasks, which makes it suitable for our
translation task between ancient and modern Chinese. Moreover, UNILM can directly
use the weights of BERT pre-trained on a large number of monolingual corpora as initial
parameters, thereby alleviating the problem resulted from insufficient parallel text.
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3 The Guwen-UNILM Framework

Fig. 2. Overview of the Guwen-UNILM framework. We take the ancient-to-modern translation
direction as an example in this figure. Vice versa. The framework mainly includes three steps: pre-
training step, fine-tuning step and translation step. The detailed information of our framework is
given in Sect. 3.

The framework of Guwen-UNILM as shown in Fig. 2 consists of three parts: pre-
training, fine-tuning and translation.

In the pre-training step, the BERT model is trained by plentiful ancient Chinese
texts until convergence; in the fine-tuning step, the parameters of the pre-trained model
are used as the checkpoints for UNILM to run further seq2seq training, with the help of
self-attention masks. At the end of seq2seq learning, the fine-tuned UNILM is applied
to translate the test data.

3.1 Pre-training Step

The whole pre-training procedure is shown in Fig. 3.
First, the ancient Chinese monolingual corpus3 is built from 15,694 ancient Chi-

nese literatures (including poems, proses, documentations, fictions, etc.), containing
1.7 billion Chinese characters. The data need pre-processing first to convert traditional
Chinese characters and variant Chinese characters4 into simplified Chinese characters
for consistence. Each Chinese character is then treated as one token, and the 23,287
characters that occur most frequently are selected as the vocabulary for pre-training of
Guwen-BERT.
3 The corpus is built from the data provided by Daizhige Ancient Literature at http://www.
daizhige.org.

4 These characters were once used in ancient China but now have been simplified.

http://www.daizhige.org
http://www.daizhige.org
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Fig. 3. Overview of the Guwen-BERT pre-training.

Specifically, the roBERTa [9] pre-training approach is adopted in our paper. The
word sequence represented by x is embedded into the input vector {x}|x|

i=1, which is
the sum of the token embeddings, segment embeddings and position embeddings of x.
{x}|x|

i=1 is then fed to an L-layer Transformer Hl = Transformerl(Hl−1), l ∈ [1, L] to
learn the contextual representation Hl = [hl

1, . . . ,h
l
|x|] of each layer l. In each layer,

The self-attention head Al is calculated to aggregate the output of the previous layer.
⎧
⎪⎨

⎪⎩

Q = Hl−1WQ
l (1a)

K = Hl−1WK
l (1b)

V = Hl−1WV
l (1c)

Al = softmax(
QKT

√
dk

)Vl (2)

where the matrices Q, K, V ∈ R
|x|×dk refer to queries, keys and values, respectively.

They are obtained by multiplying the l-1 th layer’s contextual representation Hl−1 ∈
R

|x|×dh by the linear projection matrices WQ
l , W

K
l , WV

l ∈ R
dh×dk .

3.2 Fine-Tuning Step

The fine-tuning procedure of Guwen-UNILM is shown in Fig. 4.

Parallel Corpus Establishment. In order to achieve ancient Chinese translation, the
first thing to do is to establish an ancient-modern Chinese parallel corpus for training.
From several official Chinese literature websites,5 we collected around 5 thousand par-
allel documents containing 3 million characters. However, these parallel documents are
too long for model training, some of which even contains thousands of characters. For
simplicity, we manually established a more fine-grained sentence-level parallel corpus
on these texts, which is being continuously enlarged and polished up. The corpus is
currently open-sourced and the detailed information can be available in Sect. 4.1.

5 https://www.gushiwen.org/, http://www.ewenyan.com/.

https://www.gushiwen.org/
http://www.ewenyan.com/
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Fig. 4. Overview of the Guwen-UNILM fine-tuning.

Seq2seq Learning of Guwen-UNILM. Assume that we are translating ancient Chinese
into modern Chinese, each line of the parallel corpus consists of two parts: the ancient
Chinese sequence xa and the modern Chinese sequence xm. We take the concatenated
word sequence x = xa + xm as the input sequence of Guwen-UNILM. The input
representation vector of Guwen-UNILM is {x}|x|

i=1 = {xa}|xa|
j=1 + {xm}|xm|

k=1 , which
is the sum of token embeddings, segment embeddings, and position embeddings. The
parameters of pre-trained BERT are used as checkpoints of Guwen-UNILM. The input
vector {x}|x|

i=1 is fed into the multi-layer Transformer Hl = Transformerl(Hl−1), l ∈
[1, L]. In UNILM, the calculation of the attention head Al is similar to that in BERT,
except for the introduction of the self-attention mask matrix M.

⎧
⎪⎨

⎪⎩

Q = Hl−1WQ
l (3a)

K = Hl−1WK
l (3b)

V = Hl−1WV
l (3c)

Mij =

{
0 allow to attend

−∞ prevent from attending
(4)

Al = softmax(
QKT

√
dk

+M)Vl (5)

The mask matrix M here determines the visibility between tokens. As is shown in
Fig. 4, the tokens in the first word sequence (ancient Chinese) can attend to each other,
while the tokens in the second word sequence (modern Chinese) can only attend to
the leftward tokens. For example, given an ancient Chinese sequence x1x2 and its
target parallel modern Chinese sequence x3x4x5, the input tokens of the model is
“[CLS] x1 x2 [SEP] x3 x4 x5 [SEP]”. Here, [CLS] , x1 ,x2, and the first [SEP] can
attend to each other. However, x3 can only attend to the four tokens leftwards. This is
different from BERT, as BERT is a bidirectional language model where all the tokens
in a sequence are visible to each other.
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Translation and Loss Function. In order to output the translation, the end of the multi-
layer Transformer is connected to a linear classifier (e.g. a softmax classifier) to generate
a probability distribution over the vocabulary, thereby generating translation. In the
above instance, given a pair of parallel texts: xa = x1x2 and xm = x3x4x5. The input
representation of xa is “[CLS] x1 x2 [SEP]”, and then appended with a “[MASK]”
token.

[CLS] x1 x2[SEP] [MASK]

As mentioned above, the tokens of xa can attend to each other, but cannot attend to
the [MASK] token, while the [MASK] token can attend to all the leftward tokens.
The six tokens is then encoded by UNILM as h[CLS], hx1 , hx2 , h[SEP], h[MASK].
The representation vector h[MASK] is then fed to a softmax classifier to achieve a
probability distribution over the vocabulary V .

S = Wh[MASK] + b (6)

P (t|h[MASK]) =
eSi

∑|V |
j eSj

(7)

where S ∈ R
1×|V | is the score vector on the vocabulary. W and b are trainable param-

eters of linear transformation, and t is the predicted token of the classifier. The token
with the maximum probability is selected as the prediction of model.

The predicted token is then appended to the input sequence to replace the [MASK]
token, and the decoding continues until the [SEP] token emerges. In our realization, the
decoding process is enhanced by beam search [4]. The categorical cross entropy loss L
of the whole sentence is defined as:

L = −
|xm|∑

i=1

yilog(ŷi) (8)

where xm is the true target sentence, yi is a token in xm, and ŷi is the predicted token
generated by the classifier corresponding to yi.

4 Experiment

Our method Guwen-UNILM is tested with different datasets and training settings, and
the performance of Guwen-UNILM is analyzed with that of comparative methods.

4.1 Datasets
Three corpora (Daizhige, Literature and History) are used in the experiment. The
Daizhige corpus is a monolingual ancient Chinese corpus for pre-training BERT. Lit-
erature and History are both parallel corpora used to fine-tune UNILM. The purpose
of selecting two corpora is to verify the compatibility of the model under different text
style, as the former is indirect and ambiguous while the latter is realistic and repetitive.
Therefore, the translation performance of two different text styles might vary.

The statistics of datasets are shown in Table 1.
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Table 1. Statistics of corpora.

Corpora Type Train/Valid./Test

Daizhige Monolingual —

Literature Parallel 30k/2k/2k

History Parallel 30k/2k/2k

4.2 Experimental Setup
In the experiment, both the ancient-to-modern translation and the modern-to-ancient
translation are conducted. Each parallel corpus is split into training set, validation set
and testing set (see Table 1).

Unlike English, Chinese words can consist of one to multiple characters. Therefore,
we conducted experiments using both single character and word as tokens to see if
and how the translation quality is affected. The segmentation of modern and ancient
sentences is accomplished with Jieba6 and Jiayan Toolkit,7 respectively.

The Guwen-UNILM model is constructed by using the bert4keras8 toolkit. The
number of Transformer layers of UNILM L is set to 12. The learning rate of the Adam
optimizer is 1e−5, where β1 = 0.9 and β2 = 0.999. The maximum sequence length l
of the input (e.g., the total length of two sentences) is set to 128. In the decoding stage,
the beam size of beam search is 4.

4.3 Comparative Models
The following baseline models are compared to Guwen-UNILM: (1) LSTM and Bi-
LSTM with attention mechanism (2) GRU and Bi-GRU with attention mechanism (3)
Transformer (4) BERT-UNILM (5) roBERTa-UNILM. In our experiments, LSTM, Bi-
LSTM, GRU, Bi-GRU and Transformer are built by OpenNMT toolkit [7].

As mentioned above, we also studied on the influence of word segmentation on
these five models. The model labeled with “‡” indicates that the input sentences of this
model are pre-processed by word segmentation tools. In BERT-UNILM and roBERTa-
UNILM, the modern Chinese texts are used to pre-train the original BERT and roBERTa
respectively.

4.4 Evaluation Metrics
Both automatic evaluation metrics and Human Evaluation are used to access the perfor-
mance of models. The automatic evaluation metrics include BLEU [13] and Imagery
Conservation (I.C). Human Evaluation includes fluency, semantic consistency, and
meaningfulness of the texts.

BLEU is a widely used machine translation metric that measures the degree of
overlap between the generated sentence and referred sentence. Specifically, we use case-
sensitive BLEU score to measure the quality of our generated sentences. Different from
traditional machine translation tasks, in our task (especially in the translation of ancient

6 https://github.com/fxsjy/jieba.
7 https://github.com/jiaeyan/Jiayan.
8 https://github.com/bojone/bert4keras.

https://github.com/fxsjy/jieba
https://github.com/jiaeyan/Jiayan
https://github.com/bojone/bert4keras
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literary works), sometimes although the BLUE score of the generated sentence is low,
it is still evaluated by human experts as a high-quality translation.

Imagery Conservation is the automatic evaluation metric specially designed for
our task. From the experiments, it is found that even if the translated sentence is sig-
nificantly different from the original sentence, the character and word that are used to
express imagery ( in Chinese) should be the same. These words are often objec-
tive entities (usually nouns such as flower, grass, light, tears, etc.) in the texts that help
evoke sensory or emotional experiences, e.g. Therefore, the Imagery Conservation met-
ric is defined as the number of imagery nouns that appear in both ancient and modern
Chinese sentences.

Human Evaluation is usually believed more reliable and credible than the auto-
matic evaluation metrics, given the translation task is more organic than mechanic. The
evaluation criterion includes three dimensions with each of a metric score from 1 to
5. Fluency metric evaluates whether the generated text is grammatically fluent. Con-
sistency metric evaluates how well the translated sentence conserve the content of the
original sentence. Meaningfulness metric is to judge whether the words in the gener-
ated sentence has actual meanings. The final human evaluation score is calculated by
averaging score given by all human experts.

4.5 Results and Discussion

The case-sensitive BLEU scores, I.C scores and Human Evaluation of all methods on
the Literature corpus and the History corpus are compared in Table 2, Table 3, and
Table 4, respectively.

Results on Literature Corpus. Three methods using UNILM (B-UNILM, R-UNILM
and Guwen-UNILM) are significantly superior to other benchmark methods in BLEU
score for both modern-to-ancient translation and ancient-to-modern translation. How-
ever, it seems that most models work better for modern-to-ancient translation than
ancient-to-modern translation in terms of BLEU score. The possible reason is that the
former translation is similar to sentence summary, while the latter translation is similar
to sentence expansion, in which the more selective vocabulary leads to greater dif-
ferences from the reference translation. On the I.C metric, Guwen-UNILM conserves
86.3% (modern-to-ancient) and 70.0% (ancient-to-modern) of the imagery words that
appear in the text (100% on groundtruth), performing best among all methods. On both
metrics, Guwen-UNILM performs better than B-UNILM and R-UNILM, which veri-
fies the effectiveness of adding the pre-trained model on ancient texts into the translation
task and also explains why RoBERTa was chosen for pre-training.

Results on History Corpus. On the History corpus, Guwen-UNILM still achieves the
state-of-art results in BLEU score and I.C score. It is also noted that the BLEU scores
of all models on the History corpus are significantly higher than that on the Literature
corpus in the two translation directions. The first possible reason is that there exist plen-
tiful objective facts in the historical records such as names of places, people, time and
event facts will stay the same in the translated sentences. The second possible reason is
that texts in history corpus are more rigid and consistent, while those in the Literature
corpus are more romantic and imaginative.
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Table 2. BLEU scores on the Literature corpus. “‡” indicates that the input sentences of this
model are pre-processed by the word segmentation tool. B-UNILM, R-UNILM and G-UNILM
are short for BERT-UNILM, roBERTa-UNILM and Guwen-UNILM respectively. (BT) indicates
the back translation (BT) is applied to the model.

Model Modern to Ancient (Literature) Ancient to Modern (Literature)

BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

LSTM‡ 1.11 9.2 1.8 0.4 0.4 1.28 13.4 3.2 0.7 0.2

Bi-LSTM‡ 1.26 15.7 4.0 0.6 0.2 1.38 14.2 3.6 0.8 0.2

GRU‡ 1.09 13.6 2.9 0.4 0.2 1.40 15.1 3.9 0.9 0.3

Bi-GRU‡ 1.49 15.2 3.3 0.7 0.4 1.51 15.4 3.7 0.9 0.3

Transformer‡ 1.56 15.4 4.2 0.8 0.5 1.58 14.2 3.7 0.9 0.4

LSTM 2.17 26.0 5.1 0.9 0.4 1.98 23.0 4.8 0.9 0.2

Bi-LSTM 2.90 29.1 6.8 1.3 0.4 2.61 25.4 6.0 1.3 0.4

GRU 2.75 28.2 5.7 1.1 0.5 2.78 26.7 6.4 1.5 0.4

Bi-GRU 3.03 30.4 6.2 1.3 0.6 3.11 26.4 6.6 1.6 0.5

Transformer 5.43 31.8 9.5 3.1 1.8 3.17 28.2 7.8 2.1 0.7

B-UNILM 6.91 39.1 13.1 3.6 1.2 5.01 36.7 11.3 3.0 1.3

R-UNILM 7.35 39.4 13.0 3.7 1.6 5.19 41.0 12.9 3.7 1.6

G-UNILM 11.14 43.5 18.3 7,3 3.8 6.49 41.3 14.9 4.9 2.1

G-UNILM(BT) 11.67 45.3 19.4 8.2 4.4 7.01 42.5 15.7 5.4 2.5

Model Modern to Ancient (History) Ancient to Modern (History)

BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

LSTM‡ 15.82 48.5 23.3 14.2 9.2 11.44 35.8 14.3 7.9 4.7

Bi-LSTM‡ 18.06 52.6 26.7 16.6 11.0 13.95 41.2 18.6 10.9 6.8

GRU‡ 12.40 49.1 21.5 12.3 7.6 10.56 36.4 14.1 7.5 4.3

Bi-GRU‡ 15.19 51.2 24.5 14.6 9.4 12.19 42.2 18.3 10.3 6.2

Transformer‡ 12.22 48.9 21.4 12.4 7.9 12.02 43.3 18.9 10.5 6.3

LSTM 26.21 63.4 35.9 23.6 16.4 23.59 60.9 34.2 21.5 14.2

Bi-LSTM 31.46 66.2 40.0 27.6 20.0 24.16 60.8 34.1 21.9 14.9

GRU 26.42 62.1 35.0 22.7 15.7 23.46 61.7 34.1 21.6 14.6

Bi-GRU 31.89 66.1 40.0 27.5 19.8 24.29 62.1 35.7 21.9 15.4

Transformer 31.52 65.2 39.5 27.2 19.6 24.25 61.3 34.8 21.8 15.2

B-UNILM 36.18 67.2 42.4 30.0 22.0 27.52 70.0 42.2 28.5 20.1

R-UNILM 36.26 67.3 42.7 30.2 22.2 27.41 70.2 42.3 28.5 20.2

G-UNILM 40.26 71.5 48.3 35.7 27.2 30.08 69.8 42.5 29.4 21.1

G-UNILM(BT) 40.73 72.7 49.7 36.5 27.9 30.52 70.9 43.0 29.8 21.7

Influence of Word Segmentation. Unexpectedly, the use of word segmentation under-
mines the performance of the models. The BLEU scores of these models are all under
2.0 on Literature, and under 20.0 on History. One possible reason is that word segmen-
tation causes a significant expansion of vocabulary due to the combination of charac-
ters. The vocabulary size is around 4,000 before word segmentation, but becomes over
20,000 after word segmentation, causing the problem of data sparseness and model
overfitting. Another consequence of word segmentation is the increase number of out
of vocabulary (OOV) [19] words. As a result, it is more difficult for the model to pre-
dict the correct word in the inference stage. The experimental results in this paper are
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Table 3. Imagery Conservation (I.C) scores.

Model Literature History

m2a a2m m2a a2m

LSTM 58.8 46.7 70.3 73.8

Bi-LSTM 63.2 49.9 71.9 76.5

GRU 60.3 53.7 70.1 76.1

Bi-GRU 61.7 54.9 71.1 76.3

Transformer 68.3 57.6 72.3 77.9

B-UNILM 85.4 68.1 87.1 83.1

R-UNILM 85.1 67.7 84.1 84.4

G-UNILM 86.3 70.0 89.9 86.7

consistent with the conclusion drawn by Li et al. [8], that is, word segmentation is not
suitable for Chinese NLP tasks in most cases.

Influence of Back Translation. Back Translation(BT) [3] is applied to the Guwen-
UNILM model as a method of data augmentation. Besides the original parallel sen-
tences in the corpora, we created 100k additional parallel sentences by back translation.
In Table 2 the results show that BT can improves the original Guwen-UNILM by around
0.5 on BLEU scores on both corpora.

Table 4. Human evaluation scores.

Model Flu. Cons. Mean. Total

Bi-LSTM 2.56 2.92 2.41 7.89

Bi-GRU 2.67 2.94 2.54 8.15

Transformer 3.02 2.97 2.89 8.88

B-UNILM 3.31 3.40 3.26 9.97

R-UNILM 3.38 3.44 3.27 10.09

G-UNILM 3.45 3.42 3.30 10.17

Human Evaluation Results. We invited five human experts with master’s degree on
Chinese linguistics to evaluate the translations generated by 9 different models. For
each model, 100 ancient-to-modern translations and 100 modern-to-ancient translations
generated by the model are randomly selected for evaluation. In total, we received 5 ×
9× 200 = 9000 evaluation records. The results of human evaluation in Table 4 indicate
that the sentences generated by Guwen-UNILM have the highest readability and the
model gets the highest score of 10.17 in total.
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Table 5. The accuracy of human discrimination test.

Model Literature History

a2m m2a a2m m2a

Bi-GRU 83.4 79.2 64.8 62.7

Transformer 80.3 76.5 62.5 60.1

G-UNILM 69.8 66.2 57.9 54.2

Human Discrimination Test. Finally, the five experts did the human discrimina-
tion test. On both corpora, 200 translations (100 ancient sentences and 100 modern
sentences) generated by 3 comparative models (Bi-GRU, Transformer and Guwen-
UNILM) were randomly selected and paired with their corresponding ground-truth
translations. The experts are requested to distinguish which one of the two sentences
is written by human. The evaluation criterion is the accuracy of discrimination, which
is the ratio of correctly distinguished sentence pairs to the total number of sentence
pairs. As shown in Table 5, discrimination accuracy on Literature corpus is obviously
higher than that on History corpus, which indicates that the literature texts translated by
machine are more easily recognized by the experts. Among the three models, the trans-
lations generated by Guwen-UNILM is more like human translations on both corpora.

5 Conclusion

In this paper, we study a novel task on translation between ancient and modern Chinese
and propose a monolingual translation framework based on pre-trained models. The
Guwen-BERT is used to adapt to the characteristic of ancient Chinese and then com-
bined with the UNILM framework to complete the translation. For this task, we estab-
lished two fine-grained parallel corpora. Experiments show that the proposed method
significantly outperforms the traditional machine translation methods.
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Abstract. Multilingual neural machine translation (MNMT) with a sin-
gle encoder-decoder model has attracted much interest due to its simple
deployment and low training cost. However, the all-shared translation
model often yields degraded performance due to the modeling capac-
ity limitations and language diversity. Moreover, it has been revealed
in recent studies that the shared parameters lead to negative language
interference although they may also facilitate knowledge transfer across
languages. In this work, we propose an adaptive architecture for mul-
tilingual modeling, which divides the parameters in MNMT sub-layers
into shared and language-specific ones. We train the model to learn and
balance the shared and unique features with different degrees of param-
eter sharing. We evaluate our model on one-to-many and many-to-one
translation tasks. Experiments on IWSLT dataset show that our pro-
posed model remarkably outperforms the multilingual baseline model
and achieves comparable or even better performance compared with the
bilingual model.

Keywords: Multilingual neural machine translation · Adaptive
transformer · Language-specific modeling

1 Introduction

Multilingual neural machine translation (MNMT) leverages a single encoder-
decoder model for translations in multiple language pairs [1,10,11,13]. MNMT
is appealing since it greatly simplifies the large-scale deployment of transla-
tion models and reduces the maintenance cost [6,11]. Moreover, the multilingual
model tends to yield better translations for low-resource and zero-shot language
pairs because the exposure to various languages facilitates the potential knowl-
edge transfer among languages [2,9,27].

However, a big challenge to this highly compact model is the curse of multi-
linguality, which degrades the performance across languages due to the language
interference [5]. It has been revealed that adding language-specific capacity into
the multilingual model can mitigate the negative interference [23]. To this end,

c© Springer Nature Switzerland AG 2021
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previous works [4,8,16,22] has mostly focused on model architecture design by
reorganizing parameter sharing in the MNMT model, aiming to achieve a better
transfer-interference trade-off. Recent language adapters attract much attention
for their lightweight architectures and prominent improvements in multilingual
translation, which are inserted in-between two different sub-layers in MNMT
model [3,24,25]. Although those studies differ in model architectures, they adopt
similar parameter-sharing strategies which share either all or no parameters of
a MNMT sub-component (e.g. attention or feed-forward sub-layer) across lan-
guages, leaving the impacts of inner parameters under-studied.

In this work, we explore more fine-grained parameter sharing strategies with
an adaptive model, which adds language-specific capacity into each sub-layer in
MNMT. We divide the weight matrices in each sub-layer into two parts: shared
and language-specific parameters. Each language maintains those two types of
parameters so that its specific characteristics can be captured and incorporated
into each sub-layer besides the shared information. The adaptive model is trained
to seek a balance between sharing and not sharing by altering the dimension of
the two parameters.

We evaluate our proposed method on IWSLT dataset, with models build-
ing on the Transformer architecture [19]. Following [24], we use target-specific
and source-specific modeling for one-to-many (O2M) and many-to-one (M2O)
translation, respectively. Experimental results demonstrate that our method out-
performs the standard multilingual baseline model and achieves comparable or
better translation quality compared with the bilingual model. To sum up, the
contributions of this work are as follows:

• We propose a fine-grained parameter sharing strategy, which adds language-
specific capacity to Transformer sub-layers and trains the model to balance
the shared and unique features for a better transfer-interference trade-off.

• We apply the proposed strategies to attention and feed-forward sub-layer,
and obtain remarkable improvements on translation quality. Extensive exper-
iments show that our parameter sharing strategies in different sub-layers are
complementary and the combined model outperforms the separate ones.

• We optimize the degree of parameter sharing in different sub-layers and
achieve best the translation performance on O2M/M2O translation task with
the improvements of 1.41/0.93 BLEU over the multilingual baseline model.

2 Related Work

Our work is related to language-specific modeling for MNMT in general.
Early researches in MNMT focused on the use of shared sub-components (i.e.
encoder, decoder or attention mechanism) to encourage knowledge transfer,
which included using a shared encoder for all source languages on one-to-many
translation [7], sharing the attention mechanism across multiple languages in
many-to-many translation scenario [8] and employing a shared decoder for all
target languages on many-to-one translation [26]. However, the need of using
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an additional sub-component for each language makes those networks compli-
cated and expensive to train. Johnson et al. [11] developed a universal MNMT
system which shares all sub-components across all languages by introducing an
artificial token to the source text to indicate the target language. Remarkably,
this paradigm has greatly simplified the deployment of MNMT by eliminating
the use of separate sub-components for each new language pair. However, it is
extremely burdensome to process all translations within a single encoder-decoder
model and thus results in underperformance compared to the bilingual model.
Therefore, subsequent studies turn to explore language-specific modeling to seek
a balance between sharing and not sharing, ranging from introducing language-
dependant positional embedding and representation [21], redesigning parameter
sharing [4,16,20,22], separately modeling languages for different language clus-
ters [18], employing adapters for fine-tuning [3], devising language-aware normal-
ization and transformation [25], and dynamically scheduling language-specific
capacity for each token in MNMT [24].

Our work continues in this direction but differs from those aforementioned
methods. We propose a more fine-grained parameter sharing strategy which
directly introduces language-specific parameters to different sub-components in
MNMT model.

3 Background

In this section, we briefly review the multilingual translation approach and the
Transformer model. To perform multilingual translation, Johnson et al. [11] reuse
the standard bilingual translation model by adding a pretending token to each
source sentence to specify the target language. Specifically, given a source sen-
tence X ′ = {x1, x2, ..., xm} and the language token lang, the source input for
MNMT is changed to X = {lang, x1, x2, ..., xm}. Following Zhang et al. [24], the
language token lang is altered to denote the target language in O2M translation
but source language in M2O translation in this paper.

Transformer stacks several identical layers in both the encoder and the
decoder, which consist of multi-head attention and feed-forward sub-layers.
Multi-head attention employs h attention heads to jointly attend to informa-
tion from different representation sub-spaces and concatenates the results from
all the attention heads. Each head keeps a set of query (Q), key (K ) and value
(V ) for all the input tokens. For a given token xi (xi ∈ R

dm), a head assigns its
attention to a sequence of tokens using query-key compatibility function between
linearly transformed input tokens and gets the attention score αij with a softmax
function:

eij =
(hq

i )(h
k
j )T

√
dm

=
(xiWq)(xjWk)T

√
dm

(1)

αij =
exp eij∑n

k=1 exp eik
(2)
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Fig. 1. The illustration of proposed adaptive model for multilingual translation based
on partial parameter sharing strategies in different transformer sub-layers. Left: Trans-
former model and partially shareable parameters. Right: Description of partially shar-
ing strategy.

where dm is model hidden size. The final output zi (zi ∈ R
dm) is computed as

the weighted sum of linearly transformed value vectors of all input tokens.

zi =
n∑

j=1

αijh
v
j =

n∑

j=1

αij(xjWv) (3)

Wk, Wq, Wv ∈ R
dm×dm are linear projection parameters of the multi-head atten-

tion sub-layer. Those parameters are unique per head and layer.
The output of multi-head attention sub-layer zi is then fed into the feed-

forward network, which consists of two linear transformations with a ReLU acti-
vation in between:

wi = FFN(zi) = max(0, ziW1 + b1)W2 + b2 (4)

where W1 ∈ R
dm×df , W2 ∈ R

df×dm , b1 ∈ R
df and b2 ∈ R

dm are trainable
parameters, and df is the feed-forward hidden dimension with df > dm.

4 Proposed Method

In this paper, we propose an adaptive transformer model to improve multilin-
gual translation quality by incorporating language-specific parameters into the
vanilla transformer-based MNMT model. We start with our general strategies
for redesigning the parameter sharing in the MNMT model, and then introduce
the implementations in different Transformer sub-layers including multi-head
attention and feed-forward network.

4.1 Adaptive Transformer

In the universal multilingual translation model, all the sub-layer parameters are
shared across languages. It has been shown that the language signals from the
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language embeddings alone are insufficient [2]. Therefore, the sub-layers should
embody some language-specific information to be more flexible to handle diverse
languages. Partially inspired by the idea of using a fixed mix of shared and unique
hidden units [21], we incorporate language-specific information into Transformer
sub-layers by dividing each linear projection parameter in Fig. 1 into two parts:
shared and language-specific parameters. On the one hand, the shared parame-
ters are capable of learning the commonality of languages, which can be bene-
ficial to the potential knowledge transfer across languages. On the other hand,
the language-specific parameters are able to increase the modeling capacity for
each language to capture its unique characteristics.

On each of these shared and language-specific parameters, we perform linear
projections in parallel, yielding the shared and the language-specific represen-
tations. They are then concatenated and once again projected, resulting in the
final output as illustrated in Fig. 1. By controlling the dimension of the projec-
tion parameters Wshare and Wlang, we can alter the degree of parameter sharing
and achieve a better transfer-interference trade-off. Based on this parameter
sharing mechanism, we reformulate the attention and feed-forward modules in
Transformer, respectively.

4.2 Adaptive Attention Layer

Instead of performing a single attention function, Transformer employs multi-
head attention mechanism which splits the dm-dimensional representation into
h tensors with the same dimension. However, it is shown by previous studies
that some attention heads are redundant [14]. We propose an adaptive attention
model which replaces some shared attention parameters with language-specific
ones, not only reducing the redundancy in the multi-head attention model but
improving the ability to learn the difference between languages. Given an input
token xi, the adaptive attention model first divides the original linear projection
into shared and specific parts to get their corresponding representations via
separate linear transformations:

hshare
i = xiW

share (5)

hlang
i = xiW

lang (6)

where W share ∈ R
dm×αdm is the weight matrix shared across languages, while

W lang ∈ R
dm×(1−α)dm is only used for modeling language lang which endows

MNMT with language-specific capacity. α ∈ (0, 1) is the coefficient which decides
the rate of shared parameters.

The adaptive attention model then concatenates the shared representation
hshare

i and language-specific representation hlang
i and outputs the mix represen-

tation through another parameterized linear transformation:

hi = [hshare
i ;hlang

i ]Wo (7)

where [·; ·] represents concatenation, Wo ∈ R
dm×dm is the final linear projec-

tion parameter. Compared to separately initializing attention heads for shared
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or varied representations, our adaptive attention model fuses those two repre-
sentations before splitting into different heads so that each head is capable of
capturing the shared and language-specific characteristics. We apply these for-
mulas to the calculation of hq

i , hk
i and hv

i .

4.3 Adaptive Feed-Forward Layer

The feed-forward network transforms input representations by first increasing
the hidden dimension and then projecting it back to the original input dimension.
We argue that the intermediate hidden state also has redundancy because it is
over-parameterized with a dimension larger than the input dimension. Therefore,
we propose to make part of the intermediate hidden state language-specific.

For an input token zi ∈ R
dm , we first employ two independent feed-

forward networks to separately perform transformations, yielding the shared
and language-specific representations:

wshare
i = FFNshare(zi) = max(0, ziW

share
1 + bshare

1 )W share
2 + bshare

2 (8)

wlang
i = FFNlang(zi) = max(0, ziW

lang
1 + blang

1 )W lang
2 + blang

2 (9)

where W share
1 ∈ R

dm×βdf , bshare
1 ∈ R

βdf , W share
2 ∈ R

βdf×βdm , bshare
2 ∈ R

βdm

are shared projection parameters, while W lang
1 ∈ R

dm×(1−β)df , blang
1 ∈ R

(1−β)df ,
W lang

2 ∈ R
(1−β)df×(1−β)dm , blang

2 ∈ R
(1−β)dm are language-specific ones. β ∈

(0, 1) is a scaling parameter similar to α, which can be tuned based on trans-
lation task, thus allowing us to control the degree of parameter sharing. Then
we combine the two representations and convert their concatenation back to the
original dimension.

wi = [wshare
i ;wlang

i ]Wo (10)

where Wo ∈ R
dm×dm is a linear transformation matrix.

5 Experiments

5.1 Dataset

We conduct our experiments on IWSLT dataset for both O2M and M2O trans-
lation tasks. The corpus is collected from IWSLT evaluation campaign1 from
year 2011 to 2018, which consists of 16 languages ↔ English translation pairs.
Table 1 shows the statistics of the train/validation/test set. We up-sample each
language in the training set to be roughly the same. All the sentences are first
tokenized with moses tokenizer2 and then segmented into sub-words using byte
pair encoding (BPE) algorithm [17]. We learn a joint vocabulary by performing
BPE with merge operations of 64K. We randomly shuffle the training set to mix
the instances of different language pairs.
1 https://wit3.fbk.eu/.
2 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

token-izer.perl.

https://wit3.fbk.eu/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/token-izer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/token-izer/tokenizer.perl
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Table 1. The statistics of train, validation and test data for IWSLT dataset.

Language pair Train Valid Test Language pair Train Valid Test

En-Ar 223K 887 1569 En-Nl 167K 887 1569

En-Cs 114K 480 1511 En-Pl 176K 767 1564

En-De 196K 887 1565 En-Ro 181K 887 1567

En-Es 180K 887 1570 En-Ru 177K 887 1568

En-Fr 219K 887 1664 En-Sl 17K 1144 1411

En-He 184K 888 1568 En-Tr 154K 887 1568

En-It 181K 887 1529 En-Vi 129K 768 1342

En-Ja 221K 871 1549 En-Zh 208K 887 1570

5.2 Model Configurations

We build our models based on Transformer [19] and adopt the same model
configurations as Tan [18]. Specifically, the layer number is 2, the model hidden
size dm is 256, and the feed-forward hidden size df is 1024. The size of language
embeddings is also set to 256. For training, we optimize all parameters with
Adam optimizer [12] (β1 = 0.9, β2 = 0.98, ε = 10−9) with label smoothing of
0.1 and learning rate is scheduled as the inverse square root of training step
with a warm-up step of 4K. We apply dropout to attention weights and residual
layers with a rate of 0.1. Each training batch contains roughly 8192 tokens and
the training sequence length is limited to 100. We set the maximum training
step to 150K. During inference, we use beam search decoding with beam size of
5 and length penalty of 0.6. The BLEU score is measured by the de-tokenized
case-sensitive SacreBLEU [15].3 All our experiments are conducted on a single
Nvidia GeForce RTX 3090 GPU.

5.3 Main Results

Evaluation results on O2M translation task and M2O translation task are pre-
sented in Tables 2 and 3, respectively. We have the following observations: First,
the Multilingual Baseline model slightly outperforms the Bilingual Baseline
model due to the remarkable improvements on the low-resource language pair
(+8.02 BLEU for En → Sl and +12.06 BLEU for Sl → En), showing that the
low-resource languages benefit more knowledge transfer than the high-resource
languages in the MNMT model. However, the Multilingual Baseline model yields
degraded translations on over half of the language pairs for both O2M and M2O
translation tasks, demonstrating that the negative language interference occurs
in the all-shared translation model. Second, for O2M translation task, Adap-
tive Transformer model achieves the best performance which outperforms the
Multilingual Baseline model by 1.19 BLEU score on average and succeeds on 15

3 Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.14.
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Table 2. BLEU scores of English → 16 languages on the IWSLT dataset. The BLEU
scores in bold represent the best performance across all methods. Δ represents the
improvements of our Adaptive Transformer model over the Multilingual Baseline
model.

Language Bilingual Multilingual Adaptive Adaptive Adaptive Δ
baseline baseline attention feed-forward transformer

En → Ar 12.49 10.12 10.96 11.64 11.75 +1.63

En → Cs 13.76 14.72 15.29 15.94 15.89 +1.17

En → De 25.29 23.10 24.71 25.43 25.74 +2.64

En → Es 34.99 33.73 35.02 35.63 35.39 +1.66

En → Fr 30.05 32.21 33.65 34.12 34.42 +2.21

En → He 22.52 19.86 21.21 21.81 21.45 +1.59

En → It 26.19 25.73 26.28 26.77 26.86 +1.13

En → Ja 8.88 8.77 9.27 9.55 9.77 +1.00

En → Nl 27.57 26.34 26.77 27.77 28.15 +1.81

En → Pl 10.33 10.77 11.62 11.72 11.61 +0.84

En → Ro 22.82 22.78 23.28 23.86 24.18 +1.40

En → Ru 12.78 14.22 14.80 15.21 15.02 +0.80

En → Sl 4.79 12.81 11.10 12.02 11.04 −1.77

En → Tr 9.41 9.53 9.90 10.22 10.66 +1.13

En → Vi 25.94 27.79 28.73 28.96 28.64 +0.85

En → Zh 16.36 15.59 16.24 16.36 16.53 +0.94

AVG. 19.01 19.25 19.93 20.44 20.44 +1.19

language pairs. Furthermore, compared with the Bilingual Baseline model, Adap-
tive Transformer model also performs better in most cases (14 out of 16 cases).
Third, as for M2O translation task, Adaptive Transformer model also scores the
best average BLEU score with 0.93 BLEU gains over the Multilingual Baseline
model. It outperforms the Multilingual Baseline model and Bilingual Baseline
model on 14 and 10 language pairs, respectively. Fourth, O2M benefits more
from the adaptive architecture than M2O because O2M has to translate multi-
ple languages in the decoder, thus demanding more language-specific capacity
to handle diverse typological features. By contrast, M2O shares the same target
language so that information can be easily transferred. Fifth, it is worth noting
that Adaptive Transformer model yields inferior performance to the Multilin-
gual Baseline model on low-resource translation in both translation scenarios
(Sl ↔ En). We leave the analysis of this problem to Sect. 5.6.

5.4 Ablation Study

We compare and discuss the adaptive architecture in attention and feed-forward
sub-layer separately. As shown in Tables 2 and 3, the adaptive architecture in
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Table 3. BLEU scores of 16 languages → English on the IWSLT dataset. The BLEU
scores in bold represent the best performance across all methods. Δ represents the
improvements of our Adaptive Transformer model over the Multilingual Baseline
model.

Language Bilingual Multilingual Adaptive Adaptive Adaptive Δ
baseline baseline attention feed-forward transformer

Ar → En 26.07 23.63 25.17 24.24 25.28 +1.65

Cs → En 20.00 21.38 22.16 22.12 22.12 +0.74

De → En 28.06 26.30 27.36 27.15 27.56 +1.26

Es → En 38.33 35.97 37.32 37.14 37.91 +1.94

Fr → En 30.00 29.78 30.87 30.96 31.58 +1.80

He → En 30.28 27.58 28.86 28.58 29.23 +1.65

It → En 28.47 27.51 28.66 27.97 28.56 +1.05

Ja → En 8.81 8.08 7.76 8.12 8.06 −0.02

Nl → En 31.76 29.69 31.15 31.38 31.67 +1.98

Pl → En 15.70 16.43 16.72 16.62 17.49 +0.43

Ro → En 29.97 28.35 29.73 29.19 30.41 +1.66

Ru → En 16.50 17.68 18.02 17.54 18.55 +0.43

Sl → En 7.14 19.20 17.56 17.36 16.04 −3.16

Tr → En 16.90 16.21 17.21 17.00 17.80 +1.59

Vi → En 22.29 23.10 24.00 23.84 24.23 +1.13

Zh → En 12.90 12.57 13.00 13.26 13.35 +0.78

AVG. 22.70 22.72 23.46 23.28 23.65 +0.93

each sub-layer alone yields better translation quality in comparison to the Mul-
tilingual Baseline model in both translation directions, indicating that the lan-
guage interference exists in all the sub-layers and language-specific capacity is
necessary. Specifically, for O2M translation, the Adaptive Feed-forward model
outperforms the Adaptive Attention model and achieves even the same accuracy
as the Adaptive Transformer model with respect to the average BLEU score.
However, it performs worse than the Adaptive Transformer model on 10 out of
16 languages. As for M2O translation, the Adaptive Transformer model appar-
ently outperforms other models and the gain brought by the Adaptive Attention
model is smaller compared with the Adaptive Feed-forward model.

5.5 Analysis on Shared Rate

In this section, we study the question that how many parameters should be
shared and how many parameters should be language-specific in different sub-
layers. We conduct a series of experiments to investigate different settings. The
results are presented in Fig. 2. We can observe that the Adaptive Transformer
model achieves best performance when we share 50% and 75% of the linear
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Fig. 2. The comparison of different shared rates for Adaptive Attention, Feed-forward
and Transformer model under O2M and M2O translation scenarios.

projection parameters for O2M and M2O translation tasks, respectively. For
the Adaptive Attention model, the best performance comes when we share one-
half of parameters for O2M translation while three quarters of parameters for
M2O translation. As for the Adaptive Feed-forward model, it obtains the best
translation results when we share only 25% and 37.5% of matrix parameters
on O2M and M2O translation, respectively. In particular, the Adaptive Feed-
forward model also achieves the highest improvement across all the three adap-
tive models on O2M translation, which outperforms the Multilingual Baseline
model by 1.40 BLEU score. Comparing the two translation tasks, we find that
O2M has to employ more language-specific parameters in order to obtain the
best performance than M2O, suggesting that O2M needs more language-specific
capacity to handle the translation of languages with diverse features.

5.6 Analysis on Low-Resource Language

As shown in Tables 2 and 3, we find that the low-resource language transla-
tion (Sl ↔ En) degrades when we incorporate language-specific parameters into
Transformer sub-layers (−1.77 BLEU for En → Sl and −3.16 BLEU for Sl → En
with Adaptive Transformer model). In this section, we conduct experiments to
figure out how language-specific capacity affects the translation quality of low-
resource language pairs. Figure 3 reports the results. In general, the three adap-
tive models underperform the Multilingual Baseline models on both O2M and
M2O translation tasks under almost all parameter settings. The only exception is
the Adaptive Feed-forward model, which yields better translation accuracy than
the Multilingual Baseline model in O2M task with the shared rate of 75%. As we
increase the rate of shared parameters, the performance gap between the adap-
tive models and the multilingual baselines gradually decreases. We conjecture
that the introduction of language-specific parameters discourages the knowledge
transfer from high-resource languages to low-resource ones, leading to the worse
performance.
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Fig. 3. The translation results of low-resource language pair (Sl ↔ En) for different
models when varying the shared rates.

6 Conclusion and Future Work

In this work, we propose an adaptive transformer to tackle the language inference
in MNMT. We divide the parameters in attention and feed-forward sub-layers
into shared and language-specific ones to capture the shared features across all
the languages and unique characteristics for each language. We optimize the
degree of parameter sharing in order to achieve a better transfer-interference
trade-off. Experiments demonstrate that our method can outperform the multi-
lingual baseline model on both O2M and M2O translations, and achieves com-
parable or even better accuracy compared with the bilingual translation model.

For future work, we will extend our method to massively multilingual transla-
tion tasks. We will also explore new strategies to enhance the freedom of MNMT
in performing flexible parameter sharing.
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Abstract. In recent years, non-autoregressive machine translation has
achieved great success due to its promising inference speedup. Non-
autoregressive machine translation reduces the decoding latency by gen-
erating the target words in single-pass. However, there is a considerable
gap in the accuracy between non-autoregressive machine translation and
autoregressive machine translation. Because it removes the dependen-
cies between the target words, non-autoregressive machine translation
tends to generate repetitive words or wrong words, and these repetitive
or wrong words lead to low performance. In this paper, we introduce a
soft-masking method to alleviate this issue. Specifically, we introduce an
autoregressive discriminator, which will output the probabilities hinting
which embeddings are correct. Then according to the probabilities, we
add mask on the copied representations, which enables the model to con-
sider which words are easy to be predicted. We evaluated our method on
three benchmarks, including WMT14 EN → DE, WMT16 EN → RO,
and IWSLT14 DE → EN. The experimental results demonstrate that
our method can outperform the baseline by a large margin with a bit of
speed sacrifice.

Keywords: Non-autoregressive · Machine translation · Soft-masking

1 Introduction

Neural machine translation (NMT) has achieved tremendous success in recent
years [1,2,18]. Generally, NMT models utilize the encoder-decoder framework [1].
Given an input sentence in source language, the encoder maps the sentence
into the hidden representations, and the decoder generates the target words
in an autoregressive manner from left to right [1,18]. With this autoregressive
decoding strategy, when NMT models generate the current target word, the
previous predicted words must be fed into the decoder. In this way, the decoder
can learn the target dependencies well, and the accuracy of NMT models has
achieved human parity. Despite their success, NMT models suffer from the high
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decoding latency, and this has been the bottleneck to apply NMT models in the
actual scenario. The main reason for low decoding speed is the autoregressive
decoding strategy.

To reduce the decoding latency, non-autoregressive machine translation
(NAT) has been introduced in recent years [4]. By removing the dependen-
cies between target words, NAT models [4,16,19] can generate the target words
simultaneously and break the bottleneck of the autoregressive NMT (AT) mod-
els. Instead of feeding previous generated target words into the decoder, NAT
models use the copied source representations as the input. In this way, the decod-
ing process is no longer dominated by autoregressive decoding strategy, which
enables parallel computation of the decoding process in NAT models.

Although NAT models significantly accelerate the inference process, the accu-
racy of NAT models falls behind AT models. It is mainly caused by multi-
modality problem [4]. NAT models remove the dependencies between the target
words, and thus the target words may be chosen from multiple feasible transla-
tions, leading to repetitive or wrong words. Several iterative refinement meth-
ods [3,8,20] have been introduced to capture the target dependencies and keep
parallel decoding. However, it has been proven that iterative NAT models may
lose the advantage compared with careful layer allocation of AT models [6].
The opposite is that fully NAT models still keep the speed advantage. Several
works [14,19] have been proposed to improve the performance of fully NAT mod-
els. However, how to better improve the performance of fully NAT models calls
for more exploration.

In this work, we propose a novel NAT model, which utilizes a simple autore-
gressive discriminator to capture the target sequence information and to deter-
mine which input embeddings are similar to its corresponding target embeddings.
Specifically, we introduce a single-layer autoregressive discriminator before the
decoder blocks. And according to the probabilities predicted by the discrimina-
tor, we add mask on the input embeddings. The mask will let the decoder know
which copied embeddings may be correct or not. Meantime, with mask, the noise
is also introduced for correct copied embeddings, which potentially improve the
robustness of NAT models.

To evaluate the performance of our method, we conduct experiments on
three benchmark tasks, including WMT14 EN → DE, WMT16 EN → RO, and
IWSLT14 DE → EN. And experimental results demonstrate that our proposed
method outperforms the baseline and narrows the gap between NAT model and
AT model.

2 Background

NMT is proposed to generate the sentence Y = {y1, y2, ..., ym} in target language
based on the sentence X = {x1, x2, ..., xn} in source language. According to differ-
ent decoding strategies, NMT can be divided into two classes: non-autoregressive
machine translation (NAT) and autoregressive machine translation (AT).
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2.1 Autoregressive Machine Translation

At present, autoregressive decoding strategy is still a major method in NMT. For
example, given a source sentence X, an AT model learns the distribution of the
sentence Y by modeling the target sentence as a chain of conditional probabilities
of words:

PAT =

M∏

t=1

p(yt |y<t, X; θ) (1)

y<t denotes the previous predicted target words. And y<t provides a part
of target information for the decoder. With the part of target information, the
decoder can predict the next word better. However, it also limits the possibility
of parallel decoding, which has been the bottleneck to apply NMT in real-world
translation.

2.2 Non-autoregressive Machine Translation

To break the bottleneck and make parallel decoding possible, a non-autoregressive
decoding strategy has been introduced [4]. Instead of modeling the distribution of
target sentence as a chain of conditional probabilities, NAT removes the condi-
tional dependencies between the target words, which can significantly speed up
inference stage [4,16,19]. A NAT model models the distribution of target sentence
as follows:

PNAT =

M∏

t=1

p(yt |X; θ) (2)

As denoted by Eq. 2, the generation of target word yt is only dependent on
the source sentence. Thus, the model can generate all target words by applying
argmax to every time step, which makes parallel decoding possible. However,
this method of acceleration presents a new problem, i.e. multi-modality prob-
lem [4]. Because the generation of target words is independent, it usually leads
to duplicated or wrong words. These duplicated and wrong words significantly
reduce the performance of NAT models. In this work, we aim to make the model
aware which words are difficult to predict.

3 Method

This section will describe our proposed method in detail, which aims to alleviate
the multi-modality problem in NAT models. The architecture of our proposal is
shown in Fig. 1. As shown in Fig. 1, our proposed model consists of three parts:
encoder, decoder, and discriminator.
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Fig. 1. The architecture of the proposed model. The decoder input is formed by a
weighted addition of copied embedding and the embedding of “MASK” according to
the probabilities predicted by the discriminator. “MLP” in the model denotes the feed-
forward network. “E” denotes the embedding of word.

3.1 Encoder

Following the previous works [4,14,18], we utilize a stack of identical Transformer
blocks as the encoder. Given the sentence X in source language, the encoder maps
it into contextual representations H = {h1, h2, ..., hn}. Then the representations
H are fed into the decoder.

3.2 Decoder

The decoder in our model also consists of 6 identical Transformer blocks. And
to use the representations of source sentence, an inter-attention module is
introduced. Moreover, we use a bidirectional mask to remove the dependen-
cies between the target words. The non-autoregressive property of the decoder
mainly lies on such bidirectional mask. However, compared to autoregressive
decoder using time-shift target words as decoder inputs, the first issue, how long
the target sentence will be, is faced by non-autoregressive decoder. In this work,
we use the mean of the source representations H to predict the length of the
target sentence. And following the previous works [4], we use Uniform Copy to
form the inputs.

3.3 Discriminator

As described in the previous section, the decoder inputs are copied from the
source representations. So the decoder inputs to vanilla decoder can not reflect
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the semantic information of the target words. The target words are entirely
learned by the inter-attention module. In this case, we introduce a discriminator 1

to determine how different the decoder inputs are from the target words. And
if the copied embeddings are identical with the target embeddings, the decoder
can use such copied embeddings as part of the target information.

Before the decoder inputs are fed into the decoder, we firstly feed the decoder
inputs into the discriminator. And the discriminator in our model will predict
the similarity λ, which denotes the differences between the target words and the
inputs. Thus, this process can be written as follows:

Pd =

M∏

t=1

p(λỹt |X, ỹ<t ), (3)

where, ỹ<t denotes the decoder inputs copied from the source before the
position t. When the copied embedding from source is identical to the embedding
of target word at position t, the similarity λ will be equal to 1.

So, in our model, the similarity predicted by the discriminator denotes how
different the embedding copied from the source is from the embedding of the
target word at position t. And based on the similarity, we add the embedding of
a special token “[MASK]” on the copied embeddings according to Eq. 4. These
additional embeddings will make the decoder aware which words are easy to
translate. We name this method Soft-Masking.

� = λỹt ∗ �(ỹt ) + (1 − λỹt ) ∗ �([MASK]) (4)

3.4 Glancing Training

We introduce a discriminator to detect the difference between the copied embed-
dings and the target embeddings. While it is unknown which embeddings are
correct, the discriminator cannot learn that correctly without the right signals.
So, we utilize a reference glancing technique [14] to train our model.

With glancing, our model performs the two-pass decoding during training.
At the first decoding pass, the translation is generated by the decoder. Then, we
compare the predicted translation with the reference and sample target words
from the reference according to how well this translation is predicted. Next, we
replace the copied embeddings with the embeddings of sampled target words at
corresponding positions for the second pass. And then, we predict the remaining
words using maximum likelihood estimation. Thus, by glancing training, we
have the right signals to guide the learning of the discriminator. Formally, given
a sentence X and its corresponding target sentence Y , the training objective of
our decoder is:

1 The discriminator is made up of a single Transformer decoder block. And the hidden
size of the discriminator is consistent with NAT decoder.
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Ldecoder = −

∑

yt ∈{Y\��(Y,Ŷ)}

logp(yt |��(Y, Ŷ ), X; θ). (5)

And Ŷ is the translation predicted by the first decoding pass. And ��(Y, Ŷ ) is
a set of sampled words. In this work, the sampling strategy is borrowed from [14].
For discriminator, we set the λ of sampled target words as 1, and others as 0.
With these signals, the discriminator can learn which embeddings are identical
with its target embeddings correctly. So the training objective of our discrimi-
nator is:

Ldiscriminator = −

M∑

t=1

logPd (6)

Overall, the whole model is trained by minimizing the total loss:

L = Ldecoder + Ldiscriminator (7)

During inference stage, we first form the decoder inputs by copying the source
embeddings, and then we add embedding of “[MASK]” on decoder inputs accord-
ing to the similarities predicted by discriminator. Then, we feed the new decoder
inputs to the decoder and the decoder performs vanilla decoding pass.

4 Experiments

4.1 Experiment Settings

Dataset. To validate the effectiveness of our model, we conduct experiments
on three translation datasets: WMT14 EN → DE, WMT16 EN → RO, and
IWSLT14 DE → EN. These three datasets consist of 4.5M, 610k and 160k bilin-
gual sentence pairs. And these three datasets are tokenized using the script
provided by Moses.2 And then we segment each word in these datasets into
sub-word units with Byte-Pair Encoding [15]. For WMT14 EN → DE task, we
use newstest-2013 and newstest-2014 as the validation and test sets respectively.
For WMT16 EN → RO task, we use newsdev-2016 and newstest-2016 as the
validation and test sets, respectively. And for IWSLT14 DE → EN, dev2010,
dev2012, tst2010, tst2011, tst2012 are concatenated as the test set.

Distillation. As described in [4], distillation is crucial for NAT models. In this
work, we follow the previous works [4,8] and use sequence-level distillation for
all datasets. For WMT14 EN → DE, WMT16 EN → RO, and IWSLT14 DE →

EN, we use Transformer-based [18] the teacher model to distill all datasets. And
then we train our models on the distilled corpus.

Model Configuration. We implement our proposed model based on open-
source toolkit Fairseq [12]. And for a fair comparison, we follow most of hyper-
parameters provided in [4,8,14]. For IWSLT14 DE → EN task, we utilize a small

2 https://github.com/moses-smt/mosesdecoder.

https://github.com/moses-smt/mosesdecoder
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configuration: Nlayer = 5, dmodel = 256, and nhead = 4. And for WMT tasks, we
follow the configurations provided in Transformer [18]. We use Adam optimizer [7]
with β = (0.9, 0.98) to optimize our model.

Training and Inference. We train our models with 8/1 Nvidia Tesla V100
GPUs on WMT datasets and IWSLT dataset respectively. And we train the
model with batches of 64k/8k tokens for WMT and IWSLT datasets respectively.
Meanwhile, given the effectiveness of noise parallel decoding (NPD) [4], we also
utilize NPD to select the best translation. As for evaluation, we adapt widely-
used BLEU [13] as the evaluation metric.

Baselines. In the experiments, we compare our model with several baselines:
NAT is a vanilla non-autoregressive machine translation model proposed by [4].
Hint-NAT [9] utilizes the alignment information extracted from an autoregres-
sive machine translation model. TCL-NAT [10] transfers the knowledge from
AT model to NAT model with curriculum learning. Flowseq [11] models the
generated flow as latent variables. DCRF-NAT [17] utilizes an approximation
of CRF for non-autoregressive machine translation. GLAT [14] adapts GLM to
improve the performance of non-autoregressive machine translation. I-NAT [8]
improves vanilla non-autoregressive machine translation by introducing itera-
tive refinement. Mask-Predict [3] incorporates a masked language model into
non-autoregressive machine translation.

4.2 Main Results

The main results of our models are listed in Table 1. Clearly, compared with the
baselines, our model significantly improves the performance and outperforms the
single- pass NAT baselines by a large margin. Furthermore, the results show that
it is effective to introduce discriminator to detect how different copied embed-
dings are from the embeddings of the target words.

Compared with vanilla NAT model, our model achieves significant improve-
ments on WMT14 EN → DE and WMT16 EN → RO. Even compared with
strong baseline, GLAT, our model also achieves the better results, which denotes
the introduction of soft-masking can help the decoder learn the distribution of
target sentence well. What is noteworthy is that iteration-based models achieve
better performances compared with fully NAT models. However, these improve-
ments are based on the sacrifice of speed advantage. It was noted by [6] that with
careful allocation of layers in AT models, AT models can also have the same-level
speedup. In contrast, our model still maintains the decoding advantage of fully
NAT models.

From the last group of Table 1, we also notice that noise parallel decod-
ing is crucial to improve the performance of fully NAT models. Especially on
IWSLT14 DE → EN, reranking 4 candidates obtains a gain of 1 BELU score,
and reranking 7 candidates gains 1.5 BLEU improvement. Although reranking
with an autoregressive model increases the decoding latency, it still gets a faster
decoding speed than Transformer.
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Table 1. The performance of BLEU scores on WMT14 EN → DE, WMT16 EN → RO
and IWSLT14 DE → EN. “/” denotes that the results are not reported. “K” denotes
the number of decoding iterations.

Model WMT14 EN-DE WMT16 EN-RO IWSLT14 DE-EN Speedup

Transformer 27.30 34.16 32.99 1×

Single-pass NAT models

NAT 17.69 26.22 / 15.6×

NAT (NPD100) 19.17 29.79 24.21 2.4×

Hint-NAT 21.11 / / 25.55×

TCL-NAT 21.94 / 28.16 27.6×

Flowseq 21.45 29.34 27.55 /

DCRF-NAT (NPD9) 26.07 / 29.99 9.63×

GLAT 25.21 31.19 / 15.3×

GLAT (NPD7) 26.55 32.87 / 7.9×

Iterative-based NAT models

I-NAT (K = 1) 13.91 24.45 / /

I-NAT (K = 10) 21.61 29.32 23.94 1.5×

Mask-Predict (K = 4) 25.94 32.53 30.42 9.79×

Mask-Predict (K = 10) 27.03 33.08 31.71 3.77×

Ours 25.73 31.83 29.67 15.03×

+NPD4 26.32 32.52 30.65 8.14×

+NPD7 26.83 33.03 31.15 7.8×

4.3 Decoding Speed

Fig. 2. The BLEU scores and Speedup on WMT14 EN → DE translation dataset.

To evaluate the decoding speedup of our model, we follow the previous works [4,
8], and calculate the average per sentence decoding time on WMT14 EN → DE
test set with batch size as 1. And we report the absolute speedup in Table 1.
Meantime, for a more intuitive comparison, we present the scatter plot in Fig. 2,
which displays the trend of speedup and BLEU scores.
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Obviously, we can observe that the trade-off between BLEU score and
speedup of our model outperforms the competitors, which location is on the
top-right position of Fig. 2. And we notice that the iterative decoding model,
CMLM, achieves better accuracy. However, the speedup of CMLM is not obvi-
ous compared to AT model Transformer. And from Table 1, we can see that
our model obtains comparable performance with Transformer, while achieving a
7.8× speedup. Although compared with other fully NAT models, the speedup of
our model is not the best. With controlled speedup, our model achieves better
accuracy.

5 More Analysis

Effect of Sentence Length. To evaluate the effect of our model on differ-
ent sentence lengths, we conduct experiments on the IWSLT14 DE → EN test
set and divide the sentences into different buckets according to the lengths of
references. And we show the results in Fig. 3.

Fig. 3. The performance with respect to different sentence lengths.

From Fig. 3, we can observe that our model can improve the performances on
different lengths of sentences. Especially, when the length of sentence is greater
than 50, the BLEU scores of vanilla NAT model drop quickly, while our model
and AT model have relatively stable performance. In addition, when the length of
sentence is less than 10, the performance of our model and vanilla NAT model is
at the same level. The conclusion can be drawn that our introduced soft-masking
can effectively improve the performance of NAT model on long sentences.

Effectiveness of the Adaptive Masking. To validate the effectiveness of
the adaptive soft-masking according to the discriminator, we also introduced
a fixed soft-masking strategy for comparison. We manually set the λ in Eq. 4
as a fixed value, and conduct experiments on IWSLT14 DE → EN test set.
We report the results in Table 2. From Table 2, we can find that if we add
mask on the embeddings according to a fixed value, the performance of NAT
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Table 2. The performance of soft-masking strategies on IWSLT14 DE → EN test set.

Soft-Masking λ BLEU

Fixed 1.0 25.88

0.9 25.84

0.7 25.72

0.5 25.85

Adaptive / 29.67

model drops. This is because due to the fixed value, the embeddings of every
word are added by the same ratio of mask. And this same ratio of mask is
the noise for the model, which decreases the model’s performance. Correspond-
ingly, the soft-masking introduced by us is dynamically regulated according to
the input embeddings, which potentially denote the distance between the input
embedding and the target embedding. In addition, when the λ is set as 0.5, the
model achieves same performance as the model with λ = 0.9. This is because the
noise introduced by mask is so much that the decoder sees the copied embed-
dings as placeholders, and the generation of the target words mainly lies on the
inter-attention module. The opposite is that the mask introduced by our model
denotes which embeddings are correct, and these correct embeddings provide
the decoder part of target information.

The Effect of Repetitive Words. As described in [4,5,19], repetitive words
are the main cause of performance degradation in NAT models. In this work, we
suppose the autoregressive discriminator introduced by us can assist the model
to learn sequential information, which can effectively reduce the number of repet-
itive words [20]. So, we conduct experiments to validate the effect of our model
on reducing the number of repetitive words. And we show the results in Table 3.
From the results shown in Table 3, the number of repetitive words generated
by our model is significantly less than vanilla NAT model. And compared with
NAT-Reg [19], our model can also alleviate this issue without explicit regulariza-
tion. Even compared with iteration-based model CMLM, our model can achieve
a comparable result, which shows the effect of our model. And these results prove
that the discriminator does help the decoder learn target dependencies.

Table 3. The comparison on the number of per-sentence repetitive tokens on the
validation set of the IWSLT14 De → En task.

NAT NAT-Reg CMLM Ours

2.30 0.90 0.48 0.68
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6 Related Works

Since [4] introduced non-autoregressive Transformer to speed up the inference
stage of neural machine translation, a series of works have been proposed to
improve the performance of NAT models [3,4,8]. Especially, [14] introduced a
glancing-based model GLAT, which significantly improves the performance of
NAT models and achieves comparable results with AT models. And in this work,
we borrow the principle of GLAT, glancing, to train our model.

In addition, our model is related to [20], which introduced a discriminator to
infuse the sequential information. The critical difference is that they introduced
discriminator to determine which words generated by the decoder are correct,
and we introduce discriminator to determine the similarity between the target
embedding and copied embedding. While the method proposed by [20] can only
be applied on iteration-based NAT models, our method is designed for fully NAT
models.

7 Conclusion

In this work, we introduce a soft masking model to improve the performance of
NAT model. In our model, we utilize an autoregressive discriminator to deter-
mine the difference between the target embedding and copied embedding, and
add mask on the embedding according to the output of the discriminator. Exper-
iments show that our proposed model can significantly improve the performance
of non-autoregressive machine translation.
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Wei Zhu(B)

East China Normal University, Shanghai, China
52205901018@stu.ecu.edu.cn

Abstract. The rise of BERT style pre-trained models has significantly
improved natural language understanding (NLU) tasks. However, for
industrial usage, we still have to rely on more traditional models for
efficiency. Thus, in this paper, we present AutoNLU, which is designed
for modeling sentence representation and cross-sentence attention in an
automatic network architecture search (NAS) manner. We have two
main contributions. First, we design a novel and comprehensive search
space that consists of encoder operations and aggregator operations, and
important design choices. Second, aiming for sentence-pair tasks, we use
NAS to automatically model how the representations of two sentences
interact with and attend to each other. A reinforcement learning (RL)
based search algorithm is enhanced by cross operation and cross layer
parameter sharing for efficient and reliable search. Model training is done
by distilling knowledge from BERT models. By experimenting on SST-2,
RTE, Sci-Tail and CoNLL 2003, we verify that our learned models are
better at learning from BERT teachers than other baseline models. Abla-
tion studies on Sci-Tail show that our search space design is valid, and
our proposed strategies are helpful for improving the search results (The
source code will be made public available.).

Keywords: Natural language understanding · Neural architecture
search · Reinforcement learning

1 Introduction

Neural architecture search (NAS) has recently attracted intensive attention. On
one hand, promising methodological innovation for NAS have been developed,
e.g. the seminal gradient-based NAS approach DARTS [13], etc. On the other
hand, NAS has helped to discover better network architectures for a variety of
vision tasks, ranging from image classification [3], semantic segmentation [12],
object detection [6], to super-resolution [1], etc. For natural language under-
standing (NLU) tasks, NAS is relatively less studied. Except for the general
methodology-wise innovations NASNet [24], ENAS [15] and DARTS [13] which
address searching for new RNN cells on language modeling (LM) tasks, there
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 155–168, 2021.
https://doi.org/10.1007/978-3-030-88480-2_13
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are few studies tailored to the NLU task. One such an example is the evolved
transformer [17], which uses the evolution-based NAS algorithm to search for
better transformer architecture for machine translation. However, the method-
ologies or search spaces in the above literature can not be directly applied to
NLU tasks like text classification (CLS) and natural language inference (NLI),
due to the following reasons.

– A typical neural network architecture for NLU includes an encoder which
encodes the embedded text inputs, and an aggregator that aggregates the
encoded inputs to a fix-length vector to make a prediction [7]. ENAS [24]
and DARTS [13] restricts themselves with RNN encoders, and [17] does not
consider searching for aggregators.

– For NLU tasks with multiple inputs, cross sentence attention (cross-attn) is
proven beneficial [4,10,19]. However, no previous work has shown how to
apply NAS into cross-attention modeling.

– For NLU tasks there are many design choices like whether to freeze embed-
ding, number of layers, etc., which is not addressed in the above literature.

This article attempts to address the above issues. We first define a com-
prehensive search space designed to better constitute the backbone of a neural
network model for NLU tasks, i.e., the encoder search space and aggregator
search space. Second, other import design choices, like whether to freeze word
embedding, whether to use positional embedding, how many layers the network
needs, and how the intermediate hidden states contributes to the later layer, are
import but time-consuming to tune. We also include these design choices into
the search space. Third, for tasks with multiple sentence inputs, like natural
language inference (NLI), how the sentences attend to each other, and how to
combine the cross-attention modules together with self-encoding operations are
important, which to our knowledge, have not been studied in literature. To auto-
matically model the cross-attention between sentences, we decompose this issue
into steps: i) which attention function to use [2,19], other than the dot product
attention [21]; ii) the position setting choice, i.e., before the first self-encoding
sub-layers, or in between, or after. iii) whether to accompany the cross-attention
operation with a self-encoding operation, and if so, which one to use. The above
three aspects will be decided automatically in our pipeline.

To improve the search stability and performance, we propose a series of
strategies on top of RL based search algorithm. First, parameters are shared
across different operation. We design specific parameter sharing strategies to
accommodate the usage of depth-wise separable convolutions and multi-head
attentions. Second, parameters are shared across different layers, which are espe-
cially import for block-wise search space like ours. Third, to obtain reliable
reward signal, the shared parameters are warmed up in the beginning epochs of
the training. To improve performances, we also use knowledge distillation (KD),
and consider the BERT Large model as the teacher model.
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Our work contributes the field by the following aspects:

– We re-define the search space for neural architecture search in NLU tasks,
by not only including encoder and aggregator operations, but also including
many import design choices into the search space.

– We propose to model cross-sentence attention automatically via network
architecture search, which has shown its usefulness in our experiments, and
to our knowledge has not been done in the literature.

– Our approach learns novel models whose performances are much closer to the
teacher model BERT Large than the baseline models.

Fig. 1. Meta architectures for CLS and NLI tasks.

Fig. 2. Sub-layer architectures of encoders for different tasks.

2 Search Space Design

In this section, we elaborate on the search space design and formally introduce
our search space.
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2.1 Meta-architectures

As pointed out by [7] and depicted in Fig. 1(a), a neural network for sentence
representation in a text classification task usually consists of the following com-
ponents: i) an embedding layer, which maps words into low dimensional vectors;
ii) encoding layer(s), which integrates and extracts higher-level features; iii) an
aggregator layer, which aggregates the information to a single fix-length vector.
Thus, our search space needs to define which encoder and aggregator operations
are considered. The meta architecture (see Fig. 1(b)) for a NLI task is similar.
However, as is shown in ESIM [4], MwAN [19], doing cross-attn can significant
improve the performance of NLI tasks. Previous literature manually designs how
the cross-sent attention module is combined with other encoder operations. In
this work, we try to make the design of cross-attn module automatic.

We now define the sub-layer level structure inside an encoder for CLS and
NLI tasks, as is depicted in Fig. 2(a) and Fig. 2(b). A sub-layer of an encoder
consists of at most two encoder operations, which encode the same input and
then the results are summed and fed into the next module. For a sub-layer that
attends to the other sent, it can consists at most one self-encoding operation. We
call the this type of sub-layer as cross-attn sub-layer, and that only encodes itself
as a self-encoding sub-layer. An entire encoder layer consists at most two self-
encoding sub-layers and at most one cross-attn sub-layer. In this work, we will
automatically determine the following: i) how many encoder operations to use,
i.e., how many self-encoding sub-layers are needed, and which encoder operations
to use; ii) where to put the cross-attn sub-layer, it can be before the self-encoding
sub-layers, or in the middle, or after; iii) which cross-attn operation to use. iv)
is there a self-encoding operation in the cross-attn sub-layer.

2.2 Encoder Operations

In [13,15], the objective is to discover new variants of RNNs, so their search
space is a collection of linear or non-linear maps, such as, tanh and sigmoid. In
this work, we will define the encoder space at a higher granularity, allowing to
build a richer encoder search space. Recent years have witnessed the architecture
of transformers [21] becoming ubiquitous. In this work, similar to [17], we include
the multi-head attention layer, into the search space. The point-wise feed-forward
layer contains conv1d and residual connection, so we will not include it as a basic
operation.

Now we formally give out the encoder operation search space (Henceforth,
ENCODER SPACE), which consists of the following operations:

– Special zero operation, denoted as null;
– Skip connection, denoted as identity;
– 1-d depth-wise separable convolutions, with kernel size k, where k = 1, 3, 5,

denoted as sep conv k;
– Two RNNs, which are denoted as lstm and gru;
– Multi-head self-attention, with number of heads k = 1, 2, 4, 8, denoted as

mha k.
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2.3 Aggregator Search Space

There are several different aggregation operations. The most common two are
the max pooling and the average pooling. Self-attention technique is also used for
aggregation. We also include dynamic routing [7] into our aggregator operation
space. It involves two hyper-parameters that affect the final performance: i) the
number of capsules; and ii) the number of iterations. Therefore, we design the
aggregator search space (henceforth, AGGREGATOR SPACE) as:

– Max pooling, denoted as max-pool;
– Average pooling, denoted as avg-pool;
– Self-attention pooling, denoted as self-attn-pool;
– Dynamic routing, where the number of capsules is nc = 2, 4 and the number

of iterations is ni = 2, 3, denoted as dr cap nc iter ni.

2.4 Design Choices

There are many design choices for building a neural network architecture. For
the embedding layer, whether to fine-tune the word embedding is task specific
[19]. In addition, whether to use positional embedding, and if so, which positional
embedding to use needs to be determined.

For the encoder layers, first we need to decide how many self-encoding sub-
layers are required, where the search space is num ses = 0.5, 1, 1.5, 2. Here,
0.5 means that a sub-layer only requires one self-encoding operation. Corre-
spondingly, one need to select a combination of encoder operations to fill in the
sub-layers.

For the cross-attn sub-layer, firstly one has to decide whether cross-attn is
needed at all. Second, which attention mechanism to select. In addition to the
dot product attention used in MHA (denote as dot), we incorporate the four
attention functions in [19], which are referred to as p dot,1 concat, add, minus.

Third, where to put the cross-attn sub-layer needs to be determined. We
denote its position as ca pos = 0, 1, 2, which corresponds to being before the self-
encoding sub-layers, or in between, or after, respectively. In addition, whether
a self-encoding operation will be needed in the cross-attn sub-layer (denoted as
num ses ca = 0, 1) and if true, which operation to use also need to be deter-
mined.

Skip connection is of central importance to the optimization of a neural net-
work [8]. Thus, we add another hyper-parameter in, i.e., How many intermediate
outputs (counting backward from the last output inside an encoder layer) of sub-
layers will be used to be the input of the next encoder layer. Here the choices
are num outputs = 1, 2, 3, 4. Note that transformer-style residual connection

1 Note that the dot attention in [19] (denoted as p dot by us) is not the same with
the dot product attention in MHA, where the former is point-wise product (‘A *
B’ in PyTorch), and the latter is (batch-wise) matrix multiplication (‘torch.bmm(A,
B)’).
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is included in the solution set of our search space, since we include identity
operation in the ENCODER SPACE.

Now, we are ready to define the whole search space:

– Number of self-encoding sub-layers = 0.5, 1, 1.5, 2;
– Operations used in self-encoding sub-layers = SELF ENCODER OP SPACE;
– Number of self-encoding operation in the cross-attn sub-layer = 0, 1;
– Whether to do cross-attn = True, False;
– Attention function in the cross-attn operation = dot, p dot, add, concat,
minus;

– Position of cross-attn operation = 0, 1, 2;
– The number of intermediate outputs summed as the input of the next layer

= 1, 2, 3, 4;
– Which positional embedding to use = learned pos, sinusoid pos, null, where

null means not to use positional embedding;
– Whether to add positional embedding at the intermediate encoder layers =

True, False;
– Whether to freeze word embedding layer = True, False;
– Number of encoder layers = 1, 2, 3, 4, 6;
– Aggregator operation type = AGGREGATOR SPACE.

3 Architecture Search

AutoNLU uses a reinforcement learning algorithm with weight sharing to per-
form architecture searches. Our algorithm is similar to ENAS [16], but contains
changes to improve robustness and scalability of the search process.

3.1 Search Algorithm

A controller, which is a LSTM network, is used to generate new architectures.
At each step of the controller, a categorical decision is made which controls a
certain aspects of the network architecture. For example, a single categorical
decision might control whether we use a convolution (of certain kernel size) or a
LSTM operation at a particular position in the encoder layer. An architecture
is an assignment of values to these categorical decisions.

During a search, we learn a policy π, a probability distribution from which
we can sample high quality architectures from the controller. Formally, π is
defined as a collection of independent multi-nominal variables, one for each of
the decisions in our search space. We also learn a set of shared weights W , which
are used to efficiently estimate the quality of candidate architectures without
training each of them till convergence.

Learning for the policy and the shared parameters is conducted in an inter-
leaving fashion. At each step, we first sample a network architecture α ∼ π. Next,
we use the shared weights to estimate the performance r(α) of the sampled archi-
tecture using a single or a few batches of examples from the validation set. r(α)
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is regarded as the reward signal to update the policy π using REINFORCE [23].
Finally, we update the shared model weights W by computing gradient updated
w.r.t. the architecture α on a single or multiple batches of examples from the
training set. The above process is repeated over and over until the search com-
pletes. At the end of the search, one will re-rank the architectures encountered
during search by their rewards using the current shared weights, and select the
top-k models.

3.2 Child Model Training

We adopt the BERT Large model as the teacher model, and our child model
is trained by approximating the teacher model’s behaviours. The workflow of
knowledge distillation is as follows. Firstly, we train the teacher model till con-
vergence. Denote X as a input sequence, c as one of the classes (i.e., the sentiment
is negative or positive), and we denote the teacher model’s predicted probability
that X is labeled as c as PT (c|X). The child model’s prediction is denoted as
PC(c|X). Without distillation, the training objective of the child model is the
cross entropy loss, i.e.,

−
∑

c

I(X, c)log(PC(c|X)), (1)

where I(X, c) is the binary indicator (0 or 1) indicating whether class label c is
the correct classification for X. That is, we want our child model to fit on the
distribution of the training dataset. In comparison, with a teacher model, our
objective becomes

−
∑

c

PT (c|X)log(PC(c|X)). (2)

Table 1. Overview of used datasets in experiments.

Dataset Task Train # Dev # Test # Label # Metrics

SST-2 CLS 77k 872 1.8k 2 Acc

RTE NLI 2.5k 277 3.0k 2 Acc

SciTail NLI 23.5k 1.3K 2.1k 2 Acc

CoNLL2003 NER 14k 3.2K 3.4k 4 F1

Note that Eq. 2 differs from the cross entropy loss in Eq. 1 in that the former
uses the soft targets PT (c|X) provided by powerful teacher model while the
latter uses the hard correct target I(X, c).
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3.3 Improving Weight Sharing

To reduce the cost of an architecture search, NAS algorithms that are based
on weight sharing [3,13,16] always train a large network – a super-net – with
many redundant operations, most of which will be removed at the end of the
search. There are two issues not fully investigated in the previous literature:
(1) Previous literature treat each operation as completely separate, ignoring
the weights that can be shared; (2) operations in different blocks are separate,
thus linearly increasing the number of shared parameters, which may result in
unreliable reward signals. Now we introduce a series of more aggressive weight
sharing strategies to resolve the above problems.

Cross-Operation Parameter Sharing. (COPS) Instead of using totally sep-
arate sets of weights for each choice of operation in the encoder search space
at each sub-layer, we aggressively re-use the weights that can be shared: (1) for
multi-head attention modules, including that in the self-encoding operation and
in the cross attention operation, we set the head size by dividing the hidden
size with #heads, so that the query, key, value matrix can be shared across
multi-head attention operations with different #heads; (2) each 1-d depth-wise
separable conv can share the same point-wise conv (i.e., the conv with kernel size
1). (3) for aggregation layer, we share the fully-connected layer in the dynamic
routing aggregators across different numbers of iterations and numbers of cap-
sules.

Cross-Layer Parameter Sharing. In this paper, we employ cross-layer
parameter sharing (CLPS). During search, we let all the encoder layers share
the same shared parameters, thus significantly reducing the quantities of shared
parameters during search, and as a result, helping to accelerate convergence and
yielding better architectures. During the architecture evaluation stage, we train
the yielded models both with CLPS and without, and pick the one with better
dev performance.

3.4 Search Warm-Up

When the search begins, the shared weights are all randomly initialized, thus
rewards obtained using them is unreliable and may mislead the controller. Thus
for the beginning epochs of the search, we do not update the parameters of the
controller. In addition, considering the search space involves multi-head attention
which requires warm up, thus, we also warm up the learning rate for the shared
weights.
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Table 2. performances on the benchmark datasets. ‘–’ denotes the numbers are not
reported in the original paper otherwise from the reference.

Model SST-2 RTE SciTail CoNLL2003

BiLSTM + Attn [22] 85.9 51.9 – –

BiLSTM + Attn + Elmo [22] 90.2 50.4 – –

DGEM [9] – – 70.8 –

BiLSTM 85.9 52.8 71.1 (72.6) 80.2 (82.8)

Transformer [21] 86.5 (87.1) 49.3 (49.9) 73.2 (73.6) 67.1 (68.5)

BiLSTM (distilling BERT-Large) 89.3 (99.9) 64.2 (65.1) 82.2 (83.5) 86.4 (87.5)

Transformer (distilling BERT-Large) 89.7 (90.6) 64.8 (65.4) 83.1 (83.9) 86.2 (87.4)

ESIM (distilling BERT-Large) – 65.2 (65.9) 83.5 (84.7) –

BERT-Large [5] 94.9 (95.8) 70.1 (70.6) 88.3 (89.2) 91.4 (92.8)

Random search 88.3 (89.3) 57.2 (59.8) 77.8 (80.3) 84.8 (86.9)

Search w/o distillation 88.6 (89.1) 53.5 (53.7) 75.6 (75.9) 82.4 (83.5)

ANsst,0,t 90.8 (92.7) – – –

ANsst,2,u 91.5 (92.9) – – –

ANrte,0,t – 66.1 (67.9) – –

ANrte,4,t – 67.5 (68.2) – –

ANscitail,0,u – – 84.1 (84.8) –

ANscitail,4,t – – 85.2 (85.9) –

ANconll03,0,u – – – 87.2 (87.9)

ANconll03,3,u – – – 87.7 (88.5)

4 Experiments and Discussion

In our experiments, for each search or evaluation, we assign 2 CPU cores, 5G
memory and 1 T V100 GPU card.

4.1 Datasets

We conduct experiments for CLS, NLI and NER tasks, with 4 benchmark
datasets whose statistics are shown in Table 1.

SST-2. Stanford Sentiment Treebank (SST) is a movie review dataset which
has been parsed and further splitted to train/dev/test set by [18].

RTE. Recognizing Textual Entailment (RTE) comes from a series of annual tex-
tual entailment challenges and is included as part of the GLUE benchmark [22].

SciTail. This is a textual entailment dataset derived from a science question
answering (SciQ) dataset [9].
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CoNLL2003. This dataset consists of 200k training words which have been
annotated as Person, Organization, Location, Miscellaneous, or Other (non-
named entity).

4.2 Architecture Search Protocols

Experiments on each task consist of two stages, architecture search and architec-
ture evaluation. In the search stage, we train the policy function with the shared
parameters and select 5 candidate architectures. In the second stage, the archi-
tectures are trained from scratch for multiple times using the complete training
set, with or without cross layer parameter sharing. After obtaining the model
checkpoints with the best dev performances, the prediction on test are made.

The training of BERT-Large teacher model closely follow [5]. For the child
model, the pre-trained embedding is from [14] (840B, 300d). During search phase,
the interleaving optimization process runs for 100 epochs on train set. On each
interleaving step, 5 batches of train samples is used to update the shared weights,
and 2 batch of dev samples is used to obtain rewards. Search warm-up and
learning rate warm-up are set to be 10% and 3% of the whole search phase.
The training batch size is 32 and eval batch size is 128. Optimizers for shared
parameters and controller are both Adam [11] with lr 1e−4. Weight decay is set
as 1e−4 and gradient clipping is set to be 1.

To compare our methods with random search, for each task we randomly
sample 10 different models and train them from scratch, and report the perfor-
mance of the best model as the performance of random search.

Table 3. Comparison of GPU memory consumption and inference speed between the
teacher model BERT Large and ANscitail,4,t, when doing inference on Sci-Tail test
dataset.

Model GPU memory Inference speed

BERT Large 7.8 GB 1.1 it/s

ANscitail,4,t 0.84 GB 16.6 it/s

4.3 Results

In the tables referred in this section, we report the average and best (in the
bracket) performances of multiple runs. For notation convenience, we denote the
architecture obtained by searching on task x, ranked i-th in the search phase
and training from scratch with or without CLPS b (‘t’ for true and ‘u’ for false)
as ANx,i,b.

Results on the 4 datasets are presented in Table 2, and best learned archi-
tectures are depicted in Fig. 3(a), 3(b), 3(c) and 3(d). First, we can see that
performances improve significantly with the help of KD, both for the baseline
models and architecture search. Second, we can see that the learned models
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outperform the baselines significantly, both with KD and without. The results
demonstrate NAS’s ability to better fit the learning signals in a task specific
level. Third, Table 3 shows that during inference with the same batch size 128,
our learned model on Sci-Tail are 16 times faster and consume 8 times less GPU
memories than BERT Large.

SST-2 selects an simple encoder layer with a single sub-layer and stack the
encoder layer for 4 times. On the RTE task, the best model use an complex
single encoder layer which includes RNN, convolution and self-attention opera-
tions. However, as a NLI task, RTE chooses not to include cross attention. Cross
attention is applied by ANscitail,4,t, and the attention function used is add. The
encoder for CoNLL03 is a combination of RNN and conv-1d with kernel size 1.
This pattern of sub-layer also appears on the RTE task. For aggregators, 2 out
of 3 tasks select dynamic routing, but with different hyper-params, and RTE
select avg pool, which validate the necessity of the aggregator search space.

4.4 Ablation on Our Strategies

In the previous section, we propose three strategies, cross operation parameter
sharing (COPS), cross layer parameter sharing (CLPS) and search warm-up.

Fig. 3. Learned architectures on the four benchmark datasets.
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We now study on how searching with or without our proposed strategies affects
the final search performance. We conduct separate search runs, with different sets
of strategies, under the same search settings, and use the performance of the best
model obtained as the metric for a search run. We consider four scenarios: (1)
search with our proposed strategies, which is denoted as search; (2) dropping
the CLPS strategies, denoted as search w/o CLPS; (3) further dropping the
COPS strategies, denoted as search w/o CLPS or COPS; (4) further search
without search warm-up (search w/o CLPS, COPS or warm-up).

The ablation is conducted on Sci-Tail, and the results are reported on Table 4.
As we can see, conducting search with CLSP will significantly stabilize the search
process and provide more reliable search results. The intuition is quite straight-
forward. Doing CLSP significantly reduce the number of shared parameters dur-
ing the search phase, thus making the reward signal during search more reliable.
The results also shows COPS and search warm-up are beneficial for search.

Table 4. Results for ablations studies on the strategies we propose for search.

Strategies Test ACC

Search 85.2 (85.9)

Search w/o CLPS 84.3 (84.8)

Search w/o CLPS or COPS 83.5 (84.2)

Search w/o CLPS, COPS or warm-up 83.0 (83.8)

Table 5. Results for ablations studies on the search space we construct for architecture
search for NLU tasks.

Search space Test ACC

baseline: BiLSTM + max pool 82.2 (83.5)

SP0 82.7 (83.3)

SP1 83.4 (84.6)

SP2 84.3 (85.0)

SPfull 85.2 (85.9)

4.5 Ablation on Our Search Space

We now conduct ablation study on our entire search space. We start with a
simple baseline, BiLSTM with max pooling (single layer, no cross attention,
no positional embedding, not to freeze word embedding). We gradually add
parts of the search space: (1) add aggregator search space (SP0); (2) add search
options related to self-encoding operations (SP1); (3) add search space for cross
attention (SP2); (4) further adding the rest of the design choices (SPfull). This
ablation study is done on Sci-Tail, and results are shown in Table 5. As we
gradually expand the search space, the test performances improves significantly,
demonstrating the necessity of each components of our search space.
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5 Conclusion and Future Work

In this work we experiment on modeling sentence representation and cross-
sentence attention via NAS. First, we include encoder and aggregator operations
in the search space, to accommodate the meta-architectures of NLU models,
which is novel in the literature. Second, we are the first to experiment on mod-
eling cross-sentence attention via NAS, by letting the controller decide which
attention function to use, where to put the cross attention, and how it is com-
bined with other encoder operations. Third, we also take many import design
choices like whether to freeze embedding, how many layers of encoder, etc., into
the search space, thus further reducing the human interventions in neural net-
work design for NLU tasks. Fourth, we propose a series of strategies to ensure
the search stability and performance. Experimental results show that our search
process can obtain new models that are comparable or better than the existing
network based baselines. In addition, ablation studies show that different parts
of our search space are necessary and our proposed strategies indeed work for
NAS.

In the future, we aim to further improve the search space for NLP tasks,
as we have seen search space can play a significant role for vision tasks [20].
Meanwhile stable search and more evaluations on large-scale tasks are also of
common interest to the community.
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Abstract. Though the transformer architectures have shown domi-
nance in many natural language understanding tasks, there are still
unsolved issues for the training of transformer models, especially the
need for a principled way of warm-up which has shown importance for
stable training of a transformer, as well as whether the task at hand
prefer to scale the attention product or not. In this paper, we empiri-
cally explore automating the design choices in the transformer model,
i.e., how to set layer-norm, whether to scale, number of layers, number
of heads, activation function, etc., so that one can obtain a transformer
architecture that better suits the tasks at hand. RL is employed to nav-
igate along search space, and special parameter sharing strategies are
designed to accelerate the search. It is shown that sampling a propor-
tion of training data per epoch during search help to improve the search
quality. Experiments on the CoNLL03, Multi-30k and WMT-14 shows
that the searched transformer model can outperform the standard trans-
formers. In particular, we show that our learned model can be trained
more robustly with large learning rates without warm-up.

Keywords: Transformer network · Neural architecture search ·
Reinforcement learning

1 Introduction

The transformer architecture [19] has achieved great success in not only machine
translation but also many other natural language processing (NLP) tasks. Its
popularity obtains further increase with the introduction of BERT [5]. Mean-
while, there are also many criticisms to the transformer. First, transformers often
require a warm-up step to stabilize model training, which is directly affected by
how the layer normalization is applied in the transformer architecture. In [19],
layer-norm is applied after residual connection (post-LN transformer). [20] place
layer-norm before multi-head attention and activation (prev-LN transformer).
c© Springer Nature Switzerland AG 2021
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Recently [22] gives a theoretical explanation of the advantages of the prev-LN
transformer. However, these two strategies are the only existing combinations
of layer-norms. Second, [23] points out that some tasks like named entity recog-
nition (NER) may prefer not to scale the attention product. In addition, there
are many design choices (or hyper-parameters) in the transformer architecture,
e.g., the number of attention heads, layers [18], and the number of dimensions in
the positional feed-forward module, etc. There exists little guidance on how to
achieve an optimized transformer architecture for different tasks. Manual tun-
ing or simple heuristic search is time consuming and computationally expensive
without any grounded guarantee. Due to its wide applications, optimizing the
transformer architectures for specific tasks can be of great importance.

Network Architecture Search (NAS) has achieved great success in image
recognition. NAS has helped to discover better models for a variety of vision
tasks, from image classification [3], semantic segmentation [11], to object detec-
tion [7], etc. Despite its success in vision, there are not enough work to study NAS
for NLP. Some efforts have also been invested in searching for sequence mod-
els [14,24]. In these cases, it has always been to find better RNN architectures.
There are few studies in applying NAS into improving the standard transformer
architectures. [17] employs evolution algorithms for search, but their focuses
are to combine convolutions and multi-head attention operations. In addition,
the search process they conduct requires enormous computations that is forbid-
ding to most researchers or NLP practitioners. In this work, we propose a more
efficient yet effective methodology to improve upon the standard transformer
architectures.

When trying to improve upon the standard transformers, the above literature
fall short in the following aspects.

1) For the settings of layer-norms, no previous literature have proven theoreti-
cally or empirically the existing two solutions are optimal.

2) Many other import design choices of transformers architectures like whether
to scale, whether to put attention to encoder module before or after self
attention, number of layers is not addressed by NAS literature.

3) Existing work on NAS for transformers is extremely time-consuming, making
it in-practical.

In this work, we experiment on making the design choices in the transformer
model automatically, i.e., how to set layer-norm, whether to scale, where to put
encoder attention, number of heads, number of layers, activation function, etc.,
so that one can obtain a transformer architecture that better suits the tasks
at hand. To navigate on our search space, we employ reinforcement learning
(RL) strategy, or more specifically, ENAS by [14], and we design the specialized
parameter sharing strategies for multi-head attention to help speeding up the
search process. And we propose to sample a proportion of the training data at
each search epoch, as a way of regularization and speed-up. Experiments on
the CoNLL03, Multi-30k, WMT-14 dataset shows that the searched transformer
models can outperform the standard transformer models significantly. And we



AutoTrans 171

will show that this performance advantage is persistent across different learning
rates. Note that since they are two phases in ENAS search, the top-ranked model
at the search phase may not be the best one, but it can still reliably outperform
the standard transformers.

The contributions of the paper can be summarized as:

– We develop a comprehensive search space to improve transformer architec-
ture, especially for the positions of layer-norms.

– We develop efficient search for new transformer architectures (e.g. 1.5 GPU
hours on Multi-30k), by employing RL strategy and designing specialized
parameter sharing strategies for multi-head attention.

– The learned models outperforms the standard transformers, and this perfor-
mance gain is robust under different learning rates.

2 Related Work

The field of neural architecture search (NAS) has attracted a lot of attentions in
the recent years. The goal is to find automatic mechanisms for generating new
neural architectures to replace conventional handcrafted ones, or automatically
deciding optimal design choices or hyper-parameters instead of manually tun-
ing [2]. Recently, it has been widely applied to computer vision tasks, such as
image classification [3], semantic segmentation [11], object detection [7], super-
resolution [1], etc. However, NAS is less well studied in the field of natural lan-
guage understanding (NLU). Recent works [12,14,24] search new recurrent cells
for the language modeling (LM) tasks. The evolved transformer [17] employs
an evolution-based search algorithm, and the vanilla transformer as the initial
population, it generates a better transformer architecture that consistently out-
perform the vanilla transformer on 4 benchmark machine translation tasks.

Our work also focuses on the transformer architecture, but the difference
with the evolved transformer is clear. First, evolved transformer emphasize on
combining convolution operation and multi-head attentions, while our work is
to optimize the settings of layer-norms, whether to scale, where to place the
encoder attentions in the decoder, number of layers, etc., such that the model
can converge and generalize well without warm-up. Second, we employ a special
designed parameter sharing strategies, and we propose to sample a proportion
of training data per search step, such that the search time cost can significantly
reduce.

Our work is also closely related to a line of work that try to modify and improve
the transformer architecture. Sparse transformer [4] uses a sparse alternative of
softmax to reduce the head size of self attention. Star Transformer [8] uses an
intermediate center node to change the fully-connected attention to a more sparse
one, thus making the model lighter and can perform better on a series of small
or medium sized datasets. The recent Reformer [9] uses local sensitive hashing
and reversible transformer to significantly reduce the time and space complexity
of transformer architectures. Our work contributes to the literature by including
many design choices that are ignored by literature into our search space, and mak-
ing the search for better transformers automatic and efficient.
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3 Search Space Design

Now we discuss our search space in detail. Since our goal here is to optimize the
transformer architecture, we keep its main bone structure, as shown in Fig. 1.

First, Fig. 1 depicts the possible positions for layer-norms, where LN − i
(i < 7 for the encoder, and i < 10 for the decoder) in yellow boxes means a
layer-norm can be put at position i.1 The second aspect is whether to scale at
the multi-head attention. [23] suggest not to scale results in sparser attention
and thus help to improve the transformer’s performance on NER tasks. Third,
the number of layers is also import as it can not only affect performance during
training, but also how many GPU resources are needed for deploying the model.
In addition, it is common to set the number of layers in encoder to be equal to
that in the decoder [19], however in [18] the decoder has fewer layers than the
encoder. In this paper, we let the search procedure to decide whether to have
different numbers of layers in the encoder and decoder. The fourth design choice
we include in our search space is whether the attention to encoder module is
placed after the self-attention or before.

Fig. 1. The architecture for AutoTrans.

Similar to [17], the search space also include the number of heads, and the
activation function used in the positional feed-forward layer, and the relative
dimension for the intermediate hidden states. The activation function we con-
sider is listed in Table 1.

1 If layer-norm is put at position 0, then there is no need for layer-norm at position
1. This also holds for position 3 and 4, 9 and 4.
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Table 1. Activation functions in the search space.

Name Function

relu max(x, 0)

leaky relu x if x ≥ 0 else 1e−2 * x

elu x if x ≥ 0 else ex − 1

swish x ∗ sigmoid(x)

gelu 0.5 ∗ x ∗ (1 + erf(x/
√

2))

gelu new 0.5x(1 + tanh(
√

2/π(x + 0.044715x3)))

Now we formally introduce our search space. For the encoder, the search
space is as follows.

– Layer-norm at position i (i < 7) = True, False;
– Embedding layer-norm = True, False;
– Final output layer-norm = True, False;
– Number of self-attention heads = 1, 2, 4, 8, 16;
– Attention scaled = True, False;
– Activation = relu, leaky relu, elu, swish, gelu, gelu new;
– Relative dimension = 0.5, 1, 2, 4, 82;
– Number of layers = 1, 2, 3, 4, 6, 9;

For the decoder, most of the search space is the same, except the following
three items.

– Layer-norm at position i (i < 10) = True, False;
– Encoder attention after self-attention = True, False;

In total, our search space contains 1.5e+6 number combinations of possible
transformer encoder architectures and 1.2e+8 for encoder-decoder architectures,
which is quite a large search space. Next, we will show how to navigate through
this enormous search space and obtain architectures that are better than stan-
dard transformers efficiently.

4 Architecture Search

We elaborate on the search algorithm that exploits the defined search space, the
parameter sharing strategies and data sampling strategy controlling the search
time within a GPU day.

2 Here the relative dimension being equal to 0.5 means halving the hidden dimensions.
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4.1 Search Algorithm

We employ a controller to do a guided exploitation in search space, which is
similar to ENAS [14]. The controller is an LSTM network with 100 units, with
parameters θ. The output hidden state is fed into a classifier to decide the action
at each step. The shared parameters of the child models are denoted by ω, which
will be discussed in detail in the next subsection.

The architecture search procedure consists of two interleaving phases. The
first phase trains ω, the shared parameters of the child models, on a pass through
the training data set. In ENAS [14], this step use the whole pass of the training
data set. However, we argue that for each pass, randomly sampling a proportion
of the training data not only saves time, but also provides extra regulariza-
tion so that the parameters do not over-fit and the search can obtain better
architectures. The second phase trains θ, the parameters of the controller, via
optimizing the expected reward function using the REINFORCE algorithm [21].
The reward function is the negative of the perplexity on the valid set for the
machine translation task, and F1 score for NER.

4.2 Deriving Architectures

We discuss how to derive novel architectures from a trained ENAS model. We
first sample several models from the trained policy π(m, θ). For each sampled
model, we compute its reward on the validation set. Then we take the top
model(s) with the highest rewards to re-train from scratch. The number of top
models to select is based on our computational resources, which will be shown in
detail in the next section. We find that it is not guaranteed that the top-ranked
model generated here will turn out to be the best model in certain tasks. But,
selecting only a few top models to train from scratch makes the search proce-
dure reasonably economical, and is shown to be able to improve the transformer
architecture.

4.3 Cross-operation Parameter Sharing

In this work, the embeddings for the source language and the target language
are shared for all the child models. For more efficient parameter sharing and
ease of training, we constrain that the hidden dimension of each attention head
is equal to the hidden size divided by the number of heads, so that multi-head
attention block with different number of heads have parameters of the same size,
and thus are possible to share the query, key and value matrices. Note that the
encoder and decode does not share weights.

4.4 Cross-layer Parameter Sharing

Recently ALBERT [10] shows that cross-layer parameter sharing can provide reg-
ularization for training and stabilize the gradients, thus are beneficial for training
deep models. In this paper, unless otherwise stated, during search the param-
eters in the previous transformer layer is shared to the next one. Cross-layer
parameter sharing is beneficial in the scenario of NAS since it notably reduce
the number of shared weights, thus greatly accelerating the search process.
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5 Experiments and Results

For each search or evaluation, we assign 1 T V100 GPU card(s) for CoNLL03
and Multi-30k, and 8 for WMT-14.

5.1 Datasets

Table 2. Overview of used datasets in experiments.

Dataset Task Train Dev Test Metrics

Multi-30k (en-de) MT 30k 1.03k 1.0k BLEU

WMT-14 (en-de) MT 4.5M 39k 3k BLEU

CoNLL2003 NER 14k 3.2K 3.4k F1

We conduct experiments on two different tasks with 4 benchmark datasets, whose
statistics are shown in Table 2. To verify the validity of our method on tasks of
different scales, we select three machine translation tasks, Multi-30K [6] and the
standard WMT-14 (English-German) dataset, which represent machine transla-
tion tasks of different sizes. We also experiment on CoNLL2003 [15], a benchmark
NER datasets, to showcase that our method works under different NLP tasks.

Multi-30K. This task involves translating English sentences that describe an
image into German.

WMT-14. It consists of about 4.5 million EN-DE sentence pairs. Sentences
were encoded using byte-pair encoding [16], which has a shared source target
vocabulary of about 37000 tokens. We use newstest2013 for validation and new-
stest2014 for test, which is in consistence with [19].

CoNLL2003. This dataset consists of 200k training words which have been
annotated as Person, Organization, Location, Miscellaneous, or Other (non-
named entity).

5.2 Architecture Search Protocols

During search phase, the interleaving optimization process is run 100 times. For
each search epoch, a proportion r of the train data is passed to a child model,
where r = 0.05, 0.2, 0.5 or 1. For WMT-14 task, we only consider r = 0.2. For the
CoNLL03 task, we use the pre-trained embedding from Glove [13] (840B, 300d),
and the 300-d embedded input is reshaped to 512d with a separable convolution
with kernel size 1. For the three MT tasks, the embedding is randomly initialized,
and the dimensions for the embedding and for the hidden states are all set to 512.
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Due to the resource limitation, for the WMT-14 dataset, we limit the number of
layers to be less or equal to 6, so that the size and number of parameters of the
new transformers will not be larger than the transformer base setting in [19],
thus for comparison of performances, we will only compare with transformer
base. The hidden dim for the controller is set to 100. After manually fine-tuning,
the learning rate for the search is set at 1e-4 for CoNLL03, and 1e-3 for Multi-30k
and WMT-14. The batch-size is set at 64 per GPU.

After the search phase, 30 model architectures are sampled from the trained
controller, and they are ranked via their performance on the valid data when
they are initialized using the shared parameters. Then the top-ranked 5 models
(2 models for WMT-14 task) are trained from scratch to convergence on the
whole training data of the task to formally evaluate their performances. The
training is also repeated for n runs to calculate the fluctuation of performances.
n is set in consideration of replication and our resource limitations. For CoNLL03
and Multi-30k, n is set to be 10. For WMT-14, n is set to be 5.

To compare our methods with random search, for task CoNLL03 and Multi-
30k, we randomly samples 7 different models, since the GPU time for training 7
models is slightly larger than an entire search and evaluation process. Due to the
same reason, we also randomly samples 3 different models for evaluation on the
WMT-14 task. We train them from scratch, and report the performance of the
best dag as the performance of this random search run. The results of random
search will be the average of 5 such runs.

The key hyper-parameters for all the learned models and baseline transform-
ers are learning rate, and for standard transformers the number of layers, number
of heads, relative dimension are also considered. Learning rate is selected from
3e−3, 1e−3, 1e−4, and the other hyper-parameters are consistent with that in
our search space. The optimal hyper-parameters are determined via exhaustive
search over the search space.

5.3 Main Results

Results on CoNLL-03. First, we report the results on the CoNLL 2003 task
in Table 3. The prev-LN transformers perform slightly better than the post-LN
version, achieving around 67.89 F1 on the test set. Random search on our search
space obtains worse average results, and the performances are quite volatile. Now
we look at our learned models. The top-ranked dag ATconll,0.2,0 by the search
procedure when using only 20% of the training data is depicted in Fig. 2(a). It
only uses layer-norm once at the beginning of the transformer block, and it uses
a relative dim of 8 and stack two transformers layers. Note that it does not scale
at the MHA. This model significantly outperforms the two versions of standard
transformers by achieving 68.81 F1 score on the test set. The best model the
search gives out is ATconll,0.5,1, a 4-layer transformer discovered when using 50%
of the training data for search. If the resources allows, training more top-rated
dags can help to discover better architectures. The results show that our search
method is able to discover new transformer architectures efficiently.
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Fig. 2. New transformer architectures learned on CoNLL03.

Table 3. Results on the CoNLL2003 dataset.

Model dev F1 (%) test F1 (%)

prev-LN Transformer 75.77 ± 0.354 67.89 ± 0.204

post-LN Transformer 75.46 ± 0.217 67.11 ± 0.262

random search 74.89 ± 0.768 66.7 ± 0.645

ATconll,0.2,0 78.15 ± 0.178 68.81 ± 0.189

ATconll,0.5,1 78.64 ± 0.204 69.75 ± 0.197

Table 4. Results on the Multi-30k dataset.

Model dev ppl test BLEU

prev-LN Transformer 22.33 ± 0.123 29.47 ± 0.426

post-LN Transformer 19.64 ± 0.569 31.20 ± 0.089

random search 24.76 ± 1.987 28.08 ± 1.863

ATmulti30k,0.2,0 17.54 ± 0.090 33.55 ± 0.310

ATmulti30k,1,1 16.63 ± 0.143 34.56 ± 0.325

Results on Multi-30k. The results on the Multi-30k English-German translation
task is reported on Table 4. Random search on our search space can not result
in good performances and is quite unreliable in finding good architectures. The
top-ranked architecture at the search phase when using 20% of the training
data for search achieves average ppl of 17.63 on dev set and BLEU score of
33.55, which outperforms the two standard transformers. However, this is not
the best architecture we obtained. When using all the train data per search
epoch, the second best dag by the search phase is the best architecture we find.
Figure 3(a) and 3(b) depict the two learned models. Note that in the two models:
i) a layer-norm is placed right after the multi-head self attention, and after the
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FFN module; ii) the decoder has more layers than the encoder layer; iii) the attn
to encoder module is placed before the self attn in the decoder layer. The two
learned models verify the necessity of our search space design.

Results on WMT-14. For WMT-14 EN-DE task, the results for prev-LN and
post-LN transformers are referenced from [20] and [19]. As we can see in Fig. 4,
the learned models ATwmt14,0.2,0 and ATwmt14,0.2,1 places encoder attention
after self-attention. But now the best discovered models on WMT-14 tends to
place layer-norm before the self-attention module, and before and after the feed-
forward layer. Here we find that the decoder has less layers than the encoder.
According to Table 5, both models outperform the standard transformers signif-
icantly, and performs comparably with the evolved transformer. Note that the
evolved transformer includes branches in its architecture to allow more variable
feature extraction, and the GPU time cost is 1000 times more than ours. The
result shows that our approach is efficient and effective on machine translation
tasks of various sizes.

Fig. 3. New transformer architectures learned on Multi-30K.

Fig. 4. New transformer architectures learned on WMT-14.
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Table 5. Results on the WMT-14 dataset.

Model dev ppl test BLEU

prev-LN Transformer (base) – 27.1

post-LN Transformer (base) – 27.3

Evolved Transformer (base) 4.03 28.4

random search 4.56 ± 0.764 26.85 ± 0.698

ATwmt14,0.2,0 4.18 ± 0.092 27.68 ± 0.164

ATwmt14,0.2,1 4.09 ± 0.076 28.05 ± 0.115

5.4 Effects of Proportions of Training Data

We conduct a series of experiments on the Multi-30k dataset, trying to study
the effects of using only a proportion of training data in a search epoch. Table 6
gives out the results for the top-ranked models for the proportion of training
data being 5%, 20%, 50% and 100%, respectively. When using only 20% of the
data for search, we can already learn a good architecture that outperforms the
standard transformer. Using the whole training data for search can generate
better performance, but the search cost is higher. Note that, when given only
5% of the training data per search epoch, the controller fails to obtain a better
model. We believe the intuition behind this phenomenon is that when fed with
not enough data, the reward signals the controller receives can not well represent
a model’s performance, thus making it difficult to design good models for the
dev set. However, our experiments shows that when the resources is limited, one
can use a proper proportion of data for search (Table 7).

Table 6. Multi-30k: different proportions of train data for search.

Model dev ppl test BLEU

prev-LN Transformer 22.33 ± 0.123 29.47 ± 0.426

post-LN Transformer 19.64 ± 0.569 31.20 ± 0.089

ATmulti30k,0.05,0 21.85 ± 0.162 29.39 ± 0.395

ATmulti30k,0.2,0 17.54 ± 0.090 33.55 ± 0.310

ATmulti30k,0.5,0 17.95 ± 0.205 31.12 ± 0.363

ATmulti30k,1,0 17.27 ± 0.095 33.72 ± 0.232
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Table 7. Multi-30k: different learning rates for model training.

Model dev ppl test BLEU

lr = 1e−3

prev-LN Transformer 23.66 ± 0.686 29.41 ± 0.405

post-LN Transformer 19.64 ± 0.569 31.20 ± 0.089

ATmulti30k,1,1 16.63 ± 0.143 34.56 ± 0.325

lr = 3e−3

prev-LN Transformer 22.33 ± 0.123 29.47 ± 0.426

post-LN Transformer 34.44 ± 9.31 22.62 ± 6.462

ATmulti30k,1,1 17.358 ± 0.290 33.253 ± 0.199

lr = 1e−4

prev-LN Transformer 25.07 ± 0.239 28.97 ± 0.422

post-LN Transformer 22.25 ± 0.166 30.29 ± 0.202

ATmulti30k,1,1 18.50 ± 0.094 34.08 ± 0.481

5.5 Effects of Different Learning Rates on the Learned Architecture

We study how different learning rates affect the performances of our learned
architecture ATmulti30k,1,1, which is obtained by setting the learning rate to
be 1e−3 during search. The learning rate is set to be 3e−3, 1e−3, 1e−4, and
as always, no warm-up is used for all models. The post-LN transformer is the
most sensitive to learning rate, and prev-LN transformer is robust with different
learning rate, but it does not result in good performance. Our learned model
ATmulti30k,1,1 is affected by learning rate, but it outperforms the two baselines
significantly.

5.6 Effects of Learning Rate on Search

As shown in Table 8, learning rate affects the search results significantly. For
different learning rates, the searched models given by using 20% of training

Table 8. Multi-30k: different learning rates to search.

Model dev ppl test BLEU

lr = 1e−3

ATmulti30k,0.2,0 17.54 ± 0.094 33.55 ± 0.310

lr = 3e−3

ATmulti30k,0.2,0 18.62 ± 0.115 33.08 ± 0.385

lr = 1e−4

ATmulti30k,0.2,0 21.29 ± 0.079 32.88 ± 0.286
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data are different, and the performance difference is significant. Thus, how to
incorporate the learning rate into the search space or search for models that are
robust to different learning rates is an important issue we would like to further
investigate.

6 Conclusions and Discussions

In this work, we have investigated how neural architecture search can improve
the standard transformer architectures efficiently. We focus on the design choices
that are not well studied in literature, such as how to place layer-norms, number
of layers, how to place encoder attention in the decoder, etc. By applying param-
eter sharing and training data sampling, we can obtain improved transformer
models within a couple of hours on a single GPU. Our experiments on CoNLL03
and Multi-30K shows that our methodology works on different tasks of different
sizes. In addition, our learned model can perform more robustly when trained
with different learning rate.

There are possibilities for future work. First, how to make the transformer
architectures more robust to different learning rate or minimize the effects of
learning rate is an important direction. Second, although the top-ranked model
during search is better than standard transformers, it may not be the best one.
Thus, minimizing the gap between the search and training is a challenging and
worth efforts.
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Abstract. Adversarial examples mislead the deep neural networks
(DNNs) by adding slight human-imperceptible perturbations to the
input, they reveal the vulnerability of DNNs and can be applied to
improve the robustness of the model. Recent work generates adversarial
examples by performing word-level substitutions. However, these meth-
ods can lead to contextually inappropriate or semantically deviant sub-
stitutions because they do not take full advantage of the whole-sentence
information and are inefficient in searching. The aim of this study is
to improve current methods to enhance the effectiveness of adversar-
ial examples. This study proposes an adversarial example generation
method based on an improved application of the masked language model
exemplified by BERT. The method injects fuzzy target word informa-
tion into BERT to predict substitutes by regularizing its token embed-
ding, which empowers BERT to integrate whole-sentence information,
and then searches for adversarial examples within the substitute space
using beam search with the guidance of word importance. Exhaustive
experiments show that it not only significantly outperforms state-of-the-
art attack methods, but also has high application value as it can gen-
erate fluent and natural samples with minimal perturbation. The work
indicates that the method proved to be both effective and efficient in
generating adversarial examples.

Keywords: Adversarial example generation · Word substitution ·
BERT application

1 Introduction

The widespread use of deep neural networks (DNNs) has brought the artifi-
cial intelligence security concerns into the limelight. Recently, researchers found
them vulnerable to adversarial examples, which are maliciously crafted by adding
some human-imperceptible perturbations to the inputs, fooling the model to give
false outputs with high confidence [23]. Adversarial examples limit the further
development of DNNs, especially for many security-sensitive applications, such
as spam detection and toxic comments detection systems [5,9]. From another
perspective, adversarial examples can be used to improve model robustness [7].
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Compared to images, textual adversarial example generation remains a chal-
lenge because the discrete nature of text makes it difficult to generate perturba-
tions that are truly imperceptible to humans. Therefore, the goal in text domain
is to generate samples that meet three requirements: (1) to have the consistent
semantics with the original sample; (2) to read fluently and naturally; (3) to
make the target model predict incorrectly. To meet these goals, word-substitution
method has been widely studied in textual adversarial example generation tasks.

The core of word substitution methods lies in the screening of substitutes
with the aim of semantic consistency and linguistic fluency. There are currently
two categories of methods: target-based methods and context-based methods.
Target-based methods take synonyms of the target word as its candidates, using
synonym repository [19], word embeddings [1,11] and the sememe knowledge
base [25]. This method is static and context-agnostic, leading to contextually
inappropriate substitutions. On the other hand, context-based methods use lan-
guage models to predict substitutes [6,13,14]. However, in both sequential and
masked language models, the original word is not visible when predicting, as a
result of which, semantic deviations always occur. The second stage is to search
for a successful adversarial sample in the candidate space. However, the efficiency
and effectiveness of existing models are still far from satisfying.

In this paper, a novel word-level method for generating adversarial examples
based on whole-sentence information is proposed to address the limitations of
substitution effectiveness and search efficiency. Compared with target-based and
context-based methods, our method is able to integrate the target word and con-
textual information to produce globalized substitutions so as to ensure linguistic
fluency and semantic consistency. Meanwhile, it has an efficient and effective
search method. First, we use an improved application of BERT masked language
model (BERT-MLM) to predict substitute words. Notably, based on the origi-
nal BERT-MLM, a novel, simple and effective target word information injection
method is proposed, which can effectively influence the prediction process to gen-
erate globalized substitutions. After that, a method based on beam search with
the guidance of word importance is proposed, greatly reduces the probability
of falling into local extrema and improves the search efficiency. Comprehensive
experiments show our method outperforms the state-of-the-art methods overall.
The main contributions of this work are summarized as follows:

– A simple and effective adversarial example generation method is proposed
and successfully fool the target model in a black-box scenario.

– The shortcoming exposed by the mask language model (MLM) in generating
adversarial examples is discussed: the word information injection problem.
A fuzzy word information injection method is proposed to solve it, which
enables the MLM to generate global perturbations. And a novel heuristic
beam search method is also proposed.

– The algorithm is evaluated on three state-of-the-art models on four repre-
sentative text classification datasets, and it achieved the state-of-the-art per-
formance. Automatic and human evaluations show that it’s able to generate
valid, natural and semantically consistent adversarial examples.
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2 Related Work

The textual adversarial attack models can be classified into character-level, word-
level, and sentence-level categories according to the granularity of modification
[2]. Character-level perturbations [4,5] are neglectful, but can be easily detected
by spell checking [17,19]. Sentence-level models [10,20] make a larger perturba-
tion and the changes in the semantics are difficult to control [20].

Current successful adversarial attacks usually use word substitution based
models. Textfooler proposed by [11] selects candidate substitutes by finding
TOP-K nearest neighbors of the target word in the word embedding space, and
then performs a greedy search under the constraints of heuristic rules. They were
the first to confirm the vulnerability of BERT to adversarial attacks. Textfooler
is a target-based method, which is context-agnostic and often leads to unnatural
output. Contextualized methods based on language models address this prob-
lem, and in particular, BERT-based methods show good results. [6,13,14] did
similar work by using the “mask-then-infill” pattern to generate adversarial per-
turbations and using greedy search to search for successful adversarial examples.
Context-based approaches are able to generate fluent and natural output, but
fail to incorporate the control of semantic similarity in the substitute screening
process, causing semantic deviations and even changes in the true label, which
means the failure of the attack. In comparison, Our approach aims at generating
global perturbations using whole-sentence information, making the substitutions
both contextually appropriate and relevant to the original word. Besides, most
current methods use greedy search in the second step [6,11,13,14,19], but the
effectiveness is low. [1,25] made an attempt of genetic algorithm and particle
swarm search algorithm, but they’re too costly to be used for practical applica-
tions. In contrast, our method balances the effectiveness and efficiency well.

3 Methodology

In this section, we describe our model in detail. It consists of two main steps:
selecting candidate substitutes and searching for adversarial examples.

3.1 Selecting Candidate Substitutes

Pre-trained masked language models exemplified by BERT [3] emerged to refresh
the performance of a large number of NLP tasks. For adversarial example gen-
eration tasks, the large corpus gives BERT the capability to generate fluent and
natural contextual perturbations. However, the nature of the masked language
model makes the replaced target word invisible to the model, which limits the
performance of BERT on adversarial example generation tasks. So how to inject
target word information into the prediction process? We refer to this problem as
the “Word Information Injection Problem”. An intuitive idea is to discard the
[MASK] token and feed the target word into the model directly when predicting,
and then select the words with TOP-K predicted probability in the output as
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candidates. So we firstly experimented on this idea. However, experiments show
that for almost all examples, more than 99.999% of the predicted results for
the target position fall into the target word itself and its inflections. Frustrat-
ingly, the inflections are usually ungrammatical for the context, and it’s clearly
unreliable to select substitutes from the tiny probabilities left.

Therefore, the balance of target word and contextual information needs to
be considered in the word information injection problem. Inspired by [21,24],
we utilize the geometric properties of pre-trained word vectors. In [21,24], they
demonstrated that the length of the semantic vector can somehow reflect the
strength of word meaning, and simply put, the shorter the length, the more
ambiguous the word meaning. Therefore, We propose a novel, simple and effec-
tive method for fuzzy injection of target word information to help mask lan-
guage models exemplified by BERT use balanced whole-sentence information
while predicting. As shown in Fig. 1, the fuzzy injection operation is achieved
by regularizing the semantic vector of the target word. The operation makes the
injected semantic information of the target word ambiguous, thus forcing the
model to predict using global information. Moreover, it can reduce the attention
to wi for the purpose of spreading the model’s attention to the whole sentence.

Fig. 1. Injecting fuzzy target word information when selecting word substitutes based
on BERT-MLM.

Formally, for the target word wi to be replaced in a sentence, let Twi
denote

it’s token embedding vector. We get T
′
wi

by performing fuzzy operation of
Eq. (1) on Twi

, where α is a hyperparameter and α ∈ (0, 1). Each dimension of
Twi

is scaled down by α simultaneously. As shown in Fig. 1, the regularized T
′
wi

is summed with the segment embedding and position embedding of wi. Then,
the summed word embedding is fed into BERT-MLM and the top-k predictions
of the model for position i are used as candidate substitutes for wi.

T
′
wi

= α × Twi
(1)
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Besides, we use the Glove vectors post-processed with counter-fitting method
presented by [15] to filter out candidates that are antonyms of word wi. Since
BERT uses Bytes-Pair-Encoding (BPE) algorithm [22] for tokenization, for those
sub-words, we use the whole word masking method for prediction.

3.2 Searching for Adversarial Examples

The substitutes of all words in the sentence constitute a candidate space, and
this step aims to search for a successful adversarial example within this space.

Ranking by Word Importance. First, we ranked the importance of each word
in the sample X to find those words on which the classification model relies
heavily, which are vulnerable words for the attack. In the black box scenario, we
separately mask each word in the sentence with [MASK] token and use Eq. (2)
to calculate the importance score Iwi

of word wi.

Iwi
= p(C(X ) = y) − p(C(X−wi

) = y) (2)

Where X = {w1, · · · , wi, · · · , wn} and X−wi
denotes the new sentence after wi

is masked by the [MASK] token. p(C(X ) = y) denotes the prediction score for
ground truth label y by the target model C for input X . The importance score
list of all words in sentence X is a guide for heuristic search.

Searching with Beam Search Algorithm. We design a search method based on
beam search to balance the efficiency and effectiveness. The initial root node
of the search tree is the original sample, and performing one word substitution
yields its child node. We denote the current node by the symbol X ′

. We select
the top B unmodified words in X ′

with the highest importance score to form
the vulnerable word list VX ′ , where B denotes beam size, and then calculate the
score scosk for each substitute word sk in candidate list Swi

of each wi ∈ VX ′ .

scosk = p(C(X ′
) = y) − p(C(˜X ′) = y) (3)

Where X ′
= {w1, · · · , wi, · · · , wn} and ˜X ′ = {w1, · · · , sk, · · · , wn}, scosk repre-

sent the confidence drop of the correct label, indicating the gain from substituting
wi with sk. For each level of the search tree, TOP-B words with the maximum
gain are replaced independently to form the next level. The termination con-
dition is that a predicted label has been changed, then the attack succeeds, or
the similarity of all leaf nodes to the original sample can’t satisfy the similarity
threshold � or there are no unsubstituted words, then the attack fails. Notably,
� is used to limit the semantic consistency1.
1 In the experiments, � was set to 0.7 for the IMDB and YELP datasets, and 0.5 for the

MR and AG datasets, which is differentiated according to the text length, and short
texts are relatively sensitive to perturbations. In addition, the size of each Swi was
set to 50, which means that a candidate list of 50 words was chosen for each word.
And the hyperparameter α was set to 0.3, B was 5 in the following experiments.
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4 Experiments

4.1 Setup

Datasets and Target Models. To evaluate our adversarial example gener-
ation method, we applied our method to different text classification tasks. (1)
IMDB2: Movie review dataset for the sentiment classification task. (2) AG’s
News [26]: News topic classification dataset, containing: World, Business, Sports,
and Science/Technology. (3) MR [16]: Movie review dataset for the sentiment
classification task. (4) Yelp Polarity [26]: Binary review classification dataset.
Additional information about the dataset is shown in Table 1. Following [11,14],
we experiment with 1k randomly selected test samples from each test set. Three
representative and state-of-the-art target models are selected for attack: BERT
[3], word-CNN [12] and word-LSTM [8]. For all target models, we achieved sim-
ilar accuracy scores to the original implementation on the original test sets.

Table 1. Some details of the dataset and the original classification accuracy for each
target model on the original test set.

Dataset TrainSet TestSet AvgLen ClassNum Acc (BERT) Acc (LSTM) Acc (CNN)

IMDB 25000 25000 215 2 92.7% 89.8% 89.2%

AG 30000 1900 43 4 94.2% 91.3% 91.5%

MR 9000 1000 20 2 90.4% 80.7% 78%

YELP 560000 38000 156 2 97.6% 96.0% 94.0%

Evaluation Metrics

Automatic Evaluation. Following metrics are used to evaluate the effectiveness
of the attacks and the generated adversarial examples. (1) Attack Success Rate
(%Acc): It is equal to 1 minus the post-attack accuracy, and is a crucial metric
for judging the performance of an attack algorithm. (2) Perturbation rate (%P):
Percentage of modified words to the total number of words. The fewer per-
turbations represent the higher consistency between adversarial examples and
original examples. (3) Perplexity (PPL): The average perplexity of the adver-
sarial examples, calculated with the pre-trained language model GPT-2 [18]. (4)
Grammatical errors (GErr): Average number of increased grammatical errors
per sample, calculated with LanguageTool3. Low PPL and GErr represent high
linguistic fluency and naturalness.

Human Evaluation. Human evaluation is used to further evaluate the validity
of the adversarial examples. We randomly selected 100 samples from the IMDB
dataset (wordCNN) and MR dataset (BERT) and their adversarial samples for

2 https://datasets.imdbws.com/.
3 https://www.languagetool.org/.

https://datasets.imdbws.com/
https://www.languagetool.org/
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the experiments. The following metrics are included: (1) True label consistency:
Human evaluators judge whether a pair of samples belongs to the same label. (2)
Linguistic naturalness: Human evaluators rate the naturalness of examples on a
Likert scale of 1–5, with higher scores being better. (3) Semantic consistency:
Evaluators assess whether the semantics of the adversarial example and the
original example are consistent and score on a scale of 1 to 5, with higher scores
being more consistent. Each task was performed by 5 human evaluators with a
university education who completed the experiment independently.

Baseline Models. Three latest state-of-the-art attack methods based on word
substitutions are baseline models: Textfooler [11], Bert-Attack [14] and BAE-
R [6]. The three baseline models were previously introduced in Sect. 2. Briefly,
Textfooler is a target-based method, while BERT-ATTACK and BAE-R are
context-based methods. The main difference between the latter two is that in the
process of finding substitutes, BERT-ATTACK uses the method of preserving
the target word with BERT, which is similar to the discarding [MASK] token
experiment we mentioned in Sect. 3.1, while BAE-R uses the method of masking
the target word consistent with the original BERT.

Table 2. Results of attack success rate of attack models on different classification
tasks. The optimal results on each task are shown in bold.

Target model Attack model IMDB AG MR YELP

BERT Textfooler [11] 85.3% 70.5% 82.4% 92.1%

BERT-ATTACK [14] 86.8% 85.6% 86.9% 97.8%

BAE-R [6] 86.8% 85.1% 77.9% 96.1%

Our approach 88.4% 93.1% 94.2% 99.4%

wordCNN Textfooler 100% 97.6% 97.1% 98.6%

BERT-ATTACK 100% 99.0% 97.4% 99.6%

BAE-R 99.9% 97.6% 89.1% 98.1%

Our approach 100% 99.9% 97.7% 99.8%

wordLSTM Textfooler 99.4% 84.8% 96.9% 97.2%

BERT-ATTACK 99.6% 89.3% 96.9% 98.5%

BAE-R 99.2% 85.2% 92.9% 96.7%

Our approach 99.7% 96.0% 98.1% 99.7%

4.2 Results

The evaluation results are shown in Table 2, 3, 4 and 5. Overall, our method
consistently outperforms the baseline models on all datasets and all models.
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Table 3. Automatic evaluation results of the quality of the generated adversarial
examples. The optimal results on each task are shown in bold.

Target Attack model IMDB AG MR YELP

%P PPL GErr %P PPL GErr %P PPL GErr %P PPL GErr

Bert Textfooler 6.88 102.11 1.88 25.08 209.51 0.78 20.98 124.23 0.78 14.58 92.59 2.26

Bert-attack 4.58 57.24 1.40 16.76 124.21 0.20 20.06 125.54 0.82 11.54 70.52 1.49

BAE-R 5.09 55.14 0.88 16.13 99.80 0.10 19.88 103.07 0.69 11.30 64.75 1.06

Our Approach 2.93 52.37 0.61 10.96 93.24 0.08 16.48 102.92 0.64 9.08 62.28 0.91

CNN Textfooler 3.70 53.06 0.88 16.67 143.65 0.49 14.88 95.17 0.61 8.75 62.38 1.31

Bert-attack 3.70 53.58 1.06 14.24 116.75 0.19 16.73 103.72 0.75 8.75 59.08 1.06

BAE-R 4.33 52.50 0.79 16.00 105.90 0.10 16.79 97.28 0.66 9.63 56.68 0.81

Our Approach 2.83 51.32 0.73 10.97 100.18 0.06 14.88 91.63 0.63 7.52 56.41 0.80

LSTM Textfooler 5.39 58.25 1.51 22.98 189.91 0.75 15.01 92.88 0.25 11.27 73.78 1.76

Bert-attack 4.63 57.62 1.19 18.11 136.00 0.41 16.21 97.65 0.71 9.71 63.72 1.18

BAE-R 5.31 56.21 1.08 19.52 119.16 0.20 16.91 88.53 0.61 10.29 60.15 0.95

Our Approach 3.81 55.32 1.02 16.22 118.94 0.18 13.89 87.67 0.55 8.53 60.05 0.84

Table 4. A typical adversarial example from YELP dataset (Unmodified part at the
end of the example is omitted), which indicates our approach achieves the attack with
the smallest, most natural perturbation.

Original Sentence: POS Really good Chinese food. The duck and pork
noodle soup is awesome. ...

TEXTFOOLER: NEG Awfully advantageous Chinese food. The duck
and pork noodle soup is awesome. ...

BAE-R: NEG Pretty pretty Chinese rice. The duck and pork
noodle soup is edible. ...

BERT-ATTACK: NEG Really fine Chinese food. The duck and hog
noodle soup is nice. ...

Our Method: NEG Really okay Chinese food. The duck and pork
noodle soup is awesome.

Attack Success Rate. As shown in Table 2, our method achieves the highest
attack success rates in all experiments. Specifically, for those attacks where the
baseline models perform poorly, such as the BERT model, the multi-classification
dataset (AG), and the short-text dataset (MR), our approach significantly out-
performs the baseline model. For those attacks where the baseline models per-
form relatively well, such as the wordCNN model, our model gains further
improvement.

Validity of Adversarial Examples. As shown in Table 3, it is encouraging that our
approach significantly outperforms the baseline overall. The results show that
the method is able to generate more natural and fluent samples with minimal
perturbations. From human evaluation, as shown in Table 5, almost all adversar-
ial examples are very natural and their true labels are unchanged, thus ensuring
the effectiveness of the attack. Finally, a typical sample is shown in Table 4.
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Table 5. Human evaluation results
on IMDB(wordCNN) and MR(BERT).
%Lab, NatScore and SemCons indicate
the label consistency rate, the average
naturalness score, the semantic consis-
tency score, respectively.

%Lab NatScore SemCons

IMDB Ori 94 4.51 4.13

Adv 4.32

MR Ori 92 4.19 4.07

Adv 4.05

Table 6. Ablation study results of our
approach, where -WS indicates that the
word substitution method is changed to
that shown in parentheses, -GS indicates
that the search algorithm is changed to the
greedy search.

Method %Acc↑ %P↓ PPL↓ GErr↓
Our approach 93.1 10.96 93.24 0.08

- WS (Keep) 90.2 13.12 110.30 0.13

- WS (Mask) 87.7 12.98 95.14 0.10

- WS (Glove) 80.3 19.85 159.42 0.56

- GS 89.1 13.84 96.53 0.10

Textfooler 70.5 25.08 209.51 0.78

BERT-ATTACK 85.6 16.76 124.21 0.20

BAE-R 85.1 16.13 99.80 0.10

5 Analysis and Discussions

5.1 Ablation Analyses

In order to understand the improvement, we conduct an ablation test on AG
dataset (BERT). According to Table 6, we observe that when the word sub-
stitution algorithm in our method is replaced with other algorithms, all the
metrics decreased, which shows our fuzzy word information injection method
improves the fitness of BERT in adversarial example generation. When replac-
ing the search algorithm in our method with the greedy search, the metrics fall
into the middle of our method and the baseline models, which again proves the
validity of both steps. For BERT, the method of word masking always generates
samples with better grammaticality and naturalness compared to the method
of word keeping, but the latter leads to a higher attack success rate, which we
believe is due to the fact that the substitutes generated by word keeping method,
such as inflections, have similar semantic vectors to the original word, and are
more able to bypass the restrictions of the sentence similarity model, however,
they are not valid. In addition, the context-based approach clearly performs bet-
ter than the target-based approach because the language model contains a large
amount of semantic information and has the ability to generate good replace-
ments.

In order to more intuitively demonstrate the advantages of the first part, a
real sample and the substitutes selected by each method are shown in Table 7. It
can be seen that our method is able to find the most suitable substitute words.
In addition, we visualized the attention of different methods in Fig. 2. Obviously,
our method smoothes the attention in predicting the target word “executive”.
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Table 7. Substitutes selected by different
methods for a real sample. The suitable sub-
stitutes are marked in red.

Original sentence: A forceful drama of an alienated

executive who reinvents himself.

Our approach director, manager, businessman, ceo,

producer

BERT(Keep) ceo, executives, corporate,

enterprise, chairman

BERT(Mask) man, youth, child, artist, student

Synonym(Glove) administrative, managerial,

management, bureaucratic,

governance

Table 8. Attack performance on
BERT model and MR dataset
before and after adversarial train-
ing.

OriAcc %Succ %P

Original 90.4 93.5 16.79

+Adv training 88.3 79.2 19.13

5.2 Effect of Beam Size

As shown in Fig. 3, the model attack success rate increases with increasing beam
size in general, which eventually stabilizes. Overall, a lower beam size can sig-
nificantly improve the attack performance while maintaining a high efficiency.
An interesting point is that according to Fig. 3 beam search is more effective
for short texts, presumably because the candidate space for short texts is much
smaller than for long texts, and the branches cut in each step by greedy search
have a greater negative impact on the search results.

Fig. 2. The attention distribution of
the BERT model in predicting the
target word “executive”. Our method
(middle) clearly leads to smoother
attention.

Fig. 3. Relationship between attack
success rate and beam size
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5.3 Adversarial Training

We mixed the original training set of MR dataset with their adversarial examples
and used them to fine-tune the BERT model. The results in Table 8 show that
adversarial training decreases the attack success rate and increases the perturba-
tion rate, which indicates the target model is more robust. Moreover, adversarial
training did not cause a marked decrease in the prediction ability of the model
for clean samples. This suggests that the adversarial examples generated in this
paper have the potential to be used to improve the robustness of DNNs.

6 Conclusion

In this paper, we study word-level adversarial attacks against state-of-the-art
text classification models. A powerful method for adversarial example generation
based on whole-sentence information is proposed. Extensive experiments demon-
strate the superiority of this method, which achieves the state-of-the-art attack
success rate and maintains the lowest perturbation rate. The generated adver-
sarial examples achieve high semantic consistency and linguistic fluency, and are
capable of helping models resist potential adversarial attacks. In the future, we
will further investigate the application of adversarial examples generated by this
method for adversarial defense. Moreover, we will study the interpretability of
BERT token embeddings based on geometric properties.
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Abstract. In this paper, we propose a novel model RAST (Reward
Augmented Sentiment Transfer) for fine-grained sentiment transfer.
Existing methods usually suffer from two major drawbacks, i.e., blurre
d sentiment distinction and unsatisfactory content preservation. Consid-
ering the above issues, we design two kinds of rewards to better control
sentiment and content. Specially, we develop a pairwise comparative dis-
criminator that enforces to generate sentences with clear distinctions
for different sentiment intensities. Moreover, we utilize an effective sam-
pling strategy to obtain pseudo-parallel sentences with minor changes on
the input sentence to enhance content preservation. Experiments on a
benchmark dataset show that the proposed model outperforms several
competitive approaches.

Keywords: Fine-grained sentiment transfer · Reward augmented
training

1 Introduction

Sentiment transfer [11,19,20] refers to the task of editing a sentence to alter sen-
timent as desired while meanwhile preserving the essential content in the input
sentence. Such a task can potentially contribute to a large variety of downstream
tasks, such as emotional conversation generation [22].

Conventionally, previous sentiment transfer methods mainly focus on the set-
ting of binary sentiment labels, only transferring coarse-grained sentiments (e.g.,
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positive and negative). Recently, several studies [9,12] have extended the senti-
ment label set by considering fine-grained sentiment intensities (e.g., five levels).
Since there are no parallel data in the sentiment transfer task, reinforcement
learning algorithms [12,13,20] have been utilized to train the sentiment transfer
model. However, in fine-grained sentiment transfer, the search space of the pol-
icy is large, and it is difficult to effectively control both sentiment and content
in the generated texts.

Therefore, existing fine-grained sentiment transfer models usually suffer from
two major drawbacks: (1) blurred sentiment intensity distinction, and (2) unsat-
isfactory content preservation. Here, we provide an example to show two imper-
fect outputs as motivating cases in Table 1. In this example, five target sentiment
intensity scores ranging from 0.1 (most negative) to 0.9 (most positive) are given.
The first imperfect output suffers from semantic drift, as “food” is changed to
“service”. The second imperfect output shows excessive negativity for the target
sentiment intensity of 0.3. Thus it is hard to distinguish it from other sentences
with the most negative sentiment score of 0.1, since they both express the sen-
timent of “horrible”.

Table 1. An example of the input, reference outputs and imperfect outputs of the
fine-grained sentiment transfer task. Target sentiment is abbreviated as “TS”.

Input

horrible food , i would not go there again .

TS Reference output

0.1 the food tasted awful , i would not go there again .

0.3 the food was not tasty , maybe i would not go there again .

0.5 plain and normal food , maybe i would go there again .

0.7 fresh and tasty food , i would go there again .

0.9 the food was extremely delicious, i would go there again .

TS Imperfect output

0.3 slow service , maybe i would not go there again .

0.3 the food tasted horrible , i would not recommend it at all .

To tackle these two drawbacks, we propose a novel model, named RAST
(Reward Augmented Sentiment Transfer), based on the reinforcement learning
framework for the fine-grained sentiment transfer task. The major highlights of
the proposed model are that we utilize reward augmented training and pairwise
sentiment critics to enhance content preservation and alleviate blurred senti-
ment distinction for the fine-grained sentiment transfer task, respectively. Such a
training strategy is particularly suitable to our task since it obtains rewards from
augmented samples that are slightly perturbed based on real samples, instead of
samples produced by the text generator. Such a nice property naturally enhances
content preservation for the sentiment transfer task. Besides, we also introduce
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pairwise sentiment critics to alleviate the problem of blurred sentiment distinc-
tion. Compared with existing regression-based critics [12], the pairwise sentiment
critics enforce more clear sentiment distinctions among sentences of different lev-
els. To our knowledge, it is the first time that reward augmented training has
been applied to fine-grained sentiment transfer with specially designed content
and sentiment rewards.

2 Methodology

2.1 Overview

Let us consider a labeled sentence dataset D = {(x1, s1), · · · , (xn, sn)} containing
n sentences, where each sentence xi is paired with a target sentiment intensity
score si from a fine-grained sentiment intensity set S = {s1, · · · , sk}. Given a
sentence x and a sentiment intensity score s, our task is to generate a sentence
yg that preserves the essential content of x and meanwhile reflects the sentiment
intensity suggested by the target sentiment s.

Figure 1 presents an overview of the proposed RAST (Reward Augemented
Sentiment T ransfer) model, which is built on the idea of reward augmented
training [14]. In RAST, an encoder-decoder based generator is utilized to produce
the new sentence. The generator will be updated or optimized according to
rewards or feedbacks received from the training scheme.

Fig. 1. An overview of the proposed RAST. The detailed back-translation process is
illustrated in the top right.

2.2 Encoder-Decoder Based Sentiment Transfer Model

To encode the content of the original sentences, we employ a bi-directional LSTM
encoder. Each token of the source sentence x, is firstly represented by a trainable
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semantic representation and then encoded into a sequence of hidden vectors
{←→
h i}m

i=1.
With the hidden representations of source sentence x and target sentiment

intensity score s, the decoder generates a sentence yg that preserves the content
of x and conforms to the sentiment of s. Here, we build the decoder upon LSTM
network and use an additional sentiment embedding to map each word to its
sentiment representation. We define the hidden state hyt

of the decoder at time
t as:

hyt
= f(hyt−1 ,

[
ec

yt−1
; es

yt−1

]
, cyt

), (1)

where ec
yt−1

is the content representation of the word yt−1, es
yt−1

is the senti-
ment representation, and the cyt

is a context vector obtained by the attention
mechanism.

Finally, similar to previous work [12,21], we model the generation of each
token in the transferred sentence by considering both sentiment and content
information. Formally, we model the probability of generating each token com-
bining content- and sentiment-based probabilities as:

Prwt=w = γPrc
wt=w + (1 − γ)Prs

wt=w, (2)

where γ is a trade-off parameter, Prc
wt=w and Prs

wt=w are content- and sentiment-
based generation probabilities, respectively. The content-based generation prob-
ability is as follows:

Prc
wt=w = softmax(Wchyt

)[w], (3)

where Wc is a trainable parameter matrix. Furthermore, the sentiment-based
generation probability is defined as:

Prs
wt=w = softmax(os

t ), (4)

os
t =

1√
2πσ

exp

(
− (g(Es,hyt

) − s)2

2σ2

)
, (5)

g(Es,hyt
) = sigmoid(EsWshyt

), (6)

where Es is a matrix that stores sentiment representations of all the words, s is
the target sentiment, Ws is a trainable parameter matrix and σ is the standard
deviation. Here, g(Es, st) plays the role of sentiment prediction for the current
token, and we restrict it to be around the target sentiment using a Gaussian
kernel layer (Eq. 5). Intuitively, the word that is more consistent with the target
sentiment intensity score will be assigned a higher sentiment-based generation
probability.

2.3 Comparative Discriminator

In this part, we propose to use a pairwise comparative discriminator, which
compares the sentiment intensity levels of two samples, to enhance fine-grained
sentiment control.
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Comparative Sentiment Discrimination. Let x1 and x2 denote two sen-
tences with different sentiment intensity levels. Suppose x1 has a more positive
sentiment compared with x2, we can form a partial comparison for the pair
〈x1, x2〉.

Specially, we only focus on the pairs of adjacent sentiment intensity, since
they are generally more difficult to discriminate. In this way, we can construct
comparative pairs using two sentences of adjacent sentiment levels using train-
ing data. With these comparative samples, the discriminator learns to predict
whether one of the sentences has a higher (or lower) sentiment intensity than the
other. Formally, the probability of predicting the 〈x1, x2〉 as label q is denoted
by Prφ(q|x1, x2), where q ∈ {higher, lower} and φ denotes the parameters of
the discriminator Dφ. We adopt a BERT [2] based pairwise classifier as the
comparative discriminator. Pretrained representations from BERT are taken for
initialization and fine-tuned according to our classification task. Specifically, we
feed both sentences of a pair into the BERT model and use the final hidden
layer C as the aggregate representation of the sentence pair. Then we calculate
Prφ(q|x1, x2) as:

Prφ(q|x1, x2) =
WqC�

∑
q′ Wq′C� , (7)

where Wq is a trainable weight matrix for label q. Based on Prφ(q|x1, x2), we
define the concept of sentiment reward as:

Rs(x) = Prφ(q|x, x′), x′ ∼ Prdata(x), (8)

where x′ ∼ Prdata(x) denotes that x′ is a sentence sampled from the sentences
with adjacent intensity of x in training data. This reward is used in the rest of
this paper for the sake of conciseness.

Discriminator Training. We take three kinds of sentences as input in the
discriminator, namely original, reference and generated sentences. Here, refer-
ence sentences are real sentences with adjacent sentiment intensity levels of the
original sentence from training data. First, our discriminator favors sentiment
intensity distinction between the real sentence and reference sentences. Then, it
further compares sentiment intensities between generated sentences and refer-
ence sentences. If we could accurately transfer the sentiment, sentiment compar-
ison results between generated and reference sentences should be same as those
between real and reference sentences. We will punish the case that a generated
sentence mismatches its target sentiment intensity compared with reference sen-
tences of adjacent sentiment levels.

To train the discriminator, we propose a loss function that maximizes the
sentiment reward of real samples and minimizes that of generated samples com-
pared with referenced real samples:

LDφ
= −(Ex∼Prdata

[Rs(x)] − Eyg∼PrGθ
[Rs(yg)]), (9)

where x and yg denote the real sentence and the generated sentence, respectively,
and Gθ is the sentiment transfer model introduced in Sect. 3.4.
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2.4 Reward Augmented Training of Sentiment Transfer Model

Since there are no parallel data in the fine-grained sentiment transfer task, we can
not directly rely on the maximum likelihood estimation (MLE) for training. To
tackle this problem, existing works [12,13,20] incorporate reinforcement learning
algorithms and utilize task-specific rewards to guide the training of the sentiment
transfer models. However, in fine-grained sentiment transfer, the search space
of the policy is large and the content-related rewards cannot provide sufficient
precise feedback on how well the content information is preserved. In this section,
we propose a reward augmented training scheme to address these difficulties.

Reward Augmented Training. The reward augmented training strategy is
inspired by the reward augmented maximum likelihood (RAML) approach [14],
which is originally proposed to incorporate task-specific rewards into the MLE
training. Compared with vanilla reinforcement learning, the rewards are derived
using the samples generated from the exponentiated pay-off distribution instead
of the policy (i.e., fine-grained sentiment transfer models in this paper). Here,
the exponentiated payoff distribution is defined as:

Q(y; τ) =
exp(R(y)/τ)∑

y′∈Y exp(R(y′)/τ)
, (10)

where R(y) is a reward function that measures the quality of a sentence y (to
be specified later), Y is the set of all possible generation results, and τ is the
temperature hyper-parameter. Since the denominator exhausts all the possible
generation results, it is usually quite challenging to directly sample from Q. In
this case, we can resort to using another tractable proposal distribution Pr∗(y)
by importance sampling.

Such a proposal distribution enables us to restrict the sample space that
we use to get rewards. Particularly in our task, we can pay more attention to
samples with minor changes on original sentences. In this way, it is encouraged
to seek content changes as small as possible to accomplish the sentiment transfer
goal.

Design of the Proposal Distribution. Specifically, we construct the proposal
distribution Pr∗(y) as follows. Inspired by a simple template-based baseline [8],
we firstly construct pseudo-parallel data 〈x, ỹ〉 generated by replacing the senti-
ment words from the source sentence with those of semantically similar target
sentence. For each ỹ, we further use a stratified sampling approach following
RAML [14] to obtain new samples. The sampling proceeds in three steps:

Pr∗ (y|ỹ) = P (d, p, w|ỹ) = P (d|ỹ) P (p|ỹ, d)P (w|ỹ, d, p). (11)

The first step is to sample an edit distance d. Let c(e,m) denotes the number
of sentences at an edit distance e from a sentence ỹ of length m. It can be
calculated approximately as follows: c(e,m) =

(
m
e

) ·(|V| − 1)e
, where |V| denotes

the size of vocabulary. Following [14], we reweight the counts by exp(−e/τ) and
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normalize them, thus we can sample an edit distance d̃ from

P (d = d̃|ỹ) =
exp (−d̃/τ)c(d̃,m)∑m
e=0 exp (−e/τ)c(e,m)

. (12)

The next step is to randomly select d̃ positions {p1, p2, ..., pd̃} in the sequence
to be modified. The probability of selecting the position p̃ is computed as Pr(p =
p̃|ỹ, d = d̃) = d̃

m .
At the final step, we also randomly sample d̃ substitutions uniformly from

the vocabulary V and the probability is computed as follows:

Pr(w|ỹ, d = d̃, p = p1, p2, ..., pd̃) =
d̃∏

j=1

P (wj |ỹj−1, p = pj). (13)

Here, we use the random sampling strategy instead of from some well-
designed distribution of language models. This is because such random samplings
make the augmented samples more diverse, and both positive and negative sam-
ples can benefit the training process.

Defining the Reward. We design the reward function R(y) considering both
the goals of task and the stationary proposal distribution. Specifically, the reward
function can be computed as follows:

R(y) = τ · [log Pr∗(y) + (1 + β2)
Rc(y) · Rs(y)

(β2 · Rc(y)) + Rs(y)
], (14)

where β is a harmonic weight that controls the trade-off between sentiment
reward Rs(y) and content reward Rc(y). To implement the function, the senti-
ment reward Rs(y) is provided by the output of comparative discriminator Dφ

(Eq. 8), and the content reward Rc(y) is calculated as the BLEU-2 score [15]
between original and current sentences. By combining the two rewards, our
model advocates to generate sentences with high content preservation confirm-
ing to the target sentiment. Another note is that Eq. 14 has involved the term of
the proposal probability Pr∗(y). Revisiting Eq. 11, we can see that Pr∗(·) prefers
to sample sentences with minor changes, which further enhances the content
preservation.

Learning Objective. Finally, in order to optimize the RAML objective, we
use importance sampling to sample from Pr∗(y) instead of Q. The importance
weight can be further calculated as follows:

weight(y) ∝ Q(y)
Pr∗(y) ∝ exp (R(y)/τ)

Pr∗(y) ∝ exp(
Rc(y) · Rs(y)

(β2 · Rc(y)) + Rs(y)
). (15)

Thus the RAML objective can be re-expressed as:

LRAML,θ = −Ey∼Pr∗(y)[weight(y) log PrGθ
(y|x)]. (16)
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The exploration space exposed for model training is mainly the regions surround-
ing the real source data, thus contributing to higher content preservation and
more stable reward signals.

Algorithm 1 The learning algorithm for RAST.
Input:

A dataset D = (xi, si) including input sequence xi with a target fine-grained sentiment intensity

score si; pseudo-parallel data D0 = (xi, ŷi);
1: Pre-train the encoder-decoder model Gθ using MLE loss on D0;
2: Generate samples from PrGθ

;

3: Pre-train the comparative discriminator Dφ via Eq. 9;
4: Construct a stationary distribution Pr∗(y) via Eq 11-Eq 13;
5: for each iteration t = 1, 2, ..., T do
6: for each iteration n = 1, 2, ..., N do
7: Update Gθ using RAML loss via Eq. 16;
8: Update Gθ using back-translation loss via Eq. 17;
9: end for
10: for each iteration m = 1, 2, ..., M do
11: Update Dφ using pairwise loss via Eq. 9;
12: end for
13: end for

Back-Translation. Besides, we note that back-translation technique [1,7,11,12]
in unsupervised machine translation, which is potentially useful in our task. The
idea is to map the source sequence x to target sequence Gθ(x, s) and then map
it back to produce an identical source sequence. The back-translation loss is
defined as:

Lbt = − log PrGθ
(x|Gθ(x, s), sx) , (17)

where sx is the source sentiment intensity score. We integrate back-translation as
a complementary technique to further improve content compatibility. We present
the learning algorithm of RAST in Algorithm 1.

3 Experiments

3.1 Experiment Settings

Datasets. We conduct experiments on the widely used Yelp dataset [12]. The
dataset consists of product reviews aligned with sentiment ratings from 1 to 5.
In this section, we normalize these ratings to the range of [0, 1] and use them
as the sentiment intensity scores. After data cleaning, we randomly select 240K
samples for training, 30K for validation and 500 for testing. Such a pre-process
procedure is identical to [12].

Implementation Details. We implement our framework using Tensorflow.
We set both content and sentiment embeddings to be 300-dimensional and train
these embeddings from scratch. The encoder is a 1-layer bidirectional LSTM,
and the decoder is a 1-layer single directional LSTM. The hidden sizes of both
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the encoder and the decoder are set to 256. For the discriminator, we use a
pre-trained BERT-based model with all the internal states (i.e., hidden states,
word embeddings and positional embeddings) set to 768-dimensional. The hyper-
parameter σ in the decoder is set to 0.01. We use Adam optimizer for model
training and set the batch size to 32. The learning rates for the pre-train and
the adversarial training process are set to 10−3 and 10−5, respectively. We also
employ dropout with the rate 0.5 to avoid overfitting. The temperature hyper-
parameter τ in Eq. 10 is 0.8, γ in Eq. 2 is 0.5 and harmonic weight β in Eq. 14
is 1.

Comparison Methods. We consider the following methods for comparison:

• Rv-VAE [9]: It employs a revised VAE to disentangle latent content factor
and outcome factor from a sentence and then edit the sentence to change the
outcome.

• Rv-VAE+extra [9]: It incorporates a coupling component modeling pseudo-
parallel sentence pairs with three extra loss into Rv-VAE.

• SC-Seq2Seq [21]: It adopts an attention-based Seq2Seq model with an extra
specificity variable to generate specificity-controlled response, trained under
the cycle reinforcement learning algorithm following [12].

• Seq2SentiSeq [12]: It incorporates sentiment intensity values into the
attention-based Seq2Seq model and adopts a cycle reinforcement learning
algorithm to guide model training.

3.2 Evaluation Metrics

Automatic Evaluation. In this paper, we consider two series of evaluation
metrics, i.e., content-related metrics and sentiment-related metrics.

For content-related metrics, we calculate the BLEU score [15] between the
outputs and human references provided by [12] for content preservation.

For sentiment-related metrics, we consider both absolute and relative gap
between sentiment intensity of outputs and target sentiment intensity. We
include Mean Absolute Error (MAE) (i.e., deviation between predicted senti-
ment intensity scores and ground truth) and Mean Relative Reciprocal Rank
(MRRR) (i.e., the relative intensity ranking of outputs) as evaluation metrics.
The smaller the MAE or the larger the MRRR is, the better a model performs.
Finally, to evaluate the quality of the generated sentences, we calculate their
perplexity (PPL) [1,7,10] by a pre-trained Kneser-Ney smooth trigram language
model [6] using KenLM [4]. The smaller the PPL is, the better a model performs.

Human Evaluation. We conduct human evaluation to further verify the per-
formance of different methods. We randomly select 20 sentences from the test set
and let all the methods generate sentences of five sentiment intensity levels for
each input sentence. Thus we get 100 generated sentences for each method, and
then distribute them to three annotators. Annotators are required to score the
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generated sentences and human references from 1 to 5 in terms of three criteria:
the preservation of the original content, the accuracy of the target sentiment and
the fluency.

3.3 Results and Analysis

Automatic Evaluation Results. The performance comparison of different
methods on automatic evaluation are shown in Table 2. As we can see, the pro-
posed model RAST achieves the best performance in almost all cases. Regarding
content preservation, RAST achieves absolute improvement of 3.0/0.1 points
on content-related metrics like BLEU-1 / BLEU-2, compared with the state-
of-the-art Seq2SentiSeq [12]. These results indicate that the proposed reward
augmented training strategy can effectively enforce content preservation in sen-
timent transfer.

Table 2. Results of different methods for automatic evaluation.

Model Automatic evaluation

BLEU-1↑ BLEU-2↑ MAE↓ MRRR↑ PPL↓
Rv-VAE 22.6 7.2 0.22 0.61 2746.6

Rv-VAE+extra 20.7 5.7 0.20 0.63 1042.1

SC-Seq2Seq 23.9 3.8 0.24 0.60 20.9

Seq2SentiSeq 32.5 10.3 0.23 0.63 21.1

Ours 35.5 10.4 0.22 0.66 18.8

Moreover, we observe that in terms of sentiment control, RAST performs bet-
ter on the relative sentiment metric MRRR than the absolute sentiment metric
MAE. For fine-grained sentiment control, RAST achieves 0.01/0.03 improve-
ment on sentiment-related metrics MAE/MRRR. Such improvements are more
significant than that of the state-of-the-art model Seq2SentiSeq. This is because
the pairwise comparative loss in our model tends to enforce a clear sentiment
distinction between sentences with different target sentiment scores. Finally, we
also evaluate the fluency of the generated sentences, i.e., PPL and Fluency.
Again, the proposed method outperforms all the baselines. These results mean
that the proposed method successfully alleviates the major drawbacks of the
existing methods, i.e., blurred sentiment distinction and unsatisfactory content
preservation, without scarifying the linguistic quality of the generated sentences.

Human Evaluation Results. Here, we report the performance compari-
son of different methods on human evaluation in Table 3. The results indicate
that the proposed method significantly outperforms the state-of-the-art baseline
Seq2SentiSeq in terms of content preservation and sentiment and merely suffer
a less than 8% disadvantage in terms of fluency. We find that there is a trade-off
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between content preservation/sentiment and fluency in the sentiment transfer
task. Given higher content and sentiment requirements as constraints, the sen-
tences generated by the sentiment transfer method may suffer slight fluency
degrade.

Table 3. Results of different methods for human evaluation.

Model Human evaluation

Content↑ Sentiment↑ Fluency↑
Rv-VAE 2.09 2.42 1.88

Rv-VAE+extra 1.93 2.61 1.86

SC-Seq2Seq 2.30 3.15 3.74

Seq2SentiSeq 2.81 3.10 3.97

Ours 2.97 3.59 3.70

Human Reference 4.51 4.70 4.60

3.4 Ablation Study

Furthermore, we study the impact of important extensions in our model. Here, we
retrain the model by removing the back-translation component, the comparative
discriminator or the entire reward augmented training scheme (short by RAT ).

Table 4. Ablation study with automatic evaluation.

Model Automatic evaluation

BLEU-1↑ BLEU-2↑ MAE↓ MRRR↑ PPL↓
Full model 35.5 10.4 0.22 0.66 18.8

w/o back-translation 28.1 5.8 0.19 0.69 25.1

w/o discriminator 34.8 10.8 0.24 0.62 19.6

w/o RAT 31.8 8.8 0.23 0.64 20.4

Table 4 presents the results of the ablation study. As one can see, when
the learning strategy is removed, the performance decreases by 11% / 15% for
content-related metrics BLEU-1/BLEU-2, while the relative sentiment metric
MRRR decreases by 0.02. This phenomenon indicates that the reward aug-
mented training strategy mainly contributes to content preservation. Moreover,
the results of relative sentiment metric MRRR also decreases when the compar-
ative discriminator is removed. It indicates that the comparative discriminator
can help improve the sentiment transfer performance.
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3.5 Case Study

In Table 5, we qualitatively compare the results of our model and the state-of-the-
art method Seq2SentiSeq [12] on five samples of different sentiment intensities
from Yelp dataset. As we can see, our model has captured subtle sentiment dif-
ference across the five sentiment levels, such as “a complete waste of money” →
“a little pricey” → “a little slow” → “great” → “love”, while Seq2SentiSeq fails
to accurately reflect fined-grained sentiment difference especially for adjacent
sentiment levels.

Table 5. Comparison between RAST and the baseline Seq2SentiSeq with five sentiment
levels.

Input food is always amazing no matter what i order

Output RAST (Our model)

s=0.1 food is always amazing but it ’s just a complete waste of money

s=0.3 food is always amazing , but it ’s just a little pricey

s=0.5 food is always amazing , but the service is a little slow

s=0.7 food is always amazing , and the service is always great

s=0.9 food is always amazing , and i love the food

Output Seq2SentiSeq

s=0.1 food is always good , and i am never disappointed

s=0.3 food is always good , and i am never disappointed

s=0.5 food is always good and they are always very good

s=0.7 food is always good and they are always very good

s=0.9 food is always good and they are always very good

4 Related Work

Recently, text style transfer with non-parallel data has drawn much attention
from the research community. There are a large majority of existing works [1,3,5,
7,8,11,16,17,19] focus on coarse-grained sentiment transfer, in which sentiment
labels are binary. However, to the best of our knowledge, there are merely a few
existing works focus on the fine-grained control of sentiment. For instance, Liao et
al. [9] employ a revised VAE to learn disentangled representations and construct
pseudo-parallel sentence pairs to train the model in a supervised setting. Luo
et al. [12] adopt a sentiment-controlled Seq2Seq model and introduces a cycle
reinforcement learning algorithm to provide rewards to guide the model training.
Several works [10,18] revise the text in a continuous representation space by
iteratively editing the latent representation with gradient until conforming to
the target sentiment.
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Compared with existing fine-grained sentiment transfer methods, our model
alleviates two major drawbacks of the existing works, i.e., blurred sentiment
intensity distinction and unsatisfactory content preservation. The proposed
reward training strategy restricts the sentiment transfer policy to search around
the input sentences for the ideal transfer results with minor changes. This strat-
egy largely contributes to content preservation and training stability compared
to vanilla reinforcement learning-based approaches in [12]. Moreover, this paper
also proposes a pairwise comparative discriminator, enforcing larger intensity
gaps between different sentiment levels compared with regression/multi-class
discriminators in existing works [12,18].

5 Conclusion

In this paper, we proposed a novel model RAST for the fine-grained senti-
ment transfer task. In order to alleviate the unsatisfactory content preservation
and blurred sentiment distinctions, we developed a reward augmented training
scheme and incorporated a pairwise comparative discriminator into it. Experi-
ments have shown that our model outperforms several state-of-the-art baselines
in terms of content preservation and sentiment modification in both automatic
and human evaluation.
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Abstract. Pre-trained language models (PLMs) for Tagalog can be categorized
into two kinds: monolingual models and multilingual models. However, existing
monolingual models are only trained in small-scale Wikipedia corpus and mul-
tilingual models fail to deal with Tagalog-specific knowledge needed for various
downstream tasks.We train three existing models on amuch larger corpus:BERT-
uncased-base,ELECTRA-uncased-base and RoBERTa-base. At the pre-training
stage, we construct a large-scale news text corpus for pre-training in addition to
the existing open-source corpora. Experimental results show that our pre-trained
models achieve consistently competitive results in various Tagalog-specific natu-
ral language processing (NLP) tasks including part-of-speech (POS) tagging, hate
speech classification, dengue classification and natural language inference (NLI).
Among them, POS tagging dataset is a self-constructed dataset aiming to alleviate
the insufficient labeled resource for Tagalog. We will release all pre-trained mod-
els and datasets to the community, hoping to facilitate the future development of
Tagalog NLP applications.

Keywords: Pre-trained language model · Tagalog · POS tagging

1 Introduction

Pre-trained language models (PLMs) represented by BERT [1] have been proven to sig-
nificantly improve the performance of various downstream natural language processing
(NLP) tasks and thus become extremely popular for many NLP researches. Despite of
success of pre-trained BERT and its variants, they have largely limited to high-resource
languages such as English. For a new language, one could pre-train a new language-
specific model based on BERT architecture and training method [2–5] or utilize existing
pre-trained multilingual BERT-based models [1, 6, 7].

In terms of PLMs for Tagalog, monolingual models [8–10] and multilingual models
[7, 11] are both publicly available. However, there are two main concerns about these
two kinds of models:

(1) Monolingual models: All the existing monolingual models for Tagalog are only
pre-trained on the TagalogWikipedia corpus [8].WhileWikipedia data is not repre-
sentative of a general language use, and the TagalogWikipedia data size is relatively
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small (283M in size uncompressed), pre-trained language models can be signifi-
cantly improved by using more pre-training data [12] from different data sources
such as news.

(2) Multilingual models: Multilingual pre-trained models struggle to explain their
applicability in acquiring language-invariant knowledge for downstream tasks of
various languages. As different languages have different sequence structures, mul-
tilingual pre-trained models are more suitable for cross-language applications than
in monolingual applications. As an agglutinative language, Tagalog shows some
characteristics of inflectional languages. It also has a variety of lexical morphology,
complex syntactic structure and relatively free sequence order. It is necessary to pre-
train monolingual models for Tagalog to improve the performance of downstream
tasks.

To tackle the two issues above, we train three monolingual BERT-based models
using 1444M Tagalog corpus (four times more than Wikidata used in previous works)
from multiple data sources. At the pre-training stage, we construct a large-scale news
text corpus for pre-training in addition to the existing open-source corpora. We evaluate
our models on three benchmark Tagalog text classification datasets: Hate Speech classi-
fication, Dengue classification and natural language inference (NLI) [9, 10]. In addition
to text classification, pre-trained models should be evaluated in more kinds of NLP
tasks such as sequence labeling tasks. However, the recent sequence-labeled resources
in Tagalog are scare that they cannot meet the development of deep learning technology
in terms of scale and quality. Therefore, we construct a Tagalog part-of-speech (POS)
tagging (referred as a common sequence labeling task) dataset consisting of 14438 sen-
tences. Experimental results show that our models obtain competitive results on all these
tasks.

The contributions in this paper are summarized as follows:

(1) We present a series of large-scale monolingual language models pre-trained for
Tagalog on a much larger size of corpus.

(2) We construct a large-size news corpus for Tagalog language, which could make up
for the gap in scare Tagalog NLP resources.

(3) We construct a large-scale and high-quality Tagalog POS tagging dataset to alleviate
the current situation of insufficient language resources.

(4) Our models achieve competitive performances on four downstream datasets,
showing the effectiveness of BERT-based monolingual language models for
Tagalog.

(5) The pre-trained models and the POS tagging dataset would be publicly available
serving as strong baselines.

2 Related Previous Research

2.1 Natural Language Processing for Tagalog

Part-of-Speech Tagging. Part-of-speech (POS) is a fundamental grammatical attribute
of tokens that signifies the morphological and syntactic behaviors of a lexical item. It is
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designed as one of the sequence labeling tasks. Cheng and Rabo [13] construct a POS
tagging corpus comprised of 141 sentences and 59 tags and propose a template-based
n-gram POS tagger. Reyes et al. [14] develop a Tagalog POS tagger (SVPOST) using
support vector machines (SVMs) and their corpus consists of 122318 tokens and 64 tags.
Olivo et al. [15] are the first to use conditional random field (CRF) for Tagalog POS
tagging. There are two main concerns about the POS tagging research in Tagalog: (1)
Tagalog is represented as a low-resource language that most of the Tagalog POS taggers
are still based on rules andmachine learning (ML). (2) The corpora above are not publicly
available, whichmakes it impossible for us to properly compare performance of different
models and techniques. In this work, we build and release a high-quality POS corpus
and use neural methods to construct baseline POS tagger.

Text Classification. Cruz et al. [10] create and release News PH-NLI, the first Natu-
ral Language Inference (NLI) benchmark dataset in Tagalog. Moreover, they produce
new pre-trained transformers to further alleviate the resource scarcity in Tagalog. Cruz
and Cheng [9] release two text classification datasets, namely Hate Speech Dataset
(binary classification) andDengue Dataset (multilabel text classification). They also pre-
train transformer-based language models for use within Tagalog setting. Our pre-trained
models are evaluated in these three benchmark datasets for comparison.

2.2 Pre-trained Language Model for Tagalog

Monolingual Pre-trained Language Model. Cruz and Cheng [8] pre-train a new
Tagalog BERTmodel using theWikiTextTL-39 dataset. In order to cater to low-resource
settings in an equipment perspective, they also construct a smaller version of the BERT
model via model distillation, producing a DistilBERT model. Cruz et al. produce four
ELECTRAmodels: a cased and an uncasedmodel respectively in the base size and small
size, using the WikiText TL-39 dataset [10].

Multilingual Pre-trained Language Model. Publicly transformer-based multilingual
PLMs represented bymultilingualBERT (mBERT) [1],XLM[9] andmt5 [11] are trained
in a large dataset includingmultiple language datasets to obtain language-invariant infor-
mation. It is notable that XLM-100 and mt5 support Tagalog language while mBERT
does not support Tagalog language.

3 Model

Three model for Tagalog are introduced in this paper: an uncased BERT model1, an
uncased ELECTRA2 model and a RoBERTa3 model. They are all in the base size (12
layers, 768 hidden units, 12 attention heads).

1 https://huggingface.co/GKLMIP/bert-tagalog-base-uncased.
2 https://huggingface.co/GKLMIP/electra-tagalog-base-uncased.
3 https://huggingface.co/GKLMIP/roberta-tagalog-base.

https://huggingface.co/GKLMIP/bert-tagalog-base-uncased
https://huggingface.co/GKLMIP/electra-tagalog-base-uncased
https://huggingface.co/GKLMIP/roberta-tagalog-base
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3.1 BERT

BERT (Bidirectional Encoder Representations for Transformers) [1], is designed to learn
deep bidirectional representations from unlabeled text by jointly modeling context from
both forward and backward directions in all layers. It consists of multiple bidirectional
transformer encoders [17].

BERT is comprised of two unsupervised subtasks, namely Mask Language Model
(MLM) and Next Sentence Prediction (NSP): (1) MLM refers to masking some words
from the input sequence and then predicting the masked word through the context; (2)
NSP is designed to enhance the relationship between a sentence pair. Its objective is to
predict whether the sentence pair are continuous. Pre-trained BERT can be fine-tuned
for a variety of downstream tasks such as text classification, named entity recognition
(NER) and question answering (QA) tasks (Fig. 1).

Fig. 1. BERT model.

3.2 RoBERTa

Being a variant of BERT, RoBERTa [12] aims to make full use of BERT architecture and
training methods. There are three improvements in RoBERTa compared with BERT: (1)
More training data: RoBERTa leverages more unlabeled data to pre-train the model
for a more robust performance in downstream tasks; (2) Abondance of NSP task: Liu
et al. [12] verified the invalidity of the NSP task and removed this task; (3) Dynamic
wordmasking:RoBERTa uses dynamic word masking to train theMLM task instead of
the static word masking proposed by BERT model, which allows the parameters of the
pre-trained model to be more fully optimized and the model can better capture sequence
features (Fig. 2).
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3.3 ELECTRA

Fig. 2. ELECTRA model.

Apart from BERT model, a new pre-trained framework, ELECTRA [16], uses the
combination of generator and discriminator.

Compared with BERT, the innovations of ELECTRA are as follows: (1) It proposes
replaced token detection (RTD), a pre-training task in which the model learns to distin-
guish real input tokens from plausible but synthetically generated replacements. Instead
of masking, ELECTRA corrupts the input by replacing some tokens with samples from
a proposal distribution, which is typically the output of a small masked language model.
(2) Instead of training a model that predicts the original identities of the corrupted
tokens, ELECTRA trains a discriminative model that predicts whether each token in the
corrupted input was replaced by a generator sample or not. (3) In order to effectively
learn context information, it uses weight sharing to share the generator’s embedding
information with the discriminator. (4) The model jointly trains a small generator and a
discriminator to ease the training difficulty of the discriminator.

4 Pre-training Corpus

In this paper, the models are pre-trained on massive data collected from three sources,
namely Oscar corpus, Wikipedia corpus and news corpus. The whole corpus used for
pre-training has a size of 1.3G, which is four times more than the corpus used by the
existing Tagalog pre-trained models. We use 99% of the corpus as the training set and
1% as the validation set. The corpus statistics for pre-training are shown in Table 1.

Table 1. Statistics of the pre-training corpus.

Source Size of File Num. of Document Num. of Line Num. of Tokens

Oscar 417M – 3580299 78236499

Wiki 283M 174444 2004429 5173224

News 744M 396941 6341530 140186315
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4.1 Oscar

Oscar corpus is a large-scale unlabeled corpus constructed by Ortiz et al. [18]. In order
to create the multilingual OSCAR corpus, Ortiz et al. (2019) reproduce the pipeline
proposed by Grave et al. [19] to process, filter and classify Common Crawl, which is a
non-profit organization that produces and maintains an open, freely available repository
of crawled data from the web. The filtering step used to create OSCAR involves keeping
only the lines containing at least 100UTF-8 encoded characters. Finally, as inGrave et al.
[19], the OSCAR corpus is deduplicated, i.e. for each language, only one occurrence
of a given line is included. In this paper, we only use Tagalog corpus from the OSCAR
corpus.

4.2 Wiki

Wikipedia is a multilingual, free encyclopedia that contains a lot of text information. We
use the Tagalog Wikipedia corpus “WikiText-TL-39” [8] as one of the training corpora.
“TL” stands for Tagalog and “39” refers to the dataset having 39 million tokens in the
training set. In this paper, we use the training set, validation set and test set of this corpus
for pre-training.

4.3 News

We crawlmassive news articles from 13 Tagalog newswebsites to construct a large-scale
news corpus for Tagalog. The corpus is comprised of around 400,000 news articles as
shown in Table 2.

Table 2. Statistics of news websites.

Website Num. of Document

https://www.pna.gov.ph 85655

http://balita.net.ph/ 37051

http://bandera.inquirer.net 73525

http://cnnphilippines.com 96

http://eaglenews.com 9802

https://www.bworldonline.com 7728

https://tonite.abante.com.ph 28045

https://www.topgear.com.ph 355

https://philnews.ph 181

https://kickerdaily.com 11153

https://www.hatawtabloid.com 39486

https://www.remate.ph 93908

https://www.pinoyparazzi.com 9956

Total 396941

https://www.pna.gov.ph
http://balita.net.ph/
http://bandera.inquirer.net
http://cnnphilippines.com
http://eaglenews.com
https://www.bworldonline.com
https://tonite.abante.com.ph
https://www.topgear.com.ph
https://philnews.ph
https://kickerdaily.com
https://www.hatawtabloid.com
https://www.remate.ph
https://www.pinoyparazzi.com
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5 Experiment

5.1 Downstream Tasks

POS Tagging. The existing Tagalog POS tagging datasets cannotmeet the development
of deep learning technology in terms of scale and quality and all of them are not publicly
available. Therefore,we build a dataset containing 14438 samples (totally 286706words)
within 39 tags based on the Tagalog news articles crawled fromBailta4. In the annotating
process, each sample is labeled by two annotators. Then samples with the same labeling
results are added to the dataset. Instead, samples with different annotation results will
be annotated again by the third Annotators. If the annotation results are the same as one
of the first two persons, They will also be added to the dataset. A split of (70%, 15%,
15%) of the dataset is respectively for (training, test, validation). Statistics of the POS
tagging dataset and POS Tagset are represented in Table 3 and Table 4.

Table 3. Data distribution of the POS tagging dataset.

Data Num. of Sentence Num. of Token

Train 10108 195468

Dev 2165 46971

Test 2165 44267

Total 14438 286706

Table 4. Statistics of the POS tagging dataset.

Tag Proportion (%) Explanation

CN 13.7018 Common noun

AD 2.2776 Auxiliary verb

P 4.9263 Particle

CP 3.6675 Completed

PREP 13.4961 Preposition

A 3.1935 Adjective

ART 5.5548 Article

PN 6.0414 Proper noun

Z 10.8941 Punctuation

INF 3.1307 Infinitive

(continued)

4 http://balita.net.ph/.

http://balita.net.ph/
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Table 4. (continued)

Tag Proportion (%) Explanation

CS 4.2158 Connection structure

INTP 0.1531 Interrogative pronoun

PP 4.8457 Personal pronoun

CC 1.986 Coordinating conjunction

SC 2.5556 Subordinating conjunction

NP 0.3007 Negative pronoun

F 10.013 Foreign Word

INTADV 0.1779 Indefinite adverb

NADV 0.8273 Negative adverb

CT 1.3251 Contemplated

DP 1.1943 Demonstrative pronoun

INC 1.8667 Incompleted

JOD 0.6446 Ordinal number of adjective

CD 1.1224 Cardinal number

X 1.1451 Unknown

INDP 0.1221 Indefinite pronoun

INT 0.0743 Interjection

AS 0.1102 Adjective, superlative degree

DADV 0.3101 Demonstrative adverb

VOD 0.0345 Ordinal number of adverb

INDADV 0.0244 Indefinite adverb

DD 0.0593 Demonstrative determiner

HADV 0.0014 Adverb of the same class

NUM 0.0007 Numeral

ADJ 0.0028 Adjective

ADV 0.0003 Adverb

SADV 0.001 Adverb, superlative degree

QD 0.0007 Quantitative determiner

V 0.001 Verb
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Natural Language Inference. Natural Language Inference (NLI) is a sentence-pair
classification for inference of the relationship between two sentences, such as a sentence
with a premise and a sentence with a hypothesis. Their relationship can be entailment,
neutrality and contradiction. NewsPH-NLI [10] is an NLI benchmark dataset in Tagalog
comprised ofmultiple news articles from allmajor Tagalog news sites online. The dataset
is divided into (420000, 90000, 9000) documents for (training, test, validation) sets.

Hate Speech Classification. Hate Speech dataset [9] is a collection of tweets mined
in real-time during the 2016 Philippine Presidential Election debates, and from tweets
related to the 2016 election hashtags. The dataset is introduced as a binary classification
task benchmark in Tagalog, with each tweet labeled as 0 (non-hate) or 1 (hate). The
training set has 10,000 labeled examples with 5340 and 4660 non-hate and hate tweets
respectively. An even split of 4232 validation and 4232 test samples are included for
evaluation.

Dengue Classification. Dengue dataset [9], a multiclass classification dataset, is com-
posed of tweets collected from Twitter in the Tagalog language. There are five labels
for each tweet in the dataset: absent, dengue, health, mosquito, and sick. The dataset is
represented as a low-data dataset, with only 4015 training examples and an even split of
500 validation and 500 test examples. More importantly, the classes are highly imbal-
anced with a distribution of (905, 49, 1804, 528, 1035) samples in five labels (absent,
dengue, health, mosquito, sick).

5.2 Pre-training

Two improvements are made in our pre-trained models compared with the existing pre-
trained models [8]: (1)more data; and (2) a larger vocabulary size. The vocabulary in
the models pre-trained by Cruz and Cheng [8] is 32K, while the size of our pre-trained
dictionary is 52K. In addition, in the pre-training stage in [8], the model pre-training
epoch exceeds 50 batches, while we only conduct 5 batches. The BERT and ELEC-
TRA models we build are both uncased models, because in general, the performance of
uncased models is better than the cased models [8]. When training BERT and ELEC-
TRA, we use the word piece [20] segmentation method, and when training RoBERTa,
we use the BPE [21] segmentation method. The hyperparameters in the pre-training
stage are shown in Table 5.
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Table 5. Hyperparameters for pre-training.

Parameter BERT ELECTRA RoBERTa

Layer Num 12 12 12

Hidden Size 768 768 768

FFN inner hidden size 3072 3072 3072

Attention heads 12 12 12

Vocab Size 52000 52000 52000

Tokenizer Type Word Piece Word Piece BPE

Adam β1 0.9 0.9 0.9

Adam β2 0.999 0.999 0.98

Adam ε 1e−6 1e−6 1e-6

Learning Rate Decay Linear Linear Linear

Weight Decay 0.01 0.01 0.01

Batch Size 128 128 128

Peak Learning Rate 1e-4 1e-4 5e-4

Dropout 0.1 0.1 0.1

Attention Dropout 0.1 0.1 0.1

Epoch 5 5 5

Warmup Steps 5K 5K 5K

Max Length 512 512 512

Fig. 3. Pre-training losses for all models over the steps.

5.3 Fine-Tuning

We compare our pre-trained models with six existing pre-trained models. For classifi-
cation tasks, we report the accuracy of the test set as in [9, 10], and report the accuracy,
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precision, recall and F1-score for POS tagging task. We use the same classification
fine-tune code5 from Cruz et al. [8–10]. In the classification task, we uniformly set the
maximum length to 128, while in the POS tagging task, the maximum length is set to
200. For two small ELECTRA models, we fine-tune for 3 epochs with a learning rate
of 2e-4. For three base BERT model and base ELECTRA model, we fine-tune for 3
epochs with a learning rate of 5e-5. For RoBERTa model, we fine-tune for 5 epochs with
a learning rate of 3e-5 for NewsPH-NLI task because it needs a longer training time
and a smaller learning rate to converge. And for other task, we fine-tune RoBERTa for
3 epochs with a learning rate of 5e-5. For XLMmodel, we fine-tune for 5 epochs with a
learning rate of 1e-6 for hate speech classification task and NIL task, and fine-tune for 3
epochs with a learning rate of 5e-5 for POS tagging task and dengue classification task.
The GPU we use for model fine-tuning is TIAN RTX.

5.4 Experiment Results and Analysis

As shown in Fig. 3, in the warm-up phase, the loss values of BERT, ELECTRA and
RoBERTa drop significantly, while in the subsequent phases, the loss values slowly
decrease. Among them, the loss value of ELECTRA dropped from 9.5212 to 2.0620,
the loss value of BERT dropped from 9.4844 to 1.9041, and the loss value of RoBERTa
dropped from 8.5030 to 2.2657. It seems that BERT model fits the best.

Table 6. The result of NewsPH-NLI.

Model Test Loss Test Accuracy

BERT (base, cased) 0.3169 0.8870

BERT (base, uncased) 0.3114 0.8884

ELECTRA (base, cased) 0.2572 0.9113

ELECTRA (base, uncased) 0.2528 0.9168

ELECTRA (small, cased) 0.1896 0.9279

ELECTRA (small, uncased) 0.1948 0.9249

XLM 0.2116 0.9115

BERT (base, uncased, our) 0.1872 0.9466

ELECTRA (base, uncased, our) 0.1858 0.9489

RoBERTa (base, uncased, our) 0.3678 0.9128

5 https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks.

https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks
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Table 7. The result of hate speech classification.

Model Test Loss Test Accuracy

BERT (base, cased) 0.6172 0.7695

BERT (base, uncased) 0.5849 0.7862

ELECTRA (base, cased) 0.6264 0.7648

ELECTRA (base, uncased) 0.5925 0.7608

ELECTRA (small, cased) 0.4725 0.7883

ELECTRA (small, uncased) 0.5009 0.7683

XLM 0.5508 0.7110

BERT (base, uncased, our) 0.5578 0.8193

ELECTRA (base, uncased, our) 0.5588 0.8264

RoBERTa (base, uncased, our) 0.5497 0.7930

Table 8. The result of dengue classification.

Model Test Loss Test Accuracy

BERT (base, cased) 0.1886 0.9318

BERT (base, uncased) 0.1708 0.9405

ELECTRA (base, cased) 0.1953 0.9288

ELECTRA (base, uncased) 0.1750 0.9330

ELECTRA (small, cased) 0.1833 0.9316

ELECTRA (small, uncased) 0.1754 0.9296

XLM 0.2014 0.9133

BERT (base, uncased, our) 0.1395 0.9541

ELECTRA (base, uncased, our) 0.1454 0.9525

RoBERTa (base, uncased, our) 0.1572 0.9425

Table 6–9 present the results of different pre-trained models for 4 downstream tasks.
Our models outperform the existing models in three text classification tasks: (1) Our
pre-trained ELECTRA model works best in NLI task and hate speech classification
task which achieve an accuracy of 0.9489 and 0.8264; (2) for dengue classification
task, our pre-trained BERTmodel reaches state-of-the-art performance with an accuracy
of 0.9541. It is worthwhile to note that in POS tagging task, our pre-trained BERT
model and ELECTRAmodel have the same F1-score, and BERT reaches state-of-the-art
performance with an accuracy of 0.9532.
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Table 9. The result of POS tagging.

Model Accuracy Precision Recall F1

BERT (base, cased) 0.9441 0.9259 0.9222 0.9241

BERT (base, uncased) 0.9429 0.9264 0.9222 0.9243

ELECTRA (base, cased) 0.9358 0.9149 0.9134 0.9142

ELECTRA (base, uncased) 0.9368 0.9164 0.9140 0.9152

ELECTRA (small, cased) 0.9412 0.9231 0.9190 0.9211

ELECTRA (small, uncased) 0.9387 0.9200 0.9162 0.9181

XLM 0.9517 0.9352 0.9328 0.9340

BERT (base, uncased, our) 0.9532 0.9381 0.9351 0.9366

ELECTRA (base, uncased, our) 0.9531 0.9379 0.9353 0.9366

RoBERTa (base, uncased, our) 0.9473 0.9301 0.9271 0.9286

6 Conclusion

In this paper, we present three monolingual language models for Tagalog pre-trained
in a much larger corpus. Additionally, we construct a part-of-speech (POS) tagging
dataset to relieve the insufficient sequence-labeled resources in Tagalog. Experimental
results demonstrate the effectiveness of our pre-trainedmodels in various Tagalog natural
language processing (NLP) tasks of POS tagging, hate speech classification, dengue
classification and natural language inference (NLI). By publicly releasing the pre-trained
models, we hope that they can have implications for future research for Tagalog NLP.
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Abstract. Pretrained language models (PLMs) have achieved remark-
able results in various natural language processing tasks. As the perfor-
mance of the model increases, it is also accompanied by more compu-
tational consumption and longer inference time, which makes deploying
PLMs in edge devices for low-latency applications challenging. To address
this issue, recent studies have recommended applying either model com-
pression or early-exiting techniques to accelerate the inference. How-
ever, model compression permanently discards the modules of the model,
leading to a decline in model performance. Train the PLMs backbone
and the early-exiting classifier separately with early-exiting strategies. It
not only brings extra training cost but also loses semantic information
from higher layers, resulting in unreliable decisions of early-exiting clas-
sifiers. In this study, a weighted ensemble self-distillation method was
proposed to improve the early-exiting strategy, which well balanced the
performance and the inference time. It enables early-exiting classifiers
to obtain rich semantic information from different layers with an atten-
tion mechanism according to the contribution of each layer to the final
prediction. Furthermore, it simultaneously performs weighted ensemble
self-distillation and fine-tuning of the PLMs backbone so that the PLMs
can be fine-tuned in the training process of the early-exiting classifier to
preserve the performance as much as possible. The experimental results
show that the inference of the proposed model was accelerated at the min-
imum cost of performance loss, thus outperforming the previous early-
exiting models. The code is available at: https://github.com/JunKong5/
WestBERT.

Keywords: Pretrained language model · Accelerating inference ·
Weighted ensemble self-distillation · Early-exiting

1 Introduction

Practical applications of natural language processing (NLP) have completely
been revolutionized with the advent of PLMs. Models such as BERT [2],
RoBERTa [9] and ALBERT [8] have been widely used for sentiment analysis [7,
18,19], text summarization [4], and subject labeling of academic papers [16].
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-88480-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88480-2_18&domain=pdf
https://github.com/JunKong5/WestBERT
https://github.com/JunKong5/WestBERT
https://doi.org/10.1007/978-3-030-88480-2_18


Accelerating PLM Inference Using Weighted Ensemble Self-distillation 225

Fig. 1. Conceptual diagram of both model compression and early-exiting strategies for
accelerating inference of the PLMs.

As the performance of PLMs continues to increase, the requirements for com-
putational resources and time consumption become urgent. Several variants of
PLMs significantly increase the latency and computational cost of inference due
to the large-scale parameters used in PLMs. Practically, the speed of inference
is as important as the prediction performance of the model. It may severely
limit their deployment to resource-limited devices for real-time applications. For
instance, the execution speed of an application directly impacts battery life and
user experience for a smartphone.

Recent studies have recommended using model compression techniques to
deploy PLMs, including knowledge distillation [13], pruning [1], and quantiza-
tion [17]. Knowledge distillation is usually implemented to transfer knowledge
from the original PLMs to a smaller one, as shown in Fig. 1(a). For example,
DistilBERT [10] and PKD-BERT [12] can distill the 12-layer teacher model of
BERT into a 6-layer student in either pre-training or finetuning stages, and the
new model can have sufficient capacity to learn a concise knowledge representa-
tion. Alternately, the technique of pruning can be used to remove unnecessary
parts of the network. Based on this, Fan et al. [3] proposed layer drop strategies
to prune the layers of the network by a dropout mechanism to reduce the redun-
dancy in a trained network. Finally, quantization [17] truncates floating point
numbers to only use a few bits, thus speeding up the computation of the values.
These compression methods permanently discard the modules of the model and
may reduce the inference performance of the model.

Another option for accelerating inference is the early-exiting strategy, as
shown in Fig. 1(b). For instance, DeeBERT [15], BranchyNet [14] and Right-
Tool [11] introduced extra classifiers in each layer of the BERT model. Instead
of using the representation from the last layer of the BERT, the models evaluate
the confidence by those classifiers to dynamically decide which layer can be used
as off-ramps for prediction. At the inference stage, after a sample goes through
a transformer layer, it is passed to the following off-ramp. If the off-ramp is
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Fig. 2. Overall architecture of adaptive inference with weighted ensemble self-
distillation for BERT.

confident enough for the prediction, the result is returned; otherwise, the sample
is sent to the next transformer layer.

These early-exiting methods were trained in two separate stages. That is, the
backbone network of BERT is trained first and then frozen to train the early-
exiting classifiers, which brings extra costs for training time and computational
resources. Furthermore, the separate training process freezes the BERT backbone
network, resulting in weak knowledge transfer between multiple early-exiting
classifiers. In addition, a previous study [6] argued that surface features are
expressed in lower layers, syntactic features are expressed more in middle layers,
and semantic features are expressed in higher layers for PLMs. This brings the
contradiction that, the earlier the model exits, the less semantic features needed
for the task are used. As a result, the lack of higher-layer semantic features may
lead to significant performance degradation of the early-exiting classifier.

In this study, a Weighted Ensemble Self-disTillation method was proposed
to accelerate the inference time of the BERT model (WestBERT). To ensure
that the lower layers can obtain the powerful representation abilities as the
higher layers, a weighted ensemble teacher was dynamically composed by using
an attention mechanism according to the contribution of each layer to the final
prediction. Then, it was used to distill all layers of the original BERT to ensure
that the lower layers can obtain the appropriate abilities for inference. Even if
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the model exits very early, accurate predictions can still be obtained because
the proposed WestBERT extracts rich knowledge from inside the network. Such
weighted ensemble self-distillation can transfer knowledge from different parts of
the model, which contributes the most to the final inference to the lower layers
of the model. In addition, it does not require the external training cost of the
teacher and the student models. Another advantage of the proposed WestBERT
is that it simultaneously performs weighted ensemble self-distillation and fine-
tuning of the backbone BERT. Therefore, the backbone BERT model can be
fine-tuned in the process of self-distillation to preserve the performance as much
as possible.

Extensive experiments were conducted on the GLUE dataset. The results
show that the proposed WestBERT well balanced the model performance and
inference time. The weighted ensemble self-distillation strategy significantly
reduces the inference time with little performance loss. In contrast to model
compression, the proposed WestBERT not only suppresses unnecessary com-
putation of simple samples but also provides a dynamic architecture with an
early-exiting strategy for different samples.

The rest of the paper is organized as follow. Section 2 presents a detailed
description of the proposed weighted ensemble self-distillation to accelerate the
inference time of the BERT model. Section 3 summarizes the implementation
details and experimental results. The conclusions of this study are finally drawn
in Sect. 4.

2 Weighted Ensemble Self-distillation

The proposed WestBERT performs weighted ensemble self-distillation and fine-
tuning of the backbone BERT simultaneously. For self-distillation, each early-
exiting classifier was regarded as a student model. An attention mechanism was
applied to measure the importance of different students and compose them into
an appropriate teacher. Figure 2 shows an overview of the proposed WestBERT
model. The details of each module are presented as follows.

2.1 Early Exiting

The BERT model usually contains K layers of transformer structure. The input
sample was first tokenized as a sequence of subwords, i.e., x = [x1, x2, . . . , xN ].
Its corresponding ground truth label is y. A special token [CLS] was first added
to the head of the sequence so that the corresponding hidden state h

(k)
[CLS] ∈ Rdh

in each layer is encoded including all representative information of all tokens
through the multilayer encoding procedure. For each layer, the encoding process
is defined as

[h(k)
[CLS], h

(k)
1 , ..., h

(k)
N ] = f

(k)
θ ([h(k−1)

[CLS] , h
(k−1)
1 , ..., h

(k−1)
N ]; θ) (1)

where f
(k)
θ is the transformer encoder in the k-th layer parameterized by θ. Then,

h
(k)
[CLS] was regarded as features to train the early-exiting classifier z(k). Thus,
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the predicted probability distribution ŷ(k) ∈ Rm of the early-exiting classifier
towards the ground-truth label is calculated as follows:

z(k) = tanh(W (k)
z h

(k)
[CLS] + b(k)z ) (2)

ŷ(k)
z = softmax(z(k)) (3)

where m is the number of classes, tanh is the activation function. W
(k)
z and

b
(k)
z are weights and bias, respectively. The loss function for the target task is a

categorical cross-entropy, defined as

L(k)
CE = −

K∑

k=1

I(y) ◦ log(ŷ(k)
z ) (4)

where y and ŷ
(k)
z represent the ground truth and the probability distribution in

the k-th layer. I(y) denotes a one-hot vector with the y-th component being one,
and ◦ represents an elementwise multiplication operation.

2.2 Weighted Ensemble Self-distillation

The supervised cross-entropy loss based on labels alone leads to weak expres-
siveness of early-exiting classifiers due to the lack of higher-level semantic infor-
mation in each hidden representation h

(k)
[CLS]. Thus, weighted ensemble self-

distillation was applied to further improve the representation abilities and obtain
rich semantic information of the early-exiting classifiers. Each early-exiting clas-
sifier z(k) was regarded as a student model. An attention mechanism was used
to compose all students as the teacher model according to their importance to
the final prediction. In knowledge distillation [5], student models can learn from
the distribution of the teacher model to improve their generalization ability. The
distribution p

(k)
s ∈ Rdp of each student is

p(k)s = softmax(
Wsz

(k) + bs

τ
) (5)

where τ is the temperature, which is used to control the softness of the distri-
bution.

To compose the teacher model, the attention weights α(k) are calculated by
a softmax function over all layers, defined as

α(k) =
exp(V T tanh(Wαz(k) + bα))

K∑
k=1

exp(V T tanh(Wαz(k) + bα))
(6)

where V is the context vector and Wα and bα are weights and bias, respectively.
The feature vector t of the teacher model is then composed of
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t =
K∑

k=1

α(k)z(k) (7)

To further ensure the quality of the teacher model, supervised training was
applied with respect to the ground-truth label y, defined as

pt = softmax(
Wtt + bt

τ
) (8)

Lt
CE = −I(y) ◦ log(pt) (9)

where pt ∈ Rdp is the probability distribution of the composed teacher. Self-
distillation was achieved by minimizing the Kullback-Leibler divergence (KL)
between the distributions of the teacher model and all of the student models,
which is defined as

L(k)
KL = τ2KL(p(k)s ||pt) (10)

where KL(•||•) is the KL-divergence function. τ2 compensates for the size of
the gradient scaled by the soft target, ensuring that there is no negative impact
on the gradient size. p

(k)
s and pt are the soft probability distributions of the k-th

student classifier and the teacher model, respectively. Based on this, the overall
loss of the proposed WestBERT is expressed as

L =
∑

T

[
(1 − λ)

K∑

k=1

L(k)
CE + Lt

CE + λ
K∑

k=1

L(k)
KL

]
(11)

where λ is a decay factor that is used to balance the cross-entropy loss and the
knowledge distillation loss.

2.3 Adaptive Inference

The entropy Ent(k) was quantified as the confidence based on the output distri-
bution of the early-exiting classifier in the k-th layer, which is defined as

Ent(k) = −
∑

dp

p(k)s log p(k)s = ln(
∑

dp

exp(p(k)s )) −

∑
dp

p
(k)
s exp(p(k)s )

∑
dp

exp(p(k)s )
(12)

where dp is the dimension of hidden representation of the early-exiting classifier.
Notably, the larger the entropy value is, the greater the uncertainty of the off-
ramp is. When a sample arrives at the early-exiting classifier, the entropy of
its output distribution p

(k)
s in each layer is successively compared with a preset

confidence threshold F to determine whether the model should exit early or
continue to the next layer of inference.



230 J. Kong et al.

Based on this, the prediction can be made by exiting from the off-ramp
if the entropy value is less than the threshold value, i.e., Ent(k) < F . Thus,
different adaptive inference paths are customized for each sample such that it is
unnecessary for all layers of BERT to participate in inference, thus reducing the
inference time. Otherwise, the model continues with the next layer of inference
when it is greater than the threshold value, i.e., Ent(k) > F . Intuitively, a larger
F leads to faster but less accurate prediction, while a small F leads to accurate
but slower prediction. The selection of the threshold depends on whether the
task benefits from inference speed or predictive performance.

3 Experiments

3.1 Datasets and Evaluation Metrics

To evaluate the effectiveness of the proposed weighted ensemble self-distillation
to accelerate the BERT inference, we conducted experiments on the GLUE
dataset. MNLI contains both matched and mismatched versions of the dataset.
The average values of F1 and accuracy were used as evaluation metrics for QQP
and MRPC. Accuracy is used as an evaluation metric for SST-2, MNLI, QNLI
and RTE. The Matthews correlation coefficient is used as the evaluation metric
of CoLA.

3.2 Baselines

To comprehensively evaluate the proposed WestBERT model, we compared it
with model compression and other adaptive inference methods. The details of
baselines are presented as follows: BERT-base [2]. The original 12-level uncased
BERT is used as the baseline, and its inference time is used as the benchmark
and is noted as 100%. DistilBERT [10]. Distillation is performed during the
pretraining phase. BERT-PKD [12]. Knowledge is extracted from the middle
layer of the teacher model. LayerDrop [3]. Structural pruning of layers is per-
formed using dropout for BERT. DeeBERT [15]. Early-exiting classifiers are
added to speed up inference. We use the available official code to implement
them.

3.3 Implementation Details

We use BERT-base-uncased as the backbone network architecture of the model.
BERT contains 12 transformer layers, and we add a total of 12 early-exiting
classifiers behind the corresponding layers. Each early-exiting classifier consists
of a linear layer with a hidden state dimension of 768, and a dropout layer of
dropout rate is set to 0.1. When an input sample reaches the early-exiting clas-
sifier and is less than the confidence threshold, it exits early to reduce inference
time. To train the model, Adam was used to optimize the training objective.
The learning rate is 2e-5, and the epsilon is 1e-8. The batch size is set to 128,
the maximum length of the input sample is set to 128, and the number of epochs
is 10. We set λ to 0.1 and τ to 3.0.
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Table 1. Experimental results comparison of baseline methods on the development set
splits of the GLUE.

Methods SST-2 CoLA MNLI (m) QQP

Acc% Time% Mcc% Time% Acc% Time% A/F1% Time%

BERT-base 92.1 100 54.3 100 83.9 100 89.9 100

DistilBERT 90.7 50.0 43.6 50.0 79.0 50.0 84.9 50.0

BERT-PKD 91.3 50.0 45.5 50.0 81.3 50.0 88.4 50.0

LayerDrop 90.7 50.0 45.4 50.0 80.7 50.0 88.3 50.0

DeeBERT 90.8 53.1 52.5 73.1 80.0 65.2 86.0 56.2

WestBERT 91.5 35.1 53.1 70.1 81.9 49.4 88.8 42.6

DeeBERT 88.8 44.7 47.7 68.4 78.5 60.4 84.4 50.3

WestBERT 89.1 23.9 49.1 59.1 79.9 34.7 87.4 25.9

DeeBERT 86.1 37.4 42.1 63.7 75.7 56.6 82.1 43.5

WestBERT 87.1 15.8 46.0 53.1 76.2 25.7 86.0 21.1

3.4 Comparative Results

Table 1 and Table 2 show the accuracy and inference time of the proposed West-
BERT against the baselines on the GLUE dataset. The adaptive inference meth-
ods with similar performance were grouped to obtain different expected inference
times by adjusting the confidence threshold F. As indicated, WestBERT consis-
tently exhibits better performance than other model compression and advanced
adaptive inference. Fewer inference times are used while maintaining similar
performance.

In SST-2, WestBERT achieved 91.5% accuracy but only used 35.1% of the
original BERT time. The accuracy is 0.7% higher than that of DeeBERT, but the
inference time is still 18% less. The accuracy and inference acceleration of Dee-
BERT are lower than those of WestBERT due to the simple use of cross-entropy
to train the early-exiting classifier. Therefore, the early-exiting classifiers of Dee-
BERT only have weak expressive ability and make incorrect decisions. Another
observation is that freezing the BERT backbone network limits the expression
ability of BERT in downstream tasks. In addition, the proposed method also per-
forms better in SST-2 compared to the compression model and is more flexible
in the tradeoff between model accuracy and inference speed. As indicated, the
WestBERT accuracy is 0.2% higher than the best model compression method,
BERT-PKD, and 14.9% lower in inference time. Because the model compression
method discards the parts of the model permanently, it reduces the informative
representation in the model.



232 J. Kong et al.

Table 2. Experimental results comparison of baseline methods on the development set
splits of the GLUE.

Methods MRPC QNLI RTE MNLI (mm)

A/F1% Time% Acc% Time% Acc% Time% Acc% Time%

BERT-base 89.5 100 91.2 100 71.1 100 83.8 100

DistilBERT 87.5 50.0 85.3 50.0 59.9 50.0 81.5 50

BERT-PKD 85.7 50.0 88.4 50.0 66.5 50.0 - -

LayerDrop 85.9 50.0 88.4 50.0 65.2 50.0 - -

DeeBERT 82.9 53.9 87.3 54.5 66.4 73.1 81.5 68.5

WestBERT 83.1 45.0 89.0 41.6 66.8 49.0 83.1 57.9

DeeBERT 81.9 48.5 86.2 50.5 63.8 52.4 79.3 62.7

WestBERT 82.2 35.3 87.0 32.0 65.3 39.1 80.2 37.3

DeeBERT 80.6 41.6 84.3 43.7 60.6 41.0 77.9 59.1

WestBERT 81.3 29.1 85.1 27.8 64.6 36.3 78.3 30.2

Table 3. Results of ablation study of the proposed WestBERT model.

Methods SST-2 CoLA QNLI QQP

Acc% Time% Mcc% Time% Acc% Time% A/F1% Time%

WestBERT-L 91.4 43.2 51.5 72.1 89.2 45.3 87.3 50.2

WestBERT-naive 91.3 39.5 51.2 71.7 89.3 43.4 87.9 41.0

WestBERT 91.5 35.1 53.1 70.1 89.0 41.6 88.8 39.5

WestBERT-L 89.2 35.0 49.6 69.3 88.0 37.7 86.4 40.9

WestBERT-naive 90.0 31.7 50.7 66.7 88.1 37.1 87.4 36.1

WestBERT 90.4 28.2 51.0 65.9 88.2 36.7 87.9 29.0

WestBERT-L 87.0 20.1 45.5 64.0 87.1 34.5 85.5 34.0

WestBERT-naive 88.0 20.3 48.3 57.1 87.0 33.1 86.7 31.8

WestBERT 88.1 19.5 48.5 56.9 87.2 32.0 86.8 23.2

3.5 Ablation Experiments

Table 3 shows the results of the ablation experiments performed with the pro-
posed WestBERT model. WestBERT-L denotes that only the last layer of the
BERT backbone network is used as the teacher without a weighted ensemble.
Additionally, WestBERT-Naive is composed of a simple summation for all early-
exiting classifiers as the teacher without a weighted ensemble.

As indicated, WestBERT takes less inference time than Ensemble-Naive on
the SST-2 dataset for different accuracy. With a similar accuracy of 91.5%,
WestBERT takes 4.4% less inference time than WestBERT-Naive. The attention
weights can learn the importance of each early-exiting classifier instead of the
equal contribution of early-exiting classifiers in WestBERT-Naive.
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Fig. 3. The performance of different methods in early exiting classifier on SST-2 and
QQP.

In addition, the proposed model outperformed WestBERT-L. In the QQP
dataset, the proposed model achieves an average accuracy and F1 of 88.8%
and an inference time of 39.5%. However, the performance of WestBERT-L is
1.5% lower than that of WestBERT, and the inference time is more than 10.7%.
WestBERT-L learns the last layer singularly and does not consider the semantic
information diversity of each layer. This demonstrates that the weighted ensem-
ble teacher model can learn rich semantic information from different layers to
enhance the performance of the performance of the early-exiting classifier.

3.6 The Effect of Weighted Ensemble Self-distillation

To investigate the effect of the proposed weighted ensemble self-distillation, Fig. 3
compares the proposed WestBERT against DeeBERT and other self-distillation
methods.

As shown in Fig. 3, the accuracy of the proposed WestBERT is much higher
than that of DeeBERT for the first six early-exiting classifiers. In particular, the
accuracy of the first early-exiting classifier of WestBERT is higher than that of
DeeBERT by almost 25%. This is because the early-exiting classifier of DeeBERT
lacks high-level semantic information, which leads to weak expressiveness of the
early-exiting classifier and incorrect decisions. Additionally, the performance of
DeeBERT in the lower layers is poor. Thus, if DeeBERT seeks to exit from the
lower layer, its prediction performance will be reduced.

The proposed method also has an improvement over WestBERT-L and
WestBERT-Naive. This is due to the effective knowledge learned from power-
ful teachers in different early-exiting classifiers. The weighted ensemble teacher
model improves the accuracy of the student models (early-exiting classifier) and
makes a correct decision that guarantees improvement of the inference speed of
the BERT model.

Figure 4 show the statistics of the number of samples that exit early at differ-
ent layers. As indicated, the proposed WestBERT tends to exit model inference
at earlier classifiers than DeeBERT for similar model performance. Nearly half
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Fig. 4. Distribution of different performances of early exiting classifier on SST-2.

of the samples of the proposed model exited the model immediately in the first
layer, which is faster than DeeBERT, and an accuracy of 90% was achieved.
Another observation is that the early-exiting classifier performance of West-
BERT is much higher than that of DeeBERT, indicating that the proposed
model can exit as early as possible while still maintaining high performance.

4 Conclusions

In this paper, adaptive inference with weighted ensemble self-distillation was
proposed to accelerate the inference time of BERT. The attention mechanism
is used to compose a better teacher that takes full advantage of each student’s
knowledge (early-exiting classifier). Great teachers can teach better students,
and great students can be further ensembled to become better teachers, which
can lead to self-enhancing model performance through iteration. As a result, the
inference speed is greatly improved while preserving the model performance.

Future work will explore the dynamic adjustment of knowledge distillation
losses and supervisory loss weights. Further speed up of model inference is
expected.
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Abstract. Most previous studies on event coreference resolution usually
focused on measuring the similarity between two event sentences. How-
ever, a sentence may contain more than one event and the redundant
event information will interfere with the calculation of event similarity.
To address the above issue, this paper proposes an event coreference reso-
lution framework based on event sentence compression mechanism, which
used an AutoEncoder-based model to compress the extracted event sen-
tences based on the event triggers. Meanwhile, the information interac-
tion between the compressed sentences and their original event sentences
is used to supplement the missing important information in the com-
pressed sentences. Experimental results on both KBP 2016 and KBP
2017 datasets show that our proposed model outperforms several state-
of-the-art baselines.

Keywords: Event coreference resolution · Event sentence
compression · Information interaction

1 Introduction

In real-world texts, there are usually a large number of sentences that describe
the same event in reality, and an event will be repeatedly mentioned in the doc-
uments. When multiple event mentions (an instance of a specific event in texts)
point to the same event ontology, these event mentions are coreferent. Event
coreference resolution aims to discover the coreferent event mentions in texts
and gather them into the coreferent chains. Events are mainly composed of trig-
gers and arguments. Triggers are the main words that can most clearly express
the occurrence of events, so each event can be represented as its correspond-
ing triggers. Arguments are the entity mentions involved in the events, such as
agents, patients, time, and place. Those coreferent event mentions generally have
similar triggers and arguments, as shown in follows:

E1: With Palestinian cameramen, shot and killed by an Israeli soldier on
the west bank in mid-April.

E2: Those close to miller believe he was shot by an Israeli personnel carrier.
Both the triggers of E1 and E2 are “shot” with the same type “Attack”,

and the agents in E1 and E2 are “an Israeli soldier” and “an Israeli personnel
carrier”, respectively, which have similar semantics. Additionally, the patient
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 239–250, 2021.
https://doi.org/10.1007/978-3-030-88480-2_19
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“he” in E2 refers to the patient “Palestinian cameramen” in E1. Hence, E1 and
E2 are coreferent event mentions. Event coreference resolution is beneficial for
many NLP applications, such as information extraction [8], topic detection [17]
and question answering [18].

Most previous works first used neural networks to measure the similarity of
event mention pairs and then judge whether they are coreferent or not. However,
most of them simply take the event sentences where the triggers are located as
input, ignoring the situation where an event sentence contains multiple events,
as shown below:

S1: If the US pressured the Jamaican government to capture and extra-
dite him, then it was Jamaica that arrested and imprisoned him, not the
US.

S2: I don’t see ..., when he was arrested by Jamaican police.
S1 has five triggers that refer to five event mentions, while S2 has one trigger

that refers to one event mention. If we directly sent these two event sentences to
a neural network model, the redundant event information in the two sentences
will interfere with the model and mistakenly regard the event mention “arrested”
in S1 and S2 as non-coreferent.

To address the above issue, this paper proposes an event coreference resolu-
tion framework based on event sentence compression. We train a trigger-oriented
AutoEncoder-based event sentence compression model, and compress the event
sentences to obtain compressed sentences, which will only contain a few words
related to the specific event. Meanwhile, the information interactions between
the compressed sentences and their original event sentences are used to supple-
ment the lost important information in the compressed sentences. Experimental
results on both KBP 2016 and KBP 2017 datasets show that our proposed model
outperforms several state-of-the-art baselines.

2 Related Work

Most previous studies on event coreference resolution were performed on two
popular corpora ACE [16] and KBP [12]. The ACE corpus contains 599 doc-
uments with 8 event types and 33 event subtypes. The ACE corpus annotates
the coreference information in the document, including event sentences, triggers,
arguments, tenses, and polarities. In addition, the ACE corpus also annotates
the compressed sentences, which are concise descriptions of the event sentences
and usually only contain trigger and argument information. The KBP 2015 cor-
pus contains 369 documents and defines 8 event types and 38 event subtypes.
The KBP 2016 and KBP 2017 corpora remove some event subtypes that can be
easily identified corresponding coreference relations and only remain 18 event
subtypes. Compared with the ACE corpus, the KBP corpora do not annotate
any entities, arguments, and other event information. Hence, it is much more
challenging to resolve coreferent events in the KBP corpora, especially the KBP
2016 and KBP 2017 corpora.

Early researches on event coreference resolution usually directly use the anno-
tation features of events [2,6]. Since the above methods rely heavily on manual
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annotation information, recent studies pay more attention to the coreference
between unlabeled raw texts, which is more challenging and has practical signif-
icance. Specifically, Peng et al. [13] designed a pipeline model of event extraction
and event coreference resolution, using various vectorization methods (such as
Brownian clustering, word vector, dependency parsing, etc.) to represent events
as structured event vectors and finally judge whether events are coreferent by
comparing the similarity between event vectors. Considering the pipeline model
has the error delivery problem, Lu et al. [9] proposed an event coreference resolu-
tion model based on joint learning of the Markov logic network. Compared with
shallow network and rule-based event coreference resolution methods, Huang et
al. [5] incorporated knowledge of argument compatibility from a large number
of the unlabeled corpus and improved the performance of coreference resolution.
Fang et al. [4] expanded a semantically sparse dataset using data augmentation,
and improved the quality of the expanded dataset by reinforcement learning,
which effectively improved the performance.

3 Event Coreference Resolution on Sentence Compression

Our event coreference resolution framework consists of three stages: event extrac-
tion, event sentence compression, and event coreference resolution. The overall
architecture is shown in Fig. 1. Firstly, we use the event sentences, the triggers,
the arguments, and the compressed sentences annotated in the ACE 2005 cor-
pus to train an event sentence compression model, as shown in part (a) of Fig. 1.
Secondly, we extract event mentions from the raw text in the KBP corpus as
shown in part (b) to obtain the event sentences, their triggers, and event sub-
types. Thirdly, the event sentences and triggers are sent to the Event Sentence
Compression model to obtain the compressed sentences. Finally, the compressed
sentences and their original event sentences are encoded by BERT and used
to predict whether two event mentions are coreferent through the interaction
attention layer. Since the same event subtype is a necessary condition for coref-
erent events, we only take the event pairs with the same subtype as candidate
coreferent event pairs.

3.1 Event Extraction

We extract event information from unlabeled raw texts and then detect all
the event mentions in the documents. Similar to Fang’s method [4], we use
a BiLSTM-based classifier as the event extractor, which encodes the input sen-
tences by BiLSTM, and outputs the extracted event sentences, triggers, and sub-
types by a Softmax layer. Different from Fang, we use weighted voting method
to obtain final event subtype in ensemble learning.

3.2 Event Sentence Compression

Generally speaking, sentence compression is the task of shortening a sentence
while retaining its meaning. Inspired by Malireddy et al. [11], we propose an
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Fig. 1. Overall flow chart of our event coreference resolution

event sentence compression model, called ESCA (Event Sentence Compression
AutoEncoder), shown in Fig. 2 mainly including two components: (a) Label
Generator and (b) AutoEncoder. Different from Malireddy, our ESCA takes
trigger information as the core and uses argument and compressed sentence as
important auxiliary information. Since the ACE corpus contains event sentences
(tag: ldc scope) and their compressed sentences (tag: extent) (an example is as
follows), which is not available in the KBP corpus. Therefore, we train our ESCA
model on the ACE corpus and apply it to the KBP corpus.

S3: Well, I I guess now that that he’s he’s died – it’ll be, uh, or it it should
be a change for the PLO. (event sentence)

S4: he’s died . (compressed sentence)

Fig. 2. Architecture of ESCA
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In the training stage, the Label Generator receives the event triggers, argu-
ments, and compressed sentence as input, and performs sequence annotation by
comparing them with the information of the event sentence to obtain their posi-
tion features. Specifically, the positions of trigger words, argument words, and
compressed sentence words in event sentences are labeled as 1 (as shown by red
circle in Fig. 2 (a)), otherwise they are labeled as 0 (as shown by white circle in
Fig. 2 (a)), representing their position features simply as Tri, Arg, and Comp
respectively. Then the weighted summation of Tri, Arg, and Comp performed
to generate Label, which is used as the training label of the compression model
AutoEncoder. The generation process of Label can be formalized as follows:

Label = w1 · Tri + w2 · Arg + w3 · Comp (1)

Here, we set w1 > max{w2, w3} since trigger is the core feature of an event,
so that each component value in Label reflects the different importance of each
word in an event sentence. When we provide Label Generator with an event
sentence contains multiple events, different Label will be obtained according to
different triggers, arguments, and compressed sentences.

AE (AutoEncoder) receives the event sentences and the triggers as input
and compresses the sentences around the triggers to obtain Rprob, which is a
probability representation to determine whether each word in an event sentence
remains in the compressed sentence. The words corresponding to the positions
close to 0 in Rprob will be discarded, and that close to 1 will remain. Specifically,
AE has two components: Encoder and Compressor, both of which are composed
of a BiLSTM. Encoder can encode event sentences with the trigger-central index.
Generally, in many NLP tasks, the output of the last position of LSTM is taken
as the feature vector. Different from them, we extract the feature vector of the
position where the trigger is located by its index since the trigger is taken as the
core feature. And the extracted feature vector also contains context information
of the trigger. Then, this feature vector is sent to Compressor for decoding to
obtain the compressed hidden state. Finally, the hidden state is transformed
by a fully-connected layer, and the retention probability of each word in the
sentence is obtained by the Sigmoid activate function, using Rprob represent it.
We motivate AE to learn the ability to compress information related to events
by reducing MSE (Mean-Square-Error) loss between Label and Rprob.

After trained by Label, the keywords (e.g., trigger and arguments) in the
sentence that have a high retention probability will exist in the compressed sen-
tence, while other words with retention probability close to zero will be removed.
Then, we sent sentences in the KBP corpus with their triggers obtained from
the stage of event extraction into AE to obtain compressed sentences.

3.3 Event Coreference Resolution

Our event coreference resolution model Coref-CS (Coreference Resolution based
on Compressed Sentence) takes compressed sentence pairs and their original
sentences as input. Coref-CS includes three components: Input Layer, Interaction
Attention Layer, and Classification Layer, as shown in Fig. 3.
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Fig. 3. Architecture of Coref-CS

Input Layer: We apply BERT to encode each compressed sentence pairs and
their original event sentence pairs to get their embeddings Embcomp, Embsent,
respectively. Here, we use Embcompi

(i ∈ {1, 2}) to refer single sentence embed-
ding in the compressed sentence pairs embedding Embcomp, Embsent is the same.

Interaction Attention Layer: The attention mechanism is usually used
to assign a weight to each word in a sentence, and irrelevant words will get
smaller weights, thus reducing the noise interference. For further denoising and
capture coreference relationship between compressed sentence pairs, we use the
multi-head attention mechanism to capture the common features between their
embedding Embcomp as follows:

Attcompi
= Attention(Embcompi

, Embcompj
), i ∈ {1, 2}, j ∈ {2, 1} (2)

Since the subtasks event extraction and event sentence compression are
upstream of event coreference resolution, there are cascading errors. For exam-
ple, those missing triggers in event extraction will lead to the loss of important
information in the compressed sentence, because sentence compression model
ESCA depends on the trigger information, which is not conducive to judging
whether the event pair is coreferent or not. To alleviate this issue, we interact
the information of the compressed sentences and their original event sentences, so
that the information lost in compressed sentences can be properly supplemented
from original event sentences.

Specifically, we input the embedding of compressed sentence pairs Embcomp

and their original sentence pairs Embsent into an Attention mechanism to obtain
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the interactive information representation between them, as shown below:

Attinteracti = Attention(Embcompi
, Embsenti), i ∈ {1, 2} (3)

Then, we use the Max Pooling operation to express the most associated
information between two compressed sentences, but it will ignore some impor-
tant auxiliary information, so we perform both Max Pooling and Avg Pooling
operation on Attcomp to obtain the expression of the relevance of two compressed
sentences. As shown by yellow circle in Fig. 3, which represents the result of Max
Pooling and Avg Pooling operations.

Classification Layer: We concatenate the relevant information of the com-
pressed sentences and the interaction information Attinteract1, Attinteract2 to
obtain the final fusion features Fusion, and feed it to a fully-connected layer to
identify the coreferent events, as formalized below:

Fusion = Concat(Pooling(Attcomp), Attinteract1, Attinteract2) (4)

Score = Sigmoid(Wout · Fusion + bout) (5)

Here, Wout is the weight matrix and bout is the bias of fully-connected layer.
Since the positive and negative samples in the dataset are very unbalanced,

we choose focal loss [7] as the loss function.

FocalLoss = −α(1 − p)γ log(p) (6)

Finally, we use the undirected graph connection method to handle the results
and link the even coreference pairs to each other to build an event chain.

4 Experimentation

4.1 Experimental Settings

Following previous work [4,5,9], we use the KBP 2015 dataset as the training
set and the official complete test set of KBP 2016 and KBP 2017 as the test set
and choose 10% of the training set as the development set. Note that we did
not use any annotated information in the official test set. Following the previous
work [4,5,9], we use MUC [15], B3 [1], BLANC [14] and CEAFe [10] to evaluate
the performance of our Coref-CS and also report the average scores (AVG) of
the above four metrics. Comprehensive use of the above four metrics and their
AVG can more objectively measure the performance of the model.

We use PyTorch as deep learning framework. In the training of the model,
We set the training epochs of Coref-CS as 20 rounds, each round takes about
50 min and 10000 Mib GPU memory. We set the learning rate as 10−5, and use
Adam optimizer to update the parameters. Each word is embedded into a 768-
dimensional vector by BERT. The number of heads of attention mechanism is set
to 3. Besides, w1, w2 and w3 in Eq. (1) are set to 0.6, 0.3 and 0.2, respectively.
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4.2 Results on Event Extraction

The event extraction systems proposed by Lu et al. [9], Huang et al. [5] and Fang
et al. [4] are state-of-the-art baselines, which achieve excellent performance in
KBP 2016 dataset and KBP 2017 dataset. Therefore, in the stage of event extrac-
tion, we compare our event extractor with their event extraction systems. Table 1
shows the F1 scores of event extraction on KBP 2016 and KBP 2017 datasets,
which shows that our event extractor has achieved comparable performance. It
is fair to compare the performance of event coreference resolution based on such
similar event extraction results.

Table 1. F1 Scores of Event Extraction.

Lu Huang Fang Ours

KBP 2016 45.02 44.71 45.37

KBP 2017 48.14 47.82 48.28

4.3 Results on Event Coreference Resolution

To verify the performance of Coref-SC, we select the state-of-the-art baseline Lu
et al. [9], Huang et al. [5] and Fang et al. [4] on the KBP 2016 and KBP 2017
datasets for comparison. It is worth mentioning that Lu and Huang only reported
the experimental results on a single KBP dataset. Besides, we also use two other
model as baselines for comparison, one is the pre-training model BERT, another
is the cross-document model proposed by Eirew1 et al. [3], we reproduce their
model and apply it on the KBP dataset. The performance comparison between
our model and the above four baselines is shown in Table 2. The results show
that our Coref-CS outperforms all the baselines significantly (P <0.01) and this
indicates that the sentence compression mechanism can help the model to denoise
the event sentence and is effective for event coreference resolution.

Table 2. Comparison of experimental results on Event Coreference Resolution.

KBP 2016 KBP 2017

System MUC B3 BLANC CEAFe AVG System MUC B3 BLANC CEAFe AVG

Lu 27.41 40.90 25.00 39.00 33.08 Huang 35.66 43.20 32.43 40.02 36.75

Fang 34.76 49.07 36.29 43.24 40.84 Fang 37.58 45.83 41.32 38.03 40.69

BERT 36.73 46.98 39.69 40.94 41.08 BERT 42.21 46.77 40.07 37.04 41.52

Eirew1 37.67 49.37 38.65 41.89 41.90 Eirewl 43.63 46.87 40.29 38.03 42.21

Coref-CS 39.50 48.52 33.30 45.90 43.41 Coref-CS 47.15 46.34 40.91 39.95 43.59

Compared with the best baseline Fang, our Coref-CS improves the AVG by
2.57 and 2.90 on KBP 2016 and KBP 2017 datasets, respectively. Fang extracted
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a large number of positive samples from a large unlabeled corpus to balance the
positive and negative examples and used the reinforcement learning method to
enhance the quality of samples, effectively improving the performance of event
coreference resolution. Different from Fang, our Coref-CS compresses the event
sentences to obtain compressed sentences with more concise information, which
greatly reduces the interference of noisy information in event sentences. In addi-
tion, considering the possibility that important information may be compressed
and lost in compressed sentences, we use the interaction information between
compressed sentences and event sentences to recover the lost useful information
in compressed sentences. The significant improvement on the MUC metric (4.74
and 9.57) verifies that our model can extract more coreferent event mention pairs
and then improve the overall performance.

In comparison with BERT, our Coref-CS still improves average metric AVG
by 2.33 and 2.07 on KBP 2016 and KBP 2017 datasets, respectively. This indi-
cates that on the basis of BERT’s feature extraction of event sentences and
compressed sentences, we can extract the common features between compressed
sentence pairs with more concise information and information interactions, which
can effectively improve the resolution performance of event coreference. It is
worth mentioning that, compared with the baseline of Fang, our model has sig-
nificantly improved MUC, especially on the KBP 2017 dataset. This may be due
to the fact that the triggers extracted from KBP 2017 are sparse in comparison
with those from KBP 2016 in the stage of event extraction, especially the event
mentions on a single-event-mention chain (i.e., non-coreferent event).

In comparison with the baseline Eirewl, our Coref-CS improves average met-
ric AVG by 1.51 and 1.38 on KBP 2016 and KBP 2017 datasets, respectively.
This baseline also uses BERT-based model to extract event mention features
for event coreference resolution and achieve comparable performance with the
baseline BERT. It indicates that the methods between document-level and cross-
document event coreference resolution can used for reference each other and
sentence compression may improve performance in cross-document field.

5 Analysis

To further analyze our Coref-CS model, we conduct the comparative experi-
ments under two different settings, one is ablation experiments, and the other is
experiments of different sentence compression strategies.

5.1 Ablation Study

To justify the effectiveness of the sentence compression mechanism and the inter-
action mechanism, we performed ablation experiments on KBP 2016 and KBP
2017 datasets. Table 3 shows the results of several ablation experiments.

The results show that, when deleting the sentence compression mechanism,
i.e., the input of the model only has event sentences, the AVGs on KBP 2016
and KBP 2017 datasets are reduced by 1.3 and 1.46, respectively. This justifies
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Table 3. Performance comparison on different modules.

KBP 2016 KBP 2017

System MUC B3 BLANC CEAFe AVG MUC B3 BLANC CEAFe AVG

Coref-CS 39.50 48.52 39.40 45.90 43.41 47.15 46.34 40.91 39.95 43.59

-Compress 37.16 50.00 39.63 41.63 42.11 43.1 47.62 40.7 37.11 42.13

-Interaction 38.83 49.28 39.71 42.76 42.65 45.01 47.61 41.36 38.09 43.02

that the sentence compression mechanism plays an important role in reducing
data noise since less interference from noisy data is helpful to distinguish whether
two events are coreferent or not more accurately. Additionally, when deleting the
interaction mechanism, i.e., the input of the model is only compressed sentence
pairs, the AVGs on KBP 2016 and KBP 2017 datasets are reduced by 0.76 and
0.57, respectively. This indicates that the interaction mechanism can effectively
help the compressed sentence to expand useful information.

5.2 Analysis on Different Compression Strategies

To prove the effectiveness of our sentence compression mechanism, we also con-
duct comparative experiments on different sentence compression strategies on
KBP 2016 and KBP 2017 datasets. We reproduced the state-of-the-art compres-
sion model SCAR proposed by Malireddy et al. [11] and sent its results to our
Coref-CS. The result comparison is shown in Table 4. The results show that our
ESCA-based event coreference resolution outperforms the SCAR-based model
in all four metrics and AVG.

Table 4. Comparison on different compress strategy.

KBP 2016 KBP 2017

System MUC B3 BLANC CEAFe AVG MUC B3 BLANC CEAFe AVG

ESCA 39.50 48.82 39.40 45.90 43.41 47.15 46.34 40.91 39.95 43.59

SCAR 37.47 48.27 38.32 40.89 41.24 42.50 46.12 39.76 37.27 41.41

The SCAR model mainly trains the model by controlling the ratio of com-
pressed sentences to original event sentences. In their experiments, this ratio is
set to 0.4, which makes the ratio of SCAR compressed event sentences to com-
pressed sentences stable. However, due to the variability of the argument number
in each event in the event coreference resolution task, it is not suitable to use
the ratio of compressed and original event sentences to control the compression
of sentences, especially when we want to obtain the compressed sentences con-
taining only event-related information. In addition, although the SCAR model is
designed to compress important information in original sentences, SCAR can’t
treat different triggers differently when the original event sentence contains trig-
gers of multiple events, which makes the compressed sentence mixed with other
events. Therefore, it can’t reduce noise effectively.
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5.3 Case Study

In this subsection, we give a few examples to analyze the effectiveness of our
sentence compression mechanism and interaction mechanism.

Using our ESCA, the two original event sentences S1 and S2 in Sect. 1 are
compressed as S5 and S6 as follows when the two event triggers are “capture”
and “arrested”, respectively. Since the triggers “capture” and “arrested” in those
two compressed sentences S5 and S6 have similar meanings and these two sen-
tences have the same words “Jamaican” and “he/him”, Coref-CS is relatively
easy to identify them as coreferent. If we use SCAR to compress S1 and S2, the
compressed sentences are S7 and S8. Obviously, the two compressed sentences S7
and S8 are mixed with other trigger words (e.g., “extradite” and “imprisoned”)
and arguments (e.g., “Al Jazeera” and “US” ), and the difference from the origi-
nal sentences is only the reduction of word numbers. This is because SCAR can’t
accurately distinguish the importance of different triggers in different events, and
treat them all as important information.

S5: Jamaican government capture him.
S6: he was arrested by Jamaican police.
S7: US capture and extradite him Jamaica arrested and imprisoned .
S8: Al Jazeera put out make a claim US has arrested anyone imprisoned

Jamaican police extradited .
The interaction mechanism is also useful in our event coreference resolution

model. For example, the event sentences S9 and S10 are compressed as S11 and
S12, respectively, using our ESCA. Obviously, the important argument informa-
tion “Red Cross” is lost in S12 and the information of two compressed sentences
is unbalanced. In this case, only using two compressed sentences to capture their
common features is unfavorable to recognize their coreferent relation. Therefore,
our model uses the interaction mechanism of event sentences and compressed
sentences, the argument information “Red Cross” is added to the compressed
sentence S12 from its original event sentence, which makes the model accurately
judge this event mention pairs as coreferent.

S9: also the donation is to the American Red Cross even though the Philip-
pines has it own Red Cross organization

S10: donate to the Red Cross
S11: donation to the American Red own organization
S12: donate

6 Conclusions

This paper proposed an event sentence compression mechanism and an inter-
action mechanism to improve the performance of event coreference resolu-
tion. Firstly, the compressed sentences containing event-related information are
obtained by sentence compression, and then the interaction mechanism is used
to supplement event sentences and compressed sentences to recover the missing
information, hence improving the performance of event coreference resolution.
Experimental results on both the KBP 2016 and KBP 2017 datasets show that
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our proposed model Coref-CS outperforms several state-of-the-art baselines. Our
future work will focus on how to extend our model to the field of cross-document
or cross-language event coreference resolution due to the limitation of our work
only in document level and monolingual event coreference resolution.
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Abstract. Entity alignment aims to align entities referring to the same
identity in the real world across different Knowledge Graphs (KGs),
which is a fundamental task of KG construction and KG fusion. Recent
works focus on embedding-based approaches. With the pre-aligned entity
pairs, these approaches mainly embed entities based on relation triples
to capture structural information and then try to refine the entity
embeddings by self-characteristics contained in attribute triples. How-
ever, insufficient training data, diverse expressions of attributes, and
different importance between self-characteristics and structural informa-
tion in different KGs are three obstacles to entity embedding. In order
to tackle these problems, we propose a novel Bootstrapping Relation-
aware model for Cross-lingual Entity Alignment using both relation
triples and attribute triples of KGs (BRCEA). Firstly, given the base
prior alignments, it separately embeds entities from two aspects, namely
self-characteristics and structural information. Then, bootstrapping com-
ponent discovers two sets of new alignments. Finally, the two sets will
be used to construct new training data for the next iteration to over-
come the sparsity of training data. We performed our model on several
real-world datasets, and the results show that our model outperforms
the state-of-art models for cross-lingual entity alignment.

Keywords: Cross-lingual entity alignment · BRCEA · RDGCN ·
GCN-Align · Bootstrap

1 Introduction

Inspired by the Semantic Web, Google puts forward the concept of KG, which
is used to improve the search quality of search engines and increase the search
experience of users. As of today, researchers have built various KGs in medicine,
education, e-commerce, and many other fields, in order to take full advantage
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of KGs in recommendation, question answering, and information retrieval [1],
promoting artificial intelligence to leap from perceptual intelligence to cognitive
intelligence.

Various KGs store rich real-world facts in structured forms including relation
triple (Tr) and attribute triple (Ta). Different KGs cover complementary facts
of various domains from different data sources and using different languages,
which makes it necessary but challenging to bridge the language gap and inte-
grate multiple KGs. Therefore, the cross-lingual entity alignment is designed to
automatically align entities that refer to the same real-world facts in cross-lingual
KGs.

Cross-lingual entity alignment is a fundamental task of KG construction and
KG fusion, which has been dominated by embedding-based approaches, which
embed entities and then directly compute the entity similarities based on the
embeddings. Among them, translation-based models [3–6] are the most popu-
lar. For example, given pre-alignments, JAPE [2] applies TransE [3] on Tr to
translate head entity h to tail entity t by relationship r through h + r ≈ t,
and utilizes attribute correlations on Ta to refine embeddings. Translation-based
models are easy to implement and train, but difficult to handle complex rela-
tionships. Simultaneously, graph-based methods have been proposed and can
achieve promising performance, which points a new and promising way for entity
alignment. GCN-Align [7] trains Graph Convolutional Networks (GCNs) [8] to
learn entity embeddings into a unified vector space. However, since spectrum-
based GCN can only deal with undirected graphs with a single relationship,
GCN-Align is also unable to properly model Tr. To model multi-relation graphs,
Relational Graph Convolutional Networks (R-GCNs) [10] employs an adjacent
matrix for every relationship, resulting in difficult training for excessive parame-
ters. Relation-aware Dual-Graph Convolutional Network (RDGCN) [11], adopts
convolution operations between the primal entity graph and its dual relation
graph [12] interactively to learn entity embeddings and edge embeddings, but it
ignores Ta and still suffers from the lack of labeled training data. In conclusion,
there are three main problems for entity alignment:

– The self-characteristics (i.e. attribute information) of entities is complex
because cross-lingual KGs usually have different attribute value expressions
in data structure and granularity. For examples, a distance can be described
as “2 km” or “1.23mi”, and a birthday can be described as “1997.09.10” or
“97-9-10”.

– The multi-relation of structure triples makes it hard to model structural infor-
mation properly.

– Insufficient pre-aligned entity pairs make supervised models lack training
data.

To solve the above challenges, we propose a Bootstrapping Relation-aware
Cross-lingual Entity Alignment model (BRCEA) using both relation triples and
attribute triples. The main contributions of our model are as follows:

– We propose a cross-lingual entity embedding model, which embeds entities
from structural information and self-characteristic independently. It employs
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improved GCN-Align to capture the self-characteristics of entities. Consider-
ing complex multiple-relations, it employs the RDGCN component to capture
relation-aware structural information.

– We propose a semi-supervised framework to do entity alignments. It employs
a bootstrapping component to generate two sets of discovered alignments
respectively. Then, we utilize them to retrain entity embedding components
in the next iteration.

– We evaluated our model on real-world cross-lingual datasets. Experi-
ments reveal that BRCEA yields better performance over the state-of-art
embedding-based models.

The rest of this paper is organized as follows. Section 2 discuss some related
works. Section 3 states the problem definition and describes our approach in
detail. Section 4 and Sect. 5 reports experimental results. Finally, we conclude
this paper with future work in Sect. 6.

2 Related Work

2.1 KG Embedding

Knowledge graph embedding is to embed components of a KG including entities
and relations into a continuous vector space, which has gained massive attention
in a variety of downstream tasks such as relation extraction and KG completion.
TransE [3] interprets a relation as the translation from its head entity to its tail
entity. TransE is feasible to model 1-to-1 relations but difficult to model com-
plex relations. To improve TransE, researchers proposed TransH, TransR, and
TransD, which can better model complex relations to some extent. Additionally,
researchers are trying GCN-based models [10,12] to embed KGs.

2.2 Graph Convolutional Network

Since Convolutional Neural Network (CNN) can only process Euclidean spa-
tial data, graph convolutional neural network (GCN) was proposed to deal with
non-Euclidean spatial data, such as graph data, which GCNs can be categorized
into the spectral-based methods and the spatial-based methods [14]. Based on
GCNs, many works [8,9] have gained promising achievements. GCN-Align [7]
first applied spectral GCN to KG embedding, which can only deal with undi-
rected one-relationship KG because spectral GCN requires the normalized graph
Laplace operator to be a symmetric positive semi-definite matrix. In order to
properly model multi-relation KGs, R-GCN [10] employs an adjacent matrix for
each relationship, but it is hard to be trained for its excessive parameters.

RDGCN [11] discussed in Sect. 1 introduces dual-graph to learn multi-relation
KG embedding. The primal graph is generated by putting G1 and G2 together,
where the vertex set and edge set are the unions of all entities and edges in
G1 and G2 respectively, and its dual graph is generated as: 1) each relation in
G1 and G2 is mapped to a vertex; 2) there is an edge between i-th vertex and
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j-th vertex if ri and rj share the same head or tail entity. RDGCN adds two
dual-attention-layer-primal-attention-layer before GCN-Align so as to capture
complex structural information.

Inspired by the above GCNs, our approach models the attribute information
by the improved GCN-Align and models the structural information by RDGCN.

2.3 Cross-Lingual Entity Alignment

Here we introduce the state-of-art Entity Alignment models most related to ours,
and discuss the main drawbacks below:

JAPE [2] follows TransE and attribute correlation to embed entities in two
KGs into the same vector space. It suffers from insufficient pre-alignments and
poor ability of modeling complex relations.

GCN-Align [7] follows GCNs to embed both structural information and
attribute information independently, and get final embeddings by giving dif-
ferent important ratios to two entity embeddings sets. The drawback is that it
can’t properly model multi-relation KGs and also suffers from insufficient pre-
alignments.

RDGCN [11] only takes advantage of structural information and ignores
attribute information. It introduces a relation-aware dual-graph to capture
attribute information and adopts convolution operations between the primal
entity graph and its dual relation graph interactively to learn entity embeddings
and edge embeddings respectively. And it still suffers from insufficient training
data.

BootEA [13] proposes a bootstrapping approach to embedding-based entity
alignment, which uses TransE to embed entities and bootstrapping to enrich
the pre-alignments. During the bootstrapping process, it proposed alignment
editing to reduce labeling errors. The drawback is that BootEA ignores attribute
information.

3 Our Approach: BRCEA

In the beginning, we state the formulation of cross-lingual entity alignment. After
that, we give a brief introduction to the framework of the proposed model. Then
we detail the components of BRCEA.

3.1 Problem Formulation

Formally, we represent two cross-lingual KGs as G1 and G2. Let E1 be the entity
set of G1 and E2 be the entity set of G2. Cross-lingual entity alignment aims
to find entity pairs A = {(e1, e2) ∈ E1 × E2|e1 ∼R e2}, where an equivalence
relation ∼R hold between e1 and e2. In this case, we collect a subset pre-aligned
entity pairs P of A as ‘Base Alignments’. Our approach it designed to align the
rest unaligned entities of A. To be clear, our model is based on the so-called
one-to-one entity alignment hypothesis [13] that one entity in G1 can be aligned
only one entity in G2.
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3.2 Overview

Fig. 1. Framework of the BRCT

Our approach aims to encode entities of Cross-lingual KGs into a unified embed-
ding space where the latent aligned entities are expected to be close. We assume
that: 1) equivalent entities tend to have similar attributes. 2) an entity is influ-
enced by its related entities, the so-called neighborhood. The framework of our
proposed approach is shown in Fig. 1. Given KG1 and KG2 with Tr, Ta and
pre-alignments P . Firstly, training data includes Base Training Data (BTD) and
Discovered Training Data (DTD). We sample negative relation triples based on
training data. Secondly, in each training iteration, we learn entity embeddings Es

and Ea from the structure component (i.e. RDGCN) and attribute component
independently. Thirdly, the bootstrapping component discovers new attribute
and structure alignments Ds and Da, which are used to construct DTD of the
next iteration. In our model, we co-train attribute and structure components to
learn entity embeddings from two views, and we use bootstrapping to discover
new alignments to overcome the sparsity of training data.

3.3 Training Data Construction

Training data construction contains training data completing and negative sam-
pling. We take the given pre-alignments P for BTD. The DTD is initialized
empty at the first iteration and will be updated in each iteration. Both BTD
and DTD contain attribute and structure information. The complete training
data is obtained by add BTD and DTD. After that, we only do negative sam-
pling from relation triples. Based on the complete training data, given a rela-
tion triple (h, r, t) ∈ T+

s , negative sampling is to replace either h or r with an
arbitrary entity [3], where T+

s represents positive samples of Tr. Our approach
adopts ε-truncated uniform negative sampling idea. To replace entity x where
(h, r, x) ∈ T+

s , we rule out x2 where (h, r, x2) ∈ T+
s as a negative sample firstly.

Then, we calculate entity similarity by Manhattan distance and choose the first
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k similar entities as candidates, where k = �(1 − ε)N�, N is the number of enti-
ties in the KG. In this way, we only sample k entities having high similarities
with x as negative samples.

3.4 Attribute Embedding

As mentioned in Sect. 1, attribute information is complex. To avoid introducing
excessive noise, we simplify attribute triples to Tr = 〈e, a〉, where e, a represent
entity, attribute name respectively.Inspired by researcher GCN-Align [7], we use
2-layer GCNs to generate entity embeddings. Let H represent the attribute fea-
ture matrices of all entities, the convolutional computation is defined as:

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2 [H(l)W (l)]) (1)

where σ is an activation function, ReLU(x) = max(0, x); A ∈ Rn×n is an
adjacency matrix of the whole graph; W (l) is the weight matrices for attribute
features in the l-th layer of GCN. To improve the ability of modeling attribute
information in multi-relation graph, we design a new way to compute the adja-
cency matrix A of a KG so that aij ∈ A indicates the extent of alignment
information propagated from the i-th entity to j-th entity. Considering a rela-
tion triple (ei, rk, ej) where rk is a common relation that most entities have, we
design an inverse relation functionality to lower the excessive influence, for each
relation:

irfunc(r) =
#Triples of r

1 + #Relations of belongedKG
(2)

where #Triples of r is the number of triples of relation r and #Relations of
belongedKG is the number of relations of KG to which relation r belongs. Along
with fun and ifun [7], aij ∈ A can be computed as:

aij =
∑

〈ei,r,ej〉∈G

ifun(r) × irfunc(r) +
∑

〈ej ,r,ei〉∈G

fun(r) × irfunc(r) (3)

In this way, we reduce the propagation weight through universal relations and
raise the propagation weight through universal relations, which enhances the
importance of the special relationship.

3.5 Bootstrapping

As an implementation of semi-supervised learning, the bootstrapping component
discovers new alignments and adds them to the BTD to overcome the sparsity
of training data. The brief procedure is shown in picture 1. Given an entity
embedding set E, our bootstrapping method firstly computes entity similarities
called sim mat using Manhattan distance. Then sim mat is filtered by threshold
th to ignore the possibility of aligning entities with similarity below th and choose
the topK similar entities as candidates for each entity. After that, we construct
a graph, of which nodes represent entities from KG1 and KG2 and edges with
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weight represent aligned possibility and conduct we conduct Maximum Matching
Algorithm on it to get the final aligned graph. Finally, to avoid semantic drift
and iteration conflicts of new alignments, we employ error-correction mechanism
in BootEA to editing alignments and obtain the final discovered alignments Ds

and Da.
The DTD is generated by method Algorithm 1, where λs and λa are constants

used to strengthen the information discovered by the other model.

Algorithm 1. DTD Generation method
1: procedure DTD Generation(Ds, Da)
2: Pures ← Ds − Ds ∩ Da, Purea ← Da − Ds ∩ Da

3: DTDa ← Da + λs × Pures, DTDs ← Ds + λa × Purea
4: return DTDs, DTDa

5: end procedure

3.6 Alignment Prediction

For alignment prediction, the distance of entities is computed as:

D(e1, e2) = β
d(es1, es2)

ds
+ (1 − β)

d(ea1, ea2)
da

(4)

where d(x,y) = ‖x−y‖; ea and eb denote the attribute embedding and structure
embedding of an entity; ds and da are dimensions of two entities embeddings; β
is a hyper-parameter to balance the importance between attribute component
and structure component.

3.7 Training

For training, we employ margin-based scoring functions as the training objec-
tives:

La =
∑

(e1,e2)∈P

∑

(e′
1,e

′
2)∈P ′

[γa + d(ea1, ea2) − d(e′a
2 , e′a

2 )]+ (5)

Ls =
∑

(e1,e2)∈P

∑

(e′
1,e

′
2)∈P ′

[γb + d(es1, es2) − d(e′s
2 , e′s

2 )]+ (6)

where [x]+ = max{0, x}; P ′ denotes negative samples; γa and γb are margin
hyper-parameters.

4 Experiments

We developed our model, called BRCEA, using TensorFlow. Our experiments
were conducted on a server with Intel Xeon E5-2620 2.1 GHz CPU, an NVIDIA
GeForce GTX 1080 Ti GPU, and 32 GB memory.
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4.1 Datasets

We evaluate BRCEA on three large-scale cross-lingual datasets. The datasets
are built upon DBpedia [2], a large-scale multi-lingual KG containing rich inter-
language links between different language versions, containing English, Chinese,
Japanese and French versions. Each dataset contains two KGs in different lan-
guages and 15 thousand equivalent entity pairs. The statistical details are listed
in Table 1. We regard the inner-language links as the gold standard of entity
alignment for model training and testing.

Table 1. Details of the datasets

Datasets Entities Relations Attributes Rel.triples Attr.triples

DBP15KZH−EN Chinese 66,469 2,830 8,113 153,929 379,684

English 98,125 2,317 7,173 237,674 567,755

DBP15KJA−EN Japanese 65,744 2,043 5,882 164,373 354,619

English 95,680 2,096 6,066 233,319 497,230

DBP15KFR−EN French 66,858 1,379 4,547 192,197 528,665

English 105,889 2,209 6,422 278,590 576,543

4.2 Experiment Settings

For comparison, we choose 4 state-of-art embedding-based approaches discussed
in Sect. 2: JAPE [2], GCN-Align [7], RDGCN [11] and BootEA [13], where
the RDGCN achieves the best performance on DBP15K. To evaluate differ-
ent components of our model, we also provide two implementation variant of
BRCEA for ablation studies, including (1) im-GCN-Align-a: an improved app-
roach GCN-Align without structure embedding; (1) BRCEA-s: an approach
without attribute component; (2) BRCEA-a: an approach without structure
component; (3) RCEA: an approach without bootstrapping component.

The hyper-parameters of BRCEA were as below: λa, λs = 1, 0; γa, γs =
1.0, 3.0; εa, εs = 0.98, 0.99 ds = da = 300; tha, ths = 0.9, 0.3; topKa = topKs =
40; β = 0.5, 0.6, 0.9 when modeling zh-en, ja-en, fr-en datasets.

For convenience, we use Hits@k as our metrics that are scores measuring the
percentage of correctly aligned entities ranked at top k.

5 Results

5.1 Main Results

We randomly choose 30% alignments as base training data and 70% alignments
for evaluating cross-lingual entity alignments performance. Table 2 shows the
cross-lingual entity alignment results of BRCEA models comparing to the other
embedding-based models and ablations on DBP15K. Note that numbers in bold
indicate the best performance.
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Table 2. Entity alignment results on DBP15k

Models ZH − EN JA − EN FR − EN

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

JAPE 41.18 74.46 36.25 68.50 32.39 66.68

GCN-Align-a 11.79 36.42 6.76 24.99 4.13 18.41

GCN-Align 41.25 74.38 39.91 74.46 37.29 74.49

RDGCN 70.75 84.55 76.74 89.54 88.64 95.72

BootEA 62.94 84.72 62.23 85.39 65.30 87.44

im-GCN-Align-a 26.58 54.90 15.91 41.91 7.16 27.14

BRCEA-s 71.28 85.35 77.91 90.71 88.69 95.99

BRCEA-a 29.94 57.54 23.40 45.36 14.53 36.09

RCEA 71.23 84.76 76.65 89.87 88.12 95.24

BRCEA 73.58 88.21 78.76 91.57 89.01 96.25

We can see that GCN-based embedding methods outperform Translation-
based methods for it can learn more structure information by conducting weight
propagation from graphs. The performance of our model is 2.83 points higher
than RDGCN in DBPediaZH−EN dataset, 2.02 points higher in DBPediaJA−EN

dataset, and 0.35 points higher in DBPediaFR−EN , because we take advantage of
attribute information and adopt the training method of semi-supervised learning.

5.2 Ablation Studies

GCN-Align-a vs. im-GCN-Align-a. As we can see in Table 2, im-GCN-
Align-a considerably improves GCN-Align-a in all datasets, e.g. over 14.79%
improvement of Hits@1 at DBPediaZH−EN , because we enhance the importance
of the special relationship, which makes the weight matrix more reasonable.

im-GCN-Align-a vs. BRCEA-a. Comparing im-GCN-Align-a and BRCEA-
a, BRCEA-a outperforms im-GCN-Align-s in all datasets, resulting in a 5.97%
increase on Hits@1 on DBPediaZH−EN . As discussed in Sect. 3, bootstrapping
component generates new alignments as training data for attribute component,
which helps attribute component train better.

BRCEA vs. BRCEA-s. Comparing the results of BRCEA and BRCEA-
s, we can see that taking attribute information into consideration helps the
entity alignment task. However, since DBPediaZH−EN dataset contains more
attribute information, BRCEA-s has the best improvement effect on dataset
DBPediaZH−EN , up to 2 points. While on DBPediaFR−EN dataset, the improve-
ment is slight, less than 1 point.

BRCEA vs. RCEA. Comparing the results of BRCEA and RCEA, bootstrap-
ping component also improves the performance by labeling test data as training
data.
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5.3 Sensitivity to Proportion of Prior Alignments

To evaluate BRCEA’s sensitivity to the proportion of base training data, we
vary the proportion in 10%, 20%, 30%, and 40%, and the results of RDGCN
and BRCEA on three real-world datasets are illustrated in Fig. 2. As we can
see, when only using 10% pre-alignments as base training data, our model still
achieved promising results. To be noticed, the largest gap of model performance
appears when the proportion is 10% and the dataset is DBPediaZH−EN , as
much as 4.81%. According to the three slopes in Fig. 2, our model, BRCEA, is
less sensitive to the proportion of base training data. Our model has a distinct
advantage over RDGCN with limited pre-alignments.

(a) ZH-EN (b) JA-EN (c) FR-EN

Fig. 2. Hits@k w.r.t. proportion of prior alignments. The x-axes are the proportions
of pre-alignments, and the y-axes are Hit@1 scores.

6 Conclusion and Future Work

This paper introduces a novel Bootstrapping Relation-aware Entity Alignment
over cross-lingual KGs. Our approach is designed to embed entities based on
both structure and attribute triples. We evaluate our model on three real-world
datasets, and results demonstrated that BRCEA outperforms the state-of-art
methods, especially with less training data.

In future work, we look forward to improving our model in several aspects.
First, the attribute component can be improved by adding attribute values to
model self-characteristics of entities. Second, for entity alignment, we are going to
employ a bivariate regression model to learn the respective weight of similarities
measuring from the two aspects for a result combination.

Acknowledgments. This work is supported by Beijing Municipal Commission of
Education (Co-constructing Program).
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Abstract. Extracting relational triples from unstructured text is essen-
tial for the construction of large-scale knowledge graphs, QA and other
downstream tasks. The purpose of dialogue relation extraction is to
extract the relations between entities from the multi-person dialogue
texts. The existing dialogue relation extraction models only focused on
coarse-grained global information and ignored fine-grained local infor-
mation. In this paper, we propose a dialogue relation extraction model
BERT-MG to capture the features on different granularity at different
BERT layers to take advantage of the fine-grained dialogue features.
Moreover, we design a type-confidence mechanism to use the entity
type information to assist relation inference. Experimental results on
the DialogRE dataset prove that our proposed model BERT-MG out-
performs the SOTA baselines.

Keywords: Dialogue relation extraction · Multi-granularity feature ·
Type-confidence

1 Introduction

Relation extraction is an important subtask of information extraction. Its main
goal is to infer the relationship between specified entity pairs based on the text
content. Most of the current researches on relation extraction are based on writ-
ten text [10]. With the increasing number of open dialogue data, relation extrac-
tion based on dialogue text has attracted more and more attention.

Figure 1 shows an example from the DialogRE [13] dataset, in which the text
above the dividing line is a multi-round dialogue. There are two categories of
entities in the dialogue text: each speaker is an entity mention (e.g., Speaker1),
and then there are some entity mentions (e.g., Monica) in the utterances. Part
of the entity relations existing in this text is given below in Fig. 1.

Compared with the relation extraction in written text, the task in dialogue
text has the following challenges. First, the dialogue text has weaker textual
consistency. Since the dialogue text is composed of multiple rounds, the speakers
of different rounds are different too, which will reduce the consistency of the text
between different rounds and make the model more difficult to understand the
meaning of the entire text. Second, the dialogue text is more colloquial. Take the
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 262–274, 2021.
https://doi.org/10.1007/978-3-030-88480-2_21
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Fig. 1. An example from the DialogRE dataset.

last round of the dialogue in Fig. 1 as an example, there are two ‘uh’ between
‘my girlfriend’ and ‘Monica’, which interfere with the model’s judgment of their
relation.

The current dialogue relation extraction models, including the state-of-the-
art models (e.g., AdaPrompt-tuning [1] and GDPNet [12]), focus on extracting
coarse-grained semantic features at the document level to improve the model
performance by promoting the circulation and integration of information in the
full text. However, they ignored the fine-grained features at phrase level. Actu-
ally, the fine-grained features (e.g., trigger words and sentence pattern) can play
an important role in solving the challenge of dialogue relation extraction. First,
these features can provide conducive information to relation classification at
phrase level. For example, the sentence pattern ‘I’m with sb. now.’ provides the
positive evidence for the existence of the relation ‘per:girl/boyfriend’. These trig-
ger words or sentence patterns have a strong correlation with the specific relation
rather than the speaker, so that they can be used as a strong consistency fea-
ture to correct the errors in using coarse-grained features. Second, many studies
have showed the differences between the different BERT layers [3]. For example,
BERT-FiT [8] proved that each BERT layer can capture the different features
of input texts. Jawahar et al. [4] pointed out that BERT mainly captured the
semantic features in higher layers and mainly captured the phrase-level features
in lower layers. The token embeddings at the lower layers often contain more
original meanings of words. Therefore, the fine-grained features at the lower
layer contain more original word meanings, which can reduce the interference of
some meaningless colloquial words.

To address the issue of ignoring the fine-grained features, we propose a dia-
logue relation extraction model BERT-MG (BERT with Multi-Granularity) to
capture the features on multi-granularity. Specially, we first extract the coarse-
grained features in the last layer of BERT, and we then use LSTM to aggregate
the round-level classification features on the basis of BERTS [13]. Secondly, we
introduce TextCNN [15] to aggregate the phrase-level fine-grained features in
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the first layer of BERT, and then we design a local mask mechanism to select
the attention window of TextCNN under different entity categories. Finally, we
aggregate the coarse-grained features and fine-grained features to obtain the
probabilities of relation classification. Meanwhile, we apply a type-confidence
mechanism to make the classification probabilities more reasonable on the entity
type level. Experimental results on the DialogRE dataset prove that our pro-
posed model BERT-MG outperforms the SOTA baselines.

2 Related Work

Entity Relation Extraction in Written Texts. There are a large number of
studies on such field and it is mainly divided into two categories: intra-sentence
and document-level relation extraction. The goal of the former is to infer the
relation between two entities in a single sentence. For example, Multi-turn QA
[7] converted the task into multiple turns of question and answer to use the
prior information of the question; CASREL [10] treated the relation as a map-
ping from subject to object. The latter extends the scope of relation extraction
to long text. For example, EoG [2] proposed a document-level graph with an
iterative algorithm over the graph edges to model intra- and inter-sentence pairs
simultaneously; GEDA [6] proposed a graph-enhanced dual attention mecha-
nism; GAIN [14] utilized a heterogeneous mention-level graph to capture the
document-aware features and used an entity-level graph to optimize the infer-
ence results.

Entity Relation Extraction in Dialogue. There are only a few studies on
dialogue relation extraction. DialogRE [13] annotated dialogue relation extrac-
tion corpus and proposed a new dialogue-based task for entity relation extrac-
tion. BERTS [13] replaced the speakers in the entity pair with special tags for
better relation recognition. SimpleRE [11] proposed a model to take into account
both the speed and performance. GDPNet [12] constructed a multi-view graph to
judge the relation from different perspectives, and then used DTWPool to refine
the graph. AdaPrompt-tuning [1] proposed an effective method to fine-tune the
language model for the dialogue relation extraction task.

3 Methodology

3.1 Problem Definition

Let U = {u1, u2 · · · um} be the dialogue text sequence, where ui represents the
dialogue text of the i-th round and m is the total number of dialogue rounds.
Each round is composed of the speaker and his utterance. The entity categories
include the speaker and the entity mention contained in the speaker’s utterance.
Each entity has an entity type. Given the dialogue text U , an entity pair in the
dialogue text denoted as (E1, E2), and the entity types of the entity pair denoted
as

(
Etype

1 , Etype
2

)
, the goal of dialogue relation extraction is to infer the relation

r between the entity pair (E1, E2).
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Fig. 2. Architecture of our model BERT-MG.

3.2 Architecture

The overall structure of our model BERT-MG is shown in Fig. 2, which con-
sists of four components: the BERT encoder, Coarse-grained Feature Extractor,
Fine-grained Feature Extractor and Classifier. Specially, we use BERT to encode
the text sequence in dialogue. As mentioned in Sect. 1, the fine-grained features
can provide the phrase-level information and the BERT lower layers are more
suitable to represent the fine-grained features, while the coarse-grained features
can provide the document-level information and the BERT higher layers are
more suitable to represent the coarse-grained features. Hence, we then use the
coarse-grained feature extractor and the fine-grained feature extractor to extract
the coarse-grained and fine-grained features from the last layer and the first
layer of BERT, respectively. Finally, BERT-MG integrates the coarse-grained
features with the fine-grained features and uses FNN (Feedforward Neural Net-
work) and sigmoid function to perform multi-label classification. In addition, a
type-confidence mechanism is used to optimize classification results using entity
type information.

3.3 BERT Encoder

The token sequence “[cls] U [sep1] E1 [sep2] E2 [sep3]” is encoded by BERT
firstly. To allow our BERT-MG to do better in recognizing the speaker in the
entity pair, we adopt the token input form used by BERTS. That is, for the dia-
logue text U and the entity pair (E1, E2), if E1 (or E2) is a speaker, we replace all
E1 (or E2) in the token sequence with [unused1] (or [unused2]), where [unused1]



266 Q. Wang and P. Li

and [unused2] are two special marks in BERT. If the entity is an entity mention
(not a speaker), we keep the original entity text unchanged. The output of the
last layer is used as the input of the coarse-grained feature extractor, and we take
the output of the first layer as the input of the fine-grained feature extractor.

3.4 Coarse-Grained Feature Extractor

The coarse-grained features are divided into two parts. In the first part, since
Kovaleva er al. [5] shows that [cls] and [sep] in BERT have large self-attention
weights in the output of the last layer, our BERT-MG uses the conventional
classification feature [cls] and the separators [sep1] and [sep3] as the coarse-
grained features of the full text. In the second part, since the dialogue text is
composed of multiple rounds, the content of each round is relatively independent.
To aggregate information from the round level, our BERT-MG averages the
representation of each round, and marks the average representation obtained
as H12

i , where i is the corresponding round and 12 is the number of the last
layer of the BERT. In order to model the order of the rounds, LSTM is used to
aggregate the round-level coarse-grained features, denoted as Hl . The coarse-
grained features of the model are obtained by splicing these two parts, denoted
as Hc . The formula for obtaining Hl and Hc is as follows:

Hl = LSTM(H12
1 ,H12

2 , · · · ,H12
m ) (1)

Hc = X12
cls ⊕ X12

sep1 ⊕ X12
sep3 ⊕ Hl (2)

where H12
1 to H12

m are the average representations from round 1 to round m,
and X12

cls , X
12
sep1 and X12

sep3 are the representations of [cls], [sep1] and [sep3].
⊕ is the concatenation operation.

3.5 Fine-Grained Feature Extractor

Although the dialogue text is long, only parts of the rounds in the text may
be related to a specific entity-pair relation. If we extract the fine-grained fea-
tures on the entire dialogue text, many interference features will be introduced
to our model. To filter out the interference features, we use a local mask mech-
anism to select the fine-grained window. The local mask mechanism aims to
delete rounds with low probability of having information that is conducive to
relation classification based on the characteristics of the dialogue information
distribution. According to the different entity categories, the local mask mecha-
nism is divided into three modes: speaker-speaker pair, speaker-entity pair, and
entity-entity pair. In this paper, mask means to retain information.

Speaker-Speaker Pair. As showed in Fig. 1, if the two entities are both speak-
ers, such as inferring the relation between Speaker1 and Speaker2, information
related to the relation between the two speakers is often distributed in the full
text. Hence, in this case, we mask the full text as follows:

M i
s−s =

{
1, 1 ≤ i ≤ L
0, L < i ≤ 512 (3)
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where i is the position number of the token. L is the sequence length from [cls]
to [sep3] and it represents the length of the valid part of the token sequence.

Speaker-Entity Pair. If one entity is a speaker and the other entity is an entity
mention, we need to find the speaker’s attention window for the entity mention.
In the dialogue text, when two adjacent utterances of the speaker surround the
entity mention, the dialogue round between the two utterances often contains
information that is conducive to relation inference. For example, as shown in
Fig. 1, round 2 and round 4 are the two adjacent utterances of the ‘speaker2’
surround the ‘actor’. We can infer from the rounds between the 2nd and 4th
rounds that the relation between ‘Speaker2’ and ‘actor’ is ‘per:title’. Therefore,
the local mask mechanism should mask these intermediate rounds as follows:

head =
{

max(U(1,uem−1) ∩ Us) , U(1,uem−1) ∩ Us �= ∅

uem , U(1,uem−1) ∩ Us = ∅
(4)

tail =
{

min(U(uem+1,m) ∩ Us) , U(uem+1,m) ∩ Us �= ∅

uem , U(uem+1,m) ∩ Us = ∅
(5)

M i
s−em =

{
1, head ≤ ui ≤ tail
0, ui < head or ui > tail

(6)

where uem is the round of the entity mention which is closest to the speaker’s
utterance. Us is the set of rounds of the speaker’s utterances. U(a,b) is the set of
rounds between the round a and round b. ui is the round of the i-th token. m is
the total number of rounds of the dialogue text. max(U) and min(U) represent
the function of taking the largest and smallest elements in the set U , respectively.

Entity-Entity Pair. If both entities are entity mentions, such as inferring the
relation between ‘my girlfriend’ and ‘Monica’ in Fig. 1, we mask the rounds
between the farthest rounds of the two entities as follows:

head = min(Uem
1 ∪ Uem

2 ) (7)

tail = max(Uem
1 ∪ Uem

2 ) (8)

M i
em−em =

{
1, head ≤ ui ≤ tail
0, ui < head or ui > tail

(9)

where Uem
1 and Uem

2 represent the set of rounds containing E1 and E2, respec-
tively.

We use TextCNN to capture the fine-grained features in the first layer of
BERT. TextCNN can capture the n-gram grammatical features, which are the
useful sentence pattern features described in Sect. 1. The TextCNN in our model
uses four types of the windows in different sizes, each with multiple channels, to
obtain different views. After the maximum pooling of each channel, it integrates
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the features in different windows as the fine-grained features, denoted as Hf as
follows:

H1
i = M iX1

i (10)

cih = f(WH1
i:i+h−1 + b) (11)

ch = MaxPooling([c1h , c2h , · · · , cL−h+1
h ]) (12)

Hf = c1 ⊕ c2 ⊕ · · · ⊕ cN (13)

where X1
i ∈ R

d is the representation of the i-th token in the first layer of BERT.
M i ∈ {M i

s−s,M
i
s−em,M i

em−em} is the local mask. h is the size of the window.
f() denotes the ReLU activation function. W ∈ R

k×dh is a trainable parameter
where k is the number of channels and dh = d×h. H1

i:i+h−1 ∈ R
dh is the splicing

embedding from H1
i to H1

i+h−1. b ∈ R
k is a bias vector. MaxPooling() is the

max-pooling function which can select the largest element of each channel. L is
the number of the tokens which is 512 in BERT. N is the number of windows.

3.6 Classifier

After concatenating the coarse-grained and fine-grained features, the probability
value of each relation can be obtained through the Feedforward Neural Network
(FNN) and the sigmoid function as follows:

Pbert = sigmoid(FNN(Hc ⊕ Hf )) (14)

where the composition form of Pbert is Pbert = [P1, P2, · · · , Prn], and rn is the
number of relation categories.

Many relations have certain restrictions on the entity type of the head and
tail entities. For example, the ‘per:girl/boyfriend’ relation restricts the head and
tail entities must be of the ‘PER’ type, so the entity type information can be
used to improve the accuracy of the relation classification. Inspired by knowledge
graph representation learning [9], we design a type-confidence mechanism, which
can use the entity type information to assist relation inference.

Each pair of entities and the correct relation between them can form a pos-
itive type triple, denoted as (h, r, t) where h and t are the head entity and the
tail entity, respectively, and r is their relation category. We assign randomly
initialized embedding to each entity type and relation. The embedding of the
relation is divided into two parts: the relation for head entity and the relation
for tail entity. We design the following scheme to calculate the triplet score and
type-confidence:

score (h, r, t) = rTh h + rTt t (15)

confidence = sigmoid(score) (16)
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where rh , h, rt , t respectively represent the embedding of the relation for head
entity, head entity type, the relation for tail entity, and tail entity type.

We randomly replace the r in each positive type triple (h, r, t) with a relation
r′ that does not exist between the entity pairs, thereby generating a negative type
triple (h, r′, t). The following loss function is used to train the type embedding
and relation embedding.

Lt = −logσ(score(h, r, t) − γ) − logσ(−score(h, r′, t) − γ) (17)

where σ is the sigmoid function. γ is a hyperparameter.
For each pair of pre-classified entities, we calculate the confidence of all rela-

tions. Then integrate the confidence and multiply it with Pbert to get the final
probability of each relation:

Ptype = [confidence(h, r1, t), · · · , confidence(h, rrn, t)] (18)

P = Pbert ∗ Ptype (19)

We use the following loss function to optimize the model:

L = − 1
n

∑
i∈N [ti ∗ lnpi+

(
1 − ti

) ∗ ln
(
1 − pi

)
] (20)

where N is all relation categories, and n is the total number of relation categories.
ti is a binary value. When the relation i is a correct relation, ti is equal to 1,
otherwise it is equal to 0. pi is the probability of the relation i.

4 Experimentation

4.1 Experimental Settings

We evaluate our model on DialogRE [13], the first human-annotated dialogue-
based relation extraction dataset. This dataset defines 37 entity relations, includ-
ing 36 relation categories and an ‘unanswerable’ relation that indicates that there
is no relation between entity pairs. The dataset consists of 1788 dialogue texts,
with a total of 10168 entity-relation triples and is divided into training set, val-
idation (development) set, and test set according to the ratio of 60%, 20%, and
20%.

Same as DialogRE, our BERT-MG uses F1 and F1c [2] as evaluation metrics.
F1 is used to evaluate the model’s ability to infer entity relations when the entire
dialogue text is known. F1c is used to evaluate the performance of the model
when only part of the dialogue text is known.

We use PyTorch framework and conduct our experiments with 1 NVIDIA
TITAN Xp GPU. We set a learning rate of 3e-5 for BERT, and a learning
rate of 1e-4 for LSTM, TextCNN, and type embedding. We use Adam as the
optimization function. The hidden layer dimension of LSTM is set to 500. The
window size of TextCNN is set to [2–5], and the number of channels in each
window is set to 100. γ in Lt is set to 15. The dimension of the embedding of
entity type and relation is 500.
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4.2 Experimental Results

We use six models as baseline models, including the three basic models in Dialo-
gRE: LSTM [13], BERT [13], BERTS [13] and the three state-of-the-art mod-
els GDPNet [12], SimpleRE [11] and AdaPrompt-tuning [1]. The experimental
results are showed in Table 1 on both the development and test set. BERTS has
the best performance among the three basic models in [13]. The text input of
BERT-MG is the same as that of BERTS. Compared with BERTS, BERT-MG
has improved the F1 and F1c scores by 6.3 and 5.5 on the development set, and
7.9 and 6.6 on the test set, respectively. This shows that BERT-MG can effec-
tively extract both the coarse-grained features and fine-grained features and then
improve the performance of dialogue relation extraction.

Table 1. Performance comparison of six baselines and our BERT-MG on DialogRE
(- indicates that those baselines did not report the performance on the corresponding
metric).

Model Dev Test

F1 F1c F1 F1c

LSTM 46.7 44.2 47.4 44.9

BERT 60.6 55.4 58.5 53.2

BERTS 63.0 57.3 61.2 55.4

AdaPrompt-tuning 67.0 - 65.8 -

SimpleRE - - 66.3 -

GDPNet 67.1 61.5 64.9 60.1

Our Model 69.3 62.8 69.1 62

Among all the baselines, SimpleRE achieves the highest F1 score of 66.3 on
the test set, and our model BERT-MG improves it by 2.8. GDPNet achieves the
highest F1 value of 67.1 and F1c scores of 61.5 on the validation set, and the
highest F1c score of 60.1 on the test set. Compared with GDPNet, BERT-MG
improve them by 2.4, 1.3, and 1.9, respectively. We can find that whether it is
the method of modifying the BERT input (SimpleRE), the method based on the
graph (GDPNet) or the method of fine-tuning language models (AdaPrompt-
tuning), all of them are based on coarse-grained features. Our model BERT-MG
surpasses all the state-of-the-art models that based on the coarse-grained fea-
tures and this indicates that the fine-grained features allow the model to obtain
more valuable classification information from the local area, thereby making the
classification more accurate.

Figure 3 shows an example of the relation inference error in BERTS. For
the entity pair (Speaker6, Scott), intuitively, through the text ‘Speaker6: I’m
Scott.’ of the third-to-last round, the model should easily infer that the relation
between this entity pair is ‘per:alternate names’. However, too many speakers
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Fig. 3. An example of the relation inference error of the BERTS model.

and dialogue rounds lead to poor text consistency. Personal pronouns in the
dialogue interfere with the model’s judgment of the speaker. Finally, the relation
that BERTS infers is ‘unanswerable’, that is, there is no relation between the
entity pairs. However, BERT-MG can obtain the third-to-last round through
the local mask, and then use TextCNN to capture sentence-level features. The
sentence pattern level feature in this example is ‘I’m Scott.’, which provides
positive information for the relation ‘per:alternate names’. Finally, BERT-MG
can successfully infer the relation between the entity pair.

4.3 Ablation Study

We conduct a series of ablation studies to evaluate the value of different com-
ponents and the results are showed in Table 2. From Table 2, we can find that
the performance of BERT-MG drops by 1.1–2.1 after removing the LSTM (w/o
LSTM). The reason is that LSTM can sequentially integrate the information
between dialogue rounds, which is helpful for the model to understand the overall
dialogue semantics. If BERT-MG removes the fine-grained features (w/o Fine-
grained Features), the F1 and F1c scores on the validation set drop by 2.3 and
1.4, and those on the test set drop by 3.9 and 2.7, respectively. This indicates
that the fine-grained features captured by TextCNN can capture phrase-level
features and are effective in dialogue relation extraction. In addition, we con-
duct a study that does not use local masks (w/o Local Mask), that is, allows
TextCNN to extract fine-grained features in the full text. The results show that
it will reduce the F1 scores by 1.6 and 1.2 on the validation set and test set,
respectively. This shows that the local mask mechanism we designed can sim-
ulate the attention window between entity pairs, and the performance of the
fine-grained feature extractor can be effectively improved after the interference
information is filtered out through the attention window.
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Table 2. Performance comparison of BERT-MG and its variants.

Model Dev Test

F1 F1c F1 F1c

BERT-MG 69.3 62.8 69.1 62.0

w/o LSTM −1.6 −2.1 −1.7 −1.1

w/o Fine-grained Features −2.3 −1.4 −3.9 −2.7

w/o Local Mask −1.6 −0.7 −1.2 −0.7

Table 3 shows the performance of the type-confidence mechanism. From
Table 3, we can find that the type-confidence mechanism can improve the preci-
sion (P) by 0.9 and 1.1 on the validation set, and 0.5 and 1.1 on the test set. This
proves that the type-confidence mechanism can correct unreasonable relations
extracted from the model at the entity type level.

Table 3. Performance (Precision) of type-confidence mechanism. The recall rate of the
model remains unchanged, so it is not listed in the table.

Model Dev Test

P(F1) P(F1c) P(F1) P(F1c)

BERT-MG 69.7 71.3 69.5 71.4

w/o type-confidence −0.9 −1.1 −0.5 −1.1

To explore the differences between the BERT layers, we conduct two exper-
iments: 1) feeding the first layer of BERT to the LSTM of the coarse-grained
feature extractor (CF-first); 2) feeding the last layer of BERT to the fine-grained
feature extractor (FF-last). Table 4 shows the results on BERT-MG and its vari-
ants. It can be seen from the results that the performances drop by 0.7-1.5 after
the coarse-grained feature extractor is applied to the first layer, and those drop
by 0.8-1.9 after the fine-grained feature extractor is applied to the last layer.
In addition, through experiments, we find that the performance of fine-grained
feature extraction in the first three layers of Bert is similar, and the performance
begins to decline from the fourth layer. This proves that the lower layer of BERT
contains more phrase-level features and is more suitable to represent the fine-
grained features, and the higher layer of BERT has more semantic features and
is more suitable to represent coarse-grained features. Hence, it is reasonable and
effective to use different modules to capture different granular features.
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Table 4. Performance comparison of BERT-MG, CF-first and FF-last.

Model Dev Test

F1 F1c F1 F1c

BERT-MG 69.3 62.8 69.1 62.0

CF-first −1.1 −0.9 −1.5 −0.7

FF-last −1.7 −1.1 −1.9 −0.8

5 Conclusion

In this paper, we propose a dialogue relation extraction model BERT-MG which
can integrate multi-granularity features in dialogue. Different from those dia-
logue relation extraction models based on coarse-grained features, BERT-MG
extracts the features of different granularity in different layers of BERT, so that
the model can obtain phrase-level information. In addition, we propose a type-
confidence mechanism that uses entity type information to further optimize the
results. Experimental results on the DialogRE dataset show that our BERT-MG
outperforms the strong baselines significantly. In the future, we will focus on
how to infer the relation between entity pairs using only part of the dialogue.
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Abstract. Knowledge graph reasoning aims at solving certain tasks by find-
ing reasoning paths, which has aroused extensive attention. Recently, a solution
for path reasoning that combines reinforcement learning has achieved success-
ful progress. But these researches mainly focus on the agent’s choice of relation
and ignore the importance of entity, which will cause the random selection by
the agent if 1-N/N-N relations occur. Thus, we propose a reinforcement learning
based path reasoning model, which solves this problem from the topological and
semantic levels. First, the attention mechanism is introduced in our model, which
can extract the hidden feature from neighbor entities and helps the policy network
to make a suitable choice instead of random for the actions with the same relation.
Then, we introduce a convolutional neural network into our model to distinguish
the rationality of the path by the semantic feature. To mitigate the negative impact
of terminal rewards, we use a potential-based reward shaping function, which
considers the potential gap between agent states as the reward and without any
pre-training. Finally, we compare our model with the state-of-the-art baselines on
two benchmark datasets, the results of extensive comparison experiments validate
the effectiveness of the proposed method.

Keywords: Knowledge graph reasoning · Reinforcement learning · Attention
mechanism · Reward shaping

1 Introduction

Knowledge graphs (KGs) contain a large amount of real-world knowledge in the form of
triples, which plays an important role in many applications (e.g. question answering [1]
and personalized recommendations [2]). However, the performance ofmany tasks is lim-
ited by the incompleteness and sparseness of the knowledge graph, thus it’s meaningful
to complete the knowledge graph by mining the existing knowledge triples.

Path-based knowledge graph reasoning is the commonly used reasoning method,
which searches many paths from the KG and uses them as features to complete the spe-
cific task. Recently, research on applying reinforcement learning (RL) to path reasoning
has made great progress, and many studies [3, 4] formulate path reasoning as a Markov
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decision process (MDP) [5]. Through the stepwise interaction with the KG environment,
the agent will choose a rational action until the reasoning is completed.

Entity selection is an important part of the path reasoning process. Especially
in the query answering task, the answer entity is always unknown and must be
inferred in the whole reasoning process. Previous researches in RL-based path rea-
soning consider the agent’s action selection as the relation (e.g., DeepPath) or
the relation-entity pair (e.g., MINERVA) selection, which underestimate the impor-
tance of entity selection and result in the random selection by the agent when 1-
N/N-N relation appear during the reasoning process. For example, to answer the
question “What is Obama’s nationality?”, there may be several paths as follows:

Obama
born_in−→ Hawaii

locate_in−→ U .S and Obama
born_in−→ Hawaii

locate_in−→ Pacific_Ocean.
Only the former path is the correct path, but they have the same answer relation locate_in.
For this problem, some researchers have proposed a solution that uses two agents in path
reasoning, one for relations reasoning and other for entities reasoning [6]. But the training
of this solution is complicated and the terminal reward used will lead to sparse rewards.

Therefore, we proposed a novel reinforcement learning based knowledge graph rea-
soning model, which incorporates the attention mechanism with the potential and path
semantic based reward shaping function. More specifically, we solve the entity selec-
tion problem from the topological and semantic levels. First, our model will extract the
neighbor entity’s hidden feature by the attention mechanism, which helps the agent to
choose a sensible action instead of random when the 1-N/N-N relation appears. Second,
we introduce a CNN into our model to identify the semantic features of the reasoning
path and feedback the agent a semantic reward. To obtain more semantic reward, the
agent will adjust the choice of actions to generate more logical path. And the CNN will
be adversarial trained through some ground truth paths and random paths to obtain path
discrimination ability. Furthermore, in addition to the semantic level rewards, we also
introduced the potential-based reward to solve the sparse reward problem.

In general, the major contributions of this paper are summarized as follows:

(1) We propose a multi-hop path reasoning model based on reinforcement learning
combined with an attention mechanism, which is used to solve the entity selection
problem from the topological level when 1-N/N-N relations appear.

(2) We design a novelmethod to enhance the reward from potential and semantic levels,
which helps to solve the entity selection and sparse rewards problem.

(3) We evaluate the effectiveness of our model on two benchmark datasets through
extensive comparative experiments, ablation study, and case study.

2 Related Work

Up to now, there are two branches for the research of knowledge graph reasoning. The
first is the embedding based model, which aims to map entities and relations into a low-
dimension vector space and learn a score function f (es, r, eo) to judge the truth of triples.
Such as TransE [7] and its extensions [8–10] treat the sum of head entity embedding and
relation embedding as a translation of tail entity embedding. DistMult [11] represents
each relation as a matrix and restricts it to be a diagonal matrix, which reduces the
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number of parameters. Furthermore, ComplEx [12] represents the entities and relations
as complex vectors, which can handle the facts about antisymmetric relations well.
ConvE [13] uses a multi-layer convolutional network for knowledge reasoning, and the
embedding of entity relation pairs is regarded as a picture for extracting features with
a convolution kernel. But for the query answering task, the embedding based models
simply return a tail entity eo according to the score among all entities. Although it can
achieve good performance, it lacks interpretability.

Another branch is the path-based methods. Path-Raking Algorithm [14] is the first
path-based reasoningmodel, which to search paths between entities byDFS and random-
walk and use those paths to predict the missing relation between entities. Recently, path
reasoning based on the reinforcement learning framework has made great progress.
DeepPath [3] is the first one to use RL based model to search paths between entities
for the link prediction task in a supervised learning way. MINERVA [4] introduced
RL to search answer entities end-to-end for the query answering task. However, above
models use the terminal reward, which will lead to the sparse rewards problem and slow
down the training efficiency. To solve this problem, Lin et al. [15] use a pre-trained well
embedding model (e.g. ComplEx and ConvE) as the knowledge-based reward shaping
function.Meanwhile, potential-based reward shaping function is used inSRN [1]without
external knowledge. Li et al. present a generative adversarial imitation learning based
plug-and-play framework DIVINE [16] for enhancing existing RL-based methods and
getting rid of the meticulous reward engineering to fit specific datasets.

Some researchers have also made good progress in combining rules and path reason-
ing. For instance, RuleGuilder [17] leverages high-quality rules generated by symbolic
based methods to provide reward supervision for walk-based agents. GNTPs [18] is an
extension to NTPs addressing their complexity and scalability limitations, thus making
them applicable to real-world datasets. As for the problem of entity selection mentioned
above, Li et al. propose MARLPaR [6], which uses two agents in path reasoning, one
for relations reasoning and other for entities reasoning. But the training of two agents is
complicated and the terminal reward used will lead to sparse rewards.

3 Approach

In this section, we will elaborate on the detail of our method for query answering task.
Firstly, we define the query answering task (Sect. 3.1) and introduce the reinforcement
learning framework used by our method (Sect. 3.2). Then we describe the attention-
based policy network in our proposed model (Sect. 3.3), which will help to solve the
entity selection problem in the query answering task. Finally, we introduce the reward
shaping function in our method (Sect. 3.4).

3.1 Task Definition

We formally denote the knowledge graph as G = (E,R) where (E,R) represent entity
set and relation set respectively. Each directed edge and its linked entities represent the
fact triple in the KG (es, r, eo) ∈ G.



278 S. Wang et al.

Given an entity es and query relationrq, the query answering task can be formulated
as

(
es, rq, ?

)
, e.g.,(Beijing, capital of , ?), it means the question “Which country’s capital

city is Beijing?”. Our goal is to find the answer entities {eanswer} by traversing the KG,
note that the triple(es, rq, eanswer) /∈ G. Meanwhile, we will present possible reasoning
paths, which helps to explain the process of the reasoning.

Fig. 1. The architecture of our proposed model

3.2 Reinforcement Learning Formulation

The process of reasoning can be viewed as a Markov Decision Process (MDP) [5], it
contains an agent and a KG environment. The agent continuously selects an action by
policy network, and the KG environment will feedback a reward according to the action.
The main components of the MDP are denoted as follows:

States. The state of agent is a tuple that concatenated with the current entity et visited
by agent at step t and the global information (es, rq), where (es, rq) denotes the query
entity and query relation from the query answer task

(
es, rq, ?

)
. More specifically, the

state at step t can be formulated as st = (
et, es, rq

)
.

Actions. The possible actions at step t can be defined by the outgoing edges and its
linked entities from the current entity et . Formally, A(st) = {(r, e)|(et, r, e) ∈ G}. Same
as the previous research, we add the self-loop relation and inverse relation to the graph
G, i.e., if the triple (es, r, eo) ∈ G, then

(
es, rno_op, es

) ∈ G and
(
eo, r−1, es

) ∈ G.
Self-loop relation allows the agent to stay in current entity without taking any action.
Besides, the agent can find the short path by it when the search is unrolled for a fixed
number of steps T. Meanwhile, inverse relation allows our agent to undo a potentially
wrong decision [4], and the agent can back to the entity visited at the previous step.

Transition. Because of the properties of the graph, the state of the agent is determined by
the current visited entity. Thus, the transition function δ modifies state st to new state st+1
based on the action selected by the agent. Formally, st+1 = δ(st,At) = (

et+1, es, rq
)
,

where st = (
et, es, rq

)
and At = (rt+1, et+1).
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Rewards. Reward is the feedback from the KG environment to the agent according to
the action taken by the agent. The most commonly used reward is the terminal reward,
it can be formulated as Rt = 1{eT = eanswer}. The agent gets a positive reward (usually
1) if it arrives at the answer entity at final step T and a negative reward (usually 0)
otherwise. But the terminal reward will result in the sparse rewards problem, thus we
design a reward shaping function, which will be described in detail in Sect. 3.4.

3.3 Attention-Based Policy Network

To solve theMDPproblemdescribed above,weparameterize the search policy as a policy
network. Moreover, the parameterized policy network takes the state information and
actions history selected by the agent as the input and outputs the probability distribution
π of action space at each step. The framework of our model is shown in Fig. 1. Formally,
the policy network consists of three parts: an LSTM network that encodes the path
history; an attention mechanism that obtains more hidden information from neighbor
entities and solves the entity selection problem; a feedforward neural network to get the
action probability distribution from all possible actions.

In the policy network, each entity and relation have a corresponding vector embed-
ding and use the same symbol to represent for simplicity. i.e. rt, et ∈ R

d . In this study,
we adopt an LSTM network to encode the path history information ht at step t, and
the agent can memorize and learn from the path history in this way. The formula is as
follows and the initial history information h0 set to 0:

ht = LSTM (ht−1, [rt; et]) (1)

Typically, many previous researches in path reasoning mainly focus on the relation
selection and ignored the importance of entities, which will result in the wrong deci-
sion making when 1-N/N-N relation occurs. In reality, the neighbor entities contain
many useful hidden features. For example, if an entity is a person and has the neighbor
entity ChicagoBulls, we can infer that the current entity’s work is related to basketball.
Therefore, we believe that it is helpful to solve the entity selection problem utilizing the
neighbor hidden features extracted by attention. And it can be formulated as follows:

ct = ∑

i∈Nt

αt,i · ei (2)

αt,i = exp(cos(et ,ei))∑
k∈Nt exp(cos(et ,ek ))

(3)

where ct ∈ R
d denotes the neighbor entities information extracted by attention mech-

anism. αt,i is the attention weight for neighbor entities ei, which is calculated by the
cosine similarity between entity et and its neighbor entity ei. Because of the attention
mechanism, the policy network will output more rationale probability instead of random
probability for the actions that have the same relation but different entities.

Based on the encoded history path ht , the attention vector ct , and the global infor-
mation

(
es, rq

)
from the query triple, the policy network will output the probability

distribution π(at |st,At) from all possible actions At . And it can be formulated as:

π(at |st,At) = σ
(
At × WpReLU

(
W1

[
et; rq; ht; ct

]))
(4)



280 S. Wang et al.

Where σ is the softmax operator. Finally, we will sample action At according to the
probability distribution, and the agent will choose an action most likely to be right as
the next step action.

3.4 Reward Shaping

Terminal reward is the commonly used reward function in the solution of the MDP
problem, and the agent will receive a positive reward only when it arrives at the answer
entity at the final step. Consequently, it usually leads to delayed and sparse rewards in
large-scale knowledge graph reasoning, which will slow down training efficiency. In this
paper, we carry out reward shaping from two levels of potential and semantics.

Potential Based Reward Function. We shape the reward through a potential function,
which doesn’t need well pretraining. The framework of potential-based reward shaping
is proposed in [19]. As the theorem proved by that paper, if F is a potential-based reward
shaping function, then every optimal policy in M ′ = 〈S,A,P, γ,R + F〉 will also be
an optimal policy in M = 〈S,A,P, γ,R〉. And the reward shaping function F can be
defined as: F is potential based if there exists φ s.t. F

(
s, a, s′

) = γφ
(
s′
) − φ(s).

In previous research, Qiu Y et al. assume that a correct decision should contain a
relation which covers part of the semantic information of the question in the QA task.
And use the cosine similarity between encoded action history and the sum of word
embedding in the question as the potential function [1]. Different from it, we only
consider the similarity of relation and entity at current step t instead of encoded action
history. In this way, the agent will more focus on the relation and entity information at
the current step and slow down the negative impact of 1-N/N-N relations. Moreover,
we adopt the dot product to measure semantic matching similarity between the current
step relation entity [rt; et] and the answer relation entity

[
rq; eanswer

]
. Consequently, the

potential function for the state st can be formulated as follows:

φ(st) =
{
ReLU

(
[rt; et] · [

rq; eanswer
])

, t > 1
0, t = 1

(5)

WhereReLU is used to let the potential greater than zero. Based on the potential function,
the reward function Rp can be defined as follows and γ is the discount factor.

Rp = γφ(st+1) − φ(st) (6)

Semantic Based Reward Function. In our model, the semantic-based reward function
Rs can not only alleviate the sparse reward problem, but also further solve the entity
selection problem. To achieve this, we encode the reasoning path to a real value matrix
and use a convolutional neural network to distinguish the semantic feature in the path.
We consider both entities and relations in the path and believe the semantic feature is
helpful to solve the entity selection problem. The formula is as follows:

p = es ⊕ r1 ⊕ e1 . . . ⊕ rT ⊕ eT (7)

Rs = ρ(W2ReLu(W1ReLU (p ∗ ω + b))) (8)
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Where p ∈ R
(2T+1)×d represents the path real value matrix and ⊕ denotes the con-

catenation operator. (*) means the convolution operation, ω is the convolution kernel
and b denotes the bias. Then we use two fully connected layers for further semantic
feature extraction and ρ represents the sigmoid function to make reward Rs between
0 to 1. Semantic based reward function returns the corresponding reward to the agent
according to the semantic feature of the reasoning path, which can help the agent choose
more reasonable actions.

Reward Integration. To make the agent have the ability to choose more sensible
actions when 1-N/N-N relations occur and get rid of sparse reward, we design a reward
integration method from the potential and semantic levels. And it can be formulated as:

Ri = εRp + (1 − ε)Rs (9)

R(st) = Rt + (1 − Rt)Ri (10)

Where Rp and Rs represent potential reward and semantic reward respectively, ε is the
reward balance weight andR(st) is the final reward feedback to the agent. In other words,
if the final entity eT is the answer entity, the agent will receive a positive terminal reward
1, and integration reward Ri otherwise.

3.5 Training

Pre-training. To make the CNN in the semantic reward function has the ability to
distinguish the path semantic feature, we use the adversarial training algorithmWGAN-
GP [20] to train it with the random path value matrix and the ground truth path value
matrix. More specifically, we use the combination of manual and breadth-first search
(BFS) algorithms to extract ground truth path between query entity es and answer entity
eanswer . And it can be formulated as follow:

Ls = Rs
(
pR

) − Rs
(
pG

) + λ(
∥
∥∇p̂Rs

(
p̂
)∥∥

2 − 1)2 (11)

Where Ls denotes the loss of the CNN, which consist of original critic loss and gradient
penalty. pR and pG represent the random path value matrix and the ground truth path
valuematrix respectively. λ is the gradient penalty coefficient and p̂ is sampled uniformly
along straight lines between pR and pG .

Policy Network Training. Based on our MDP formulation, the policy network is
trained by maximizing the expected cumulative reward:

J (θ) = E(es,r,eo)∼DEA1...AT−1∼πθ [R(st)|(es, r)] (12)

Where θ = {
W1,Wp,Wv

}
is the parameters of the policy network and D is a true under-

lying distribution. To solve this optimization problem, we use REINFORCE algorithm
[5]. Similar to [4], we approximate the second expectation by running multiple rollouts
for each training example. And the policy gradient ∇θJ (θ) is defined as:

∇θJ (θ) = ∇θ

T−1∑

t=0
logπ(at |St,At)R(st) (13)
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4 Experiments

In this section, we evaluate the performance of our model on two large real-world KG
datasets in the query answering task. We first describe the experiment setup, including
the introduction of the experiment datasets, baseline models and evaluation methods,
and the detail of the implementation. Then we will compare our model with baseline and
analyze the results, followed by ablation studies to show the effectiveness of components
in our model. Finally, a few case studies also validate the performance of our model for
the entity selection problem.

Table 1. Statistics of WN18RR and NELL-995 datasets.

Datasets #Entities #Relations #Triples #Queries

WN18RR 40945 11 86835 3131

NELL-995 75492 200 154213 3992

4.1 Experiment Setup

Datasets. All experiments were conducted on the WN18RR [13] and NELL-995 [3]
datasets, which are created from theWN18 andNELL datasets respectively by removing
ormodifying some triples. The statistics information of the two datasets is shown inTable
1. And according to the research [6], about 32% of relations in WN18RR and 27% of
relations in NELL-995 are 1-N/N-N relations. Thus, it’s important to solve the entity
selection problem in the reasoning process when these relations appear.

Baseline Methods and Evaluation. We compare our model against previous state-of-
the-art methods, including embedding-based methods (DistMult [11], ComplEx [12],
ConvE[13]), path-basedmethods (MINERVA[4],RS[15],DIVINE[16]), and rule-based
methods (RuleGuider [17], GNTPs [18]). The results of baselines come from their paper
or reproduction by the open code.Due to lacking small part experimental results or source
code in somemethods, somebaseline resultswill beomitted inTable2.For all datasets,we
adopt thewidely usedHits@k andmean reciprocal rank (MRR) as our evaluation.

Implementation Details. The embedding size of the entity and relation for the two
datasets are set to 50, and we use a one-layer LSTM as the path history encoder and
set its hidden dimension to 200. Then we set the maximum reasoning path length (the
max step number) to 3. Meanwhile, we adopt Adam optimization [21] for parameter
optimization with the learning rate lr = 0.001. And we set the mini-batch size 512 for
the NELL-995 dataset and 256 for the WN18RR dataset. The convolution kernel is set
to 3 × 5. We conduct parameter sensitivity analysis to determine the values of some
important parameters. For the WN18RR dataset, we set the discount factor γ = 0.97,
the reward balance weight ε = 0.3, and the gradient ‘penalty coefficient λ = 15. For
the NELL-995 dataset, we set the discount factor γ = 0.95, the reward balance weight
ε = 0.5, and the gradient penalty coefficient λ = 5.
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4.2 Results and Analysis

In this experiment, we evaluate the performance of our model on the query answering
task compared to other baselines on WN18RR and NELL-995 datasets. The results are
reported in Table 2, we can find our proposed model consistently outperforms both
embedding based methods and interpretable methods on WN18RR dataset in terms of
hits@1, hits@3, hits@10, andMRR. Thus, it shows that our model is valid onWN18RR
dataset. Furthermore, our model also achieved comparable results on NELL-995 dataset,
especially in interpretable reasoning models, but some evaluation indicators are not as
good as the best results in the embedding-based methods. We consider the most likely
reason is that there are fewer 1-N/N-N relations in test and validation set of NELL-995,
so that the attention mechanism and semantic reward function in our model does not
play a big role.

To further analyze the reason for the small gap of performance in NELL-995 dataset
and the effectiveness of components in our model, we will conduct ablation studies in
Sect. 4.3. As for the entity selection problem, we will show how our model solves the
entity selection problem in several cases in Sect. 4.4.

Table 2. Overall performance comparison in WN18RR (above) and NELL-995 (below). The
results are reported in percentage (%). The best baseline results are marked with stars (*).

Metric Embedding Interpretable

DistMult ComplEx ConvE MINERVA RS[15] RuleGuider DIVINE GNTPs Ours

Hits@1 41.0 38.2 40.3 41.3 43.7 44.3* 43.8 41.0 44.9

Hits@3 44.1 43.3 45.2 45.6 – – 48.0* 44.2 49.6

Hits@10 47.5 48.0 51.9 51.3 54.2 55.5* 53.8 48.3 56.3

MRR 43.3 41.5 43.8 44.8 47.2 48.0* 46.8 43.4 48.7

Hits@1 61.0 61.2 67.2* 66.3 65.5 66.4- 65.0 – 67.7

Hits@3 73.3 76.1 80.8* 77.3 – – 75.4 – 78.8

Hits@10 79.5 82.7 86.4* 83.1 83.6 85.9 81.4 – 83.9

MRR 68.0 69.4 74.7* 72.5 72.2 73.6 71.1 – 73.9

4.3 Ablation Study

In this section, we perform an ablation study by removing the components in our model
to verify its effectiveness. The result of the ablation study is listed in Table 3, including
the performance evaluation and time-consuming analysis.

Effectiveness of Attention Mechanism. To evaluate the effectiveness of the attention
mechanism, we compare our model with the ablation model -ATT that removes the
attention mechanism. As shown in Table 3, our model performs consistently better than
-ATT,whichmeans ourmodelmakes the full use of the neighbor entities feature extracted
by attention.
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Table 3. The result of ablation study. The results are reported in percentage (%).

Metric WN18RR NELL-995

-ATT -PR -SR -RS ALL -ATT -PR -SR -RS ALL

Hits@1 44.3 44.2 43.8 44.0 44.9 65.9 65.6 65.5 63.7 67.7

Hits@3 48.6 48.6 48.1 48.2 49.6 78.0 77.4 78.1 77.0 78.8

Hits@10 55.0 55.4 54.7 54.7 56.3 82.6 81.7 83.0 82.0 83.9

MRR 47.6 47.3 47.0 47.2 48.7 72.9 72.3 72.8 71.3 73.9

Training Time 118 s 135 s 122 s 121 s 132 s 109 s 113 s 125 s 128 s 123 s

Reasoning Time 60 s 64 s 60 s 62 s 63 s 29 s 30 s 28 s 30 s 29 s

Effectiveness of Reward Shaping. We design three reward ablation models, removing
potential reward -PR, removing sematic reward -SR, and removing all reward shaping
function -RS. The comparison result shows that our reward shaping method is effective
to alleviate reward sparseness and improve performance.

Time Consuming Analysis. Toanalyze the impact of the added components on training
and reasoning time, we count the time spent by each model in the training phase (50
epochs) and the inference phase on the WN18RR (3134 queries) and NELL-995 (2818
queries). The results are shown in Table 3, we can find that the time spent in inference
is basically the same on the two datasets. And the maximum difference in training time
is about 15 s.

Parameter Sensitivity Analysis. Figure 2 shows the parameter sensitivity of reward
balance weight ε, discount factor γ , and the gradient penalty coefficient λ. We set the
value of ε ranges from 0.1 to 0.9, the value of γ ranges from 0.9 to 1, and the range
of λ is {0.1, 0.5, 1, 5, 10, 15, 25, 50}. And the parameter values to achieve the best
performance are introduced in the implementation details.

Fig. 2. Results of parameter sensitivity analysis.

Entity Selection Problem Optimization. To reflect the optimization of the attention
mechanism and semantic reward function in the 1-N/N-N relations. We calculate out the
proportion of the path contained 1-N/N-N relations reasoned by our model and -ATT and
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Table 4. The proportion of 1-N/N-N relations in all paths and feasible paths. The results are
reported in percentage (%).

WN18RR NELL-995

All-path Feasible-path All-path Feasible-path

Top-10 Top-50 Top-10 Top-50 Top-10 Top-50 Top-10 Top-50

ALL 54.34 57.78 54.89 63.73 30.80 29.64 27.89 30.54

-ATT 37.35 43.29 46.77 52.61 24.51 29.87 25.04 27.12

-SR 42.32 53.44 48.22 61.14 28.01 27.27 25.70 28.19

-SR. For a more comprehensive analysis, we counted top 10 and top 50 in all paths and
feasible paths (the final entity in path is the answer entity). The results are shown in Table
4, which demonstrate our model tends to find path containing 1-N/N-N relations. And
we can find that the proportion of path containing 1-N/N-N relations on the NELL-995
is much smaller than WN18RR, which makes the components in our model does not
play a big role.

4.4 Case Study

We show some paths found by our model and baselines in Table 5 and entity selection
problem that appears in the path is shown in bold. We respectively select a query relation
from the WN18RR and NELL-995 datasets. For instance, the query triple of first query
relation can be formulated as (02314321, hypernym, ?). According to the paths, we find
that the path found by MINERVA is wrong due to the 1-N relation meronym. As for the
self-loop and inverse relation we added to the KG, some cases are found to prove its
effectiveness in searching the short path and recovering from mistakes respectively.

Table 5. Examples of reasoning path found by our model and baselines.
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5 Conclusion

In this paper, we develop an attention based reinforcement learning with reward shaping
model for query answering task, which can resolve the entity selection problem caused
by 1-N/N-N relations in KG. More specifically, we extract the hidden information of
the current entity’s neighbors through the attention mechanism, and it helps to train
agents to find correct action from the actions that have the same relation but different
entities. Moreover, we design a novel reward shaping function to enhance the reward
from potential and semantic levels, which helps to solve the entity selection and mitigate
sparse rewards problem.We conduct extensive experiments to verify the performance of
our model compared with state-of-the-art baselines and some cases also show the effect
of our model in entity selection problem. In the future, we will explore research on path
diversity to encourage agents to find more diverse paths.

Acknowledgement. This work was in part supported by the Major project of IoV , Techno-
logical Innovation Projects in Hubei Province (Grant No. 2020AAA001, 2019AAA024) and
Sanya Science and Education Innovation Park of Wuhan University of Technology (Grant No.
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Abstract. Open relation extraction aims at extracting novel relations
from open-domain corpora. However, most recent works typically treat
entities and tokens equally while encoding sentences, without taking full
advantage of the guiding role of entities in representation learning. In
this work, we propose the Entity-Aware Relation Representation learn-
ing framework for open relation extraction and establish the new state-
of-the-art on standard benchmarks. It gives more attention to entities
when learning representations by leveraging an entity-aware attention
mechanism. And we further propose a pair-wise contrastive loss to learn
relation representations effectively in terms of alignment and uniformity.
Extensive experimental results show that our framework achieves signif-
icant improvements compared to state-of-the-art models.

Keywords: Open relation extraction · Attention mechanism ·
Contrastive learning

1 Introduction

Open relation extraction (OpenRE) aims at extracting novel relation types from
open-domain corpora, where the relation types may not be pre-defined. OpenRE
plays an increasingly important role in various Nature Language Processing
(NLP) applications such as knowledge base completion.

Most OpenRE methods can be divided into tagging-based methods and clus-
tering based methods. Tagging-based methods [3,7] directly extract semantical
words or phrases from sentences as relation types.

In contrast, clustering-based methods extract novel relations by clustering
instances which is based on the semantic distances between them. Essentially,
we consider that clustering-base methods can be decomposed into two modules:
relation representation learning module and cluster module. The representation
learning module is the core of entire framework, and the cluster module relies
heavily on the representations learned by it. Previous OpenRE methods proposed
different architectures for better representation learning module such as siamese
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 288–299, 2021.
https://doi.org/10.1007/978-3-030-88480-2_23
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network [21] and large pretrained language models [10], and they all achieved
significant improvements thanks to this.

Einstein was born in the Germany , but moved to Switzerland in 1895.

Einstein was born in the Germany, but moved to Switzerland in 1895.

Fig. 1. Models need to be aware of entity pair. The sentence will appear multiple
times in the distant-supervised dataset with a different entity pair at each time. For a
sentence, the blues indicate the entity pair, and red indicates their relation’s surface-
form. (Color figure online)

However, learning relation representations is challenging due to the numerous
surface forms of relations in distant-supervised open-domain corpora. Although
recent works [5,11] propose to learn relation representations from knowledge
bases, they cannot handle the unstructured and distant-supervised text due to
the enormous label noise.

As shown in Fig. 1, the different entity pairs in same sentence may express
distinct relations. Both entities and context provide critical information for rela-
tion extraction [14], where entities provide most of the information and play a
critical guiding role for OpenRE [19]. This makes it necessary for the models to
be more aware of entities when learning relation representations. However, most
OpenRE methods are not aware of the importance of entities, either only utilizes
the contextualized entity pair representation output by BERT to cluster rela-
tions [10] or even completely ignore the entities when predicting relations [17].

In this paper, we propose the entity-aware attention mechanism to give more
attention to the entities when learning relation representations. And we further
propose the pair-wise contrastive loss. It leverage the idea of contrastive learning
to pull semantically close neighbors together and push apart semantically non-
neighbors, which helps the model learn relation representations effectively in
terms of alignment and uni-formity. We summarize our contributions as follows:

(1) We propose the entity-aware attention mechanism, which essentially makes
the model gives more attention to entities when encoding instances.

(2) We propose the pair-wise contrastive loss to help model learn relation rep-
resentations effectively in terms of alignment and uni-formity.

(3) We conduct extensive experiments on three real-world human-curated or
distant-supervised datasets (FewRel, T-REx SPO, and T-REx DS). Experi-
mental results show that our framework significantly outperform supervised
or unsupervised state-of-the-art OpenRE models.
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2 Related Work

Open relation extraction aims to discover novel relations from unsupervised
open-domain corpora and has recently attracted increasing attention. Compared
with traditional RE methods, OpenRE can handle the open-ended growth of new
relation types well. Most OpenRE methods can divide into tagging-based meth-
ods and clustering-based methods. Tagging-based methods cast OpenRE as a
sequence labeling problem, and extract surface forms of relations from plain text
in unsupervised [2,3] or supervised [7,18] paradigms. However, tagging-based
methods heavily rely on relational words or phrases in sentences and cannot
extract implicit relations.

In contrast, traditional clustering-based OpenRE methods extract novel
relations by clustering rich features extracted by external linguistic tools [8,
12,22]. [13] proposes discrete-state variational autoencoder (VAE) that recon-
structs arguments relying on predicted relations to optimizes a relation classi-
fier. However, the VAE is hard to train without supervision. To train model
stably, [17] introduces a skewness loss which encourages the classifier to predict
relations with confidence. To exploits weak, self-supervised signals, [10] lever-
ages pre-trained language models to learn relation representations and cluster
in a self-supervised learning framework. Compared with previous unsupervised
methods, [21] utilize relational siamese networks to transfer relational similarity
knowledge from supervised data to discover novel relations in unlabeled data,
and achieves state-of-the-art performance.

However, previous OpenRE methods are not aware of the importance of
entities in discovering novel relations. And in this paper, we mainly focus on
entity-aware clustering-based OpenRE methods to discover novel relations.

3 Problem Definition

In this section, we formally defined the problem of relation discovery task. Let
E be a set of entities. And let D = [(S0, r0, (e01, e

0
2)) . . . (SM , rM , (eM

1 , eM
2 ))] be

a corpus of M instances. Each instance contains sentence Si, entity pair (ei
1, e

i
2)

and relation ri. The input of the problem is a sentence S which consists of N
tokens and an entity pair (e1, e2) appears in it. And we decompose the problem
into two sub-tasks: relation representation learning and relation clustering.

For relation representation learning task, let Fθ denote a function of learning
relation representation from instance. This sub-task takes sentence S, labeled
with two entities e1, e2, as input and output relation representation zr which is
corresponding to relation r.

For relation clustering task, let K denote a set of relation clusters and the size
of K is unknown in advance. This sub-task is, for the input relation representation
zr, to predict the relation cluster label yk ∈ K where the subscripts k denote the
index of cluster.

We aim to build a model which takes sentence S and labeled entity pair
(e01, e

0
2) as input and predicts cluster label yk. During the evaluation, yk is com-

pared against the ground truth relation type.
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Einstein was born in Germany.
Einstein moved to Switzerland in 1895.

...
Barack was born in America.
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Fig. 2. Left: The architecture of our framework. Our model takes sentences with entity
pairs as inputs and clusters them based on the distance between relation representa-
tions learned by Entity-Aware Relation Representation Learning Module. Right: Our
proposed Entity-Aware Attention mechanism.

4 Method

In this section, we will describe our model which consists of an entity-aware
relation representation learning module and a relation clustering module. As
shown in Fig. 2, our representation module takes sentences as inputs and learns
relation representations. Then the clustering module clusters instances to extract
novel relations via distance between learned relation representations. We will
detail each component below.

4.1 Entity-Aware Relation Representation Learning

The representation learning module is focus on learning mappings from sentence
S to relation representation zi. The sentences will have similar representations if
express the same relation, otherwise the learned representations will be dissimilar
with each other.

Sentence Embedder. For a sentence S consisting of N words, we insert entity
markers to highlight the entities before embedding the sentence. Specifically, we
place the entity markers, 〈e1〉, 〈/e1〉, 〈e2〉 and 〈/e2〉, before and after the two
entities.
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Following previous approaches [21,23], for a sentence S, We use pretrained
d1-dimensional GloVe vectors [15] to initialize the word embeddings w ∈ R

N×d1 .
We also randomly initialize two d2-dimensional position embeddings p ∈ R

N×d2

representing the positions of entities. Finally we concatenate the embeddings to
form a sequence of vectors z0 ∈ R

N×(d1+2d2) as the initial relation representation.
The i -th vector corresponds to the i -th tokens of the input sentence.

Entity-Aware Sentence Encoder. Given the strong performance of the
attention mechanism, specifically Transformer [20], on encoding instances into a
feature space, we adopt it as our relation representation encoder.

Considering the importance of entities in previous OpenRE methods [8,10],
we propose an entity-aware attention mechanism to discover novel relations with
rich entity features. We replace the multi-head attention with our proposed
entity-aware attention in Transformer architecture and get the relation repre-
sentation encoder in this paper. In the following, we will detail the mechanism
and advantages of the proposed attention mechanism in the OpenRE task.

The entity-aware attention mechanism is a variation of self-attention mech-
anism, where the input Q (queries), K (keys), and V (values) are exactly the
same and essentially the output of previous layer zl−1. The output of our entity-
aware attention, zl, is computed as the weighted sum of the values, where the
weight assigned to each value is determined by a compatibility function of the
query with all keys as follows:

zl = softmax(
fW (Q,K)√

dk

)V (1)

where 1/
√

dk is scale factor and

dk = dim(K), Q = K = V = zl−1

To make the sentence encoder give more attention to the entities when learn-
ing relation representations, We design a compatibility function fWi

. Specifically,
we, inspired by [24], use a soft mask for Q to assign low weight to the tokens in
sentences which are not entities. For each query Qi and key Ki, we define fWi

as follows:

fWi
(Qi,Ki) = softmask(Qi)KT

i

= (Q′
iWi + Qi(1 − Wi))KT

i (2)

where Qi is a token embedding which is obtained by masking the non-tokens
of sentence, and Q′

i is the entity embedding which is obtained by masking the
non-entities of Qi. The Wi is a learnable parameter and it measures how much
attention the model pays to entities. Equation 2 reduces the weight of non-entities
and leaves weight of entities unchanged, which enables the model to pay more
attention to entities when encoder sentences. The soft masking is an extension
of conventional hard masking in the sense that the former degenerates to the
latter iff Wi = 1. And the remaining parts of sentence encoder are similar to
Transformer.
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Pair-Wise Contrastive Loss. Considering the remarkable success of con-
trastive learning approaches in the representation learning task, we define a
contrastive loss to make sure that the relation representations sharing the same
relation should be close together, while different relations should be apart.

To take full advantage of relational semantics during training, we first ran-
domly sample N instances with the probability of sharing the same relation γ
and construct a pair-wise batch by combining instances with each other from the
sampled instances. Then the pair-wise contrastive loss is computed as follows:

Lpwc = − 1
N2

∑

i,j

(1 − δ(i, j))d(zi, zj) − δ(i, j)d(zi, zj) (3)

where δ(i, j) ∈ {0, 1} is an indicator function that takes the value 1 iff i shares
the same relation with j. And the distance metric d(zi, zj) between two repre-
sentations is defined as follows, and we use it to determine whether or not zi

and zj represent the same relation:

d(zi, zj) = 1/(1 + exp(
zi

‖zi‖ · zj

‖zj‖ )) (4)

When minimizes the pair-wise contrastive loss, the model can learn effective
representations by minimizing the average distance of neighbors with the same
relation and maximizing the semantic distance of non-neighbors. Following pre-
vious OpenRE method [21], we also adopt a cross-entropy loss Lce and a virtual
adversarial training loss Lv. The final loss is defined as a weighted sum of the
above three losses:

L = Lce + Lv + Lpwc (5)

4.2 Relation Clustering

After the representation learning module is trained, we consider the outputs
as the relation representations of the corresponding instances. For any pair of
relation representations (zi, zj), we regard each representation as a node and
connect them with an edge if d(zi, zj) is grater than threshold φ, otherwise not,
and the edge indicates that they represent the same relation. Then we get a
relation representation graph. Finally, we use louvain algorithm [4] to extract
novel relations via clustering representations based on the relation graph.

The K-means and hierarchical agglomerative clustering (HAC) algorithms
which are typically used in cluster-based methods [21,22] both needs the exact
number of clusters in advance. In contrast, louvain is a graph-based clustering
algorithm used for detecting communities. It will automatically find the proper
number of clusters by optimizing community modularity and does not need the
number of clusters in advance, which is fully compatible with OpenRE.

Additionally, Louvain might produce clusters with few instances which can-
not be regarded as novel relations. To solve this problem, we relabel these
instances with the labels of their closest labeled neighbors.
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5 Experiments

In this section, we conduct extensive experiments on both human-curated
or distant-supervised datasets to show the effectiveness of our model on the
OpenRE task. We also give a detailed analysis of experiments to show the advan-
tages and a better understanding of our model.

5.1 Datasets

Following previous works [10,17,21], we evaluate our framework on three
datasets, namely FewRel [9], T-REx SPO, and T-REx DS dataset.

FewRel is a supervised dataset derived from Wikipedia and annotated by
crowd workers. It consists of 100 relations with 700 instances each1. The relation
of each sentence is first annotated by distant supervision methods and then
filtered by crowd workers.

Following the dataset settings in [17], We also construct two datasets from
T-REx2, namely T-REx DS and T-REx SPO. We only consider instances where
both entities appear in sentences. And if a sentence contains multiple entity
pairs, it will appear multiple times with a different entity pair at each time.
The only difference between T-REx DS and T-REx SPO is the corresponding
relation surface forms appear in sentences of T-REx SPO.

5.2 Datasets Division

Table 1 presents the details of our datasets based on the above constraints. Con-
sidering the goal of OpenRE is novel relation discovery, our datasets division
strategy is slightly different from previous OpenRE methods [10,17] on two T-
REx datasets. To best evaluate the performance of our proposed models on
relation discovery, we randomly select 64% and 16% of the relations and corre-
sponding instances for training and validation. And the remaining will be used
as the test set for evaluation.

Table 1. The details of our datasets division. For FewRel, we do not use validation set.
The Rel. and Ins. column represents the number of relations and instances, respectively.

Dataset Train Validation Test

#Rel. #Ins. #Rel. #Ins. #Rel. #Ins.

FewRel 64 44,800 – – 16 11,200

T-REx SPO 237 608,043 59 134,545 75 199,026

T-REx DS 417 7,281,837 104 2,203,547 131 4,602,098

1 The FewRel benchmark provides a training set with 64 relations, a validation set
with 16 relations, and a hidden test set with 20 relations which are only for evaluation
on https://thunlp.github.io/1/fewrel1.html.

2 https://hadyelsahar.github.io/t-rex/.

https://thunlp.github.io/1/fewrel1.html
https://hadyelsahar.github.io/t-rex/
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5.3 Baseline and Model

We compare our model against several state-of-the-art models on OpenRE
benchmarks. Additionally, we evaluate the performance of our proposed frame-
work in a practical, yet more challenging setting: we assume the test set only
consist of new relations which will not appear in train set or validation set, and
the number of golden relations is not known for models.

March [13] proposes discrete-state variational autoencoder (VAE) which
reconstructs arguments relying on relation predicted by the encoding compo-
nent. PCNN+LS+LD [17], a discriminative method differs from March, trains
on unsupervised datasets using piece-wise convolutional network (PCNN) and
predicts relations with confidence while several relation types are predicted over
a mini-batch. SelfORE [10] utilizes self-training to iteratively learn relation
representations and clusters and archives state-of-the-art on OpenRE task.

Relational Siamese Network augmented with louvain cluster algorithm and
virtual adversarial loss(RSN-LV, [21]) is the state-of-the-art OpenRE method
that transfers relational knowledge from labeled data to discovery relations in
unlabeled data.

5.4 Evaluation Metrics

Following the previous OpenRE methods [10,17,21], we use the standard eval-
uation protocol and adopt instance-level evaluation metrics to evaluate relation
clustering, including B-Cubed metric (B3, [1]), V-measure [16] and Adjusted
Rand Index (ARI, [6]). To properly evaluation, we adopt the majority of ground
truth labels in each relation cluster as the prediction label of all samples in the
cluster.

5.5 Implementation Details

Hyperparameters. In the embedding layer, we use pre-trained 50-dimensional
GloVe word embeddings3 to initialize the word embeddings and randomly ini-
tialize two 5-dimensional position embeddings. We put a dropout layer after the
sentence embedding layer where the dropout rate is 0.2. During training, the
batch size is 64, and the probability of same relations γ = 0.06. To construct
each pair-wise batch, we randomly sample 16 relations and 4 instances each
where the seed is 0. For optimization, we use Adam optimizer with a learning
rate of 1e-4. For clustering, φ is 0.5 selected from {0.4,0.5,0.6}. And we use the
number of relations in test set when evaluating with HAC.

Dataset Settings. For the FewRel dataset, we follow the settings used in [21]
to make a fair comparison with it and do not use the validation set for tuning
the hyperparameters. We use 16 relations with 700 instances each for evaluation
on FewRel.
3 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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For T-REx SPO and T-REx DS datasets, we also follow the settings in previous
works [10,17] to compare with them faithfully where all models are trained with
10 relations. Consider the goal of novel relation discovery and more challenging
settings, we randomly sample 10 relations as the train relation type set for each
run which makes the model achieve more generalizability. Considering the size of
the test set and cost of the evaluation, we randomly sample 20000 instances from
the original test set on T-REx SPO and T-REx DS to report the final scores.

We report the average scores of 10 runs for our model. For each run, we keep
the model that achieves the highest averaged B3 F1, V-measure F1 and ARI
on 1000 randomly sampled instances from the validation set, and evaluate and
report its score on the test set.

5.6 Results and Analysis

Table 2. The B3, V-measure and ARI metrics on FewRel, T-REx SPO, and T-REx
DS. ♣: results from [21]; ♠: results from [10]. We highlight the highest numbers among
models on same dataset.

Dataset Model B3 V-measure ARI

F1 Prec Rec F1 Hom Comp

FewRel VAE♣ [13] 17.9 69.7 28.5 - - - -

RW-HAC♣ [8] 31.8 46.0 37.6 - - - -

RSN-LV♣ [21] 59.9 77.5 48.9 - - - -

RSN-LV 63.8 51.8 83.2 74.5 66.7 84.5 50.9

EARL 71.7 65.1 79.7 79.2 75.4 83.5 61.5

T-REx SPO VAE♠ [13] 24.8 20.6 31.3 23.6 19.1 30.6 12.6

PCNN+LS+LD
♠ [17] 36.3 28.4 50.3 41.1 33.7 53.6 21.3

SelfORE♠ [10] 41.0 39.4 42.8 41.4 40.3 42.5 33.7

RSN-LV 58.5 51.7 67.8 37.8 30.9 49.1 27.7

EARL 67.5 68.4 66.7 63.2 59.7 67.2 47.0

T-REx DS VAE♠ [13] 9.0 6.4 15.5 5.7 4.5 7.9 1.9

PCNN+LS+LD
♠ [17] 19.7 14.0 33.4 26.6 20.8 36.8 9.4

SelfORE♠ [10] 32.9 29.7 36.8 32.4 30.1 35.1 20.1

RSN-LV 41.2 38.4 45.0 31.0 27.9 35.2 17.3

EARL 47.8 44.2 52.4 39.5 34.5 46.4 28.4

Main Results. We report the B3, V-measure and ARI metrics on FewRel,
T-REx SPO, and T-REx DS, and compares our framework EARL to previous
state-of-the-art unsupervised and supervised OpenRE methods. The results are
presented in Table 2, from which we can observe that:

(1) EARL models achieve the best performance and significantly outperform the
previous state-of-the-art methods both on the B3 F1, V-measure F1, and
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ARI. For example, compared to RSN-LV, EARL achieves 7.9%, 4.7%, 10.6%
improvements in B3 F1, V-measure F1 and ARI on the FewRel respectively.
And compared to previous unsupervised methods, EARL achieves more than
30% improvements, and the performance gap is even greater. It indicates
that EARL can effectively leverage the idea of contrastive and entity pairs
to learn better semantic representations of novel relations.

(2) EARL models perform well on all three datasets constructed by crowd workers
or auto-labeled by aligning sentences with Freebase. Although T-REx SPO
and T-REx DS dataset contain a lot of label noise, EARL models achieve
significant improvements compared with previous supervised and unsuper-
vised approaches. It will be attributed to our proposed entity-aware relation
encoder, and the entity-aware attention mechanism make model treat the enti-
ties as “anchors” and it alleviates the misleading effects of multiple occur-
rences of the same sentence on relation representation learning module.

Ablation Study. As shown in Table 3, We conduct ablations to investigate
how different the proposed entity-aware attention mechanism and pair-wise con-
trastive loss affect EARL’s performance, and we also analyze and verify the
impact of different clustering algorithms on OpenRE. All results are evaluated
on the test set of FewRel containing 11,200 instances, except for HACs which are
time comsuming, and they are evaluated with randomly sampled 2000 instances
and the same seed. Experimental results show that all components contribute
to the final performance.

Table 3. Ablation results on FewRel (%).

Model B3 V-measure ARI

F1 Prec. Rec. F1 Hom. Comp.

RSN-HAC 61.8 54.8 70.8 73.1 69.9 76.6 52.4

EARL-HAC 64.5 58.6 71.8 74.7 72.0 77.6 54.6

EARL 71.7 65.1 79.7 79.2 75.4 83.5 61.5

w/o Entity-Aware Enc 67.6 56.4 84.5 77.4 70.3 86.0 55.7

w/o Lpwc 63.8 51.8 83.2 74.5 66.7 84.5 50.9

We find that replacing our entity-aware sentence encoder with CNN like [21]
will decrease the B3 precision and V-measure Homogeneity, and gain improve-
ments in B3 recall and V-measure completeness. It shows that the proposed
entity-aware attention mechanism allows our model to learn more precise seman-
tical relation representations with the help of treating the entities as “anchors”.

And removing pair-wise contrastive loss after replacing the sentence encoder,
which is essentially the RSN-LV [21], contributes to a severe performance drop
in all the metrics. This means our proposed pair-wise contrastive loss let the
model obtain a better distribution of representations in terms of alignment and
uniformity.
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In addition, we replace the louvain with HAC and the performance of all
metrics is severely degraded especially B3. One explanation is that model does
not put additional constraints on the prior distribution of relational vectors
and therefore the relation clusters might have odd shapes in violation of HAC’s
assumption [21].

Model Generalization. We also conduct experiments to investigate the gen-
eralizability of EARL. As shown in Table 4, for evaluation on T-REx SPO and
T-REx DS, EARL trained on FewRel can easily achieve over 97% and 93% of
the best performance. It indicates the generalization ability of EARL and it can
effectively discover novel relations from different instance and relation distri-
butions. And it also shows that the quality of labeled instances is much more
important than quantity for OpenRE.

Table 4. Model generalization experiments.

Test Set Train Set B3-F1 V-measure-F1 ARI

T-REx SPO T-REx SPO 67.5 63.2 47.0

FewRel 65.7(97%) 59.0(93%) 42.4(90%)

T-REx DS T-REx DS 47.8 39.5 28.4

FewRel 44.6(93%) 39.3(99%) 19.5(69%)

6 Conclusions

In this paper, we propose an Entity-Aware Relation Representation learning
model for novel relation discovery and establish the new state-of-the-art on stan-
dard benchmarks. Our model uses an entity-aware sentence encoder that treats
entities as “anchors” to help model obtain precise relation representations during
encoding sentences, and also we propose the pair-wise contrastive learning loss
to learnrelation representations effectively in terms of alignment and uniformity.
We conduct extensive experiments and analyses to understand why our models
significantly surpass previous OpenRE models and achieve new state-of-the-art
performance. For future research, we will try to explore more directions such as
better representation encoder and joint open relation extraction.
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Abstract. Relational triples extraction aims to detect entity pairs (sub-
jects, objects) along with their relations. Previous work failed to deal
with complex relationship triples, such as overlapping triples and nested
entities, and lacked semantic representation in the process of extracting
entity pairs and relationships. To mitigate these issues, we propose a
joint extraction model called ReMERT, which first decomposes the joint
extraction task into three interrelated subtasks, namely RSE (Relation-
specific Subject Extraction), RM (Relational Memory) module construc-
tion and OE (Object Extraction). The first subtask is to distinguish all
subjects that may be involved with target relations, the second is to
retrieve target relational representation from RM module, and the last
is to identify corresponding objects for each specific (s, r) pair. Addition-
ally, RSE and OE subtasks are further deconstructed into sequence label-
ing problems based on the proposed hierarchical binary tagging scheme.
Owing to the reasonable decomposition strategy, the proposed model can
fully capture the semantic interdependency between different subtasks,
as well as reduce noise from irrelevant entity pairs. Experimental results
show that the proposed method outperforms previous work by 0.8% (F1
score), achieving a new state-of-the-art on Chinese DuIE datasets. We
also adopt sufficient experiments and obtain promising results both in
public English NYT and Chinese DuIE datasets.

Keywords: Relation extraction · Hierarchical tagging schema ·
Overlapping triple · Nested entity · Relation memory

1 Introduction

Relational triple extraction (RE) task plays a critical role in natural language
processing (NLP) and knowledge graphs (KGs) construction, which refers to
extracting the predefined relation categories between entity pairs from unstruc-
tured raw texts. It can be formalized as a relational triple T = (s, r, o), where
we call s and o as the subject and object entity of triple T , and r represents a
specific relational type between them.
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 300–311, 2021.
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Early work on RE task mainly followed the pipeline ideas [1,2]. They
extracted relational triples in serial NER and RC steps, which suffer from the
error propagation problem and neglect the relevance of the two steps. To address
these issues, the NLP community began to explore joint models that aim to learn
entities and relations simultaneously. For example, Zheng et al. [3] presented a
novel tagging schema, which turned the extracting tasks into a sequential tagging
problem, bridging the information gap between the NER and RC steps.

Despite the great success of previous work, conventional joint models suffer
from two serious restrictions, namely, overlapping triples and nested entities.
Figure 1 illustrates these restrictions. Taking the first sentence in Fig. 1 as an
example, the RC module in some joint models [4] could predict only one triple
(WuJing, Direct movie, Wolf Warrior) or (WuJing, Act in, Wolf War-
rior), and the tagging scheme of [3] is unable to represent both Direct movie
and Act in by a single tag for each word. Some novel schemas have been pro-
posed to handle overlapping triple problem [5] and significant improvement have
been achieved. However, due to the problem of nested entities, the prior models
cannot hold all the triples in a sentence through entity recognition module, as
shown in the lower part of Fig. 1. For example, Wei et al. [6] proposed a new
relational triples extraction framework, including subject tagging module and
specific relation tagging module. But it cannot address the case of nested enti-
ties, that is, PLA is part of PLA Army Air Force University. To address the
problem of nested entities, TPLinker [7] demonstrated an end-to-end sequence
labeling model with handshaking tagging schema from the view of module design,
which represent each sequence as l × l (l is the length of input sequence) matrix.
However, as the text lengthens, the size of the matrix and the cost of processing
long text will undoubtedly increase. Besides, [8] is convinced that these methods
lack an valid representation of the relation types, because relation is determined
by the entity pairs, so it should be represented as a matrix rather than one-
hot vectors. Neither Casrel nor TPLinker use the semantic information of the
relation type.

To overcome the aforementioned drawbacks, we design a novel frame-
work called ReMERT (Relational Memory-based Extraction for Relational
Triples). Given a sentence, ReMERT aims to answer three questions: “What
are all the possible subjects?”, “What are the involved relations for each sub-
ject?”, and “Which object(s) can be obtained according to specific (s, r) pair?”.

Briefly, this work has the following two contributions: (1) An innovative
framework is designed to enrich the representation of relation types of complex
RE tasks. (2) The proposed model has excellent performance on English NYT
dataset, and achieves the new state-of-the-art on the Chinese DuIE dataset.

2 Related Work

Early work could be summarized into two major approaches: the pipeline meth-
ods and joint methods. The pipeline methods [1,2] are divided into two steps:
First named entity recognition (NER) to extract all potential entities in the
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Fig. 1. Examples of overlapping triples and nested entities. In overlapping triples, EPO
shows at least two relations overlapping in the same entity-pair. SEO means that at
least two relations sharing a single entity in sample. In nested entities, Inner-NE as in
the same relation, entity pairs are nested. Extra-NE as entity pairs is nested between
different relations. Bold texts are the nested parts.

input sequences. Then the entities are combined in pairs, and their relations
are classified by the relation classification (RC) module. However, [9] points
out that the pipeline methods ignores the interaction between the NER and
RC modules, and suffer from the error propagation problem. To address these
problems, recent work proposes joint methods [3], which aims to obtain triples
simultaneously through the combined module of NER and RC. Compared with
the pipeline methods, the joint methods can simultaneously extract and leverage
the deep correlations between entities and relations. These models have achieved
superior performance than traditional pipeline methods.

Although the above work showed promising results, they completely aban-
doned overlapping triples. Zeng et al. [5] first studied this problem and clas-
sified sentences with overlapping triples into EPO and SEO. They proposed
an end-to-end model that considers relation extraction as a problem of gener-
ating triples with copy mechanism. GraphRel [10] adopts graph convolutional
networks, which excelled the former methods in solving the problem of overlap-
ping triples by incorporating the regional and sequential dependency features
of words. CasRel [6] provided a fresh perspective for revisiting the RE task by
modeling the relations as a function that maps subjects to objects. [8] calculates
the relational score matrix of entity pairs on all relation types by extracting dif-
ferent entity embeddings from the pretrained language model, yet it costs much
longer time to compute a l × l matrix with label.

In this paper, we propose a new extraction framework called ReMERT to
solve three problems: overlapping triples, nested entities and insufficient rep-
resentation of relation types. Experiments prove that the proposed framework
performs better than previous work.
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3 Methodology

Relational triples extraction is used to identify all potential relational triples
in a sentence, some of which face bottlenecks of overlapping triples and nested
entities. In order to break these bottlenecks, we adopted the idea of hierarchical
sequence labeling and designed a joint model to directly extract relational triples.
As shown in Fig. 2, first, the model encodes the sentences with shared BERT[11]
encoder. Second, build a Relation-specific Subject Extractor (RSE) to extract
subjects and related relation types. Then, we get the embedding of the relation
type from the RM module. Finally, for each extracted (s, r) pair, the Object
Extractor (OE) is triggered to detect object(s).

Fig. 2. The framework of RSE module and RM module. In this example, two candidate
subjects are detected at the low level, and the presented 0/1 tagger indicates the start
and end positions of nested subjects in different relation types. In this way, two different
(subject, relation) pairs (PLA, Child) and (PLA Army Air Force University, Locate
in) can be obtained.

We wrap these extractors into a general paradigm called Relational Memory-
based Extraction for Relational Triples (abbreviated as ReMERT). Such
paradigm can be understood by decomposing the joint probability of triple
extraction into condition probability:

∏

(s,r,o)∈T

P ((s, r, o)|S) =
∏

(s,r)∈T

P ((s, r)|S)
∏

o∈T |(s,r)
P (o|(s, r), S) (1)

where given an annotated sentence S and a set of potential triples T = (s, r, o)
in S, (s, r) ∈ T denotes a subject appearing in the triples T . T |(s, r) is the set



304 C. Zhao et al.

of triples led by (s, r) pair in T . o ∈ T |(s, r) is an object led by subject s
and corresponding relation r in T . We aim to maximize the data likelihood
of Eq. 1 on training dataset. In this manner, the OE module can consider the
semantics of a given (s, r) pair when extracting objects. Besides, this paradigm
no longer extracts all entities in the first step, only identifying subjects that
may participate in the target triple. Intuitively, the framework provides two
benefits. First, we make no assumption on how multiple triples share entities in
a sentence, which helps to deal with the problem of overlapping triples. Secondly,
due to the hierarchical sequence labeling strategy in the RSE module, it can solve
the problem of nested entities in different relation types. We will describe the
details in the following sections.

3.1 Bert Encoder

We utilize BERT [11] model to incorporate information from multi-layer bidi-
rectional Transformer [12] encoder based on language representation model. For
a given word w, the input representation of BERT encoder is denoted as Is. The
generation formula is:

Is = Et + Ep (2)

where Et is the token embedding corresponding to w in the WordPiece embed-
dings with a 30,000+ vocabulary, Ep is the position embedding which indicates
the position index of w in the input sentence. Note that in this work the input
is a single sentence instead of sentence pair, hence the segmentation embedding
as described in original BERT paper was not taken into account in Eq. 2

3.2 ReMERT Decoder

Compared with the generality of the encoder, the superiority of this model is
mainly manifested in the decoding layer. The basic idea of the decoder is to
extract triples in three ways. First, the RSE module detects relation-specific
subjects from the input sentences. Then for each specific relation type, we obtain
relational representation from the RM module. Finally, all possible objects are
detected by the OE module.

Relation-Specific Subject Extractor. The RSE model takes sequence as
input and captures contextual features using BERT. It is designed to distin-
guish all subjects and the corresponding relation types by directly decoding
the encoded vector hN , which is produced by the BERT encoder. As shown in
Fig. 2, the size of the vector produced by RSE module is R×L×2. The detailed
operations are as following:

pstartsub
rj ,i

= σ(Wr
startxi + br

start) (3)

pendsub
rj ,i

= σ(Wr
endxi + br

end) (4)
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where pstartsub
rj ,i

and pendsub
rj ,i

represent the probability of identifying the i-th token
as the start and end position of a subject in specific relation type rj , relation
type id j ∈ (1, 2, ..., R). The corresponding token will be assigned with tag 1 if
the probability exceeds a certain threshold or with a tag 0 otherwise. xi is the
encoder representation of the i-th token in the input sequence, where Wr

(.) is a
parameter matrix and b(.) is is a bias vector to be learned during training, σ is
the sigmoid activation function.

Relational Memory Module. The previous section provides all possible sub-
jects in the input sentence and their corresponding relation types, marked as
(s, r) pairs. The RM module aims to obtain the semantic representation of the
relation type according to the relation id, and integrate the semantic information
into the object prediction stage.

We first create a simple lookup table to store all relation embeddings. Notably,
the parameters of these relation embeddings are randomly initialized and updated
in the training progress. Secondly, we retrieve the corresponding relation embed-
ding by a specific relation id, which can be expressed by the following formula:

lrj = RET(relj) (5)

where relj is the relation id j, lrj is the vector of j-th in relation embeddings
table (RET). The embedding module contains R vectors with size h, where R is
the number of relation types and h is the dimension of encoded hidden states.

Through the above two steps, we obtain the start and end positions of all
subjects in the input sentence and their token embeddings, which are denoted as
vstart
sub and vend

sub respectively. The representation of the subject vsub is the sum
of the start and end embeddings.

Object Extractor. After we get the subject representation vsubk and its cor-
responding relation embedding Rrj , the object extractor aims to identify all
objects. As the Fig. 3 shown, we utilize binary classification to determine whether
a token belongs to the start or the end of an object. The detailed operation of
the object extractor for each token is as following:

p
startobj
i = σ(Wrj

start(xi + vsubk + Rrj ) + bstart) (6)

p
endobj

i = σ(Wrj
end(xi + vsubk + Rrj ) + bend) (7)

where p
startobj
i and p

endobj

i represent the probability of identifying the i-th token
in the input sequence as the start and end position of an object, respectively.
Wr

(.) represents the trainable weight, b(.) is the bias and σ is the sigmoid activa-
tion function. For each (s, r) pair, we iteratively apply the same OE process on
it. The advantage is that the overlapping objects between different triples can
be solved, as long as these triples contain different subjects or relations.

Loss Function. We define the training loss (to be minimized) of ReMERT as
the sum of the negative log probabilities of the true start and end labels by the
predicted distributions:
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Fig. 3. Object Extractor

L = − 1
n

n∑

i=1

(logP (ystart
i = ŷstart

i ) + logP (yend
i = ŷend

i )) (8)

Two learning signals are provided to train the model: LRSE for RSE module
and LOE for OE module, both of which are formulated as Eq. 8. To share input
utterance across tasks and train them jointly, for each training instance, we
randomly select a relation-specific subject from the golden subject set as the
specified input of the OE module. Finally, the joint loss is given by:

Lloss = LRSE + LOE (9)

Then, the model is trained with gradient descent. The optimization Eq. 9 enables
the extraction of subject, object, and relation influence each other, so that the
loss in each component can be mutually constrained.

4 Experiments

This section describes the experimental process and best results on the public
datasets. The overall experiment is compared with the baseline methods, and
fine-grained analysis is performed on different complex relation types.

4.1 Experimental Settings

We use Tesla V100 GB as training station. Part of hyper-parameters are shown
in Table 1. The proposed model is implemented with Pytorch and the net-
work weights are optimized with Adam [13]. Based on the problem formulation
described in Sect. 3, the proposed model actually fits a binary classifier to pre-
dict the existence of triples, which actually gives a probability for each possible
token. Therefore, we set the threshold to 0.5 to differentiate the positive and
negative classes.
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Table 1. Hyper-parameters used for training on each dataset

Hyper-parameters NYT DuIE

Pretrained model BERT-Base, cased BERT-Base, Chinese

Batch size 8 8

Learning rate 3 × 10−5 5 × 10−5

Max train epochs 100 20

Max sequence length 512 256

4.2 Datasets and Metrics

We evaluate the proposed framework on two public datasets, NYT [14] and
DuIE1. NYT is an English dataset, which was originally produced by the dis-
tant supervision method. It consists of 1.18M sentences with 24 predefined rela-
tion types. In this article, we use the NYT datasets released by [5], in which
contains 56195 sentences for training, 5000 sentences for validation, and 5000
sentence for test. DuIE is a Chinese dataset released by Baidu Inc. for informa-
tion extraction, consisting of 210k Chinese sentences with 49 pre-specific relation
categories. According to the different overlapping and nested entities patterns
of relational triples, we split the sentences into four categories, namely Enti-
tyPairOverlap (EPO), SingleEntityOverlap (SEO), InnerNestedEntities (Inner-
NE) and ExtraNestedEentities (Extra-NE). The statistics of the two datasets
are described in Table 2. Following previous work [10], the extracted relational
triple (s, r, o) is regarded as correct only if the relation and (s, o) entity-pair are
all correct. For fair comparison, we report the standard Precision (Prec), Recall
(Rec) and F1 score as in line with baselines.

Table 2. Statistics of the data set. Please note that a sentence can belong to both the
EPO category and the SEO category. In addition, there are few examples of nested
entities in NYT, and there are some in DuIE.

Category NYT DuIE

Train Test Train Test

EPO 9782 978 173,084 1925

SEO 14735 1297 21,639 13331

Inner-NE 63 2 2360 287

Entra-NE 2 0 2367 290

All sentences 56195 5000 173084 21639

1 Available at http://ai.baidu.com/broad/download.

http://ai.baidu.com/broad/download
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4.3 Baselines

As described above, pretrained language model especially BERT, are very pow-
erful and may cause unfair comparisons between the proposed method and the
traditional. Therefore, we select some recent work, and reproduced with BERT.

NovelTagging [3] was the first framework to extract relational triples by
a novel sequential tagging scheme. GraphRel [10] utilized graph convolutional
network to extract overlapping relations by splitting entity mention pairs into
several word pairs and considering all pairs for prediction. BiTT [15] trans-
ferred the triples with the same relation category in a sentence are especially
represented as two binary trees, each of which is converted into a word-level
tags sequence to label each word. CasRel [6] introduced a novel cascade binary
tagging framework based on BERT model, which first extracted all possible
subjects in a sentence then identified all possible relations and corresponding
objects for each subject. TPLinker is the first one-stage joint extraction model
that can extract all kinds of overlapping relations without the influence of expo-
sure bias [7]. The experiment results of different baselines for relational triple
extraction on two datasets are shown in Table 3.

Table 3. The main result. Bold indicates the highest score. The ♣ is directly quoted
from the result of [15]. The ♠ marked result is reproduced through the official imple-
mentation.

Method NYT DuIE

Prec Rec F1 Prec Rec F1

♣ NovelTagging 89.0 55.6 69.3 75.0 38.0 50.4

♣ GraphRel 82.5 57.9 68.1 41.1 25.8 31.8

♣ BiTT 89.7 88.0 88.9 75.7 80.6 78.0

♠ CasRel 89.6 88.8 89.2 81.5 77.8 79.6

♠ TPLinker 90.3 90.6 90.4 80.8 80.4 80.6

Ours 89.2 90.2 89.7 81.5 81.3 81.4

4.4 Results and Analysis

We compared the proposed method with the baseline model in terms of quality
and efficiency.

Quality. Table 3 shows the Prec, Rec, and F1 of our framework and the base-
line models. In particular, the performance of ReMERT on NYT is close to
state-of-the-art, and it is 0.8% higher than the state-of-the-art model on DuIE.
We can also observe that ReMERT achieves a similar F1 score to CasRel and
TPLinker on NYT dataset. We consider it is because: 1) Although CasRel can-
not address nested entities problem, but there are almost no nested entities in
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NYT dataset, so the superiority of proposed model cannot be proved. 2) The
methods of exceeding 90% F1 score have already surpassed human-level perfor-
mance. In other words, the room for boosting is too limited. For the comparison
of their performance in dealing with nested entities, please refer to Table 4.

Table 4. The performance of the three methods on the Inner-NE and Extra-NE test
sets. It is worth noting that since NYT contains almost no examples of nested entities,
we only verify them on DuIE. It can be seen that whether it is Inner-NE or Extra-NE,
the F1 score of ReMERT is higher than that of CasRel and TPLinker.

Method Inner-NE Extra-NE

Prec Rec F1 Prec Rec F1

CasRel 74.4 59.3 66.0 73.7 58.0 64.9

TPLinker 75.0 61.5 67.6 74.1 60.0 66.3

Ours 74.2 63.8 68.6 73.4 60.6 66.4

Efficiency. The efficiency comparison results of the three methods are shown
in Table 5. We compare the efficiency of different methods in terms of the total
parameters of the model, the average training time of an epoch and average
inference time. Compared with CasRel, ReMERT utilizes a similar entity label-
ing strategy, so the two perform similar in terms of parameters and calculation
time. TPLinker modeling the entity span as L × L matrix, while ReMERT is
only represented by R ×L× 2 matrix. The size of L is usually much bigger than
R, so ReMERT has fewer parameters, and more efficient operation.

Table 5. Comparison of computational efficiency. Params all (millions) represents the
number of parameters of the entire model. Training time represents the average time
(h) of the model cost for each epoch. Inference time (h) represents the average time it
takes for the model to predict a sample.

Model Params all (million) Training time (h) Inference time (h)

Casrel 108.3 1.1 0.35

TPLinker 109.6 1.2 0.43

ReMERT 108.4 3.6 0.32

5 Conclusion

In this paper, we proposed a new extraction framework called ReMERT to solve
the problem of overlapping triples, nested entities and insufficient representation
of relation types. The experimental results show that the proposed model out-
performs all baselines and achieves a new state-of-the-art on the DuIE datasets.
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In the future, we plan to build a large Chinese RE dataset containing substan-
tial complex relational triples to better verify the superiority of our model and
explore its performance on other information extraction tasks.
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Abstract. Named entity recognition (NER) is a basic task in natu-
ral language processing. However, most existing models are hard to
detect entities with nested structure which means that an entity con-
tains one or more entities. In this paper, we propose a boundary-aware
approach for nested NER. First, word information is incorporated in the
same dimension via Lexicon, in which characters are feed into LSTM to
learn internal structure of words and obtain character representation. To
augment word representation, Graph Convolutional Network (GCN) is
applied to extract dependency information between entities. Second, our
model can detect boundaries to locate entity by using Star-Transformer,
which is suitable for small-scale corpus and unstructured texts because
of its star structure. Based on predicted boundaries, our model utilizes
boundary-aware regions to predict entity categorical labels, which can
reduce the number of candidate entities and decrease computation cost.
In our experiment, it shows an impressive improvement on forum corpus
and that our model can perform well on a small-scale corpus.

Keywords: Nested NER · Dependency information · Star-transformer

1 Introduction

Named entity recognition (Luo et al. [7]) aims to identify entities with specific
meanings from texts such as Person, Organization, etc. The previous solution is
to regard NER as a sequence labeling task where each token is tagged with a
boundary label and a categorical label. For example, a token can be tagged with
E-Location, where E indicates the end of an entity and Location indicates the
corresponding entity categorical label.

LSTM-CRF model (Huang et al. [3], Ma et al. [9]) includes bidirectional
LSTM and a Conditional Random Field layer, which achieves promising results.
However, it is difficult for LSTM to have efficient parallel computing capabilities
owing to its own sequence-dependent structure. Transformer (Vaswani et al. [12])
makes up for the shortcomings of low parallelism of LSTM by attention mecha-
nism. Fully connected attention mechanism means that each token establishes a
direct connection with other tokens, thus capture long-range features. However,
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 312–324, 2021.
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What fully-connected structure brings is that there are many parameters and a
large amount of training data is required. Owing to small scale of forum corpus,
it is easy to overfit to the training data by utilizing Transformer.

Jia et al. [4] propose a character-level model for NER. Compared to NER in
English, Chinese NER is more difficult since sentences have vague boundaries,
thus leading to that segmentation is a little rough and can’t find more detailed
semantic information. Therefore, some approaches resort to performing Chinese
NER at character level. Models based on fine-grained entity recognition can
reduce memory and time complexity. However, using characters only distorts
the meaning of words and has a decrease in model performance. Additionally,
the word-level model (He et al. [2]) splits sentences into words, which can make
semantic information relatively complete. However, the size of vocabulary is very
large, thus increasing the memory and time complexity.

2 Motivation

In this paper, we perform Named entity recognition (NER) on the forum dataset.
First, the scale of this dataset is small. The statistics are shown in Table 1. We can
see that forum corpus contains 157 documents and 4808 sentences. Entity types
consist of ‘PER’, ‘ORG’, ‘GPE’, ‘LOC’ and ‘TITLE’. Second, some entities
in this dataset are nested and percentage of nested entities is high, even the
percentage of nested entities belong to ‘TITLE’ is up to 80%. Third, Examples
shown in Fig. 1 denote that there are different kinds of ways to nest. Some entities
share the same beginning and some entities share the same end. However, the
traditional sequence labeling task can’t recognize nested entities, because it does
not support assigning multiple tags to a token.

To handle this problem, we introduce a boundary-aware neural model (Zheng
et al. [13]) as our baseline system, which leverages entity boundaries to pre-
dict entity categorical labels. Based on it, we propose an approach to capture
non-local and local information and incorporate dependency information. First,
motivated by Lexico (Ma et al. [8]), bigram embedding is used for augment-
ing character representation and incorporating word information. Second, we
utilize GCN (Kipf et al. [6]) to model dependency information between entities.
Third, owing to the small-scale dataset, Star-Transformer (Guo et al. [1]) is used
for encoder instead of LSTM which can prevent overfitting and achieves good
performance in unstructured texts. Last, in terms of decoder, we apply a single-
layer sequence labeling model to identify entity boundaries because tokens in
nested entities can share the same boundary labels which can be seen in Fig. 1.
Based on the detected boundaries, we match each tokens with label B to tokens
with label E. The spans between them are considered as candidate entities. The
representation extracted by Star-Transformer of candidate entities are used to
classify categorical label. Also, considering that two tasks share the same entity
boundaries, we use joint learning for training these tasks simultaneously, which
can capture the connection of boundary detection and label classification. Star-
Transformer with GCN based on character and word information proposed in
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Table 1. The statistics of forum dataset.

Train Dev Test All Nested Percentage

Documents 97 40 20 157 – –

Sentences 3048 1145 615 4808 – –

PER 5500 1869 1127 8496 2032 23.92%

GPE 3284 1418 606 5308 2226 41.94%

ORG 1167 369 150 1686 891 52.85%

LOC 755 314 112 1181 499 42.25%

TITLE 202 100 23 325 261 80.31%

All 10908 4070 2018 16996 5909 34.77%

Fig. 1. Examples of nested entities in forum texts. B, I, E represent the start, middle
and end of the entity. PER, ORG and GPE are categories of entities.

this paper shows an impressive improvement on forum corpus and can recognize
different kinds of nested entities.

3 Model

Following the overview in Fig. 2, our model consists of two parts as boundary
detection and categorical labels prediction. The boundary detection part aims
to predict whether one token is first or last word of an entity to locate candidate
entities. Another task aims to predict the categorical labels of candidate entities.

3.1 Word Representation

For a character-level NER model, the input sentence is seen as a character
sequence s = [c1, c1, ..., cn], where ci represents the i-th character and n is the
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Fig. 2. The general structure of our model. Char embedding is feed into LSTM layer.
We concentrate char embedding, word embedding and dependency information mod-
eled by GCN and feed them into Star-Transformer to extract shared feature for detect-
ing the boundaries of entities and categorical prediction.

source length. We use a character embedding layer to represent each character,
where dc is the dimension of character embedding vector. However, this model
is often accompanied by a decrease in model performance. The useful of charac-
ter bigrams has been proved for representing characters especially for methods
not using word information. Therefore, we concentrate character embedding and
bigram embedding as Eq. (1):

xi
c = [Ec(ci);Eb(ci, ci+1)] (1)

where db is the dimension of bigram embedding vector, Eb denotes the bigram
embedding lookup table, Ec denotes the character embedding lookup table.

To augment word representation, GCN is applied to model dependency infor-
mation between entities. First, a sentence can be parsed to a dependency tree. In
Fig. 2, we can see that dependency relation of the sentence contains ‘nmod:prep’,
‘acl’ and ‘compound:nn’. We can regard dependency trees as a kind of directed
graph. Given a graph with n nodes, one node represents one bigram, the depen-
dency graph can be represented with an n×n adjacency matrix A where Aij = 1
if there is a dependency relation between bigram i and bigram j. In an L-layer
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GCN, if we denote by hl−1
i the input vector and hl

i the output vector of node i
at the l-th layer, a graph convolution operation can be written as Eq. (2)

hl
i = σ(

n∑

j=1

AijW
lhl−1

i + bl) (2)

where W l is a linear transformation, bl is a bias term, and σ is a nonlin-
ear function, hl

i is output of dependency representations. Intuitively, during
each graph convolution, each node gathers and summarizes information from
its neighboring nodes.

After applying an L-layer GCN over word vectors, we obtain dependency rep-
resentations, the final word representation can be constructed by concentrating
character embedding, bigram embedding and dependency representations.

3.2 Encoder

Our encoder uses a Star-Transformer to obtain context-sensitive hidden state.
As shown in Fig. 3, the fully-connected attention-based model like Transformer is
not suitable for small-scale corpus because this kind of model needs lots of param-
eters and is easy to overfit to small-scale dataset. Therefore, Star-Transformer
is utilized in which complexity can be reduced from quadratic to linear. Star-
Transformer consists of a relay node and n satellite nodes, where a relay node
is used for gathering and absorbing knowledge from all the satellite nodes. The
state of i-th satellite node represents the features of i-th character in a text
sequence. Each radical connection links a satellite node to a relay node. Thus,
every two non-adjacent satellite nodes can receive non-local information with a
two-step update. Each ring connection links a satellite node to its adjacent satel-
lite nodes, thus making it easy to capture local information. With two kinds of
connections, Star-Transformer can capture local and long-range compositions
simultaneously. The implementation of Star-Transformer is also based on the
attention mechanism.

Given a sequence of word representation H, we can use a query vector q to
select the relevant information with attention as Eq. (3):

Attention(q,K, V ) = softmax(
qKT

√
d

)V (3)

Where K = HWK , V = HWV and WK ,WV are learnable parameters.
To gather more useful information from H, we can use multi-head attention

with k heads as Eq. (4).

Attention(q,K, V ) = (a1 ⊕ ... ⊕ ak)W o (4)

ai = Attention(qWQ
i ,HWK

i ,HWV
i ) (5)
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Fig. 3. The method of node connection of Transformer and Star-Transformer

Where ⊕ denotes concatenation operation, and WQ
i ,WK

i ,WV
i ,WO are learnable

parameters.
Let st ∈ R1×d and Ht ∈ Rn×d denote the states of the relay node and all the

n satellite nodes at time step t. During encoding word representation, we start
from initializing the state with H0 = e and s0 = average(e), where e denotes
word representation.

The update can be divided into the update of satellite node and the update of
relay node. First, the update of each satellite node is updated from its adjacent
nodes hi−1, hi+1, previous state of relay node st−1 and its correspond embedding
ei as Eq. (6), (7), (8).

Ct
i = [ht−1

i−1, h
t−1
i , h

(t−1)
(i+1), e

i, st−1] (6)

ht
i = MultiAttention(ht−1

i , Ct
i ) (7)

ht
i = LayerNorm(ReLU(ht

i)) (8)

Second, the update of relay node st gathers the information of all satellite nodes
and its previous relay node state as Eq. (9), (10).

st = MultiAttention(st−1, [st−1;Ht]) (9)

st = LayerNorm(ReLU(st)) (10)

3.3 Decoder

The decoder of our model consists of two subtasks as boundary detection and
categorical labels prediction. Different from assigning an entity categorical label
to each token, we predict the boundary first.

Entity Boundary Detection. Boundary detection aims to predict start and
end location of an entity. The above hidden state extracted by Star-Transformer
is feed into a classifier:
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Oi = W start · hi + bstart (11)
Pi = softmax(Oi) (12)

Where Pi denotes the probability of character being boundary of an entity. Based
on the classifier, we can predict boundary labels. Boundary labels consist of ‘B’
denoting the beginning of the entity, ‘I’ denoting the middle of the entity, ‘E’
denoting the end of the entity and ‘O’ denoting non-entity.

Boundary-Aware Entity Categorical Label Prediction. Our assembling
strategy is that every start boundary is matched with all end boundaries after
it. Based on Pi, each token can be assigned with labels ‘B’, ‘I’, ‘E’ and ‘O’.
Given hidden state extracted by Star-Transformer H = (h1, h2, ...hn) and its
corresponding predicted boundary label sequence L = (l1, l2, ...ln), we match
each token ‘B’ with label ‘E’ to construct candidate entity regions. Especially,
considering that there are entities containing one single token, we match tokens
with label ‘B’ to themselves firstly.

The representation of candidate entities Ri,j is obtained as following:

Ri,j =
1

j − i + 1

j∑

k=i

hk (13)

where hk denotes the output of encoder. For example, the predicted bound-
ary label sequence is L = (B,B,E, I, I, I, I, I, I, E), the candidate entities are
R0,0, R0,2, R0,9, R1,1, R1,2, R1,9.

Our model only classifies boundary-relevance regions Ri,j , thus reducing the
number of possible regions. Ri,j which represents features of candidate entity
is feed into a classifier. The number of categorical labels is six, which contains
‘PER’, ‘ORG’, ‘LOC’, ‘TITLE’, ‘GPE’ and None.

typei,j = U · Ri,j + b (14)
ti,j = softmax(typei,j) (15)

3.4 Loss Function

In our model, we predict categorical labels based on predicted entity boundaries.
Therefore, two tasks share the same entity boundaries, we apply a multitask loss
for training the two tasks simultaneously. The multitask loss is defined as follows:

Lossboundary = −
∑

ˆ(Pi)log(Pi) (16)

Losslabels = −
∑

ˆ(ti,j)log(ti,j) (17)

Lossmulti = α
∑

Lossboundary + (1 − α)
∑

Losslabels (18)

where P̂i and Pi denote predicted entity boundaries and ground-truth boundary
labels, ˆti,j and ti,j denote true distribution and predicted distribution of entity
categorical labels. α is a hyper-parameter which is assigned to control the degree
of importance for each task.
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4 Experiment

4.1 Experimental Settings

In this paper, we use Star-Transformer with GCN based on character and word
information on the forum corpus which is a publicly available data for Nested
Named Entity Recognition. We set different parameters to conduct the experi-
ment. Also, we discuss and analyze results, and precision, recall, F1 are used to
evaluate results.

– Parameter Setting: Boundary detection and label prediction share the
same entity boundaries, we apply a multitask loss for training these tasks
simultaneously. α is a hyper-parameter used for controlling the degree of
importance for each task. In this mode, we set α to 0.3. In terms of clip
norm, gradient clipping is generally used to solve the problem of gradient
explosion which occurs frequently in the process of training LSTM, so set
clip norm for gradient clipping. The parameters of our model are shown in
Table 2.

– Baseline: We compare our model with the following methods: Sohrab and
Miwa (2018) propose an exhaustive region classification model which enumer-
ates all the possible regions or spans in the sentence to map to a given set of
tags. Ju et al. (2018) propose a hierarchical approach to predict the represen-
tation of the token. Zheng et al. (2019) propose LSTM for extracting shared
features for entity boundary detection and categorical label prediction. The
results are shown in Table 3.

– Evaluation Metrics: Only when entity boundary and categorical label are
correct simultaneously, an entity is confirmed correct. The metrics are preci-
sion, recall and F-score to evaluate the performance.

No matter what granularity, three metrics of Star-Transformer which acts as
encoder are higher than LSTM. In compared to LSTM which can not capture
long distance features, Star-Transformer can capture non-local and local com-
positions based on attention mechanism, which leads to identifying more enti-
ties. Additionally, overfitting will not happen on this small-scale dataset because
structure of Star-Transformer is star topology, whose complexity is reduced from
quadratic to linear.

Forum texts have vague word boundary and belong to unstructured texts.
Thus, the model on this dataset needs to incorporate word information to make
semantic information relatively complete. By concentrating character embedding
and bigram embedding, vocabulary is relatively reasonable and our model is able
to learn meaningful and context representation without high memory and time
complexity during calculation of embedding. In Table 3, we can observe that
performances of three character-level models are better by incorporating into
word information.
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Table 2. The parameters of our model.

Parameter Value Parameter Value

Char embedding size 200 Dropout 0.5

Word embedding size 200 Learning rate 0.0005

Hidden size 200 Batch size 20

Multi head 5 Clip norm 5

Star layer 4 ∝ 0.3

GCN layer 2 Optimizer Adam

Table 3. The results of our model.

Baseline Level Precision Recall F1

Sohrab and Miwa (2018) Char 75.03% 61.94% 67.86%

Ju et al. (2018) Char 75.77% 64.05% 69.41%

Zheng et al. (2019) Char 73.78% 66.50% 69.95%

LSTM Char 73.78% 66.50% 69.95%

Transformer Char 69.52% 68.58% 69.08%

Star-transformer Char 75.40% 69.87% 72.53%

Star-transformer + GCN Char 71.71% 65.06% 68.23%

LSTM Word 69.73% 65.06% 67.32%

Transformer Word 61.41% 61.60% 61.50%

Star-transformer Word 75.50% 65.91% 70.46%

Star-transformer + GCN Word 75.20% 64.17% 69.25%

LSTM Char + word 71.76% 70.27% 71.01%

Transformer Char + word 70.68% 63.18% 66.72%

Star-transformer Char + word 74.04% 70.52% 72.23%

Star-transformer + GCN Char + word 74.44% 71.16% 72.76%

By comparison to Transformer, three metrics of Star-Transformer which
acts as encoder are higher than Transformer. Although Transformer has a fully
connected attention mechanism and captures long-range features, Transform-
ers needs more parameters and training data than Star-Transformer. Therefore,
performance on small datasets of Star-Transformer is better than Transformer
instead owing to overrfitting to the training data by utilizing Transformer.

Additionally, our model applies GCN to model dependency between entities,
thus augmenting word representation and incorporating dependency informa-
tion. By concentrating bigram embedding, character embedding and dependency
representation modeled by GCN, final performance of our model is better than
other models.

4.2 Performance of Decoder

Our decoder consists of two subtasks: boundary detection and categorical label
prediction. Table 4 shows performance of boundary detection on forum dataset.
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Table 4. The Performance of Our Decoder.

Model Decoder Precision Recall F1

Baseline Boundary detection 80.62% 76.73% 78.63%

Categorical prediction 83.32% 83.89% 83.60%

Our model Boundary detection 82.88% 78.05% 80.39%

Categorical prediction 85.49% 82.90% 84.18%

Table 5. The performance of entity recognition.

TYPE Model Gold Predict Correct Accuracy

PER Baseline 1127 1064 747 66.28%

Our model 1127 1081 807 71.61%

ORG Baseline 150 110 61 40.67%

Our model 150 146 81 54%

GPE Baseline 606 521 452 74.59%

Our model 606 564 471 77.72%

LOC Baseline 112 112 72 64.29%

Our model 112 124 73 65.16%

TITLE Baseline 23 26 8 34.78%

Our model 23 14 4 17.39%

Our model locates entities more precisely than compared methods. The perfor-
mance of boundary detection has a great influence on our model. Improving
performance of this task impacts on our model: it generates more true candidate
entities including nested entities, and reduces influence of false entities. Mean-
while, Star-Transformer is suitable for encoding on this forum dataset, thus being
effective to support boundary detection task.

Based on predicted entity boundaries, we assemble boundaries into candidate
entities. Every start boundary is matched with all end boundaries after it. We use
a single-layer sequence labeling model to recognize entity type. We can observe
that categorical label classifier improves precision but hurts recall, even so, final
performance is increased.

4.3 Discussion

Table 5 shows the performances of our model on the five categories on the test
dataset. Predict denotes the number of entities predicted and Correct denotes the
number of entities predicted correctly. By comparing the number of these met-
rics, for example, in terms of entity type LOC, the number of entities predicted is
124 and the number of true entities is 112, we can observe that Star-Transformer
leads to over-identification, which means that it will recognize words that are
not entities as entities, thus reducing precision.
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Table 6 shows the recognition of flat entities which are not nested. Non-Nested
denotes the number of true flat entities and Correct denotes the number of
entities predicted correctly. We can observe that the precision of most categorical
labels prediction is higher than baseline. Table 6 also shows the performance of
recognizing nested entities. Nested denotes the number of true nested entities.
We also observe better performance of our model. However, the correct number
of nested entities accounts for 42.6% on average of all nested entities.

Table 6. The Comparison of Entity Recognition.

TYPE Model Nested Correct Accuracy Non-nested Correct Accuracy

PER Baseline 279 113 40.50% 848 634 74.76%

Our model 279 120 43.01% 848 687 81.01%

ORG Baseline 72 20 27.78% 78 41 52.56%

Our model 72 30 41.67% 78 51 65.38%

GPE Baseline 236 120 50.85% 379 332 87.60%

Our model 236 138 58.47% 379 333 87.86%

LOC Baseline 49 21 42.86% 63 51 80.95%

Our model 49 25 51.02% 63 48 76.19%

TITLE Baseline 15 2 13.33% 8 5 62.5%

Our model 15 3 20% 8 1 12.5%

If an entity has the following nesting condition: one character is both the
beginning of one entity and the end of another entity, the performance of our
model on this condition needs improved. Because sequence labeling model is
applied to detect boundary and can not assign multiple tags to one character.

5 Related Work

A layered sequence labeling model (Ju et al. [5]) is proposed by using a hier-
archical approach to predict the representation of the token. However, it has
higher learning requirements for the decoder. If there is a misjudgment in the
previous iteration process, this problem may be passed on to the subsequent
iteration process. Sohrab et al. [10] propose an exhaustive region classification
model which enumerates all the possible regions or spans in the sentence to map
to a given set of tags. However, It brings about the following problems: high
time and space complexity, difficult classifier training, lots of negative samples
and so on.

Despite their shortcomings, these problems can be mitigated by some manual
rules or settings. Before classification, one or more classifier can be trained to
filter out batches of negative samples. Our model inspired by the boundary-
aware neural model [11,13]. Our model only predicts entity categorical based on
detected entity boundaries, thus decreasing the number of possible regions and
time cost.
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6 Conclusion

In this paper, we propose a boundary-aware model for nested NER on the forum
dataset. We use Star-Transformer with GCN based on character and word infor-
mation as our model. First, word information is incorporated by concentrating
bigram embedding and character embedding. In order to enhance word rep-
resentation, GCN is applied to extract dependency information between enti-
ties. Second, owing to the small-scale dataset, Star-Transformer is used for
encoder instead of LSTM which can prevent overfitting and achieves good per-
formance in unstructured texts. Last, we utilize shared features extracted by
Star-Transformer to predict entity boundaries. Based on predicted boundaries,
our model matches every start boundary with all end boundaries to predict
entity categories. We train two tasks simultaneously by a multitask loss.
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Abstract. Document-level relation extraction (RE) aims to extract
relations between entities within a document. Unlike sentence-level RE,
it requires integrating evidences across multiple sentences. However, cur-
rent models still lack the ability to effectively obtain relevant evidences
for relation inference from multi-granularity information in the docu-
ment. In this paper, we propose Hierarchical Aggregation and Inference
Network (HAIN), performing the model to effectively predict relations
by using global and local information from the document. Specifically,
HAIN first constructs a meta dependency graph (mDG) to capture rich
long distance global dependency information across the document. It
also constructs a mention interaction graph (MG) to model complex
local interactions among different mentions. Finally, it creates an entity
inference graph (EG), based on which we design a novel hybrid attention
mechanism to integrate relevant global and local information for entities.
Experimental results demonstrate that our model achieves superior per-
formance on a large-scale document-level dataset (DocRED). Extensive
analyses also show that the model is particularly effective in extracting
relations between entities across multiple sentences and mentions.

Keywords: Document-level relation extraction · Graph neural
network

1 Introduction

Relation extraction (RE) aims to identify semantic relations between entities
from plain text. With the growing demand for structured knowledge, RE has
attracted much attention in natural language processing. Prior works have made
great progress in extracting relations within a sentence (sentence-level RE). How-
ever, in real world scenarios, a large number of relation instances appear across
sentences. Compared with sentence, a document often contains many entities,
and some entities have multiple mentions under the same phrase of alias. Hence,
document-level RE is a more complex relation extraction problem.
c© Springer Nature Switzerland AG 2021
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Figure 1 shows an example of document-level RE. Early studies [10,12]
defined document-level RE to short text spans (e.g., document only con-
tains two sentences). Some other studies were limited to specific domain (e.g.,
biomedicine). It’s obviously that they are incapable of dealing with the example
in Fig. 1. Recent works [1,7,9] used graph-based neural approaches, since graph
has proven useful in encoding long distance, cross-sentential information. They
mainly put different types of nodes in a same graph and then applied vanilla
GCNs [6] to jointly update nodes. However, current models do not in-depth
explore a reasonable graph aggregation and inference structure which is critical
to model’s understanding of the entire document.

Fig. 1. An example from the DocRED [20] dataset. Entities and mentions involved
in the relation instance (Michael Helm, Award Received, Trillium Book Award) are
colored. Other irrelevant mentions are underlined for clarity (best viewed in color).

From our point of view, as Fig. 1 shows, in order to extract the relation
between Michael Helm and Trillium Book Award. Firstly, we should identify
sentence 1 and 3 are supporting sentences that contain the global context infor-
mation about Michael Helm and Trillium Book Award. Then, identify Michael
Helm is a novelist from sentence 1, The Projectionist(1997) is a novel written by
Michael Helm and nominated for Trillium Book Award from sentence 3. Finally,
we can infer that Michael Helm received Trillium Book Award. Obviously, it’s
a step by step inference behavior, multi-granularity information is aggregated
from coarse to fine (document → mention → entity). But the supporting sen-
tences are scattered in the document, relevant mentions usually don’t appear in
the same sentence, and entities need long distance dependency information.

In this paper, we propose a novel graph-based network for document-level
RE. Our primary motivation is to design a hierarchical aggregation and infer-
ence structure that can do document-level RE as the above intuitive example.
Towards this goal, we address three challenges: (1) how to capture long distance
dependency information of a document? Syntactic dependency tree conveys rich
structural information that is proven useful for many sentence-level RE mod-
els [4,23]. We extend it to document-level, and build a meta dependency graph
(mDG) that can utilize structural knowledge to capture long distance global
dependency information of a document. (2) how to model complex local informa-
tion of mentions? We construct a mention interaction graph (MG) to capture
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local information by mention interactions. Concretely, we merge the initial rep-
resentations of mentions from mDG, build MG by self-attention mechanism [17]
and then apply GCN [6] to encode MG. (3) how to learn entity representations
effectively? We build an entity inference graph (EG) and design a novel hybrid
attention mechanism to encode global and local information from mDG and MG
into entities.

Our main contributions can be summarized as follows:

1. We propose a Hierarchical Aggregation and Inference Network (HAIN),
which features a hierarchical graph design, to better cope with document-
level RE task.

2. We introduce three different graphs to meet the needs of different granularity
information. A novel hybrid attention mechanism is proposed to effectively
aggregate global and local information for entities.

3. HAIN achieves new state-of-the-art performance on DocRED dataset. Our
detailed analysis further shows its superior advantage in extracting relations
between entities of long distance.

2 Methodology

2.1 Model Overview

Given a document D = [x1, x2, ..., xn], where i ∈ [1, n] and xi is the i-th word
in document. Sentences, entities and their corresponding textual mentions are
annotated in the document. The set of relation types is pre-defined. Our goal
is to identify the relations of all entity pairs in the document. Obviously, it is a
multi-label classification problem.

Fig. 2. Architecture of HAIN. Some nodes are omitted for simplicity. MG is a fully
connected graph with learned edge weight from 0.0 to 1.0. In EG, αi, βevi are type and
node attention scores of entity ev calculated by hybrid attention mechanism. mloc is
mention nodes representations learned from MG, mglo, mdpglo are mention and DMDP
nodes representations learned from mDG.

Figure 2 depicts the architecture of our HAIN. (1) First, it uses LSTM [14]
or BERT [2] as encoder to receive an entire document with annotations as input
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and output the contextual representation of each word. (2) Next, it constructs a
meta dependency graph (mDG) by using the dependencies of the syntactic depen-
dency tree. It also creates a mention interaction graph (MG) by self-attention
mechanism [17]. mDG and MG graphs are encoded by using stacked GCN [6]
to respectively capture global and local information of the document. (3) Then,
a novel hybrid attention mechanism is designed to integrate relevant global and
local relation inference information into entities in entity inference graph (EG).
(4) Finally, it uses entities representations learned from EG to predict relations.

2.2 Context Encoder

To obtain the contextual representation of each word, we feed a document D
into a contextual encoder. The context encoder can be a bidirectional LSTM
[14] or BERT [2]. Here we use the BiLSTM as an example:

←−−
hwj

= LSTM(
←−−−
hwj+1 , γj) (1)

−−→
hwj

= LSTM(
−−−→
hwj−1 , γj) (2)

where
←−−
hwj

and
−−→
hwj

represent the hidden representations of the j-th word in
the document of two directions, γj indicates the word embedding of the j-th
word. Finally, the contextual representation of each word in the document is
represented as hwj

= [
←−−
hwj

;
−−→
hwj

].

2.3 Meta Dependency Graph

Based on the contextual representation of each word, we extract document meta
dependency path nodes (DMDP) and mention nodes to construct meta depen-
dency graph. The initial representation of a mention node mi is calculated by
averaging the representations of contained words (e.g., hmi

= [avgwj∈mi
(hwj

)]).
Early approaches [4,13] used all nodes in the syntactic dependency tree of a
sentence. Nan et al., [9] just extracted nodes on the shortest dependency path
(SMDP) between mentions in the sentence, as it is able to make full use of rele-
vant information while ignoring irrelevant information. We extend it to DMDP
by connecting root nodes of each sentence dependency tree in a document.

As Fig. 3 shows, given four mentions m1,m2,m3,m4 in two sentences s1, s2
of document D, and m1,m2 ∈ s1, m3,m4 ∈ s2. SMDP just extracts MDPm1,m2

and MDPm3,m4 as nodes. But our DMDP extracts MDPmi,mj
, i, j ∈ 1, 2, 3, 4

and i �= j as nodes, which will contain more inter-sentential information.
We define an adjacency matrix AD to represent the meta dependency graph,

where ADi,j
= 1 when there is an edge connects node i and node j in dependency

tree. Then we employ a L-layer stacked GCN [6] to convolute the meta depen-
dency graph. Given node u at the l-th layer, the graph convolutional operation
can be defined as:

h(l+1)
u = RELU

( n∑
j=1

ADi,jW
(l)h

(l)
uj + b(l)

)
(3)
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Fig. 3. An example of document meta dependency path nodes (DMDP). Mention and
DMDP nodes are respectively colored in green and yellow. (Color figure online)

where W(l) ∈ R
dn×dn and b(l) ∈ R

dn are trainable parameters, dn is the dimen-
sion of node representations.

After the graph information propagation in meta dependency graph, we can
obtain new representations of mention and DMDP nodes, we respectively denote
them by mglo and mdpglo which encode the semantic information of the whole
document.

2.4 Mention Interaction Graph

Past works [4,9,18] showed that local information is also important for relation
classification, which can be captured by mention interactions. But the local con-
text of different mentions is complex, it is hard to create a graph by explicit
rules (e.g., co-references, syntactic trees or heuristics). Hence, we employ soft-
attention mechanism [17] to construct an implicit graph. The key idea is to use
attention for inducing interactions between mention nodes, especially for those
connected by indirect, multi-hop paths.

We first compute an adjacency matrix AM for mention interaction graph by
using self attention mechanism [17]. Then similar to previous steps in mDG, we
apply graph convolutional operation to aggregate mention interactions.

AM = softmax(
QWQ

t × (KWK
t )T

√
dn

) (4)

h(l+1)
m = RELU

( n∑
j=1

AMijW
(l)h

(l)
mj + b(l)

)
(5)

where WQ ∈ R
dn×dn ,WK ∈ R

dn×dn are trainable projection matrices. Q and K
are both equal to mglo which is from mDG. W(l) ∈ R

dn×dn and b(l) ∈ R
dn are

trainable parameters. After the operation of mutual reasoning between mentions,
we get the mention representations mloc, which contain local information of
mentions.

2.5 Entity Inference Graph

The goal of entity inference graph is to integrate long distance global information
from mDG, and local interaction information from MG into entities. Therefore,
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we generate a fully connect weighted graph with mdpglo, mglo, mloc and e
nodes. The initial representation of an entity node ei is calculated by averaging
of its mention representations (e.g., hei

= [avgmj∈ei
(hmj

)]).
Given a specific entity ei, different types of neighboring nodes may have dif-

ferent impacts on it. For example, the mdpglo may contain more inter-sentential
global information than mloc. But when ei needs fine-grained information, mloc

is more useful. Additionally, different neighboring entities could also have differ-
ent importance. To capture both the different importance at neighboring node
level and neighboring type level for entities, we design a novel hybrid attention
mechanism which can learn the graph connection weights in end to end fashion.

Neighboring Type Attention. For an entity node ev, the neighboring type
attention learns the weights of different types of neighboring nodes. Specifically,
we first represent the embedding of the type τ as hτ =

∑
v′∈Nev

hv′ , which is
the sum of the neighboring node features hv′ , where the nodes v′ ∈ Nev

and
are with the type τ . Then, we calculate the type attention scores based on the
current node embedding hev

and the type embedding hτ :

aτ = LeakyRELU(μT
τ · [hev

||hτ ]) (6)

where μτ is the trainable attention vector for the type τ .
Then we obtain the type attention weights by normalizing the attention

scores across all the types with the softmax function:

ατ =
exp(aτ )∑

τ ′∈T exp(aτ ′)
(7)

Neighboring Node Attention. We design the neighboring node attention to
capture the importance of different neighboring nodes and reduce the weights of
noisy nodes. Formally, for entity node ev and its neighboring node v′ ∈ Nev

with
the type τ ′, we compute the node attention scores based on the node embeddings
hev

and hv′ with the type attention weight ατ ′ for the node v′:

βevv′ = σ(vT · ατ ′ [hev
||hv′ ]) (8)

where v is the trainable attention vector. Then we normalize the node attention
scores similar to above:

β′
evv′ =

exp(βevv′)∑
u∈Nev

exp(βevu)
(9)

After the computation of type attention and node attention, the representa-
tions of all neighboring nodes hu in Nev

are aggregated to h̄′
ev

:

h̄ev
= RELU(

∑
u∈Nev

β′
evv′(huWv + bv)) (10)

h̄′
ev

= LN (
h̄ev

+
(
σ

(
h̄ev

Wl1 + bl1

)
Wl2

))
(11)
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where Wv ∈ R
dn×dn ,Wl1 ∈ R

dn×4dn ,Wl2 ∈ R
4dn×dn . bv ∈ R

dn and bl1 ∈
R

4dn are the bias vectors. LN is the LayerNorm function and σ(·) is activation
function GELU. h̄′

ev
is the v-th entity representation from EG. We get the final

representation e, which contains a vast amount of relation inference information.

2.6 Relation Classification

To classify the relations for an entity pair (ehead, etail), we first concatenate
entity representations and relative distance representations as follows:

êhead = [ehead;Dist(δht)] (12)

êtail = [etail;Dist(δth)] (13)

where δht means the relative distance of the head entity to tail entity, δth is
similarly defined. Dist is a trainable relative distance embedding matrix. Then,
we use a bilinear function to compute the probability for each relation type:

P (r|ehead, etail) = sigmoid(Wr2σ(êheadWr1 ê
tail + br1) + br2) (14)

where Wr1 ,Wr2 ∈ R
dn×dn×dr , br1 , br2 ∈ R

dr are relation type dependent train-
able parameters, dr is the number of relation types. We use binary cross entropy
as the classification loss to train HAIN:

loss = −
dr∑

r=1

yrlog P (r|ehead, etail)) + (1 − yr)log(1 − P (r|ehead, etail)) (15)

where yr ∈ {0, 1} is the true value on relation r.

3 Experiments

3.1 Dataset

We evaluate HAIN on DocRED [20] builted from Wikipedia and Wikidata, which
is the largest document-level RE dataset. Both human-annotated and distantly-
supervised data are offered. We only use the human-annotated data.

3.2 Baseline Models

We compare our HAIN with the following models.

– Sequence-based Models. Yao et al. [20] proposed several baseline models
which used CNN/LSTM as encoder and predicted relations between enti-
ties by a bilinear function. Context-Aware [15] incorporated context relation
information by attention, and Yao et al. [20] adapted it for document-level
RE. HIN [16] aggregated the inference information of different granularity to
predict relations.
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– Graph-based Models. LSR [9] induced a latent document graph by maxi-
mum tree theory and used GCN for multi-hop reasoning. Nan et al. [9] also
adopted GCNN [13] and AGGCN [23] for DocRED, while these are state-of-
the-art sentence-level RE models. GEDA [7] characterized the complex inter-
action between sentences via a dual attention network. GAIN [22] proposed
a novel path reasoning mechanism to infer relations between entities.

– PLM-based Models. BERT-RE [19] simply used BERT [2] as encoder to
get a contextual entity representations. CorefBERT [21] designed a mention
reference prediction task to enhance the coreferential reasoning ability of the
pre-trained language model explicitly.

Table 1. Main results of different models on DocRED. Results with † are implemented
and published by Nan et al. [9]. Other results are reported in their original papers.

Model Dev Test

IgnF1 F1 IgnF1 F1

CNN [20] 41.58 43.45 40.33 42.26

LSTM [20] 48.44 50.68 47.71 50.07

Context-Aware [20] 48.94 51.09 48.40 50.70

HIN-GloVe [16] 51.06 52.95 51.15 53.30

GCNN† [13] 46.22 51.52 49.57 51.62

AGGCN† [3] 46.29 52.47 48.89 51.45

GEDA [7] 51.03 53.60 51.22 52.97

LSR-GloVe [9] 48.82 55.17 52.15 54.18

GAIN-GloVe [22] 53.05 55.29 52.66 55.08

HAIN-GloVe 54.98 56.03 54.73 55.76

BERT-REbase [19] – 54.16 – 53.20

GEDA-BERTbase [7] 54.52 56.16 53.71 55.74

HIN-BERTbase [16] 54.29 56.31 53.70 55.60

CorefBERTbase [21] 55.32 57.51 54.54 56.96

LSR-BERTbase [9] 52.43 59.00 56.97 59.05

GAIN-BERTbase [22] 59.14 61.22 59.00 61.24

HAIN-BERTbase 59.77 62.31 59.43 61.41

CorefBERTlarge [21] 56.73 58.88 56.48 58.70

GAIN-BERTlarge [22] 60.87 63.09 60.31 62.76

HAIN-BERTlarge 61.27 63.91 61.23 63.01

3.3 Experimental Setup

Following Yao et al. [20], we use the GloVe [11] embedding with BiLSTM, and
BERT [2] as the context encoder. We use spaCy1 to get syntactic dependency
1 https://spacy.io/.

https://spacy.io/
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parse tree for each sentence. Then we use NetWorkX2 to represent the depen-
dency parse tree. In our HAIN implementation, we use 3 layers of GCN and set
the dropout rate to 0.4, learning rate to 0.001. We train HAIN using Adam [5]
as optimizer. All hyper-parameters are tuned on the development set.

We use F1 as the evaluation metric. Due to some relation instances are present
in both training and dev/test sets, to avoid introducing evaluation bias, we also
report Ign F1 which denotes F1 scores excluding relation instances shared by
the training and dev/test sets.

3.4 Main Results

Table 1 lists the results of different models in DocRED [20] dev and test set. We
can find that:

(1) The graph-based models [3,9] obtain comparable results, and the best
graph-based model LSR [9] outperforms the best sequence-based model HIN [16].
We owe it to the graph structure can better encode long distance, cross-sentential
information. (2) BERT [2] can further boost the performance of our model, which
indicates the importance of prior knowledge. For example, HAIN-BERTbase out-
performs HAIN-GloVe 6.28/5.65 in F1 scores. (3) HAIN-BERTlarge has achieved
the best results compared with all the models. We attribute it to the hierarchical
graph structure and hybrid attention mechanism, the former can model global
and local information from the document, the latter can effectively synthesize
them.

Table 2. Intra- and inter-sentence experimental results. (Models with ♠ are reported
in Nan et al., [9]. Model with † is re-trained based on their open implementation.)

Model Intra-F1 Inter-F1

LSTM ♠ [20] 56.57 41.47

LSR-GloVe ♠ [9] 60.83 48.35

GAIN-GloVe [22] 61.67 48.77

HAIN-GloVe 62.72 49.87

BERT-REbase ♠ [19] 61.61 47.15

GLRE† [18] 63.63 51.56

LSR-BERTbase ♠ [9] 65.26 52.05

GAIN-BERTbase [22] 67.10 53.90

HAIN-BERTbase 68.34 54.70

2 https://networkx.org/.

https://networkx.org/
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3.5 Detail Analysis

Intra- and Inter-sentence Performance. An entity pair requires inter-
sentence reasoning if the two entities from the same document have no mentions
in the same sentence. We report the Intra-F1 and Inter-F1 scores in Table 2,
which only consider intra- or inter-sentence relations respectively.

Under the same setting, our HAIN outperforms all the other models in
both intra- and inter- sentence setting. In particular, the differences in Inter-
F1 scores between HAIN and other models tend to be larger than the differences
in the Intra-F1 scores. For example HAIN-BERTbase improves 2.65 Inter-F1
scores compared with LSR-BERTbase. The results suggest that the hierarchical
aggregation and inference structure of our model is capable of integrating the
information across long distance, multiple sentences of a document.

Ablation Study. To further analyze HAIN, we conduct some ablation studies
to verify the effectiveness of different modules and mechanisms of HAIN. Results
are shown in Table 3. We can observe that: (1) When we remove DMDP nodes,
and use SMDP nodes as Nan et al., [9], Inter-F1 drops by 1.26 scores. It means
that DMDP nodes can capture richer inter-sentential information than tradi-
tional SMDP nodes. (2) F1 and Inter-F1 drops when we remove meta dependency
graph, it shows that mDG can capture long distance dependency information. (3)
Taking away mention interaction graph, Intra-F1 sharply drops by 4.59 scores.
This drop shows that MG plays a vital role in capturing local information. (4)
We remove the Hybrid attention mechanism. To be specific, we directly use the
original GCN [6] to convolute the entity inference graph, ignoring the differ-
ent importance of multi-granularity information. The Hybrid attention mecha-
nism’s removal results in poor performance across all metrics. It suggests that
our hybrid attention mechanism helps aggregate global and local information,
therefore, improve the overall performance of document-level RE.

Table 3. Ablation Study of HAIN-BERTbase on DocRED dev set.

F1 Ign F1 Intra-F1 Inter-F1

Full model 62.31 59.77 68.34 54.70

– DMDP Node 59.33 58.97 67.46 53.44

– Meta dependency graph 58.40 59.66 67.01 53.87

– Mention interaction graph 58.23 59.07 63.75 53.90

– Hybrid attention mechanism 57.89 56.23 60.77 51.10

Case Study. We list a few examples from DocRED dev set in Table 4, and
use HAIN-GloVe in comparison with GAIN-GloVe [22] which is one of the most
powerful graph-based model recently. We can observe that: (1) From exam-
ple 1, we can find that long distance dependency information is necessary. The
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head entity William Earl Barber and tail entity Marines cross five sentences,
which need the model to be robust enough to tackle long distance cross sentence
information. HAIN can capture long distance dependency information by meta
dependency graph (mDG) to correctly identify the relation military branch. (2)
From example 2, we can observe that logical reasoning is vital. We know Dany
Morin is a Canadian in sentence 1, Dany Morin is a member of New Democratic
Party in sentence 2. Extracting the relation between Canadian and New Demo-
cratic Party needs the bridge entity Dany Morin. HAIN handled this problem
by reasoning in the entity inference graph (EG), which can fuse global and local
important information to capture the logical relations. (3) Commonsense knowl-
edge is required in example 3. Models must know that M is the code name of a
person ahead of time, then identify the relation of Miss Moneypenny and Bond
is present in work. Both HAIN and GAIN can not solve this issue, due to lack
of the commonsense knowledge. We leave it as our future work.

Table 4. Case study on the DocRED. Head entities and Tail entities are colored
accordingly. Other relevant entities are colored in blue.

[1] William Earl Barber ( November 30 , 1919 April 19 , 2002 ) was a United States
Marine Corps colonel. [2] He fought on Iwo Jima during World War II and was awarded
the Medal of Honor for his actions in the Battle of Chosin Reservoir during the Korean War
... [4] Despite the extreme cold weather conditions and a bullet wound to the leg, Barber
refused evacuation and an order for his company to ... [5] Barber, aware that leaving would
cause 8,000 Marines of his division to be trapped in North Korea, held on to the position
with his men ...

Relation Label: military branch HAIN: military branch GAIN: N/A

[1] Dany Morin (born December 19, 1985) is a Canadian businessman and former politi-
cian. [2] He represented the electoral district of Chicoutimi: Le Fjord as a member of the
New Democratic Party ... [3] He served as the NDP associate critic for lesbian, gay,
bisexual, transgender, and transsexual issues, alongside lead critic Randall Garrison ...

Relation Label: country HAIN: country GAIN: N/A

[1] Miss Moneypenny, later assigned the first names of Eve or Jane , is a fictional
character in the James Bond novels and films. [2] She is secretary to M, who is Bond ’s
superior officer and head of the British Secret Intelligence Service (MI6). [3] Although she
has a small part in most of the films, it is always highlighted by the underscored romantic
tension between her and Bond ...

Relation Label: present in work HAIN: N/A GAIN: N/A

4 Related Work

In practice, many real world relation instances can only be extracted across sen-
tences. For example, Yao et al., [20] made an analysis on Wikipedia corpus, at least
40.7% of relations can only be extracted on the document level. Therefore, natural
language processing community has gradually pay much attention to document-
level RE. To accelerate the research on document-level RE, Yao et al. [20] intro-
duced DocRED, constructed from Wikipedia and Wikidata. At present, DocRED
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is the largest document-level RE dataset. Quirk et al., [12] incorporated both stan-
dard dependencies and discourse relations in RE. Peng et al., [10] explored differ-
ent LSTM approaches with various dependencies, such as syntactic and sequen-
tial. But they both captured document specific features, ignored relational infer-
ence in document. Recently, many graph-based models are designed to handle this
problem. Sahu et al., [13] utilized syntactic parsing and coreference resolution to
build a document-level graph for graph inference. Christopoulou et al., [1] con-
structed a document graph with heterogeneous types of nodes and edges, and pro-
posed edge-oriented model for global relation inference. Li et al., [7] proposed a
dual attention network to characterize the interactions in document. Nan et al.,
[9] treated the graph structure as a latent variable and constructed it by utilizing
structured attention [8]. Zeng et al. [22] proposed a novel path reasoning mecha-
nism to enhance the reasoning abilities for RE. Different from the previous works,
we construct a hierarchical graph which can utilize the structural information from
syntactic trees to capture long-distance dependency. Moreover, we propose a novel
hybrid attention mechanism to effectively aggregate global and local information
to reason logical relations between entities.

5 Conclusion

In this paper, we proposed a hierarchical aggregation and inference network
(HAIN) for document-level RE. It respectively establishes three different infor-
mation granularity graphs which can effectively integrate relevant relation infer-
ence evidences from coarse to fine. Experiments show that our HAIN achieves
state-of-the-art performance on the widely used dataset DocRED. In the future,
we plan to utilize extra commonsense knowledge to help train more efficient
models for solving the commonsense relation inference problem.
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Abstract. Medical named entity recognition (NER) tasks usually lack
sufficient annotation data. Distant supervision is often used to alleviate
this problem, which can quickly and automatically generate annotated
training datasets through dictionaries. However, the current distantly
supervised method suffers from noisy labeling due to limited coverage of
the dictionary, which will cause a large number of unlabeled entities. We
call this phenomenon an incomplete annotation problem. To tackle the
incomplete annotation problem, we propose a novel distantly supervised
method for Chinese medical NER. Specifically, we propose a high recall
self-training mechanism to recall potential unlabeled entities in the dis-
tant supervision dataset. To reduce error in the high recall self-training,
we propose a fine-grained lexicon enhanced scoring and ranking mecha-
nism. Our method improves 3.2% and 5.03% compared to the baseline
models on the dataset we proposed and a benchmark dataset for Chinese
medical NER.

Keywords: Medical named entity recognition · Fine-grained lexicon ·
Distantly supervised · Self-training

1 Introduction

Medical named entity recognition (NER) is a classic task in medical natural
language processing [8,11,14]. It is the basic technology of medical information
extraction and medical knowledge graph. A major problem with the medical
NER task is lacking labeled data. Since medical entities are highly specialized
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and require professionals to label them, there are very few publicly released
medical NER datasets. Therefore, the way to obtain sufficient labeled data is a
huge challenge.

Fig. 1. The incomplete annotation problem of the distantly supervised NER method.
The red font indicates an unlabeled entity, green font indicates the correct labeled
entity. The left side is the text to be labeled, and the right side is the dictionary. Since
the dictionary does not contain the two entities of (a rectal polyp) and

(ascending colon), these two entities are missing in the labeled data. (Color
figure online)

Recently, the distantly supervised method has been applied to automatically
generate labeled data based on domain-specific dictionaries. This method first
identifies entity mentions by exact string matching with the dictionary, and then
assigns corresponding types to the entity mentions. Although this method is
effective to label data automatically, it suffers from noisy labeling due to limited
coverage of the dictionary, which will cause a large number of entities unlabeled.
We call this phenomenon as the incomplete annotation problem [4,7,9,10,18]
and show it in Fig. 1.

In this work, we propose a novel distantly supervised method for Chinese
medical NER to tackle the incomplete annotation problem. We constructed a
Chinese medical NER dataset named CDD to verify the effectiveness of our
method. The training set of the dataset is annotated using distantly supervised
methods, and the development set and test set are annotated by professional
doctors. In addition, we are also conducting experiments on CCKS 2019 [2]
which is a public Chinese medical NER dataset. The training sets of CCKS
2019 are constructed by randomly removing the annotated named entities in
well-annotated datasets.

Specifically, our approach is divided into two parts:

High Recall Self-training Mechanism: We propose a high recall self-training
mechanism to recall potential unlabeled entities in the distant supervision
dataset. Self-training is an effective method to tackle the incomplete annotation
problem. Here, self-training specifically refers to iteratively predict the training
set by itself. Therefore we propose a high recall strategy inspired by the K-fold
cross-validation method. We divide the training set into K-fold data and take
the K-1 fold data as the new training set to train independent K NER models
with the same development set. We recall a large number of entities through the
high recall strategy and all entities predicted by the K models. After a round of
iteration, we verify whether the training data meets the requirements.
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Fine-grained Lexicon Enhanced Scoring and Ranking mechanism: To
reduce error in the high recall self-training, we propose a fine-grained lexicon
enhanced scoring and ranking mechanism. Each entity has its unique features
and some common features with other entities. For example, the
(Chest CT) and the (Abdomen CT) are medical examinations. They
also have the same structure of (body parts + CT) and the
same composition as “CT”. In medical examination named entities, this situ-
ation is very common. The fine-grained lexicon is obtained from the entity in
the distant supervision data for word segmentation. For entities recalled by self-
training, having more fine-grained lexicon labels is more likely to be the correct
entity. We use the fine-grained lexicon to label the entities of the training set
construct positive samples and create appropriate negative samples. We use a
fine-grained lexicon to label the entities in the training set as positive samples
and construct appropriate negative samples. Then we combine the positive and
negative samples to train the scoring and ranking model.

The main contributions of this paper can be summarized as follows:

• To tackle the incomplete annotation problem, we propose a novel distantly
supervised method for Chinese medical NER and construct a Chinese medical
dataset.

• To recall potential unlabeled entities in the distant supervision dataset, we
propose a high recall self-training mechanism. To reduce error in the high
recall self-training, we propose a fine-grained lexicon enhanced scoring and
ranking mechanism.

• Experiments prove the effectiveness of our method, which improves 3.2% and
5.03% compared to the baseline models on the dataset we proposed and a
benchmark dataset for Chinese medical NER.

2 Related Work

2.1 Distantly Supervised NER

Distant supervision methods for NER generally cause data incomplete annota-
tion problems. Several approaches to this issue have been proposed. Fuzzy CRF
and AutoNER [12] allow learning from high-quality phrases. However, since these
phrases are obtained through distant supervision, the unlabeled entities in the
corpora may still be missed. PU learning [9,10] unbiasedly and consistently esti-
mates the training loss. Partial CRF [4,18] supports learning from incomplete
annotations. Different from the above method, our method applies a high recall
self-training mechanism and fine-grained lexicon enhanced scoring and rank-
ing mechanism to recall potential unlabeled entities in the distant supervision
dataset and reduce error in the high recall self-training. So training data noise
is reduced and the performance of the model will improve. The fine-grained lex-
icon required by our model is very easy to obtain and the method has good
transferability.
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2.2 Self-training

Self-training is an effective method to tackle the incomplete annotation problem,
which specifically refers to repeatedly predicting the training set itself, and this
method can capture noise pattern information well. Jie et al. [4] made a bold
attempt to treat each location label outside the entity as a hidden variable.
Their model calculates the probability of potential label paths as training loss
weights in the self-training process. Their method essentially aims to detect and
add potentially lost entities. In the same year, Mayhew et al. [9] and Wang et
al. [17] aims to generate a weighted training set based on self-training to detect
and reduce false label weights. Then they use this set to train a weighted NER
model. The self-training of our method is to recall potential unlabeled entities in
the distant supervision dataset. Self-training is to prepare for the following work
of scoring and ranking entities. The higher the quality of the entity recalled by
self-training, the more conducive to the next work.

Fig. 2. Our basic model structure. On the left is the iterative process of semi-supervised
data optimization and denoising. On the right is two main modules of the framework,
namely High Recall Self-training (lower right) and Fine-grained Lexicon Enhanced
Scoring and Ranking (upper right).



342 Z. Gan et al.

3 Our Method

Our method is to recall the unlabeled entities of training data, which achieves
the purpose of removing the unlabeled entity noise. Our basic model structure is
shown in the Fig. 2. This section will introduce our method from four subsections:
Distantly Supervised Method Annotating Data, High Recall Self-training, Fine-
grained Lexicon Enhanced Scoring and Ranking, and Iteration Process.

3.1 Distantly Supervised Method Annotating Data

There is a small amount of well-annotated data. We use remote supervision meth-
ods to automatically annotate a large amount of incomplete annotation data.
Our method can recall unlabeled entities from annotation data. The following
sections will introduce them in detail.

3.2 High Recall Self-training

To obtain the training data of high recall entities, we propose the high recall model
with Self-training. Inspired by the K-fold cross-validation method, we divide the
training set into K-fold data and take the K-1 fold data as the training set to train
independent K NER models with the same development set. Due to the different
distributions of unlabeled entities of the training data, the K models have the fea-
ture of large differences. Then all the training data is predicted with the K models,
and we obtain the training set with higher recall through the high recall strategy.
The main process of this section is shown in the lower right of Fig. 1.

Definition Description. We denote an input sentence as s = {x1, x2, · · · , xn}
and the annotated named entity set as Es = {e0, e1, e2, · · · , em}. n is the sentence
length and m is the amount of entities. Each member of ek of set Es is represented
as ek = (posstart, posend, label), which are the start position, end position and
label of ek respectively. The goal of our high recall model with self-training is
to recall as many unlabeled entities as possible through self-training and high-
recall strategies, so that the Es set and the fully labeled entity set have more
overlapping entities.

Model Training. In our self-training model, dividing the training set into K-
fold data, we take the K-1 fold data as the training set and train independent
K NER models with the same development set of no unlabeled entity. For the
basic NER model framework of this part, we have selected two commonly used
model structures: biLSTM [8]+CRF [6,15] and BERT [1]+biLSTM+CRF.

High Recall Strategy. We designed a high recall strategy, which can combine
multiple training data prediction entities with the entities from the previous
round of data to obtain high recall entity training data. The set of prediction
result entities Epre for each fold, our high recall strategy is represented by a
mathematical notation as follows:

Enew = Elast + Êextra (1)
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Eextra =
∑

0≤i<k

Eprei − Elast (2)

Êextra = {eextra|
∑

eextra > α, eextra∈Eprei , 0≤i < k} (3)

Enew is the entity set of the new round of data. Elast is the entity set of the
previous round of data. Eextra is all new entities predicted by models. Êextra

means to select the entity eextra that meets the requirements from Eextra to keep
it. The conditions: the entity belongs to Epre and the frequency of occurrence
reaches the threshold α, then it is retained, otherwise the entity is removed.

3.3 Fine-Grained Lexicon Enhanced Scoring and Ranking

The high recall model with self-training obtains training data with high recall
entities but it also recalls a large number of error entities, causing unnecessary
noise. Therefore, we propose a fine-grained lexicon Enhanced scoring and rank-
ing mechanism to rank the recalled new entities. This mechanism only retains
entities whose scores reach the threshold, greatly reducing redundant entities
and obtaining less noisy training data. This section will introduce our model
in detail from the following four subsections: overall, data construction, model
training and Entity Scoring, and Ranking Strategy.

The fine-grained lexicon enhanced scoring and ranking mechanism is mainly
to score and rank the new entities in the high recall training data, retain the
entities that meet the requirements, and delete the entities that do not meet
the requirements. Guided by this idea, we obtain new training data with more
correct new entities and redundant new entities, which is to improve the quality
of training data.

Each entity has its unique features and some common features with other
entities. The common features include the same structure, the same component,
etc. For example, (White blood cells) and (red blood cells)
are two inspection entities that respectively indicate the number of white blood
cells and red blood cells in the blood. These two entities have the same structure

(* + cells) and the same component (cells). Another example
is more obvious. The (Chest CT) and the (Abdomen CT)
are medical examinations. They also have the same structure of
(body parts + CT), and have the same composition as “CT”. In medical exam-
ination named entities, this situation is very common.

For this reason, we propose the fine-grained lexicon enhanced scoring and
ranking mechanism to construct a sequence labeling task to learn the entity fea-
tures within and between entities, thereby scoring and ranking the new entities.
Define a entity sequence as e = {x1, x2, · · · , xn}, the length of the entity e is
n, this entity contains a fine-grained lexicon entity set as Ee = {e0, e1, · · · , em},
where ei = (posstart, posend, label)(0≤i≤m) represents a fine-grained lexicon
entity. Constructing new data with a fine-grained lexicon and entities of training
data, we train the ranking model.

Data Construction. Step 1, Obtain the entity of the training data. Step
2, Obtain a fine-grained dictionary. Use the jieba word segmentation tool to
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segment the entities of the training data obtained in the first step. After Remov-
ing duplicate entities and deleting unreasonable segmentation results, we get a
fine-grained dictionary. Step 3, Use the data from the first and second steps to
generate training data for the new task. First, we use a fine-grained dictionary to
back-label the original training data. The inspection entity part is extracted as
a positive sample, and in addition, we construct a negative sample of the data.
Negative samples are mainly divided into two parts, one is difficult negative sam-
ples, and the other is ordinary negative samples. Difficult negative samples are
generated using pre-defined N-gram feature templates around positive samples,
and ordinary negative samples are generated using pre-defined N-gram feature
templates around non-entities (parts with fine-grained labels), which are used
in our experiments The template is shown in Table 1. Among them, E(i,j) rep-
resents the entity in the sentence, and the beginning and ending positions of
the entity span are the i-th and j-th positions of the sentence, respectively.
The negative sample composition is to add one, two, or three characters before
and after such an entity. After obtaining all the negative samples, to avoid the
imbalance of positive and negative samples, we randomly selected a certain pro-
portion of negative samples and added them to the positive sample data to form
the training data of the final scoring model.

Table 1. N-gram feature template diagram

Type Templates

1-gram xi−1E(i,j), E(i,j)xj+1, xi−1E(i,j)xj+1

2-gram xi−2xi−1E(i,j), E(i,j)xj+1xj+2, xi−2xi−1E(i,j)xj+1xj+2

3-gram xi−3xi−2xi−1E(i,j), E(i,j)xj+1xj+2xj+3, xi−3xi−2xi−1E(i,j)xj+1xj+2xj+3

Model Training. In theory, we can use all sequence labeling models as our
scoring model. In this article, we selected two models of biLSTM+CRF and
BERT+biLSTM+CRF, and compared them. The latter has better results, but
the former is more efficient. Using the aforementioned method to build data, we
can perform model training and get our key scoring model.

Entity Scoring and Ranking Strategy. After we get the ranking model,
such as biLSTM+CRF, we can rely on the model to score the new entity pre-
dicted. First, we use the ranking model to predict all new entities, and use the
ranking model to make fine-grained label predictions for these new entities. It
then scores the number of fine-grained tags contained in each new entity. We
tried a simple unified scoring method, and also tried to choose different scoring
methods according to the length of the new entity. The experimental results
show that the latter has better stability and accuracy. The specific method is
as follows. For the newly predicted entity enew, the two scoring functions are as
follows:

Score1 =
H(Le, enew)

S(enew)
(4)
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Score2 = α · H(Le, enew)
S(enew)

, 0 < α < 1 (5)

Le represents fine-grained lexicon label set, and H(Le, enew) represents the
number of fine-grained labels appearing in the new entity enew. S(enew) repre-
sents the number of characters of enew. α indicates that a coefficient is given
according to the length of the new entity enew.

3.4 Iteration Process

After the training data is iterated, a large number of unlabeled entities are
recalled, we will verify whether the training data meets the requirements. If the
requirements are met, we stop the iteration, otherwise continue to iterate. The
best result of our experiment in two datasets appeared in the second and third
iterations.

4 Experiments

In this section, we conduct a series of experiments on two Chinese medical NER
datasets to prove the effectiveness of our method.1

4.1 Dataset

There are two datasets, both of which are Chinese medical NER datasets.
The first dataset named CDD is from the laboratory examination text and

other auxiliary examinations text of the China Disease Resource Database. 1857
samples of them are annotated according to the Medical Named Entity Recog-
nition labeling standard established by professional doctors. And 5574 samples
of them are annotated by the distantly supervised method. We spent more than
a month completing this difficult data collation and iterative annotation work.

The second dataset is the CCKS 2019, all samples of which are clinical text.
There are 6 categories of it that are defined as follows: Disease and diagnose
(Dis), Imaging examination (ImgExam), Laboratory examination (LabExam),
Operation, Drug, and Anatomy. In particular, since the CCKS 2019 dataset
does not have a development set, we randomly selected 20% samples from the
training data as the development set. The statistical details of the two original
datasets are shown in Table 2.

4.2 Evaluation

For the fairness of model comparison, we refer to the standard-setting and use
the micro-average F1 score to evaluate all methods, and report the precision
(Pre) and recall (Rec) as percentages.

1 Code is available at https://github.com/ganzhenj/2021NLPCC.

https://github.com/ganzhenj/2021NLPCC
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Table 2. The statistics details of two original datasets.

Dataset Type Train Dev Test

CDD Sentence 5.6K 0.9K 0.9K

Char 527.7K 83.0K 90.3K

CCKS 2019 Sentence 1.0K – 0.4K

Char 418.4K – 132.7K

4.3 Experiment Setting

• Character Embedding: In our experiments, We use the same character
embeddings as [19], which is pre-trained on Chinese Giga-Word.

• BERT Enhanced Character Embedding: Since pre-trained language
models have been proven to be effective on several tasks, we also experiment
with employing BERT to augment our model via BERT enhanced embedding.

• Hyper-parameter Setting: The biLSTM+CRF is trained for 50 epochs
with the learning rate of 0.01 using Adam [5] optimizer and the dropout [13]
is 0.3. The BERT module of BERT+biLSTM+CRF is trained for 50 epochs
with the learning rate of 5e-5 using Adam optimizer. For the BiLSTM+CRF
module of it, the learning rate is 5e-4, the batch size is 16, and the dropout
is 0.3.

4.4 Main Results

The main results are shown in Table 3. The “Gold” represents that the Bil-
stm+CRF model trains with a noise-free label dataset, and all other models
train with a noisy label dataset. The “Base” represents the Bilstm+CRF model.
Compared with the baseline, our method improves 3.2% and 5.03% in F1 on two
benchmark datasets. Our model greatly improves 9.08% in Recall on the CCKS
2019. Our model can effectively recall the correct entity.

The effects of other models have not achieved good results, which reflects the
special difficulty of medical NER dataset. It cannot achieve the expected effect
in the medical NER field for the general model of solving incompletely labeled
NER. Therefore, we need to propose effective solutions to the specific difficulties
and challenges of medical NER dataset. Our model starts from the medical text
itself and uses the medical fine-grained dictionary inside the text to effectively
remove the noise of the data. This is the advantage of our model.

Our method has good stability and robustness, and the effect is better on
CCKS 2019 with more categories, indicating that our model can cope with com-
plex medical NER tasks. Our method can also easily integrate other methods,
such as BERT and other pre-trained models, because we remove noise from the
data level and optimize the training data. Our model has the effect of stable
operation steps and perfection in the case of processing a small amount of anno-
tated data.
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Table 3. Main results.

Method CDD CCKS 2019

Pre Rec F1 Pre Rec F1

Gold – – – 81.12 79.33 80.22

Base 66.51 52.23 58.51 80.85 62.25 70.34

Veit et al. [16] 37.41 35.54 36.45 45.33 43.44 44.36

Luo et al. [7] 41.01 32.67 36.37 46.97 44.75 45.84

Hedderich et al. [3] 36.43 36.56 36.50 48.06 47.85 47.95

Jie et al. [4] 55.50 42.60 48.20 78.50 54.32 64.21

Mayhew et al. [9] 69.39 47.18 56.17 75.17 60.27 66.90

Yang et al. [18] – – 60.90 – – 66.53

Our method 69.01 55.81 61.71 79.89 71.33 75.37

Our+BERT 69.43 59.92 64.33 81.69 76.94 79.24

4.5 Ablation Study

To verify whether the various modules of our model affect the performance of
the model, we designed an ablation experiment, the results of which are shown
in Table 4. The “FLM” is the abbreviation of the fine-grained lexicon enhanced
scoring and ranking mechanism. The “IP” is the abbreviation of the iteration
process. The “-IP” means only one round of iteration and the best result of
CCKS 2019 is iterated for three rounds.

Table 4. Results of ablation experiments. The “BERT” represents
BERT+Bilstm+CRF model. All number is the percentage of the F1 score.

Method CCKS 2019

Dis ImgExam LabExam Operation Drug Anatomy average

Baseline 68.41 62.18 52.74 75.23 61.34 75.74 70.34

Our method 74.17 71.45 57.66 74.58 73.71 79.61 75.37

– FLM 70.33 63.33 60.40 74.36 68.45 77.93 73.28

– IP 72.70 68.96 60.72 70.59 70.97 79.46 74.80

BERT 77.13 69.76 54.72 79.08 87.07 80.14 77.39

Our+BERT 79.52 70.15 61.90 79.87 86.66 81.99 79.25

For CCKS 2019, there are a total of 6 categories of data, of which only
one category has a decrease in F1 compared to Baseline, and the other five
categories have a significant increase in F1. For the category “Drug”, there is an
increase of 12.37% in F1. This is surprising. In addition, when we remove “FLM”,
the F1 of the five categories has decreased, and the “LabExam” category has
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increased. This shows that our “FLM” may have a certain destructive effect
on this category, and the overall F1 has dropped by 2.09%. In general, the
effectiveness of “FLM” has been affirmed. When we remove the “IP”, the overall
impact is slightly weaker than that of “FLM”, but the “Operation” category is
more affected, and the overall F1 drops by 0.57%. Finally, we experimented
on BERT. The F1 of the “Drug” category has declined, and the others have
increased, and the overall F1 has increased by 1.86%.

5 Conclusions

In this paper, we introduce a novel distantly supervised method for Chinese
medical NER to tackle the incomplete annotation problem and construct a Chi-
nese medical dataset. The key of our method is to use a high recall self-training
mechanism and fine-grained lexicon enhanced scoring and ranking mechanism to
recall potential unlabeled entities in the distant supervision dataset and reduce
error in the high recall self-training. Experiments prove the effectiveness of our
method. In the future, our work will extend the study to additional domains and
languages.
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Abstract. Paraphrases refer to text with different expressions conveying the
same meaning, which is usually modeled as a sequence-to-sequence (Seq2Seq)
learning problem. Traditional Seq2Seq models mainly concentrate on fidelity
while ignoring the diversity of paraphrases. Although recent studies begin to
focus on the diversity of generated paraphrases, they either adopt inflexible con-
trol mechanisms or restrict to synonyms and topic knowledge. In this paper,
we propose KnowledgE-Enhanced Paraphraser (KEEP) for diversified para-
phrase generation, which leverages a commonsense knowledge graph to explic-
itly enrich the expressions of paraphrases. Specifically, KEEP retrieves word-
level and phrase-level knowledge from an external knowledge graph, and learns
to choose more related ones using graph attention mechanism. Extensive exper-
iments on benchmarks of paraphrase generation show the strengths especially in
the diversity of our proposed model compared with several strong baselines.

Keywords: Paraphrase generation · Knowledge graph · Diversified generation

1 Introduction

Paraphrases are texts conveying the same meaning while using different words, and the
generation of paraphrases is a fundamental task in natural language processing (NLP).
The technique has been widely used in many downstream applications, such as text
summarization, question answering, semantic parsing, and so on [1].

Early studies on paraphrase generation include rule-based, grammar-based, lexicon-
based, and statistical machine translation (SMT)-based approaches [17,30]. Recently,
sequence-to-sequence (Seq2Seq) models have become the dominant technique in the
task of paraphrase generation [9,21], especially since its great success in machine trans-
lation [25]. Although Seq2Seq models for paraphrase generation have shown promising
results, they tend to generate highly similar outputs with inputs.

We argue that paraphrases should be diversified in nature since an input sentence
corresponds to multiple possible paraphrases. To solve this problem, some studies
[5,19] introduce control mechanisms on the Seq2Seq model to produce a variety of
paraphrases. However, the template or exemplars in the control mechanism does not
cover all the possibilities of paraphrasing, and the introduction of the control mecha-
nism is inflexible.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 353–364, 2021.
https://doi.org/10.1007/978-3-030-88480-2_28
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Fig. 1. The knowledge-enhanced model first retrieves a group of optional words or phrases and
then generates a paraphrase using the original sentence as a prototype.

The main reason behind this challenge is that the available training data for para-
phrasing is scarce and domain-specific [26]. One possible solution is to introduce exter-
nal knowledge to increase the semantic richness of data. There are also efforts to exploit
external knowledge in paraphrasing. Huang et al. [10] employ an external synonym dic-
tionary to guide the rewriting of sentences. Liu et al. [16] extend the Seq2Seq structure
to incorporate extra topic words for paraphrase generation. Restricting the utilization
of knowledge only to those synonyms and topic words, effective as they are, does not
exploit the full semantics of knowledge in paraphrase generation.

In this paper, we present an effective KnowledgE-Enhanced Paraphraser (KEEP),
which utilizes an external knowledge graph (KG) for diversified paraphrasing. We argue
that the rich semantics within a KG can greatly benefit paraphrasing for concepts in
the sentences through the semantic neighbors. KEEP first extracts a set of concepts
from the paraphrase sentences annotated by entity linking systems. Then, we lever-
age the extracted words or phrases in paraphrase sentences as the start point to guide
the traverses in the graph by graph attention mechanism, which derives from graph
neural networks to attend on more appropriate concepts. Finally, we use an attention-
based decoder to generate diversified paraphrases from inputs and retrieved knowledge.
For instance, as shown in Fig. 1, we wish the related concepts “optimal”, ideal”, “get
over”, “beat” can be generated in outputs to improve the diversity of expression forms.

The contributions can be summarized as follows:

– We propose a KnowledgE-Enhanced Paraphraser (KEEP) to generate diversified
paraphrases.

– We guide the information propagation in the knowledge graph with graph attention
by scattering current paraphrases focuses to other related concepts.

– Extensive experiments demonstrate that our proposed model can generate more
diversified paraphrases compared with baselines while retaining the same seman-
tics.
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2 Related Works

2.1 Neural Paraphrase Generation

Seq2Seq models have been widely used in the task of paraphrase generation. Prakash
et al. [21] first adapt a neural approach to paraphrase generation with a residual stacked
LSTM network. Gupta et al. [9] combine a variational auto-encoder with a Seq2Seq
model to generate multiple paraphrases for a given sentence. Kajiwara [11] proposes a
neural model for paraphrase generation that first identifies words in the source sentence
that should be paraphrased and then conducts the negative lexically constrained decod-
ing that avoids outputting these words. Kazemnejad et al. [12] propose a novel retrieval-
based method by editing inputs using the extracted relations between the retrieved pair
of sentences for diversified paraphrases. There are also some translation-based methods
for paraphrase generation [8]. The main principle of these methods is to translate the
text into another language and back to the source language. The above methods mainly
focus on fidelity while ignoring the diversity of outputs. Although some works [11,12]
can improve the diversity of paraphrases, they are still based on the scarce corpus data.

2.2 Knowledge-Enhanced Generation

Recently, pre-trained language models (PLMs) such as BERT [6], GPT-2 [22] and
BART [14] have further promoted the study on natural language generation (NLG).
However, implicit knowledge in PLMs is not enough to help us generate diversified out-
puts. Incorporating explicit knowledge in Natural Language Generation (NLG) beyond
input text is seen as a promising direction in both academia and industry [28]. The
introduction of knowledge has also been studied in many NLG tasks, e.g., question
generation [2,23], abstractive text summarization [7], story generation [27] and so on.
There are also efforts to exploit external knowledge in paraphrase generation. Huang
et al. [10] employ an external synonym dictionary to conduct rewriting on the source
sentence to generate paraphrase sentences. Liu et al. [16] incorporate topic words into
the Seq2Seq framework to provide auxiliary guidance for paraphrase generation. Dif-
ferent from previous research, our model introduces richer knowledge explicitly with
the commonsense knowledge graph and presents a novel attention mechanism on all
concepts in the latent concept space for diversified paraphrase generation.

3 Our Approach

In this section, we present the proposed model KEEP (Fig. 2). We first retrieve related
concepts in the knowledge graph to construct the one-hop concept graph and the two-
hop concept graph. Then we encode the input sentence, the one-hop concept graph,
and the two-hop concept graph into hidden representations respectively. Finally, we
use an attention-based decoder to generate diversified paraphrases. The task can be
formulated as: given an input sentence x = {x1, x2, . . . , xn}, we seek to generate a
set of k paraphrase sentences Y = {y(1), y(2), . . . , y(k)}, that all y ∈ Y have the same
meaning with x, but are different in expression forms.
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Fig. 2. Architecture of KEEP. Our model consists of an Encoder (Left) and a Decoder (Right).
The Encoder encodes the input sentence, the one-hop concept graph and the two-hop concept
graph into hidden representations respectively.

3.1 Knowledge Retrieval

Our model relies on the observation that humans usually write paraphrase sentences by
replacing words or phrases in the original sentence with their corresponding synonyms
or other related words. Therefore, the first step of our method is to retrieve some lexical
or phrasal knowledge relevant to the original sentence. We extract a one-hop concept
graph and a two-hop graph from a large knowledge graph to guide the paraphrase gen-
eration. We grow zero-hop concepts V 0, which appear in the input sentence and are
annotated by entity linking systems, with one-hop concepts V 1 and two-hop concepts
V 2. The concepts in V 0 ∪ V 1 and relations between them form the one-hop concept
graph G1. Also, the two-hop concept graph G2 is the knowledge sub-graph induced by
V 1 ∪ V 2.

3.2 Paraphrases and Latent Concept Space Encoding

In this section, we introduce how to encode the input sentence and the KG sub-graphs
retrieved in Sect. 3.1.

We use the Bidirectional Long Short Term Memory (Bi-LSTM) as the basic build-
ing blocks for Seq2Seq model. Given an input sentence {x1, x2, ..., xn}, the LSTM
encoder converts it into a set of hidden embeddings H = {h1,h2, ...,hn}. The one-
hop concept graph G1 is encoded by a graph neural network that propagates informa-
tion from the input sentenceH to the one-hop concept graph. We choose GraphNet [24]
here, since it shows strong effectiveness in encoding knowledge graphs. The l-th layer
representation gl

ei
of concept ei is calculated by a single-layer feed-forward network

(FFN):

gl
ei

= FFN(gl−1
ei

◦ hl−1 ◦
∑

r

∑

ej

fej−>ei
r (gl−1

ej
)) (1)
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where ◦ is a concatenation operator and gl−1
ei

is the (l − 1)-th layer representation of

concept ei. f
ej−>ei
r (gl−1

ej
) aggregates the concept semantics of each neighbor concept

ej with relation r. hl−1 is the (l − 1)-th layer representation of the input, which is
updated with the zero-hop concepts V 0:

hl−1 = FFN(
∑

ei∈V 0

gl−1
ei

) (2)

g0
ei

is initialized with the pre-trained concept embedding ei. The input representation
h0 is initialized with the n-th hidden state hn from the input representation set H.

For the two-hop concept graph G2, it is hard to utilize all the concepts and we
hope to pay more attention to the more related concepts. To this end, we adopt a novel
graph attention mechanism to aggregate concept information. The representation peq ,
hopping from eq ∈ V 1 to its connected two-hop concepts ek, is encoded by an attention
mechanism:

peq =
∑

ek

ηek
r · [eq ◦ ek] (3)

where r is the relation embedding between the concept eq ∈ V 1 and its neighbor con-
cept ek ∈ V 2. eq and ek are embeddings for concept eq and concept ek. The attention
ηek

r is calculated as:

ηek
r = softmax((Wr · r)T · tanh(Wq · eq +Wk · ek)) (4)

where Wr,Wq,Wk are training parameters.

3.3 Diversified Generation

In this section, we use an attention-based decoder to generate diversified paraphrases
based on the hidden representations of the input and KG sub-graphs encoded in
Sect. 3.2.

We use an attention-based LSTM decoder. The t-step decoder state st is updated
by st−1, the context representation ct−1 and the word embedding yt−1 of the previous
token yt−1:

st = LSTM(st−1, [ct−1 ◦ yt−1]) (5)

where ◦ is a concatenation operator.
The context representation ct−1 reads the hidden representations of the input, the

one-hop concept graph and the two-hop concept graph with a standard attention mech-
anism respectively:

ct−1 = FFN((
n∑

i=1

αi
t−1 · hi) ◦ (

∑

ei∈G1

βei
t−1 · gei

) ◦ (
∑

eq∈G2∩V 1

γ
eq

t−1 · peq
)) (6)

The attention weights are calculated over the hidden embedding hi of the input, the
one-hop concept graph representation gei

and the two-hop graph representation peq
of

eq ∈ G2 ∩ V 1 aggregating two-hop neighbor concepts ek:
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αi
t−1 = softmax(st−1 · hi)

βei
t−1 = softmax(st−1 · gei

)

γ
eq

t−1 = softmax(st−1 · peq
)

(7)

Finally, we hope that the outputs include tokens from different sources. So we use a
control gate μ∗ to control the generation by choosing words from vocabulary (μ∗ = 0),
the one-hop concept graph(μ∗ = 1, V 0 ∪ V 1) and the two-hop concept graph (μ∗ = 2,
V 2).

μ∗ = argmax
μ∈{0,1,2}

FFNμ(st) (8)

The generation probabilities of words w, concepts ei in G1 and multi-hop concepts
ek are computed as follows:

yt =

⎧
⎨

⎩

softmax(st · w), μ∗ = 0
softmax(st · gei

), μ∗ = 1
softmax(st · ek), μ∗ = 2

(9)

wherew is the word embedding of word w, gei
is the one-hop concept graph represen-

tation of ei ∈ G1 and ek is the concept embedding of the two-hop neighbor concept ek.
We then train our model using standard cross-entropy loss defined in Eq. 10:

L = −
∑

t

log p(y�
t |y<t,X) (10)

where y� is the actual target sequence.

4 Experiments

4.1 Dataset

We conduct experiments on two of the most frequently used datasets for paraphrase
generation: Quora1 and MSCOCO [15]. We use ConceptNet as the knowledge graph,
which contains 120,850 triples, 21,471 concepts and 44 relation types.

Quora. Quora dataset consists of over 400k potential question duplicate pairs. We use
true examples of duplicate pairs as paraphrase generation dataset (150K such ques-
tions). We sample 100k, 30k, 3k instances for train, test, and validation sets, respec-
tively.

MSCOCO. MSCOCO is a large-scale captioning dataset. This dataset contains over
82k training and 42k validation images, and each image has five captions from five dif-
ferent annotators. We consider different captions of the same image as paraphrases. 20k
instances are randomly selected from the data for testing, 10k instances for validation,
and remaining data over 320k instances for training.

1 https://www.kaggle.com/c/quora-question-pairs.

https://www.kaggle.com/c/quora-question-pairs
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4.2 Experimental Setup

Implement Details. We take the top 100k most frequent words as vocabulary from the
paraphrases. Glove [20] embedding and TransE [3] embedding are used to initialize the
representations of the words and concepts in KG. We use the embedding size of 128
and the batch size of 32. Word embeddings are shared between encoder and decoder.
The hidden size is set to 128. We use Adam optimizer [13] with a learning rate of 0.001
to train the parameters and train for 10 epochs on an RTX3090 GPU.

Evaluation Metric. We adopt BLEU [18] metric, which is widely used in generation
tasks. Considering the limitations of this metric in evaluating the quality of generation,
we use more metrics for diversity evaluation. We calculate Self-BLEU and P-BLEU
of results regarding one generated paraphrase as the hypothesis and the others as ref-
erences. We also calculate the BERTScore [29] between the generated paraphrase and
the source sentence. We use the BLEU-4 score to compute. For the human evaluation
metric, we ask 10 raters to score on 200 generation results, and each result will be eval-
uated by 5 raters. We ask the human annotators to score the outputs individually based
on the following three criteria by using a 5-scale rating for each criterion.: 1) Fluency,
2) Coherency, 3) Diversity. The inter-annotator agreement measured by Spearman’s
rank score of around 0.7 shows a good correlation between the raters.

Baselines. We compare our model with the following baselines:

– Transformer [25] is a generative model based solely on attention mechanisms.
Transformer + KG joins knowledge and the input sentence together as the input
of the model.

– DicEdit [10] is a novel approach to model the process with dictionary-guided editing
networks.

– VAE-SVG [9] is based on a combination of deep generative models (VAE) with
sequence-to-sequence models (LSTM) to generate paraphrases.

– DivGAN [4] proposes a diversity loss term to make the generator sensitive to the
change of latent codes for diversified paraphrase generation.

– BART [14] is a denoising autoencoder for pre-trained Seq2Seq models. BART+KG
incorporates concepts as additional inputs after the input sentence.

– FSET [12] a novel retrieval-based method for paraphrase generation by editing
inputs using the extracted relations between the retrieved pair of sentences.

4.3 Results

The results of different models on Quora and MSCOCO datasets are shown in Table 1.
Our proposed model KEEP outperforms all generative models on most metrics. In
terms of BLEU score, KEEP increases 3.53 points compared to Transformer. This
indicates our model can generate fluent and accurate paraphrases. What’s more, our
model demonstrates a strong ability for diversified paraphrase generation. The Self-
BLEU and P-BLEU scores significantly decrease in our model. Although DivGAN
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Table 1. Automatic evaluation results from different models. BL is short for BLEU. Significant
improvements over the best baseline are marked with * (Wilcoxon signed-rank test, p < 0.01).

Model Quora MSCOCO

BL Self-BL P-BL BERTScore BL Self-BL P-BL BERTScore

Transformer [25] 30.59 42.30 49.69 80.69 22.06 9.44 49.26 66.86

Transformer+KG [25] 31.02 40.15 47.84 79.87 23.54 9.32 44.13 65.73

VAE-SVG [9] 32.00 37.53 44.42 79.44 23.90 9.28 35.10 61.74

DivGAN [4] 31.56 34.31 43.88 81.08 24.06 10.51 34.98 66.70

DicEdit [10] 31.24 36.85 43.68 77.55 24.61 9.11 34.67 60.12

BART [14] 33.36 38.06 45.71 81.12 25.87 9.36 46.78 66.98

BART+KG [14] 33.58 37.45 44.23 80.61 26.03 9.12 40.67 65.72

FSET [12] 33.46 32.89 41.96 75.94 25.24 9.01 34.62 59.87

KEEP (Ours) 34.12 30.69∗ 40.25 78.23 26.58 8.55 32.58∗ 64.08

Table 2. Human evaluation results. Our model performs better than other baseline models.

Model Quora MSCOCO

Fluency Coherency Diversity Fluency Coherency Diversity

Transformer+KG [25] 4.12 4.58 2.68 4.27 4.33 2.98

VAE-SVG [9] 4.08 4.52 3.04 4.25 4.27 3.25

DivGAN [4] 4.11 4.46 3.10 4.28 4.28 3.28

DicEdit [10] 4.13 4.45 3.12 4.28 4.25 3.36

BART+KG [14] 4.15 4.61 3.03 4.30 4.38 3.26

FSET [12] 4.18 4.48 3.26 4.31 4.28 3.38

KEEP (Ours) 4.21 4.55 3.67 4.33 4.35 3.77

and FSET also adopt special mechanisms to generate various outputs, KEEP achieves
lower Self-BLEU and P-BLEU than DivGAN and FSET. KEEP also performs better
than Transformer+KG and BART+KG, which means our model can better incorporate
knowledge to improve the diversity of outputs. In terms of BERTScore, it can be seen
that our model achieves higher scores than other diversity-based models (e.g., FSET,
DicEdit). Although the paraphrases generated by our model are more different from
input sentences than BART, the quality of these paraphrases is still good. Furthermore,
paraphrase generation means that the morphology is different from the original sentence
while maintaining the same meanings.

Human evaluation results are illustrated in Table 2. Generally, our model KEEP
achieves high scores on almost all the metrics. Specially, we observe that our model
greatly improves the diversity of the generated paraphrases. Comparing KEEP with
FSET, the p-value of Wilcoxon signed-rank testing at 95% confidence level is 3.2e−3,
which means the improvements achieved by our approach are statistically significant.
Furthermore, to better evaluate the quality and diversity of outputs, we ask five human
annotators to make one-on-one comparisons on the groups of generated paraphrases
(100 sentences randomly from the test set of the Quora dataset). As shown in Fig. 3, our
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Fig. 3. Results of the one-on-one human evaluation, where KEEP clearly wins compared with
other models.

Table 3. Ablation study of KEEP on the Quora dataset.

Ablation BL Self-BL P-BL

KEEP 34.12 30.69 40.25

w/o Two-hop concepts 34.01 33.94 43.27

w/o Concept knowledge 30.62 41.56 48.93

w/o Control gate 33.43 34.81 43.68

model wins in most cases, which means our model KEEP can generate higher quality
and more diversified paraphrases. Moreover, the inter-annotator agreement measured
by Cohen’s kappa K shows fair agreement between raters assessing the models.

4.4 Ablation Study

In order to further evaluate the role of each module in our model, we train and assess
different variants: w/o Two-hop Concepts: The variant removes the two-hop concept
graph and only uses one-hop concepts. w/o Concept Knowledge: The variant removes
the incorporation of knowledge, including the one-hop concept graph and the two-hop
concept graph. w/o Control Gate: The variant removes the control gate mechanism
which can generate words from different sources.

Table 3 presents the performance comparison. We can see that removing two-hop
concepts decreases the performance, especially reduces the diversity of the outputs. This
indicates the necessity of integrating two-hop concepts. Furthermore, the model which
removes knowledge significantly affects the performance of our model, which further
verifies the usefulness of KG data. Finally, removing the control gate mechanism also
gives a worse result, which implies the model needs this mechanism to generate tokens
from different sources for diversified generation.
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Table 4.Case Study. These are paraphrases generated by different models from the Quora dataset.
Some unique expressions are marked blue.

Model Paraphrases

Transformer+KG 1) Can you dream while awake?

2) Can you dream while you are awake?

3) Do you dream while awake?

VAE-SVG 1) Can you dream when you are awake?

2) Do you dream while awake?

3) Can you dream when you wake up?

DivGAN 1) How do you dream while you are awake?

2) Is it possible to dream while you have awake?

3) Do you dream while awake?

BART+KG 1) Can you dream while you are awake?

2) How do you dream while awake?

3) What are some ways to dream while awake?

FSET 1) how can you dream while awake?

2) Are there some ways for you to dream while awake?

3) How do you dream while you are awake?

KEEP 1) Can humans dream while they are awake?

2) Are there some methods for you to dream when you wake up?

3) How do you dream while opening your eyes?

4.5 Case Study

Table 4 shows some examples of the paraphrases. The source text is “can you dream
while awake?” and the reference is “can people dream while they are awake?”. We
observe that the paraphrases generated by Transformer+KG are highly similar with
minor modifications. What’s more, VAE-SVG, DivGAN and BART+KG can produce
more diverse outputs. FSET is able to change the syntactic forms of sentences correctly
(replacing “can you” with “are there some ways for you”). Finally, we find that KEEP
can generate high-quality and diversified outputs, which can replace words with their
related knowledge (replacing “awake” with “wake up” or “open your eyes”). Especially,
it can generate “can human dream while they are awake” that is of high similarity to the
reference. Note that “human” is the two-hop concept of “you” in the knowledge graph.
Furthermore, since we bring rich knowledge into our model, KEEP can generate more
diversified expression forms at the syntactic level, such as “are there some methods”.
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5 Conclusion

In this paper, we target diversified paraphrasing with the help of the knowledge graph
and propose KEEP for this task. To improve the diversity of expression forms in outputs,
we introduce related knowledge to enrich the token choices in generated paraphrases.
The graph attention mechanism can effectively utilize highly related concepts. Experi-
mental results demonstrate the effectiveness of the proposed knowledge-enhanced para-
phrase generation. Detailed analysis shows that our model can better incorporate knowl-
edge, which greatly increases the diversity of generated paraphrases. Future work can
adapt this knowledge-enhanced method for other learning tasks or explore how to better
combine knowledge with pre-trained generative language models for this task.
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gestions. This work is supported by Shanghai Science and Technology Innovation Action Plan
(No. 19511120400).
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Abstract. Syntactically controlled paraphrase generation can produce diverse
paraphrases by exposing syntactic control, where both semantic preservation and
syntactic variations are two important factors. Previous works mainly focus on
using fine-grained syntactic structures (e.g., full parse tree) as syntactic control.
While these methods can achieve excellent syntactic controllability, leads to fail-
ing to preserve the semantics of the input sentence. The main reason is that it is
difficult to retrieve perfectly compatible syntactic structures with the input sen-
tences. In this paper, we explore coarse-grained syntactic structures to trade-off
semantic preservation and syntactic variations. Furthermore, to improve seman-
tic preservation and syntactic controllability, we propose a Syntax Attention-
Guided Paraphrase (SAGP) model that can correctly select syntactic information
according to the current state for surface realization. Experiment results show that
SAGP outperforms the previous state-of-the-art method under the same setting.
Additionally, we validate that using coarse-grained structures can generate more
semantically reasonable text without affecting the syntactic controllability.

Keywords: Coarse-grained structure · Syntactic controllability · Semantic
preservation

1 Introduction

Paraphrases are defined as sentences conveying the same meaning but with different
surface realization. Paraphrase generation is of great importance to many downstream
tasks in natural language processing, such as question answering [6], machine transla-
tion [22] and text summarization [21]. Since most existing state-of-the-art paraphrase
generation models fail to produce paraphrases with syntactic diversity [7,10,16], recent
works have started exploring syntactically controllable paraphrase generation [5], i.e.,
given an input sentence and an exemplar, produce a sentence which follows the syntax
of the exemplar and the meaning of the input sentence.
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Source It is hard for me to imagine where they could be hiding it underground .

Exemplar They    ca     n’t imagine  when    he     ‘ll    be   able  to   walk  .
PRP   MD   RB     VB      WRB   PRP  MD VB   JJ   TO   VB   .

Reference I ca n't imagine where they could be hiding it underground .

SCPN(2018) You    ca    n’t imagine  where  they  might  be   hidden   to  underground .
PRP  MD  RB     VB      WRB   PRP   MD   VB   VBN TO         NN .

CHEN(2019) It     could    really   be   where     it     could   be  dangerous  to  hide   .
PRP   MD       RB     VB  WRB   PRP   MD    VB       JJ        TO  VB   .

LIU(2020) You   ca     n’t imagine where   he   might  be  able   to   hide .
PRP  MD  RB     VB      WRB  PRP  MD   VB   JJ   TO   VB .

SGCP(2020) It    can   n’t imagine  where  they  might  be  able  to   hide  .
PRP MD  RB     VB       WRB  PRP   MD   VB   JJ   TO  VB  .

Fig. 1. Examples of syntactic paraphrases generated by previous works. SCPN [8] and SGCP [9]
use the parse tree of the exemplar as syntactic control, and CHEN [5] and LIU [12] use the exem-
plar itself. Part-of-speech tags of the exemplar and generated sentences are obtained using the
Stanford CoreNLP toolkit [14]. The part-of-speech sequence can reflect the similarity of syntac-
tic structure. Blue indicates that the tag is the same as the exemplar, while red is the opposite.

In this aspect, Iyyer et al. [8] use an attentional seq2seq network to encode the input
sentence and a linearized full parse tree to generate paraphrases. Chen et al. [5] and Liu
et al. [12] directly use the exemplar itself as syntactic control, where a latent variable
is designed to capture the syntactic style of the exemplar, and then the latent variable
is fed into the decoder to guide the generation of paraphrases. Kumar et al. [9] encode
the parse tree in a top-down manner and generate paraphrases through a queue-based
decoding mechanism.

However, existing methods often use fine-grained syntactic structure (e.g., full parse
tree) as syntactic control, which leads to the generated sentences not keeping their
original semantics. We can observe in Fig. 1 that the generated sentences follow the
length and part-of-speech sequence of the exemplar, but do not preserve the seman-
tics of the input sentence. Intuitively, the fine-grained syntactic structure is relatively
specific, which will sharply reduce the space of semantic adjustment. When the exem-
plar and the input sentence are not compatible, it will lead to failing to preserve the
semantics of the input sentence.

Additionally, using fine-grained syntactic structure poses the problem of how to
effectively retrieve compatible exemplars. In the application scenario, it is difficult to
find such an exemplar that is syntactically perfectly compatible with the input sentence.

In this work, we explore coarse-grained syntactic structures to trade-off semantic
preservation and syntactic variations. We remove the part-of-speech nodes and then
extract the high-level sub-tree of the constituency parse tree to obtain relatively coarse-
grained syntactic structures. Furthermore, to improve the semantic preservation and
syntactic controllability, we propose a Syntax Attention-Guided Paraphrase (SAGP)
model which mainly contains as follows: a content enhanced sentence encoder that can
make the generated sentence better preserve the key information of input sentence; a
syntactic encoder that can effectively encode syntactic structure from both top-down
and left-to-right directions; and a regularized syntax attention that can select an appro-
priate syntactic constituent to control the generation of words.
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The main contributions of this work are as follows:

1. We explore coarse-grained syntactic structures to trade-off semantic preservation
and syntactic variations, which can alleviate the issue of incompatibility between
the syntactic exemplar and the input sentence.

2. To improve the semantic preservation and syntactic controllability, we propose a
Syntax Attention Guided Paraphrase (SAGP) model.

3. Experiments show that our proposed model substantially outperforms previous state-
of-the-art approaches under the same setting. Additionally, we demonstrate that the
proposed method can produce diverse paraphrases that conform to the syntax of
exemplars and preserve the semantics of the input sentence at the same time.

2 Related Work

We focus primarily on the task of syntactically controllable paraphrase generation,
which has received significant recent attention [5,8,9,12]. To address this task, Iyyer
et al. [8] use an extended pointer-generator network [18] to encode input sentences and
linearized parse trees to generate paraphrases. Our model encodes the tree structure
from top-down and left-to-right directions, which can more effectively encode structure
information. Moreover, to achieve better syntactic controllability, we propose a regular-
ized syntax attention that can correctly select syntactic constituent.

Chen et al. [5] and Liu et al. [12] use sentential exemplar as syntactic control. They
design a latent variable to learn the syntax by encoding the exemplar itself, and then
the syntactic variable is used to guide the generation of paraphrases. Word noising and
mask scheme are respectively proposed to effectively train their model. However, there
are two common problems: (1) It is difficult for the syntactic variable to capture the
syntactic structure of the exemplar. (2) Word noising or mask schemes make their model
only learn the ability of lexical substitution based on exemplar. Compared to these two
approaches, we use an explicit parse tree as syntactic control instead of exemplar itself,
which can avoid the above two problems.

Kumar et al. [9] propose using the full or low-level parse tree of the exemplar as
syntactic control. They encode the parse tree in a top-down manner based on the RNN
network. They also propose a queue-based decoding mechanism to incorporate syn-
tactic information. Their work is different from ours in at least three aspects: (1) Our
work explores primarily coarse-grained structures to trade-off semantic preservation
and syntactic variations. (2) The top-down encoding manner makes their model only
encode parent-child relations ignore the sibling relations that are essential for syntactic
controllability. In contrast, our method makes up for this deficiency by using left-to-
right encoding. (3) The queue-based decoding mechanism only uses the head node to
predict the control node. We use the regularized attention mechanism which can select
a more correct syntactic node by comparing attention weights of all syntactic nodes.

Another related line of works produces syntactic paraphrases via the unsupervised
method [3,20]. Their models use two variational autoencoders [4] to introduce two
latent variables which are designed to capture semantics and syntax, respectively. These
methods cannot effectively model structure information of parse tree.
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3 Our Approach

3.1 Problem Formalization

We formulate the problem of syntactically controllable paraphrase generation as fol-
lows. Given two sentences (x, z) as input, we would like to generate sentence y to
convey the meaning of sentence x and conform to the syntactic structure of sentence z.
The x and z are called the semantic input and syntactic exemplar, respectively.

3.2 Overall Architecture

As shown in Fig. 2, the proposed model is built on the standard encoder-decoder archi-
tecture with an attention mechanism [1], which mainly contains a sentence encoder,
a tree encoder and a paraphrase decoder. As for the attention mechanism, we use the
global attention method proposed by [13] with the general alignment function.

Concretely, we use the paraphrase parallel sentence pair (x, y) to train our model.
At the training stage, we set z = y to avoid constructing the additional syntactic exem-
plars. Syntactic control is provided by full parse tree1 without leaf node (i.e., words)
of syntactic exemplar. To obtain a coarse-grained structure, we first remove the part-of-
speech nodes below level 2, which means that POS nodes higher than level 2 will be

1 Obtained using the Stanford CoreNLP [14].
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kept (e.g., the CC node), as shown in Fig. 3, and then prune the parse tree to height as
{3, 4, 5, 6, 7}. Then given (x, pz), we train the model to predict y, where pz denotes the
processed parse tree of syntactic exemplar, x and pz are input to the sentence encoder
and the syntactic encoder.

3.3 Sentence Encoder

The sentence encoder is a Bi-GRU network. Take the sentence x = {x1, x2, ..., xn}
as input, the encoder computes the sentence-side hidden state sequence as hx

i =
GRU(e(xi),hx

i−1), where the e(xi) and hx
i denote the embedding vector and the hid-

den state of the word xi, respectively.
Additionally, we propose a content enhanced method to improve the ability to pre-

serve the semantics of content words that express more important meanings than other
words. We recognize a fixed percentage N (40% in the experiment) of words with high
TF-IDF scores in the sentence as content words sequence c = {c1, c2, ...}, and then
feed the sequence into the shared sentence encoder to obtain the content-side hidden
state hc

i in the same manner, where hc
i denotes the hidden state of the word ci.

3.4 Syntactic Encoder

We also use the GRU network to build the syntactic encoder. As shown in Fig. 2(2), we
traverse the given parse tree in a top-down (green line) and left-to-right (blue line) to
obtain and model parent-child and sibling relationships, respectively.

For the top-down (TD) direction, we encode the parse tree in a depth-first manner.
Specifically, the representation hv of each node v is calculated by the following:

hv = GRU(e(v),hpa(v)) (1)

where the e(v) and pa(v) denote the embedding vector and the parent node of v,
respectively. Although we can obtain TD representations of all nodes, only the TD
representations of leaf nodes will be used for left-to-right encoding. For the partic-
ular example given in Fig. 2(2), the TD representations of all leaf nodes HTD

leaf =
[hTD

CC ,hTD
POS−1,h

TD
POS−2,h

TD
POS−3,h

TD
Dot].

For the left-to-right (LR) encoding, the encoder is a forward GRU network.
We take the leaf nodes sequence Leafseq = {CC,POS − 1, POS − 2, POS −
3,Dot} as input, and compute the LR representations of all leaf nodes HLR

leaf =
[hLR

CC ,hLR
POS−1,h

LR
POS−2,h

LR
POS−3,h

LR
Dot]. Particularly, take the POS-1 node as an

example:
hLR
POS−1 = GRU(hTD

POS−1,h
LR
CC) (2)

then we use the LR representations of all leaf nodes to provide syntactic information
for the paraphrase decoder. In the following description, we use hz to represent HLR

leaf .

3.5 Paraphrase Decoder

The paraphrase decoder is a forward GRU network. Having obtained the sentence, con-
tent, and syntax representations, we introduce multiple attention modules to incorporate
these representations.
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Regularized Syntax Attention. We first enhance the decoder’s hidden state using the
syntactic context representation. Specifically, given the target hidden state ht and the
syntax-side hidden state sequence hz , the calculation of syntax attention as follows:

az
t = softmax(h�

t Wzh
z)

czt =
∑

j

az
t (j)h

z
j

(3)

where the Wz is the trainable parameter, az
t denotes the attention weight that can

select the appropriate node to control the generation according to the current hidden
state. czt denotes the weighted sum of the syntax-side hidden states.

Then we employ a concatenation layer to obtain the enhanced hidden state as fol-
lows:

h̃t = tanh(Wcz[czt ;ht]) (4)

where theWcz is the trainable parameter, the enhanced hidden state h̃t will be used for
the calculations of the following sentence and content attention.

Attention weight az
t is essential for accurate syntactic control. We propose a regu-

larization method to guide the learning of attention using the alignment of nodes and
words in a parse tree. For example, as shown in Fig. 2(4), there is an alignment relation-
ship between the word “but” and the node “CC”, therefore the gold attention weight is
(1, 0, 0, 0, 0) at the first timestep. So the decoder should focus on the node “CC” when
generating the word “but”. Specifically, we propose a regularization loss as follows:

Lrl =
T∑

t=0

MSE(az
t , â

z
t ) (5)

where the az
t is computed by Eq. (3), the âz

t is the gold attention weight obtained
from the alignment of nodes and words in a parse tree. MSE denotes the Mean Square
Error objective function. By doing so, we can make learned az

t closed to gold attention
distribution. We also use label smoothing (0.1) to reduce the errors caused by parsing.

Sentence and Content Attention. We introduce sentence and content attention to
make use of the sentence-side hidden states hx and the content-side hidden states hc,
respectively.

Having obtained the enhanced decoder hidden state h̃t, the calculation of sentence
attention as follows:

ax
t = softmax(h̃�

t Wxh
x)

cxt =
∑

i

ax
t (i)h

x
i

h̃x
t = tanh(Wcx[cxt ; h̃t])

(6)

where theWx andWcx are trainable parameters. ax
t and cxt denote the attention weight

and the weighted sum of the sentence-side hidden states, respectively. We define h̃x
t as

the sentence-based attentional hidden state.
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Likewise, we can obtain the content-based attentional hidden state h̃c
t in the same

way, with trainable parametersWc andWcc. Then, We fuse these two hidden states by
addition:

hf
t = relu(Wf (h̃x

t + h̃c
t)) (7)

whereWf is the trainable parameter, the fusion representation hf
t and the e(yt−1) will

be used for predicting the word distribution as follows:

p = softmax(Wo([h
f
t ;e(yt−1)] + bo)) (8)

where the Wo and bo are trainable parameters. We also use the copy mechanism [18]
to augment the model, which can produce OOV words.

3.6 The Overall Objective Function

The overall objective is defined as follow:

L = λ1Lpl + λ2Lrl (9)

where Lpl = −∑T
t=0 logp(yt) is the cross-entropy loss for ground true y, λ∗ are

balancing hyper-parameters.

4 Experiments

In this section, we will answer the following questions:

– How does SAGP compare against prior models?
– How do coarse-grained syntactic structures affect semantic preservation and syntac-
tic variations?

4.1 Dataset

We train and evaluate our model on the ParaNMT-small dataset [5,19]. It contains 500k
paraphrase pairs for training, 500 and 800 manually labeled tuples (sentence-exemplar-
reference) for development set and test set.

4.2 Experiment Setup

In this experiment, we evaluate four different granularities of syntactic information for
controllable paraphrase generation:

– F : Uses full parse tree of the exemplar for controllable paraphrase generation.
– F (rmpos) :Uses full parse tree that removes part-of-speech (pos) nodes as syntactic

control.
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– E : We extract top ht level parse tree for paraphrase generation. By setting ht =
{3, 4, 5, 6, 7}, the model can generate 5 candidate sentences, and then we choose the
sentence that has the highest ROUGE-1 score with the input sentence as the final
paraphrase.

– E(rmpos) : We first remove the part-of-speech nodes of the parse tree, the next
processes are consistent with -E.

4.3 Automated Evaluation

Semantic Metrics. We compute the BLEU [15], ROUGE [11], and METEOR [2] scores
between the generated and the reference paraphrases in the test set. We also used the
embedding-based evaluation method Sentence-BERT2 [17] to evaluate the semantic
similarity between the generated sentence and the original sentence.

Syntactic Metrics. Following previous work [9], we compute the tree edit distance
(TED) against the parse trees of the reference and exemplar, denoted as TED-r and
TED-e, respectively. But the TED-r and TED-e only evaluate the difference in the full
parse tree between two sentences, don’t measure the controllability of the model to
overall syntactic structure that is also important for generating syntactic paraphrases.
We propose the exact syntactic template match (ESTM) automatic evaluation method:
a paraphrase g is deemed as an exact syntactic template match to exemplar e only if the
top two levels of its parse tree pg exactly matches those of pe. We evaluated how often
generated paraphrases completely conform to the syntactic templates of exemplars by
computing the rate of exact syntactic template match.

4.4 Human Evaluation

We conduct the human evaluation on 100 randomly selected data points from the test
set in a blind fashion. Three annotators evaluate the generated paraphrases in terms of
semantic preservation (the generation and input sentence) and syntactic controllability
(the generation and exemplar); each aspect was scored from 1 to 5.

4.5 Results

As shown in Table 1, according to the used syntactic type, we divided the previous
works into two groups and compared with them. Simple outputting the input sentence
shows high scores across semantic metrics, but shows worse performance across syn-
tactic metrics. The opposite is true for simple outputting the exemplar. These results
help to show the performance of model. We also note that TED-r between the syntactic
exemplar and the reference sentence is 5.9, which indicates there are still problems of
incompatibility in the manually labeled syntactic exemplars.

2 We used the paraphrase-distilroberta-base-v1, which is available at: https://public.ukp.
informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/.

https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
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Table 1. Evaluation results on the ParaNMT-small dataset. All our scores are reported as the mean
over three runs. R-1, R-2, and R-L denotes the ROUGE-1, ROUGE-2, and ROUGE-L, respec-
tively. S-BERT and ESTM indicate the Sentence-BERT and exact syntactic template match,
respectively.

Model Semantic Metrics Syntactic Metrics

BLEU↑ METEOR↑ R-1↑ R-2↑ R-L↑ S-BERT↑ TED-r↓ TED-e↓ ESTM↑
Return-input baselines

Semantic input 18.5 28.8 50.6 23.1 47.7 1.0 12.0 13.0 36.9

Syntactic input 3.3 12.1 24.4 7.5 29.1 0.218 5.9 0.0 100

Fine-grained syntactic structure

CGEN [5] 13.6 24.8 44.8 21.0 48.3 0.531 6.7 3.3 83.3

LIU [12] 14.3 26.2 47.3 22.9 49.3 0.604 6.6 5.5 77.2

SCPN-F [8] 15.35 26.6 47.2 23.1 50.5 0.563 6.6 2.9 86.8

SGCP-F [9] 15.3 25.9 46.6 21.8 49.7 0.560 6.1 1.4 88.9

SAGP-F 17.5 27.0 48.5 24.3 51.7 0.578 5.9 0.9 93.1

SAGP-F(rm pos) 17.5 28.7 50.3 25.7 51.9 0.669 7.0 5.1 94.5

Coarse-grained syntactic structure

SGCP-R [9] 16.4 27.2 49.6 22.9 50.5 0.664 8.7 7.0 75.5

SAGP-E 21.0 31.6 54.8 28.8 55.8 0.713 7.1 5.7 88.3

SAGP-E(rm pos) 20.4 32.1 55.2 29.3 55.3 0.761 8.1 7.9 93.4

Table 2. Human evaluation scores.

Model Semantic Syntactic

CGEN 2.62 4.16

LIU 3.11 3.68

SCPN-F 2.81 4.25

SGCP-F 2.76 4.31

SAGP-F 3.0 4.62

SAGP-F(rm pos) 3.4 4.73

SGCP-R 3.36 3.77

SAGP-E 3.61 4.3

SAGP-E(rm pos) 3.81 4.65

We can observe in Table 1 that SAGP-F obtains the best results across semantic and
syntactic metrics under the same setting. These results demonstrate the effectiveness of
SAGP in semantic preservation and syntactic controllability.

SGCP-R uses the lower 5 levels of the parse tree as syntactic control, instead, we use
the relatively coarse-grained structures. We can see that SAGP-E still achieves substan-
tial improvements across semantic and syntactic metrics. These results further verify
the advantages of the proposed model.

It can also be seen that removing the part-of-speech nodes of the full parse tree
leads to further gain across the semantic metrics under these two settings, especially
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Fig. 4. Visualization of syntax attention. (a) shows the parse tree without part-of-speech nodes
of exemplar. (b) is visualization result of syntax attention when use processed full parse (remove
word) as syntactic control.

Table 3. Effect of different level syntactic structure. POS denotes part-of-speech nodes.

Height No Remove POS Remove POS

BLEU↑ S-BERT↑ TED-e↓ ESTM↑ BLEU↑ S-BERT↑ TED-e↓ ESTM↑
3 18.8 0.676 7.0 87.8 17.5 0.713 8.6 94.0

4 19.4 0.651 5.3 90 18.7 0.70 7.4 94.8

5 19.2 0.625 3.8 90.4 18.0 0.683 6.5 94.6

6 18.4 0.605 2.8 91.8 17.9 0.680 6.1 94.8

7 17.4 0.593 2 92.3 17.0 0.672 5.6 94.8

S-BERT. These results demonstrate that part-of-speech nodes can bring improvements
to the TED metric, but it will harm semantic preservation.

Human Evaluation. Table 2 shows the results of human evaluation which are somewhat
consistent with the automated metrics. Our model obtains the highest scores, thereby
highlighting the efficacy of our models.

4.6 Model Analysis

Visualization of Syntax Attention. In Fig. 4, we visualize the syntax attention when
using the full parse tree without part-of-speech nodes as syntactic control. This is an
instance from the test set: {Source: by his side crouched a huge black wolfish dog.
Exemplar: a giant yellow bird lives on it. Reference: a huge black wolfish dog squatted
down beside him.}

The generated sentence is: his side crouched in a huge black dog.
We can see that the words of the generated sentence correctly align with syntactic nodes
POS-1-4. The results show that the regularized syntax attention makes the decoder can
correctly select syntactic constituents to control the generation of words.

Effect of Different Level Syntactic Structure. We also analyzed the influence of dif-
ferent level structures on the performance of our model. We can see in Table 3 that
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Table 4. Example of generated sentences.

Source I promise to put your dreams before mine

Exemplar I promise no one can lay their hands on her

Reference I promise I’ll throw out my dreams for yours

Previous works

SCPN (2018) I promise you that I’ll have my dreams before you

CHEN (2019) I promise the dream I promised to put on yours

LIU (2020) I promise the dream that you will dream of mine

SGCP-F (2020) I promise the you can dream my dreams before me

SGCP-R (2020) I promise you’d get your dream in front

Ours

SAGP-F I promise all you’ll have your dreams before me

SAGP-E I promise you’ve got a dream before mine

SAGP-E(rm pos) I swear I’ll put your dream before I’m mine

semantic and syntactic metrics are more or less contradictory to each other. High-level
structure leading to better content preservation but worse syntactic control, especially
TED-e metric. Removing the part-of-speech nodes of the parse tree obtains substantial
improvement on S-BERT and ESTM metrics. This is because the part-of-speech infor-
mation is relatively specific, which will limit the type and number of generated words,
thus harm semantic preservation.

Example Generations. Table 4 shows some results generated by the competitive mod-
els. We can see that the proposed model can effectively generate semantics-preserved
paraphrases that conform to the syntax of exemplar at the same time. The fine-grained
syntactic structure strictly limits the output, leads to failing to preserve the semantics
of the input sentence. Compare with SGCP, our method can produce better output that
conforms to the syntax of the exemplar and the semantics of the input sentence.

5 Conclusion

In this paper, we explore coarse-grained syntactic structures to trade-off semantic
preservation and syntactic variations. To improve semantic preservation and syntactic
controllability, we further propose a syntax attention-guided paraphrase model that can
correctly select a syntactic constituent to control the generation of paraphrases. Experi-
ments show that our model achieves strong improvements over previous methods. Fur-
thermore, we verify that the proposed method is able to generate diverse paraphrases
that conform to the syntax of exemplars and the semantics of input sentences. The pro-
posed method can alleviate the issue of incompatibility between the syntactic exemplar
and the input sentence.

Acknowledgments. This work is supported by the National Science Foundation of China (Con-
tract 61876198, 61976105, 61976016).
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Abstract. Poetry is a kind of literary art, which conveys emotion with aesthetic
expressions. Poetry automatic generation is challenging because it is required
to confirm the semantic representation (content) and metrical constraints (form).
Most previous work lacks the effective use of metrical information, resulting in
the generated poems may break these constraints, which are essential for poetry.
In this paper, we formulate the poetry generation task as a constrained text genera-
tion problem. A Transformer-based dual-encoder model is then proposed to force
the poetry generation conditioned on both the writing intention and the metrical
patterns. We conduct experiments on three popular genres of Chinese classical
poetry: quatrains ( ), regulated verse ( ) and Song iambic ( ). Both
automatic and human evaluation results confirm that our method (poetry gener-
ation with metrical constraints, MCPG) significantly improves metrical compli-
ance of generated poems while maintaining coherence and fluency.

Keywords: Poetry automatic generation · Natural language generation ·
Metrical constraints

1 Introduction

Poetry is the spiritual and cultural heritage of humanity. Chinese classical poetry has
formed a series of rich genres in the development process of more than 1300 years.
These genres have their specific metrical patterns, mainly including the following three
aspects:

1. Structure pattern. It strictly defines the number of lines and the number of characters
in each line. For example, quatrains contain four lines, with each consisting of five
or seven characters, called “ ” and “ ” in Chinese respectively.

2. Rhyme pattern. The basic pronunciation units of Chinese characters are initials
( ) and finals ( ). We call those characters that use the same or similar finals
rhymes. The rhyme patterns specify that the last character in certain lines should
rhyme. For example, in quatrains, the last character of the first (optional), second
and fourth lines must rhyme.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 377–388, 2021.
https://doi.org/10.1007/978-3-030-88480-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88480-2_30&domain=pdf
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3. Tone pattern. Ancient Chinese characters used five tones, which were further divided
into two categories: level tone ( ) and downward tone ( ). The tone pattern defines
the tone of each position in a poem, which means that each position needs to be filled
with characters that match the tone determined by the tone pattern.

The above metrical constraints are sorted by priority. Figure 1 is a famous classical
poem of five-characters quatrains ( ). Ignore the content pattern in the figure for the
moment, which is introduced in section Methodology.

Poetry automatic generation task is: given a writing intention and a poetry genre,
then output a sequence that meets these requirements. As defined, poetry generation is a
constrained text generation with multiple constraints: semantic ones (the content of the
poem should be semantically consistent with the writing intention) and form ones (the
poem should meet the metrical patterns defined by a given genre). The constraint not
only tells what to say (content) but also how to say (form). Most previous work treats
poetry generation as free text generation and assumes that the model is able to learn
all it needs from the corpus automatically [12,14,24,26,29,33,35]. However, poetry
data is not sufficient in most cases, especially given the fact that capturing the variety
of such literature is non-trivial. This issue is arguably further amplified when we face
Song iambic with complex pattern constraints but few training data [22,34]. Conse-
quently, the generated poems may break these metrical constraints, which are essential
for poetry. In addition, the lack of metrical modelling results in poor portability and
generalization ability of the model. Most of the work is designed for the generation of
quatrains [12,24,26,29,33,35], but these models are not convenient to be used for the
generation of other genres such as Song iambic.

On the other hand, incorporating discrete structural information has shown promis-
ing results in machine translation [2,23] and controlled text generation [10,17]. And
very powerful models such as Transformer [20] and variants [21] have emerged.
Inspired by these, we use metrical information to improve poetry generation. Note that
some work [5,13,34] have made attempts along the line of this research, but they just
used limited metrical information and restrict themselves to a specific poetry genre. In
this work, we investigate more general methods and apply them to more poetry genres.

For this goal, we represent the problem of poetry generation as a constraint satisfac-
tion problem, where we can modify constraints to restrict the genre of poetry we want.
This enables us to train all genres of poetry in a unified framework, make full use of
different types of data, and further improve the model’s performance. Specifically, we
format the different levels of metrical constraints into discrete character sequences. A
Transformer-based dual-encoder model is then proposed to force the poetry generation
conditioned on both the writing intention and the metrical patterns. Experiments on a
classical Chinese poetry corpus demonstrate that our approach significantly improves
metrical compliance of generated poems while maintaining coherence and fluency.
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Fig. 1. An example of a five characters quatrains. The rhyming characters are red. ‘pt’ and ‘zt’
indicate the level tone ( ) and downward tone ( ), ‘co’ and ‘pe’ indicate two kinds of punc-
tuations. The number indicates the rhyme class. For the content pattern, a few characters are
randomly selected from the Body during training, and all the positions except punctuations are
replaced by placeholder ‘*’ at test time. (Color figure online)

2 Related Work

The use of computers to create art has always been expected. In addition to the long-
term goal of building artificial intelligence, research on this kind of task can assist
humans in artistic activities. The automatic generation of poetry is one of the research
fields widely concerned, and its related research has gone through three stages.

The first stage of poetry generation is based on templates or rules, which has the
characteristics of symbolism and rationalism. The system selects words or characters
that meet the metrical constraints according to the rules written by experts for text gen-
eration [6]. In the second stage, some methods based on statistical machine learning
are gradually applied to this task, such as genetic algorithm [16,36], text summariza-
tion [27] and statistical machine translation [7,8]. These methods focus on the surface
forms of words or characters and lack understanding of the intrinsic meaning of poetry.
Therefore, although the poems generated could meet the requirements in form, fluency,
coherence, and meaning are far from the requirements.

In recent years, with the great success of deep learning in natural language pro-
cessing, significant progress has been made in the research of poetry generation. [24]
were the first to try to use neural networks to generate classical Chinese poetry. They
used a CNN and RNN to capture the sentence-level representation and generated his-
torical sentences respectively. They then used an RNN to receive the output of both
and to predict character by character in an autoregressive way. The experimental results
showed that their method based on the neural network has obvious advantages over the
traditional method. After that, in order to improve semantic consistency and coherence,
researchers proposed a series of methods, such as topic planning [24], iterative gener-
ation [5,26], conditional variational autoencoders [12,29], memory networks [32,33],
and reinforcement learning [15,31]. In addition, researchers have also carried out a
series of explorations of the content diversity [3,28,30,33].

All of the above works are promising, but they more or less ignore the prerequi-
site of poetry, that is, the metrical compliance. Metres is an essential part of poetry,
which is the most significant difference from other literature. As far as we know, only
[13,34] take into account the metrical constraints, but they just used limited metrical
information and restrict themselves to a specific poetry genre such as Song iambic. In
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addition, in the poetry generation task of other languages, they usually force the model
to conform to the constraint by modifying the probability distribution of the decoder
[4]. We think this method will damage the fluency of semantics and is not suitable for
Chinese classical poetry. In this paper, we study the problem of the metrical constraints
of Chinese classical poetry and puts forward an effective and general solution to solve
it. We believe that our work can be complementary to other poetry generation systems
and useful for various constrained text generation tasks, including music composition,
template-based abstractive summarization, text simplification, and data-to-text genera-
tion.

3 Methodology

3.1 Problem Formulation

We begin with the notation definition. We use P = {co, pe, ca, ∗} to denote three
common punctuation1 in Chinese poetry and the placeholder, T = {pt, zt} to denote
level tone ( ) and downward tone ( ),R = {1, 2, . . . 16} to denote 16 kinds of rhyme
classes2 ( ), and V to denote the vocabulary.

The input of the task includes n topic keywords K = {K1,K2, . . . ,Kn} which
express the writing intention, and d kinds of metrical constraints S = {S1, S2, . . . , Sd},
where all Si are sequences of the same length. Let si,j be the rule in Si that character

yj must follow, where Y = {yj}|Y |
j=1 is the output sequence. In particular, we set d to 3

to define the main three constraints of poetry: tone, rhyme and content. The more fine-
grained constraints such as pairing ( ) are ignored in this paper. We use pre-defined
symbols above to represent punctuation, rhyme and tone, and use placeholder ‘*’ to
represent characters without relevant information about rule Si. More specifically, we
use S1 = {s1,j}|Y |

j=1, S2 = {s2,j}|Y |
j=1 and S3 = {s3,j}|Y |

j=1 to denote the tone, rhyme
and content pattern respectively, where s1,j ∈ P ∪ T , s2,j ∈ P ∪ R, s3,j ∈ P ∪ V .
Our goal is to output a sequence Y that is semantically consistent with K and formally
satisfies the constraints S. See Fig. 1 for an example poem with constraints.

Note that the structure pattern mentioned in the introduction can be represented
in any S, so there is no need to define it. In addition, the content pattern S3, which
defines the characters that should appear in Y , doesn’t belong to metrical patterns. The
content patterns are designed to make the model more flexible by providing a means
of character-level constraints that allow users to intervene the content of the target
sequence directly. For example, users want to have some characters appear in the target
sequence (such as acrostic poem ( ) or other interesting types) or refine the poem
draft, which can be achieved through it easily.

3.2 The Dual-Encoder Model

Following the practice of [32], we use TextRank and extract 1 to 4 keywords from each
poem to construct a keyword sequence where a separator separates keywords. Besides,

1 ‘co’, ‘pe’ and ‘ca’ refer to the punctuation respectively.
2 Tone and Rhyme are defined by TongYun (a pioneering book on Chinese rhythm). Learn more
at https://sou-yun.cn/mqr.aspx.

https://sou-yun.cn/mqr.aspx
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Fig. 2. The architecture of our model.

we noticed some work [12,14] took the title of the poem as the writing intention input.
We also implement this method in our model. We extract the rhyme and tone pattern
from each poem and represent them as S1 and S2 respectively. For S3, we randomly
select a few characters from the target sequence, at test time, all the positions except
punctuations are replaced by placeholder ‘*’.

The backbone of our approach is Transformer-based [20] encoder-decoder frame-
work. We use two encoders, including a keyword encoder and a metric encoder, to
encode the writing intention and metrical information. The keyword encoder acts as the
standard encoder in NMT, and can be treated as the generation’s source. The metric
encoder provides constraints information to guide decoding. Then the decoder gener-
ates the poem by using the output of the two encoders simultaneously. See Fig. 2 for the
workflow of our method.

We use hmet
l and hkey

l to denote the hidden states of metric encoder and keyword
encoder respectively, where l is the layer index. For hmet

0 , we sum all the embeddings
of the input symbols as the representation:

hmet
0,t = ES1

t +ES2
t +ES3

t +Epos
t (1)

where t is the position index, hmet
0,t is the representation of the t-th element in the embed-

ding layer of the metric encoder.ES1 ,ES2 andES3 are the embedding of the tone token,
rhyme token and content token respectively. Epos is the position embedding. For hkey

0 ,
we have:

hkey
0,t = EK

t +Epos
t (2)

where EK is the keyword token embedding, hkey
0,t is the representation of the t-th ele-

ment in the embedding layer of the keyword encoder. Once we have the representa-
tions Zkey and Zmet from the keyword encoder and the metric encoder, the decoder
computes two hidden states Zkey,dec and Zmet,dec with respective multi-head cross-
attention parameters, then interpolate it in a reasonable way:

Z = αZkey,dec + (1 − α)Zmet,dec (3)

where α is the interpolation coefficient. Then the decoder makes use of the integrated
context to generate the poem character by character.
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Table 1.Details of the datasets. In the test set of quatrains and regulated verse, 5-characters ( )
and 7-characters ( ) account for 500 poems respectively. Token is the number of characters.

Corpus Train Valid Test 5-characters 7-characters Token

Quatrains 121436 1000 1000 21368 100,068 3753568

Regulated verse 179487 1000 1000 78,900 100587 10286864

Song iambic 11190 1000 1000 – – 946183

All 312113 3000 3000 – – 14986615

4 Experiments

4.1 Setup

We conducted experiments on three popular genres of Chinese classical poetry: qua-
trains, regulated verse, and Song iambic. We train one model jointly for all genres and
beam search is used for decoding in the inference phase. We segment words in character
units [25]. The details of our datasets are shown in Table 1. For the model configuration,
we set the number of encoder and decoder layers to 4, and the rest was the same as the
Transformer-Base configuration [20]. We train our model using the Adam [9] optimiza-
tion method with: β1 = 0.9, β2 = 0.98, ε = 1e − 8. Additionally, we add dropout [18]
with drop ratio r = 0.2 to prevent overfitting. We set the interpolation coefficient α to
0.5.

4.2 Comparison Methods

We consider comparing the following models:
MCPG. Our proposed model. We noticed some work [12,14] took the title of the poem
as the writing intention input. We also implement this method (namely MCPG-title) in
our model. The model using keywords is called MCPG-key.
LMPG. [14] proposes a simple and effective method to generate classical Chinese
poetry with a language model. Their model did not use any metrical information and
distinguished different genres by using a genre label.
S2S. A sequence-to-sequence framework [1] based on Transformer. We put the key-
words and genre information (such as a genre token) together as the input sequence and
the target as the output sequence.
SongNet. [13] used pre-defined templates that contained partial metrical information
(length and rhyme) to generate poetry. They experimented on Song iambic and sonnets,
and we extended its method to quatrains and regulated verse.3

These methods are based on neural network and have achieved satisfactory perfor-
mance compared with the traditional methods. Among them, LMPG and S2S do not
use any metrical information, and SongNet uses templates containing length and rhyme
information to generate poetry.

3 Code:http://github.com/lipiji/SongNet.

http://github.com/lipiji/SongNet
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4.3 Evaluation Metrics

Automatic Evaluation. We used BERT-CCPoem4 instead of BLEU to measure the
similarity between the generated poems and the ground-truth because BLEU was not
designed to capture deep semantic information. Besides, we used three criteria to quan-
tify how well the generated poems meet the given metrical requirement [13,34]. The
details are as follows:

• Format accuracy: The format accuracy is the average percentage of the lines with
the correct length in a poem and then further averaged over all samples.

• Tone accuracy: The tone accuracy is the percentage that the tone is predicted cor-
rectly over all samples.

• Rhyme accuracy: The rhyme accuracy is the average percentage of rhyme correct-
ness over all rhymes groups5 in a poem and then further averaged over all samples.

Human Evaluation. We recruited ten well-educated native annotators to evaluate the
generated poems in a blind review manner by four criteria, namely, fluency, meaning,
coherence and poeticness [5,24,26,31]. Because the user’s writing intention (keywords)
will eventually appear in the generated poem, it is not necessary to evaluate the intention
relevance. The details are as follows:

• Fluency: Is the poem grammatically and syntactically formed?
• Meaning: Does the poem convey meaningful information?
• Coherence: Is the poem thematically coherent across lines?
• Poeticness: Does the poem have some poetic and artistic beauties?

Each criterion was rated from 1 to 3, representing bad, normal, good, respectively.
For each genre, we randomly selected 20 topic words to generate poems with these
models respectively.

5 Results and Discussions

5.1 Automatic Evaluation

As observed in the automatic evaluation of Table 2, our methods (MCPG-key/title)
demonstrate outstanding format, rhyme and tone accuracies on three genres. The poems
generated by our model almost in perfect compliance with the metrical constraints, indi-
cating the effect of the metrical information. For quatrains and regulated verse, due to
their regular structure (four lines or eight lines, each line contains five characters or
seven characters), each model can achieve nearly 100% performance on Format accu-
racy. However, for Song iambic with complex structure pattern and little training data,
the model does not perform well without the metrical constraints, as shown by LMPG
and S2S. Besides, MCPG has additional metrical information from the original poem,

4 A pre-trained model for Chinese classical poetry, developed by Research Center for Natural
Language Processing, Computational Humanities and Social Sciences, Tsinghua University.
URL: https://github.com/THUNLP-AIPoet/BERT-CCPoem.

5 A poem may have multiple groups of rhymes, especially Song iambic.

https://github.com/THUNLP-AIPoet/BERT-CCPoem
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Table 2. The automatic and human evaluation results. Flu., Mea., Coh., and Poe. represent the
Fluency, Meaning, Coherence and Poeticness respectively.

Genre Model Automatic evaluation ↑ Human evaluation ↑
Sim. Format Rhyme Tone Flu. Mea. Coh. Pot.

Quatrains LMPG 74.92 99.68 86.47 66.52 2.47 2.33 2.37 2.41

S2S 81.65 99.95 85.98 62.45 2.36 2.28 2.29 2.28

SongNet 73.02 99.96 87.78 67.39 2.44 2.26 2.34 2.30

MCPG-title 75.53 100.00 99.41 99.98 2.59 2.32 2.17 2.39

MCPG-key 82.41 100.00 98.13 99.57 2.46 2.35 2.56 2.32

Regulated verse LMPG 81.58 99.9 84.69 69.27 2.34 2.33 2.32 2.26

S2S 80.75 99.92 82.41 64.27 2.29 2.31 2.23 2.20

SongNet 78.08 99.89 85.70 68.84 2.31 2.30 2.32 2.21

MCPG-title 79.93 100.00 98.80 99.94 2.38 2.36 2.25 2.28

MCPG-key 83.32 100.00 97.54 99.70 2.55 2.45 2.51 2.35

Song iambic LMPG 81.23 86.12 64.56 65.36 2.03 2.08 2.12 2.06

S2S 81.42 77.83 60.12 62.78 2.01 2.04 2.06 2.01

SongNet 81.08 99.70 65.33 65.33 2.06 2.11 2.21 2.14

MCPG-title 81.45 99.64 97.85 99.92 2.11 2.24 2.25 2.16

MCPG-key 83.84 99.96 97.19 99.80 2.35 2.18 2.29 2.17

which leads to higher performance of Similarity than other models. However, it is worth
noting that for the artistic creation task, the similarity between the generated results and
the references can not confidently explain the quality of the work, which is also why
human evaluation is needed.

5.2 Human Evaluation

As we all know, the restriction of characters and the fluency of semantics are always
contradictory to each other to some extent. The human evaluation results show that our
model obtains a comparable score with other models on four criteria, which indicates
that our approach can achieve a good balance between semantics and constraints. We
think it benefits from softly introducing constraints rather than forcing the model to
satisfy constraints, such as modifying the decoding process. Figure 3 is a visualization
of the cross-attention with the metric encoder of the example generated in Case Study
(See Fig. 4), where the y-axis is the input of the metric encoder and the x-axis is the
generated result. As shown in the figure, the diagonal has a significant weight, which
indicates that the decoder can automatically learn to use metrical information to guide
and constrain the generation process.

Another observation is that using keywords performs better semantically than using
titles. This may be because keywords can provide more direct and abundant writing
materials for the model. The titles vary in quality, with some titles having little meaning
and a weak relationship to the content, making the model more difficult to learn.
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Fig. 3. The visualization of the cross-attention with the metric encoder of the example generated
in Case Study.

5.3 Case Study

In most previous methods, users can only influence the generated result macroscopically
through their writing intention. The choice of wording, phrasing and metrical patterns
depends entirely on the model. This may make the model tend to use a common pattern
to generate the poem. That means the model will pay much more attention to high-
frequency patterns whereas ignoring low-frequency ones, which limits its practicability.
Actually this problem exists not only in poem generation but also widely in various text
generation tasks [11,19,33].

In our model, users have a strong ability to intervene in the model by modifying the
metrical patterns to influence the generated poem. We can assign any tone and rhyme
pattern and the character expected to appear in the target sequence. This metrical infor-
mation provides a regularization function, which adjusts the model’s behaviour to gen-
erate the poem conformed to a specific metrical pattern we want. This mode is flexible,
controllable, and very helpful for poetry education, literary studies and auxiliary cre-
ation. For example, we use “ ” as the keyword, use the tone pattern and rhyme
pattern in Fig. 1, and use “ ” to construct the content pattern to generate an
acrostic poem ( ). As shown in Fig. 4, the generated poem has coherent sentiment
and smooth grammar and agrees with the metrical patterns broadly. Similarly, we can
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Fig. 4. A generated acrostic poem with “ ”. The rhyming characters are red. (Color
figure online)

Fig. 5. Examples of using different metrical patterns to generate the same keywords “ ”. The
rhyming characters are red. (Color figure online)

compose poetry with arbitrary form by manipulating the metrical patterns, even new
patterns that we create and never appeared in training data.

Another interesting finding is that in our model, given the same keywords, using
different metrical patterns can make the model generate vastly different poems, which
increases the diversity of poetry to some extent. Figure 5 shows an example. Both poems
achieve good performance in terms of metrical compliance and semantics. This means
that in addition to using common decoding strategies such as Top-K, we can adjust
metrical patterns to increase the diversity, and the latter is far more effective than the
former.

5.4 Limitations

Although MCPG can produce semantically fluent and emotionally rich poems, these
poems are deficient in the story occasionally. In other words, logical rationality and
relevance are insufficient in the emotional transition process. Another phenomenon is
that MCPG seems to be inclined to generate sad emotional poetry. We think this may
be due to the bias in data.

There are many elements in poetry creation, such as voice, diction, imagery, figures
of speech, symbolism, allegory, syntax, sound, and metres. In this paper, we mainly
focus on solving the problem of metres. We believe that the introduction of more ele-
ments in the model will solve the above problems. This is also our future work.

6 Conclusions

In this paper, we have proposed MCPG, a simple and effective model for poetry auto-
matic generation. We define the incorporation of metrical constraints into the poetry
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generation system as an encoding problem. A Transformer-based dual-encoder model
is then proposed to force the poetry generation conditioned on both the writing inten-
tion and the metrical patterns. We empirically demonstrate that our model can generate
excellent poems satisfied with the designated metrical patterns while maintaining coher-
ence and fluency.

We believe that our work can be complementary to other poetry generation systems
and useful for various constrained text generation tasks, including music composition,
template-based abstractive summarization, text simplification, and data-to-text genera-
tion. In future work, we will explore the introduction of other elements in our model
to improve the quality of poetry further and verify the effectiveness of our proposed
framework in different tasks.
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Abstract. Automatic text summarization aims to produce a brief but crucial
summary for the input documents. Both extractive and abstractive methods have
witnessed great success in English datasets in recent years. However, there has
been a minimal exploration of text summarization in other languages, limited
by the lack of large-scale datasets. In this paper, we present a large-scale Chi-
nese news summarization dataset CNewSum, which consists of 304,307 docu-
ments and human-written summaries for the news feed. It has long documents
with high-abstractive summaries, which encourages document-level understand-
ing and generation for current summarization models. An additional distinguish-
ing feature of CNewSum is that its test set includes adequacy and deducibility
annotations for the summaries. The adequacy level measures the degree of sum-
mary information covered by the document, and the deducibility indicates the
reasoning ability the model needs to generate the summary. These annotations
help researchers target their model performance bottleneck. We examine recent
methods on CNewSum and will release our dataset after the anonymous period
to provide a solid testbed for automatic Chinese summarization research.

Keywords: Automatic text summarization · Chinese summarization dataset ·
Adequacy and Deducibility

1 Introduction

Text summarization is an important task in natural language processing, which requires
the system to understand the long document and generate a short text to summarize
its main idea. There are two primary methods to generate summaries: extractive and
abstractive. Extractive methods select semantic units from the source document and
reorganize them into a consistent summary, while abstractive models generate sum-
maries using words and phrases freely. Benefiting from pre-trained language mod-
els [2,10,14], much process has been made on English summarzation datasets, such
as Newsromm [5], CNN/DailyMail [6], and NYT [19].

However, the lack of the high-quality datasets in other languages, such as Chinese,
limits further researches on summarization under different language habits and cul-
tural customs. It hinders the application of current summarization models to more lan-
guages. Currently, most Chinese summarization datasets are collected from Chinese
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 389–400, 2021.
https://doi.org/10.1007/978-3-030-88480-2_31
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Table 1. An example of our CNewSum dataset.

social media Weibo, subject to a 140-word length limit [4,7]. There are also some
datasets scraped from news websites, such as Toutiao [8] and ThePaper [12]. However,
those datasets are either small-scale or not of high quality.

In this paper, we present a large-scale Chinese news summarization dataset, CNew-
Sum, to make up for the lack of Chinese document-level summarization, which can
become an important supplement to current Chinese understanding and generation
tasks. Different from previous summarization datasets crawled from news websites,
we called for news articles from over hundreds of thousands press publishers and hired
a team of expert editors to provide human-written summaries for the daily news feed.
During the summarization process, the editors may perform simple reasoning or add
external knowledge to make the summary more reader-friendly. Thus, we further inves-
tigate our test set and explore how much knowledge the models need to generate a
human-like summary. Specifically, we ask annotators to determine two questions: 1)
Adequacy: Is the information of summaries self-contained in the source document? 2)
Deducibility: Can the information be deduced from the source document directly, or
needs external knowledge? We provide these two scores for each example in the test
set. Table 1 is an example of our dataset.

Our main contribution are as follows:

(1) We propose a large-scale Chinese news summarization dataset collected from over
hundreds of thousands news publishers. We hire a team of expert editors to write
summaries for news feed.
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(2) In order to figure out how much knowledge the model need to generate a human-
like summary, we manually annotate the adequacy and deducibility level for our
test set.

(3) We also provide several strong extractive and abstractive baselines, which makes
the dataset easy to use as the benchmark for Chinese summarization tasks.

2 Related Work

News Summarization Dataset. Most news summarization datasets focus on English lan-
guage, and here we give a brief introduction to some popular ones and list the detailed
information in the first part of Table 2. NYT is a news summarization dataset con-
structed from New York Times Annotated Corpus [19]. We tokenize and convert all
text to lower-case, follow the split of Paulus et al. [18]. The CNN/DailyMail ques-
tion answering dataset [6] modified by Nallapati et al. [16] and See et al. [20] is the
most commonly-used dataset for single-document summarization. It consists of online
news articles with several highlights. Those highlights are concatenated as the summary.
Newsroom [5] is a large-scale news dataset scraped from 38 major news publications,
ranging from business to sports. These summaries are often provided by editors and
journalists for social distribution and search results.

Chinese Summarization Dataset. There are also several Chinese summarization
datasets in other domains [3,9,22], but here we only discuss news summarization
datasets. The detailed statistics are listed in the second part of Table 2. The LCSTS [7]
is a large-scale Chinese social media summarization dataset. It is split into three parts,
and the part II and part III are usually used as development and test set after filtering out
low-quality examples. RASG [4] collects the document-summary-comments pair data
for their reader-aware abstractive summary generation task. It utilizes users’ comments
to benefit the generation of the abstractive summary of main content. The document is
relatively short and has about 9 comments as a complement. TTNews [8] is provided
for NLPCC Single Document Summarization competition,1 including 50,000 training
examples with summaries and 50,000 without summaries. CLTS [12] is a Chinese sum-
marization dataset extracted from the news website ThePaper. It contains more than
180,000 long articles and corresponding summaries written by professional editors and
authors.

3 The CNewSum Dataset

3.1 Data Collection

We receive news submissions from over hundreds of thousands press publishers.2 We
hire a team of expert editors to provide human-written summaries for the daily news

1 http://tcci.ccf.org.cn/conference/2018/taskdata.php.
2 The press publishers include thepaper.cn, wallstreetcn.com, cankaoxiaoxi.com, yicai.com, and
so on. They submit their articles in web format to our company. These publishers retain any
copyright they may have in their content and grant us a royalty-free, perpetual licence to use,
copy, edit and publish their content.

http://tcci.ccf.org.cn/conference/2018/taskdata.php
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feed. Each example will be double-checked by different experts to ensure its quality.
We construct CNewSum by extracting news article from 2015 to 20203 and filtering
summaries with less than 5 words. We further limit the length of documents to 50–
5000. To solve the problem of missing and inaccurate punctuation in web format, we
train an extra punctuation tagging model via Bi-LSTM on Chinese articles to correct
punctuation.4

Finally we obtain a Chinese news corpus with 304,307 document-summary pairs.
It is split into training/validation/test by 0.9/0.05/0.05. Besides, we compare document
sentences with human-written summaries and use the greedy algorithm following [16]
to get the ORACLE sentences with label 1 as the signal for extractive summarization.

Table 2. The summarization datasets. The top part contains the commonly-used English news
summarization and the bottom contains the Chinese summarization datasets. ‘–’ means the orig-
inal dataset does not provide the standard spit for train/dev/test set. For TTNews, we only take
training examples with summaries into consideration. ‘*’ includes 2,000 evaluation examples for
NLPCC2017 and 2,000 for NLPCC2018.

Dataset Train Dev Test Total Article Summary Source

NYT [19] 589,282 32,737 32,739 654,758 552.14 42.77 New York Times

CNNDM [6] 287,227 13,368 11,490 312,085 791.67 55.17 CNN & Daily Mail

Newsroom [5] 995,041 108,837 108,862 1,212,740 765.59 30.22 38 news sites

LCSTS [7] 2,400,591 8,685 725 2,410,001 103.7 17.90 Weibo

RASG [4] 863,826 – – 863,826 67.08 16.61 Weibo

TTNews [8] 50,000 – 4,000* 54,000 747.20 36.92 Toutiao

CLTS [12] 148,317 20,393 16,687 185,397 1363.69 58.12 ThePaper

CNewSum 275,596 14,356 14,355 304,307 790.55 37.58 News publishers

3.2 Adequacy and Deducibility Annotation

Analyzing our dataset, we find that the expert editors often perform some reasoning
or add external knowledge to make the summary more friendly for the readers. For
example, the precise figure (2,250) may be summarized as an approximate number
(more than two thousand). In another case, a specific date will be converted to a relative
time based on the time of publication, e.g. tomorrow. This information is not directly
available in the original document. Thus, we wonder how much knowledge the model
needs to generate the human-written summary. Inspired by [1], we ask annotators to
answer the following two questions for each document-summary pair in our test set:

1) Adequacy. Does necessary information of the summary has been included in the
document? For example, all words in the summary can be directly found in the
document, or they have synonyms or detailed descriptions in the original text. Under
these circumstances, the summary is labeled as 1.

3 These data have been checked for legality and can be released for research use.
4 The accuracy rate is 96.20%.
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2) Deducibility. Can the information of the summary be easily inferred from the doc-
ument? Unit conversion, number calculation, and name abbreviations that can be
inferred are label as 1. In contrast, complex conclusions with no direct mentions in
the original document are labeled as 0.

For each question, the annotators should choose 0 or 1. We hired a team of 12
employees to annotate the test set.5 We first trained these employees on basic annota-
tion rules, and they were required to annotate 100 examples and then be checked and
corrected by us. Two voluntary expert annotators were employed to control quality.
They were asked to sample 10% from each annotator and recheck the annotation. If
one’s consistent rate is less than 95%, all annotations of this annotator will be returned
and re-annotated. It is consistent only if the two experts and the annotator agree on their
answers, otherwise the example will be further discussed.

Table 3. The statistics of news summarization datasets. Cov., Den. and Comp. correspond to the
Coverage, Density and Compression introduced by [5]. The Bi., Tri. and 4-gram are the n-gram
novelty (%). The novelties of NYT/CNNDM/Newsroom are from [17]. For Chinese data, it is
calculated by words.

Dataset Cov.↓ Den.↓ Comp.↑ Bi.↑ Tri.↑ 4-gram↑
NYT 0.83 3.50 24.19 55.59 71.93 80.16

CNNDM 0.85 3.70 13.76 49.70 70.20 79.99

Newsroom 0.82 9.50 36.03 46.80 58.06 62.72

LCSTS 0.54 1.23 6.61 80.29 90.92 94.53

RASG 0.61 2.52 7.27 67.89 76.94 80.15

TTNews 0.76 3.21 22.24 61.09 76.30 83.64

CLTS 0.99 28.73 24.81 5.14 8.08 10.36

CNewSum 0.76 2.77 20.83 63.29 78.54 85.64

3.3 Dataset Analysis

As shown in Table 2, our CNewSum dataset has a similar scale with the most popular
English summarization dataset CNNDM, which is suitable for training and evaluating
different summarization models. For the Chinese dataset, the average length of the doc-
ument and the summary are significantly longer than datasets collected fromWeibo and
similar with TTNews.

Following Grusky et al. [5], we also use Coverage, Density and Compression to
characterize our summarization dataset. Coverage measures the overlap degree of the
extractive fragment between the article and summary, andDensitymeasures the average
length of the extractive fragment. Compression is the ratio of the article length to the
summary length. In Addition, we calculate the n-gram novelty of the summary, which

5 We paid 1 RMB (0.15 dollar) for each example, and the average hourly wage is 60 RMB (the
minimum hourly wage is 24 RMB).
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Table 4. The adequacy (A) and deducibility (D) level in our test set.

A = 1 & D = 1 A = 0 & D = 1 A = 0 & D = 0

91.08% 4.11% 4.81%

is the percentage of n-grams that do not appear in the document, as described in [17].
The results are shown in Table 3. We can find that the datasets collected from Weibo
usually have lower coverage and density ratio, with high compression and novelty. This
indicates that the summaries for these short documents are more abstractive. For news
article summarization, CLTS almost copy most words of the summary from the docu-
ment directly, which is indicated by the highest coverage, density and the lowest nov-
elty. Our CNewSum provides a large-scale document-level summarization dataset with
comparable abstractiveness with short social media datasets.

Since all adequacy summaries can be inferred from the document, the A = 1 &
D = 0 is meaningless. For the summarization models, the examples with A = 1 & D = 1
is relatively easy to generate, and A = 0 & D = 1 ask for some inference abilities. The
A = 0 & D = 0 cannot be solved with the original document and may need the help of
external knowledge. From Table 4, we find that more than 80% examples are adequate
and deducible, but 20% lack essential information. With D = 1, the information can
be inferred from the document. For example, “2005–2015” will be summarized as “ten
years” which requires the model to do simple calculation. The rest summaries are fac-
tual but need external knowledge. News articles from the websites are time-sensitive
and are filled with pictures. The editors often write the summary based on the time of
the event and the image, which will cause the relative time, such as ‘yesterday’, and
the picture description to appear in the summary. In addition, famous people will be
mapped to their position in the summary, such as Obama and the American president
of that time. It is difficult for the model to deduce such information from the news text
without additional information. We keep these in our dataset to simulate real-world data
distribution and let researchers evaluate the model performance from different aspects.

4 Experiment

We train several summarization models on our CNewSum. These systems include both
abstractive and extractive methods, and the performance can serve as the baseline for
future work.

4.1 Models

Baseline. We calculate three popular summarization baseline for our dataset. LEAD is
a common lower bound for news summarization dataset [5,16,20]. For ORACLE, we
concatenate the sentences with label 1 in the original order. TextRank [15] is simple
unsupervised graph-based extractive methods.
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Table 5. Results on the test set of CNewSum. The first part contains the Lead and Oracle baseline.
The second and third part are extractive and abstractive summarization models.

Models ROUGE-1 ROUGE-2 ROUGE-L

LEAD 30.43 17.26 25.33

ORACLE 46.84 30.54 40.08

TextRank [15] 24.04 13.70 20.08

NeuSum [24] 30.61 17.36 25.66

TFExt [13] 32.87 18.85 27.59

BERTExt 34.78 20.33 29.34

PG [20] 25.70 11.05 19.62

TFAbs [13] 37.36 18.62 30.62

BERTAbs 44.18 27.37 38.32

Neural Models. NeuSum [24] jointly score and select sentences for extractive summa-
rization. PG [20] is the pointer-generator network which is a commonly-used encoder-
decoder abstractive summarization model with the copy and coverage mechanism.
Transformer [21] is a well-known sequence-to-sequence model based on the self-
attention mechanism. Following the settings in [13], we employ two Transformer base-
lines: TFExt and TFAbs. The pre-trained language models such as BERT [2] have
improved both abstractive and extractive summarization by a large margin, so we also
apply the BERTSum mode [13] to our dataset. We train a Chinese BERT language
model with Chinese news articles,6 which is noted as BERTExt and BERTAbs.

For extractive summarization, we choose the top-2 sentences as the summary
due to the average sentence number (1.49) of the ground truth summary. The auto-
matic metric ROUGE [11] is used for evaluation. Since the original ROUGE is
made only for English, we follow the method of [7] and map the Chinese words to
numbers. Specifically, the Chinese text is split by characters and the English words
and numbers will be split by space. For example, “Surface Phone Windows
10 (The Surface Phone will be loaded with Windows 10)” will be transformed to

and then mapped to numeral IDs.

4.2 Results

As shown in Table 5, the abstractive models have better results on CNewSum test set,
which is consistent with our analysis in Sect. 3.3. The abstractive methods has per-
formed better than extractive models, which means that extractive methods have many
performance limitations in CNewSum.

6 Since the bert-base-chinese model of Google does not perform well in our dataset.
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Table 6. The results of models on different adequacy and deducibility level.

Model Category ROUGE-1 ROUGE-2 ROUGE-L

TFExt A = 1 & D = 1 33.16 19.19 27.88

A = 0 & D = 1 30.89 15.60 25.38

A = 0 & D = 0 28.92 14.88 23.74

TFAbs A = 1 & D = 1 37.54 18.85 30.83

A = 0 & D = 1 36.36 16.70 29.63

A = 0 & D = 0 34.73 15.95 27.52

BERTExt A = 1 & D = 1 35.05 20.67 29.62

A = 0 & D = 1 32.81 16.90 27.05

A = 0 & D = 0 31.07 16.57 25.72

BERTAbs A = 1 & D = 1 44.51 27.76 38.70

A = 0 & D = 1 41.75 23.64 35.34

A = 0 & D = 0 40.18 23.34 33.60

We further evaluate models based on adequacy and deducibility level. The results
shown in Table 6 indicate that this model performs well on A = 1 where all necessary
information can be easily found in the source document. However, when it asks for
simple deducing or external knowledge, the performance degrade significantly.

4.3 Case Study

We illustrate the differences between abstractive models with a typical example in the
appendix. As stated in previous work [20,23], PG tends to copy directly from the orig-
inal document instead of generating from vocabulary, which makes the output less
abstractive. Besides, although it has used the coverage mechanism to avoid repetition, it
still suffers the most from the meaningless duplication. For Transformer-based models,
the random initialized model TFAbs introduces fake information, while the BERTAbs
and TTBERTAbs perform much better in both capturing important information and
generating fluent summaries.
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Table 7. An example for abstractive summarization models. The text with underline is directly
copied from the original article, and the bolded text contains fake information.



398 D. Wang et al.

5 Conclusion

We present CNewSum, a high-quality summarization dataset composed of human-
written summaries to fill up for the lack of news summarization dataset in Chinese. We
annotate all test set with adequacy and deducibility levels to help abstractive models
solve the unfaithful problem. Finally, we give several popular extractive and abstractive
baselines on the dataset for future research.
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Abstract. For some inexperienced developers, extracting key informa-
tion from code snippets and programming error messages and turning it
into a highly readable question can help them better understand, locate
and search for the cause of errors. This paper proposes a copy mechanism
guided transformer with pre-trained programming and natural lan-
guages representations (CMPPN) to automatically generate questions
with high human readability from code snippets and programming error
messages. Our CMPPN is pre-trained on a large scale code corpus with
code summarization task based on transformer, and incorporated with
copying mechanism in the fine-tuning phase. To evaluate our proposed
model, we create a new dataset based on Stack Overflow posts, which
contains code snippets, programming error messages and corresponding
question headlines in 3 programming languages (Java, C# and Python).
Extensive experimental results on this dataset verify the effectiveness of
our CMPPN compared to baseline methods. Both dataset and model are
available on https://github.com/YuiTH/CEMS-SO.

Keywords: Deep learning · Dataset · Question generation · Software
development

1 Introduction

Debugging is a significant component in modern software development life cycle
(SDLC) [6,18]. In debugging process, developers find and resolve bugs by analyz-
ing codes and error messages. Although the compilers or interpreters of modern
programming languages usually return the call stack that lead the error when
encountering exceptions, these prompts that contain a lot of redundant informa-
tion are dazzling for novice developers. Even if they go to online programming
forums such as Stack Overflow1 and GitHub Issues2 for help, due to lack of
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understanding of some common senses and terminologies, in many cases they
cannot accurately describe the problems they have, which leads to inefficient
development and communication.

In this paper, we introduce a novel task program, which is to generate a ques-
tion described in natural language from code snippets and programming error
messages to help developers better understand, locate and search for the cause
of errors. Our task, namely programming error related question generation
(PERQG) is similar to text summarization [7,14,25], both of which need
to find key information from a large amount of potentially redundant content
and refine it into a short summary. The difference is that the input of our task
is a mixture of programming language and formatted error messages, and the
output is a natural language description which is likely to contain some profes-
sional terms, as showed in Fig. 1. Note that since error messages can point to
the location of ill codes, both the error messages and code snippets that cause
the error can be easily accessed, thence our task has certain potential as a pro-
gramming aid, such as an IDE plugin that can automatically provide users with
debugging analysis.

Program Error Related 
Ques on Genera on Text Summariza on

Code:
con = httplib.HTTPSConnec on("www.google.com")
con.request("POST", "/tbproxy/spell?lang=he", data)
response = con.getresponse().read()

Error Message:
Traceback (most recent call last):

File "C:\Scripts\iQuality\test.py", line 47, in <module>
print spellFix(u”\u”)

File "C:\Scripts\iQuality\test.py", line 26, in spellFix
con.request("POST", "/tbproxy/spell?lang=%s" % 

lang, data)
…...

File "C:\Python27\lib\ssl.py", line 189, in send
v = self._sslobj.write(data)

UnicodeEncodeError: 'ascii' codec can't encode characters

Title:
How do I post unicode characters using h plib?

Ar cle: 
At least two people have died and up to 40 people are 
feared trapped a er a roof collapsed at a construc on site in 
eastern South Africa, emergency services say. The collapse 
occurred in the township of Tongaat, near Durban. Thirty 
people have been transported to the hospital with injuries 
ranging from moderate to cri cal, Crisis Medical opera ons 
director Neil Powell told CNN from the scene.  "A local crane 
has arrived to start clearing the rubble to look for 
unaccounted people," he said. "We're wai ng at this stage 
to get to the rubble that is s ll crushing an es mated 30 to 
40 people." The South African Press Associa on reported 
that a 100-meter area of 18-inch-thick concrete slabs had 
collapsed late Tuesday a ernoon local me. 

Summary: 
Two people have died a er a building collapsed in South 
Africa, emergency services say . Crisis Medical opera ons 
director says 30 people had been taken to the hospital . 

Fig. 1. Comparison between program error related question generation and text sum-
marization.

Inspired by recent works on code representation learning [3,5,9], we propose
a transformer-based sequence to sequence (Seq2Seq) model, which maps code
snippets and formatted error messages into high-dimensional vector space and
generates natural language summaries word by word. We use transformer to
pre-train on CodeSearchNet3 corpus with code summarization task. The task

3 https://github.com/github/CodeSearchNet.

https://github.com/github/CodeSearchNet
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takes function source code as input and corresponding human-written function
comments as output, i.e., describing what the code does using natural language.
In fine-tuning stage, we incorporate copying mechanism in pre-trained trans-
former, which allows to copy some key fragments directly from the code and
error messages during decoding.

To evaluate our method, we collect a new dataset contains 203K human-
written questions4 about Java, C# and Python each of question has at least one
code snippet and one error message. To compare with our proposed method,
we build sufficient baseline models, including a strong rule-based method and
several non-pretrained methods. Extensive experimental results show that our
method has a significant improvement in BLEU [15], ROUGE [12] and METEOR
[1] compared with baseline methods.

The main contributions of our paper are as follows: 1) We introduce a
new task to generate questions from code snippets and error messages; 2) We
construct a new dataset based on Stack Overflow posts, as a benchmark of
program error related question generation; 3) We propose CMPPN, a model
shows superior performance on PERQG. Both dataset and model will be release
for further research.

2 Dataset and Experiment Setup

We get the original data from Stack Overflow dump.5 Stack Overflow is a pro-
fessional technical Q&A community, in which the questioner is asked to edit a
complete question, including the title and specific contents, most of the questions
will be accompanied by problematic codes or error messages.

To collect code snippets, error messages and corresponding question titles,
we limit that each question must have at least one code snippet and one error
message. Both code snippets and error messages are extracted from code tag
from dump file in XML format, since most questioners indiscriminately format
the codes and error messages with code tag. To distinguish between codes and
error messages, we design corresponding regular patterns6 for error messages
based on language characteristics. Those blocks with code tag match the pattern
are considered as error messages, and others as codes. We also use another quote
tag to identify error message. We make some trivial rules to clean up the noise,
such as >>> which means the command prompt and some indentation at the
beginning of the code section.

We chose three widely used programming languages to construct the dataset:
Java, C# and Python. Programming languages can be divided into interpretative

4 82% of the questions have at least one answer, indicating that these questions are of
high quality.

5 https://archive.org/details/stackexchange.
6 For Java, we use “at:” plus Java top level domain package name including java org

io net etc., as pattern for error message; for C#, pattern are “CS” with four digits
for compile error and “Exception:” for runtime error; for Python, pattern is message
start with “Traceback (most recent call last)”.

https://archive.org/details/stackexchange
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and compilable languages. In compiled languages, the code is translated into
machine code by the compiler before running, both compiler and runtime could
produce errors. In interpreted languages, the source code is executed line by line
directly, so only the runtime may produce errors. C# is the representative of a
compiled language and Python is the representative of interpreted programming
languages. Java is an intermediate state of the two languages: its code needs to
be compiled before it can be executed, but the format of error message during
compile is same as runtime. The error message format of the three languages is
shown in Fig. 2. These three programming languages are very representative for
evaluating our task and models.

Fig. 2. Sample error messages of Java, C# and Python. Due to layout limitations,
some examples have been truncated.

Popular language C/C++ was not selected because it is difficult to obtain
runtime error information. Obtaining C/C++ runtime error information requires
analyzing the core dump file, which is too difficult for beginners. And it is hard
for obtaining development tools to obtain such information.
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Relying only on error messages to generate question or summarization is
sometimes insufficient. In the Fig. 1’s case, the information given by error mes-
sages is relatively more general. To generate informative and reasonable ques-
tions, error messages must be analyzed in conjunction with codes. The ground
question in Fig. 1 involves a certain library not mentioned in the error message
but is used in the code snippiest.

We finally collected 203K questions from Stack Overflow dump with at least
one code block and one traceback block. We categorize these problems according
to programming language, and further divide them into training set, validation
set and test set in 7:2:1 ratio. We call it Code and Error Message Summarization
of Stack Overflow posts (CEMS-SO). Data statistics are shown in Table 1.

Table 1. Data statistic of CEMS-SO dataset.

Language Examples

Train Valid Test

Python 62,252 17,787 8,894

Java 61,162 17,476 8,738

C# 18,808 5,375 2,687

Overall 142,222 40,638 20,319

3 Method

3.1 Models

We adopt a sequence-to-sequence framework based on transformer [23] both
in the pre-training and fine-tuning stage with a fully supervised manner. The
highly parallelized transformer allows the pre-training on large-scale corpus for
better representations and faster convergence of downstream tasks, and the self-
attention mechanism that breaks the distance limit can better capture the long-
term dependence of the input code and error messages.

3.2 Pre-training

We use code summarization, one of the downstream tasks in CodeBERT [3], as
our pre-training task. Compared with the fine-tuning stage, we only use pro-
gramming language as input and natural language as output. More specifically,
the goal is to generate a natural language description for the codes. Our pre-
training is expected to learn a good representations of programming language
and natural language simultaneously. Based on the structure of encoder-decoder,
the bi-modal embeddings can be learned to be aligned in high-dimensional vector
space.
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We pre-train CMPPN with programming language (PL)-nature language
(NL) pairs from CodeSearchNet [8]. We train four programming languages
together, including Python, Java, C#, Go, etc. We add Go since the language
syntax of Go is similar to Java and C#. Following CodeXGLUE [13], we fil-
ter some low-quality samples, including: 1) the code cannot be parsed into an
abstract syntax tree; 2) document not in English; 3) code too long or too short;
4) special pattern like “https://” shows in code. We finally collect 642K samples
for pre-training, which is about 5 times the size of CEMS-SO dataset. We train
a joint WordPiece [24] to tokenize for both PL (input) and NL (output). The
tokenized PL sequence {[CLS], c1, c2, ..., cn} is passed through the transformer
encoder to obtain the hidden state, and the transformer decoder calculates the
probability distribution of the output token at each step via teacher forcing
during training. We optimize the cross entropy of the predicted probability dis-
tribution and the tokenized gold NL sequence {s1, s2, ..., sm, [EOS]}.

3.3 Fine-Tuning

In the fine-tuning stage, we use the concatenated sequence of error messages and
codes as input. We use [SEP] token to separate two segments as {[CLS], e1, e2, ...,
en, [SEP ], c1, c2, ..., cn}, where ei is the i-th token of error messages and ci is the
i-th token of codes. Due to limitations of BERT position embeddings and GPU
memory, we truncate the input to within 512 tokens. Our truncation rule is as
follows: 1) truncate from the right to the left; 2) truncate codes first to the given
lower limit (150); 3) then truncate error messages to the given lower limit (350).
One exception is that when training the Python language, the error messages is
truncated from left to right.7 We train in exactly the same way as pre-training.

Copying Mechanism. Error messages usually contains important fragments
that the questioner may copy directly when editing the question, such as an
unknown exception. We incorporate the copy mechanism [4] in the fine-tuning to
guide the generation. In addition to directly generating words from vocabulary,
the copy mechanism can directly copy a word from the input sequence as output
when it takes effect.

The copy mechanism intervenes with a probability pcopy for each token in the
decoding process, and the intervening probability is calculated from the hidden
state st of the decoder at time step t.

pcopy = σ(wT
copyst) (1)

where wcopy is parameter and pcopy ∈ [0, 1]. When implementing the copy mech-
anism for the transformer, we use the encoder-decoder attention Pinput(yt) as
the probability of copying the word from input following previous work [19].

7 When a Python program reports an error, the information pointing to user codes
usually appears at the end.
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Incorporation with decoder output probability Pvocab(yt), final distribution of
vocabulary P (yt) is:

P (yt) = (1 − pcopy)Pvocab(yt) + pcopyPinput(yt) (2)

We incorporate copying mechanism on both LSTM and transformer to verify
its effectiveness, as well as our CMPPN.

3.4 Model Settings

Our model consists of 12 layers of transformer encoder and 6 layers of transformer
decoder. More specifically, each layer of encoder has 12 self-attention heads, and
the hidden dimension is 768. Decoder has exact same number of self-attention
heads and hidden sizes with encoder, but only 6 layers following CodeBERT [3].

We use Adam optimizer [10] with learning rate 5e−5 and train 18 epochs
on CodeSearchNet. Note that our pre-training does not completely start from
scratch, where the encoder uses CodeBERT-base8 to initialize the parameters,
and the decoder initializes randomly. 8 NVIDIA Tesla V100 32 GB are used to
pre-training, which takes 13 h. The effective batch size is 4096.

In the fine-tuning phase, we use the same Seq2Seq architecture with pre-
training phase. We fine-tune three languages with 10 epochs on the CEMS-SO
respectively, and also used Adam optimizer with 5e-5 learning rate. The best
checkpoint is picked based on the BLEU-4 [15] metric of validation set. The
effective batch size of fine-tuning is 512. The fine-tuning of each language requires
4 h of training on 8 NVIDIA Tesla V100 32 GB.

3.5 Automatic Metric

We employed BLEU [15] as our automatic metrics. BLEU compares the degree of
overlap of n-grams in the candidate question and golden. The higher the degree
of overlap, the higher the generation quality. Following CodeXGLUE [13] we
report smoothed BLEU-4 score. We also report ROUGE-L [12] and METEOR
[1], which is often used in summarizing task [19].

4 Experiments

4.1 Baselines

Rule Based Method. We directly use the most important key sentence in
the error messages as the question. Generally, the error information reported by
the interpreter and compiler contains all the call stacks of the error code, but
in many cases, most of the error information comes from system or library code
rather than user code. More specifically, we use the first sentence of Java and
C#’s error message and fill it into a common question template. Last sentence
of error message is used in Python’s case. We named this method Rule-copy,
which is a powerful baseline since it conforms to the user’s questioning habits.
8 https://huggingface.co/microsoft/codebert-base.

https://huggingface.co/microsoft/codebert-base
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Non-pretrained Based Method. We report transformer [23] and LSTM [22]
as non-pretrained based baselines. We use transformer with the same structure
as CMPPN randomly initialized to test the effect of the pre-training and add
copying mechanism to both the two models to verify the effectiveness of the
copying mechanism.

4.2 Main Result

Table 2. Automatic metrics for baseline and CMPPN.

Methods Java C# Python

BLEU-4 ROGUE-L METEOR BLEU-4 ROGUE-L METEOR BLEU-4 ROGUE-L METEOR

Rule-Copy 9.01 14.90 11.78 9.09 15.67 14.39 14.68 21.00 18.59

Transformer 7.23 9.31 2.44 5.97 10.07 4.40 6.48 9.19 5.35

Transformer+copy 11.36 17.26 8.51 9.72 15.60 9.59 12.22 19.07 11.74

LSTM 8.62 13.00 4.97 5.13 7.32 3.70 10.58 15.76 9.77

LSTM+copy 11.66 17.80 9.05 8.19 12.79 7.31 15.32 21.69 14.07

CMPPN wocopy 14.27 20.85 11.79 12.05 18.86 12.31 16.79 24.11 16.16

CMPPN 14.34 21.39 12.37 13.64 21.26 14.27 17.02 24.86 16.80

CMPPN-union 14.42 21.54 12.95 13.97 21.33 14.97 17.28 24.64 16.81

Rule-Based vs. Model-Based. Rule-copy performs better than LSTM and
Transformer, and is close to the result of LSTM-copy and Transformer-copy, but
not as good as our CMPPN. Questioners tend to copy part of the error messages
directly in the title, especially in Python, therefore some outputs of Rule-copy are
very similar to ground truth. In addition, the output of Rule-copy often contains
keywords such as the exception type. These keywords have a high probability of
appearing in the ground truth, which makes the Rule-copy a powerful baseline.
However, in some complex situations, rule-based method is a little laborious.
For example, the location of the key information in the error messages is not
always determined, or the error messages needs to be combined with the code
to infer more accurate problems like Fig. 2. Sometimes questions will condense
error messages and briefly describe the scenario where the problem occurs. This
kind of refinement cannot be achieved by simple cherry-picking methods. Rule-
copy gets the highest METEOR in the python language. We guess it may be
because our title is likely to contain some professional terms, and it is difficult
for METEOR which relies on synonym mining to find these synonyms. But for
complete comparison, we still report this metric.

LSTM vs. Transformer. As shown in Table 2, LSTM [22] performs better
than non-pretrained transformer [23] in Java and Python. This trend remains the
same even after joining the copying mechanism. But after pre-training, CMPPN
outperforms LSTM by a large margin in all three languages. LSTM has great
potential in this task, but limited by the autoregressive training, large-scale pre-
training cannot be carried out even with less parameters. This limits its further
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improvement. From these results, we can see that the representation of position
information in the code is extremely important. Further research on position
embedding may further improve performance.

Copying Mechanism Benefit. Copying mechanism [4] shows obvious effects
in both LSTM and transformer. The result of the baseline model without the
copying mechanism is even worth than rule-base method. In the Python exper-
iment, due to the clearer error message format, the copying mechanism plays a
more obvious role. After the model pre-training, the effect of the copy mechanism
decreases, but it can still bring certain improvement to the model.

Pre-training Improvement. From the results of Table 2, pre-trained CMPPN
far exceeds transformer and LSTM on all metrics. CMPPN nearly double the
BLEU-4 score from transformer baseline. The pre-training of the summary task
also significantly improves the readability of the generated results.

Joint Training vs. Independent Training. We also combine the corpus of all
languages for training during fine-tuning, denoted as CMPPN-union in Table 2.
Result shows joint training slightly improve the performance. Even the format
of the error message and the code is different, sample from other languages can
still improve the effect of model generation to generate a better question. We
suspect that our union model is easy to transfer to other languages, which further
illustrates the potential of the model.

4.3 Influence of Bi-modal Inputs

In order to compare the role of code and error information in problem generation,
we use code only and error information only as input to train CMPPN. Same
settings and truncation strategy as CMPPN are used. The results shown in
Table 3 decrease when code or error messages absence. Not surprisingly, the
decrease is more pronounced when only using code.

Table 3. CMPPN result with single-modal input in Java. The number in parentheses
indicates the performance degradation between it and bi-modal (Both). The result of
Both comes from CMPPN-union.

BLEU-4 ROGUE-L METEOR

Both 14.53 21.54 12.95

Error messages only 13.48 (−1.05) 21.41 (−0.13) 12.41 (−0.54)

Codes only 10.10 (−4.43) 19.15 (−2.39) 10.35 (−2.60)
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5 Related Works

Deep Learning in Code Representation. In automating software engineer-
ing area, using deep learning to understand and generate code or code-related
text is wildly used. New software engineering datasets and tasks are constantly
being proposed. The summative work CodeXGLUE [13] integrates many code-
related tasks and has become a general benchmark in this field. Recent work
CodeBERT [3] GraphCodeBERT [5] pre-train BERT with CodeSearchNet [8]
corpus. CodeBERT shows an impressive performance on many downstream
tasks, including code refinement, cloze test, defect detection etc. For the gener-
ation task, GPT style model like GPT-C [21] shows a much better performance
than BERT in code completion task thanks to the consistency of its pre-training
and fine-tuning tasks. Sequence-to-sequence model like ProphetNet-X [16] use
MASS [20] style denoising task on CodeSearchNet corpus. We did not use such
denoising task as a pre-training task in CMPPN. Because we want to train the
model to generate a summary sentence similar to the final PERQG task.

Text Summarization. Abstraction summarization is a generation task where
is not constrained to reusing the phrases or sentences from input text. Recent
work BART [11], UNILM [2] and ProphetNet [17] applied pre-training model on
abstraction summarization. The unsupervised pre-trained model using unlabeled
corpus produced great performance after fine-tuning. Inspired by the above work,
we hope to help developers understand the problem by condensing lengthy error
messages and generating brief questions.

6 Conclusion

This paper introduces a novel task program error related question generation,
with a new dataset CEMS-SO in three languages. The goal of the task is to
summarize a readable headline from the long error message with a lot of ter-
minology and code segment. In order to obtain high-quality data, we designed
a set of rules to filter Stack Overflow questions, and finally got 203K samples.
We also introduce CMPPN, a sequence-to-sequence transformer model that use
a copy mechanism and pre-training, which reach state-of-the-art performance in
our task. In the future, we will further study this task and explore the application
of CMPPN in similar application.
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Abstract. A rapidly rising number of open judgment documents has
increased the requirement for automatic summarization. Since Chinese
judgment documents are characterized by a lengthy and logical struc-
ture, extractive summarization is an effective method for them. However,
existing extractive models generally cannot capture information between
sentences. In order to enable the model to obtain long-term information
in the judgment documents, this paper proposes an extractive model
using sentence embeddings and a two-layers memory network. A pre-
trained language model is used to encode sentences in judgment docu-
ments. Then the whitening operation is applied to get isotropic sentence
embeddings, which makes the subsequent classification more accurate.
These embeddings are fed into a unidirectional memory network to fuse
previous sentence embeddings. A bidirectional memory network is fol-
lowed to introduce position information of sentences. The experimental
results show that our proposed model outperforms the baseline methods
on the SFZY dataset from CAIL2020.

Keywords: Extractive summarization · Memory network · Sentence
embedding · Judgment documents

1 Introduction

Chinese judgment documents record the process and result of legal cases, mak-
ing the trial activities open to the public and publishing the reasons, bases and
results of their decisions. It is the evidence for the courts to determine and allo-
cate the substantive rights and obligations of the parties. A judgment document
contains a wealth of information, including the case category, the cause of action,
claims, the facts and reasons of disputes, evidences, court decision, and the cited
legislation. None the less, the judgment documents use domain knowledge in a
lengthy way and their structures tend to be complex, which pose barriers to an
ordinary reader to read and understand. In the meantime, China has witnessed
a surge in judgment documents published online ever since the Supreme People’s
Court (SPC) released Provisions on the Online Issuance of Judgment Documents
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by People’s Courts in November 2013. As of 22:00 on May 28, 2021, the number
of documents on Chinese Judgment Documents Website1 has exceeded 119 mil-
lion, with a total of over 62 billion visits. This calls for automatic summarization
of open judgment documents in an effective way.

Summarization of judgment documents is a compression of court decisions,
which mainly consists of the adjudication process, facts, reasons and the cited
legislation in the process of a trial. At present, the automatic text summarization
methods broadly include extractive and abstractive. Extractive summarization
directly selects sentences from the original text as summarization. Researches on
summarizing legal texts are generally based on this method [1,2]. Abstractive
summarization creates new sentences through the fusion of the original infor-
mation, but it has two shortcomings: out-of-vocabulary (OOV) and repetition.
Pointer-Generator [3], a typical framework for abstractive summarization, pro-
posed copy and coverage mechanism to ease the above problems. However, this
method is unsatisfactory when dealing with a large number of Chinese OOV in
lengthy legal documents. In addition, the cost of calculating is unaffordable to
the general readers.

Fig. 1. A manually marked judgment document from Chinese Judgment Documents
Website. Blue words (bold) represent the key sentences selected as extractive summa-
rization, red words (italic) represent keywords in these sentences. (Color figure online)

1 https://wenshu.court.gov.cn.

https://wenshu.court.gov.cn
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Unlike ordinary texts, judgment documents are highly logical. A manually
marked judgment document is shown in Fig. 1. Although extractive method has
been widely used in summarization task [4–15], how to apply it in judgment
documents reminds a challenge, since when sentences are selected as summa-
rization, attention should be paid to not only the word relationship therein, but
also the semantic relationship in context. To address this problem, we propose
an extractive summarization model based on sentence embedding and memory
network. Pre-trained language model is used as an encoder to obtain embeddings
of sentences in a judgment document, which are fused with word feature vec-
tors. The whitening operation is applied on these sentence embeddings, which
are then fed into a two-layers memory network that makes sentence embeddings
integrate semantic relationship in context.

2 Related Work

How to employ computers to process legal texts is always a core problem in the
AI&Law domain [16–18]. With the development of summarization technology in
the general domain, research on extractive summarization of legal texts attracts
growing attention. Polsley et al. [1] designed CaseSummarizer, a legal text sum-
marization system based on word frequency and domain-specific knowledge. Liu
et al. [2] used language information, statistical information, legal information
and word embedding as features to construct a text classifier for summarization.

Extractive summarization selects important sentences directly from the orig-
inal text, then sorts and reorganizes them to form summarization. Extractive
methods can be divided into unsupervised and supervised.

TextRank [4] is a typical unsupervised method for extraction by computing
similarity between sentences. Liu et al. [5] applied sparse coding techniques into
the extractive summarization task and regarded the task as an optimization
problem. Li et al. [6] incorporated more detailed grammatical units (nouns and
phrasal verbs) based on sparse coding and rewrote named entities to improve
the quality of summarization. Fevry et al. [7] added noise to extend sentences
and trained a denoising auto-encoder to recover the original, constructing an
end-to-end training regime without the need for any examples of compressed
sentences. Zheng et al. [8] revisited popular graph-based ranking algorithms and
modified how node (aka sentence) centrality is computed: employed BERT to
capture sentential meaning and built graphs with directed edges arguing that
the contribution of any two nodes to their respective centrality is influenced by
their relative position in a document.

In supervised methods, extractive summarization is regarded as binary clas-
sification problems. Cao et al. [9] developed a Ranking framework upon Recur-
sive Neural Networks (R2N2). They formulated the sentence ranking task as a
hierarchical regression process, which simultaneously measures the salience of
a sentence and its constituents in the parsing tree. Cheng et al. [10] proposed
a data-driven approach based on Long Short-Term Memory (LSTM) [19] and
continuous sentence features. Nallapati et al. [11] presented SummaRuNNer, a
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Recurrent Neural Network (RNN) based sequence model for extractive summa-
rization, in which a hierarchical neural network is used to extract the features
among words, sentences and documents. With pre-trained language model raised
up, BERT [20] was firstly applied to extractive summarization in [12]. In this
work, [CLS] is added before each sentence in a document to get their embed-
dings, which are fed into a summarization layer to get the final summary. The
summarization layer can be built in three ways: set up a classifier directly by
matrix operation, add Transformer [21] before the classifier, add RNN before the
classifier.

3 Proposed Model

In this section, we will describe the extractive summarization model in detail.
First, we briefly introduce a BERT-based encoder with the self-attention mech-
anism. Then we adopt the whitening operation in the sentence embedding layer.
Finally, these embeddings are fed into a two-layers transformed memory network
to fuse other embeddings in context. The framework of our proposed model is
shown in Fig. 2.

Fig. 2. Overview of proposed model based on sentence embeddings and memory net-
work.
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3.1 BERT-Based Encoder

For a BERT-Based encoder, the input representation of a given token is con-
structed by summing the corresponding token embeddings, segment embed-
dings, and position embeddings [20]. To collect global semantic information,
the encoder is based on a self-attention mechanism, which is calculated as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (1)

where Q denotes a target word, K denotes each word in context of the target
word and V denotes the value of the target word and its context. Softmax is
used to normalize the similarity, dk is a scaling matrix.

A judgment document is segmented into a sentence set {Si}ni=1. Words in sen-
tences are converted into input embeddings and transformed into word embed-
dings {Ei}ni=1 through the BERT-Based encoder. The shape of Ei is (m, 768),
m denotes the length of character string ′[CLS]Si[SEP ]′. It is worth mention-
ing that parameters of the Bert-Based Encoder are frozen when training overall
model.

3.2 Sentence Embedding Layer

In the sentence embedding layer, word embeddings in a sentence are used to
compute an embedding representing the whole sentence. We firstly introduce
two approaches to obtain initial sentence embeddings. Then these embeddings
are transformed into final sentence embeddings through whitening operation.

First Token. [CLS] is the first token of the input sequence. It fuses the semantic
information of the other tokens. The word embedding corresponding [CLS] could
be used as an initial sentence embedding.

Average Pooling. It is found in [22] that an average pooling over word embed-
dings in the last one or two layers of BERT outperforms [CLS]. The average of
word embeddings could be computed as an initial sentence embedding.

On semantic textual similarity tasks, [23] transformed the anisotropic sen-
tence embedding distribution to a smooth and isotropic Gaussian distribution.
Whitening operation in traditional machine learning can also achieve a similar
effect [24]. To improve the effect of sentence classification, we adopt the whiten-
ing operation to transform the initial sentence embeddings.

First, the mean value μ and covariance matrix C of initial sentence embedding
X = {Xi}ni=1 are calculated as follows:

μ =
1
n

n∑

i=1

Xi (2)

C =
1
n

n∑

i=1

(Xi − μ)T (Xi − μ) (3)
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The purpose of whitening operation is to transform μ into zero and C into
an identity matrix. This operation can be denoted as Eq. 4, in which Ui denotes
the final sentence embeddings, W denotes a transformation matrix.

Ui = (Xi − μ)W (4)

We denote the covariance matrix of final sentence embeddings {Ui}ni=1 as C
′
:

C
′
= WTCW = I (5)

C = (WT )−1W−1 (6)

The covariance matrix C is a positive definite symmetric matrix. According
to [24], SVD decomposition can be applied on C as Eq. 7, and the transformation
matrix W is solved by Eq. 8, in which α is an orthogonal matrix, β is a diagonal.
matrix.

C = αβαT (7)

W = αβ− 1
2 (8)

After the whitening operation as Eq. 4, the final sentence embeddings that
are more isotropic than the initial, which is beneficial to make the subsequent
classification more accurate.

3.3 Memory Network

Memory network is first proposed in [25] for question answering (QA) task. In
this paper, the memory network is transformed to make sentence embeddings
integrate semantic relationships in context. There are two layers in the trans-
formed memory network, the first layer is a unidirectional network, the second
is a bidirectional network.

Unidirectional Memory Network. There is a strong logic between the sen-
tences in a judgment document. To make the classification more accurate, we
combine a target sentence embedding with previous sentence embeddings via the
unidirectional memory network.

Sentence embeddings {Ui}ni=1 are fed into the network. The purpose is to
output a set of memory embeddings {Oi}ni=1. To compute Oi, we firstly convert
{Uj}i−1

j=1 into a vector Mi−1 of size (i − 1) × 768. In the embedding space, the
match between Ui and its previous sentence embeddings Mi−1 is calculated by
taking their inner product:

Match = UiM
T
i−1 (9)

Then, a softmax function is used to normalize the match vector and obtain a
probability vector P :

P = softmax(Match) (10)
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The memory embedding Oi is a sum over Mi−1, whighted by the probability
vector:

Oi = PMi−1 (11)

Bidirectional Memory Network. In the unidirectional memory network,
input embeddings are fused indiscriminately. To enhance the order of sentence
embeddings, we introduce position information by feeding {Ui}ni=1 and {Oi}ni=1

into the bidirectional memory network. The output is a set of enhanced memory
embeddings {O

′
i}ni=1.

First, sentence embeddings and memory embeddings are concatenated as
input {U

′
i}ni=1. Then {U

′
j}nj �=i are converted into a vector M

′
n−1 of size (n − 1) ×

768. Then the match between U
′
i and M

′
n−1 is computed by taking the inner

product followed by a softmax:

P
′
= softmax(U

′
iM

′T
n−1) (12)

The enhanced memory embedding O
′
i is a sum over M

′
n−1, whighted by the

probability vector P
′
:

O
′
i = P

′
M

′
n−1 (13)

3.4 Classification and Extraction

Enhanced memory embeddings O
′

are concatenated after sentence embeddings
U as extra features:

UO
′
= concat(U,O

′
) (14)

where concat(·) is the splicing function. These embeddings are fed into a Dense
network followed by a softmax function, for dimensionality reduction and clas-
sification:

Y = softmax(Dense(UO
′
)) (15)

where Y is a zero-one vector. Finally, extractive summarization is obtained by
(S denotes the sentence set):

S × Y (16)

Since the parameters of the encoder are frozen and the memory networks do
not introduce additional parameters, all the trainable parameters of the proposed
model are in the Dense layer.

4 Experiments

In this section, we first introduce the experimental settings. Then we report the
results of our experiments by comparing the performance of our model with
some classic methods and discussing the impact of different components in the
model. The codes are publicly available at github.2

2 https://github.com/csu-lzt/judgment-pytorch.

https://github.com/csu-lzt/judgment-pytorch


420 Y. Gao et al.

4.1 Settings

Dataset. To verify the effectiveness of the proposed model, the SFZY dataset
available from CAIL20203 is used in the experiment. It contains 13.5K Chinese
judgment documents, with a label of each sentence(“0” or “1”) and manual sum-
marization. All the sentences labeled “1” in a judgment document make up the
extractive summarization. The length quantiles of documents and summariza-
tions are shown in Table 1.

Table 1. The length quantile of document and summarization (words)

Text type Maximum 99 quantile 98 quantile 95 quantile 90 quantile

Judgment documents 13064 6701 5814 4767 3982

Extractive summarization 3790 1762 1583 1357 1186

Evaluation Metric. ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) [26] is adopted as evaluation metric in this paper. We use ROUGE-1,
ROUGE-2 and ROUGE-L, which respectively represent the overlap of N-gram
and the longest common sequence between the reference summarization and the
generated summarization.

Training Details. In the BERT-Based encoder, RoBERTa-wwm4 is used. We
randomly split the dataset into training, verification and test set, which respec-
tively contains 10K, 1.7K and 1.7K judgment documents. The training set is
used to train the model. The verification set is used for the best model selec-
tion and hyperparameter optimization. The test set is used for evaluation. The
maximum length of a sentence is set to 512. Sparse categorical crossentropy is
used as the loss function. Adam with a 2e−5 initial learning rate is used as the
optimizer. A NVIDIA GPU V100 with 32 GB is used in our experiment.

4.2 Comparison of Results

To evaluate the performance of our model, we compare it with the following
methods: LEAD-3, the baseline of CAIL2020, which selects consecutive sen-
tences with particular keywords or locations in a judgment document as sum-
marization. TextRank [4], which calculates the score of each sentence by the
similarity between sentences and keywords. Then N sentences with the highest
score are selected to compose the summary. In this experiment, higher scores
are given to the legal information and N is set to 8. FastText [27], in which
word features are averaged to form sentence representations and are used to
extract sentences as summarization. TextCNN [28], convolution neural net-
work (CNN) is applied to the sentences classification task. The kernel of several
3 http://cail.cipsc.org.cn/.
4 https://github.com/ymcui/Chinese-BERT-wwm.

http://cail.cipsc.org.cn/
https://github.com/ymcui/Chinese-BERT-wwm
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different sizes is used to extract the key information and capture the local corre-
lation in sentences. TextRNN [29], recursive neural network (RNN) is applied
to the sentences classification task, which captures long-distance dependencies
in a document. RoBERTa, sentence embeddings obtained by RoBERTa-wwm
are directly used in classification.

Table 2 shows the experimental results on the SFZY test set, in which P
denotes Precision, R denotes Recall, F1 denotes the F1 value of P and R. It
can be seen that our proposed model performs better than other comparative
experiments on most metrics. The results confirm that the method of combining
sentence embeddings with the memory network is feasible.

Table 2. Extractive summarization result on SFZY test set

Model ROUGE-1(%) ROUGE-2(%) ROUGE-L(%) Accuracy(%)

P R F1 P R F1 P R F1

LEAD 40.02 20.62 26.01 20.69 10.15 13.02 31.54 15.83 20.16 –

TextRank 38.93 63.34 47.28 25.56 41.62 31.05 33.17 53.94 40.28 –

FastText 36.32 74.16 47.16 25.07 50.92 32.49 31.49 64.29 40.90 89.95

TextCNN 35.47 79.33 47.55 25.39 56.32 33.96 31.49 70.41 42.23 90.28

TextRNN 35.79 71.72 45.90 24.23 48.37 31.03 30.44 61.07 39.06 88.57

RoBERTa 32.43 80.25 46.56 25.32 59.02 33.87 30.82 71.14 39.81 89.98

Our Model 33.65 83.14 48.56 24.70 60.47 34.08 30.49 75.13 42.26 91.86

To explore the contribution of each part of the model, we decompose the
model into the following five types: RoBERTa-wwm(baseline), initial sen-
tence embeddings are directly used for classification and extraction. Whitening,
which applied the whitening operation on initial sentence embeddings. Whiten-
ing+UMN, which adds the unidirectional memory network to the whitening
operation. Whitening+BMN, which adds the bidirectional memory network
to the whitening operation. Whitening+UMN+BMN, the whole proposed
model, which adds the two-layers memory network to the whitening operation.

Table 3 shows the experimental results with different component models.
It can be seen that by adding the whitening operation, the accuracy of the
model improves by 0.86%, and all the ROUGE metrics have been improved
slightly. The unidirectional memory network can also improve the model. How-
ever, directly adding the bidirectional memory network, accuracy and ROUGE
decreased, because we design it just for introducing the position information.
After the whitening operation and the two-layers memory network, the model
has been significantly improved compared to the baseline. The accuracy improves
by 1.88%, ROUGE-1, ROUGE-2 and ROUGE-L respectively increase by 2.00%,
0.21%, 2.35%. This shows that it is effective to use the sentence embeddings,
whitening operation and memory network to get extractive summarization of
Chinese judgment document.
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Table 3. Experimental results with different component models

Model ROUGE-1(%) ROUGE-2(%) ROUGE-L(%) Accuracy(%)

RoBERTa-wwm 46.56 33.87 39.81 89.98

+Whitening 47.33 33.93 40.90 90.84

+Whitening+UMN 48.02 34.01 41.96 91.02

+Whitening+BMN 47.28 33.90 40.88 90.78

+Whitening+UMN+BMN 48.56 34.08 42.26 91.86

5 Conclusion

In this paper, we propose an extractive summarization model for Chinese judg-
ment documents based on sentence embedding and memory network. The model
has the following innovations: First, the whitening operation is used on the sen-
tence embeddings to make the classification more accurate. Second, we transform
the structure of memory network and apply it to sentence embeddings. Last, a
unidirectional memory network and a bidirectional memory network are com-
bined to make sentence embeddings fuse semantic relationships in context and
introduce position information. Experimental results show the effectiveness of
this work. In the future, we plan to build a knowledge graph based on pub-
lic judgment documents and integrate more external legal knowledge into our
model.
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Abstract. Long-text machine reading comprehension (LT-MRC)
requires machine to answer questions based on a lengthy text. Despite
transformer-based models achieve promising results, most of them are
incapable of dealing with long sequences for their time-consuming. In
general, a proper solution by sliding window splits the passage into
equally spaced fragments, then predicts the answer based on each frag-
ment separately without considering other contextual fragments. How-
ever, this approach suffers from lack of long-distance dependency, which
severely damages the performance. To address this issue, we propose a
two-stage method ThinkTwice for LT-MRC. ThinkTwice casts the pro-
cess of LT-MRC into two main steps: 1) it firstly retrieves several frag-
ments that the final answer is most likely to lie in; 2) then extracts the
answer span from these fragments instead of from the lengthy document.
We do experiments on NewsQA. The experimental results demonstrate
that ThinkTwice can capture the most informative fragments from a long
text. Meanwhile, ThinkTwice achieves considerable improvements com-
pared to all existing baselines. All codes have been released at Github
(https://github.com/Walle1493/ThinkTwice).

Keywords: Machine reading comprehension · Question answering ·
Long text

1 Introduction

Machine reading comprehension (MRC) [6], which aims to teach machines to
answer questions over given passages, has always been one of the cutting-edge
research in the field of natural language processing (NLP). Many pre-trained
language models (PLMs) [19] have achieved promising results due to their multi-
layer architectures and self-attention mechanisms [19].

Despite the success in short text situation, existing MRC systems (even other
NLP systems) cannot effectively deal with long sequences, due to the length limit
of the PLMs1. Meanwhile, if simply increasing the input length, the complexity
1 Such as the max position embedding length of BERT is 512.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 427–438, 2021.
https://doi.org/10.1007/978-3-030-88480-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88480-2_34&domain=pdf
https://github.com/Walle1493/ThinkTwice
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of the model (O(n2)) will also quadratically scale and lead to a dimensional
disaster.

The intuitive solutions are truncation [15,24] and sliding window [9]. The
former is to truncate the long text to the model-acceptable length, while the
latter divides the passage into fixed-length blocks and predicts the answer for
each block. Both two methods suffer from sacrificing part of texts or discarding
the contextual information. Since the radical problem lies in the high complexity
of time and space, another line of research by simplifying transformers [2,5,26]
has been proposed. However, few of them have been applied to the real world
due to their various problems.

Inspired by human reading behavior, we propose a ThinkTwice method (as
illustrated in Fig. 1.) to address the challenges of long-text machine reading com-
prehension (LT-MRC), which is a two-stage strategy. ThinkTwice compresses
the long text into a short one instead of merely simplifying self-attention based
models. Specially, when a human reads a long passage with doubts in his mind,
he firstly selects several fragments unconsciously that are related to the given
question and sorts them in a sensory register, then these fragments are put
into human’s working memory [1] to infer an answer. Following this human-like
behavior, the ThinkTwice utilizes a Retriever and a Reader module to implement
the above information compression/filtering and question answering functions,
respectively. In addition, a Segmentor and a Fusion module are employed before
and after the Retriever to complete the long text segmentation and the integra-
tion of selected key fragments.

We evaluate and verify the proposed ThinkTwice method on the NewsQA
dataset [18], within which the text length of the news article is generally long.
The experimental results demonstrate that our method achieves significant and
substantial improvement as compared to all baselines [3,7,17]. In particular,
our method reaches a considerable performance by selecting a few informative
paragraphs in the first retrieval stage, which greatly speeds up the inference
process in the second stage.

Our main contributions are summarized as follows:

1. We propose a novel approach ThinkTwice on LT-MRC, which is capable of
compressing long texts into short ones instead of directly dealing with lengthy
articles.

2. Experimental results show that our approach ThinkTwice achieves consider-
able improvements on four main pre-trained language models [3,7,12,13] on
the long text dataset NewsQA [18].

2 Related Work

Machine reading comprehension (MRC) [6] is one of the most important tasks
in NLP. In recent years, with the development of pre-trained language mod-
els (PLMs) [19] and an effective architecture of transformers, the research has
been invested in long-text machine reading comprehension (LT-MRC), which has
attracted great interest with the release of a diversity of benchmark datasets such
as NewsQA [18] and TriviaQA [8].
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To handle the overlong text, the simplest solution is to truncate the docu-
ment, commonly used for text classification tasks [24]. This method suffers from
losing considerable context once the text lengths are exceedingly large. Sliding
window [9,22], processing continuous 512 tokens by BERT or other PLMs, is the
most straightforward solution. This approach sacrifices the long-distance depen-
dency within contexts, which performs badly in some complicated tasks such
as multi-hop QA [25]. Since the sequence length that BERT can accommodate
is restricted to 512 due to the high consumption of time and space in the self-
attention mechanism, another way of research attempts to simplify the structure
of transformers, such as Longformer [2], Big Bird [26], and Ernie Doc [5], etc.
However, various issues still exist in these lightweight transformers. For example,
Longformer is yet in demand for enormous memory if 4,096 tokens are urgent
to be dealt with simultaneously, which is not friendly to the memory of GPU.

Our work is mainly inspired by the way humans think [1]: Incoming informa-
tion first enters the sensory register, where it resides for a brief time, then decays
and stays the most important part; the short-term storage is the subject’s work-
ing memory which receives selected inputs from the sensory register and deals
with them. Similar lines of research, where the authors put under scrutiny the
function of the sensory register have been undertaken in text summarization [10],
which aims at compressing the long document into a shorter form that conveys
the main idea of the original document.

3 Method

Figure 1 illustrates the architecture of ThinkTwice, which is composed of four
basic components: 1) segmentor to split the given passage into shorter text
fragments (Subsect. 3.1); 2) retriever to select the segmented fragments that are
most relevant to the question (Subsect. 3.2); 3) fusion integrates the selected
fragments according to the original order (Subsect. 3.3); 4) reader reads given
question and fused text fragments to predict an answer (Subsect. 3.4).

3.1 Segmentor

The main challenge of LT-MRC is to exactly locate the most important infor-
mation from a large number of knowledge fragments in the given passage, whose
length usually exceeds the maximum length (e.g. 512 tokens) that the existing
model can handle. To address this issue, we set a separator at the end of each
paragraph and segment the passage, by which the lengths of most fragments
are restricted to 60–80 tokens. Formally, the input passage P is segmented into
shorter text fragments P1, P2, ..., Pn.

3.2 Retriever

When looking for answers from large amounts of texts, a human tends to keep
several slices that are most related to the current question in mind and filter
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other trivial information. Inspired by such a human-like behavior, we come up
with a Retriever module to select the most significant fragments which are most
likely to answer the question.

We first pack the question Q with fragments {Pi}ni=1 into sequences {xi}ni=1,
where xi = [CLS]Q[SEP ]Pi[SEP ]2. Then, we utilize the pre-trained language
model BERT [3] as Retriever’s encoder (BERTcls) to encode the input xi into
a sequence of contextual embeddings Hi:

Hi = BERTcls(xi). (1)

Fig. 1. Architecture of ThinkTwice.

The hidden vectors Hcls
i of [CLS] represent the overall representation of the

whole sequence. Further, a Linear Network and Softmax layer are employed to

2 [CLS] and [SEP ] are special tokens. The former can theoretically represent the
overall information of the whole input sequence after being encoded, and the latter
is used for input segmentation.
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get the classification probability ŷc:

ŷc = Softmax(Linear(Hcls
i )), (2)

where ŷc indicates whether the current fragment Pi contains valid information
that can answer the given question [27]. The “has/no answer” label yc(i) is set to
0 when Pi contains the annotated answer and the contrary to 1 at the training
step.

The loss between ground truth yc and predicted probability ŷc is calculated
by the cross-entropy loss function:

Lretriever = − 1
n

n∑

i=1

[yc(i) log ŷc(i) + (1 − yc(i))log(1 − ŷc(i))]. (3)

3.3 Fusion

We obtain the output logits {ŷc(i)}ni=1 by the Retriever, which represent the
probabilities of fragments {Pi}ni=1 to answer the given question Q. Then, we
select the top k fragments that are most relevant to Q through ŷc and discard the
others. Moreover, the selected text fragments are merged into a single sequence
according to the original order to ensure semantic coherence and contextual
continuity. For example, if k is set to 3, and the top three fragments with higher
scores are P3, P1, and P7. Then we concatenate them by their relative orders
in the original passage and simultaneously truncate few of sequences which are
massively long. Thus, the output of the Fusion module is P̃ =< P1, P3, P7 >, as
shown in Fig. 1.

3.4 Reader

By the above modules, we get a shorter snippet P̃ instead of the original passage
P , to extract the answer span. In particular, we first pack the question Q and
P̃ into a single sequence z = [CLS]Q[SEP ]P̃ [SEP ]. Then we utilize another
BERT [3] as the Reader’s encoder (BERTqa) to map the input z into a sequence
of contextual hidden vectors. Next, a Pointer Network (PN) [20] is employed
to decode the start/end position of the answer span from the question-aware
passage representation:

ŷs, ŷe = PN(BERTqa(z)), (4)

where ŷs and ŷe denote the probabilities that the start and end position of the
labelled answer decoded by the Reader, respectively.

During the training step, we use the cross-entropy loss function to calculate
the loss at the start and end positions:

Lreader =
1
2
CrossEntropy(ŷs, ys) +

1
2
CrossEntropy(ŷe, ye), (5)
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where ys and ye denote the labels of the start and end position of the answer,
respectively. If the question cannot be answered by the current passage, both ys
and ye are set to 0, which points to the [CLS] tokens.

During the prediction step, we first calculate the has-answer score scorehas
and the no-answer score scorenull through ŷs and ŷe:

scorehas = max
1≤i≤j<L

(ŷ(i)
s + ŷ(j)

e ), (6)

scorenull = ŷ(0)
s + ŷ(0)

e , (7)

where i and j denote the answer position within the whole sequence length L
and i is restricted to be less than j since the start position must be before the
end position. Furthermore, ŷ

(0)
s and ŷ

(0)
e denote the no-answer logits since the

first [CLS] doesn’t represent any of tokens in P̃ .
We obtain a distance score scoredist by calculating the distance between

scorehas and scorenull as the criteria of “has/no answer”:

scoredist = scorenull − scorehas, (8)

s, e = argmax
1≤i≤j<L

(ŷ(i)
s + ŷ(j)

e ), (9)

Then we employ a threshold δ, where if scoredist is less than δ, the Reader
predicts s and e as the start and end positions of the answer, otherwise predicts
it as an unanswerable question.

4 Experiments

4.1 Experimental Settings

We do experiments on NewsQA [18], which is a challenging long-text machine
reading comprehension (LT-MRC) dataset including 13k CNN news articles with
120k human-generated question-answer pairs. After excluding 20k bad questions
which are considered to make no sense by crowdsourcers, we make an analy-
sis of the remaining dataset with 90k/5k/5k question-answer pairs for train-
ing/dev/test set. In detail, we count the concrete numbers of tokens per pas-
sage (TPP) and paragraphs per passage (PPP). The median values of TPP are
774/734/707 for train/dev/test set, while the maximums are 3.1k/2.3k/2.3k.
Besides, the median values of PPP are 18/18/17 for train/dev/test set and the
maximums are 87/63/54.

We compare the following existing LT-MRC models.

– Match-LSTM [21]. The model uses two uni-LSTMs to encode questions and
passages.

– BiDAF [16]. The core layer of BiDAF is the attention flow layer, which calcu-
lates context-to-query attention and query-to-context attention, respectively.
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– AMANDA [11]. It proposes an end-to-end question-focused multi-factor
attention network for answer extraction. Multi-factor attentive encoding
aggregates meaningful facts located in multiple sentences.

– DecaProp [17]. The model integrates elaborate self-attention into RNN [14].
– Longformer [2]. The pre-trained language model using sparse attention matrix

addresses the limitation of sequence length.
– CogLTX [4]. The proposed framework identifies key sentences by judging the

relevance among various sentences.

We measure LT-MRC performance with two official metrics: Exact Match
(EM), which measures the percentage of predictions that match exactly the
ground truths; and F1 measures the average overlap between the prediction and
ground truth at the token level.

To verify the effectiveness of our two-stage reading strategy, we employ the
following available pre-trained language models and process the LT-MRC task by
dividing the article into paragraphs with a sliding window mechanism, to build
baselines: BERT [3], RoBERTa [13], ALBERT [12], and SpanBERT [7]. The
implementations of these models are based on the public Pytorch implementation
from Transformers [19]. In the training step, we set the initial learning rate to be
2e-5 in base models and 2e-6 in large models with a warm-up proportion of 0.1,
and L2 weight decay of 0.01. The batch size is selected with 8 in base models
and 1 in large models. The number of the epoch is set to be 1 in base models
and 2 in large models in Retriever and 3 in Reader for all experiments. Texts are
tokenized using wordpieces [23], with a maximum length of 256 in the first stage
and 512 in the second stage. We perform several experiments in the first stage
to select the k (a hyperparameter in the presentation of top k best paragraphs),
and set k = 5.

4.2 Results

Comparison with the existing models. We compare our model with the
existing models as illustrated in Table 1. It shows that the proposed model
outperforms the existing LT-MRC models on NewsQA with 1.4% and 5.8%
improvement in F1 and EM, respectively. Moreover, the results also demon-
strate that implementing the ThinkTwice strategy improves the performances of
all pre-trained MRC models, with significant improvements (F1) on BERT-base
(+3.2%) and RoBERTa-base (+4.5%), while the improvement on ALBERT-base
is less remarkable (+0.6%). The reasons might be that 1) the sentence-order pre-
diction (SOP) pre-trained task has solved the inter-sentence coherence, and 2)
the cross-layer parameter sharing mechanism leads to little distinction for param-
eters even implemented new strategy. The considerable improvements over other
models demonstrate that the ThinkTwice strategy accurately extracts the most
significant paragraphs by Retriever, so that long texts are compressed into short
ones with appropriate length, and most important information can be reserved.

In addition, to observe how different means of fusion modules contribute to
the performance, we try to merge the selected text fragments in two alternative
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ways on BERT-base. One way is to merge the fragments extracted in Retriever
according to their relevance to the given question by the descending order, while
the other way is according to the original order as described in Subsect. 3.3. As
shown in the 8th and 9th rows in Table 1, we can see that our original fusion
strategy performs significantly better than the descending order (+2.8%), despite
the model with descending order also surpasses the baseline (+0.4%), which
indicates that disturbing sequential order may lead to the loss of contextual
information.

Table 1. The performances of LT-MRC models on NewsQA as well as our models’
performances compared to their corresponding pre-trained language models.

Model Dev Test

F1 EM F1 EM

Match-LSTM [21] 49.6 34.4 50.0 34.9

BiDAF [16] - - 52.3 37.1

AMANDA [11] 63.3 48.8 63.7 48.4

DecaProp [17] 65.7 52.5 66.3 53.1

Longformer-base [2] 68.1 58.3 68.1 58.1

CogLTX [4] - - 70.1 55.2

BERT-base [3] 65.6 56.3 65.4 55.2

+ ThinkTwice(descending order) 66.6 57.8 65.8 55.6

+ ThinkTwice(ours) 68.5 58.8 68.6 57.7

RoBERTa-base [13] 63.7 53.5 63.2 53.1

+ ThinkTwice(ours) 67.7 58.6 67.7 58.4

ALBERT-base [12] 68.1 58.2 68.0 58.0

+ ThinkTwice(ours) 68.7 59.1 68.6 58.8

SpanBERT-base [7] 67.7 57.1 67.5 56.2

+ ThinkTwice(ours) 69.9 59.8 69.7 59.4

BERT-large 68.9 59.2 68.8 58.6

+ ThinkTwice(ours) 70.1 59.5 69.8 59.4

SpanBERT-large 71.2 61.8 70.9 59.8

+ ThinkTwice(ours) 72.1 62.2 71.5 61.0

Paragraph Retrieval. Figure 2 shows the relationship between the Retriever
and the ThinkTwice model. For the Retriever, the evaluation metric Hits@k
(the top k accuracy) measures that the selected paragraph containing the ground
truth answer is included in the top k list returned by the retriever. For the Think-
Twice model, F1 evaluates the final performance of MRC models on NewsQA.
According to the red curve, in line with the intuition, we can see that the larger
the k, the higher the Hits@k accuracy. Also, the performance of the Retriever
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is over 90% when k is greater than 3. Moreover, we can see the ThinkTwice
model (the green curve) achieves the highest performance (68.6) when k = 5. It
indicates that the Retriever cannot recall enough candidate paragraphs if k is
small, while more candidate paragraphs may lead to a larger search space if k
is greater than 5. Thus we finally apply the hyperparameter k = 5 to all other
experiments for ThinkTwice. Also, we compare the ThinkTwice model with the
BERT-base MRC model (the blue curve). The results show that the ThinkTwice
model performs better than BERT-base when k is from 2 to 9, which verifies the
effectiveness of the two-stage strategy for ThinkTwice.

Fig. 2. Performance correlation between the Retriever and the ThinkTwice model
(BERT-base) with different k. (Color figure online)

Effect of Text Length. To verify the effectiveness of ThinkTwice on the sce-
nario of longer text, we compare it against BERT-base and Longformer-base
MRC models over various text lengths on the test set. Note that the Think-
Twice model applies BERT-base as its reader. Figure 3 shows the result. We can
see Longformer achieves the best performance on shorter documents ([0, 512] and
(512, 1024]). The reason is that Longformer-base inherits the pretrained weights
from RoBERTa which performs very well on MRC tasks. However, on longer
documents ((1024, 1536] and (1536, +∞)), the proposed ThinkTwice model is
significantly better than the others. It proves that ThinkTwice is capable of
locating the fragment that contains the answer more accurately. In addition, we
can see BERT-base is better than Longformer-base on longer documents, which
indicates that the sliding window mechanism (BERT-base) also has advantages
compared with long inputs (Longformer-base). Finally, we can see that along
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Fig. 3. Performances of ThinkTwice, BERT-base, and Longformer-base over different
text lengths. The number of samples in the four length intervals are: 1,611, 2,074, 1,089,
and 210.

Table 2. Two examples of three baselines’ predictions and our prediction on NewsQA.

Example 1

Passage (CNN) – President Barack Obama spoke with Egypt’s president moments

after Hosni Mubarak addressed his country, telling the Egyptian that he

must make good on his promises and avoid a violent response to the

thousands of protesters in the streets. (...)

Token nums 2,036

Question What did Obama say to Mubarak?

Answer he must make good on his promises

Our pred he must make good on his promises and avoid a violent response(�)

BERT’s I just spoke to him after his speech(�)

ALBERT’s It is very important that people have mechanisms in order(�)

Longformer’s he must make good on his promises and avoid a violent response(�)

Example 2

Passage (...) Tucked away in the verdant hills west of St. Andrews, Kingarrock

Hickory Golf Course (greens fee, $40 for nine holes and $55 for 18) is a

nine-hole, 2,022-yard country estate course that is played exclusively

with antiquated equipment. (...)

Token nums 2,288

Question What is Kingarrock Hickory?

Answer is a nine-hole, 2,022-yard country estate course that is played exclusively

with antiquated equipment

Our pred a nine-hole, 2,022-yard country estate course that is played exclusively

with antiquated equipment(�)

BERT’s the kind of place that can change the way one thinks about golf(�)

ALBERT’s Golf Course(�)

Longformer’s Top hotel penthouses(�)

with the increase of the document length, the performance of ThinkTwice is the
most stable, especially when the length is greater than 512.
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4.3 Case Study

We conduct a case study to further compare the predictions of ThinkTwice with
other models on NewsQA. We discover that answers predicted by ThinkTwice
are closer to ground truths.

To validate the performance over massively long texts, we pick two examples
whose passage lengths are over 2,000 as illustrated in Table 2. In Example 1, the
model is asked to tell what Obama says, ThinkTwice accurately locates the 1st
paragraph containing the final answer and offers the proper content spoken by
Obama, while BERT and ALBERT unexpectedly extract a sentence appeared in
other paragraphs. In Example 2, our model locates the correct paragraph, while
BERT and Longformer performs worse.

5 Conclusion

In this paper, we present a two-stage method on the LT-MRC task. The proposed
ThinkTwice model addresses the issues of length limitation of pre-trained models
via compressing long texts into shorter forms to precisely locate the position of
the answer. The experimental results and analysis verify the effectiveness of our
approach on the long texts. A latent drawback of the proposed model is that
the short text compressed by Retriever might be incoherent due to the missing
of antecedents. In the future, we will address this issue by leveraging coreference
resolution or position embeddings.
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Abstract. Reasoning machine reading comprehension (R-MRC) aims to
answer complex questions that require discrete reasoning based on text.
To support discrete reasoning, evidence, typically the concise textual frag-
ments that describe question-related facts, including topic entities and
attribute values, are crucial clues from question to answer. However, previ-
ous end-to-end methods that achieve state-of-the-art performance rarely
solve the problem by paying enough emphasis on the modeling of evidence,
missing the opportunity to further improve the model’s reasoning ability
for R-MRC. To alleviate the above issue, in this paper, we propose an
Evidence-emphasized Discrete Reasoning approach (EviDR), in which
sentence and clause level evidence is first detected based on distant super-
vision, and then used to drive a reasoning module implemented with a
relational heterogeneous graph convolutional network to derive answers.
Extensive experiments are conducted on DROP (discrete reasoning over
paragraphs) dataset, and the results demonstrate the effectiveness of our
proposed approach. In addition, qualitative analysis verifies the capability
of the proposed evidence-emphasized discrete reasoning for R-MRC (Code
is released at https://github.com/JD-AI-Research-NLP/EviDR).

Keywords: Evidence · Discrete reasoning · Machine reading
comprehension

1 Introduction

Machine Reading Comprehension (MRC) aims to answer questions based on
text, which has recently been widely explored and achieved remarkable progress
that some methods have approached and even outperformed humans [6,9,15,16].
Most of these studies focus on MRC datasets which have been released around
span extraction, e.g., SQUAD [19], conversational state tracking, e.g., CoQA [21]
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and QuAC [4], passage retrieval, e.g., HotpotQA [24], multi-choice selection,
e.g., RACE [14] and CommonsenseQA [23], and answer generation, e.g., MS-
MARCO [18] and DuReader [11]. However, the reasoning capability of MRC
models, which is especially crucial for the comprehension of sports news, scientific
reports, and financial news where much arithmetic computation is required, has
rarely been evaluated on these datasets.

Table 1. An Example of question-answer pairs along with document from the DROP
dataset. Sentence level evidences are in blue, and clause level evidences are further in
bold. Ques means question and Ans indicates answer.

Text: As of the census of 2010, there were 31,894 people, 13,324 households,
and 8,201 families residing in the city. The population density was 1,851.1
inhabitants per square mile (714.7/km2). There were 14,057 housing units
at an average density of 815.8 per square mile (315.0/km2). The racial
makeup of the city was 93.9% White (U.S. Census), 0.3% African
American (U.S. Census), 1.7% Native American (U.S. Census), 0.8%
Asian (U.S. Census), 0.1% Race (U.S. Census), 0.7% from Race (U.S.
Census), and 2.4% from two or more races. Hispanic (U.S. Census) or
Latino (U.S. Census) of any race were 2.8% of the population.

Ques: How many more percentage of the population had a racial make-up of
White than Asian?

Ans: 93.1

To complement the above shortage of research on reasoning machine reading
comprehension (R-MRC), DROP [7] has recently been proposed for tracking com-
plex questions that require discrete reasoning over text. Table 1 shows an exam-
ple of DROP dataset, where the ground truth answer 93.1 to the question should
be derived by arithmetic computation 93.9 − 0.8 = 93.1, especially referring to
the evidences, textual fragments in blue, including topic entities, i.e., White and
Asian, and attribute values, i.e., 93.9% and 0.8%. As a preliminary attempt toward
the task, NAQANET [7] is proposed as a number-aware framework to deal with
questions with multi-predictors corresponding to different answer types, including
span, count, and addition/subtraction. Based on NAQANET, NumNet [20] and
QDGAT [2] perform reasoning over a heuristic graph including numerical values
or additional entities with graph neural network to enhance the reasoning abil-
ities. Although these end-to-end methods achieve state-of-the-art performance,
they have rarely placed enough emphasis on explicitly modeling of evidence that
is typically crucial clues from question to answer, which miss the opportunity to
further improve reasoning ability for R-MRC.

In this paper, we propose to address the R-MRC problem with Evidence-
emphasized Discrete Reasoning (EviDR). First, evidence is pinpointed with an
evidence detector finetuned on a pre-trained language model via distant supervi-
sion. In detail, the evidence detector is trained to judge whether a textual frag-
ment is evidence or not, where the distant supervision signal is obtained under



EviDR 441

one-shot heuristic rules without human annotation. We adopt multi-granularity
evidence, including sentence-level and clause level, as a trade-off between recall
and precision for evidence detection. Then, information about evidence, including
evidence representations and evidence pinpointing distribution over text, are used
to drive a reasoning module to derive answers. Specifically, the reasoning module
is implemented with a relational heterogeneous graph convolutional network (RH-
GCN) upon the same encoder to explicitly propagate and emphasize the informa-
tion of evidence. The heterogeneous graph is constructed based on sentence-level
and clause-level nodes linked with different edges and updated with evidence pin-
pointing distribution as weights. In general, our model is jointly trained with multi-
tasks, including evidence detection and reading comprehension.

Experiment results on the DROP dataset show that our approach achieves sig-
nificant improvements compared with a strong baseline built upon a pre-trained
language model without evidence modeling, and similar and even better results
compared to the state-of-the-art model, i.e., QDGAT. Besides, the ablation study
verifies the effectiveness of the distant supervision of evidence detection and the
proposed evidence-emphasized discrete reasoning module with RH-GCN. More-
over, qualitative analysis verifies the reasoning ability of our proposed approach
for R-MRC.

The contributions of the paper include the following three aspects. (1) We
propose an evidence detector to explicitly pinpoint multi-granularity evidence
as clues, which is learned via distant supervision. (2) We propose an evidence-
emphasized discrete reasoning network with a relational heterogeneous graph
convolutional network, which enhances the reasoning ability of R-MRC models.
(3) We conduct extensive experiments and analysis on DROP, proving the effec-
tiveness of the approach, and verifying the capability of the evidence-emphasized
discrete reasoning for R-MRC.

2 Related Work

Recently, two lines of approaches have been proposed for the R-MRC task. The
first is based on semantic parsing. Dua et al. [7] converted the unstructured text
into a table and adopted a grammar-constrained semantic parsing model named
KDG to answer the question over the table [13]. Chen et al. [3] proposed a gener-
ative model NeRd, which is composed of a reader and a programmer. They are
responsible for encoding questions and passages into vector representation and
generate grammatical programs, respectively. Gupta et al. [10] learned to parse
compositional questions as executable programs where each atomic program is
a learnable neural module. However, the model only adapted to questions with
predefined templates. The second is based on neural end-to-end methods. As a
preliminary attempt toward the task, Dua et al. [7] proposed a number-aware
framework named NAQANET to produce three different answer types with vari-
ous predictors, including a span, count, and arithmetic expression. To aggregate
relative magnitude relation between two numbers, NumNet [20] was proposed to
perform multi-step reasoning over a number comparison graph. Chen et al. [2]
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proposed QDGAT based on a heterogeneous graph, which aggregates both entity
and number nodes information. GenBERT [8] was proposed to inject the discrete
reasoning abilities into BERT by generating numerical data. Compared to these
existing methods, our proposed method focuses on placing enough emphasis
on the evidence modeling to enhance discrete reasoning ability for the R-MRC
model.

3 Methodology

MRC aims to predict an answer A with the maximum probability P according
to the given question Q and passage text P :

A = arg max
Â∈Ω

P (Â|P,Q). (1)

Compared to traditional span extraction MRC, in the R-MRC task, the answer
A can not only be spans (single or multiple spans) from the question or passage
but also a number obtained by arithmetic computations with some numbers in
the context. For questions with a span answer, discrete reasoning is also required
in the R-MRC task, such as sort and comparison. In this paper, we explicitly
model evidence over text to enhance the reasoning ability of R-MRC systems.

The framework of our proposed model EviDR is briefly described in Fig. 1,
which is mainly composed of four components, i.e., an encoder, an evidence detec-
tor, an evidence-emphasized reasoning module, and a prediction module. The
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s2:There were 14,057 housing units at an average 
density of 815.8 per square mile (315.0/km2). 
s3: The racial makeup of the city was 93.9% 
White (U.S. Census), 0.3% African American (U.S. 
Census), 1.7% Native American (U.S. Census), 
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Q: How many more percentage of the polulation 
had a racial make-up of  white than asian? 

Fig. 1. An illustration of EviDR architecture. It consists of an encoder, an evidence
detector, an evidence-emphasized reasoning graph, and a prediction module. Multi-
granularity evidence, including sentence-level and clause-level, is pinpointed through
the evidence detection. The evidence-emphasized reasoning module performs multi-
step reasoning over a heterogeneous graph in which nodes are weighted by evidence,
including sentence nodes, clause nodes, and number nodes. The prediction module sup-
ports five kinds of answer types, i.e., question span, passage span, arithmetic expression,
count, and multi-spans.
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encoder is responsible for semantic comprehension for the context of question
and passage, commonly implemented by a pre-trained language model at present.
Upon the encoder, an evidence detector learns to determine whether the current
fragment supports answer prediction. We construct an evidence-emphasized rea-
soning graph based on the detector result and integrate knowledge from pieces
of evidence through a graph convolution network. Finally, we leverage evidence
to guide the answer prediction.

3.1 Encoding Module

Without loss of generality, we employ pre-trained language model (PLM) as the
backbone architecture to encode context of question and passage, which takes
concatenation of [CLS], tokens in question, [SEP], tokens in passage and [SEP]
as textual inputs, and the output representation is denoted as:

He = [HQ
e ;HP

e ] = PLM(Q,P). (2)

where HQ
e ∈ R

Lq×dh and HP
e ∈ R

Lp×dh are the output representations of ques-
tion and passage, respectively. Lq and Lp are the length of question and passage
tokens, respectively. dh is the hidden size.

3.2 Evidence Detector

Evidence Detector. Exactly as supporting fact prediction task in HotpotQA [24]
and documents retrieval procedure in open domain QA task, evidence plays a
crucial role in the MRC task. Therefore, we additionally introduce an evidence
detector, which is responsible for discriminating whether each fragment can act
as evidence to support answer prediction or not.

Specifically, the evidence detector takes the representation of question SQ

and each fragment in passage SP
k as input features (k = 1, 2, ...,m) and output

the probability distribution of being identified as evidence to support answer
prediction through a feed-forward network FFN(·) as follows:

Pk = FFN(SQ,SP
k ), SQ = βQHQ

e , βQ = softmax(HQ
e W), (3)

where W ∈ R
dh×dh is a learnable parameter matrix. The hidden state of kth frag-

ment in passage Sp
k can be derived as similar as SQ. In this paper, we consider

sentence-level and clause-level as evidence fragment to support answer predic-
tion.

Evidence Fusion. To leverage the detected evidence, an evidence fusion layer
is employed to integrate the evidence information into the hidden state of the
input token sequence softly via layer normalization LN(·) as follows:

HED = LN(He + Pseq � He),

Pseq
i = Pk if token i in kth evidence fragment,

(4)

where the token-level evidence probability Pseq is denoted according to the
(sentence and clause-level) evidence fragment probability distribution Pk (k =
1, 2, ...m).
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3.3 Evidence-Emphasized Reasoning Graph

Construction of Reasoning Graph We illustrate the details about how to build
the evidence-emphasized reasoning graph G = (V,E) in this section. NumNet
[20] builds a directed graph with all numbers as nodes, where the direction of the
edges reflects the value relationship between numbers. In contrast to NumNet,
besides the number nodes VN , we additionally introduce sentence evidence nodes
VS and clause evidence nodes VC . i.e. V = VN ∪VS ∪VC . The edges E indicate
all the relationships in the heterogeneous graph following the three situations.

– The edge between two number nodes : Similar to NumNet [20], we also model
the comparison relationship among numbers. An edge ei,j exists between any
two number nodes vi and vj , the direction of edge ei,j reflects the comparison
relation.

– The edge between clause evidence nodes: Building an edge ei,j between any
two clause evidence nodes ei and ej , if they belong to the same sentence.

– The edge between clause evidence nodes and sentence evidence nodes : Building
an edge ei,j between a clause evidence node ei and a sentence evidence node
ej , if node ei belongs to sentence node ej .

– The edge between number nodes and clause evidence nodes : An edge ei,j exists
between a number node vi and a clause evidence node vj when vi is in text
of vj .

Evidence-Emphasized Reasoning over Graph. We leverage relational heteroge-
neous graph convolutional network (RH-GCN) to perform reasoning over the
constructed evidence graph G and illustrate the details of the reasoning process
as follows:

Initialization. For each number node vi ∈ VN , its representation is initialized
as the corresponding token vector of HED, i.e. vi = HED[I(vi)] where I(vi)
denotes the token index corresponding to node vi. For nodes vi ∈ VS ∪ VC ,
the initial representation of vi can be derived by the weighted sum of all the
corresponding tokens’ representation, that is, vi =

∑
k αkHED[I(vik)].

Evidence-Emphasized Information Propagation. To leverage the evidence
to guide the reasoning over the graph, each node is assigned a weight with the
probability pj . We leverage relation-specific transform matrices in the message
propagation to distinguish different relations among nodes. The message propa-
gation procedure is defined as,

v̂i =
1

|Ni|
∑

j∈Nj

pjWtjivj , (5)

where v̂i is denoted as the propagated message representation of node vi from
its all neighbors vj ∈ Ni. tji is the relations between node vi and vj . Wtji is the
transform matrices assigned to relation tji.

Updating of Node Representation. Formally, We update the node represen-
tation by fusing the propagated message representation of node vi obtained in
last step with the information of the node as follows:
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vi = ReLU(Wvvi + v̂i), (6)

where Wv is a learnable parameter matrix.

Fusion layer. Following NumNet [20], we integrate the structured knowledge
implied in the evidence graph into the representation of the sequence as

HERG = [HQ
ERG;HP

ERG] = ResiGRU(LN(HED + HR)),

HR[j] = vi if jth token in node vi,
(7)

where ResiGRU(·) means the composite function with residual function and a
GRU layer.

3.4 Prediction Module

In this section, we demonstrate the details of the answer prediction module,
including five answer predictors corresponding to different answer types and an
answer type predictor.

Answer Type. The answer type predictor calculates the probability distribution
of different answer type choices as

Ptype = softmax(FFN(Mtype)), Mtype = [hQ;hP ], (8)

where hQ and hP is calculated by weighted sum with token-level representation
of question and passage HQ

ERG ∈ RLq×dh and HP
ERG ∈ RLp×dh .

Single Span. Following Hu et al.. [12], we use a question-aware decoding strat-
egy to predict the start and end index. Specifically, the question representation
vector, which means the summary of the question sequence information, is first
computed as:

αQ = softmax(FFN(HQ
ERG)), gQ = αQHQ

ERG. (9)

We leverage the pinpointed evidence to direct the prediction of the start index
and end index as the following formulas:

PP
start,P

P
end = masked softmax(Pseq � FFN(M)),

M = [HERG;HERG � gQ],
(10)

where masked softmax(·) means softmax(·) can only be conducted among the
element not be masked, which guarantees the answer span either belongs to
question or document. Pseq is the token-level evidence distribution derived in
Sect. 3.2. When some fragment is identified as evidence by the evidence detector,
we enhance the probability of a token in the fragment as the start and end index,
and vice versa.
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Arithmetic Expression. We yield the number representations U =
(u1,u2, ...,uN )) ∈ R

N×2dh by gathering from HERG, if N numbers exists. Simi-
lar to Dua et al. [7], we perform addition and subtraction over all numbers men-
tioned in the question and document context by assigning a sign (plus, minus
or zero) to each number. In this way, arithmetic expression is converted into a
sequence role labeling problem. The evidence information is leveraged to direct
the prediction of number’s sign as follows:

Psign
i = softmax(Pe

i � FFN(Msign
i )),

Msign
i = [ui;hP ;hQ], Pe

i = (Pseq
i ,Pseq

i , 1 − Pseq
i ),

(11)

where Pe
i ∈ R

3 is a constructed weight vector for prediction of ith number’s sign.
P seq

i means the probability of the token as evidence at the position of the ith

number. We increase the probability that the sign of a number is discriminate
as plus and minus when the segment containing the number is identified as
evidence.

Count. We model count question as a 10-class classification problem (0–9). We
first compute the input feature vector, integrating all the mentioned numbers,
question, and passage information as follows:

Pcount = softmax(FFN(Mcount)), Mcount = [hU ;hP ;hQ],

hU = αUU, αU = softmax(UWU ).
(12)

Multi-Spans. For multi-spans extraction, the probabilities are derived with a
sequence role labeling method SRL(·)as the same as Segal et al.. [22]:

PMS = SRL(HERG), (13)

where PMS ∈ R
L×3 are probability distribution of token’s BIO tagging.

4 Training with Distant Supervision

For the R-MRC task, we expect the machine can automatically learn to estab-
lish the bridge between question and answer. However, it is often expensive to
obtain some intermediate signal annotations that explain the reasoning process
for question answering according to the given question and passage. In this paper,
we propose a few one-shot heuristic rules for evidence detection without human
annotations as follows, and we utilize them as distant supervision signals to train
the evidence detector.

– For an instance with span answer, we identify all the fragments (sentence-
level and clause-level) that contain answer text as evidence. Moreover, the
fragments are also marked as evidence if containing the topic entities in ques-
tion.
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– For an instance with arithmetic expression answer, we first find all the expres-
sions that can obtain the answer by conducting addition or subtraction over
up to 3 numbers in the context. We identify fragments containing those num-
bers that can be computed to obtain answers as evidence.

We jointly train the evidence detector and R-MRC model in form of multi-
tasks. For evidence retrieval task, we compute the cross-entropy loss with pre-
dicted evidence label and the noised ground-truth evidence label as:

Levi = − 1
m

m∑

k=0

yk log pk + (1 − yk) log(1 − pk), (14)

where pk is the probability of labeling kth fragment as evidence. For R-MRC
model part, the probability of the answer P (A|P ;Q;E) can be calculated as
following:

P (A|P ;Q;E) =
∑

z∈T
Pz(A|P ;Q;E)P (z|P ;Q;E), (15)

where T denotes all the answer types and E means evidence. To train our model,
we adopt the marginal likelihood objective function [5], which sums over the
probabilities of all possible annotations. The loss of answer prediction is denoted
as Lans. Therefore the final loss is the weighted sum of two parts of losses with
hyper-parameter λ as follows:

L = Lans + λLevi. (16)

During inference, we first identify the evidence via the evidence detector and then
determine the answer type and the corresponding answer with the prediction
module.

5 Experiment

5.1 Dataset and Evaluation Metrics

We conduct experiments on an R-MRC benchmark named DROP [7] to evaluate
our proposed model. DROP contains 77.4k/9.5k/9.6k instances for training, val-
idation, and testing. DROP is composed of crowd-sourced question-answer pairs
based on passages from Wikipedia. Specifically, for each question in DROP, var-
ious answer types such as date, number, or spans are involved. We take Exact
Match (EM) and F1 as the evaluation metrics that are the same as previous
work [2,7,20].
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5.2 Experiment Settings Table 2. Results on the development and test
sets of DROP dataset. ∗ denotes our implementa-
tion results. Better results are in bold.

Method Dev Test

EM F1 EM F1

w/o Pre-trained Model

NAQANet [7] 46.20 49.24 44.07 47.01
NumNet [20] 64.92 68.31 64.56 67.97

w/ Pre-trained Model

GenBERT [8] 68.80 72.30 68.6 72.35
MTMSN [12] 76.68 80.54 75.88 79.99
NeRd [3] 78.55 81.85 78.33 81.71
ALBERT-Calculator [1] 80.22 83.98 79.85 83.56
NumNet+∗ [20] 80.74 84.09 80.92 84.33
QDGAT∗ [2] 82.03 85.01 82.31 85.65

Baseline (RoBERTa) 80.24 83.47 80.95 84.37
Baseline (ELECTRA) 81.16 84.22 81.63 84.98
EviDR 82.09 85.14 82.55 85.80

Human 94.90 96.42

Our model is built upon the
publicly available pre-trained
model ELECTRAlarge [6]. We
use Adam optimizer with a
cosine warmup mechanism to
train the model. The maxi-
mum number of epochs and
batch size is set to 12 and 16,
respectively. For the parameters
of ELECTRAlarge, the learning
rate and L2 weight decay are
1.5e−5 and 0.01. For the other
parts in EviDR, they are set to
5e−5 and 5e−4. The weight λ
for loss of evidence detector is
0.2 and 0.4, which corresponds
to sentence-level and clause-level evidence detection, respectively. The reasoning
step over the heterogeneous graph is set to 3.

5.3 Baselines

We re-implemented NumNet+ [20]1 and QDGAT [2]2 as our baseline systems
in this work. NumNet+ integrated relative magnitude between two numbers
with a number graph and performed multi-step reasoning with graph convolu-
tion network. QDGAT [2] employed a question-directed graph attention network
to reasoning over a heterogeneous graph that involved entity nodes and num-
ber nodes. In addition, an pre-train model based R-MRC system with multiple
answer predictors was selected as another baseline, which was denoted as Base-
line (RoBERTa [17]/ELECTRA [6]) in Table 2.

5.4 Main Results

Table 2 displays the performance of our model and other previous competitive
models on DROP. Our method achieves 82.55 EM and 85.80 F1 scores on the
test set, achieving similar and even better results compared to the state-of-the-
art models i.e., NumNet+ and QDGAT. Moreover, EviDR achieves 0.93 EM
and 0.92 F1 score improvement over the R-MRC system denoted as Baseline in
Table 2. This demonstrates the effectiveness of evidence modeling.

1 https://github.com/llamazing/numnet plus.
2 https://github.com/emnlp2020qdgat/QDGAT.

https://github.com/llamazing/numnet_plus
https://github.com/emnlp2020qdgat/QDGAT
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5.5 Ablation Study

Effectiveness of Evidence for Reasoning. To analyze the effectiveness of evidence
for R-MRC, ablation studies are conducted on the development set of DROP.
As shown in Table 3, we observe removing the evidence graph from our model,
which leads to performance declines of 0.34 EM and 0.32 F1, which indicates the
effectiveness of the evidence graph. On the other hand, taking off the direction
of evidence for answer prediction in Eqs. 10 and 11 and the evidence fusion layer
in Eq. 4, which leads to decline in 0.36 EM and 0.46 F1. It demonstrates that
integrating the evidence information into the hidden state and answer predictor
facilitates the answer prediction. Eventually, our method achieves 0.93 EM and
0.92 F1 points improvements over the baseline system.

Performance in Different Answer Type. Here, we evaluate the performance of
our method on different answer types on the development of DROP. As reported
in Table 3, when removing the evidence graph (w/o graph) and evidence direc-
tion for answer predictor (w/o ED), performance on the number, date, and
span answer decline significantly. It further demonstrates the effectiveness of our
methods on different answer types.

Table 3. Performance on different answer types on the development set of DROP. w/o
ED means without direction of evidence for answer prediction in Eqs. 10 and 11 and
the evidence fusion layer in Eq. 4. w/o Graph means removing the evidence-emphasized
reasoning graph from EviDR. The Better results are in bold.

Method Number Date Span Overall

EM/F1 EM/F1 EM/F1 EM/F1

EviDR 84.11/84.37 64.43/72.24 82.98/88.19 82.09/85.14

w/o ED 83.85/84.06 61.18/69.61 82.43/87.54 81.73/84.68

w/o Graph 83.86/84.10 53.64/61.79 82.65/88.12 81.75/84.82

Baseline 83.27/83.48 58.00/65.48 81.59/87.19 81.16/84.22

Table 4. The Evaluation on the evi-
dence detection and heuristic rules on
dev dataset.

Granularity P R F1 AKR
Sentence 92.57 93.57 90.92 53.24
Clause 89.29 90.08 86.67 41.31

Performance of Evidence Detector. To
analyze whether the evidence detector in
our model can correctly recognize the evi-
dence supporting answer prediction, we
evaluate the performance of the evidence
detector with Precision (P), Recall (R)
and F1 as metrics. As reported in Table 4,
for sentence-level evidence, we eventually
achieve 92.57, 93.57, 90.92 on Precision, Recall, and F1 scores, respectively. And
for clause-level evidence, they are 89.29, 90.08, and 86.67, respectively, which
indicates the evidence detector can accurately recognize the evidence support-
ing answer prediction. In addition, we evaluate the heuristic rules with the metric,
average keep ratio of sentence/clause-level evidence (AKR), i.e., the proportion
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of labeled as evidence in all the fragments. As Table 4 shown, nearly 47% of
sentences and 59% of clauses are filtered out. It significantly reduces the redun-
dancy and noises of evidence while ensuring the answers are available from the
evidence fragments.

5.6 Case Study

In Table 5, we give some examples to illustrate the effectiveness of our model com-
pared to baseline systems. Sentence-level and clause-level evidence predicted by
EviDR is in blue and bold, respectively. The first example shows the importance
of evidence for questions with number answers. NumNet+ and QDGAT fail to
capture the clause “0.15% Native American (U.S. Census)” is the crucial evi-
dence for answer prediction. In contrast, our model accurately recognizes all the
evidence pieces, which further facilitates the prediction of correct answers. The
second example highlights the importance of evidence for questions with span
answers. We observe that NumNet+ and QDGAT only find the related text
“the later category” through the semantic matching ability. However, EviDR is
capable to correctly capture what is “the latter category” by reasoning with
the detected evidence “outer provinces that were adjacent to the inner provinces
and tributary states located on the border regions” and “destruction of vientiane
belonged to the later category”.

Table 5. The cases are from the development set of the DROP dataset. The predictions
from the state of art models NumNet+ and QDGAT are illustrated. The last column
indicates our answer prediction. Sentence-level and clause-level evidence predicted is
in blue and bold, respectively.

Question-Answer Passage Prediction

Q: How many more

people, in terms of

percentage, made up

the biggest racial

group compared to

the second smallest?

A: 97.75

... The population density was 73 people per square mile

(28/km0̆0b2). There were 12,064 housing units at an average

density of 36 per square mile (14/km0̆0b2). The racial

makeup of the county was 97.90% White (U.S.

Census), 0.56% African American (U.S. Census), 0.15%

Native American (U.S. Census), 0.28% Asian (U.S.

Census), 0.02% Pacific Islander (U.S. Census), 0.36% from

Race (United States Census), and 0.74% from two or more

races. Hispanic (U.S. Census) or Latino (U.S. Census) of any

race were 0.93% of the population. 21.3% were of English

people, 16.5% Germans, 11.4% Irish people, 10.7% United

States, 5.3% danish people and 5.3% Italian people ancestry

according to Census 2000

NumNet+:

+97.90=97.90

QDGAT:

+97.90=97.90

EviDR:

+97.90-0.15=97.75

Q: Southern Laos

belonged to which

category of territory?

A: tributary states

Before the Monthon reforms initiated by king Chulalongkorn,

Siamese territories were divided into three categories: Inner

Provinces forming the core of the kingdom, Outer

Provinces that were adjacent to the inner provinces

and tributary states located on the border regions.

The area of southern Laos that came under Siamese

control following the Lao rebellion and destruction of

Vientiane belonged to the later category, maintaining

relative autonomy. Lao nobles who had received the approval

of the Siamese king exercised authority on the Lao population

as well as the Alak and Laven-speaking tribesmen. Larger

tribal groups often raided weaker tribes abducting people and

selling them into slavery at the trading hub of Champasak,. ...

NumNet+:

the later category

QDGAT:

the later category

EviDR:

tributary states
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6 Conclusion and Future Work

In this work, we propose an evidence-emphasized discrete reasoning framework
named EviDR for the R-MRC task. Specifically, we explicitly model evidence and
introduce an evidence detector to recognize evidence to support answer predic-
tion. In addition, we leverage an evidence-emphasized reasoning graph module to
enhance the reasoning ability of EviDR. Experiments show that EviDR achieves
remarkable performance.

Acknowledgments. The work is supported by the National Natural Science Foun-
dation of China (No. U1908216) and the National Key R&D Program of China under
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Abstract. Knowledge-grounded dialogue is a task of generating a flu-
ent and informative response based on both conversation context and a
collection of external knowledge, in which knowledge selection plays an
important role and attracts more and more research interest. However,
most existing models either select only one knowledge or use all knowl-
edge for responses generation. The former may lose valuable information
in discarded knowledge, while the latter may bring a lot of noise. At
the same time, many approaches need to train the knowledge selector
with knowledge labels that indicate ground-truth knowledge, but these
labels are difficult to obtain and require a large number of manual anno-
tations. Motivated by these issues, we propose Knoformer, a dialogue
response generation model based on reinforcement learning, which can
automatically select one or more related knowledge from the knowledge
pool and does not need knowledge labels during training. Knoformer is
evaluated on two knowledge-guided conversation datasets, and achieves
state-of-the-art performance.

Keywords: Dialogue generation · Knowledge-grounded dialogue

1 Introduction

With the advances in sequence to sequence models, neural dialogue systems have
attracted more and more research attention. Neural conversation response gener-
ation could be formulated as a Seq2Seq task: given a dialogue history, the model
is asked to generate a high-quality response. A large number of end-to-end gener-
ative neural conversation models have been applied to open-domain conversation
and chatbot, have achieved success in generating fluent responses. However, the
usual Seq2Seq models tend to produce shorter and simpler responses, which are
not informative [7,8].

In order to generate informative and meaningful responses, a number of meth-
ods have been proposed by leveraging external knowledge. Besides the dialogue
history, knowledge-based dialog system also combines several external knowl-
edge (in this paper we only discuss unstructured textual knowledge) to construct
an input sample. Generally, the collection of candidate knowledge is obtained
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 455–466, 2021.
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through rough text retrieval in the knowledge base with a certain amount of
noise. The noisy knowledge will lead the conversation to meaningless themes [9],
so it is essential for a model to identify and select the appropriate knowledge.

However, most existing methods [1,3,5,8] can only select one knowledge with
the highest confidence from the candidate knowledge to participate in dialogue
generation, while abandoning other knowledge with low confidence but possibly
containing useful information. In order to make full use of the external knowl-
edge, some approaches like [9] try to use all the knowledge to participate in
the response generation. Nevertheless, when the size of candidate knowledge set
is too large, this method will bring serious computational overheads and noise
knowledge will lead the conversation to irrelevant topics.

Besides, many existing methods [1,5] require labels that indicate the ground-
truth knowledge to train the knowledge-grounded dialog models. However, these
knowledge labels are difficult to obtain and need to be constructed through a
large number of manual annotations, which is labor-intensive.

Motivated by the above issues, we propose Knoformer, a novel knowledge-
grounded dialogue response generation model. Firstly, we present a knowledge-
aware dialogue module, which take the concatenation of dialogue history and
selected knowledge as inputs and generation responses. We perform supervised
learning to train this module. Secondly, we propose a knowledge selection mod-
ule to select all appropriate knowledge according to hidden states from dialogue
module. Due to the lack of knowledge labels, the selection module uses the feed-
back from the dialogue module as reward and uses the policy gradient algorithm
for training. Besides, we also add a weak supervision loss to the selector to further
boost the accuracy. The dialogue module and knowledge selector are optimized
jointly in a recurrent way.

We conduct experiments on Wizard-of-Wikipedia [3] and Holl-E [11], and
results shows that our model achieves the new state-of-the-art performance.

2 Related Work

Knowledge-based conversation have shown promising results in improving
response informativeness [3,15]. PostKS [8] uses prior and posterior distribu-
tions over knowledge to train a selector which can choice the most suitable can-
didate (and discard others) to participate in the response generation; KIC [9]
uses recurrent knowledge interaction among response decoding steps incorpo-
rate appropriate knowledge and uses pointer-generate networks copy tokens
from external knowledge according to knowledge attention distribution; [5]
proposes Sequential Knowledge Transformer (SKT) to model knowledge selec-
tion history in multi-turn dialogue; PIPM/KDBTS [1] improves on PostKS and
SKT by using posterior information prediction and knowledge distillation to
bridge the gap between prior and posterior knowledge selection. PostKS, SKT
and PIPM/KDBTS only select one knowledge but our Knoformer could select
multiple knowledge from knowledge pool; To train SKT and PIPM/KDBTS,
ground-truth knowledge labels are needed, but KnoFormer does not need to
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specify ground-truth knowledge in advance; KIC uses a special structure to real-
ize knowledge attention which has poor portability, and has no ability to filter
out noise knowledge, while our model can directly use Transformer to realize
knowledge attention and has the ability to select highly relevant knowledge.

One of the most related models to ours may be KnowledGPT [14], who
also focus on the multiple knowledge selection issue in the knowledge-grounded
dialogue by reinforcement learning. Our work is novel in that during training,
KnowledGPT only calculates one reward for all knowledge selection actions,
which is equivalent to only one action in an episode, while our model calculates
rewards for each action, which can accurately punish or reward each action.

3 Methodology

We use capital letters for sequences (e.g., Y ), lowercase letters for tokens in
sequences (e.g., u), bold capital letters for matrices (e.g., K), and bold lowercase
letters for vectors (e.g., v).

Given a conversation history U = {u1, u2, ..., um} and a set of external knowl-
edge K = {Kj}r

j=1, where Kj = {kj
1, k

j
2, ..., k

j
n} and r is the size of external

knowledge set, the task of our proposed approach is to learn a knowledge selec-
tion module to select a subset of K:

p(Ksub) =
o∏

i=1

p
(
Kai

| U,Ka1 , ...,Kai−1

) Ksub = {Kai
}o

i=1 1 ≤ ai ≤ r (1)

where ai represents the index of i-th knowledge in Ksub. Specifically, we use a
recurrent method to select knowledge one by one. The first knowledge is selected
based on the dialogue history U , and then the second knowledge is selected based
on U and the first knowledge Ka1 , and so on, to reach the maximum number of
knowledge choices. K usually has a lot of noise, so the filtered K is more closely
related to the conversation topic. In addition, we also learn a dialogue genera-
tion model generate response using U and Ksub: p(Ŷ ) = f(U,Ksub). Compared
with some models [1,5,8] that can only select one knowledge, our model uses a
recurrent selection mechanism to pick multiple suitable external knowledge.

Our proposed model consists of three parts, a dialogue module which can fuse
the features of knowledge and dialogue history to generate a response (Sect. 3.1),
a knowledge encoding module which can encode all external knowledge sepa-
rately (Sect. 3.2), and a knowledge selection module which can be trained without
ground-truth knowledge based on reinforcement learning (Sect. 3.3). Section 3.4
introduces the training and inference of our model. The architecture of our pro-
posed model is show in Fig. 1.

3.1 Dialogue Module

Our model operates in an iterative manner. Each time a knowledge is selected,
the dialogue module will perform feature fusion on the currently selected
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Fig. 1. The architecture of our proposed model (suppose the model chooses two knowl-
edge). Modules of the same color share parameters. The orange circles represent the
loss of the dialogue model, and they will be accumulated and averaged to form the
final dialogue loss L′

u.

knowledge. Our dialogue module is based on Transformer [12], which takes the
dialogue history and several selected external knowledge as input, and generates
a response token by token.

Assuming that c − 1 knowledge has been selected at present, then the input
of the dialogue model is Xc =

[
[SOS];U ;Ka1 ; ...;Kac−1 ; [EOS]

]
, where [SOS]

and [EOS] are special tokens. We pass Xc to Transformer encoder to obtain the
context-aware representation Xc:

Xc = TFEncoder (e(Xc), θe) ∈ R
m×d (2)

where e(·) means to convert a sequence (or token) into word embedding vectors
using a lookup table M ∈ R

vocab×d and θe represents the learnable parameters.
After encoding, the information of dialogue history and external knowledge is
fully integrated.

We take Xc (as memory) and golden response Y (as input) into Transformer
decoder to generate response token by token.

ht = TFDecoder (Xc, e(Y1:t−1), θd) ∈ R
d p(yt) =

e(yt)h�
t∑

y′ e(y′)h�
t

(3)

3.2 Knowledge Encoder

For i-th (1 ≤ i ≤ r) knowledge Ki in external knowledge set, we wrap it with
two special characters [SOS] and [EOS], and sent to a Transformer encoder:

Ki = TFEncoder (e(Ki), θk) ∈ R
n×d (4)

We use the representation of [SOS] token (denoted as ki ∈ R
d) as the overall

representation of i-th knowledge.
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3.3 Knowledge Selector

Assuming that we will choose the c-th knowledge in current step, we formulate
the problem of learning-to-select under the framework of reinforcement learning.
We define the state s = {Ka1 , ...,Kac−1} (omit some constants) of the model
to be the knowledge that the selector has selected before the current step, e.g.,
s = {3, 2, 1, 4}. The action a is which knowledge to select. We define the action
space of current step as the knowledge index in K (i.e., {1,2,...,r}). During
implementation, we use mask technology to avoid choosing repeated action. Since
Xc integrates the features from dialogue history and selected knowledge, in order
to propagate the information across different steps, we represent the state s with
the representation of [SOS] token (denoted by vc ∈ R

d) in Xc.
The selection policy gives the probability π (a | s) of taking an action a at

the current state s, which is modeled by a bilinear matrix:

π (a | s) = softmax
a∈Ac

(
vcWk�

a

)
(5)

where W ∈ R
d×d is a learnable parameter and ka is the knowledge representation

(Sect. 3.2). In order to achieve the early stop mechanism, a stop action can be
added to action space in implementation.

3.4 Modules Integration

In the training phase of the recurrent selection mechanism, the actions of select-
ing next knowledge are sampled according to the probability given by the selec-
tion policy. Our model generates a sequence of knowledge for each dialogue
history. We train the dialogue model with supervised learning, and we train the
selector network via reinforcement learning and weekly supervised learning.

Supervised Learning for Response Generation. The ground-truth
response has been given, so we train the conversation model via supervised learn-
ing. Consistent with most Seq2Seq models, the training objective is to minimize
the negative log likelihood (NLL):

Lu = −1
z

z∑

t=1

log p(yt) (6)

Reinforcement Learning for Selection Policy. Based on the assumption
that the ground-truth knowledge labels are not available, supervised learning
cannot be used to train the knowledge selection model, it is natural to train it
via reinforcement learning.

First of all, the accumulated reward for taking action a at state s is denoted
as R(s, a), which is derived in a recursive manner:

R(s, a) = e−PPL(s,a)/γ + R(s′, a′) (7)
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where γ is a constant and we empirically set it to 10. PPL(s,a) denotes the per-
plexity of ground-truth response Y in current step and R(s′, a′) denotes the next
state-action pair. We use perplexity as reward to make the knowledge selector
more inclined to select knowledge that can generate high-quality responses.

The selection policy network can be trained by maximizing the expected
accumulated reward through the policy gradient algorithm [13]:

J = Ea∼π

[
R̃(s, a)

]
(8)

where R̃(s, a) = R(s, a)−b and b ≈ E[R(s, a)] is the baseline that is used to reduce
the variance of gradient estimation [2]. To be consistent with the notations in
response generation, we denote the loss function of selection policy as Lk, which
is the negative expected accumulated reward J in Eq. 8: Lk = −J . Thus, the
gradient of Lk over a series of action-pair B is given by:

∇Lk = −
∑

(s,a)∈B
∇ log π (a | s) R(s, a) (9)

Weakly Supervised Learning for Selector. Valuable knowledge usually has
a higher text similarity with the ground-truth response, so we add an additional
selection loss to the selector when selecting the first knowledge. We take the
response as the query, use the TF-IDF algorithm to score the knowledge in K,
mark the index of knowledge with the highest score as a+, and the additional
loss is defined as:

Ls = − log π
(
a+ | s

)
(10)

Training and Inference. The training procedure is show in Algorithm 1 (for
ease of understanding, assume batch size is 1 and only optimize one step). The
overall loss is defined as L = L′

u/o + Lk + λLs. Weakly supervised labels may
not be correct, so we put a smaller weight λ on Ls.

Encoder

Dialogue 
History

Pick Ka1

Encoder Encoder

Pick Ka2

Decoder

Response

Encoder

Pick Ka3

Fig. 2. Sketch of inference.

During inference, the knowledge selector take the best action (instead of
sampling) at step c according to the selection policy:

a∗ = arg max
a∈Ac

π (a | s) (11)
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Algorithm 1. Optimization Step
Input: U , Y , K = {Ki}r

i=1 and number of selections o;
Output: Generation loss L′

u, selection loss Lk and Ls;

1: Encode knowledge independently according to Eq. 4 and get the knowledge repre-
sentation {ki}r

i=1;
2: Initialize s = φ, B = φ, L′

u = 0;
3: for c in {1, ..., o} do
4: Construct Xc from U and s according to Sect. 3.1;
5: Encode Xc to obtain Xc and vc according to Eq. 2;
6: Decode and calculate Lu according to Eq. 6;
7: L′

u ← L′
u + Lu;

8: if c = 1 then
9: Calculate Ls according to Eq. 10;

10: end if
11: if c < o then
12: Calculate π according to Eq. 5;
13: Sample an action a using Gumbel-Max Trick;
14: B ← B ∩ {(s, a)}, s ← s ∩ {a};
15: end if
16: end for
17: Calculate Lk according to Eq. 8;
18: return L′

u, Ls and Lk;

After the action a∗ is taken, a new knowledge is taken from the knowledge pool
and appended to the input sequence, and so on, until reaching the upper bound
of knowledge selection o. Because there is no need to calculate the reward during
inference, in order to save overhead, the decoder only decodes when c = o. The
sketch of inference is shown in Fig. 2.

4 Experiments

4.1 Datasets

We conduct experiments on Wizard-of-Wikipedia [3] and Holl-E [11]. Wizard-
of-Wikipedia contains 18,430 training dialogues, 1,948 validation dialogues and
1,933 test dialogues on 1365 topics. And test set is split into two subsets accord-
ing to topics, which are Test Seen with 965 dialogues and Test Unseen with
968 dialogues whose topics are never seen in training and validation set. There
are about 61 sentences on average in the knowledge pool per turn, which are
retrieved from Wikipedia based on the context. Holl-E contains 7,228 train-
ing dialogues, 930 validation dialogues and 913 test dialogues. Each dialogue is
assigned with about 60 documents on average as the knowledge pool. Here, we
use the modified version [5] which fits for knowledge selection.

It should be noted that in this paper, we focus on the scenarios where ground-
truth knowledge is unknown. Thus, we does not use the ground-truth knowledge
labels.
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4.2 Models for Comparison

We compare our Knoformer with the following baselines:

– KnowledGPT: Another knowledge-based dialogue system based on BERT
and GPT-2 which can select multiple external knowledge via reinforcement
learning [14]. KnowledGPT does not provide complete source code and exper-
imental results on other datasets, so we can only compare with it on the
Wizard-of-Wikipedia dataset.

– TF-IDF: TF-IDF is a commonly used algorithm in information retrieval. We
perform TF-IDF to sort all documents in knowledge set (dialogue context as
query), and concatenate dialogue context and top-20 of them as the input.

– PIPM/KDBTS: A latent variable model that uses specially designed Poste-
rior Information Prediction Module (PIPM) to select knowledge and Knowl-
edge Distillation Based Training Strategy (KDBTS) to train the decoder with
the knowledge selected from the prior distribution [1]. It is an improvement
of PostKS and SKT, but still can only select one knowledge.

For fair comparison, we only use the knowledge selector of the above methods,
and use BART [6] as the unified dialogue response generator. It should be noted
that most pre-trained language models (e.g., BERT, GPT-2, BART) has a limit
of max number of input tokens they can handle, so for BART+TF-IDF, text
exceeding the maximum length will be truncated, and only keep the first 384
tokens. The source code of KIC and some other methods is not available, so we
will not compare with them.

4.3 Implement Details

We implement our model over PyTorch framework. The parameters of dialogue
module and knowledge encoder are initialized with BART-base and BERT-base
respectively. We train our model using AdamW [10] optimizer with a batch size
of 16 and learning rate 5e-5 at 3 epochs on a NVIDIA QUADRO RTX 8000
machine, and other hyperparameters are detailed in Table 1. When decoding,
the number of beams is between 1 to 5. We adopt widely used public evaluation
toolkit NLTK to evaluate the model performance.

Table 1. Hyperparameters over different datasets.

Wizard seen Wizard unseen Holl-E

Max context length 384 384 256

Max knowledge length 64 64 48

Max response length 48 48 48

Max number of selection 6 3 2

λ 0.3 0.7 0.7
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4.4 Automatic Evaluation

We adopt three automatic metrics include BLEU, Div, and corpus-level uni-
gram F1 for evaluation. BLEU is well-known machine translation evaluation
metric, and generated response with higher BLEU/F1 is closer to the ground-
truth response and has preferable fluency. Div-n reflects the n-gram diversity of
text [7], and response with higher Div-n could present more information.

Table 2. Automatic evaluation results on Wizard-of-Wikipedia test seen. BART in
the first row means no knowledge is used.

Model F1 BLEU-1 BLEU-2 BLEU-3 Div-1 Div-2

BART 24.0 22.4 10.2 5.0 6.0 23.8

BART+KnowledGPT 26.2 25.6 13.6 8.8 7.8 24.6

BART+TF-IDF 24.8 23.3 11.0 5.9 7.1 29.8

BART+PIPM 25.0 23.6 11.3 6.1 7.0 28.7

Knoformer 27.4 26.4 14.3 9.2 7.9 32.1

Table 3. Automatic evaluation results on Wizard-of-Wikipedia test unseen.

Model F1 BLEU-1 BLEU-2 BLEU-3 Div-1 Div-2

BART 23.1 21.6 9.5 4.7 4.5 19.6

BART+KnowledGPT 24.7 24.6 12.6 7.8 4.9 23.6

BART+TF-IDF 23.5 22.3 10.0 5.4 5.1 21.4

BART+PIPM 24.0 23.0 10.5 5.6 4.7 20.8

Knoformer 25.4 24.8 12.6 8.0 5.1 23.1

Tables 2 and 3 shows the automatic evaluation results on Wizard, and Table 4
shows the results on Holl-E. We have the following observations: (1) Our Kno-
former significantly surpasses all baselines in most evaluation metrics of all
datasets, which means our knowledge selection module is more targeted and
can select more valuable knowledge; (2) External knowledge is of great help to
improve performance. If external knowledge is removed, performance will decline;
(3) Only using prior experience (TF-IDF with context as query) to select knowl-
edge is not effective.

4.5 Human Evaluation

Besides automatic evaluation, we also recruit three human annotators to do
qualitative analysis on response quality. For each corpus, we randomly sample
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Table 4. Automatic evaluation results on Holl-E.

Model F1 BLEU-1 BLEU-2 BLEU-3 Div-1 Div-2

BART 24.7 20.6 11.5 5.2 4.0 16.1

BART+TF-IDF 27.8 25.0 11.0 5.9 7.1 28.3

BART+PIPM 36.3 33.4 27.5 24.6 4.6 20.8

Knoformer 39.5 37.9 31.0 28.4 7.0 25.8

200 samples, and each sample contains the dialog history, response, and external
knowledge set. The annotators then judge the quality of the responses from three
aspects, including context coherence, language fluency and response diversity,
and assign a score in {0, 1, 2} to each response for each aspect. Each response
receives 3 scores per aspect, and the agreement among the annotators is mea-
sured via Fleiss’ kappa [4]. The human evaluation result is shown in Table 5,
and we observe that responses from our Knoformer are more fluent and more
contextually coherent than those from baselines.

Table 5. Human evaluation results on Wizard-of-Wikipedia.

Models Wizard test seen Wizard test unseen

CC LF RD Kappa CC LF RD Kappa

BART+KnowledGPT 1.78 1.80 1.64 0.61 1.72 1.74 1.66 0.62

BART+PIPM 1.73 1.75 1.65 0.59 1.69 1.70 1.62 0.61

Ours 1.80 1.84 1.69 0.60 1.74 1.77 1.66 0.61

4.6 Analysis

Ablation Study. In order to explore the importance of components in Kno-
former, we conducted ablation experiments on Wizard-of-Wikipedia valid set,
and the results are summarized in Table 6. First of all, we remove the loss item
Lk and Ls of knowledge selection, making the selection of knowledge completely
random. Results show that meaningless selection will harm the performance of
the model. Secondly, we remove Ls only, and performance is also degraded,
which means that valuable knowledge does have a higher similarity with the
ground-truth response, and building the link between knowledge and response
directly helps improve model performance. Besides, we change the joint training
to separate training, which means that selector and dialogue module are trained
alternately. Results indicate that joint training can make better use of the feed-
back of dialogue model. In addition, when replacing our reward function with
that of KnowledGPT (only return a reward for all actions in an episode), the
performance drops significantly, which means that gives a reward to each action
can effectively punish bad actions and enhance the knowledge selection.
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Table 6. Results on wizard valid set.

Models Wizard test seen Wizard test unseen

F1 BLEU-1 BLEU-3 F1 BLEU-1 BLEU-3

Ours 27.1 26.5 9.2 25.3 24.6 8.2

-Lk, Ls 24.6 23.1 5.9 23.6 22.1 5.3

-Ls 26.8 26.3 8.5 24.9 24.1 7.6

-joint 26.9 26.3 9.1 25.1 24.3 8.0

R† 26.2 25.7 8.2 24.1 23.4 7.3

Case Study. Table 7 shows a case in Wizard test unseen. Our model select two
pieces of knowledge and incorporate them into response. Compared with base-
lines and even reference, response generated by Knoformer is more informative.

Table 7. A case from test unseen of Wizard-of-Wikipedia.

Context A: Elvis was such an amazing singer, but he also an incredible musician and
actor
B: Yes, The King. Did you know he sold more than 1 billion units in 20 years

Reference I didn’t know that! He was born in 1935 and died in 1977 though

Selected
Knowl.

1. Elvis Aaron Presley (January 8, 1935 - August 16, 1977) was an American
singer...
2. ... he is often referred to as the King of Rock and Roll or simply the King

(Ours) Yes, he was king of rock and roll. He was born in 1935 and died in 1977
(BART+TF-IDF) Yes, he sold over 100 million records worldwide. (BART+PIPM)
I did not know that. I do know that he founded the Wall Street firm in 1960

Impact of o. To explore the influence of the number of knowledge choices on
model performance, we vary the value of o in {1, 2, ..., 12} and report the evalua-
tion results in Fig. 3. The smaller o, the smaller the probability that ground-truth
knowledge will be captured. When o reaches a certain extent, the performance
improvement is very weak or even slightly decreased, implying that the noise in
the knowledge pool will interfere with the generation of responses.

Fig. 3. The performance of the model with different o in Wizard valid set (seen).
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5 Conclusion

In this paper, we propose Knoformer, a knowledge-grounded dialogue genera-
tion model. Evaluation results on four benchmarks indicate that our model can
significantly outperform state-of-the-art methods.

Acknowledgments. This work is supported by the National Key R&D Program
of China (No. 2018YFC0830701), the National Natural Science Foundation of China
(No. 61572120), the Fundamental Research Funds for the Central Universities (No.
N181602013 and No. N171602003), Ten Thousand Talent Program (No. ZX20200035),
and Liaoning Distinguished Professor (No. XLYC1902057).

References

1. Chen, X., et al.: Bridging the gap between prior and posterior knowledge selection
for knowledge-grounded dialogue generation. In: EMNLP (2020)

2. Clark, K., Manning, C.D.: Deep reinforcement learning for mention-ranking coref-
erence models. In: EMNLP (2016)

3. Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., Weston, J.: Wizard of
Wikipedia: knowledge-powered conversational agents. In: ICLR (2019)

4. Fleiss, J.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76, 378–382 (1971)

5. Kim, B., Ahn, J., Kim, G.: Sequential latent knowledge selection for knowledge-
grounded dialogue. In: ICLR (2020)

6. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: ACL (2020)

7. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective
function for neural conversation models. In: NAACL (2016)

8. Lian, R., Xie, M., Wang, F., Peng, J., Wu, H.: Learning to select knowledge for
response generation in dialog systems. In: IJCAI (2019)

9. Lin, X., Jian, W., He, J., Wang, T., Chu, W.: Generating informative conver-
sational response using recurrent knowledge-interaction and knowledge-copy. In:
ACL (2020)

10. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR (2017)
11. Moghe, N., Arora, S., Banerjee, S., Khapra, M.M.: Towards exploiting background

knowledge for building conversation systems. In: EMNLP (2018)
12. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
13. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach. Learn. 8, 229–256 (1992)
14. Zhao, X., Wu, W., Xu, C., Tao, C., Zhao, D., Yan, R.: Knowledge-grounded dia-

logue generation with pre-trained language models. In: EMNLP (2020)
15. Zhou, K., Prabhumoye, S., Black, A.W.: A dataset for document grounded con-

versations. In: EMNLP (2018)



Multi-intent Attention and Top-k
Network with Interactive Framework
for Joint Multiple Intent Detection

and Slot Filling

Xu Jia(B), Jiaxin Pan, Youliang Yuan, and Min Peng(B)

School of Computer Science, Wuhan University, Wuhan, China
{jia xu,pjx 1997,2020282110194,pengm}@whu.edu.cn

Abstract. Multiple intent detection and slot filling are essential compo-
nents of spoken language understanding. Existing methods treat multiple
intent detection as a multi-label classification task. However, multi-label
classification methods focus on the correlation between different intents
and set the threshold to select the high probability intents. These meth-
ods will cause the model to miss part of the correct intents. In this
paper, to address this issue, we introduce Multi-Intent Attention and
Top-k Network with Interactive Framework (MIATIF) for joint multiple
intent detection and slot filling. In particular, we model the multi-intent
attention to obtaining the relation between the utterance and intents.
Meanwhile, we propose the top-k network to encode the distribution of
different intents and accurately predict the number of intents. Exper-
imental results on two publicly available multiple intent datasets show
substantial improvement. In addition, our model saves 64%–72% of train-
ing time compared to the current state-of-the-art graph-based model.

Keywords: Interactive framework · Multiple intent detection ·
Multi-intent attention · Top-k network

1 Introduction

Intent detection and slot filling are significant parts of spoken language under-
standing [13]. In an utterance, intents and slots always exist a strong correlation.
For instance, the slot of movie name “paris by night” and the intent “Search-
ScreeningEvent” correspond to each other in the query “Rate if tomorrow comes
and what time will paris by night aired”. To model the relation between intents
and slots, dominant models [4,5,12,16,23] adopt joint models to build the rela-
tionship between the two tasks. Though achieving promising performances, pre-
vious works only focus on the single-intent task. However, the utterances in
reality dialogue scenarios express more than a single intent [3]. For example, in
Fig. 1, the whole sentence corresponds to the intent “RateBook” and the intent
“SearchScreeningEvent”.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Prior works treat multiple intents as an entire intent (a) or use multi-label
classification methods to filter intents under the threshold (b). Our method discards
the threshold and uses the attention between the utterance and intents to determine
the final multiple intents (c).

To solve the problem of multiple intents in an utterance, the prior models
directly combine multiple intents into a single one, which is shown in Fig. 1(a).
However, these models do not guide each word to capture the features corre-
sponding to different intents [17]. To better perform multiple intent detection
and slot filling, [3] and [17] achieve promising performance by using multi-label
classification methods to consider two tasks jointly, as shown in Fig. 1(b). The
multi-label classification methods mainly utilize latent relevance among labels.
However, the core of multiple intent detection is to distinguish the irrelevance
of different intents. In addition, the method of setting the threshold can only
select intents with higher probability. Depicted in Fig. 1(b), the intent “Rate-
Book” which is above the threshold can be selected. In Fig. 1(c), these tokens
“paris by night” not only focus on the intent “SearchScreeningEvent”, but also
reduce the relevance on the intent “RateBook”.

There are two challenges in multiple intent detection: 1) How to distin-
guish the features of different intents. 2) How to predict the number of multiple
intents rather than setting the threshold. To solve these two problems, we pro-
pose a Multi-Intent Attention and Top-k Network with Interactive Framework
(MIATIF). In particular, we use an interactive framework based on the vanilla
transformer to improve the performance of both multiple intent detection and
slot filling. We introduce multi-intent attention to capture the relation between
the utterance and intents, which helps distinguish different intents’ features.
Meanwhile, we construct the top-k network to predict the number of intents
by encoding the distribution of different intents. This network can replace the
method of setting a threshold to avoid missing low probability intents.

To summarize, the contributions of this paper are: 1) We propose a Multi-
Intent Attention and Top-k Network with Interactive Framework to jointly solve
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Fig. 2. (a) Multi-label classification methods set the threshold to select high probability
labels. (b) Multiple intent detection methods pay more attention to the difference of
intents.

the problem of multiple intent detection and slot filling. 2) We introduce multi-
intent attention to distinguish the features between different intents. The top-k
network predicts the number of intents by encoding the distribution of different
intents. 3) We evaluate the performance of our model on two publicly available
dialogue datasets. Our model shows improve overall accuracy performance 3.1%
and 1.3% on two datasets and save 64%–72% training time compared to the
current state-of-the-art method.

2 Problem Definition

Current works treat multiple intent detection as a multi-label classification task.
Models select the intents which have high probability by setting the thresh-
old. However, this paper argues that multiple intent detection and multi-label
classification are essentially different tasks. As shown in Fig. 2(a), multi-label
classification exploits the association between two labels to improve label prob-
ability to avoid being filtered by the threshold. In most cases, there is not a
strong correlation between the different intents in an utterance. Therefore, the
model needs to focus on the features between different intents in multiple intent
detection. In this paper, we redefine the task of multiple intent detection.

We define an utterance U = (w1, w2, . . . , wL) consists of a sequence of
L words. Multiple intent detection needs to decide the multiple intent label
Y I = (Y I

1 , . . . , Y I
k̂

) with k̂ possible intents. We should learn a function fI :
U → Y I from sufficient training samples that achieve the mapping from utter-
ance to multiple intents. In most multi-label classification models, fI(U) =
{Y I |Sim(U, Ŷ I) > δ} will be derived, where Sim(U, Ŷ I) evaluate the relevance
scores of all intents and utterance, and δ is the threshold value. In multiple
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intent detection, we first learn a top-k function fk : U → k, which utilizes the
representation of the different intents in the utterance to predict the number
of intents. We set the function fI(U) = {Y I |Top(Sim(U, Ŷ I), fk(U))}, where
Top(Y, k) denotes taking the top k values from Y . We train the model to find
the best parameter set α that maximizes the likelihood:

arg max
α

P (Y I |fI(U);α). (1)

3 Model

The architecture of our model is shown in Fig. 3, which consists of the multi-
intent attention and the top-k network based on the interactive framework.

3.1 Interactive Framework

In single intent detection and slot filling tasks, the interactive framework
improves the performance by model the bidirectional connection between the
intents and slots [18]. We firstly perform an interactive framework based on
the vanilla transformer [20] to multiple intent detection. In the context fea-
ture encoder, We adopt the BiLSTM to encode each utterance U to produce a
series of hidden states H = (h1, h2, . . . , hL). We use HC to represent the out-
put of the context feature encoder. Then, we get the explicit multiple intents
and slots representation and put them into the interactive framework to make a
mutual interaction. We randomly initialize the parameters as intent embedding
matrix W I

F ∈ Rd×NI and slot embedding matrix WS
F ∈ Rd×NS ( d represents

the dimension of hidden states; NI and NS represent the number of intents and
slots, respectively).

In practice, we use W I
F and WS

F to obtain HI and HS , respectively:

HI = HC + softmax(HC · W I
F ) · W I

F , (2)

HS = HC + softmax(HC · WS
F ) · WS

F . (3)

Furthermore, we map the matrix HI and HS to queries (QI , QS), keys
(KS ,KI) and values (V S , V I) by using different linear projections. Finally, we
treat QS as queries, KI as keys, and V I as values and obtain new slot represen-
tations incorporating intent information. The new slot representations:

ĤS = HS + softmax(
QSKI

√
d

)V I . (4)

Similarly, we obtain the new intent representations:

ĤI = HI + softmax(
QIKS

√
d

)V S . (5)

The interactive framework enables sharing the features of intents and slots.
It can avoid the phenomenon of an utterance with correct slots and wrong intent
or correct intent and wrong slots.
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Fig. 3. The illustration of multi-intent attention and top-k network with interactive
framework (MIATIF). Multi-intent attention and top-k network distinguish the fea-
tures of different intents and accurately predict the number of intents.

3.2 Multi-intent Attention and Top-k NetWork

In this paper, the core contribution is the multi-intent attention and the top-k
network. Firstly, multi-intent attention can build the relationship between the
utterance and intents, distinguishing features of different intents by the text
semantics of utterance. Then, to predict the number of intents, we introduce
an independent encoder to encode the different distribution features. We take
the representations of different intents and the top-k to predict the number of
intents in the utterance.

Multi-intent Attention. The text of intents usually has specific semantics
[22]. To make use of the semantic information of multiple intents, we need to
obtain the intent embedding matrix EI ∈ RNI×d in the same latent d-dim space
with the words.

After obtaining the hidden states HC from the context feature encoder and
the intent embedding EI , we can explicitly determine the semantic relation
between each pair of words and intents. Attention weights are computed by
the dot product between HC , EI , and output AI ∈ RL×NI :

AI = softmax(HC · EI); ÂI = AI · EI , (6)

where ÂI ∈ RL×d is the relationship between each pair of words and intents.
The representation ÂI is based on multiple intents and words in an utterance.
Thus, we call it multi-intent attention.
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Top-k Network. In this paper, one challenge we focus on is how to replace the
threshold method to predict the number of multiple intents k̂ accurately. We
propose the top-k network to accomplish multiple intent detection by encoding
the distribution of different intents in an utterance. Unlike the method from
[10], we do not bother to predict some conjunctions to determine whether it
is a multiple intent problem. Therefore our method has universal application
scenarios for predicting the number of intents rather than focusing on some
special tokens. In particular, to avoid integrating the context features, we use an
independent encoder to encode multi-intent distribution. The same with context
feature encoder, we can get HM from the output of the independent encoder.

Then, we use a unidirectional LSTM as the top-k decoder, which predicts the
number of multiple intents. The intent distribution vector HM will be fed to the
decoder to predict the number of multiple intents. At each step i, the decoder
state sk

i is calculated by previous decoder state sk
i−1, the previous number of

multiple intents ki−1 and the aligned encoder hidden state hM
i :

sk
i = LSTM(sk

i−1, ki−1, h
M
i ); k = �

L∑

i=1

(Wn
i · sk

i + bi) +
1
2
�, (7)

where �·� indicates round down.

3.3 Decoder

In multi-intent attention and top-k network with the interactive framework, we
have obtained intent representation ĤI , slot representation ĤS , the multi-intent
attention ÂI , and the number of multiple intents k. In this section, we build an
intent decoder and a slot decoder, respectively.

Intent Decoder. We concatenate the intent representation ĤI and the multi-
intent attention ÂI as the representation of the final inputs:

H̃I = ĤI ⊕ ÂI , (8)

where H̃I ∈ RT×2d and ⊕ is an operation for concatenating two vectors.
We use a unidirectional LSTM as the multiple intent detection decoder:

sI
i = LSTM(sI

i−1, y
I
i−1, h̃

I
i ). (9)

Then the decoder state sI
i is utilized for multiple intent detection:

yI = σ(LeakyReLU(W I
1 sI + bI

1)W
I
2 + bI

2), (10)

where W I
1 , W I

2 are trainable parameters of the intent decoder, yI = {yI
1 , . . . , y

I
nI

}
is the intent output of the utterance and σ represents the activation function.

We use the number of multiple intents k in each utterance during inference
instead of setting a threshold. The final result OI is generated by intent output
yI and the number of multiple intents k. We get the top-k largest intent distribu-
tions as the final output. For example, if the yI = {0.7, 0.1, 0.3, 0.9, 0.5, 0.1, 0.2}
and the k is 2, we predict intents OI = {1, 4}.
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Slot Decoder. For the slot filling decoder, we similarly use another unidirec-
tional LSTM as the slot filling decoder. To ensure the performance of the slot
filling task, we leverage multiple intent features to guide the slot prediction. At
the decoding step i, the decoder state sS

i can be formalized as:

sS
i = LSTM(sS

i−1, y
S
i−1, ĥ

S
i ⊕ h̃I

i ). (11)

Similarly, the decoder state sS
i is utilized for slot filling:

yS
i = softmax(WS

d sS
i );OS

i = argmax(yS
i ), (12)

where OS
i is the slot label of the i-th word in the utterance.

3.4 Joint Training

Following [4,16,17], we adapt a joint model to consider the three tasks and
update parameters by joint optimizing. The intent detection, slot filling, and
top-k loss functions are:

LI = −
nI∑

m=1

(ŷI
mlog(yI

m) + (1 − ŷI
m)log(1 − yI

m)), (13)

LS = −
nW∑

i=1

nW∑

j=1

ŷ
(j,S)
i logy

(j,S)
i , (14)

Lk = |k − k̂|, (15)

where ŷI , ŷS and k̂ are the gold intent label, gold slot label, and the gold number
of intents, respectively.

The final joint objective is formulated as:

L = LI + LS + Lk. (16)

4 Experiments

4.1 Datasets

Since other single intent datasets cannot evaluate multi-intent models, we eval-
uate the performance of our model on the only two publicly available multiple
intent datasets, MixATIS and MixSNIPS. Both datasets are used in our paper
following the same format and partition as in [17].

MixATIS and MixSNIPS datasets are collected from the ATIS [6] and SNIPS
[2] which are widely used in SLU task, respectively. [17] utilizes conjunctions to
connect sentences with different intents. The number of intents in the datasets is
no more than 3, and the ratio between 1–3 intents is 3 : 5 : 2. MixATIS has 18000
utterances for training, 1000 utterances for validation, and 10000 utterances
for testing. MixSNIPS has 45000 utterances for training, 2500 utterances for
validation, and 2500 utterances for testing. In the training set, MixATIS has 17
different intents, and MixSNIPS has 7.
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Table 1. Slot filling and intent detection results on two multi-intent datasets

Model MixATIS MixSNIPS

Slot(F1) Intent(F1) Intent(Acc) Overall Slot(F1) Intent(F1) Intent(Acc) Overall

Attention BiRNN [12] 86.6 – 71.6 38.7 89.4 – 94.1 62.2

Slot-Gated [4] 88.1 – 65.7 38.9 87.8 – 96 56.5

SF-ID [5] 87.7 – 63.7 36.2 89.6 – 96.3 59.3

Stack-propagation [16] 87.4 79 71.9 41 93.2 97.6 94.6 71.9

Joint multiple ID-SF [3] 87.5 80.6 73.1 38.1 91 98.2 95.7 66.6

AGIF [17] 88.1 81.2 75.8 44.5 94.5 98.6 96.5 76.4

MIATIF 88.0 78.6 76.0 47.6 94.6 98.6 97.1 77.7

4.2 Implementation Details

The encoder and decoder hidden units are 256 and 128 in all datasets, respec-
tively. We use Adam to optimize the parameters in our model and adapt the
suggested hyper-parameters for optimization. For all experiments, we pick the
model which the sentence-level accuracy works best on the dev set and then
evaluate it on the test set. The epochs are 200 and 100, and the dropout rates
are 0.3 and 0.4 for MixATIS and MixSNIPS, respectively. Part of the code uses
the MindSpore Lite tool [1].

4.3 Main Results

Following [4] and [17], we use Slot(F1), Intent(F1), Intent(Acc) and Overall to
evaluate the performance of slot filling, intent detection and sentence-level accu-
racy. We adopt the top-k network to predict the number of multiple intents,
and the results are 98.6% and 99.6% in the MixATIS and MixSNIPS datasets.
Table 1 shows the other experimental results of the proposed models on the Mix-
ATIS and MixSNIPS datasets. Among the baselines, [4,5,12,16] are the classical
model for single intent, [3,17] achieve state-of-the-art on multiple intent.

We have the following observations from the results: 1) Our model outper-
forms baseline and achieves promising performances. On the MixATIS dataset,
our model achieves 0.2% and 3.1% absolute gains on Intent(Acc) and Overall,
respectively. On the MixSNIPS dataset, our model achieves the best results on
all metrics, where it improves 0.6% on Intent(Acc) and 1.3% on Overall. The
improvement indicates that our model successfully solves the challenge of mul-
tiple intent detection and improves the performance of both tasks. 2) The high
accuracy of the number of intents reaching 98% has been shown that the top-k
network can be relatively reliable. So it ensures that our model will not filter
the part of correct intents and only select high probability intents. 3) Compared
to the improvement in Intent(Acc), the improvement in Overall is more signif-
icant on both datasets. It is because we select the model which has the best
performance of Overall on the dev sets. Also, we use the interactive framework
to make the sentence-level accuracy perform better by fully interacting with
the features of slots and intents in the utterances. 4) The improvements of our
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model on the Slot(F1) and Intent(F1) are not significant. The reason is that
AGIF extracts intent features and builds a graph structure to guide slot filling.
Meanwhile, they use the threshold to select high probability intents, resulting in
higher Intent(F1). However, the graph structure is time-consuming. We use the
multi-intent attention to obtain an acceptable slight decrease of Slot(F1) while
improving Intent(Acc) and Overall performance.

Table 2. Comparison of training time

Model MixATIS MixSNIPS

Epoch(s) All(h:m:s) Epoch(s) All(h:m:s)

AGIF 207.5 5:45:50 473.3 6:34:27

MIATIF 74.2 4:07:10 131.5 3:39:14

To show the efficiency of our model, we compare training time with AGIF.
Table 2 shows the results on the two datasets, where Epoch(s) indicates the aver-
age seconds consumed in one epoch and All(h:m:s) represents the time required
to complete the full training. As every epoch, our model saves 64% and 72% time
consumption, respectively. Although our epoch is twice of AGIF, our model still
saves 29%–44% of the total training time consumption.

4.4 Ablation Study

In this section, we set up the following ablation experiments to study the impact
of our model. The result is shown in Table 3.

Effectiveness of Interactive Framework. For the first time, we apply the
interactive framework from single intent detection to multiple intent detection.
To verify the validity of the framework, we remove the interactive framework
from the model and replace HI and HS with HC . It means that we only get the
context feature from the encoder and directly input it into the decoder without
incorporating the features of intents and slots. We name it as without interac-
tion. From the result, Slot(F1) performances both drop 1.0%, and Intent(Acc)
performance drops 0.6% and 0.8%. It results in overall performances drop of
4.4% and 2.5%. The decline Overall is significant without the interactive frame-
work, indicating that the interactive framework plays a key role in sentence-level
accuracy. Slot(F1) drops significantly due to the lack of intent features. We intro-
duce multi-intent attention, so Intent(Acc) decreases insignificantly. It verifies
that incorporating the intent and slot features is useful for improving the per-
formance of both two tasks.

Effectiveness of Multi-intent Attention. We remove the multi-intent atten-
tion and utilize the output HI of the interactive framework to the intent decoder.
We name it as without multi-intent attention. From the result, Overall perfor-
mances both drop 2.9% on the two datasets. We believe the main reason is
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Table 3. Ablation experiments on the MixATIS and MixSNIPS datasets

Model MixATIS MixSNIPS

Slot(F1) Intent(F1) Intent(Acc) Overall Slot(F1) Intent(F1) Intent(Acc) Overall

W/o interactive 87.0 78.1 75.4 43.2 93.6 98.1 96.3 75.2

W/o multi-intent attention 87.1 78.5 74.6 44.7 94.0 98.1 96.2 74.8

W/o top-k network 87.8 80.3 74.7 44.2 94.5 98.7 96.7 75.9

MIATIF 88.0 78.6 76.0 47.6 94.6 98.6 97.1 77.7

the decline in Intent(Acc). Since the lack of multi-intent attention, the model
cannot distinguish features between different intents. Also, the interactive frame-
work will pass the error to the slot filling, which leads to the decline of Slot(F1)
slightly.

Effectiveness of Top-k Network. Instead of adopting the top-k network, we
utilize the threshold to predict the multiple intents. We define it as without
top-k network. This structure is similar with [3] and [17], which perform the
multiple intent detection as the multi-label classification. From the result, we
observe the overall performances drop 2.4% and 1.8% on the two datasets. We
attribute it to the fact that the top-k network can avoid missing useful fea-
tures of intents. Meanwhile, we observe that the Intent(F1) improves on both
datasets due to threshold replacement. Since setting threshold only selects high
probability intents, it leads to higher performance on Intent(F1).

5 Related Work

In the current works, intent detection(ID) is usually considered a classification
task and slot filling(SF) as a sequence labeling task. So traditional machine
learning methods are often used on these two tasks [9,19]. In recent years, various
neural architectures have achieved the state-of-the-art [5,7,12,13,15,21]. Due to
the strong correlation between the two tasks, the joint model is the currently
effective method. The initial works use loss function via backpropagation to
verify the parameter of the sharing encode module [12,24]. The later models
utilize the features of intent detection to enhance the features of slot filling [4,
11,16], and establish the connection between the two tasks using gate mechanism
or graph structure [5,14,18].

Although the above joint models have handled both tasks simultaneously, the
current single-intent scenario cannot represent the multi-intent scenario. [3] pro-
poses the task of multiple intent detection and introduces the slot-gated mecha-
nism based on token-level to capture the features between intents and slots. To
push forward the research of multi-intent SLU, [17] releases two large-scale multi-
intent datasets MixATIS and MixSNIPS, based on ATIS and SNIPS. Then [17]
introduces an intent-slot graph construction to model the relation between multi-
intent and slot filling tasks. Previous works treat multiple intent detection as a
multi-label classification task and achieve the promising performance [3,8,17].
Therefore, the above works ignore the differences between different intents. And
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the threshold only selects intents with high probability. This paper introduces
the multi-intent attention and the top-k network to accomplish multiple intent
detection and slot filling tasks jointly.

6 Conclusion and Future Work

In this paper, we propose Multi-Intent Attention and Top-k Network with Inter-
active Framework (MIATIF) for joint multiple intent detection and slot filling.
Our model first introduces an interactive framework based on the vanilla trans-
former in multiple intent detection. Then, to better exploit the features of dif-
ferent intents, we propose multi-intent attention. Furthermore, we utilize the
independent encoder to alleviate the mixed context features on multiple intents,
and the top-k predicts the number of intents. Our model improves performance
for overall accuracy on the MixATIS and MixSNIPS of 3.1% and 1.3%, respec-
tively. Simultaneously, our model saves 64%–72% of training time compared to
the current state-of-the-art model while achieving better results. In the future,
we also want to introduce pre-trained models to improve the performance using
MindSpore.

Acknowledgment. We thank anonymous reviewers for their precious comments. This
research is supported by MindSpore, the National Key R&D Program of China under
Grant No. 2018YFC1604003, General Program of Natural Science Foundation of China
(NSFC) under Grant No. 61772382 and No. 62072346, Key R&D Project of Hubei
Province under Grant No. 2020BAA021 and Science and Technology Plan of Wuhan
under Grant No. 2020010601012168.

References

1. Mindspore. https://www.mindspore.cn/ (2020)
2. Coucke, A., et al.: Snips voice platform: an embedded spoken language understand-

ing system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190
(2018)

3. Gangadharaiah, R., Narayanaswamy, B.: Joint multiple intent detection and slot
labeling for goal-oriented dialog. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL), pp. 564–569 (2019)

4. Goo, C.W., et al.: Slot-gated modeling for joint slot filling and intent prediction. In:
Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (NAACL),
pp. 753–757 (2018)

5. Haihong, E., Niu, P., Chen, Z., Song, M.: A novel bi-directional interrelated model
for joint intent detection and slot filling. In: Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics (ACL), pp. 5467–5471 (2019)

6. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language sys-
tems pilot corpus. In: Speech and Natural Language: Proceedings of a Workshop
Held at Hidden Valley, Pennsylvania (1990)

https://www.mindspore.cn/
http://arxiv.org/abs/1805.10190


478 X. Jia et al.

7. Hou, Y., et al.: Few-shot slot tagging with collapsed dependency transfer and label-
enhanced task-adaptive projection network. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 1381–1393
(2020)

8. Hou, Y., et al.: Few-shot learning for multi-label intent detection. In: The Thirty-
Fifth AAAI Conference on Artificial Intelligence (AAAI) (2021)

9. Huang, J., et al.: A probabilistic method for emerging topic tracking in microblog
stream. World Wide Web (WWW) 20(2), 325–350 (2017)

10. Kim, B., Ryu, S., Lee, G.G.: Two-stage multi-intent detection for spoken language
understanding. Multimed. Tools Appl. 76(9), 11377–11390 (2017)

11. Li, C., Li, L., Qi, J.: A self-attentive model with gate mechanism for spoken lan-
guage understanding. In: Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 3824–3833 (2018)

12. Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent
detection and slot filling. In: Proceedings of the 17th Annual Conference of the
International Speech Communication Association (INTERSPEECH), pp. 685–689
(2016)

13. Louvan, S., Magnini, B.: Recent neural methods on slot filling and intent classi-
fication for task-oriented dialogue systems: a survey. In: Proceedings of the 28th
International Conference on Computational Linguistics (COLING), pp. 480–496
(2020)

14. Peng, H., Shen, M., Jiang, L., Dai, Q., Tan, J.: An interactive two-pass decoding
network for joint intent detection and slot filling. In: Zhu, X., Zhang, M., Hong,
Yu., He, R. (eds.) NLPCC 2020. LNCS (LNAI), vol. 12431, pp. 69–81. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60457-8 6

15. Peng, M., et al.: Personalized app recommendation based on app permissions.
World Wide Web 21(1), 89–104 (2018)

16. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework with
token-level intent detection for spoken language understanding. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2078–2087 (2019)

17. Qin, L., Xu, X., Che, W., Liu, T.: Towards fine-grained transfer: an adaptive
graph-interactive framework for joint multiple intent detection and slot filling. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: Findings (EMNLP), pp. 1807–1816 (2020)

18. Qin, L., et al.: A co-interactive transformer for joint slot filling and intent detection.
In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8193–8197. IEEE (2021)

19. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken
language understanding. In: Eighth Annual Conference of the International Speech
Communication Association (INTERSPEECH) (2007)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008 (2017)

21. Wu, J., et al.: Joint learning of word and label embeddings for sequence labelling
in spoken language understanding. In: 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 800–806. IEEE (2019)

22. Xiao, L., Huang, X., Chen, B., Jing, L.: Label-specific document representation for
multi-label text classification. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 466–475 (2019)

https://doi.org/10.1007/978-3-030-60457-8_6


Multi-intent Attention and Top-k Network with Interactive Framework 479

23. Zhang, C., et al.: Joint slot filling and intent detection via capsule neural networks.
In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 5259–5267 (2019)

24. Zhang, X., Wang, H.: A joint model of intent determination and slot filling for
spoken language understanding. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), vol. 16, pp. 2993–2999 (2016)



Enhancing Long-Distance Dialogue
History Modeling for Better Dialogue
Ellipsis and Coreference Resolution

Zixin Ni1,2 and Fang Kong1,2(B)

1 Laboratory for Natural Language Processing, Soochow University, Suzhou, China
20194227053@stu.suda.edu.cn, kongfang@suda.edu.cn

2 School of Computer Science and Technology, Soochow University, Suzhou, China

Abstract. Previous work on dialogue-specific ellipsis and coreference
resolution usually concatenates all dialogue history utterances into a sin-
gle sequence. It may mislead the model to attend to inappropriate parts
and to copy from wrong utterances when the dialogue history is long.
In this paper, we aim to model dialogue history from multiple granu-
larities and take a deep look into the semantic connection between the
dialogue history and the omitted or coreferred expressions. To achieve
this, we propose a speaker highlight dialogue history encoder and a top-
down hierarchical copy mechanism to generate the complete utterances.
We conduct dozens of experiments on the CamRest676 dataset, and the
experimental results show that our methods are expert in long-distance
dialogue history modeling and can significantly improve the performance
of ellipsis and coreference resolution in the dialogue task.

Keywords: Ellipsis recovery · Coreference resolution · Dialogue history

1 Introduction

Dialogue is known to be an activity generated by different speakers, and the
expression of each speaker is usually based on the understanding of dialogue
histories. When using dialogue systems, people tend to avoid repetitive expres-
sions, which results in the notorious omission and coreference problems. Table 1
presents two typical examples on ellipsis and coreference phenomena in multi-
turn dialogue. For example, the expression ‘Yu Garden’ is omitted in Q3 to avoid
repetition (Ellipsis), and the pronoun ‘they ’ in Q2 refers to ‘The Curry Prince’ in
A1 (Coreference). Dialogue ellipsis and coreference resolution as a preprocessing
sub-task of the multi-turn dialogue task, it can well resolve coreference and ellip-
sis phenomena in dialogue history to help machine speakers better understand
the user’s intent and thus generate more reasonable responses.

In most cases, the omitted or coreferred expressions are nearly from either
the dialogue history utterances or the incomplete utterances. Observing this,
previous researches heavily employ pointer nets (Su et al. [12], Zhang et al.
[16]) or sequence-to-sequence models with copy mechanisms (Quan et al. [9])
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Table 1. Examples of dialogue ellipsis and coreference resolution

Turn Speaker Dialogue

Q1 usr I’m looking for a place to eat in the east side of the city

A1 sys The Curry Prince is on the east side of town

Q2 usr Do they serve chinese food?

A2 sys No they do not serve Chinese food, however he Yu Garden does

and is in the east side

Q3 usr What is the address?

A3 sys Yu Garden’s address is 529 Newmarket Road Fen Ditton. Is there

anything else I can help you with today?

Q4 usr Yes, what is the price range?

A4 sys Yu Garden is in the expensive price range

User utterances after resolution

Q2 Does The Curry Prince(they) serve chinese food?

Q3 What is the address of the Yu Garden?

Q4 Yes, what is the price range of the Yu Garden?

for dialogue ellipsis and coreference resolution. To our knowledge, almost all
previous work treats dialogue history utterances indiscriminately, that is, they
simply concatenate all the user and system utterances in previous dialogue turns
into a single sequence as the history information. However, it is usually difficult
for neural models to capture the omitted and coreferred expressions when the
dialogue history is very long. Moreover, since the content to be recovered usually
comes from the history utterances that are relevant to the current utterance, it
is not targeted to take all the history information into consideration.

To tackle these problems, we introduce an encoder-decoder architecture
for multi-turn dialogue as our baseline system. Based on it, we propose two
approaches to better capture the semantic information from dialogue history,
especially in the case of long-distance dialogue history. First, simulating the pro-
cess of dialogue interaction, we introduce a speaker highlight dialogue history
encoder for better global representation of dialogue history and to permit the
model to view the dialogue history of each speaker independently. Second, we
propose a top-down hierarchical copy mechanism to select and copy relevant
expressions from relevant history utterances at different levels. Experimental
results show that our proposed methods have good adaptability to the long-
distance dialogue history, and can achieve competitive performance in dialogue
ellipsis and coreference resolution when compared with the baseline systems.

2 Model

Following Quan et al. [9], we formulate dialogue ellipsis and coreference resolution
as a sequence-to-sequence generative problem. Given the n-th user utterance Un =
(u1, u2, ..., us) and its dialogue history H = {(U1, R1), (U2, R2), ..., (Un−1, Rn−1)}
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corresponding to all the previous dialogue turns, where Ri represents the system
response of the i-th turn, the goal is to recover the ellipsis or coreference for the
current utterance Un. More formally, the dialogue ellipsis and coreference resolu-
tion task can be formulated as ((H,Un) → Uc) where each token of Uc is generated
from current user utterance or its dialogue history.

Fig. 1. The encoder-decoder architecture of the proposed dialogue ellipsis and corefer-
ence resolution model.

Figure 1 illustrates the dialogue ellipsis and coreference resolution model
which mainly consists of four components: (i) user utterance encoder; (ii) speaker
highlight dialogue history encoder (SH-DHE); (iii) decoder; (iv) top-down
hierarchical copy mechanism (TDH-CM).

2.1 User Utterance Encoder

During the encoding process, the input user utterance of length s is first
transformed into a sequence of D-dimensional word embeddings, obtaining
Eu = (eu1 , eu2 , ..., eus ). Then the word embedding sequence is fed to a bi-directional
GRU network to capture the context features of the sequence. Concretely, each
token eui of the user utterance is obtained through the concatenation of both
forward and backward hidden states, i.e., hu

i = [
−→
hu
i ,

←−
hu
i ]. And the representation

of the user utterance is obtained through the concatenation of the last hidden
states in the two directions, as shown in Eq. (3).
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ou, hu = BiGRU(Eu, θ) (1)
ou = [hu

1 , hu
2 , ..., hu

s ] (2)

hu = [
−→
hu
s ,

←−
hu
1 ] (3)

2.2 Speaker Highlight Dialogue History Encoder

In the literature, previous studies usually connect all the user and system utter-
ances in series as the input of the dialogue history encoder. However, utterances
in dialogue history usually contain some useless expressions and even noises, and
encoding the entire connected utterances with RNNs is really a challenge, espe-
cially when the dialogue history is long. To tackle the above-mentioned problem,
we propose to encode each utterance separately in this work.

Local Representation. Local representation means encoding each utterance in
dialogue history. Given an utterance in the dialogue history H (with M = 2(n−1)
utterances), we get representation oci through a GRU encoder that shares the
same architecture as the user utterance encoder. And the encoder outputs and
local representations of the utterances in the dialogue history H can be written
as {oc1 , oc2 , ..., ocM } and {hc1 , hc2 , ..., hcM } respectively.

Global Representation. So as to better encode the dialogue history to get its
global representation gh, we propose a speaker highlight mechanism to simulate
the interactive process of human-to-machine dialogue enlightened by Shi et al.
[11]. In this work, our proposed model also makes a sequential scan of each
utterance in H. For instance, the dialogue history path of Q4 is Q1 → A1 →
Q2 → A2 → Q3 → A3, as shown in Table 1. Among them, Q1, Q2 and Q3 are
from the same speaker usr and A1, A2 and A3 are from the same speaker sys.
We feed the local representations from the same speaker to the same encoder, so
as to highlight the previous dialogue history from the same speaker and help our
model to better understand the development of the dialogue history involving
this speaker.

Since there are only two speakers in human-to-machine dialogue, we use
two GRU cells to encode them separately. Let hci

ai
denote the local utterance

representation hci from the speaker ai. The entire process cyclically inputs the
local utterance representation hci

ai
into its corresponding encoder according to

the dialogue history path, and the global representation is built incrementally.
We calculate the global representation of dialogue history as following:

gh =

⎧
⎪⎨

⎪⎩

0 i = 0
GRUusr(hci

ai
, gh) ai = usr, i ∈ {1, ...,M}

GRUsys(hci
ai

, gh) ai = sys, i ∈ {1, ...,M}
(4)

where usr and sys denote the input of GRU cell comes from user utterance and
system response, respectively.
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After that, we concatenate the representation hu of the user utterance and
global representation of dialogue history gh as the initial state, Sinit, of the
decoder.

Sinit = hu ⊕ gh (5)

where ⊕ denotes the vector concatenation operation.

2.3 Decoder

In the decoder, we use a single-layer unidirectional GRU to generate probability
distribution over the vocabulary V . Following Bahdanau et al. [1], we use the
previous hidden state st−1 and the representation hu

i of token ui from user
utterance encoder to calculate the attention weights at the time t, noted by at.
The attention weights represent the contribution of each token to the omission
recovery of the current position.

attnt
i = vT tanh(w1h

u
i + w2st−1 + b1) (6)

at = softmax(attnt
i−1) (7)

where v, w1, w2, and b1 are learnable parameters. Then the attention distribution
at is used to calculate a weighted sum of the representation hu

i , which is known
as context vector h∗

t .
h∗
t =

∑

i

athu
i (8)

Then we feed the context vector h∗
t , the previous decoder state st−1, and

the word embedding et−1 of the previously generated word into the single-layer
unidirectional GRU to update the decoder state st at timestep t. The decoder
output ot is then concatenated with the context vector h∗

t to produce probability
distribution over the vocabulary V . The generate-mode distribution to predict
token yt is calculated as:

ot, st = GRU([et−1;h∗
t ], st−1) (9)

Pvocab(yt|y1:t−1) = w3h
∗
t + w4ot + b2 (10)

where w3, w4, and b2 are learnable model parameters.

2.4 Top-Down Hierarchical Copy Mechanism

For the proposed TDH-CM model, it should be noted that, we use a coarse-
grain to fine-grain approach to calculate the probabilities for tokens copied from
the dialogue history, which are parts of the omitted or coreferred expressions.
As described before, the SH-DHE architecture yields two kinds of memories: (i)
Sentence-level memories, i.e., local utterance representations {hc1 , hc2 , ..., hcM }
which concatenates the final hidden states of both forward and backward GRUs
for each utterance. (ii) Word-level memories, i.e., utterance encoder outputs
{oc1 , oc2 , ..., ocM } where each oci with i ∈ {1, ...,M} is a set of concatenated
hidden states at step j ∈ {1, ..., k}, oci,j = [

−→
hi,j ,

←−
hi,j ].
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Firstly, we compute the relevance between the decoder output ot and
sentence-level utterance representation hci , so that figure out which utterances
mention the relevant omitted or coreferred expressions. After feeding it to a
softmax layer, we obtain a sentence-level attention distribution as

t,i as:

rsi = oTt hci (11)
as
t,i = softmax(rsi ) (12)

The sentence-level attention distribution as
t,i is used to calculate a weighted sum

of local utterance representations hci , known as sentence-level information hs
t .

Then we update the representation of the decoder output by combining ot with
sentence-level information hs

t through a linear transformation as:

hs
t =

M∑

i=1

as
t,i · hci (13)

ost = w5[ot;hs
t ] + b3 (14)

where w5 and b3 are learnable parameters, and the update decoder output ost
will be used in subsequent word-level inference.

Secondly, we aim to capture the token sequence from relevant utterances
which are parts of the omitted or coreferred expressions. Thus, we map the
updated decoder output ost into the space of the word-level memories oci,j by
measuring the similarity as following:

Pcopy(yt|y1:t−1) = w6(ost � oci,j ) + b4 (15)

where w6 and b4 are learnable parameters. This similarity gives a word-level
attention which is treated as the probabilities for tokens copied from the dialogue
history.

Finally, we aim to enhance our model to learn whether to copy tokens from
Un or history utterances at different steps. To achieve this, we use a gate mech-
anism to adaptively fuse the generation and copy mode to the final probability
distribution. The final probability distribution is calculated as following:

λ = σ(w7[h∗
t ; et−1; st] + b5) (16)

P (yt|y1:t−1) = λPvocab(yt|y1:t−1) + (1 − λ)Pcopy(yt|y1:t−1) (17)

where w7 and b5 are learnable parameters, and σ denotes the sigmoid function.

3 Experiment

3.1 Data and Metrics

The CamRest676 corpus (Quan et al. [9]) is a publicly available data that anno-
tates the resolution of ellipsis and coreference in multi-turn dialogue. The corpus
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contains 676 dialogues with 2744 user utterances. Among them, 1174 ellipsis ver-
sions and 1209 coreference versions are created from the user utterance. Accord-
ing to our statistics, each utterance contains around 12.51 word units on average,
and each dialogue is composed of around 4 dialogue turns on average. Following
previous studies, we use 80% of the data as a training set and the remaining
20% as a validation set.

We adopt the automatic metrics BLEU, EM, one word precision, recall, and
F1 score as the main evaluation methods. Among them, BLEU evaluates the
similarity between the incomplete utterance and the golden ones at the n-gram
level. The exact match rate (EM) is the strictest evaluation metric that measures
whether the generated utterances match the golden ones or not. For the EM
score, we report on the complete and incomplete utterances separately to see
the difference, denoted as EM1 and EM2.

3.2 Experimental Settings

We optimized the following parameters during training: the learning rate was
0.001, the decay parameter was 0.5, the size of hidden states was 128. We
employed the 50-dimension word embeddings provided by Glove and did not
fine-tune the pre-trained vectors during training. The vocabulary size V was set
to 800 and the batch size was 8. In order to prevent our model from over-fitting,
we adopted dropout after embedding, Bi-GRU and decoder, respectively, and
the dropout rate was 0.5. We employed Adam as the optimizer for model learn-
ing with the early stopping strategy used to avoid the problem of over-fitting,
and the patience value was 12. It is worth mentioning that we used the standard
cross-entropy loss as the loss function to train the entire model.

3.3 Experimental Results

In this paper, we compare our proposed system with the following competitive
models on the CamRest676 corpus:

– GECOR: an end-to-end generative model proposed by Quan et al. [9] that
uses the popular copy mechanism to recover omission. They use a sequence-
to-sequence model as their baseline which simply connects all dialogue history
utterances in series as the input of history encoder, known as GECOR-basic.
Notably, we also reproduce their results over different system settings where
GECOR1 means the model with the copy mechanism and GECOR2 means
the model with the gated copy mechanism.

– Baseline: a sequence-to-sequence model which first encodes each utterance of
dialogue history separately, and then concatenates each local representation
in dialogue history and user utterance representation as the initial state of
the decoder.

It is noted that Liu et al. [6] achieves state-of-the-art on CamRest676, which
uses a series of edit operations (i.e. substitute and insert) on the incomplete
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utterance, but our model is based on the generative framework so we will not
compare it here. Following Quan et al. [9], we train our model on three types of
datasets: the ellipsis dataset which only annotates the ellipsis version utterances,
the coreference dataset which only annotates the coreference version utterances,
and the mixed dataset which randomly selects a version for each user utterance
from the ellipsis and coreference version. The quantitative evaluation results of
the above models are shown in Tables 2, 3, and 4.

First, compared with GECOR-basic, our introduced Baseline system can
improve the performance of both dialogue ellipsis and coreference resolution on
all the seven metrics. This indicates that our approach of encoding the dialogue
history utterances separately can effectively capture the long-distance depen-
dency information hidden within the global dialogue history.

Table 2. Performance comparison on the ellipsis dataset. † denotes the duplicated
systems.

EM EM1 EM2 BLEU F1 Prec. Rec.

GECOR-basic † 51.72 71.33 28.15 73.81 91.45 92.71 90.23

GECOR1 † 67.32 92.70 37.82 83.21 96.37 98.46 94.36

GECOR2 † 65.20 90.53 34.87 83.11 96.40 98.31 94.57

Baseline 56.87 78.28 30.34 75.18 91.70 92.90 90.53

Final 67.86 92.83 36.86 83.97 95.94 98.24 93.75

w/o SH-DHE 66.79 91.81 35.86 82.63 95.61 98.18 93.17

w/o TDH-CM 57.03 79.11 29.49 76.57 91.87 92.66 91.09

Table 3. Performance comparison on the coreference dataset.

EM EM1 EM2 BLEU F1 Prec. Rec.

GECOR-basic † 52.72 71.16 32.79 75.98 91.45 91.97 90.93

GECOR1 † 71.15 90.98 47.80 85.41 96.32 97.95 94.74

GECOR2 † 70.31 92.45 44.56 85.30 96.80 98.28 95.36

Baseline 60.08 80.66 36.29 79.90 92.84 93.28 92.41

Final 73.58 94.53 49.37 87.66 96.54 97.90 95.22

w/o SH-DHE 71.65 93.12 46.86 87.03 96.24 97.83 94.71

w/o TDH-CM 60.67 81.75 36.29 80.96 93.40 94.06 92.74

Second, since we also use a gate mechanism in our system as GECOR2 did,
we mainly compare it with GECOR2. And the results (lines 4 and 6) show that
our approach can greatly improve the performance on EM and BLEU by 2.66
points and 0.86 points respectively on the ellipsis dataset, 3.27 points and 2.36
points respectively on the coreference dataset, and 4.82 points and 1.51 points
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respectively on the mixed dataset. The increments over GECOR2 suggest the
strong capabilities of our model in establishing a dependency relationship within
dialogue history. Moreover, we also note that the increments on the coreference
resolution is higher than those on the ellipsis resolution which indicate that the
model is better for learn due to more explicit pronoun guidance for the referent
case. In addition, the EM2 metric focuses on incomplete user utterances which
mainly evaluates whether the model fills the omitted content is accurate or
not. And the improvements indicate that our model can effectively recover the
omitted and coreferred information of incomplete user utterances.

Nevertheless, our model only achieves performance similar to GECOR2 on
some metrics (e.g., F1, Prec., and Rec.). And one possible reason could be that:
our proposed method is tailored for long-distance dialogue history modeling,
while these short dialogue history scenarios will weaken the ability of our model
in distinguishing between positive and negative examples. To figure out this, we
will provide a deep analysis on this problem in Sect. 3.4.

Table 4. Performance comparison on the mix dataset.

EM EM1 EM2 BLEU F1 Prec. Rec.

GECOR-basic † 50.29 71.38 27.78 73.78 90.60 91.48 89.74

GECOR1 † 65.26 91.82 38.90 83.09 95.59 97.73 93.54

GECOR2 † 64.09 89.43 37.30 82.83 96.00 97.95 94.12

Baseline 55.85 77.54 31.43 76.87 91.88 93.11 90.68

Final 68.91 94.57 40.00 84.34 95.81 97.67 94.02

w/o SH-DHE 65.64 92.39 35.51 82.76 95.50 97.61 93.48

w/o TDH-CM 57.58 80.43 31.84 78.28 92.36 93.47 91.28

Table 5. Results of the split data in short and long dialogue history.

Data Model EM EM1 EM2 BLEU F1 Prec. Rec.

Short GECOR2 † 59.79 88.36 32.66 82.61 95.72 97.98 93.56

Ours 62.18 90.43 35.35 81.86 95.59 97.99 93.31

Long GECOR2 † 77.27 90.82 38.24 82.85 95.24 98.78 91.95

Ours 81.95 96.00 39.39 85.86 96.13 97.94 94.39

3.4 Ablation Study

Effects of the SH-DHE and TDH-CM Methods. Although the baseline
system has a good performance in capturing the global information of dialogue
history when compared with GECOR-basic, it still suffers from the long distance
of the dialogue history. To tackle this issue, we propose to model the dialogue
history at multiple levels during encoding and decoding, and the resulting system
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can extract much richer semantic information from the dialogue history. To show
the effectiveness of our approaches, we conduct an ablation study on different
ways of combining the three kinds of datasets. As shown in columns 5, 6, 7, and 8
of Tables 2, 3, and 4, the Baseline system enhanced with the SH-DHE and TDH-
CM modules can significantly improve the performance on all the seven metrics.
With this in mind, we intuitively believe that the SH-DHE module integrates
the potential information of dialogue interaction into the global representation
of dialogue history, and also enhances the model’s ability to distinguish the
information of different speakers. Moreover, since the TDH-CM module could
excavate the multi-granularity information in the dialogue history, the semantic
expressions related to the omitted and coreferred information can be accurately
highlighted.

Additionally, comparing the Baseline with TDH-CM we find that combining
the SH-DHE and TDH-CM modules can increase the EM and BLEU scores by
1.07 points and 1.34 points respectively on the ellipsis dataset, 1.93 points and
0.63 points respectively on the coreference dataset, and 3.27 points and 1.58
points respectively on the mixed dataset. The results indicate that our proposed
approach does enhance the system’s capability of modeling dialogue history and
capturing the missing semantic information accurately.

Performance on Long Dialogue History Understanding. In this paper,
we explicitly argue that our approaches enable the model to learn better rep-
resentation of the long dialogue history and capture the omitted or coreferred
information from the history expressions. To prove this, we present the perfor-
mance of our model on short and long dialogs for comparison. According to
our statistics, each utterance contains around 12.51 tokens and each dialogue in
CamRest676 consists of about 4 dialog turns. On this basis, we divide the ellipsis
dataset according to the number of turns in the dialogue history, where the texts
with less than 4 dialogue turns are regarded as short dialogs, and vice versa as
long dialogs. The results in Table 5 show that our proposed approach can bring
significant performance improvements to the GECOR2 system when the dia-
logue history is longer than 4 dialog turns, which suggests the great effectiveness

Fig. 2. Heatmap visualization of TDH-CM for examples in Table 1. The higher atten-
tion weights are colored in red, and others are colored in blue. The right pattern shows
the distribution of sentence-level attention and the left pattern shows the distribution
of word-level attention. (Color figure online)
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of our approach in long-distance history modeling. By contrast, our performance
improvement is limited when the dialog is short, which explains why our system
obtains similar results as GECOR2 on some metrics.

4 Case Study

To demonstrate the interpretability of our model, we give the heatmap visual-
ization of the TDH-CM for the examples in Table 1, as shown in Fig. 2. In the
example, ‘of the Yu Garden’ is the omitted expression in the incomplete utter-
ance Q4. Referring to the sentence-level attention on the right, the utterance
that contains omitted and coreferred information receives more attention, i.e.,
A3, A2, and Q2. We can also see that the TDH-CM method ignores Q2 and
pays more attention to A3. In other words, the TDH-CM method can detect
both short and long distance dependencies, and the utterances in dialogue his-
tory that are close to the incomplete utterance obtain more attention.

Similarly, the word-level attention models the interaction between the tokens
in dialogue history and the omitted and coreferred expressions in the incom-
plete utterance. In this example, the model correctly distributes higher attention
weights to the omitted tokens, such as ‘Yu Garden’ in Q2 with the score of 5.28
and ‘Yu Garden’ in A3 with the score of 5.49. Hence, we have reason to believe
that the TDH-CM method we use is stable and useful for dialogue ellipsis and
coreference resolution in multi-turn dialogue.

5 Related Work

Previous work on English ellipsis recovery focus on verb phrase, and scholars
established a theoretical system by analyzing linguistic rules. Nielsen et al. [8]
first proposed an end-to-end computable system based on machine learning tech-
niques. Drawing lessons from Nielsen et al. [8], Liu et at. [7] introduced a uni-
fied framework that combines target detection, antecedent head resolution, and
antecedent boundary detection. Our work is closely related to the coreference
resolution task, which aims at clustering mentions that refer to the same physical
entities. Lee et al. [5] presented a fully differentiable approximation to high-order
inference based on end-to-end coreference resolution model proposed by Lee et al.
[4]. Joshi et al. [2] used unsupervised contextualized representations to enhance
the coreference resolution. Wu et al. [13] first formulated coreference resolution
as a machine reading task.

Until recently, there exists researches on dialogue ellipsis and coreference
resolution. Kumar et al. [3] used the framework of sequence-to-sequence learning
to generate complete questions from a non-sentential question, given previous
question and answer. Su et al. [12] introduced a Transformer-based utterance
rewriting architecture using the pointer network to recover all coreferred and
omitted information. Quan et al. [9] first attempted to provide both solution
and dataset for ellipsis and coreference resolution in multi-turn dialogue.
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Nevertheless, one drawback is that almost all previous works are limited
to short texts or one-shot dialogues and treat all dialogue history utterances
indiscriminately, which is not proper for the dialogue ellipsis and coreference
resolution task. Since the omitted and coreferred tokens usually related to a
few previous dialogue histories. In recent years, several work provided studies
on context to improve the performance of dialogue systems and response selec-
tion tasks (Xing et al. [14], Zhang et al. [15], Shan et al. [10]). The motivation
of this paper is how to effectively extract and aggregate the relevant expres-
sions in dialogue history. Different from previous work, our model can enhance
long-distance dialogue history modeling and focus on the relevant expressions at
multiple levels.

6 Conclusion

In this paper, we proposed a baseline model to separately encode the utter-
ances in the long-distance history of multi-turn dialogue. Based on it, we used
a speaker highlight dialogue history encoder and a top-down hierarchical copy
mechanism to well capture the omitted and coreferred information in dialogue
history at multiple levels. Experimental results demonstrated that our approach
can significantly improve both dialogue ellipsis and coreference resolution qual-
ity in long-distance multi-turn dialogue. Compared with previously proposed
methods, our resulting model is much more competitive. And we will extend
our proposed model on other domains such as human-to-human conversations
or Chinese multi-turn dialogue corpus in future work.
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Abstract. Learning and utilizing personas in open-domain dialogue
have become a hotspot in recent years. The existing methods that only
use predefined explicit personas enhance the personality to some extent,
however, they cannot easily avoid persona inconsistency and weak diver-
sity responses. To address these problems, this paper proposes an effec-
tive model called Exploiting Explicit and Inferred Implicit Personas for
Multi-turn Dialogue Generation (EIPD). Specifically, 1) an explicit per-
sona extractor is designed to improve persona consistency; 2) Taking
advantage of the von Mises-Fisher (vMF) distribution in modeling direc-
tional data (e.g., the different persona state), we introduce the implicit
persona inference to increase diversity; 3) during the generation, the per-
sona response generator fuses the explicit and implicit personas in the
response. The experimental results on the ConvAI2 persona-chat dataset
demonstrate that our model performs better than commonly used base-
lines. Further analysis of the ablation experiments shows that EIPD can
generate more persona-consistent and diverse responses.

Keywords: Persona-based dialogue generation · Implicit personas ·
vMF

1 Introduction

With the development of open-domain dialogue system, great progress has been
achieved in many fields, such as intelligent assistants, customer service and chat-
bots [3]. The end-to-end network [14] has been proven effective for generative
dialogue systems. However, it is still difficult to build more engaging and realistic
conversations owing to the lack of interlocutor personas.

Several efforts have been made to explore the abilities of personas for facilitat-
ing response generation [7]. [20] introduced a novel dataset, PERSONA-CHAT,
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 493–504, 2021.
https://doi.org/10.1007/978-3-030-88480-2_39
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Fig. 1. The two dialogues from ConvAI2 persona-chat, where the same colors of sen-
tences imply that the sentences are related to each other in the conversation.

where each dialogue is assigned a character description using 5 sentences as a
persona profile. We define these persona profiles as explicit personas. Then,
[12,13] generated responses with this kind of personas. However, in real con-
versations, sometimes the repliers answer with explicit personas directly, and
sometimes they answer with some useful information that can be inferred from
the explicit personas and context, which we define as implicit personas. Specif-
ically, as shown in Fig. 1, the two dialogues are associated with the same explicit
personas. The response in Dialogue1 is directly associated with explicit personas,
‘My skin is olive colored. My eyes are green. I wear glasses that are cateye.’. It
describes the image of the speaker which are consistent with the context. There-
fore, how to capture context-relevant personas is essential in persona-based dia-
logue. However, in Dialogue2, the response not only mentions the persona ‘I
want to be a librarian.’ but also explain the reason why the speaker wants to
be a librarian. This kind of information does not appear in the context and
explicit personas, but it can be inferred from persona-based context. This indi-
cates it is possible to use implicit personas in some responses. Although some
persona-based dialogue methods have been proposed, the following challenges
still exist: 1) In multi-turn dialogue, as shown in Fig. 1, the response is related
to some contextual personas, and previous methods cannot effectively capture
the key explicit personas, which is not conducive to persona consistency. 2)
In the persona-based dialogue, the attractive responses are not only persona-
consistent but also diverse, while the existing methods mainly focus on persona
consistency. 3) Previous methods usually take explicit personas into considera-
tion, but neglect that both explicit and implicit personas mentioned above can
interact with each other in one model at the same time.

To tackle these challenges, we propose a model called Exploiting Explicit and
Inferred Implicit Personas for Multi-turn Dialogue Generation (EIPD), which
consists of three components. Specifically, the explicit persona extractor mainly
adopts a transformer encoder to acquire some explicit personas relevant to the
context. Second, the implicit persona inference module employs the von Mises-
Fisher (vMF) distribution, which is suitable for modeling directional data to
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reason the implicit personas and improve the response diversity. Third, the
persona-response generator is designed to guide the implicit personas and fuse
the two kinds of personas to generate the response. Finally, the ConvAI2 persona-
chat dataset is used to evaluate the effectiveness of proposed model. We sum-
marize the contributions of this work as follows:

– It is the first time that an effective framework for multi-turn dialogue gener-
ation takes two kinds of personas into consideration simultaneously.

– An implicit personas inference module with an vMF distribution is devised
to reason the implicit personas.

– The persona generator is used to supervise the generation of implicit personas.
– The experimental results demonstrate that our model can generate responses

with more diversity and persona consistency compared with baseline results.

2 Related Work

2.1 Persona-Based Dialogue Model

In open-domain dialogue generation, the persona-based dialogue model has
attracted an increasing number of researchers’ attention. Recent works focus
on improve the persona-based dialog generation performance as well as per-
sona consistency. [11] assigned a desired identity to chatbot which can generate
coherent response. [20] constructed a persona-chat dataset with different speaker
profiles. Based on this dataset, [13] proposed an Reinforcement Learning frame-
work to improve persona consistency of response. Besides these works using
speaker profiles, other works using implicit information to achieve it. [7] used
pretrained speaker embeddings and dialogue context to boost informative and
diverse response. [10] proposed a multi-task learning approach that incorporated
speaker characteristics to train the neural conversation models. Despite the suc-
cess of using implicit persona in conversation, they are still difficult to learn
implicit personas displayed by the speakers automatically.

2.2 von Mises-Fisher Distribution

The von Mises-Fisher(vMF) distribution represents a latent hyperspherical space
which can model directional data better. Considering this characteristic, the
vMF distribution is introduced into some NLP works. Both [1] and [9] integrated
vMF into a topic model to explore the semantic consistency and to improve the
performance. [18] replaced Gaussian distribution with vMF distribution in CVAE
and discovered that the ‘collapse’ problem can also be alleviated. [5] used vMF
distribution to draw the context word vectors to improve the embedding mod-
els. Different from these works, we apply vMF distribution in the Conditional
Variational Autoencoder(CVAE) framework to infer the implicit personas.
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Fig. 2. The framework of the EIPD model, including explicit persona extractor,
implicit persona inference and persona response generator. The process represented
by the dotted line only occurs during the training.

3 The Proposed Model

A persona-based dialogue system generates responses with context and personas.
Our problem is formulated as follows: context X = {x1, x2, ..., xm}, each utter-
ance xi = (wx

i,1, w
x
i,2, ..., w

x
i,Mi

), a set of explicit personas Pexp = {p1, p2, ..., pn},
each persona pi = (wp

i,1, w
p
i,2, ..., w

p
i,Ni

), and response Y = {wy
1 , wy

2 , ..., wy
k}.

Given X, the implicit personas Pimp are explored by the implicit persona infer-
ence module with the supervision of explicit personas. By leveraging the context,
explicit personas, and implicit personas, the goal is to generate a diverse and
persona-consistent response Y . We drop the subscript of Pexp for simplicity.

As shown in Fig. 2(a), the whole framework can be divided into three mod-
ules: (1) Explicit Persona Extractor, (2) Implicit Persona Inference, and (3)
Persona Response Generator.

3.1 Explicit Persona Extractor

Following Transformer [15], this component (Fig. 2(b)), which includes a context
encoder and a persona encoder, takes context and explicit personas as the input
and extracts the most relevant explicit personas to improve persona consistency.
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Context Encoder: We use the transformer encoder to encode the context X.
The multi-head self-attention is defined as MultiHead(Q,K, V ), where Q,K, and
V represent query, key, and value, respectively. The encoder is composed of Nc

layers. The encoding of context is as follows:

Hn
c = MultiHead(On−1

c , On−1
c , On−1

c ) (1)

On
c = FFN(Hn

c ) (2)

FFN(x) = max(0,xW1 + b1)W2 + b2 (3)

where n ∈ (2,Nc). Hn
c and On

c are the n-th layer output of the multi-head self-
attention and feed-forward network, respectively. In the first layer, O1

c represents
the word embedding and positional embedding of the input. Following [15], we
also add layer normalization to the sub layers, and we can finally obtain the
context representation ONc after Nc layers.

Persona Encoder: According to the examples in Fig. 1, we observe the follow-
ing: 1) The response Y is often related to some personas pi and contexts Xj .
2) The relevance between X and pi is beneficial to generate an informative and
consistent response. Therefore, we want to consider them. Specifically, we use
another multi-head self-attention to encode the explicit personas. Oexp repre-
sents the output of this attention mechanism. We then use PerCon-Attention
which takes ONc as query, Oexp as key and value to compute the contextual
explicit persona hidden vector Ocp based on the following equations:

Hcp = PerConAtt(ONc , Oexp, Oexp) (4)

Ocp = FFN(Hcp) (5)

3.2 Implicit Persona Inference

According to Fig. 1, we can see that the personas shown in the response are
not entirely extracted from the given explicit personas. We therefore employ
an inference module using vMF distribution to reason the implicit personas
(Fig. 2(c)) for the personalized and diverse responses.

Since different speakers express different implicit personas, this informa-
tion can be represented in different directions in the semantic space. The
vMF distribution [18] can model directional data better, therefore, we intro-
duce it into the CVAE framework. Specifically, in the CVAE framework, the
prior network pθ(z|X,P ) and the recognition network qϕ(z|X,P, Y ) are used
to sample the latent variable z, namely, implicit personas, and can be writ-
ten as pimp. In our settings, pimp follows the vMF distribution, specifically the
prior network pθ(pimp|X,P ) ∼ vMF (μprior, κprior) and the posterior network
qϕ(pimp|X,P, Y ) ∼ vMF (μpos, κpos).
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VMF Distribution: The von Mises-Fisher distribution is defined over a hyper-
sphere of unit norm, depending on the direction vector μ ∈ Rm with ||μ|| =1
and a concentration parameter κ ∈ R≥0, where m denotes the dimension of the
word vectors. The Probability Density Function of the vMF distribution for a
random unit vector z ∈ Rm is defined as:

fm(pimp;μ, κ) = Cm(κ) exp(κμTpimp) (6)

Cm(κ) =
κm/2−1

(2π)m/2
Im/2−1(κ)

(7)

where Cm(κ) is the normalization constant and Im/2−1 stands for the modified
Bessel function of the first kind at order v. Inspired by NVSRN [2], we encode
Y into representations Oy, set κprior and κpos as constants and compute μprior,
μpos as:

μ∼
pos = fpos([ONc , Ocp, Oy]) (8)

μpos = μ∼
pos/||μ∼

pos|| (9)

μ∼
prior = fprior([ONc , Ocp]) (10)

μprior = μ∼
prior/||μ∼

prior|| (11)

where fprior and fpos are two transformations and || · || denotes the 2-norm
used to ensure the normalization. Since the prior pθ(pimp|X,P ) follows the
vMF (μprior, κprior) rather than vMF (·, 0), the KL divergence will be computed
as:

LKL=KL(qϕ(pimp|X,Y, P )||pθ(pimp|X,P ))

= (m/2 − 1) log
κpos

κprior
+ log

Im/2−1(κprior)
Im/2−1(κpos)

− κpriorμpriorμ
−1
pos

Im/2(κpos)
Im/2−1(κprior)

+ κpos

Im/2(κpos)
Im/2−1(κprior)

(12)

Sampling Technique for vMF: Following the implementation of [4], we use
the rejection sampling scheme to sample w ∈ [−1, 1], and then the latent variable
pimp is derived from pimp = wμ + v

√
1 − w2, where v is a randomly sampled

unit vector tangent to the hypersphere at μ.

3.3 Persona Response Generator

This component comprises a response generator and a persona generator
(Fig. 2(d)). Considering the interaction between the two kinds of personas, we
use the two generators to further enhance the modeling of directional data and
better fuse the implicit and explicit personas.
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Persona Generator: To strengthen the supervision for implicit personas, dur-
ing this process, we employ an RNN decoder that receives implicit persona pimp

as the initial hidden state and then generates tokens sequentially under the
probability distributions:

pθp
(P |pimp) =

n∏

i

Ni∏

j=1

p(wi,j |P<i, wi<j) (13)

where n is the number of turns of explicit personas; Ni is the length of the i-th
utterance pi. During this process, the loss function is:

Lp=Eqϕ(pimp|X,P,Y )[log pθ(P |pimp)] (14)

Response Generator: Finally, conditioned based on explicit personas, implicit
personas and context, we employ a response decoder to generate the response
Y :

pθg
(Y |X,P, pimp) =

k∏

i=1

pvocab(wy,i) (15)

where pvocab is the vocabulary’s probability distribution; pvocab(wy,i) is the prob-
ability of the word wy,i; k is the length of the response Y . In general, the ELBO
in the decoder can be rewritten as:

Lr=Eqϕ(pimp|X,Y,P )[log pθ(Y |pimp,X, P )] − LKL (16)

3.4 Training Objective

In the EIPD model, the overall objective is:

L = λLp + (1 − λ)Lr (17)

where the hyperparameter λ is used to control the balance between response
generator and persona generator.

4 Experiments

4.1 Experimental Settings

Dataset: We use the released ConvAI2 persona-chat dataset, which is an
extended version of PERSONA-CHAT [20]1, to verify our proposed method.
The dataset consists of 164,356 utterances in 10,981 dialogues, and each speaker
has at least 4 persona profiles. We randomly split the data into the training,
validation, and test sets, which respectively contain 67112, 8395, and 4478 dia-
logues.
1 http://convai.io/.

http://convai.io/


500 R. Wang et al.

Baselines: We compared the proposed EIPD model with five commonly used
baseline models. S2SAP: the Seq2Seq model, which integrates context and per-
sona as the input [20]. CVAE2: an RNN-based model that exploits latent vari-
ables to improve the diversity of the response [21]. Trans3: the transformer model
[15] that concatenates personas and context as the input. PerCVAE4: a mem-
ory augmented CVAE model that uses multi-hop attention to exploit the persona
information to improve the response quality [12]. TransferTransfo5: a finetuned
GPT2 that takes personas and dialogue context as the input [16] (Table 1).

Table 1. Objective (on the left) and subjective evaluation (on the right) results with
respect to the ConvAI2 persona-chat dataset. Results in bold represent the best scores.
In the subjective evaluations, the percentages of each kind of response are calculated
by combining the evaluations from three annotators together. The Kappa scores of
all models are higher than 0.4, which indicates that the three annotators reach a fair
agreement.

Model Dist-1 BLEU-1 BLEU-2 F1 G1 G2 G3 G4 G3&4

S2SAP 0.0151 0.1467 0.1439 0.2309 38.25 29.67 27.35 4.73 32.08

CVAE 0.0165 0.1356 0.1502 0.1903 37.25 25.00 26.00 11.75 37.75

Trans 0.0267 0.1531 0.1621 0.1921 32.25 25.50 29.00 13.25 44.25

PerCVAE 0.0374 0.2047 0.1858 0.2404 21.43 18.73 39.25 20.59 59.84

TransferTransfo 0.0332 0.2532 0.2249 0.1973 20.34 17.14 42.73 19.79 62.52

EIPD 0.0388 0.2263 0.2323 0.2452 18.36 14.75 44.75 22.14 66.89

Parameters: For the RNN-based models, we set word embeddings to the size
of 300. The encoder is a 2-layer GRU structure with a hidden size of 600. For
the Transformer, the size of word embedding is set to 512, and the numbers of
layers of encoder and decoder are set to 3 and 1. Besides, the number of heads
in multi-head attention is 8, and the inner-layer size of the feed-forward network
is 2048. In our model, the parameters of the explicit persona extractor are the
same as those of Transformer. The dimension of the latent variable is set to
180. We use the Adam algorithm to update the parameters with a learning rate
of 0.0001. The batch size is set to 32. An early-stop strategy is used to obtain
the best model. Our model is implemented using the Tensorflow framework. We
conduct all experiments on a GPU.

Evaluations: In our experiments, we use Dist-1, BLEU-1/2 and F1 to evalu-
ate our method. In addition to the automatic metrics, we recruit three human
annotators familiar with the NLP tasks to judge the quality of the generated

2 https://github.com/snakeztc/NeuralDialog-CVAE.
3 http://github.com/atselousov/transformerchatbot.
4 https://github.com/vsharecodes/percvae.
5 http://github.com/huggingface/transfer-learning-conv-ai.

https://github.com/snakeztc/NeuralDialog-CVAE
http://github.com/atselousov/transformerchatbot
https://github.com/vsharecodes/percvae
http://github.com/huggingface/transfer-learning-conv-ai
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responses. We sampled 200 context-response-persona triples from the above mod-
els. They are required to provide 4-graded judgements according to the following
criteria: G1: The generated response is not grammatically correct, is irrelevant
to the semantics of context or is inconsistent with the given personas. G2: The
generated response is fluent and weakly related to the context, such as some
generic responses. G3: The generated response is fluent and relevant to the con-
text semantics and slightly consistent with the personas. G4: The generated
response is not only fluent and semantically relevant but also consistent with
the given personas.

Table 2. Performances of model ablation. EIPD is significantly better than the ablation
approaches.

Model Dist-1 BLEU-1 BLEU-2 F1

D 0.0007 0.1248 0.1365 0.2038

IPD 0.0301 0.1465 0.1526 0.2186

EPD 0.0354 0.2142 0.2053 0.2439

EIPDGau 0.0345 0.2171 0.2064 0.2348

EIPDpd 0.0363 0.2121 0.2105 0.2208

EIPD 0.0388 0.2263 0.2323 0.2452

4.2 Experimental Results

Objective and Subjective Evaluations: For objective evaluation, (1) Dist-1
is the ratios of distinct unigrams which can reflect the diversity of the generated
response. It can be found that the performance of S2SAP is the worst because it
only roughly combines the explicit personas. PerCVAE surpassed other baselines
due to the exploitation of explicit personas. Compared with the baselines, EIPD
outperforms them, which indicates that the proposed model can generate diverse
responses. (2) BLEU-1/2 evaluates how many n-grams (n = 1,2) in the generated
responses overlap with them in the ground truth. EIPD performs better than
baselines except for TransferTransfo in BLEU-1, and we speculate that the reason
may be that the pretrained language model contains semantic information. (3)
For F1, the score of EIPD is higher than others, demonstrating that the model
can generate more accurate information.

For subjective evaluation, the responses generated by EIPD are more engag-
ing as compared to the responses from all baselines. It can be determined that
the percentage of diverse and persona-consistent responses (the grade ‘G3&4’) is
66.89%, obviously higher than others, which indicates that EIPD can generate
persona-consistent responses. Additionally, the percentage of ‘G2’ is declining,
while, the percentage of ‘G3’ is rising. This proves that EIPD has the abil-
ity to generate context-relevant responses, and alleviate the problem of generic
responses at the same time. Among the baselines, the results of S2SA perform
poorly since it the model does not take any kind of personas into consideraiton.
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By adding explicit personas or global information, the performance of these
models improve gradually, yet still worse than our model.

Ablation Analysis: To investigate the effects of specific modules in EIPD, we
ablated our model through several different approaches: D: A generative dia-
log model without explicit and implicit personas. EPD: It removes the implicit
persona inference, that is, the model does not use implicit personas. IPD: It
replaces the explicit persona extractor with the RNN to represent the explicit
personas. EIPDGau: This model replaces the vMF distribution with the Gaus-
sian distribution. EIPDpd: This approach deletes the persona generator, so the
generation of implicit personas loses the supervision of the explicit personas.

As shown in Table 2, from D, IPD, EPD, EIPDGau, and EIPDpd to EIPD,
every step yields an observed improvement on the automatic metrics. EIPD
achieves the best performance among all the methods. Specifically, compared
with D, the improvements of EPD and IPD on all metrics imply that the explicit
persona extractor can capture the explicit personas related to some context, and
the implicit persona inference module can obtain the implicit personas inferred
from the given context and explicit personas. Furthermore, we note that EIPD
performs better than EIPDGau on all metrics, which proves that the vMF distri-
bution is more useful than the Gaussian distribution in this framework. Specifi-
cally, the implicit persona inference module can reason the more rational implicit
personas with vMF distribution, and this phenomenon is consistent with the
characteristics of vMF, which is good at modeling directional data, such as the
personalities of different speakers. In addition, the performance of EIPDpd is
inferior to EIPD, which verifies that the persona generator can facilitate the
generation of persona-consistent and diverse responses.

Table 3. An example of dialogue with the personas ‘Black coffee is my addiction.
My favorite hobby is gardening. My family gets together every Saturday. My husband
died last year.’ in ConvAI2 persona-chat dataset.

Context

A:Hello how are you doing?

B:I’m good how are you?

A:Good thanks. So what is life like for you?

SASP:I’m a student and I work a lot and a lot.

CVAE:I am, as little since I am super excited about me, school.

Trans:I like to play games with friends what about you?

PerCVAE:I would like to talk about you. Would you like a happy person?

TransferTransfo:That’s so good, I prefer to read.

Golden:I am currently struggling in school.

EIPD-1:It is ok. I do not get much done unless I work on my garden.

EIPD-2:It is ok now. I like to walk outside and explore the outdoors.
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Case Study: According to Table 3, we can determine that the baseline models
often generate some fluent but irrelevant and weak personalized responses. For
comparison, we use the EIPD to generate different responses through implicit
persona inference, and we find that the responses are related to the personas ‘My
favorite hobby is gardening’. The first response directly answers the speaker’s
attitude about gardening, and the second response expands the information
about the given personas.

5 Conclusion and Future Work

In this paper, we propose an effective EIPD for multi-turn persona-based dia-
logue. To the best of our knowledge, we are the first to fuse the explicit per-
sonas and implicit personas to generate more realistic responses. It uses an
explicit persona extractor to improve the persona consistency, and employs
an implicit persona inference module with vMF distribution to improve the
diversity. Finally, the persona response generator is used to fuse personas and
generate the response. Experimental results on ConvAI2 persona-chat dataset
demonstrate the effectiveness of our model and verify the importance of implicit
personas. In the future, we would like to use knowledge graphs and pretrained
language model to strengthen the inference of implicit personas.
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Abstract. Data sparsity problem is a key challenge of Natural Language Under-
standing (NLU), especially for a new target domain. By training an NLU model
in source domains and applying the model to an arbitrary target domain directly
(even without fine-tuning), few-shot NLU becomes crucial to mitigate the data
scarcity issue. In this paper, we propose to improve prototypical networks with
vector projection distance and abstract triangular Conditional Random Field
(CRF) for the few-shot NLU. The vector projection distance exploits projections
of contextual word embeddings on label vectors as word-label similarities, which
is equivalent to a normalized linear model. The abstract triangular CRF learns
domain-agnostic label transitions for joint intent classification and slot filling
tasks. Extensive experiments demonstrate that our proposed methods can sig-
nificantly surpass strong baselines. Specifically, our approach can achieve a new
state-of-the-art on two few-shot NLU benchmarks (Few-Joint and SNIPS) in Chi-
nese and English without fine-tuning on target domains.

Keywords: Few-shot learning · Natural language understanding

1 Introduction

Natural language understanding (NLU) is a critical component of conversational dia-
logue systems, converting user’s utterances into the corresponding semantic representa-
tions for a specific narrow domain (e.g., booking hotel, searching flight). Typically, the
NLU module in goal-oriented dialogue systems contains two sub-tasks: intent classifi-
cation and slot filling [13], as shown in Fig. 1. Intent classification is typically treated as
a sentence classification problem, and slot filling is treated as a sequence labeling prob-
lem in which contiguous sequences of words are tagged with semantic labels (slots).

Recently, motivated by commercial applications like Amazon Alexa, Apple
Siri, Google Assistant, and Microsoft Cortana, great interest has been attached to
rapid domain transfer and adaptation with only a few samples. Few-shot learn-
ing approaches [5,20] become appealing in this scenario [7,8,22], where a general
(domain-agnostic) model is learned from existing domains and transferred to new
domains rapidly with merely few examples (e.g., in one-shot learning, only one exam-
ple for each new class). The few examples sketch a new domain for the model.
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 505–516, 2021.
https://doi.org/10.1007/978-3-030-88480-2_40
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The similarity-based few-shot learning methods have been widely analyzed on clas-
sification problems [16,17,20,22], which classify an item according to its similarity
with the representation of each class. These methods learn a domain-general encoder
to extract feature vectors for items in existing domains and utilize the same encoder
to obtain the representation of each new class from very few labeled samples (support
set). This scenario has been successfully adopted in the slot filling task [8]. Nonethe-
less, it is still a challenge to design appropriate word-label similarity metrics for better
generalization capability.

In this work, a vector projection distance is proposed to improve prototypical net-
works for few-shot NLU (joint intent classification and slot filling). To eliminate the
impact of unrelated label vectors but with large norms, we exploit projections of con-
textual word embeddings on each normalized label vector as the word-label similarity.
Meanwhile, the half norm of each label vector is utilized as a threshold, which can
help reduce false-positive errors. To better model the intent classification and slot fill-
ing jointly, we also propose an abstract triangular CRF with abstract label transitions
which can be shared across domains.

Our methods are evaluated on two few-shot NLU benchmarks (Few-Joint and
SNIPS) in Chinese and English, respectively. Experimental results show that our meth-
ods can outperform various few-shot learning baselines and achieve state-of-the-art per-
formances without fine-tuning on target domains. Our contributions are summarized as
follows:

– We propose a vector projection distance to improve prototypical networks for few-
shot NLU, which leads to better generalization capability of NLU models.

– We propose an abstract triangular CRF to model the intent classification and slot
filling jointly, learning abstract label transitions across domains.

– We conduct extensive experiments with different distance functions and ablation
studies to validate the effectiveness of our methods.

2 Related Work

The similarity-based few-shot learning aims to learn an effective distance metric [16,
20]. It can be simpler and more efficient than other meta-learning methods [6,15].

For few-shot learning in the natural language processing community, researchers
pay more attention to classification tasks, such as text classification [22]. Recently, few-
shot learning for NLU task becomes popular and appealing. Fritzler et al. [7] explored
few-shot NER with the prototypical network. Hou et al. [8] exploited the TapNet and
label dependency transferring for both slot filling tasks. Yu et al. [23] explored retrieval-
based methods for intent classification and slot filling tasks in few-shot settings. We are
the first to utilize vector projections as word-label similarities in few-shot NLU. Trian-
gular CRF has been applied in single domain NLU [21], while the transition weights of
source domains can not be used in the target domain directly. We propose the abstract
triangular CRF to share the underlying factors of transitions among different domains.

Several methods choose to train NLU models on source domains and keep fine-
tuning on a target domain [1,9,12]. However, keep fine-tuning will produce different
model parameters for new domains, which is not efficient and economical. Results show
that our methods can beat these strong baselines even without fine-tuning.
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Fig. 1. An example of intent and slot annotation (IOB format) in domain FlightTravel.

3 Problem Formulation

Intent classification and slot filling are major tasks of NLU in task-oriented dialogue
systems. An intent is a purpose or a goal that underlies a user-generated sentence.
Therefore, intent classification can be seen as a sentence classification problem. Slot
filling aims to automatically extract a set of attributes or “slots” with the correspond-
ing values. It is typically treated as a sequence labeling problem. An example of data
annotation is provided in Fig. 1. The user’s intent is to find flights. For slot annotation,
it follows the popular inside/outside/beginning (IOB) schema.

Let x = (x1, · · · , x|x|) denote an input sentence (i.e., word sequence), z denote
its intent label, and y = (y1, · · · , y|x|) denote its output sequence of slot tags, where
|x| is the sentence length. For each domain D, it includes a set of (x,y, z) pairs, i.e.,
D = {(x(n),y(n), z(n))}|D|

n=1, where |D| is the total sample number.
In the few-shot scenario, the NLU model is trained on several source domains

{D1,D2, · · · ,DM}, and then directly evaluated on a new target domain Dt

which only contains few labeled samples (support set). The support set, S =
{(x(n),y(n), z(n))}|S|

n=1, usually includes K examples (K-shot) for each of N labels
(N-way). Thus, the few-shot NLU task is to find the best slot sequence y∗ and intent z∗

jointly, given an input query x in target domain Dt and its corresponding support set S,

y∗, z∗ = argmax
y ,z

pθ(y, z|x,S) (1)

where θ refers to parameters of the NLU model, the (x,y, z) pair and the support set
are in the target domain, i.e., (x,y, z) ∼ Dt and S ∼ Dt.

The few-shot NLU model is trained on the source domains to minimise the error in
predicting slots and intents jointly conditioned on the support set,

θ∗ = argmin
θ

M∑

m=1

∑

(x , y , z) ∼ Dm
S ∼ Dm

− log pθ(y, z|x,S) (2)

4 Our Proposed Few-Shot NLU Model

In this section, we will introduce our prototypical networks for the few-shot NLU task,
which is improved with vector projection distance and abstract triangular Conditional
Random Field (CRF). The main architecture of our model is illustrated in Fig. 2. Our
model consists of two parts: support set reader and semantic parser. The support set
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Fig. 2. The architecture of our proposed few-shot NLU model consists of two parts: Support Set
Reader (the left part) and Semantic Parser (the right part).

reader exploits a BERT encoder to compute embeddings of all sentences in the support
set, and it applies a prototypical network to get the central vector of each intent and
slot label (i.e., intent and slot embeddings). The semantic parser also utilizes a BERT
encoder to extract word embeddings of the input sentence. It then calculates intent and
slot logits by measuring vector projection distance between word and label embeddings.
Finally, an abstract triangular CRF is applied to predict intent and slot labels jointly.
BERT encoders in the support set reader and semantic parser are shared.

4.1 Support Set Reader

Obviously, an NLU model cannot make predictions for unknown labels. Thus, it is
essential to extract label features from the support set, which contains a minimal anno-
tation set for all intents and slots of the new domain.

For the support set, S = {(x(n),y(n), z(n))}|S|
n=1, a contextual word embedding

function E is applied onto each support sentence x to get dense features, i.e., E(x).
Generally, E can be a kind of sequence model, like BLSTM [14], Transformer [19]. In
this paper, we adopt a pre-trained BERT model [4] as E, i.e.,

(e0, e1, · · · , e|x|) = E(x) = BERT([CLS],x) (3)

where [CLS] is a special token to get whole sentence embedding (i.e., e0), and ei

refers to the BERT embedding of each input word, i = 1, · · · , |x|.
Following prototypical networks [16] in the image classification field, the prototype

of each intent or slot (label embedding) is defined as the mean vector of the embedded
supporting points belonging to it.

cz =
1

Nz

|S|∑

n=1

I{z(n) = z}E(x(n))0 (4)

cy =
1

Ny

|S|∑

n=1

|x(n)|∑

i=1

I{y
(n)
i = y}E(x(n))i (5)
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where I{· = ·} is an indicator function, Nz =
∑|S|

n=1 I{z(n) = z} is the number of

sentences labeled with intent z in the support set, andNy =
∑|S|

n=1

∑|x(n)|
i=1 I{y

(n)
i = y}

is the number of words labeled with slot y in the support set.

4.2 Semantic Parser

The semantic parser also exploits a BERT encoder to calculate contextual word embed-
dings of the input sentence, then predicts the intent and slot labels jointly with label
embeddings and the abstract triangular CRF.

Linear Conditional Random Field (CRF) [14,18] considers the correlations between
slots in neighborhoods, while the triangular CRF also considers the correlations
between intent and slot. Thus, the triangular CRF can jointly decode the most likely
slot sequence and intent class given the input sentence. The posterior probability of
joint intent z and slot sequence y is computed via:

ψθ(y, z,x,S) = fE(z,x,S) +
|x|∑

i=1

(fTIS(z, yi) + fTSS(yi−1, yi) + fE(yi,x,S)) (6)

pθ(y, z|x,S) = exp(ψθ(y, z,x,S))∑
y ′,z′ exp(ψθ(y′, z′,x,S)) (7)

where fE(z,x,S) is the emission score of the intent, and fE(yi,x,S) is the emission
score of the slot at the i-th step. fTIS(z, yi) is the transition score between intent z and
slot yi, and fTSS(yi−1, yi) is the transition score between two adjacent slots.

Emission Score and Vector Projection Distance. The emission scorer independently
assigns each word a score with respect to each label yi, which is defined as a word-label
similarity function:

fE(z,x,S) = SIM(E(x)0, cz) (8)

fE(yi,x,S) = SIM(E(x)i, cyi
) (9)

For the word-label similarity function, we propose to exploit vector projections of
word embeddings xi on each normalized label vector ck:

SIM(xi, ck) = x�
i

ck

||ck|| − 1
2
||ck|| (10)

Different from the dot product used in [8], it can help eliminate the impact of ck’s
norm to avoid the circumstance where the norm of ck is large enough to dominate the
similarity metric. In order to reduce false-positive errors, the half norm of each label
vector is utilized as an adaptive bias term. It is called VPB, and the version without the
bias is named VP.

A simple interpretation for the above vector projection distance is to learn a distinct
linear classifier for each label. We can rewrite the above formulas as a linear model:
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Fig. 3. Abstract categories of label transitions consists of slot-slot and intent-slot transitions.

Table 1. Definitions of abstract transition categories. X and Y refer to arbitrary two different slot
names.

Category Description Category Description

O-O yi−1 = O & yi = O I-sB yi−1 = I-X & yi = B-X

O-B yi−1 = O & yi = B-X I-dB yi−1 = I-X & yi = B-Y

O-I yi−1 = O & yi = I-X I-sI yi−1 = I-X & yi = I-X

B-O yi−1 = B-X & yi = O I-dI yi−1 = I-X & yi = I-Y

B-sB yi−1 = B-X & yi = B-X Z-O z is intent, yi = O

B-dB yi−1 = B-X & yi = B-Y Z-cB yi = B-X, z and yi co-occurred

B-sI yi−1 = B-X & yi = I-X Z-cI yi = I-X, z and yi co-occurred

B-dI yi−1 = B-X & yi = I-Y Z-nB yi = B-X, z and yi do not co-occurred

I-O yi−1 = I-X & yi = O Z-nI yi = I-X, z and yi do not co-occurred

SIM(xi, ck) = x�
i wk + bk (11)

where wk = ck

||ck|| and bk = − 1
2 ||ck||. The weights are normalized as ||wk|| = 1

to improve the generalization capability of the few-shot model. Experimental results
indicate that vector projection is an effective choice compared to dot product, cosine
similarity, squared Euclidean distance, etc.

Transition Score and Abstract Triangular CRF. The transition score between two
slots captures temporal dependencies of slots in consecutive time steps, and the transi-
tion score between an intent and a slot captures task dependencies of intent classification
and slot filling. The Transition Score is learnable scalar for each label pair. We classify
all label pairs (slot-slot and intent-slot) into abstract categories that are domain-agnostic
to share the underlying factors of transitions among different domains. Transition scores
of label pairs belong to the same abstract category are shared.

Following [8], we design 13 abstract categories for slot-slot transitions as shown
in Fig. 3 (a), where B (I) refers to any slot starting with ‘B’ (‘I’), sB (sI) means a
slot containing the same name with the previous slot, and dB (dI) means a slot which
contains a different name with the previous slot.

For intent-slot transitions, we define 5 abstract categories by exploiting intent-slot
co-occurrence relations in the support set S. As shown in Fig. 3 (b), Zmeans any intent,
cB (cI) are slots which start with ‘B’ (‘I’) and co-occur with the intent in a same
support sample, and nB (nI) refers to slots not co-occurring with the intent.

The abstract slot-slot (fTSS(yi−1, yi)) and intent-slot (fTIS(z, yi)) transitions are
defined in Table 1.
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5 Experiment

We evaluate the proposed method on the natural language understanding task of 1/3/5-
shot setting, which transfers knowledge from source domains (training) to an unseen
target domain (testing) containing only 1/3/5-shot support set.

5.1 Settings

Dataset. We conduct experiments on two public datasets: SNIPS [3] (in English) and
Few-Joint [10] (in Chinese). For SNIPS, we use the data split1 of 5-shot setting without
intent classification task. For Few-Joint, we utilize the 1-shot, 3-shot and 5-shot settings,
which contains both intent classification and slot filling tasks. They are in the episode
data setting [20], where each episode contains a support set (1/3/5-shot) and a batch of
labeled samples.

The SNIPS dataset consists of 7 domains with different slots (totally 53 slots):
Weather (We), Music (Mu), PlayList (Pl), Book (Bo), Search Screen (Se), Restaurant
(Re), and Creative Work (Cr). We select one target domain for evaluation, one domain
for validation, and utilize the rest domains as source domains for training.

FewJoint is a joint NLU dataset used in the few-shot learning contest of SMP2020-
ECDT Task-12. It contains 59 multi-intent domains, 143 different intents, and 205 dif-
ferent slots. We follow the original data split, that there are 45 domains for training, 5
domains for validation and 9 domains for evaluation.

Evaluation. Three metrics are used for evaluation: Intent Accuracy, Slot F1-score3,
Joint Accuracy. The Joint Accuracy evaluates the sentence level accuracy, which con-
siders one sentence is correct only when all its slots and intent are correct.

We take the average score of all evaluation domains as the final result. To mitigate
the bias of different random seeds and conduct robust evaluation, we run each experi-
ment for 5 times with different random seeds and report the average score of 5 random
seeds for all results.

Training Details. As SNIPS is in English, we use the uncased Bert-base [4] as the
BERT encoder to extract contextual word embeddings. For Few-Joint in Chinese, we
use Chinese-bert-base4 and Chinese-roberta-wwm-ext5.

The models are trained using ADAM [11] and updated after each episode. We fine-
tune BERT with layer-wise learning rate decay (rate is 0.9), i.e., the parameters of the
l-th layer get an adaptive learning rate 1e-5 ∗ 0.9(L−l), where L is the total number of
layers in BERT. For the abstract triangular CRF transition parameters, they are initial-
ized as zeros, and large learning rates of 5e-3 and 1e-3 are applied for Few-Joint and
SNIPS datasets, respectively. The models are trained for 10 iterations, and we save the
parameters with the best average score on the validation domains.
1 https://atmahou.github.io/attachments/ACL2020data.zip.
2 https://smp2020.aconf.cn/smp.html.
3 CoNLL evaluation script: https://www.clips.uantwerpen.be/conll2000/chunking/output.html.
4 https://github.com/google-research/bert.
5 https://github.com/ymcui/Chinese-BERT-wwm.

https://atmahou.github.io/attachments/ACL2020data.zip
https://smp2020.aconf.cn/smp.html
https://www.clips.uantwerpen.be/conll2000/chunking/output.html
https://github.com/google-research/bert
https://github.com/ymcui/Chinese-BERT-wwm
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Table 2. Scores of 1/3/5-shot NLU tasks on Few-Joint dataset. ∗ means Chinese-bert
-base is used as the BERT encoder, while † means Chinese-roberta-wwm-ext is used.

Model 1-shot 3-shot 5-shot

int. acc slot F1 joint acc. int. acc slot F1 joint acc. int. acc slot F1 joint acc.

JointTransfer 41.83 26.89 12.27 – – – 57.50 29.00 18.81

Meta-JOSFIN 57.92 29.26 15.00 – – – 78.91 53.88 36.63

SepProto 66.35 27.24 10.92 72.30 34.11 16.40 75.64 36.08 15.93

JointProto 58.52 29.49 9.64 78.46 40.37 23.65 70.93 39.47 14.48

ConProm+FT 61.24 42.02 24.63 – – – 78.33 62.34 40.25

ConProm+FT+TR 63.67 42.44 27.72 – – – 78.43 69.44 46.54

Our method (VP)∗ 69.09 60.69 40.75 81.32 73.15 58.47 86.70 77.42 66.41

Our method (VPB)∗ 68.03 60.95 40.29 80.58 75.05 60.30 85.77 78.43 67.04

Our method (VP)† 70.66 63.55 42.23 84.19 75.78 60.12 88.29 78.33 65.08

Our method (VPB)† 69.21 63.09 41.26 82.79 76.85 60.11 87.15 80.54 67.36

Table 3. Slot F1 scores of 5-shot slot filling task on SNIPS dataset. Scores of 7 target domains
and the average are reported.

Model We Mu Pl Bo Se Re Cr Avg.

L-ProtoNet+CDT+PWE [8] 74.68 56.73 52.20 78.79 80.61 69.59 67.46 68.58

L-TapNet+CDT+PWE [8] 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01

Retriever [23] 82.95 61.74 71.75 81.65 73.10 79.54 51.35 71.72

Our method (VP) 79.88 67.77 78.08 87.68 86.59 79.95 75.61 79.37

Our method (VPB) 82.91 69.23 80.85 90.69 86.38 81.20 76.75 81.14

5.2 Baselines

JointTransfer is a domain transferred NLU model based on the JointBERT [2], which
consists of a shared BERT encoder with intent classification and slot filling layers. It is
first pre-trained on source domains and then fine-tuned on the support set of the target
domain.
Meta-JOSFIN [1] is a meta-learning model based on the MAML [6]. The meta-learner
model is also a joint NLU model similar to JointTransfer. It learns initial parameters on
source domains, which can fast adapt to the target domain after only a few updates.
SeqProto is a prototypical-based NLU model with BERT embedding that learns intent
classification and slot filling separately. During the experiment, it is pre-trained on
source domains and then directly applies to target domains without fine-tuning.
JointProto [12] is all the same as SepProto except that BERT encoders for intent clas-
sification and slot filling sub-tasks are shared.
ConProm+FT [9] is a contrastive prototype merging network, which learns to bridge
metric spaces of intent and slot on data-rich domains, and then adapt the bridged metric
space to a specific few-shot domain. “+FT” means fine-tuning on the support set similar
to Meta-JOSFIN.
ConProm+FT+TR [9] adds Transition Rules (+TR) between slot tags, which bans
illegal slot prediction, such as ‘I’ tag after ‘O’ tag.
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Table 4. Comparing different distance functions on 1/3/5-shot settings of Few-Joint dataset.

SIM(x, c) 1-shot 3-shot 5-shot

int. acc slot F1 joint acc. int. acc slot F1 joint acc. int. acc slot F1 joint acc.

VP 70.66 63.55 42.23 84.19 75.78 60.12 88.29 78.33 65.08

VPB 69.21 63.09 41.26 82.79 76.85 60.11 87.15 80.54 67.36

Dot 69.93 49.54 33.98 80.84 59.30 47.32 84.40 61.04 50.03

Euclidean 68.91 48.59 31.13 82.69 66.65 52.43 87.30 70.22 58.80

Cosine 56.44 21.51 16.53 61.63 29.76 23.73 74.02 31.11 29.82

Table 5.Ablation study of the abstract triangluar CRF on 1/3/5-shot settings of Few-Joint dataset.

Model 1-shot 3-shot 5-shot

int. acc slot F1 joint acc. int. acc slot F1 joint acc. int. acc slot F1 joint acc.

Our method (VP) 70.66 63.55 42.23 84.19 75.78 60.12 88.29 78.33 65.08

(-) w/o intent-slot 68.29 60.88 37.76 81.30 72.82 54.62 84.23 75.52 58.16

(-) w/o CRF 69.82 44.89 25.73 81.37 55.05 40.88 83.81 58.95 44.21

Our method (VPB) 69.21 63.09 41.26 82.79 76.85 60.11 87.15 80.54 67.36

(-) w/o intent-slot 68.07 61.64 38.22 81.63 74.47 56.59 84.66 78.98 62.61

(-) w/o CRF 68.60 47.93 28.82 81.90 61.07 47.96 85.42 69.22 55.60

5.3 Main Results

Table 2 shows main results on 1-shot, 3-shot and 5-shot settings of Few-Joint dataset,
where results of baselines on 1-/5-shot are borrowed from [9], and results of 3-shot
are borrowed from [10]. Our methods can outperform the previous results on intent
accuracy, slot F1 score and joint accuracy with large margins. Especially, our meth-
ods perform even better than the baselines which are fine-tuned on support sets of
target domains, e.g., Meta-JOSFIN, ConProm+FT and ConProm+FT+TR. By com-
paring VP and VPB, we find that the adaptive bias item in Eq. (10) would be effec-
tive in 3- or 5-shot settings. For the pre-trained BERT encoder, the results show that
Chinese-roberta-wwm-ext is better than Chinese-bert-base. Therefore,
we will use Chinese-roberta-wwm-ext for the BERT encoder in the rest exper-
iments on Few-Joint dataset.

Table 3 shows results on 5-shot slot filling of SNIPS dataset. Our method can signif-
icantly outperform the previous state-of-the-art models. If we incorporate the negative
half norm of each label vector as a bias (VPB), the average slot F1 score over 7 domains
is dramatically improved. We speculate that 5-shot slot filling involves multiple support
points for each slot, thus false-positive errors could occur more frequently if there is no
threshold for predicting each label.

5.4 Analysis
Distance Functions. For the word-label similarity function SIM(x, c), we propose to
used vector projection distance, as shown in Eq. (10). Here, we conduct contrastive
experiments between our proposed vector projection distances (VP and VPB) and other
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Fig. 4. Visualization of slot embedding distributions of squared Euclidean distance and VPB
based NLU models in the 5-shot setting on Few-Joint test set (9 domains with different colours),
by using TSNE (step = 1500).

variants including the dot product (x�c), squared Euclidean distance (− 1
2 ||x − c||2),

and cosine function ( x�
||x||

c
||c|| ). The results in Table 4 show that our methods can signif-

icantly outperform these alternative metrics. The cosine function can lead to really poor
performances, which may be caused by its fixed value range (i.e., x�

||x||
c

||c|| ∈ [−1, 1]).
To further understand how the vector projection distance affects extracting label

embeddings from support sets, we visualize the slot embedding distributions in the
metric space. As shown in Fig. 4, it is exciting to see that our method (VPB) can make
slot embeddings more discriminative, while the squared Euclidean distance would lead
to ambiguous points. We can also find that VPB can gather O of all test domains close
together. VPB always keeps slots B-X in the lower-left part while makes slots I-X in
the upper-right part.

Effectiveness of the Abstract Triangular CRF. We also conduct ablation studies to
validate the effectiveness of the abstract triangular CRF, as shown in Table 5. From
the results, we can find that performances drop with significant margins if we remove
intent-slot transitions (“w/o intent-slot”). When the intent-slot transitions are removed,
intents are predicted via a softmax function. Meanwhile, if we remove both intent-
slot and slot-slot transitions from the abstract triangular CRF (i.e. “w/o CRF”), per-
formances decrease further. The results on both VP and VPB show that the proposed
abstract triangular CRF can improve the joint accuracy significantly and be effective for
joint intent classification and slot filling.

From Table 5, we can also find that intent-slot transitions are more effective in the 5-
shot setting. The reason may be that 1-shot or 3-shot setting is not sufficient for obtain-
ing complete intent-slot co-occurrences of a target domain. Since the absence of slot-
slot transitions can lead to a larger decrease, it seems that slot-slot transitions are more
important than intent-slot transitions for joint accuracy.
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Fig. 5.Abstract transition weights of our method (VPB) in the 5-shot setting on Few-Joint dataset.

Table 6. Compare different learning rates of the abstract triangluar CRF on 1/3/5-shot settings of
Few-Joint dataset.

Model lr 1-shot 3-shot 5-shot

int. acc slot F1 joint acc. int. acc slot F1 joint acc. int. acc slot F1 joint acc.

Our method (VP) 5e-3 70.66 63.55 42.23 84.19 75.78 60.12 88.29 78.33 65.08

3e-3 70.50 63.43 42.02 84.37 75.09 59.79 87.71 77.78 63.78

1e-3 70.18 57.62 36.40 83.79 68.58 52.80 85.97 72.26 57.03

5e-4 69.78 54.87 32.91 82.56 66.29 50.17 84.93 68.28 52.31

Our method (VPB) 5e-3 69.21 63.09 41.26 82.79 76.85 60.11 87.15 80.54 67.36

3e-3 68.94 62.79 40.51 82.66 76.44 59.34 86.77 79.61 65.81

1e-3 68.52 59.73 37.60 83.12 73.78 57.52 86.23 78.22 63.28

5e-4 67.92 56.08 34.77 82.64 71.27 55.78 85.61 76.04 60.28

We draw abstract CRF transition weights of our method (VPB) in Fig. 5. It learns
several transition rules. For example, a slot beginning with ‘I’ after a different slot
beginning with ‘B’ (i.e., B-dI) is penalized with a negative transition weight. The
transition from an intent to a slot co-occurring with it (e.g., Z-cB and Z-cI) would
be encouraged, while the transition from an intent to any slot never co-occurring with
it in the support set (e.g., Z-nB and Z-nI) would be penalized. This shows how the
abstract triangular CRF works in our methods.

Should Learning Rate of CRF Transitions Be Larger? The parameters of CRF Tran-
sitions are initialized from scratch, which is different from the BERT encoder. There-
fore, the learning rate for CRF Transitions could be larger. Results of different learning
rates ({5e-3, 3e-3, 1e-3, 5e-4}) are shown in Table 6. The results demonstrate that large
learning rates can improve performance effectively, like 3e-3 and 5e-3. We also find
that the VPB function can outperform VP dramatically for a small learning rate (e.g.,
1e-3 and 5e-4).

6 Conclusion

In this paper, we propose a vector projection distance and abstract triangular CRF for
few-shot intent classification and slot filling tasks. The vector projection distance can be
interpreted as a normalized linear model, which can improve the model generalization
capability. The abstract triangular CRF learns domain-agnostic intent-slot and slot-slot
transitions to model NLU tasks better jointly. Experimental results demonstrate that our
method can significantly outperform strong baselines on Few-Joint and SNIPS datasets
in few-shot settings.
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Abstract. Supervised learning approaches have been proven effective in
slot filling, but they need massive labeled training data which is expen-
sive and time-consuming in a given domain. Recent models for cross-
domain slot filling adopt transfer learning framework to cope with the
data scarcity problem. However, these cross-domain slot filling models
rely on the same encoder representation in different stages for slot entity
task and slot type task, which decrease the performance of both tasks.
Besides, these models treat different source domains equally and ignore
the shared slot-related information in different domains, which may dam-
age the performance of cross-domain learning. In this paper, we present
a pipeline approach for cross-domain slot filling (PCD) by learning dis-
tinct contextual representations for slot entity identification and slot type
alignment, and fusing slot entity information at the input layer of the
slot type alignment model for incorporating global context. Moreover, we
also present a simple yet effective instance weighting scheme (Iw) to our
approach for better capturing the slot entities in the cross-domain set-
ting. Experiments on multiple domains show that our approach achieves
state-of-the-art performance in cross-domain slot filling. Ablation anal-
ysis and further experiments also prove the effectiveness of each part of
our model, especially in the identification of slot entities.

Keywords: Spoken language understanding · Slot filling ·
Cross-domain learning · Instance weighting scheme · Zero-shot learning

1 Introduction

Spoken language understanding (SLU) is the core component of intelligent per-
sonal digital assistants (IPDAs) such as Microsoft Cortana, Google Assistant,
Amazon Alexa, and Apple Siri [1]. It typically consists of intent detection and
slot filling. Slot filling models capture useful semantic information which has
been shown helpful for related NLP tasks.

Recently, supervised joint learning approaches have shown their effective-
ness in slot filling [2–5]. Such joint models for intent detection and slot tag-
ging have taken the state of the art of slot filling to a new level. However,
such approaches are expensive and time-consuming due to the difficulties in

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 517–528, 2021.
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Fig. 1. Cross-domain slot filling frameworks.

collecting high-quality labeled training data with different domains. This limi-
tation has motivated us to explore cross-domain slot filling for fast adaptation
to new domains. Cross-domain adaptation copes with the data scarcity problem
in low-resource target domains [6–10]. The key challenge of slot filling in a new
domain is identifying unseen slot types without any supervision signals. Common
approaches for cross-domain slot filling are focusing on employing slot descrip-
tion (e.g., the description of slot label restaurant type is “restaurant type”) to
predict unseen slots [11–15].

Existing cross-domain slot filling models can be classified into two main cat-
egories. As shown in Fig. 1 (a), the first part of work, such as the CT model [11],
conducts slot filling individually for each slot type [12]. They generate word-level
representations, then interact with the representation of each slot type descrip-
tion in semantic space. The final predictions are independent for each slot type
based on the fused features. Besides, slot examples were also used to increase
the robustness of domain adaptation [13]. However, such models exist a multi-
ple prediction problem. Unlike the above models, as shown in Fig. 1 (b), Liu et
al. [14] proposed a two-stage slot filling framework to avoid the multiple predic-
tion problem and learn the general pattern of slot entities. They use the shared
representation to identify whether the tokens are slot entities or not by a BIO
(Begin/In/Out) 3-way classifier, and then predict their specific slot types based
on slot descriptions. For example, given a movie-related utterance “find andreas
hofer at elevenses”, the model will first capture the slot entity “andreas hofer”
and then classify its label as “movie name”. He et al. [15] further leveraged
contrastive learning and adversarial attack to improve model robustness.

Though achieving the promising performance, these two-stage models still
suffer from two issues: (1) They use the same encoder for identifying slot entities
(by using BIO structure) in stage one and predicting the specific slot types for
each entity in stage two. However, the information captured in cross-domain
learning in slot entity identification and slot type alignment is different. The
slot entity identification is to detect the entity boundary while the slot type
alignment is to predict slot labels by contexts. The performance of these two-
stage models drops in both tasks since affecting each other. (2) Such approaches
treat each source domain corpus equally. However, in cross-domain learning,
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different source domains have different contributions to the target domain, and
some of them may even cause negative transfer problems [16]. For example,
given target domain “GetWeather”, the model can get more improvements from
“BookRestaurant” domain because of the location-related shared slots, but fewer
improvements from the “PlayMusic” domain with no related shared slots at all.

To meet the above challenges, in this work, we propose a pipeline approach for
cross-domain slot filling by learning distinct contextual representations for slot
entities and slot types. The overall principle can be seen in Fig. 1 (c). It learns two
independent encoders for the slot entity model and slot type model. To capture
the entity information from the entity model in slot types prediction, we add
boundary markers into the second encoder. In addition, we introduce an instance
weighting scheme to control the contribution of different source domains to the
target domain. The core idea is to compute the similarities between domains,
which are used to adjust learning rates for the utterances of different domains.
By doing so, the model tends to learn more shared-information in more similar
domains, rather than in less similar domains.

Our main contributions are summarized as follows: (1) We propose a pipeline
approach for cross-domain slot filling with distinct contextual representations
for slot entities and slot types. (2) We introduce a simple yet effective instance
weighting scheme for better capturing slot entities and alleviating the negative
transfer problem. (3) Experiments in the zero-shot/few-shot settings on SNIPS
and SMP-ECDT datasets show that our approach outperforms the state-of-the-
art models. Ablation study and quantitative analysis also prove the effectiveness
of the proposed model.

2 Our Approach

Figure 2 illustrates our pipeline model architecture by a sample user utterance
“find andreas hofer at elevenses” and its corresponding slots. The pipeline model
consists of a slot entity and a slot type model. The slot entity model predicts
whether tokens are slot entities or not (BIO labels) and learns the slot entity
pattern with the instance weighting scheme. The slot type model classifies the
slot entities into related types with slot descriptions [11] and boundary markers.

2.1 Slot Entity Model

Following prior work, we utilize the BiLSTM-CRF structure [17] to encode the
hidden states of tokens and predict the BIO labels. The input of the model is
an utterance consisting of n tokens denoted as W = [w1, ..., wn]. Let E be the
embedding layer for utterances. We formulate the whole process as follows:

[h1,h2, ...,hn ] = BiLSTM(E(W )) (1)

[p1,p2, ...,pn ] = CRF ([h1,h2, ...,hn ]) (2)

where [h1, h2, ..., hn ] is the hidden layer and [p1, p2, ..., pn ] is the logits for
the 3-way classification.
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(a) Slot entity model (b) Slot type model

Fig. 2. The core architecture of our proposed pipeline model (PCD-Iw). Fig (a) displays
the slot entity model with instance weighting scheme to identify whether the tokens
are slot entities or not. Fig (b) shows the slot type model with boundary markers to
match the specific slot types based on slot type descriptions. The boundary markers
can be generated from the prediction results of the slot entity model.

2.2 Slot Type Model

The slot type model aims to classify the type of the slot entities predicted by the
slot entity model. Prior work [14,15] used the same encoder since it has captured
the information about which parts are the entities to focus on in predicting slot
types. However, due to the different granularity of the information to be captured
by the two tasks in cross-domain setting, using the shared representation directly
will damage the performance of the model. Hence, we build a new model for
classifying slot types.

To capture the entity boundaries and highlight the slot entities, inspired by
Zhong and Chen [18], we insert boundary markers at the input layer in this
model. Specifically, given an input utterance W and a corresponding predicted
slot entity, we define text markers as 〈S〉 and 〈/S〉, and insert them into the
input utterance before and after the slot entities (Fig. 2 (b)). Let ̂W denote this
modified sequence with text markers inserted:

̂W = ... 〈S〉 , wSTART (i), · · · , wEND(i), 〈/S〉 ... (3)

By doing so, the position information and boundary of the slot entity can be
explicitly used for the slot type prediction, which realizes the effect of the original
shared encoder. We then apply another BiLSTM encoder on ̂W to generate the
context-aware representations:

[h1,h2, ...,hn+2m] = BiLSTM(E(̂W )) (4)

where m denotes the number of the predicted slot entities in this utterance.
We take its hidden states between the start and end markers(〈S〉 and 〈/S〉) to
denote the slot representation. The representation ri of ith slot entity can be
denoted as:

ri = BiLSTM([hSTART (i), ...,hEND(i)]) (5)
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Following Shah et al. [13] and Liu et al. [14], we sum the embedding of the
slot description tokens as the description representation. Then we can obtain
a slot description matrix Mdesc ∈ R

ns×ds where ns is the number of all the
possible slot types and ds is the dimension of slot description representation.
Finally, we calculate the dot product as classification logits si = ri ·Mdesc and
get the cross-entropy loss.

2.3 Instance Weighting Scheme

Negative transfer often occurs in cross-domain learning because of the wide dif-
ferences in the distribution of different domains. Especially in slot entities pre-
dicting, for the similar sentence structure, the slot entities that need to be cap-
tured in different domains are usually different. For example, slot object name
usually appears after the phrase “What is” in domain “SearchCreativeWork”.
However, it will have a bad effect in the domain without slot object name, lead-
ing to the prediction of redundant entities in the slot entity model.

Since we can get all the possible slots in the target domain (Table 1 and
2), we introduce a simple yet effective instance weighting scheme by using the
ratio of shared slots. We quantify the similarity between the data of different
source domains and the specified target domain. For a target domain (td), the
scoring function for calculating the similarity of different source domains (sd) is
as follows:

score(sd, td) =
|Slotshared|

|Slotsd| · |Slotshared|
|Slottd| (6)

where |Slotsd| and |Slottd| are the numbers of slot types for the source domain
and the target domain respectively, and |Slotshared| is the number of shared
slots of the source domain and the target domain. For example, in Table 1,
timeRange and spatial relation are the shared slots of “GetWeather” and
“FindScreeningEvent” domains. Then we define a function fw(·) to transform
the scores into weights as follows:

weight(sd, td) = fw(score) = α + β · score(sd, td) (7)

where α and β are the hyper-parameters and are used to tune the magnitude of
similarity. For the utterances of different source domains , the learning rate is
controlled by the similarity weight, which is computed as:

LR(sd, td) = ε · weight(sd, td) (8)

where ε represents the initial learning rate for the source domain. Finally,
LR(sd, td) will be used to update the model parameters with the loss of the
CRF layer in slot entity model.

3 Experiment

3.1 Dataset

To evaluate the efficiency of our proposed model, we conduct experiments on
two benchmark datasets.
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Table 1. Detailed statistics of SNIPS dataset.

Domain Slots

Cross-domain shared Domain-specific

AddToPlaylist artist, playlist, music item playlist owner, entity name

BookRestaurant country, state, timeRange, sort,

spatial relation, city

party size number, poi, restaurant type,

facility, party size description,

served dish, cuisine, restaurant name

GetWeather country, state, timeRange, city,

spatial relation

spacurrent location,

condition description

condition temperature, geographic poi

PlayMusic sort, artist, playlist, music item year, album, genre, track, service

RateBook object type, object name object part of series type, rating value,

object select, best rating, rating unit

SearchCreativeWork object type, object name -

FindScreeningEvent timeRange, object type,

spatial relation

object location type, movie type,

movie name, location name

Table 2. Detailed statistics of SMP-ECDT dataset.

Domain Slots

Cross-domain shared Domain-specific

cookbook keyword dishName, utensil,

ingredient

epg datetime time, datetime date, category, name, code,

area

tvchannel

map startLoc poi, endLoc poi, startLoc city, endLoc city,

endLoc province, endLoc area, location city,

location province, type, startLoc area

location area, location poi

message name, content, category, teleOperator receiver, headNum

poetry keyword, author, name queryField, dynasty

train startDate date, category, startLoc city, endLoc city,

startLoc area, endLoc area, startLoc province,

endLoc province, startLoc poi, startDate time

–

video name, category, timeDescr, area, popularity, artist tag, scoreDescr

• SNIPS. We execute the experiments on the crowd-sourced benchmark corpus
SNIPS [19] that widely used for slot filling. It is a public spoken language
understanding dataset that contains 39 slot types across 7 domains (intents).
The scheme corresponding to each domain is described in Table 1. To test our
model, for each time, we choose one domain as the target domain and the
other six domains as the source domains.

• SMP-ECDT. SMP-ECDT corpus1,2 consists of 29 domains and 124 slot
labels. Due to the large number of domains and the small amount of data in
each domain, we only selected the top 7 domains with the largest amount of
data as target domains for the experiment. The statistics of these domains are
listed in Table 2. For each time, we choose one domain as the target domain
and the other 28 domains as the source domains.

1 http://conference.cipsc.org.cn/smp2019/evaluation.html.
2 https://github.com/OnionWang/SMP2019-ECDT-NLU.

http://conference.cipsc.org.cn/smp2019/evaluation.html
https://github.com/OnionWang/SMP2019-ECDT-NLU
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3.2 Baselines

We compare our model with the existing baselines:

• Concept Tagger (CT). Bapna et al. [11] utilized slot descriptions to fill
slots for each slot type individually and cope with the unseen slot types.

• Coarse-to-fine Approach (Coach). Liu et al. [14] proposed a coarse-to-fine
procedure with BIO 3-way classification and slot type prediction. It also fur-
ther introduced a template regularization (TR) to improve the performance
of similar or the same slot types. We use their best model Coach+TR to
compare with but we call it Coach simply.

• Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-
Adv). He et al. [15] used contrastive loss to leverage auxiliary slot description
information and introduced an adversarial attack (Adv) training strategy
to improve model robustness. Since the paper does not provide the code of
adversarial attack part, we only use the CZSL model to compare with in the
experiments on SMP-ECDT dataset.

3.3 Implementation Details

For a fair comparison under cross-domain settings, we follow most of the set-
ups in Liu et al. [14] and He et al. [15]. For all BiLSTM encoders, We set the
hidden size to 200 and a dropout [20] rate to 0.3. Following Liu et al. [14], for
every word in SNIPS, we concatenate the word-level [21] and character-level [22]
embeddings. For SMP-ECDT datasets, we use the public Chinese pre-training
character-level embeddings [23]. We combine the samples from all source domains
for training, split 500 data samples in the target domain as the validation set
for choosing the best model and the remainder are used for the test set.

Following Liu et al. [14], we used tokenized slot names as the slots descrip-
tions of SNIPS (e.g., the description of slot label restaurant type is “restaurant
type”). For SMP-ECDT dataset, we also define a simple Chinese slot descrip-
tion for each slot type. For example, the slot description of “TV channel” is
“ ” (The Chinese word embedding of “TV channel”).

In instance weighting scheme, we set the hyper-parameters α and β to 0.2 and
15. We take the instance weighting scheme on the loss of the CRF layer. We use
Adam optimizer [24] to optimize all parameters with a learning rate of 0.0005.
We set the batch size to 32 and use the early stop of patience 5. All data shown
in the following results are the average of several independent experiments.

3.4 Overall Results

We use F1 score to evaluate the performances on each domain. Table 3 and
Table 4 show the experiment results of the proposed model on SNIPS and SMP-
ECDT datasets respectively. PCD-Iw denotes our proposed model and PCD
represents our model without instance weight scheme. Scores in each row repre-
sent the performance of the leftmost target domain.



524 S. Liu et al.

Table 3. Slot F1-scores on SNIPS for different target domains under zero/few-shot
learning settings. * indicates the significant improvement over all baselines (p < 0.05)

Training setting Zero-shot Few-shot on 50 samples

Domain↓ Model→ CT Coach CZSL CZSL-Adv PCD PCD-Iw CT Coach CZSL CZSL-Adv PCD PCD-Iw

AddToPlaylist 38.82 50.90 53.29 53.89 52.84 55.83* 68.69 74.68 77.71 76.18 80.24 80.37*

BookRestaurant 27.54 34.01 37.97 34.06 36.84 38.41* 54.22 74.82 77.35 76.28 77.41* 76.59

GetWeather 46.45 50.47 48.70 52.24 56.04 59.80* 63.23 79.64 81.85 83.28 84.23 85.09*

PlayMusic 32.86 32.01 29.14 34.59 31.81 36.31* 54.32 66.38 65.59 68.17 66.44 69.76*

RateBook 14.54 22.06 29.55 31.53 30.26 28.25 76.45 84.62 84.31 87.22 89.16 89.49*

SearchCreativeWork 39.79 46.65 49.32 50.61 49.78 51.81* 66.38 64.56 66.41 66.49 70.00* 69.65

FindScreeningEvent 13.83 25.63 25.95 30.05 27.75 26.95 70.67 83.85 81.14 83.26 84.10 86.43*

Average F1 30.55 37.39 39.13 40.99 40.76 42.50* 64.85 75.51 76.34 77.27 78.80 79.63*

Table 4. Slot F1-scores on SMP-ECDT for different target domains under zero/few-
shot learning settings. * indicates the significant improvement over all baselines (p <
0.05)

Training Setting Zero-shot Few-shot on 5 samples

Domain↓ Model→ CT Coach CZSL PCD PCD-Iw CT Coach CZSL PCD PCD-Iw

cookbook 1.35 16.95 15.00 16.54 22.27* 3.47 38.07 43.18 48.62* 42.31

epg 9.50 18.84 20.54 25.41* 24.59 13.95 31.37 29.54 39.92 39.93*

map 16.75 22.15 23.42 22.95 26.66* 18.39 35.71 32.02 28.33 28.40

message 11.19 29.87 25.23 26.59 29.89* 30.86 33.87 34.86 31.79 36.63*

poetry 19.03 43.19 43.66 43.41 43.81 21.96 50.48 53.67 45.74 65.52*

train 84.58 85.71 85.09 83.96 84.05 84.95 85.16 85.14 86.65* 86.31

video 19.41 26.39 32.13 36.68* 32.53 22.14 30.56 30.82 34.42 35.07*

Average F1 23.21 34.73 35.01 36.50 37.69* 26.94 43.60 43.92 45.07 47.73*

From Table 3 and 4, we can observe that our model significantly outper-
forms all the baselines and achieves the state-of-the-art performance in the
zero/few-shot settings. In the zero-shot setting, compared with the best prior
work, PCD achieves 1.51% and 2.68% improvement on SNIPS dataset and SMP-
ECDT dataset respectively. Moreover, since we did not use adversarial attack
training to improve the robustness of the model, the PCD-Iw actually reaches
3.37% improvement on SNIPS dataset compared to the CZSL model (F1 score
of 39.13). In the few-shot setting, PCD achieves 2.36% and 3.81% improvement
in two datasets. In addition, without instance weighting scheme the PCD frame-
work has also improved in every experiment setting. These results indicate the
effectiveness of our proposed framework.

3.5 Analysis on Slot Entity Identification

Since our PCD-Iw approach especially the instance weighting scheme has a pro-
motion effect on the identification of slot entities, we analyze this effect sepa-
rately. The results are shown in Tables 5 and 6. The scores are calculated from
our slot entity model and the first step in two-stage models [14,15].
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Table 5. BIO F1-scores on SNIPS for different target domains under zero/few-shot
learning settings.

Training setting Zero-shot Few-shot on 50 samples

Domain↓ Model→ Coach CZSL PCD PCD-Iw Coach CZSL PCD PCD-Iw

AddToPlaylist 57.06 57.43 61.77 65.43 79.08 80.98 84.93 85.17

BookRestaurant 59.49 59.51 60.39 65.29 82.56 83.75 84.63 87.06

GetWeather 57.14 59.76 66.24 71.15 79.95 84.96 89.58 90.28

PlayMusic 48.48 49.53 52.22 59.46 70.24 74.72 77.68 82.04

RateBook 32.23 38.13 34.39 35.87 86.69 89.56 89.10 90.08

SearchCreativeWork 48.88 48.27 49.97 54.66 66.69 67.90 70.41 71.47

FindScreeningEvent 37.73 40.71 44.24 46.43 84.02 85.19 84.93 88.22

Average F1 48.72 50.51 52.74 56.90 78.45 81.01 83.04 84.90

Table 6. BIO F1-scores on SMP-ECDT for different target domains under zero/few-
shot learning settings.

Training setting Zero-shot Few-shot on 5 samples

Domain↓ Model→ Coach CZSL PCD PCD-Iw Coach CZSL PCD PCD-Iw

cookbook 65.84 70.50 73.24 74.35 71.74 71.11 74.71 74.31

epg 29.72 34.89 41.46 42.70 38.61 35.28 49.19 49.28

map 53.15 57.00 55.95 57.32 56.21 52.63 54.50 56.25

message 38.35 33.50 36.17 44.58 39.16 40.73 42.06 46.47

poetry 51.15 53.08 51.41 52.05 53.50 54.68 52.69 74.86

train 92.13 89.70 91.04 89.20 91.26 89.65 93.00 93.57

video 32.39 41.58 42.23 42.51 35.12 36.79 40.91 44.15

Average F1 51.82 54.32 55.93 57.52 55.09 54.41 58.15 62.70

As can be seen from Table 5 and 6, our model achieves the state-of-the-art
performance in almost all domains under zero/few-shot settings. In the zero-shot
setting, PCD achieves 6.39% and 3.40% improvement on SNIPS dataset and
SMP-ECDT dataset respectively. In the few-shot setting, PCD achieves 3.89%
and 8.29% improvement in two datasets. The result also verifies our assump-
tions that instance weighting scheme can be used for alleviating the problem of
negative transfer and improving the performance of capturing slot entities.

3.6 Ablation Study

From Table 3 and 4, we can see that compared with PCD-Iw model, the PCD
model has a performance decline of 1.0%-2.5%, which indicates that both our
PCD model and the instance weighting scheme have an improvement effect.
As can be seen from Table 5 and 6, compared with the PCD-Iw model, the
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performance of the PCD model in identifying slot entities decreases by 1.5% to
5.0%. The relatively high gap indicates that the instance weighting scheme has
a more significant improvement in the identification of slot entities.

3.7 Analysis on Seen and Unseen Slots

Following the baselines setting, we also split the test set into “unseen” and “seen”
parts. Table 7 shows the results on seen and unseen slots in two datasets. We can
observe that our approach consistently outperforms the baselines both on the
unseen and seen slots in the two settings and two datasets. Our pipeline model
is to promote all the slot types and the instance weighting scheme also alleviates
the problem of negative transfer. Therefore, our approaches generally improve
on both unseen and seen slot types.

Table 7. Average F1-scores on SNIPS and SMP-ECDT for seen and unseen slots
across all target domains.

Dataset SNIPS SMP-ECDT

Setting 0 sample 50 samples 0 sample 5 samples

unseen seen unseen seen unseen seen unseen seen

CT 27.10 44.18 62.05 69.64 11.85 30.95 18.29 34.64

Coach 34.09 51.93 76.49 80.16 18.98 44.15 31.45 44.78

CZSL 34.57 52.69 77.15 80.09 17.05 46.74 32.74 43.41

CZSL-Adv 36.35 55.43 78.48 79.36 – – – –

PCD 35.79 55.63 78.84 80.75 20.73 48.70 29.84 46.29

PCD-Iw 36.98 56.96 80.61 81.66 21.12 49.08 39.76 49.17

4 Conclusions

In this paper, we propose a new pipeline approach with distinct slot entity and
type prediction for cross-domain slot filling. Our approach consists of a slot
entity identification model and slot type alignment model, which uses distinct
contextual representations for learning and boundary markers for connecting two
sub models. Moreover, we introduce an effective instance weighting scheme to
control the contribution of different source domains by adjusting learning rates.
Experiments show that our approach significantly outperforms existing cross-
domain slot filing models, especially in the accuracy of slot entity identification.
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Abstract. Aspect-based sentiment analysis is a fine-grained task that
aims to clarify the sentiment polarity of a given aspect in a sentence,
whose main challenge is to model the relation between the aspects and
its opinion words. Seeing that the analysis based on dependency tree
has its deficiencies, a Semantic Enhanced Dual-channel Graph Commu-
nication Network is proposed to address such issues. In our model, the
semantic information is captured to supplement syntactic features while
the communication mechanism and the hierarchical attention module
are employed to obtain the word representation. The working perfor-
mance of the proposed model is evaluated on publicly available datasets.
Experimental results reveal that our model significantly outperforms the
baseline methods and achieves advanced results in ABSA tasks.

Keywords: Aspect-based sentiment analysis · Graph neural network ·
Dependency tree

1 Introduction

Aspect-based sentiment analysis (ABSA) is recently a major interest in the field
of natural language processing (NLP) [14,22]. As a fine-grained task, ABSA
targets at identifying the sentiment polarity of a specific aspect in a given text.
Within the same sentence, it is often the case that multiple aspects carrying
sentiment are different. Therefore, the main challenge of this task is how to
model the interaction between aspects and its opinion words.

On the task of ABSA, these years have witnessed the progressing of graph
convolution network (GCN) due to its superiority in processing syntactic struc-
ture [7]. The GCN-based methods set the foundation of capturing the syntactic
information from syntax dependency trees, with recent publications reporting
their effectiveness in sentence encoding [13,15,24]. This becomes an ongoing
trend where syntactic information is exploited as a primary basis for sentiment
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analysis. Specifically, the integration of GCN and syntax dependency tree pro-
vides an opportunity to precisely establish the relation between the aspect and
its opinion words, which addresses the issue of long-distance dependency [9,18].

The application of GCN-based methods are, however, still limited. For one
thing, in sentences that are absent of syntactic features, the syntax structure
analysis can result in low sentiment classification accuracy. According to Fig. 1,
for the aspect ‘psp’, the syntax dependency tree contains a number of noises
(e.g. Despite the connection, the word ‘put ’ is irrelevant to ‘psp’). For another,
both syntax and semantics in one sentence has an effect on each other, which
gives rise to dealing with the interaction between them. As explained in [12],
‘Syntactic effects are difficult to distinguish from semantic effects, because in
natural language, syntactic changes usually alter the meaning of the expression’.

In line with the significance of semantics, current research focuses on integrat-
ing the semantic information to enhance the establishing of syntactic structure.
The computing of cosine similarity is one such approach, owing to its learning to
construct the semantic similarity map [14,25]. Notwithstanding, the cosine sim-
ilarity has the deficiency of insensitivity to the absolute value of distance, which
results in the meaningless connection between unrelated words. By contrast, the
attention mechanism is highlighted considering its capability of resolving the
relation between different words [3,19,22].

In this work, focusing on integrating the semantic information and the syn-
tactic information, A Semantic Enhanced Dual-channel Graph Communication
Network (SDGCN) for ABSA is thus proposed. An attention-based K-Head
cosine similarity model, by applying attention mechanism to the basic semantic
similarity graph, is proposed to characterize the semantic connection and the
connection weight among words. A graph communication unit is also developed
to learn the relation between syntax and semantics. Since each layer of GCN
tends to obtain a specific representation, a hierarchical aspect-based attention
module is devised and exploited in GCN, which captures and fuses the repre-
sentation of aspects and contexts within each layer. Besides, we compare our
models against baseline methods on publicly available datasets to investigate its
working performance.

The contributions of this paper can be summarized as follows:

– Based on theory of cosine similarity, an attention-based K-Head cosine simi-
larity is proposed and applied to construct the semantic similarity graph. In
addition, a graph communication module that interactively learns the syntax
and the semantics is devised to facilitate the integration of semantic informa-
tion into syntactic structure.

– A hierarchical aspect-based attention module is developed to fully capture
the representation of both the aspect and its contexts for further processing,
which improves the encoding effectiveness.

– The experimental results reveal that SDGCN is a competitive alternative
due to its efficiently integrating the semantic information and the syntactic
information.
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Fig. 1. Syntax dependency tree of aspect ‘psp’.

Fig. 2. Architecture of SDGCN

2 Related Work

So much is the significance of ABSA in NLP that an increasing number of meth-
ods concentrate on modeling the relation between aspect and opinion words and
thus identifying its sentiment polarity. Generally, current ABSA methods can be
further divided into two categories, i.e. semantic-based methods and syntactic-
based methods.

Semantic-Based Methods: For the purpose of devising a model to tackle the
texts that is distinctly human, more attention is paid to analyze every individ-
ual word and the semantic components associated with it [2]. In this way, the
attention mechanism, together with its integration into deep learning methods,
is most pronounced.

Aiming to establish aspect-orientated sentiment representation, [19] and [22]
apply the attention mechanisms to the bidirectional long short-term memory (Bi-
LSTM) network. [3] devise a multi-head attention-based method, which works
on capturing sentiment features to address the long-distance relation construct-
ing. [21] integrate both the attention mechanism and the gate mechanism into
CNN to precisely capture the aspect-related information from the context. More
recently, advances in pre-training models, such as transformer and Bert, signif-
icantly improve the capabilities of ABSA methods [16,20]. State-of-arts results
are obtained via extensive training.

Syntactic-Based Methods: The analysis of sentence syntax efficiently estab-
lish a bridge between the aspect and its opinion words, which resolve the
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long-distance dependency fundamentally. The employment of syntactic informa-
tion in ABSA paves a way for accurately setting the connection of the aspect with
its sentiment [4,8,9,18]. Basically, the syntax dependency tree is constructed for
syntactic information performing and conveying [4]. More recently, GCN-based
models receive growing attention in NLP, with the integrating with syntax depen-
dency tree as a primary choice of syntax analysis [26]. Seeing that GCN is capable
of dealing with graph data, the syntax dependency graphs, containing rich rela-
tion information, are constructed [13,23]. [17] exploit GAT to re-constructed the
syntax dependency tree and thus revise the relation between aspect and opinion
words. [15] devise a dependency graph enhanced dual-transformer network, which
combines the flat representations learnt from Transformer and graph-based rep-
resentations learnt from the corresponding dependency graph. In addition, [24]
clarify various types of dependency relations and lexical word pairs by convolut-
ing over hierarchical syntactic and lexical graphs.

3 Methods

The architecture of SDGCN is shown in Fig. 2. There are three main components
of our model, i.e. a sentence encoder, a graph encoder, a hierarchical aspect-based
attention module and a sentiment classifier. We start with describing the working
principle of GCN. Then each component of the SDGCN will be presented in detail.

3.1 Graph Convolutional Network

Fundamentally, GCN is proposed to tackle graph-structured data [7]. Let G =
(V,E,A) be a target graph with V , E and A as the collections of node, edges
and adjacent matrices of the graph, respectively. For V = [vi]

n
i=1, the encoding

of graph is delivered as:

H(l+1) = σ
(
ÃH(l)W (l+1)

)
(1)

where Ã is the symmetric normalized adjacency matrix of A+I, D̃ is the degree
matrix of Ã, H(l) refers to the node collection, W (l+1) ∈ R

dl×dl+1 is the weight
matrix of the l-th layer, and σ is a nonlinear activation function, such as ReLU.

3.2 Sentence Encoder

Given an n-word sentence s = [w1, w2, · · · , wτ+1, · · · , wτ+m, · · · , wn] with aspect
[wτ+1, wτ+2, · · · , wτ+m] in it, we map each word wi into a low-dimensional vector
by looking up in a pretrained word embedding matrix E ∈ R

|V |×de where |V | is
the lexicon size and de is the dimension of word vector [1]. The hidden states of
sentence s are extracted via Bi-LSTM.

Besides, we present the encoding process by using Bert as well. The sequence
“[CLS] s [SEP] a [SEP]” is sent to the encoder to obtain the representation of
a specific aspect. Based on the token-level encoding mechanism, the first token
embedding of each word is taken as the corresponding word-level representation.
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Fig. 3. Constructing of the semantic graph

In such a manner, the output of sentence encoder is H(0) =
[
h
(0)
1 , h

(0)
2 , · · · , h

(0)
n

]

with aspect
[
h
(0)
τ+1, · · · , h

(0)
τ+m

]
.

3.3 Graph Encoder

According to Fig. 2, the graph encoder consists of syntax-based GCNs, semantic-
based GCNs and graph communication modules. Both the syntactic graph and
the semantic graph are constructed and sent to the syntax-based GCNs and the
semantic-based GCNs, respectively.

Syntax-Based GCN: In line with [13], each word in the given sentence is a
node while each syntax dependency is an edge. The syntax dependency tree is
thus transformed into a syntax graph, i.e. Gsyn =

(
Asyn,H(0)

)
. The adjacent

matrix Asyn ∈ R
n×n can be obtained, which is

Asyn(i, j) =
{

1 if i ↔ j
0 others (2)

where i ↔ j indicates the mutual dependency between node i and node j.
The syntactic information of Gsyn is captured via the Syntax-based GCN:

H(l+1)
syn = σ

(
ÃsynH(l)

synW (l+1)
syn

)
(3)

where H
(l+1)
syn ∈ R

n×d, the initialized input is H
(0)
syn = H(0), W

(l+1)
syn ∈ R

n×d rep-
resents the weight matrix of the l-th layer of GCN and d is the output dimension
of GCN.

Semantic-Based GCN: As pointed out in the Introduction, for sentences of
irregular syntax structure, the syntactic analysis can fail to a sentiment classifi-
cation result. That is, more information has to be exploited rather than merely
studying the syntax structure. To this end, an attention-based K-Head cosine
similarity method is proposed (Fig. 3), which aims to capture the semantic rela-
tion within sentence to supplement syntactic information. To start with, H(0) is
mapped into K different d-dimensional semantic vectors to obtain the semantic
features, which is:

H(0),k = σ
(
H(0)W k

H + bk
H

)
(4)

where H(0),k =
[
h
(0),k
1 , h

(0),k
2 , · · · , h

(0),k
n

]
, k ∈ [1,K], W k

H ∈ R
d×d and bk

H ∈
R

1×d stand for the mapping matrix and the bias vector, respectively.
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Subsequently, since the semantic relation among distinguishing words are
different, the self-attention mechanism is employed to automatically learn the
semantic connection weights between words. Hence, the semantic graph Gsem is
generated.

Specifically, the semantic connecting relation between node wi and node wj

is delivered as:
Asem [i, j] = Γ (i, j) (5)

where Asem ∈ R
n×n and Γ (i, j) is computed by:

Γ (i, j) =
1
K

K∑
k=1

attnk
i,j · ak

i,j (6)

ak
i,j =

{
1 if cos

(
h
(0),k
i , h

(0),k
j

)
> ρ

0 otherwise
(7)

attnk
i,j =

(
h
(0),k
i W k

1

) (
h
(0),k
j W k

2

)T

√
d

(8)

with W k
1 ∈ R

d×d and W k
2 ∈ R

d×d standing for the self-attention weight matrices.
Based on the Gsem, the semantic information is captured via GCN, which is:

H(l+1)
sem = σ

(
ÃsemH(l)

semW (l+1)
sem

)
(9)

where H
(l+1)
sem ∈ R

n×d, H
(0)
sem = H(0) and W

(l+1)
sem ∈ R

n×d represents the weight
matrix of the l-th layer of GCN.

Graph Communication: The graph communication unit is developed to per-
form the interaction between the syntax and the semantics. As such, both the
syntactic information and the semantic information are learned and integrated
for further processing. The communication between the inputs H

(l+1)
syn and H

(l+1)
sem

is carried out by the characteristic interaction as follows:

H ′
syn,H ′

sem = COMM
(
H(l+1)

sem ,H(l+1)
syn

)
(10)

H ′
syn = UsynH(l+1)

sem (11)

H ′
sem = UsemH(l+1)

syn (12)

Usyn = softmax
(
H(l+1)

syn W3H
(l+1)
sem

T
+ b3

)
(13)

Usem = softmax
(
H(l+1)

sem W4H
(l+1)
syn

T
+ b4

)
(14)

where W3 ∈ R
d×d and W4 ∈ R

d×d are weight matrices while b3 and b4 are biases.
Furthermore, we have H

(l+1)
syn and H

(l+1)
sem updated by using H ′

syn and H ′
sem,

which can be written as:

H(l+1)
syn = H(l+1)

syn + H ′
syn (15)

H(l+1)
sem = H(l+1)

sem + H ′
sem (16)
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3.4 Hierarchical Aspect-Based Attention

Based on the aforementioned processing, each layer within the GCN obtains a
distinctive representation. On this stage, we shall apply a hierarchical aspect-
based attention module to establish more accurate representations of both the
aspect and the contexts.

Let H
(1)
syn,H

(2)
syn, . . . , H

(L)

syn be the syntactic feature sequence. Considering

h
(l)
syn,i as the i-th node feature in l-th layer and h

(L)
syn,i as that in L-th layer,

the attention weight αl,i between these nodes is computed as:

α′
l,i = h

(l)
syn,i

(
h
(L)
syn,i

)T

(17)

αl,i =
exp

(
α′

l,i

)

∑L−1
j=1 exp

(
α′

j,i

) (18)

Notably, a larger αl refers to a more important l-th layer.
The syntactic feature Hsyn ∈ R

n×d is obtained via the weighted sum of the
syntactic representation from each layer, i.e.

Hsyn = [hsyn,1, hsyn,2, . . . , hsyn,n] (19)

hsyn,i = h
(L)
syn,i +

L−1∑
l=1

αl,ih
(l)
syn,i (20)

The specific syntactic representation of aspect and context can be extracted
from Hsyn in Eq. (19). The attention mechanism is computationally efficient to
capture the aspect-related words from Csyn. Then we have that:

asyn = AvgPool ([hsyn,i] i ∈ (τ, τ + m]) (21)

Csyn = [hsyn,j ] j ∈ [1, τ ] ∪ (τ + m,n] (22)

U ′
syn = softmax

(
asynWacCsyn

T
)

(23)

csyn = AvgPool
(
U ′

syn · C
syn

)
(24)

where asyn ∈ R
1×d, Csyn ∈ R

(n−m)×d, csyn ∈ R
1×d, U ′

syn ∈ R
1×(m−n),

AvgPool (·) stands for the average pooling, Wac ∈ R
d×d is the trainable weight

matrix.
Likewise, the semantic feature sequence H

(1)
sem,H

(2)
sem, . . . , H

(L)
sem is processed in

a same manner. As presented in Eq. (21)–Eq. (24), the semantic representations
of the aspect and the context, i.e. asem and csem, are therefore computed.

Lastly, a trainable parameter α and a linear layer are proposed for the fusion
of syntactic and semantic features. The final representation h ∈ R

1×d is given
by

h′ = α [asyn, csyn] + (1 − α) [asem, csem] (25)

h = σ (h′W5 + b5) (26)

with h′ ∈ R
1×2d. W5 and b5 represent the trainable weight matrix and the bias,

respectively.
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3.5 Model Training

The final representation is sent to a fully connected softmax layer for sentiment
classification. The sentiment distribution of the given aspect is identified as:

ŷ = softmax
(
hWT + b

)
(27)

where both W and b are trainable weight matrices.
The model training is carried out by using the standard gradient descent

algorithm with cross entropy and L2 regularization. The loss function is given
by:

L = −
∑
i∈D

∑
j∈P

yi
j log ŷi

j + λ‖θ‖2 (28)

where D represents the training dataset, P refers to the sentiment classes, y
is the ground truth and ŷ is the predicted one. Besides, λ is the regularization
coefficient while θ indicates the collection of all trainable parameters.

4 Experiments

4.1 Datasets

Experiments are conducted on three public datasets, which are Rest14 and lap14
from SemEval 2014 Task4 [11] and Twitter [4]. All the samples in our experi-
ments are labeled as three different polarities, i.e. positive, neutral and negative.
Details of each dataset are exhibited in Table 1.

4.2 Experimental Settings

In this experiment, the syntax dependency trees of each sentence is constructed
using Stanford parser (https://stanfordnlp.github.io/CoreNLP/). For the basic
SDGCN, word embeddings from all datasets are initialized using 300-dimensional
word vectors pretrained by Glove [10]. Furthermore, the pre-training using
Bert is also conducted, based on which the last hidden state is taken as H(0).
According to [13], a 30-dimensional part-of-speech (POS) embedding and a 30-
dimensional position embedding are integrated into our word embeddings to
enrich the word representations. Besides, We take both sentiment classification
accuracy and Macro-F1 as the evaluation indices. More details of the parameter
setting are available in our code1.

4.3 Baselines

Aiming to verify the effectiveness of the proposed model for the ABSA, 12 com-
parative models are adopted. Notably, the baselines can be subdivided into two
categories as follows:
1 Data and code can be found at https://github.com/xiaodou12046/SDGCN.

https://stanfordnlp.github.io/CoreNLP/
https://github.com/xiaodou12046/SDGCN
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Table 1. Statistics of datasets.

Dataset Positive Negative Neutral

Train Test Train Test Train test

Rest14 2164 728 807 196 637 196

Laptop14 994 341 870 128 464 169

Twitter 1561 173 1560 173 3127 346

Table 2. Sentiment classification results.

Category Method Twitter Lap14 Rest14

ACC F1 ACC F1 ACC F1

Sem. ATAE-LSTM – – 68.70 – 77.20 –

RAM 69.36 67.3 74.49 71.35 80.23 70.80

MGAN 72.54 70.81 75.39 72.47 81.25 71.94

GCAE – – 69.14 – 77.28 –

Syn. LSTM+SynATT – – 72.57 69.13 80.45 71.26

TD-GAT – – 74.00 – 80.35 –

ASGCN 72.15 70.40 75.55 71.05 80.77 72.02

CDT 74.66 73.66 77.19 72.99 82.30 74.02

BiGCN 74.16 73.35 74.59 71.84 81.97 73.48

R-GAT 75.57 73.82 77.42 73.76 83.30 76.08

RepWalk 74.4 72.6 78.2 74.3 83.8 76.9

DGEDT 74.8 73.4 76.8 72.3 83.9 75.1

Ours SDGCN 75.79 74.32 78.95 75.76 83.98 76.74

-w/o Hsyn 74.94 73.72 77.37 74.00 82.37 73.15

-w/o Hsem 73.38 72.26 77.05 73.54 83.27 75.11

-w/o COMM 74.37 71.71 77.21 73.31 81.93 72.1

-w/o HAA 73.52 72.75 77.53 74.02 82.19 73.22

With BERT R-GAT+BERT 76.15 74.88 78.21 74.07 86.60 81.35

DGEDT+BERT 77.9 75.4 79.5 75.6 86.3 80.0

Ours SDGCN+BERT 78.49 77.18 80.38 77.22 87.22 81.51

* ‘–’ indicates the result is not available;
‘-w/o Hsyn’: removing syntax-based GCN;
‘-w/o Hsem’: removing semantic-based GCN;
‘-w/o COMM’: removing graph communication unit;
‘-w/o HAA’: removing hierarchical aspect-based attention module.

Semantic-Based Methods: ATAE-LSTM [19], RAM [3], MGAN [5],
GCAE [21].

Syntax-Based Methods: LSTM+SynATT [6], ASGCN [23], CDT [13], TD-
GAT [21], BiGCN [24], R-GAT [17], RepWalk [27], DGEDT [15].
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4.4 Results

Table 2 shows the results of the ABSA tasks carried out using all datasets. Gen-
erally, one can easily see that the syntax-based methods have a more satisfying
performance than the semantic-based methods. Comparing to the syntax-based
methods, our model is more competitive in all evaluation settings. In terms of the
classification accuracy, the performance gaps between SDGCN and the second
best model are 0.75% (Lap14), 0.08% (Rest 14) and 0.22% (Twitter), respec-
tively. Sentences from Lap14 contain abundant syntactic and semantic informa-
tion, based on which SDGCN outperforms other models by constructing and
fusing the representations for sentiment classification. By contrast, the dataset
Rest 14 is far less informative than Lap14. Clearly, since current encoders are
capable of capturing the syntax structure from Rest 14, the improvement of our
model on this dataset is limited. Besides, seeing that sentences from Twitter are
typically absent of syntactic features, SDGCN effectively exploits the semantic
information to supplement syntactic features. In this way, a higher accuracy is
therefore obtained.

Fig. 4. (a)Word relevance scores with the aspect word ‘food ’. (b) (c)Word relevance
scores for CDT and SDGCN with the aspect word ‘food ’ and ‘psp’, respectively.

With the pre-training of Bert, our model is still the best-performing method
in this group. There exist a range of increase from 0.59% to 0.88% between
SDGCN and other models. The employment of Bert further gives an improve-
ment in the sentiment classification results. Since our model shows the superior-
ity in integrating the syntax and the semantics of the sentence, it is reasonable
to expect better working performance in ABSA, as it is the case.

4.5 Ablation Study

For the purpose of determining the significance of the different components in
SDGCN, an ablation study is carried out. The basic SDGCN is taken as a
baseline model.

The results in Table 2 show that the removal of graph encoders, i.e. syntax-
based GCNs and semantic-based GCNs, results in the drop of working perfor-
mance in all datasets. For Rest14, the ablating of syntax-based GCN has a
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greater impact than semantic-based GCNs while otherwise for Lap14 and Twit-
ter. It establishes a strong evidence that the semantic information can be taken
to supplement syntactic features for a better performance. Moreover, the worst
experimental result comes from the removal of graph communication unit, which
indicates the significance of integrating the semantics and the syntax. Similarly,
the ablating of hierarchical aspect-based attention module also causes a consider-
able accuracy decrease. That is, each component in SDGCN makes a distinctive
contribution to the model.

4.6 Case Study

The mask experiment Eq. (29) [13] is performed to compute the contribution of
each word in the sentence, targeting at investigating the significance of semantics
and syntax processing.

γ(w, s) =
1
m

d∑
i=1

∣∣∣hi
(s) − hi

(s/w)

∣∣∣ (29)

where h(s/w) represents the final representation of sentence s with the mask-
ing of word w while h(s) stands for the basic representation of s. For m =
maxw∈s γ(w, s), supposing that γ(w, s) = 0, we can conclude that w makes no
contribution to h(s).

In Fig. 4(a), the ground-truth sentiment for the aspect word ‘food ’ is posi-
tive. Based solely on the syntactic processing module, focus is given to the word
‘dreadful ’ instead of its opinion word ‘great ’. Furthermore, the application of
semantic-based GCN identifies the word ‘great ’ as a marginal contribution to
the aspect. By contrast, SDGCN assigns more attention to the opinion word
‘great ’ than ‘dreadful ’ by integrating the syntactic information and the seman-
tic information. Thus, the sentiment polarity of the aspect ‘food ’ is classified
as positive. The comparison on relevance scores between SDGCN and CDT is
presented in Fig. 4(b), which demonstrates the effectiveness of our model.

Likewise, according to Fig. 4(c), the relevance scores of ‘loving ’ and ‘new ’
are comparable to the aspect ‘psp’. In contrast, SDGCN can precisely recognize
the opinion word ‘loving ’ and remove the noise from unrelated words. With
the integration of syntactic information and semantic information, the proposed
model significantly improves the sentiment analysis results comparing to the
state-of-arts.

5 Conclusion

In this work, a Semantic Enhanced Dual-channel Graph Communication Net-
work (SDGCN) is established on the task of ABSA. Based on GCN, our model
is capable of capturing and integrating the syntax and the semantics of the sen-
tence. The communication mechanism and the hierarchical attention network
are also applied to obtain the word representation for sentiment classification.
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Experiments are conducted on a variety of datasets to validate that our model
obtains the best and most consistent results comparing to state-of-art methods.
In this way, an even higher sentiment classification accuracy is achieved.
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Abstract. Aspect-level sentiment analysis is a fine-grained task in sen-
timent analysis, whose target is to identify the sentiment polarity of a
specific aspect in a sentence. Due to the complexity of the human lan-
guage, the widely-applied syntactic-based neural network methods have
deficiencies in precisely capturing the relation between aspects and opin-
ion words, and thus results in the misunderstanding of the sentiment.
To address such issue, we focus on optimizing the encoding of syntac-
tic information. To start with, the sub-dependency trees, from the basic
dependency tree, are constructed in line with the syntactic distance.
Further, we propose a novel Highway-Based Local Graph Convolution
Network (HL-GCN) to capture the more-related information and thus
facilitate the sentiment classification. Substantial experiments on a vari-
ety of datasets are performed. Comparing to the state-of-arts, the pro-
posed model shows the effectiveness in eliminating the noise from the
dependency tree, which results in an even higher classification accuracy.

Keywords: Aspect-level sentiment analysis · Highway network ·
Graph convolution network · Local dependency tree

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to precisely identify the polarity
of a given aspect within a certain context, which leads to its widely-application
in multiple fields due to its significance in understanding the sentiment of spe-
cific words. For instance, in the sentence ‘It has bad memory but a good battery
life.’, the sentiment polarity is negative for the aspect ‘memory’ but positive
for ‘battery life’. That is, the aspect-based sentiment analysis, is more and more
recognized as a resolution because it paves a way for greater depth of analysis.

One of the key points of aspect-based sentiment analysis is to establish
the connections between the aspect and opinion words [1–4]. Notably, recent
research highlights the superiority of attention mechanisms in tackling such issue.
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Whereas, the use of attention mechanisms is still limited primarily because of
the complexity of human languages. Current attention-based methods may fail
to capture the relation between the aspect and the opinion words in certain
cases. We take a comment ‘The staff should be a bit more friendly’ as an exam-
ple. The word ‘friendly’ is commonly seen in relation to the word ‘staff’ in
consumer reviews. For this reason, more attention weight may be assigned to
‘friendly’ rather than ‘should be’, which can result in the opposite interpreta-
tion of the aspect sentiment. On the other hand, efforts are made to establish
relation between aspect and opinion words based on syntactic information. Pre-
vious work of manually-defined syntactic principles largely depend on the hand-
craft effectiveness. More recently, the establishing of dependency tree is capable
of providing more comprehensive understanding of the syntax structure, based
on which research of applying RNN to encode the syntactic information is still
ongoing [5–8]. Specifically, RNN-based models have distinctive defects in encod-
ing the syntax structure of the sentence.

Encouragingly, Graph Neural Network is one such approach, with recent
research exploring the potential of integrating syntactic information into con-
text and aspect for ABSA [9–13]. However, in terms of the complexity sentence
structure, the aspect node and its sentiment node can be connected to each other
through multiple generations, during which process irrelevant information can
be introduced. Besides, the issue of consistent node representation, caused by
the over smoothing of multi-layer architecture, is also pronounced [14].

There is a considerable gap between the accurately classifying aspect senti-
ment and the state-of-arts outcomes. In order to tackle those issues, we mainly
focus on establishing the relation between the aspect and its most relevant words
as well as eliminating the noise from unrelated words. To this end, we compute
the syntactic distance of the aspect and its context from the dependency tree,
based on which the basic dependency tree is divided reshape into sub-trees.
Such a sub-tree not only concentrates more on the aspect and its opinions words
with reduced distance, but also removes the noise from unrelated words. Then
we devise a Highway-Based Local Graph Convolution Network (HL-GCN) to
deal with the original dependency trees and proposed dependency sub-trees. Our
model integrates the Highway Network into GCN for effective-information retain-
ing, and thus reduces the noise within the modeling of syntactic tree. Finally,
the highway mechanism is utilized to integrate the global and local information.
On the task of sentiment classification, we compare our models against baseline
methods on publicly available datasets to investigate its working performance.

To sum up, our contributions are three-folds:

1. On purpose to focus on the aspect and its related words, we propose the
sub-dependency trees by pruning the original dependency tress in line with
the syntactic distances.

2. The Highway Network is embedded within the layers of GCN, which reduces
the over-smoothing impact of multi-layers. In such manner, the noise caused
by unrelated words are removed.
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Fig. 1. Architecture of HL-GCN

3. Experiments correspond to extracting syntactic information and reducing
noise are devised to validate the model effectiveness. Our method is a compet-
itive alternative in aspect-level sentiment analysis based on the experimental
results.

2 Related Work

Previous works combining recurrent neural networks (RNNs) and classical atten-
tion mechanism (i.e. co-attention mechanism, self-attention mechanism, hierar-
chical attention mechanism) have already achieve decent results in sentiment
analysis [4,15,16]. In such works attention mechanisms have identified the sig-
nificance in extracting the information from both the aspect and the context
[17]. Besides, the pre-trained model Bert has made great success in some NLP
tasks. For example, [18]utilized an additional corpus to fine-tune and showed its
improvement in aspect extraction and ABSA.

Some other strategies try incorporate syntactic information into representa-
tion forming process. Dong et al. devise the Adaptive Recursive Neural Network
(AdaRNN) that can adaptively propagate the sentiments of words towards the
target based on context and syntactic structure [6]. Following this research,
Nguyen and Shirai propose an extension model of RNN and AdaRNN to obtain
a an aspect representation from ‘a target dependent binary phrase dependency
tree’ [7]. By employing the proximity weight, Zhang et al. build a framework
that leverages n-gram information and syntactic dependency between aspect
and contextual terms into an applicable model [10].

More recently, advances in GCN provide more opportunities for aspect-based
sentiment analysis. [9,11] transformed syntactic dependency tree into graph
structure and utilized GCN to extract syntactic information. [13] proposed
Bidirectional-GCN to encode the directional information of syntactic depen-
dency tree. However, those model ignore the complexity of the sentence struc-
ture when encoding the base syntactic dependency tree. Our work differs from
these because it focuses on eliminating the noise from unrelated words during
syntactic tree establishing. Furthermore, the increasing number of GCN layers
leads to the over smoothing, and thus results in the similar representation of each
node in the graph. To this end, a better working performance, on aspect-based
sentiment analysis, is expected.
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3 Methodology

Figure 1 presents the architecture of HL-GCN. The proposed model firstly maps
the context and target words into word vectors. Then Bi-GRU is carried out to
preserve sequential information on each word vector. In Global GCN module,
the global syntactic information is extracted and integrated into the sentence
representation. Nevertheless, the representation more concentrated on aspect is
obtained in the local GCN module. Lastly, following the average pooling, the
highway mechanism is utlized to fused the representation learned before and
sent to the softmax layer for sentiment polarity prediction.

The components of HL-GCN are introduced separately in the rest of the
section.

3.1 Bi-GRU Layer

The Bidirectional GRU (abbreviated as Bi-GRU) layer is established for
sequence encoding, based on which the hidden state can be extracted.
The hidden state representation of sentence c is conveyed as Hc ={
hc
1, h

c
2, · · · , hc

τ+1, · · · , hc
τ+m, hc

n−1, h
c
n

}
, together with hc

t ∈ R
2dh referring to

the hidden state of Bi-GRU at time step t and dh to the dimensionality of a
hidden state vector in an unidirectional GRU.

3.2 Global Graph Convolution Module

Highway Network. In the highway network, by using the gating units, some
inputs are regulated through the network whilst others can flow across the layers
unimpededly. Let T be the transform gate and C be the carry gate, to facilitate
computing, we set C = 1 − T , thereby the highway network is expressed as:

y = H(x,WH ) ◦ T (x,WT ) + x ◦ (1 − T )(x,Wc) (1)

where WH , WT and WC are parametric matrices optimized via training. We
integrated the Highway unit into the GCN to improve the working performance.

Highway Graph convolution on Dependency Trees. At this stage, we
take the dependency tree, corresponding to the sentence, as a graph. Within
this graph, each representation of aspect/ context refers to a node while the
dependency between each two aspect/ context indicates the node connection.
Accordingly, the GCN model is applied to capture the syntactic information
between each node and its adjacent nodes. The information propagation during
this process can be delivered as:

h̃l
i =

n∑

j−1

AijW
lhl−1

j (2)

together with

hl
i = ReLU(

h̃l
i

(di + 1)
+ bl) (3)



548 S. Pang et al.

where hl−1
j ∈ R

2dh stands for jth node representation evolved from (l − 1)th

layer while hl
i ∈ R

2dh is the output of lth layer. We also have di =
∑n

j=1 Aij

denoting the degree of ith node, W l as the weight and the bl as bias.
On this occasion, the Highway Network [19] is introduced to tackle the

GCN layer output. Specifically, the highway network is embedded between two
adjacent layers whose main purpose is to preserve the node information and
reduce over-fitting of GCN. For the node representation in lth layer defined as
hl = {hl

1, h
l
2, · · · , hl

n}, we concatenate hl and the hidden state Hc. The concate-
nating result is sent to the Highway Network, which is:

Highwayl
in = [hl ⊕ Hc] (4)

and its output can be:

Highwayl
out = Highway(Highwayl

in) (5)

h̃l+1
i =

n∑

j−1

AijW
l+1Highwayl

out (6)

We take HL =
{
hL
1 , hL

2 , · · · , hL
τ+1, · · · , hL

τ+m, · · · , hL
n

}
as the outcome of

L − layer Global Graph Convolutional Module. In this way, the overfitting of
GCN, caused by the increasing number of layers, can be effectively suppressed.
That is, via the multiplying of GCN layers, more attention is assigned to more
important representation, ignoring the longer distances. Moreover, more syntac-
tic information is taken into consideration as well.

3.3 Local Graph Convolutional Module

Notably, aiming at concentrating on the semantic-related words to the aspect,
our Local Dependency Graph Convolutional Module gives the first priority to
the sentiment modifiers, and then other informative words (i.e. conjunctions,
auxiliary verbs and etc.)

As pointed out in the Introduction, within a complex sentence structure,
there can be a long distance between an aspect and its semantic-related words.
For this reason, noise from unrelated words is generated while extracting the
syntactic information. Thus, the sub-tree of the basic dependency tree, with the
direct connection between the aspect and the related words, is established.

ObtainingSub-dependencyTrees. Specifically, the distance between two con-
nected nodes can be defined as 1. By traversing the dependency tree, the syntactic
distance of all remaining nodes to the current aspect is obtained. Figure 2(a) illus-
trates the distance to aspect ‘memory’ and ‘battery life’ in sentence ‘It has bad
memory but a good battery life’. We observe that the distance of ‘memory’ to itself
is zero and that of ‘has’, ‘bad’, ‘but’ and ‘life’ is 1, etc. The distance of ‘battery life’
is determined in the same manner. As pointed out in the Introduction, in classical
attention mechanism, less attention weight will be given to some word like ‘but’ in
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Fig. 2. (a) basic dependency tree with aspect ‘memory’;(b) ‘1-Local’ sub-dependency
tree;(c) ‘2-Local’ sub-dependency tree

this sentence, which is in fact not the case. In comparison, our approach is more
capable in incorporating the syntactic information.

Furthermore, all the nodes with distance 1 are kept to establish a local depen-
dency tree. Figure 2(b) and (c) exhibit the local dependency tree of aspects
‘memory’ with distance 1 and 2 respectively.

Highway Graph convolution on Sub-Dependency Trees. Notwithstand-
ing, there are still some words in the local dependency tree having little con-
tribution to the aspect sentiment. As a result, the proposed Highway GCN is
integrated to further remove the unrelated word representation and update the
aspect. In such a way, we have:

h̃l+1
n−Local =

k∑

j−1

An−Local
ij W l+1

n−Localh
l
j (7)

hl+1
n−Local = ReLU(

h̃l+1
n− Local

(dτ + 1)
+ bl

n− Local ) (8)

Highwayl
in = [hl

n−Local ⊕ Hc] (9)

Highwayl
out = Highway(Highwayl

in) (10)

The final:

h̃L
n−Local =

k∑

j−1

An−Local
ij WL

aspectHighwayL−1
out (11)

It is worth noticing that each node within each sub-graph fully connects to
aspect. We thus adopt a 2-layer-Highway GCN instead of a large number.

We employ the attention mechanism to learn their corresponding importance
a1, a2 and a3 as follow:

a1, a2, a3 = Attention(HL
1−Local,H

L
2−Local,H

L
3−Local) (12)



550 S. Pang et al.

where a1, a2 and a3 indicates the attention values with embedding HL
1−Local,

HL
2−Local and HL

3−Local respectively. The output of this layer is computed as
follows:

HL
Local = a1 ◦ HL

1−Local + a2 ◦ HL
2−Local + a3 ◦ HL

3−Local (13)

where HL
1−Local, HL

2−Local and HL
3−Local are the representation via Highway

GCN.
Accordingly, the sentence representation HL

Local, as the output of this module
is obtained with more concerning about the aspect.

3.4 Aspect-Specific Mask and Context-Specific Mask

The sentence representation from the Local Dependency Graph Convolutional
Module is given as HL

Local, which concerns more about the aspect. In contrast,
HL from the Global Graph Convolutional Module contains more information
about the context. At this stage, we respectively mask out the information of
the context from HL and keep the aspect information within HL

Local unchanged:

maskaspect =

{
0, 1 ≤ t < τ + 1, τ + m < t < n

1, τ + 1 ≤ t ≤ τ + m
(14)

maskcontext =

{
1, 1 ≤ t < τ + 1, τ + m < t < n

0, τ + 1 ≤ t ≤ τ + m
(15)

ĤL = HL ∗ maskcontext (16)

ĤL
Local = HL ∗ maskaspect (17)

The outputs of the masking layer, as the most prominent representation of the
aspect and the context, are presented as ĤL

Local = {0, · · · , ĥL
Local−(τ+1), · · · ,

ĥL
Local(τ+m), · · · , 0} and ĤL = {ĥL

1 , ĥL
2 , · · · , 0, · · · , 0, · · · , ĥL

n}.

3.5 Sentiment Classification

An average pool is performed on aspect, context and sentence to retain the
information within the representations.

ra = AveragePooling(ĤL
Local) (18)

rc = AveragePooling(ĤL) (19)

rs = AveragePooling(Hc) (20)

We use the highway mechanism to obtain the final representation o, ra, rc

and rs are computed as:

o = rs ⊗ [1 − σ(ra )] + rc ⊗ σ(ra) (21)
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Compared with concatenation, the information is enabled to transmit across
multiple channels and we can observe the information flow more clearly in this
way. The final representation o is fed to a fully connected layer, followed by a
softmax classifier to obtain the probability distribution over the different senti-
ment polarities.

p = softmax(Wpo + bp) (22)

where p ∈ R
dp and dp stands for the number of sentiment classes. We also have

Wp ∈ R
dp×3dh and bp ∈ R

dp as the trainable parameter matrix and the learnt
weight.

3.6 Model Training

The training of our model is performed with the loss being the cross entropy loss
with L2 regularization, as shown in Eq. (24), whose parameters and weights are
updated via backpropagation.

L = −ΣiΣ
p
j=1y

j
i log ŷj

i + λ ‖θ|2 (23)

where i is the index of ith sample, j is the index of jth sentiment class, P is the
number of sentiment classes, y is the real distribution of sentiment and ŷ is the
predicted one. Besides, λr is the weight of L2 regularization.

4 Experiment

4.1 Experimental Setting

Our experiments are carried out on three public datasets, i.e. Twitter reported
in [6] as well as lap14 and rest14 from SemEval 2014 Task4 [20]. The detail
of each dataset is presented in Table 1. All the samples in the experiment are
labeled with three polarities: positive, neutral and negative. The dependency tree
is obtained from https://spacy.io/api/dependencyparser. The word embeddings
in all datasets are initialized using 300-dimensional word vectors pretrained by
Glove [21]. To prevent overfitting, the hidden states of Bi-GRU are set to 300
with the learning rate of 0.001. Besides, the Adam optimizer is adopted [22].
The L2- regularization weight is set as 0.0001.

In this experiment, we adopt accuracy and Macro-F1 as evaluation metrics
to denote the working performance. The reported outcomes are obtained as the
average value over 3 runs with random initializations 1.

4.2 Results

We take the model with the best performance in the past two years as the base-
line. The classification results of our model compared to the baseline methods

1 Data and code can be found at https://github.com/pangsg/HLGCN.

https://spacy.io/api/dependencyparser
https://github.com/pangsg/HLGCN
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Fig. 3. Number of GCN layers in rest14 test set

are shown in Table 2, from which several phenomena can be observed. Firstly,
among all these models, the accuracy and F1-score of HL-GCN outperforms
most of baseline methods. Secondly, compared to AS-GCN, CDT, and Bi-GCN,
the performance of GCN has been improved prominently when highway net-
work integrated into GCN and utilizing the sub-dependency tree as input. It
also outperforms R-GAT which encodes the syntactic information in a different
way. This demonstrates the syntactic information can be better encoded by our
HL-GCN. Finally, as the powerful pre-trained model, the basic Bert can improve
the existing ABSA models (R-GAT+Bert, DGEDT+Bert), after incorporating
our HL-GCN(HL-GCN+Bert), a new state of the art has been achieved. These
results have proved that our HL-GCN performs effectively in capturing signifi-
cant syntactic information in ABSA.
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4.3 Number of GCN Layers

We propose an investigation on the number of GCN layers. to verify the effec-
tiveness of Highway Network in our model. We set 3, 4, 5, 6, 8, 10 and 12 for
numbers of GCN layer on rest14 dataset and report the average result.

According to Fig. 3, there is a considerable performance gap between employ-
ing and removing the Highway Network. The application of Highway Network
does bring an increment to the working performance. On the other hand, the
classification accuracy fluctuates within a small range of ±0.5% in spite of the
increasing number of GCN layers. In contrast to the model without Highway
network, the implementation of Highway network explicitly prevents the impact
of overfitting caused by GCN layers.

4.4 Ablation Study

In order to determine the significance of the different components, an ablation
study is carried out.

Table 1. Statistics of datasets.

Dataset Positive Negative Neutral

Train Test Train Test Train test

Rest14 2164 728 807 196 637 196

Laptop14 994 341 870 128 464 169

Twitter 1561 173 1560 173 3127 346

Table 2. Sentiment classification results (including ablation Study)

Category Method Twitter Lap14 Rest14

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

GLoVe models AS-GCN 72.15 70.40 75.55 71.05 80.96 72.21

CDT 74.66 73.66 77.19 72.99 82.30 74.02

BiGCN 74.16 73.35 74.59 71.84 81.97 73.48

R-GAT 75.57 73.82 77.42 73.76 83.30 76.08

DGEDT 74.8 73.82 76.8 72.3 83.90 75.1

Ours HL-GCN 76.01 74.77 78.05 74.14 83.75 76.30

HL-GCN w/o highway 74.84 73.00 75.92 72.00 81.95 74.74

HL-GCN w/o Local GCN 73.68 71.10 75.39 70.69 80.98 70.83

HL-GCN w/o Global GCN 72.95 71.53 75.39 70.79 80.26 70.66

Bert models R-GAT+Bert 76.15 74.88 78.21 74.07 86.60 81.35

DGEDT+Bert 77.9 75.4 79.5 75.6 86.3 80.00

Ours HL-GCN+Bert 78.01 77.28 80.22 77.28 87.66 82.79

* The symbol ‘-’ indicates this result is not available in their work. The results of
baseline are taken
from the original papers.
* ‘w/o highway’ : removing Highway Networks between GCN layers;
‘w/o local GCN’ : removing Local Graph Convolution Module;‘w/o Global GCN’:
removing Global
Graph Convolution Module.
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First, removal of Highway Networks between GCN layers leads to accuracy
drop of 1.17%, 2.13% and 1.8% on Twitter, lap14 and rest14, respectively. Since
the gate mechanism in Highway Network effectively filters the noise, the integra-
tion of highway units into GCN layers can facilitate the retaining of the mean-
ingful information. Second, the withdrawal of Local GCN results in an even
larger decrease in working performance. Without exploiting the closer contact
word dependencies on the dependency trees, the model becomes less competitive
in capturing the relation among aspects and opinion words. In this paper, the
maximal distance of sub dependency trees is ‘3-Local’ according to extra test. As
for ‘w/o Global GCN’ model, the accuracy on three datasets is approximate to
the ‘w/o local GCN’ model. We conclude that the global syntactic information
and the local syntactic information are complementary in sentences of datasets.

4.5 Visualized Analysis

In this section, we empoly the method ‘Mask Experiment’ proposed by CDT
[23] to estimate the sentiment contribution of word w in the sentence a. The
formula is as follows:

γ(w, s) =
1
m

d∑

i=1

| ĥi
a − ĥi

(a/w)| (24)

where d is the dimension of the final representation ĥa learned by our model, w
is the masked word, which indicates w becomes zero vector, ĥ(a//w) is the final
representation of sentence a generated by our HL-GCN with the word w masked.
If ĥi

a = ĥi
(a//w), which demonstrates the word w has no sentiment contribution

to sentence a.

Fig. 4. Word relevance scores for CDT and HL-GCN with the aspect word ‘waiter ’ (Fig.
4(a)) and ‘soft shell crab’ (Fig. 4(b)), respectively. CDT predicts neutral and positive.
HL-GCN predicts negative and neutral (ground truth is negative and neutral)

Figure 4 is the visualization of the attention placed on words, from which can
be observed that our model assigns the attention score more legitimately than
CDT in some long sentences cases. Figure 4(a) shows that CDT has assigned
the highest score on ‘to’ mistakenly. However, our proposed HL-GCN is able
to reduce the attention on irrelevant word ‘to’ and assign more attention on
‘complained’ correctly. The situation in Fig. 4(b) is the same as in Fig. 4(a),
CDT regards ‘well’ as the opinion word for aspect word ‘soft shell crab’. Inversely,
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HL-GCN performs better. Implying that our HL-GCN extracts local and global
information reasonably, which verifies the validity of our strategy mentioned
before.

5 Conclusion

In this paper, a highway-based local graph convolution network is proposed for
aspect-based sentiment analysis task. In line with the working principle of GCN,
the Highway Network and the local dependency tree are integrated into the
model. By exploiting the syntactic structure and the word dependencies, the
relation between aspects and their contexts are precisely captured. As such, the
syntactic and semantic information is preserved and conveyed by the represen-
tations for sentiment classification. Experimental results show that the proposed
model stably outperforms the current baselines and achieves the new state-of-
the-art results on various datasets.
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Abstract. Cross-domain sentiment classification uses useful informa-
tion of the source domain to promote the classification accuracy of the
target domain. Although previous approaches consider the effects of
aspect information of the sentences, they lack the mechanism of syntac-
tic constraints which may mistakenly assign irrelevant words to aspects.
In this paper, we propose Dual Adversarial Network based on BERT
(DAN-BERT), which can better transfer sentiment across domains by
jointly learning the representation of sentences and aspect-based syntax.
Specifically, DAN-BERT extracts the common features at the sentence
level and aspect-based syntax level by adversarial training. We learn the
features of aspect-based syntax by building Graph Convolutional Net-
work over the dependency tree of a sentence. Experiments on the four
datasets show that Dual Adversarial Network based on BERT outper-
forms state-of-the-art methods.

Keywords: Sentiment classification · Dual adversarial network ·
Domain adaptation · Graph convolution network

1 Introduction

Sentiment classification is an important task in natural language processing and
the purpose is to identify the sentiment polarity (e.g., positive or negative) of a
sentence. General sentiment classification methods can achieve outstanding effect
under a large amount of labeled training data [16]. However, we usually face some
obstacles in actual situations: many scenes (e.g., politic and violence) lack suffi-
cient labeled training data and labeling data is expensive and time-consuming.
Cross-domain sentiment classification is proposed to solve this problem. It trans-
fers the knowledge of the source domain to the target domain.

The main challenge of cross-domain sentiment classification is domain dis-
crepancy because different ways of expressing emotions across domains. Typ-
ically, we obtain the domain-invariant features by adversarial learning meth-
ods [3]. It utilizes the domain classifier to minimize the difference of the source
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 557–569, 2021.
https://doi.org/10.1007/978-3-030-88480-2_44
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domain and target domain by the gradient reversal layer (GRL). Recently,
pre-trained language models show that they can effectively improve performance
in many language tasks. BERT is the language model with multi-layer trans-
former and is trained by mask language model and next sentence prediction
tasks [2]. Although BERT has achieved good performance, some problems are
still not resolved when fine-tuning BERT in cross-domain sentiment classifica-
tion. Firstly, the data of target domain is unlabeled which brings many dif-
ficulties to the fine-tuning stage. If we fine-tune BERT only by the labeled
source domain data, the knowledge shift between source and target domains will
reduce the performance of BERT. Secondly, the attention-based methods can-
not sufficiently capture the syntactical dependencies between aspects and con-
text words. Zhang et al. [20] uses an interactive attention transfer network to
model aspects which express the sentiment directly. However, the attention mech-
anism may mistakenly assign unrelated context words to aspects. For exam-
ple, “a good book for beginners but mediocre for more advanced readers”. Atten-
tion mechanism often uses “mediocre” to describe the aspect “beginners”, which
is incorrect in the current context.

In this paper, we propose Dual Adversarial Network based on BERT (DAN-
BERT) for Cross-domain Sentiment Classification. DAN-BERT model sepa-
rately extracts domain-invariant features at the sentence level and aspect-based
syntax level by adversarial training. Firstly, we further pre-train the BERT model
by in-domain data to make the data distribution more inclined to specific task.
In terms of the sentence level, we utilize BERT to learn the source and target
domain features and obtain domain-invariant features by DANN. In terms of
the aspect-based syntax level, BERT output is followed by Graph Convolutional
Network [7] which captures the potential syntactic structure of the sentence by
referring to syntactical dependency trees. Then, we only keep aspect features by
a masking mechanism that covers up non-aspect words. We obtain the aspect-
based syntax features on source and target domains by attention mechanism.
Similarly, we get domain-invariant features through DANN. Because the target
domain data is unlabeled, we select data which is similar to the distribution of
target domain from source domain as candidates. Finally, we connect sentence
and aspect-based syntax features and train the classifier under candidates. In
summary, the main contributions of our work are summarized as follows:

• We propose the dual adversarial network based on BERT which associates with
aspect-based syntax. It uses the dual adversarial mechanism to obtain the sen-
tence and aspect-based syntax features for the sentiment classification task.

• We built the comparative experiments on the four datasets. The experimen-
tal results demonstrate that our method outperforms other state-of-the-art
methods.

2 Related Work

The related works can be classified into two categories: domain adaptation, pre-
trained language model.
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Domain Adaptation: There are many methods to solve the domain adapta-
tion problem. Domain adaptation such as cross-domain sentiment classification
has attracted more and more research attention in natural language processing
over the past decades. Among them, The Structural Correspondence Learning
(SCL) [1] is proposed to produce shared features between source and target
domains. Using domain-independent words as a bridge, the Spectral Feature
Alignment (SFA) [11] solves the feature mismatch problem by aligning domain-
specific words. Sharma et al. [14] extract the transferable information by the χ2

test and cosine-similarity of the word vectors.
In recent years, many methods based on neural networks can extract bet-

ter features. Yu et al. [19] used two auxiliary tasks to induce the sentence
embeddings by convolutional neural network. The Domain-Adversarial train-
ing of Neural Networks (DANN) [3] leverages the adversarial learning method to
extract common features of the source domain and target domain. Hierarchical
Attention Transfer Network (HATN) [9] transfers the word-level and sentence-
level attentions across domains. Interactive Attention Transfer Network (ITAN)
[20] combines the information of sentences and aspects by interactive learning.
However, these models do not consider the aspect-based syntax. We use Graph
Convolutional Network to obtain the potential structure of the sentence by intro-
ducing syntactical dependency trees. We obtain the aspect-based syntax features
through attention mechanism.

Pre-trained Language Model: Pre-trained language model has achieved sig-
nificant improvements on multiple NLP tasks such as text classification [4],
reading comprehension [13], machine translation [18]. Previous methods can be
divided into two categories: feature-based methods and fine-tuning methods. The
first focuses on learning contextualized word representations such as ELMo [12],
which are applied to downstream tasks. Fine-tuning methods mainly further
pre-train the language model on unlabeled corpus and fine-tune model with the
labeled data. Universal language model fine-tuning (ULMFiT) [6] uses different
learning rates and gradual unfreezing. BERT [2] consists of multi-layer trans-
former and learns bidirectional representations. Besides, many studies show that
the improvement is obvious by further pre-training BERT because of decreasing
domain discrepancy [4,15]. Because target domain data is unlabeled, it is unre-
alistic to fine-tune model. To address this problem, we automatically select the
training data from the labeled source domain data.

3 Model

In this section, we first present the problem definition, followed by future pre-
training and the details of dual adversarial network based on BERT. Finally, the
adversarial training process is introduced.

3.1 Problem Definition

We assume that Ds and Dt are the source and target domains. In source domain,
Xl

s = {xi
s, y

i
s}N

l
s

i=1 are labeled source domain data, where N l
s is the number of
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labeled data. Besides, there are also some unlabeled data Xu
s = {xi

s}N
l
s+Nu

s

i=1+N l
s

in
source domain, where Nu

s is the number of unlabeled data. In target domain,
Xt = {xj

t}Nt
j=1 are unlabeled data, where Nt is the number of unlabeled data.

Cross-domain sentiment classification aims to train a classifier on the source data
to predict the label of target domain data. The overall framework of the model
is shown in Fig. 1.

Fig. 1. The architecture of the DAN-BERT. The dotted line of GCN Layer denotes
self-looping.

3.2 Further Pre-training

Although BERT achieves great success, there are still challenges in domain adap-
tation. BERT is pre-trained by Wikipedia which is not related to the sentiment
classification task. Especially in the cross-domain scenario, the domain discrep-
ancy will degrade the performance of BERT. Therefore, we continue pre-training
the BERT on in-domain data. We focus on four datasets: Amazon, IMDB, Yelp
and Airline. Because the Amazon dataset includes four fields: Books, Dvd, Elec-
tronics and Kitchen, we pre-train BERT on these data. On the other hand, we
further pre-train BERT with the rest of the datasets.

3.3 Dual Adversarial Network Based on BERT

The further pre-trained BERT is suitable for specific task, but the aspect-based
syntax features are not joined. In this study, we first obtain sentence features
by BERT. Then, we utilize the multi-layer graph convolution networks over
the syntactical dependency tree of a sentence to get syntactic features. Using
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the syntactic features as a bridge, we obtain aspect-based syntax features by
a attention mechanism which assigns weights to aspects. Moreover, we propose
a data selection method that better fine-tunes BERT to adapt target domain.
Finally, the dual adversarial training is introduced.

Extracting Sentence Features: BERT model consists of 12 transformer
layers and the input sequence length does not exceed 512. The first token
of sequence is the classification embeddings [CLS]. Given a sentence x =
[x[CLS], x0, x1, ..., xk], where k is the sequence length. The sentence features are
obtained through BERT encoder:

h = BERT (x) (1)

where h = [h[CLS], h0, h1, ..., hk]. We choose [CLS] of last layer as final sentence
features h[CLS].

Extracting Aspect-Based Syntax Features: Because the structure of syn-
tactic dependency tree is graph, we leverage the GCN to encode it. The depen-
dency tree of a sentence is built by the spaCy toolkit 1. GCN codes and updates
the representations of nodes in the graph by immediate nodes. For a sentence,
the number of nodes is k and the adjacency matrix A ∈ R

k∗k is obtained on a
dependency tree. Following the idea of self-looping [7], each word connects itself
so that the diagonal of A is 1. The representation of each node is updated with
GCN as below:

gli = ReLU((
k∑

j=1

AijW
lgl−1

j )/(Di + 1) + bl) (2)

where gl−1
j ∈ R

d is the j−th token’s representation in l − 1 layer. Degree matrix

Di =
k∑

j=1

Aij is the j−th token in the tree. W l and bl are weights and biases.

We use two-layers GCN to learn the syntax features g = [g0, g1, ..., gk]. The last
layer embedding of tokens h̄ = [h0, h1, ..., hk] are fed into GCN.

We extract all aspects of sentence AspectData by applying existing work [8].
We mask out words that are not belong to AspectData. The mask mechanism
is as follows:

Mi =

{
Mi = 1, xi ∈ AspectData

Mi = 0, xi /∈ AspectData
(3)

where M is mask vector. The masked syntax features gl = [gl0, g
l
1, ..., g

l
k] = gM

can capture long-distance words relations at aspect level. Each aspect expresses
different semantics under syntax analysis. We construct an attention mechanism
based on syntax features. The aspect-based syntax features are computed as
below:
1 https://spacy.io/.

https://spacy.io/
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αt =
exp(ht(glt)

T )
∑k

i=1 exp(hi(gli)T )
(4)

hAS =
k∑

i=1

αihi (5)

Dual Adversarial Training: We separately obtain the domain-invariant fea-
tures at the sentence level and aspect-based syntax level by adversarial training.

Domain Classifier: The goal of domain classifier is to predict the domain labels
which come from the source or target domains. We use the gradient reversal
layer (GRL) [3] to learn the common features which is difficult to distinguish
by the domain classifier. The forward propagation and backpropagation process
are as follows:

F (x) = x,
∂F (x)

∂x
= −λI (6)

where λ is the trade-off parameter. Before feeding to the domain classifier, the
sentence and aspect-based syntax features separately go through the GRL as
F (h[CLS]) = ĥ[CLS], F (hAS) = ĥAS . Then we feed it to the corresponding
domain classifiers:

yd
[CLS] = softmax(W d

[CLS]ĥ[CLS] + bd[CLS]) (7)

yd
AS = softmax(W d

AS ĥAS + bdAS) (8)

The cross-entropy loss is Ldc for data of the source and target domains:

Ldc = − 1
N l

s + Nt

N l
s+Nt∑

i=1

(L(yd
[CLS], di) + L(yd

AS , di)) (9)

where di is the true domain label (0 indicates the source domain and 1 indicates
the target domain). The parameters of domain classifier are not shared.

Sentiment Classifier: The sentence and aspect-based syntax features are sent to
the sentiment classifier. The formula is as follows:

ys
[CLS] = softmax(W s

[CLS]h[CLS] + bs[CLS]) (10)

ys
AS = softmax(W s

AShAS + bsAS) (11)

The classifier is trained on the labeled data from source domain:

Lsc =
1

N l
s

N l
s∑

i=1

(L(ys
[CLS], y

i
s) + L(ys

AS , yi
s)) (12)

where yi
s is the ground truth of source domain. The parameters of sentiment

classifier are not shared (Fig. 2).
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Fig. 2. The details of data selection. We map source and target domain data to a
shared space by adversarial training. For each centroid, we select k nearest neighbors
from source domain.

Data Selection: until now, we obtain the domain-invariant features and the
data distribution of the source and target domains is similar. Intuitively, we can
select training data from source domain. We propose a data selection method
that automatically selects training data. We first obtain the sentence features
on source and target domains hs

[CLS], ht
[CLS]. Since the target domain data are

unlabeled, we cluster the features of target domain [10] and get two centroids
ct1[CLS], ct2[CLS]. We select k candidates of each centroid from source domain. The
candidates Ns1

[CLS], Ns2
[CLS] are selected via nearest neighbors selection (kNN)

as shown in Fig. 3. The candidates are N[CLS] = Ns1
[CLS] ∪ Ns2

[CLS] at sentence
level. Similarly, we get candidates N[AS] = Ns1

AS ∪ Ns2
AS at aspect-based syntax

level. The final training data are Nds = N[CLS]∩NAS . We combine sentence and
aspect-based syntax features for target classification:

yt = softmax(Wt[hCLS ⊕ hAS ] + bt) (13)

The target classifier is trained on Nds as follows:

Lds =
1

Nds

Nds∑

i=1

L(yt, yi
s) (14)

Training Strategy: The training process is divided into two stages. We first
get the domain-invariant features of sentence and aspect-based syntax using the
following loss:

L = Ldc + Lsc (15)

The best model is saved on the validation set. Then we use data selection
method to obtain training data through the saved model. The loss of target
classifier is as follows:
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Lt = Lds + ρLreg (16)

where Lreg is the regularization and prevents the overfitting, ρ is the hyperpa-
rameter.

4 Experiment

4.1 Dataset

We utilize Amazon reviews dataset [9] to evaluate the effectiveness of our
method. It includes four domains: Books (B), Dvd (D), Electronics (E) and
Kitchen (K). We built 12 cross-domain sentiment classification tasks. For exam-
ple, the A → B is the task which transfers from the source domain A to the target
domain B. There are a lot of unlabeled data which are used to further pre-train
the BERT. Moreover, we also select the three datasets IMDB (I), Yelp (Y) [17]
and Airline (A) datasets 2 with the different origins. The BERT also continues to
be pre-trained on the unlabeled data and we construct 6 cross-domain sentiment
classification tasks. In order to make the label space consistent, we uniformly
changed the label to binary. Table 1 summarizes the all datasets.

Table 1. Statistics of the experimental datasets

Domain Books Dvd Electronics Kitchen IMDB Yelp Airline

Train 5600 5600 5600 5600 5600 5600 5600

Test 400 400 400 400 400 400 400

Unlabel 9750 11843 17009 13856 78919 72966 35396

4.2 Implementation Details

We utilize the WordPiece to split the sentences to tokens. In our case, we use the
BERTbase (uncased) to extract the sentence embeddings. We separately continue
pre-training the BERT on Amazon and other datasets. During the pre-train, the
maximum sequence length, batch size, learning rate and step is 128, 32, 2e−5
and 100000 respectively. During the dual adversarial training, the maximum
sequence length, batch size, learning rate and dropout is 128, 20, 2e−5 and 0.1
respectively. The adaptation rate is λ = 2

1+exp(−10q)−1 , where q = e
E . The e and

E are current epoch and the maximum epoch, respectively.

4.3 Baselines

Naive: it is a non-domain-adaptive method based on LSTM [5].

DANN: it is based on the adversarial training. DANN performs domain adapta-
tion with the representation encoded in a 5000-dimension feature vector [3].
2 https://github.com/quankiquanki/skytrax-reviews-dataset.

https://github.com/quankiquanki/skytrax-reviews-dataset
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BERT: it fine-tunes vanilla BERT by labeled source domain data.

FPT-BERT: the further pre-training BERT model on unlabeled data. It is
trained on labeled source domain data.

IATN-BERT: IATN [20] model based on BERT.

DAN-BERT: it is the proposed models.
We compare our method with other state-of-the-art methods on four datasets

and the experimental results are shown in Table 2. The mean and standard error
of the accuracy are calculated over 5 runs with different random seeds. It is
obvious that DAN-BERT method achieves the best performances on most tasks.
Since the Naive only use the source domain samples, the classification accuracy
is low at every task. The vanilla BERT only uses the source domain data and the
classification accuracy is 85.8% on average. It proves that BERT model generates
high-quality sentence embeddings. Compared with BERT, FPT-BERT exceeds
3% on average. BERT is continuously pre-trained on in-domain data and the
data distribution is closer to cross-domain sentiment classification task. The
performance is significantly improved due to reduce domain discrepancy. For

Table 2. Classification accuracy (%) on the Amazon, IMDB, Yelp and Airline datasets.

S T Naive DANN BERT IATN-BERT FPT-BERT DAN-BERT

B D 80.1 ± 0.2 81.2 ± 0.4 88.6 ± 0.3 88.8 ± 0.5 90.8 ± 0.5 91.4 ± 0.4

B E 72.2 ± 0.4 76.5 ± 0.7 89.4 ± 1.3 89.9 ± 1.4 93.8 ± 0.3 94.1 ± 0.2

B K 74.6 ± 0.3 80.3 ± 0.2 90.5 ± 0.4 91.4 ± 0.6 94.0 ± 0.5 94.8 ± 0.3

D B 80.1 ± 0.5 81.6 ± 0.6 90.9 ± 0.5 90.8 ± 0.6 92.2 ± 0.4 93.0 ± 0.3

D E 72.3 ± 0.3 76.9 ± 0.4 88.5 ± 1.1 89.3 ± 0.2 93.0 ± 0.2 93.5 ± 0.4

D K 75.8 ± 0.6 77.6 ± 0.6 90.9 ± 0.2 91.7 ± 0.6 93.1 ± 0.5 94.0 ± 0.4

E B 70.9 ± 0.3 77.7 ± 0.2 88.7 ± 0.2 88.6 ± 0.7 91.4 ± 0.3 91.8 ± 0.2

E D 74.7 ± 0.4 75.5 ± 0.3 86.4 ± 0.6 86.8 ± 0.6 90.7 ± 0.7 91.0 ± 0.3

E K 80.9 ± 0.6 85.0 ± 0.6 92.8 ± 0.6 93.3 ± 0.2 95.0 ± 0.2 94.8 ± 0.3

K B 72.5 ± 0.3 79.0 ± 0.5 89.2 ± 0.3 89.2 ± 0.6 91.7 ± 0.4 92.5 ± 0.3

K D 73.6 ± 0.2 78.3 ± 0.4 87.9 ± 0.4 87.6 ± 1.0 90.7 ± 0.5 90.9 ± 0.1

K E 79.8 ± 0.4 84.6 ± 0.2 92.5 ± 0.2 92.3 ± 0.7 94.0 ± 0.4 94.7 ± 0.3

I Y 68.2 ± 0.4 72.4 ± 2.1 80.8 ± 1.7 83.1 ± 0.3 82.4 ± 0.6 87.1 ± 0.5

I A 69.5 ± 0.8 74.6 ± 1.8 80.1 ± 2.1 80.4 ± 0.7 83.2 ± 1.2 85.2 ± 0.4

Y I 65.3 ± 1.1 69.5 ± 1.5 72.1 ± 1.3 74.6 ± 0.6 79.9 ± 0.9 80.3 ± 0.7

Y A 70.2 ± 0.9 74.2 ± 2.2 83.8 ± 1.6 84.8 ± 0.4 86.2 ± 0.8 87.3 ± 0.5

A I 60.9 ± 0.6 63.7 ± 1.9 70.6 ± 1.6 70.3 ± 0.6 70.1 ± 1.3 77.4 ± 0.4

A Y 71.1 ± 0.7 73.9 ± 1.3 81.2 ± 1.1 80.4 ± 0.4 86.0 ± 0.7 86.9 ± 0.6

Avg 72.9 76.8 85.8 86.3 88.8 90.0
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simple transfer tasks (E → K), the classification accuracy of FPT-BERT exceeds
DAN-BERT because the difference of source and target domains is small. For
hard transfer tasks (Y → I, A → I), FPT-BERT can improve more performance
compared with BERT. The DAN-BERT improves the classification accuracy by
3.7% and 1.2% than IATN-BERT and FPT-BERT respectively. It proves that
our method can extract better features.

4.4 Feature Visualization

To intuitively understand the effect of further per-training and dual adversarial,
we visualize the features of the variants of BERT on source and target domains
as shown in Fig. 3. We perform the visualization on B → D task by t-SNE. In
the BERT (3a), the samples of different categories of the source domain are well
distinguished. However, there are still some samples of the target domain are con-
fused. Because the BERT is continuously trained, the classification accuracy is
improved (3b). For DAN-BERT model (3c), the domain discrepancy is decreased
and the domain-invariant features are distilled. The data from different domains
are fully mixed by adversarial training.

Fig. 3. The t-SNE visualization of BERT (a), FPT-BERT (b) and DAN-BERT (c) on
B → D task. The red, blue, purple and green points denote the source positive, source
negative, target positive and target negative examples correspondingly.

4.5 Ablation Studies

To analyze the effect of domain-invariant features at sentence (S) and aspect-
based syntax (AS) level. we conduct the ablation experiments on task B → D,
E → V, V → D, I → A and Y → I in Table 3. The experimental results show
that sentence and aspect-based syntax features can improve the classification
accuracy.
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Table 3. Results of ablation study. -w/o means without.

Model BERT -w/o S -w/o AS DAN-BERT

B → K 90.5 ± 0.4 94.5 ± 0.3 94.2 ± 0.2 94.8 ± 0.3

D → B 90.3 ± 0.5 92.8 ± 0.4 92.4 ± 0.3 93.0 ± 0.3

I → Y 80.8 ± 1.7 84.1 ± 0.6 83.8 ± 0.7 87.1 ± 0.5

Y → A 83.8 ± 1.6 85.2 ± 0.6 84.9 ± 0.7 87.3 ± 0.5

A → I 70.6 ± 1.6 74.1 ± 0.3 73.3 ± 0.8 77.4 ± 0.4

4.6 Effects of K

To verify the effect of kNN, we select different k on task B → K, D → B, A → I
and I → Y in Fig. 4. For simple transfer tasks (B → K, D → B), as k increases,
the performance is improved by 4.1% on average. For difficult transfer tasks (A
→ I and I → Y), the improvement is 10.2% on average. Because the distribution
of source and target domains is close on (B → K, D → B), we effectively train
the classifier by small source domain data. We need more training data from
source domain on (A → I and I → Y) and the improvement is obvious.

Fig. 4. Classification accuracy (%) with different numbers of neighbors. ALL means
all source domain data.

5 Conclusion

In this paper, we propose a novel framework to enhance the performance for
Cross-domain Sentiment Classification. We further pre-train the BERT on in-
domain data to reduce domain discrepancy. Then, it uses the GCN to obtain
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the aspect-based syntax features over syntactical dependency trees. The domain-
invariant sentence and aspect-based syntax features are get through dual adver-
sarial mechanism. Besides, we also propose a data selection method which auto-
matically selects training data from the source domain. Experiments on the four
datasets demonstrate that DAN-BERT outperforms the state-of-the-art meth-
ods.

Acknowledgments. This paper is Supported by National Key Research and Devel-
opment Program of China under Grant No.2017YFB0803003 and National Science
Foundation for Young Scientists of China (Grant No. 61702507).

References

1. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pp. 120–128 (2006)

2. Devlin, J., Chang, M.W., Lee, K.: Bert: pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2030–2096 (2016)

4. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains
and tasks. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 8342–8360 (2020)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, pp. 328–339 (2018)

7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR.
OpenReview.net (2017)

8. Li, X., Bing, L., Li, P., Lam, W., Yang, Z.: Aspect term extraction with history
attention and selective transformation. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI, pp. 4194–4200.
ijcai.org (2018)

9. Li, Z., Wei, Y., Zhang, Y., Yang, Q.: Hierarchical attention transfer network for
cross-domain sentiment classification. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

10. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

11. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classi-
fication via spectral feature alignment. In: Proceedings of the 19th international
conference on World wide web, pp. 751–760. ACM (2010)

12. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT, pp. 2227–2237
(2018)

http://arxiv.org/abs/1810.04805


DAN for Cross-domain Sentiment Classification 569

13. Ramnath, S., Nema, P., Sahni, D., Khapra, M.M.: Towards interpreting BERT
for reading comprehension based QA. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, pp. 3236–3242 (2020)

14. Sharma, R., Bhattacharyya, P., Dandapat, S., Bhatt, H.S.: Identifying transferable
information across domains for cross-domain sentiment classification. In: Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL, pp. 968–978 (2018)

15. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification?
In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI),
vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32381-3 16

16. Tang, D., Qin, B., Feng, X., Liu, T.: Target-dependent sentiment classification with
long short term memory. arXiv preprint arXiv:1512.01100 (2015)

17. Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products
for document level sentiment classification. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
1014–1023 (2015)

18. Yang, J., et al.: Towards making the most of BERT in neural machine translation.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 9378–9385.
AAAI Press (2020)

19. Yu, J., Jiang, J.: Learning sentence embeddings with auxiliary tasks for cross-
domain sentiment classification. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, pp. 236–246 (2016)

20. Zhang, K., Zhang, H., Liu, Q., Zhao, H., Zhu, H., Chen, E.: Interactive attention
transfer network for cross-domain sentiment classification (2019)

https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
http://arxiv.org/abs/1512.01100


Syntax and Sentiment Enhanced BERT
for Earliest Rumor Detection

Xin Miao1(B), Dongning Rao1, and Zhihua Jiang2

1 School of Computer, Guangdong University of Technology, Guangzhou, China
miaox@mail2.gdut.edu.cn, raodn@gdut.edu.cn

2 College of Information Science and Technology, Jinan University,
Guangzhou, China

tjiangzhh@jnu.edu.cn

Abstract. With the rapid development of social media, rumor is becom-
ing an increasingly significant problem. Although quite a few researches
have been proposed recently, most of methods rely on contextual infor-
mation or propagation pattern of reply posts. For some threatening
rumors, we need to interrupt their transmission in the beginning. To
solve this problem, we propose Syntax and Sentiment Enhanced BERT
(SSE-BERT), which can achieve superior performance only based on
source post. SSE-BERT can learn extra syntax and sentiment features
by additional linguistic knowledge. Experimental results on two real-word
datasets show that our method outperforms some state-of-the-art meth-
ods on earliest rumor detection. Furthermore, to alleviate the shortage of
Chinese dataset, we collect a new rumor detection dataset Weibo20 (The
experimental resource is available https://github.com/SeanMiao95/SSE-
BERT).

Keywords: Earliest rumor detection · BERT promotion · Linguistic
knowledge integration

1 Introduction

With the increasing proportion of people who acquires information from social
media [12], the risk of online rumor is being more obvious. Rumor is typically
defined as a statement whose truth value is unverified or deliberately false [11].
Rumor not only causes economic damages, but also could be life-threatening. For
instance, it was reported that at least 800 people died and 5800 were admitted to
hospital as a result of false information related to the COVID-19 pandemic [13].
Accordingly, it is significant to identify misinformaiton without delay, especially
for the life-threatening speech, which may cause injury to any receiving user.

Rumor detection can be divided into three stages corresponding to the life-
cycle of rumor, viz. earliest rumor detection, early rumor detecion and general
rumor detection. Figure 1 shows the scope of each stage in rumor dissemination.

The design philosophy of existing rumor detection methods can be aligned
with aforementioned three stages. The majority of existing methods focuses on
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 570–582, 2021.
https://doi.org/10.1007/978-3-030-88480-2_45
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Fig. 1. Scope illustration of rumor dissemination on each stage.

general rumor detection. For example, Bian et al. [1] utilize bi-directional graph
convolutional network (Bi-GCN) to learn propagation features, which achieves
state-of-the-art results. Khoo et al. [5] extract interaction features from source
post and reply posts by transformer model. Although they can achieve impressive
results, the performance will decline significantly in absence of reply posts.

With the development of rumor detection, few methods designed for early
rumor detection have been proposed. For example, Zhou et al. [22] leverage deep
reinforcement learning to enable classifier to make judgement with less reply
posts. Xia et al. [16] employ Kleinberg algorithm to segment reply posts into
several sub-groups based on state transition, which enables encoder to capture
fine-grained state features on early stage. Generally, these methods can achieve
better performance on early detection, but they still depend on early reply posts.

Earliest rumor detection is challenging, because of only source post is avail-
able. The method proposed by Xu et al. [17] is the only work focuses on earliest
rumor detection. It applies textual and topic features of source post to detect
rumor. Although it needn’t reply posts, the performance remains mediocre. It not
considers the further linguistic features of rumor, and not leverags transformer-
based model, which has been proven to possess strong feature-extraction ability.

Devlin et al. [2] propose Bidirectional Encoder Representations from Trans-
formers (BERT), which is pre-trained based on a large corpus, possessing abun-
dant linguistic knowledge. But BERT lacks advanced knowledge for rumor detec-
tion. Inspired by rumor psychology, we propose Syntax and Sentiment Enhanced
BERT (SSE-BERT) for earliest rumor detection. Knapp [6] indicates that suc-
cessful rumor is short, simple, and salient, which means that rumor contains spe-
cialized syntax features compared with non-rumor. To introduce syntax knowl-
edge into BERT, we propose Dependency Encoder (DE) module, which employs
off-the-shelf dependency parser to generate dependency tree of source post, then
converts the dependency tree to dependency sequence by preorder traversal.
BERT can learn syntax features from the dependency sequence, which solves the
problem that BERT cannot process tree-structured data. Additionally, DiFonzo
et al. [3] reveal that anxiety predicts rumor activity, evoking emotion is the
nature of rumor. And previous works [4,14] have demonstrated the effective-
ness of sentiment features on general rumor detection, but they not consider to
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introduce fine-grained sentiment knowledge into BERT. To solve the problem,
We propose Sentiment Recognizer (SR) module, which introduces fine-grained
sentiment embeddings into BERT based on off-the-shelf sentiment lexicon. SR
module can improve the perception of sentiment for BERT. Compared with some
state-of-the-art methods, SSE-BERT achieves better performance on two real-
world datasets, reaching 94.7% and 94.3% accuracy respectively only depend on
source post. The main contributions of this work are as follows:

• To alleviate the shortage problem of Chinese dataset, we collect a new rumor
detection dataset Weibo20, which is crawled from social media Sina Weibo1.

• We propose SSE-BERT, which integrates syntax and sentiment knowledge
for earliest rumor detection. To the best of our knowledge, this is the first
study of introducing syntax or fine-grained sentiment knowledge into BERT.

• Our proposed SSE-BERT outperforms all compared methods on earliest
rumor detection, which fills the vacancy of current methods on earliest stage.

2 Related Work

General Rumor Detection. Most of existing methods not consider the lim-
itation of using reply posts. Early methods [10,15,19] employ Support Vector
Machine (SVM) as classifier. The feature engineering-based methods are biased
and time-consuming.Recently, deep learningmethods achieve better performance.
The most common methods [4,9,14] input source and reply posts into Recurrent
Neural Network (RNN) to learn temporal features. Most recently, the emerging
methods [1,7] attempt to identify the propagation pattern byGraphConvolutional
Network (GCN). In addition, transformer-based method [5] also obtains competi-
tive performance. Although these general detection methods can reach impressive
results, the performance will decline when reply posts are unavailable.

Early Rumor Detection. Few methods consider the limitation of early stage,
only early reply posts are allowed to be used. The explicit method [22] leverages
reinforcement learning to lead the rumor detection module in making earlier judg-
ments. The implicit methods [16,20] improve the early performance by incorporat-
ing additional features, viz. user credibility features and fine-grained state features
respectively. The additional features can make up for the insufficient of features
on early stage. Although these early detection methods rely on less reply posts,
the performance will decline when the early reply posts are not available.

Earliest Rumor Detection. Almost no method consider the limitation of ear-
liest stage, no reply post is available. Majority of researchers ignores this situa-
tion, the only method [17] combines textual and topic features of source post to
improve the performance. This method only considers topic features as supple-
ment, ignoring the further linguistic features of rumor, e.g. syntax and sentiment.

1 http://weibo.com.

http://weibo.com
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Moreover, it not leverages transform-based model, which has been proven to pos-
sess strong feature-extraction ability. Therefore, it performs poorly. To address
this issue, we enhance BERT with syntax and sentiment knowledge. Compared
with above methods, our method achieves better performance on earliest stage.

3 Problem Formulation

Let D = {(s1, y1), (s2, y2), ..., (s|D|, y|D|)} be the dataset of rumor detection,
where si is the i-th source post, yi is the corresponding label and |D| denotes
the total number of the source posts. On social media, source post si is usually
a short text, which contains the incident description released by publish user.
Rumor detection is regarded as binary classification task viz. yi ∈ {0, 1}, where
yi = 0 represents source post si is non-rumor, then yi = 1 represents si is rumor.

In short, earliest rumor detection can be described as follow: given a set of
source posts S = {s1, s2, ..., s|D|}, we need to predict the corresponding labels
Y = {y1, y2, ..., y|D|}. These notations express the same meaning in the following.

4 The Proposed SSE-BERT Model

4.1 Overall Architecture

The overall architecture of SSE-BERT is shown in Fig. 2. SSE-BERT is com-
posed of three components, DE module, SR module and BERT. DE module
employs dependency parser to generate the dependency tree of source post, then
converts the dependency tree to dependency sequence by preorder traversal. SR

Fig. 2. The overall architecture of SSE-BERT, the source post is a real-world example.
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module introduces fine-grained sentiment embeddings into BERT, then assigns
specific embeddings for each token according to sentiment lexicon. After syntax
and sentiment knowledge is introduced, BERT model learns contextual repre-
sentation from dependency sequence and source post. The final representation
vector of [CLS] token is fed into Fully Connected Network (FCN) for prediction.

4.2 Dependency Tree Encoding

Dependency parsing aims to annotate sentences into a dependency tree,
which is designed to be easy for humans and computers alike to understand.
Although dependency tree contains syntax knowledge, BERT cannot process
tree-structured data. Our proposed DE module solves this problem, the details
of DE module is shown in Fig. 3. We first employ dependency parser DDParser
[21] to annotate source post si into dependency tree, each node represents a
word or entity, each edge represents the relationship between two nodes, anno-
tated with a specific relation tag. Then we traverse the dependency tree by
preorder traversal, and return the relation tags in turn, the ordered relation tags
is the dependency sequence di. BERT learns syntax features from di, The entire
process can be regarded as encoding dependency tree into sequence, it can be
formulated as:

di = Pre(Parser(si)) (1)

where Parser represents DDParser, Pre represents preorder traversal algorithm.
After acquiring dependency sequence, we put dependency sequence di in front

of source post si before executing WordPiece tokenization. The default tokenizer
of BERT is employed to project the inputs to token embeddings TEi ∈Rn×d:

TEi = Tokenizer([CLS]; di; [SEP]; si) (2)

where n is the number of tokens, d is the hidden size of representation vector.
Classifier token [CLS] is placed at the forefront, sentence separator token [SEP]

Fig. 3. The detail illustration of DE module.
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is inserted between di and si. To enable BERT to recognize the relation tags,
we add relation tokens to the original vocabulary of BERT, e.g. [ADV] token
represents the ADV relation tag, this is benefit from the reserved position in the
vocabulary. The detailed explanation of the relation tags are explained in [21].

4.3 Sentiment Words Recognition

To enable BERT to recognize sentiment words, we introduce external sentiment
knowledge viz. fine-grained sentiment lexicon [18], which divides emotion words
into seven categories by specialists, including “fun”, “good”, “angry”, “sad”,
“fearful”, “evil” and “astonished”. To introduce the sentiment knowledge into
BERT conveniently, we define a new type of embeddings viz. sentiment embed-
dings for BERT. Except above mentioned seven emotion types, we also define
None type in sentiment embeddings, which corresponds to non-sentiment words.

SR module is used to assign corresponding sentiment embeddings for each
input token. First, we need to figure out the sentiment words in source post si:

SenWordsi = Lookup(Segmenter(si), lexicon) (3)

where Segmenter represents the word segmenter [8], it is essential for Chi-
nese datasets, lexicon represents sentiment lexicon. SenWordsi is the sentiment
words in si, which is found by Lookup function. Before getting the corresponding
sentiment embeddings SenEi ∈Rn×d, we need to align SenWordsi with TEi :

SenEi = Align(SenWordsi,TEi) (4)

where SenEi has the same dimension size as TEi . Align function assigns corre-
sponding sentiment embeddings for each token in TEi , e.g. Astonished embed-
dings for the shocking token, Evil embeddings for the inside token, None
embeddings for the non-sentiment word and relation tokens, shown in Fig. 2.

4.4 Results Prediction

Except for token embeddings, BERT also contains position embeddings and
segment embeddings. Position embeddings PEi ∈Rn×d follows the default set-
tings, which measures space by absolute distance. For segment embeddings
SEi ∈Rn×d, we apply different segment embeddings between relation tokens
and word tokens, which allows BERT to distinguish different parts of the input.

After aforesaid embeddings are determined, BERT conducts element-wise
addition on these embeddings, and receives the final embeddings Ei ∈Rn×d:

Ei = Add(TEi ,SenEi ,PEi ,SEi) (5)

where Add represents element-wise addition. Ei is sent to transformer layer
of BERT, the high-level representation vectors is computed by multi-head self-
attention mechanism. After computing, the representation vector of [CLS] token
Ci ∈R1×d is sent to FCN to predict the label of si, which can be formulated as:

Ci = Transformer(Ei)[0] (6)
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ŷi = Softmax(FCN(Ci)) (7)

where ŷi ∈R1×c is a vector of probabilities for all classes of label, c is the number
of classes. All embeddings viz. TEi , SenEi , PEi and SEi are learnable param-
eters of SSE-BERT. During the training process, we train all the parameters by
minimizing the cross-entropy of the predictions Ŷ and ground truth Y .

5 Experiments

5.1 Datasets and Settings

Datasets. We evaluate our proposed method on two real-world datasets viz.
Ma-Weibo [9] and Weibo20. Ma-Weibo is a widely used dataset for rumor detec-
tion, but it is collected before 2016, which causes the data missing of latest
rumors. To fill the gap and verify the generalization performance of SSE-BERT
and compared methods, we collect a new dataset Weibo20 from Sina commu-
nity management center2, which reports verified rumors in public. We collect
3034 rumors and 3034 non-rumors in the last five years (2016–2020), which is
complementary to Ma-Weibo. The statistics of datasets are shown in Table 1.

Table 1. Statistics of the datasets.

Statistic Ma-Weibo Weibo20

# of source posts 4664 6068

# of non-rumors 2351 3034

# of rumors 2313 3034

Avg. words per source 105 88

Time span 2010–2015 2016–2020

Experimental Setup. We compare our method with some state-of-the-art and
classical baselines, which includes the methods of different design philosophy:

• SVM-TS [10]: A linear SVM classifier that utilizes handcrafted features to
construct time-series model. Including content, user, and diffusion features.

• CGRU [14]: A two-layer Cascaded Gated Recurrent Unit (CGRU) model
that incorporates fine-grained sentiment features based on sentiment lexicon.

• Bi-GCN [1]: A rumor detection model based on Bi-directional Graph Con-
volutional Network (Bi-GCN), learning propagation features by reply posts.

• PLAN [5]: A Post-Level AttentioN (PLAN) model that learns interaction
features between source post and reply posts by a transformer-based unit.

• ERD [22]: An Early Rumor Detection(ERD) system based on GRU units,
leveraging deep reinforcement learning to detect rumor with less reply posts.

2 http://service.account.weibo.com.

http://service.account.weibo.com
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• STN [16]: A State-independent and Time-evolving Network (STN) model
that learns state features based on Convolutional Neural Network (CNN).

• TDRD [17]: An rumor detection model that leverages two CNN units to
extract the textual features and topic features of source post respectively.

• SSE-BERT: our proposed Syntax and Sentiment Enhanced BERT (SSE-
BERT) that integrates syntax and sentiment knowledge for rumor detection.

We implement SVM-TS by Scikit-learn3, reproducing Bi-GCN by its open-
source code, other neural network models are implemented by PyTorch4. SSE-
BERT is implemented based on BERT-base, which contains 12 transformer lay-
ers, and the hidden size is 768. In training process, all parameters initialized with
the pre-trained model released by HuggingFace5, except for sentiment embed-
dings, which is initialized by random number. The max sequence length is set to
256, learning rate is set to 2e-5, and warmup proportion is set to 0.1. To make
a fair comparison, we use the same settings presented in the original papers for
comparison methods, and randomly split the datasets into five parts, conduct-
ing 5-fold cross-validation to obtain robust results. We adopt Accuracy (Acc.),
Precision (Pre.), Recall (Rec.), and F1 score (F1) as the evaluation metrics.

5.2 Results of Earliest Detection

Table 2. Primary results of compared methods on two experimental datasets.

Design Philosophy Method Ma-Weibo Weibo-20

F1 Rec. Pre. Acc. F1 Rec. Pre. Acc.

General detection SVM-TS 0.748 0.754 0.778 0.753 0.731 0.734 0.743 0.734

CGRU 0.855 0.857 0.865 0.856 0.860 0.861 0.867 0.861

Bi-GCN 0.892 0.892 0.896 0.892 0.881 0.882 0.889 0.882

PLAN 0.864 0.864 0.865 0.864 0.852 0.852 0.853 0.852

Early detection ERD 0.872 0.872 0.877 0.873 0.864 0.865 0.871 0.865

STN 0.895 0.895 0.899 0.895 0.886 0.886 0.888 0.886

Earliest detection TDRD 0.867 0.867 0.867 0.867 0.862 0.862 0.864 0.862

SSE-BERT 0.947 0.947 0.948 0.947 0.943 0.942 0.943 0.943

Table 2 shows the performance of all experimental methods on Ma-Weibo and
Weibo20 datasets. All methods are divide into three groups by design philosophy.

First, SSE-BERT outperforms all general detection methods. Bi-GCN is the
state-of-the-art method, which can achieve impressive performance with reply
posts, but the performance decline significantly when reply posts are unavailable.
It indicates that methods designed for general detection cannot give full play to

3 http://scikit-learn.org.
4 http://pytorch.org.
5 http://huggingface.co.

http://scikit-learn.org
http://pytorch.org
http://huggingface.co
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its performance on earliest stage, as a result of lacking additional features of reply
posts. SSE-BERT can achieve at least 5% improvement than these methods.

Second, SSE-BERT gains at least 4% improvement than early detection
methods. Although ERD and STN are designed for detecting rumor rely on
fewer reply posts, they still encounter performance decline when no reply post is
available, which indicates that early reply posts are essential for these methods.

Finally, SSE-BERT is significantly superior than the earliest detection
method. Although TDRD is designed for earliest stage, it performs poorly. In
our analysis, there are two main reasons to explain this problem. The first,
the applied topic features is not salient at least for earliest rumor detection.
The second, the applyed CNN-based model’s ability of feature extraction seems
somehow limited. In any case, SSE-BERT acquires about 8 % improvement than
TDRD.

5.3 Ablation Study

To analyze the effect of each module, we report how each of SSE-BERT compo-
nent contributes by removing each one from the entire model. Below DE-BERT
and SR-BERT represent that only the DE module or SR module is equipped
respectively. BERT denotes the original state. The results are presented in Fig. 4,
which applies Accuracy (Acc.) as metric. We can find that every module indeed
plays significant contribution equally, SR module only performs little better than
DE module. The results of DE-BERT and SR-BERT confirm that syntax or sen-
timent features can facilitate the performance of rumor detection, which is in line
with the conclusion of psychology researches [3,6]. Moreover, BERT can achieve
considerable results, which shows the strong extraction ability of BERT.

Fig. 4. The ablation results.

5.4 Analysis Study

To further investigate the reasons for the differences of syntax and sentiment
between rumors and non-rumors respectively, we propose two quantitative met-
rics to explore the saliency, which explains why DE module and SR module
work.
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The Relative Distance to HED (hereinafter abbr. Dis) is to calculate
the “hop distance” between relation token and HED token. To find out the
differences of dependency sequences between rumors and non-rumors, we first
split dataset into two subsets by labels, then calculate average Dis (AvgDis) for
each type of relation token on the two subsets respectively, the process can be
formulated as:

AvgDis(r, l) =

∑Dl

di

∑
t=r∩t∈ di

Dist

|t| (8)

where r is a certain type of relation token, Dl represents l-label subset, di is
the dependency sequence of i-th source post, t is a relation token in di. t = r
represents t is r type token. |t| is the total number of r type token in subset Dl.

The distribution results of all type of relation tokens are shown in Fig. 5.
We observed a significant differences in the distribution curves between rumors
and non-rumors on each dataset, which indicates that there is indeed syntax
differences between rumors and non-rumors, visually confirming the conclusion of
psychology research [6]. Furthermore, we also notice obvious differences between
two datasets, we assume it is due to the emergence of different events over time.

Fig. 5. The distribution of relation tokens.

Fig. 6. The distribution of sentiment words.

The Average Sentiment Number (hereinafter abbr. AvgNum) represents
the average number of sentiment words in each source post. To figure out the
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sentiment differences between rumors and non-rumors, we also need to split
datasets into two subsets by labels at first, and then calculate AvgNum for each
type of emotion on two subsets respectively. The process can be formulated as:

AvgNum(e, l) =

∑Dl

si

∑
w=e∩w ∈ si

count(w)
|Dl| (9)

where e represents a certain type of emotion, Dl represents l-label subset, si
represents the i-th source post in Dl, w represents a word in si. w = e represents
w is a sentiment word of e type, count(w) represents accumulating the number
of e type sentiment word, |Dl| represents the total number of source posts in Dl.

Figure 6 shows the sentiment distribution of all emotions on the two datasets.
The emotion of “fun” and “good” are positive, the emotion of “angry”, “sad”,
“fearful”, “evil” and “astonished” are negative. We observed that non-rumors
contain more positive words than rumors, rumors contain more negative words
than non-rumors, which indicates that rumor are usually related to negative
incidents, which confirms the conclusion of rumor tends to spread anxiety [3].

6 Conclusion

In this study, we propose a Syntax and Sentiment Enhanced BERT (SSE-BERT)
model for earliest rumor detection and collect a new rumor detection dataset
Weibo20. SSE-BERT is able to predict whether a source post is rumor on earliest
period, which introduces external syntax and sentiment knowledge into BERT.
The problem scenario is more realistic and challenging than most existing stud-
ies, earliest rumor detection is significant for interrupting the dissemination of
threatening rumor without delay. Evaluation results show the powerful effective-
ness and the reasonable explainability of SSE-BERT. Besides, our proposed new
dataset Weibo20 contains the latest rumors, which makes up for the problem
of lacking timely Chinese dataset. Furthermore, we believe our proposed syntax
and sentiment enhanced methods can be used for not only rumor detection, but
also other NLP tasks, such as aggressive detection, deception detection, and sen-
timent analysis. In future work, We will test our method with more datasets in
different language and explore other useful features for earliest rumor detection.
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Abstract. Aspect Sentiment Triplet Extraction (ASTE) aims to extract
aspect term (aspect), sentiment and opinion term (opinion) triplets from
sentences and can tell a complete story, i.e., the discussed aspect, the
sentiment toward the aspect, and the cause of the sentiment. ASTE is a
charming task, however, one triplet extracted by ASTE only includes one
opinion of the aspect, but an aspect in a sentence may have multiple cor-
responding opinions and one opinion only provides part of the reason why
the aspect has this sentiment, as a consequence, some triplets extracted
by ASTE are hard to understand, and provide erroneous information for
downstream tasks. In this paper, we introduce a new task, named Aspect
Sentiment Multiple Opinions Triplet Extraction (ASMOTE). ASMOTE
aims to extract aspect, sentiment and multiple opinions triplets. Specifi-
cally, one triplet extracted by ASMOTE contains all opinions about the
aspect and can tell the exact reason that the aspect has the sentiment.
We propose an Aspect-Guided Framework (AGF) to address this task.
AGF first extracts aspects, then predicts their opinions and sentiments.
Moreover, with the help of the proposed Sequence Labeling Attention
(SLA), AGF improves the performance of the sentiment classification
using the extracted opinions. Experimental results on multiple datasets
demonstrate the effectiveness of our approach (Data and code can be
found at https://github.com/l294265421/ASMOTE).

Keywords: Aspect sentiment multiple opinions triplet extraction ·
Sequence labeling attention · Aspect sentiment triplet extraction

1 Introduction

Sentiment analysis [13,14] is an important task in natural language understand-
ing and receives much attention in recent years. Aspect-based sentiment analysis
(ABSA) [19–21] is a branch of sentiment analysis. ABSA includes several sub-
tasks, such as Aspect Term Extraction (ATE), Aspect Term Sentiment Analysis
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(ATSA) and Target-oriented Opinion Words Extraction (TOWE) [7]. Aspect
terms (or simply aspects) are the linguistic expressions used in sentences to
refer to the reviewed entities. Opinion terms (or simply opinions) are the
expressions that carry subjective attitudes in sentences. Given a sentence, ATE
extracts the aspects in the sentence. Given a sentence and an aspect in the
sentence, ATSA and TOWE predict the corresponding sentiment and opinions
respectively. For example, given the sentence in Fig. 1, ATE extracts “lobster
knuckles” and “sashimi”. ATSA predicts the negative sentiments toward “lob-
ster knuckles” and “sashimi”. TOWE extracts “ok” and “tasteless” for “lobster
knuckles” and “wasn’t fresh” for “sashimi”.

Fig. 1. An example of our ASMOTE and several ABSA subtasks. In the sentence, the
bold words are aspects and the underlined words are opinions. The red triplet extracted
by ASTE is confusing, because the sentiment of “ok” is neutral rather than negative.

The individual subtasks mentioned above or a combination of two subtasks
can only answer one question or two questions, but can not tell a complete story,
i.e. the discussed aspect, the sentiment toward the aspect, and the cause of the
sentiment. To address this limitation, Peng et al. [16] introduced the Aspect Sen-
timent Triplet Extraction (ASTE) task. A triplet extracted from a sentence by
ASTE includes an aspect, the sentiment that the sentence expresses toward the
aspect, and one opinion about the aspect in the sentence. Given the sentence in
Fig. 1, ASTE extracts three triplets, (“lobster knuckles”, negative, “ok”), (“lob-
ster knuckles”, negative, “tasteless”) and (“sashimi”, negative, “wasn’t fresh”).

However, one triplet extracted by ASTE only includes one opinion of the
aspect, but an aspect in a sentence may have multiple corresponding opinions.
One opinion of the aspect with multiple opinions only provides part of the rea-
son why the aspect has the sentiment, resulting in some triplets extracted by
ASTE are hard to understand and provide erroneous information for downstream
tasks. For example, when seeing the triplet, (“lobster knuckles”, negative, “ok”),
extracted by ASTE, we will be confused, because the sentiment of “ok” is neu-
tral.

One direct solution to the problem of ASTE is to add a post-processing
step after ASTE models, which combines the multiple triplets with the same
aspect into one triplet. For example, the post-processing step merges the triplets
extracted by ASTE from the sentence in Fig. 1 and obtains two triplets: (“lob-
ster knuckles”, negative, (“ok”, “tasteless”)) and (“sashimi”, negative, (“wasn’t
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fresh”)). The obtained triplets are correct and understandable, since they con-
tains all the opinions in the sentence about the aspect and the opinions in these
triplets can tell the exact reason that the aspect has the sentiment. However, this
solution of patching is not elegant. And, ASTE models need to extract erroneous
triplets (e.g. (“lobster knuckles”, negative, “ok”)), which is unreasonable.

In this paper, we introduce a new task, Aspect Sentiment Multiple Opinions
Triplet Extraction (ASMOTE). ASMOTE has the same goal as the combina-
tion of ASTE and the post-processing step. That is, ASMOTE extracts aspect,
sentiment and multiple opinions triplets. One triplet extracted by ASMOTE con-
tains all the opinions in the sentence about the aspect. The example illustrated
in Fig. 1 shows the inputs and outputs of the tasks mentioned above.

We propose an Aspect-Guided Framework (AGF) for ASMOTE. AGF
includes two stages. The first stage extracts aspects, and the second stage pre-
dicts the sentiments and opinions of the aspects extracted in the first stage.
The ASMOTE triplets can be obtained by merging the results of the two stages.
Specifically, given a sentence, the first stage uses a neural sequence labeling model
to extract aspects. For each aspect extracted in the first stage, AGF generates
aspect-specific representations with the guidance of the aspect. The obtained
representations are used to predict the corresponding sentiment and opinions
of the aspect. AGF also uses a neural sequence labeling model to extract opin-
ions associated with the aspect. Moreover, it is intuitive that the opinions of an
aspect can help models predict the sentiment of the aspect. For example, given
the sentence in Fig. 1 and the aspect “sashimi”, if AGF knows that the opinion
associated with “sashimi” is the phrase “wasn’t fresh”, AGF will predict the
negative sentiment more easily. Based on the intuition, we propose a Sequence
Labeling Attention(SLA). Specifically, SLA converts the prediction results of the
neural sequence labeling model for opinion extraction into attention weights. The
attention weights are used to generate an opinion representation. The opinion
representation is used to predict the sentiment of the aspect. SLA is a kind of
attention mechanism with supervision and sequence labeling tasks can be seen
as attention supervision tasks.

Our contributions are summarized as follows:

– We introduce a new task, Aspect Sentiment Multiple Opinions Triplet Extrac-
tion (ASMOTE).

– We propose an Aspect-Guided Framework (AGF) for ASMOTE and a
Sequence Labeling Attention (SLA). AGF improves the performance of the
sentiment classification using extracted opinions with the help of SLA.

– Experimental results on four public datasets demonstrate the effectiveness of
AGF and SLA.

2 Related Work

Aspect-based sentiment analysis (ABSA) [19–21] aims to address various senti-
ment analysis tasks at a fine-grained level. ABSA includes several subtasks, such
as Aspect Term Extraction (ATE), Opinion Term Extraction (OTE) extracting
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opinions from sentences and Aspect Term Sentiment Analysis (ATSA). Many
methods have been proposed for these subtasks, such as [11,26,31] for ATE,
[4,24,25] for OTE and [6,22,23,35] for ATSA. Since the three subtasks are cor-
related in pairs, some studies improved the performances of the three subtasks by
jointly modelling two or three of them. Wang et al. [24,25] and Dai and Song [4]
jointly modelled ATE and OTE. Li et al. [10] and Phan and Ogunbona [18]
jointly modelled ATE and ATSA. He et al. [8] and Chen and Qian [3] jointly
modelled ATE, OTE and ATSA.

Although extracting aspects and opinions as pairs is significant, the aspects
and opinions extracted by the methods mentioned above are not in pairs [7]. Fan
et al. [7] put forward a new subtask of ABSA: Target-oriented Opinion Words
Extraction (TOWE). TOWE aims to extract the corresponding opinions with
respect to the given aspect. A few methods [7,29] have been proposed for TOWE.
While TOWE assumes the golden aspect was given, Zhao et al. [34] and Chen
et al. [2] explored Aspect-Opinion Pair extraction task, which aims at extracting
aspects and opinions in pairs without given golden aspects.

The above tasks are still not enough to get a complete picture regarding
sentiment [16]. Peng et al. [16] proposed a new subtask: Aspect Sentiment Triplet
Extraction (ASTE). ASTE extracts aspect, sentiment and opinion triplets and
can tell a complete story, i.e. the discussed aspect, the sentiment toward the
aspect, and the cause of the sentiment. Some methods [1,16,28,32,33] have been
proposed for ASTE. However, ASTE has the problem mentioned in Introduction.

Fig. 2. Our proposed Aspect-Guided Framework (AGF) for ASMOTE.

3 Aspect-Guided Framework (AGF)

3.1 Framework

The overall architecture of our Aspect-Guided Framework (AGF) for ASMOTE
is shown in Fig. 2. AGF decomposes ASMOTE into three subtasks: Aspect Term
Extraction (ATE), Aspect Term Sentiment Analysis (ATSA) and Target-oriented
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Opinion Words Extraction (TOWE). Given a sentence S = {w1, ..., wi, ..., wn},
ATE extracts a set of aspects A = {a1, ..., aj , ..., am}. For each aspect extracted
by ATE, aj , ATSA predicts its sentiment sj ∈ {positive, neutral, negative}, and
TOWE extracts its opinions O = {o1j , ..., o

k
j , ..., o

lj
j }. An aspect may have more

than one opinion and lj is the number of opinions with respect to the j-th aspect.
ASMOTE obtains the triplets by merging the results of the three subtasks: T =
{(a1, s1, (o11, ..., o

l1
1 )), ..., (am, sm, (o1m, ..., olmm ))}.

AGF can be divided into two stages. The first stage performs ATE and the
second stage performs ATSA and TOWE jointly. Moreover, the aspects extracted
in the first stage are used to guide the sentence encoders of ATSA and TOWE
to generate aspect-specific sentence representations.

3.2 Encoders

Note that AGF is a general framework, we can use any network as the encoder
to learn sentence representations for ATE or aspect-specific sentence representa-
tions for ATSA and TOWE. In this paper, we implement three different encoders.
The first one is the BiLSTM with pre-trained word embeddings, which has been
widely used in neural-based models for NLP tasks. The second is BERT [5],
a pre-trained bidirectional transformer encoder, which has achieved state-of-
the-art performances across a variety of NLP tasks. The third is the BiLSTM
with BERT, which has been widely used in neural sequence labeling models.
The three encoders are written as EncoderBiLSTM EMB , EncoderBERT , and
EncoderBiLSTM BERT , respectively. All the three encoders take a sentence,
S = {w1, ..., wi, ..., wn}, as input, and output corresponding sentence represen-
tations, H = {h1, ..., hi, ..., hn}.

3.3 Stage One: Aspect Term Extraction (ATE)

We formulate ATE as a sequence labeling problem. Given a sentence S =
{w1, ..., wi, ..., wn}, an encoder takes the sentence as input and outputs the cor-
responding sentence representation, HA = {hA

1 , ..., hA
i , ..., hA

n }. ATE uses hA
i to

predict the tag yA
i ∈ {B, I,O} of the word wi. It can be regarded as a three-class

classification problem at each position of the sentence S. We use a linear layer
and a softmax layer to compute prediction probability ŷA

i :

ŷA
i = softmax(WA

1 hA
i + bA1 ) (1)

where WA
1 and bA1 are learnable parameters.

The cross-entropy loss of ATE task can be defined as follows:

LATE = −
n∑

i=1

2∑

t=0

I(yA
i = t)log(ŷA

it ) (2)

where the tags {B, I,O} are correspondingly converted into labels {0, 1, 2} and
yA
i denotes the ground truth label. I is an indicator function. If yA

i == t, I = 1,
otherwise 0. We minimize the loss LATE to optimize the ATE model.
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3.4 Stage Two

Since, in the same sentence, for different aspects, ATSA and TOWE models
need to output different results. Therefore, it is crucial for both ATSA models
and TOWE models to learn aspect-specific sentence representations. Moreover,
Liang et al. [12] and Xing et al. [30] showed that utilizing the given aspect to
guide the sentence encoding can obtain better aspect-specific representations.
Therefore, in AGF, the aspects extracted in the first stage are used to guide
the sentence encoders of ATSA and TOWE to generate aspect-specific sentence
representations.

Target-Oriented Opinion Words Extraction (TOWE). We also for-
mulate TOWE as a sequence labeling problem. Given a sentence S =
{w1, ..., wi, ..., wn} and an aspect in the sentence, we first modify the sen-
tence by inserting the special token # at the beginning of the aspect and
the special token $ at the end of the aspect. We then get a new sentence
Snew = {w1, ...,#, was

, ..., wae
, $, ..., wn+2}, where {was

, ..., wae
} are the corre-

sponding words with respect to the given aspect. An encoder takes the new
sentence as input. The special tokens explicitly tell the sentence encoder the
corresponding words of the aspect in the sentence. Special tokens were first used
by Wu and He [27] to incorporate target entities information into BERT on the
relation classification task. We explore this method in not only BERT-based
models but also LSTM-based models. The sentence encoder outputs the aspect-
specific sentence representation, HO = {hO

1 , ..., hO
i , ..., hO

n+2}. TOWE uses hO
i to

predict the tag yO
i ∈ {B, I,O} of the word wi in the new sentence. It can be

regarded as a three-class classification problem at each position of Snew. We use
a linear layer and a softmax layer to compute logit l̂Oi and its probability ŷO

i :

l̂Oi = WO
1 hO

i + bO1 , ŷO
i = softmax(l̂Oi ) (3)

where WO
1 and bO1 are learnable parameters.

The cross-entropy loss of TOWE task can be defined as follows:

LTOWE = −
n∑

i=1

2∑

t=0

I(yO
i = t)log(ŷO

it ) (4)

where the tags {B, I,O} are correspondingly converted into labels {0, 1, 2} and
yO
i denotes the ground truth label.

Sequence Labeling Attention (SLA). SLA converts the prediction results
of TOWE into an attention vector. Specifically, the input of SLA is logits
{l̂O1 , ..., l̂Oi , ..., l̂On+2}. SLA then obtains a vector:

β = [β1, ..., βi, ..., βn+2] (5)
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where βi is computed by summing the predicted logits on TOWE related to
labels B and I in l̂Oi . SLA uses the softmax function on β to get the attention
weight vector:

α = [α1, ..., αi, ..., αn+2] (6)

SLA can take probabilities {ŷO
1 , ..., ŷO

i , ..., ŷO
n+2} as input. When taking proba-

bilities as input, SLA will behave differently.

Aspect Term Sentiment Analysis (ATSA). We formulate ATSA as a text
span-based classification problem. In this paper, we use the given aspect to
guide the sentence encoding in a similar manner as the TOWE task. Given a
sentence S = {w1, ..., wi, ..., wn} and an aspect in the sentence, we first modify
the sentence by inserting the special token # at the beginning of the aspect
and the special token $ at the end of the aspect. We then get a new sen-
tence Snew = {w1, ...,#, was

, ..., wae
, $, ..., wn+2}, where {was

, ..., wae
} are the

corresponding words with respect to the given aspect. An encoder takes the
new sentence as input and outputs the corresponding sentence representation,
HS = {hS

1 , ..., hS
as

, ..., hS
ae

, ..., hS
n+2}. We then obtain the aspect representation

by averaging the corresponding hidden states:

rA =
1

(ae − as + 1)

i=as∑

i=ae

hS
i (7)

We use the attention vector α generated by SLA to obtain the opinion rep-
resentation:

rO = HSαT (8)

AGF concatenates rA with rO to get the aspect-specific sentence representa-
tion for ATSA:

r = [rA; rO] (9)

The aspect-specific representation is then used to predict the sentiment polar-
ity of the aspect. Formally, its sentiment distribution is calculated by:

p = softmax(WS
2 (ReLU(WS

1 r + bS1 )) + bS2 ) (10)

where WS
1 , bS1 , WS

2 and bS2 are parameters.
We use cross entropy as the loss function:

LATSA = −
2∑

t=0

I(yS = t)logpt (11)

where yS denotes the ground truth label and the sentiments
{positive, neutral, negative} are correspondingly converted into labels {0, 1, 2}.

Loss. The loss of the second stage is defined as follows:

Lsecond = LTOWE + LATSA (12)

We minimize the loss Lsecond to optimize the ATSA and TOWE model.
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4 Experiments

4.1 Datasets and Metrics

We construct four datasets (i.e., 14res, 14lap, 15res, 16res) to evaluate the per-
formance of methods on the ASMOTE task. Similar to Peng et al. [16] who con-
structed the Aspect Sentiment Triplet Extraction (ASTE) datasets, we obtain
the four ASMOTE datasets by aligning the four Target-oriented Opinion Words
Extraction (TOWE) datasets [7] and the corresponding SemEval Challenge
datasets [19–21]. We do not use the ASTE datasets constructed by previous
studies [16,32] to build ASMOTE datasets (i.e., combine the multiple triplets
with the same aspect in the ASTE datasets into one triplet to get ASMOTE
triplets), because these datasets do not include the sentences which only con-
tain aspects without corresponding opinion terms. We think datasets including
these sentences can better evaluate the performance of methods, since meth-
ods can encounter this kind of sentences in real-world scenarios. Statistics of
the ASMOTE datasets are given in Table 1. Since the number of triplets with
conflict sentiment is small, these triplets are removed in our experiments.

Table 1. Dataset statistics. The tc indicates triplet with conflict sentiment.

Dataset 14res 14lap 15res 16res

train dev test train dev test train dev test train dev test

#sentence 1615 404 606 1183 296 422 666 167 401 987 247 419

#aspect 2943 751 1134 1883 482 656 961 238 542 1391 352 612

#triplet 2116 522 864 1295 315 481 870 206 436 1206 301 456

#tc 74 12 13 31 5 14 7 2 6 17 1 8

To evaluate the performance of methods on ASMOTE, we use precision,
recall, and F1-score as the metrics. A extracted triplet is regarded as correct
only if predicted aspect spans, sentiment, multiple opinions spans and ground
truth aspect spans, sentiment, multiple opinions spans are exactly matched.

4.2 Our Methods

AGF uses the encoder EncoderBiLSTM EMB for ATE, TOWE and ATSA.
AGF-p is the pipeline version of AGF. AGF-p doesn’t contain SLA and

performs ATSA and TOWE separately.
AGF-t is a variant of AGF. AGF-t replaces the TOWE model jointly trained

in AGF with the TOWE model trained separately. That is, AGF-t only uses the
results of ATSA jointly trained in AGF.

*S are variants of AGF*. *S indicate that SLA takes probabilites rather than
logits as input.

*B use encoder EncoderBERT for ATSA, and encoder EncoderBiLSTM BERT

for both ATE and TOWE. The parameters of BERT are fixed during training.
*BF are variants of *B . *BF finetune BERT during training.
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4.3 Implementation Details

We implement our models in PyTorch [15]. We use 300-dimensional word vectors
pretrained by GloVe [17] to initialize the word embedding vectors. EncoderBERT

and EncoderBiLSTM BERT use the uncased basic pre-trained BERT. The batch
size is set to 32 for all models. All models are optimized by the Adam optimizer
[9]. The learning rates are set to 0.001 and 0.00002 for non-BERT models and
BERT-based models, respectively. Since the TOWE model is harder to converge
than the ATSA model, for AGF, TOWE is trained first then both of TOWE
and ATSA are trained together. We apply early stopping in training and the
patience is 10. We run all models for 5 times and report the average results on
the test datasets.

Table 2. Results of the ASMOTE task.

Method 14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1

MTL 56.7 38.6 45.9 41.4 24.2 30.5 57.2 33.5 42.1 54.1 44.8 49

JETt(M = 6) 47.1 47.8 47.4 42.4 33.8 37.6 55.7 40.7 47.0 56.2 49.6 52.7

JETo(M = 6) 58.6 48.6 53.2 39.9 31.2 35.0 52.7 42.6 47.1 62.3 56.5 59.3

GTS-CNN 59.8 51.3 55.2 46.3 34.7 39.7 51.6 45.7 48.4 54.9 57.0 55.9

GTS-BiLSTM 60.4 45.8 52.1 46.0 30.3 36.5 62.2 40.9 49.3 61.8 48.9 54.6

AGF-t (ours) 62.8 56.7 59.6 46.1 35.0 39.8 55.9 45.3 50.0 62.1 58.8 60.4

JETt
+bert(M = 6) 50.3 53.0 51.6 44.8 35.3 39.5 55.4 44.2 49.2 51.4 56.9 54.0

JETo
+bert(M = 6) 57.0 47.6 51.9 43.0 33.5 37.7 58.0 47.0 51.9 66.7 54.5 60.0

GTS-BERT 63.9 61.6 62.7 51.7 44.6 47.9 57.9 53.3 55.5 56.4 64.5 60.2

AGF-tBF (ours) 63.5 64.6 64.0 46.7 49.3 48.0 56.8 54.6 55.7 57.7 69.5 63.0

4.4 Comparison Methods

We compare our methods with several methods proposed for the ASTE task,
including i) five non-BERT models: MTL [33], JETt [32], JETo [32], GTS-
CNN [28], and GTS-BiLSTM [28], ii) three BERT-based models: JETt

+bert [32],
JETo

+bert [32] and GTS-BERT [28]. We add a post-processing step described in
Introduction section after these models to obtain ASMOTE triplets.

4.5 Results

Experimental results of our methods and baselines on the ASMOTE task are
reported in Table 2. From Table 2 we draw the following conclusions. First,
although all the baselines are joint models, which jointly extract ASTE triplets,
our pipeline models, AGF-t and AGF-tBF , achieve better F1 score than their
counterparts, indicating that, to achieve ASMOTE, well-designed models for
ASMOTE is more effective than a combination of an ASTE model and the post-
processing step. Second, AGF-tBF outperforms AGF-t on all datasets in terms
of F1 acore, which shows that BERT can boost the performance of AGF-t.
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Table 3. Results of the variants of AGF on ASMOTE, ATSA and TOWE.

Method ASMOTE (F1) ATSA (accuracy) TOWE (F1)

14res 14lap 15res 16res 14res 14lap 15res 16res 14res 14lap 15res 16res

AGF-p 57.5 39.7 48.0 58.7 77.2 69.8 73.9 86.3 77.1 68.0 69.9 79.6

AGF 59.5 38.4 48.8 58.0 80.5 72.0 76.7 87.7 76.8 66.2 69.8 77.2

AGFS 57.9 38.9 50.0 57.4 78.3 68.9 75.7 86.3 77.4 67.2 71.1 78.2

AGF-t 59.6 39.8 50.0 60.4 – – – – – – – –

AGF-pB 55.4 40.6 50.2 56.2 73.8 64.3 71.0 82.4 79.7 70.4 76.5 81.6

AGFB 59.3 45.1 53.9 58.5 80.8 76.1 81.7 88.8 78.2 70.3 75.1 80.5

AGFB
S 58.4 45.8 53.5 56.8 79.7 74.0 77.9 88.2 79.9 71.6 76.3 80.3

AGF-tB 60.4 43.8 55.9 60.3 – – – – – – – –

AGF-pBF 63.4 48.6 55.5 62.9 83.7 76.0 81.3 90.7 79.6 73.8 77.1 81.2

AGFBF 63.2 48.0 54.5 62.6 83.8 77.0 81.5 91.2 79.1 73.2 76.2 81.9

AGFBF
S 63.8 47.8 54.1 61.6 83.1 75.5 80.0 89.8 80.2 73.7 75.8 81.6

AGF-tBF 64.0 48.0 55.7 63.0 – – – – – – – –

4.6 Ablation Study

Experimental Results of the variants of AGF are presented in Table 3. The under-
lined scores are the better scores between AGF* (i.e., AGF, AGFB , AGFBF ) and
AGFS* (i.e., AGFS , AGFB

S , AGFBF
S ). From the results we draw the following

conclusions. First, AGF-t* (i.e., AGF-t, AGF-tB , AGF-tBF ) outperform AGF-
p* (i.e., AGF-p, AGF-pB , AGF-pBF ) in 11 of 12 results on the ASMOTE task
and AGF* surpass AGF-p* on the ATSA task, indicating the effectiveness of
SLA. Second, on ASMOTE, AGF* outperform AGFS* in 8 of 12 results, which
shows that SLA taking logits as input is a little more effective than SLA taking
probabilites as input. Third, AGF* obtain better performances than AGFS* on
the ATSA task, while AGFS* obtain better performances than AGF* on TOWE.
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Fig. 3. Visualization of attentions.

4.7 Visualization of Attentions

Figure 3 shows the attention weights of AGF* and AGFS* on the sentence “The
bread is top notch as well”. AGF* assign more accurate weights to the opinion
words, which can explain why AGF* obtain better performance on the ATSA
task. This also can explain why AGF* obtain worse performance on the TOWE
task. More accurate weights mean that AGF* are more confident of their pre-
diction on the TOWE task and unfortunately obtain poor generalization ability.
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5 Conclusion

In this paper, we introduce a new task, Aspect Sentiment Multiple Opinions
Triplet Extraction (ASMOTE). One triplet extracted by ASMOTE includes an
aspect term, the sentiment toward the aspect term, and all opinion terms associ-
ated with the aspect term in the sentence. We build four ASMOTE datasets for
the ASMOTE task based on previous ATSA datasets and TOWE datasets. We
propose an Aspect-Guided Framework (AGF) with a Sequence Labeling Atten-
tion (SLA) for ASMOTE. Moreover, experiments validate the effectiveness of
AGF and SLA. These results provide a benchmark performance for ASMOTE.
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Abstract. Aspect category sentiment classification aims at predicting
the sentiment polarity of the given aspect category. Since the aspect cat-
egory may not occur in the sentence, it is hard for the model to directly
find the appropriate sentiment words for the aspect category and disre-
gard unrelated ones. To address it, previous works have explored lever-
aging implicitly the information of the aspect term in the sentence and
demonstrated the effectiveness of such information. Inspired by this con-
clusion, we propose a two-stage strategy named Locate-Combine(LC) to
utilize the aspect term in a more straightforward way, which first locates
the aspect term and then takes it as the bridge to find the related sen-
timent words. Specifically, in the “Locate” stage, we locate the aspect
term corresponding to the given aspect category in the sentence, which can
crystallize the target and further enable our model to focus on the target-
related words. In the “Combine” stage, we first apply the graph convolu-
tional network (GCN) over the dependency tree of the sentence to combine
the information of the aspect term and related sentiment words and then
take the output representation corresponding to the located aspect term
to predict the sentiment polarity. The experimental results on the pub-
lic datasets show that the proposed two-stage strategy is effective, which
achieves state-of-the-art performance. Furthermore, our model can output
explainable intermediate results for model analysis. (Code can be found
at https://github.com/SCIR-MSA-Team/LC-ACSA)

Keywords: Aspect category sentiment classification · Aspect based
sentiment analysis · Graph convolutional network.

1 Introduction

Aspect term sentiment classification (ATSC) and aspect category sentiment clas-
sification (ACSC) are two main tasks in aspect-level sentiment analysis. ATSC
aims to predict the sentiment polarity toward a given aspect term occurring in
the sentence, while ACSC aims at detecting the sentiment polarity of a prede-
fined aspect category. The core problem of both two tasks is how to connect the
given aspect term/category to the related sentiment words in the sentence. By
comparison, it’s more difficult for ACSC, since the given aspect category may
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Fig. 1. Illustration of one-stage and two-stage methods.

not occur in the sentence. Previous works [8,10] usually directly capture the
relationship between the aspect category and sentiment words in the sentence
via attention or gating mechanism. However, the limited information provided
by the aspect category may result in mismatching between the given aspect
category and the sentiment words.

To address it, some works [1,5] take the aspect term information into consid-
eration and propose models to implicitly leverage such information. Wang et al.
[8] consider that aspect term extraction (ATE) can help the model to capture
aspect-related information, which is useful for finding aspect-specific sentiment
words of the sentence, and then propose the HiErarchical ATtention (HEAT)
network, which consists of two main part, aspect attention and sentiment atten-
tion. The aspect attention can extract the aspect-related information to guide
the sentiment attention to better allocate aspect-specific sentiment words of the
sentence. However, training HEAT needs to annotate manually the aspect terms
indicating the given aspect category, which is time-consuming and expensive.
Li et al. [5] consider that using aspect category detection (ACD) can help the
model to focus on the words related to the aspect category such as the aspect
term and ignore other words, resulting in more accurate sentiment prediction.
Motivated by it, they propose the Multi-Instance Multi-Label Learning Network
(AC-MIMLLN), which takes the ACD task as the auxiliary task and shares
the same attention layer between the ACD and ACSC blocks. Both two works
demonstrate that the aspect term information is useful for the ACSC task.

In this paper, we utilize the aspect term information to tackle the mismatch
problem in a more straightforward way. We propose a two-stage strategy named
Locate-Combine(LC), as shown in Fig. 1(b). Comparing to the one-stage method
shown in Fig. 1(a), which uses a single model to capture the relationship between
the aspect category and sentiment words, we introduce the “Locate” stage, in
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which we locate the aspect term related to the given aspect category in the sen-
tence and take it as the bridge to connect the aspect category and sentiment
words. We consider that explicitly locating the aspect term can bring two ben-
efits. One is that locating the aspect term enables us to capture the interaction
between the aspect term and related sentiment words in the dependency tree.
The other one is that the located aspect terms can be seen as the explainable
intermediate results of the model, which are useful for model analysis. Specifi-
cally, our proposed approach consists of two stages, “Locate” and “Combine”.
In the “Locate” stage, we detect the corresponding aspect term for the given
aspect category. As shown in Fig. 1(b), given the aspect category “service”, we
locate the aspect term “waiter” in the sentence. In the “Combine” stage, we
first build the dependency tree of the sentence and then apply GCN over the
dependency tree of the sentence to combine the information of the aspect term
“waiter” and related sentiment word “nice”.

We conduct the experiments on the public datasets and the experimental
results demonstrate that our model achieves state-of-the-art performance.

The main contributions of our work can be summarized as follows:

– We propose a novel two-stage strategy named Locate-Combine for aspect
category sentiment analysis, which first locates the aspect term in the sentence
and then utilizes GCN over the dependency tree to combine the aspect term
and related sentiment words to generate the syntax-aware representation for
sentiment prediction.

– We explore the method to locate the aspect term corresponding to the given
aspect category.

– We exploit syntactical dependency structures for aspect category sentiment
classification.

2 Related Work

2.1 Aspect Category Sentiment Classification

Aspect category sentiment classification has been studied for many years and
lots of works have been conducted on it. The core idea of these methods can be
concluded using a single model to capture the sentiment words corresponding to
the aspect category and thus we call this strategy as one-step strategy. Wang et
al. [8] introduced the ATAE-LSTM model, which takes aspect category as the
query to attend the sentiment words in the sentence. Xue et al. [10] proposed
the Gated Tanh-ReLU Units, which can filter out the useless words and pick
up the sentiment words according to the given aspect category. However, it is
difficult for the model to directly find the appropriate sentiment words for the
aspect category. To tackle it, some works design the auxiliary task to implicitly
leverage the aspect term information to help the model to capture the meaning-
ful sentiment words. Cheng et al. [1] proposed that the ATE task can help the
model to capture aspect-related information, which is useful for finding aspect-
specific sentiment words of the sentence, and then introduced the HiErarchical
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ATtention (HEAT) network. But this method requires annotating manually the
aspect terms indicating the given aspect category, which is time-consuming and
expensive. Li et al. [5] proposed the Multi-Instance Multi-Label Learning Net-
work (AC-MIMLLN), which uses the ACD task to help the model to focus on
the words related to the aspect category. These works show that the aspect term
information is beneficial for the ACSC task, which motivates us to explore a
more effective way to utilize such information.

2.2 Aspect Term Sentiment Classification

Aspect term sentiment classification (ATSC) is similar to ACSC. But there is
a substantial difference between them, which is that the target of ATSC is a
given aspect term in the sentence while the target of ACSC may not occur in
the sentence. This characteristic of the ATSC task enables the model to exploit
more information, such as syntactical information, to connect the aspect term
and the corresponding sentiment words. Huang et al. [2] proposed a target-
dependent graph attention network, which utilizes the dependency relationship
among words. Zhang et al. [11] presented an Aspect-specific Graph Convolutional
Network (AS-GCN) to exploit syntactical information and word dependencies.
Sun et al. [7] introduced a convolution over a dependency tree (CDT) model,
which applies GCN on the dependency tree of the sentence to obtain the syntax-
aware word representation. These previous works have demonstrated that the
syntactical information, specifically the dependency relationship among words,
is useful for ATSC. Inspired by this conclusion, we consider that syntactical
information is also beneficial for the ACSC task, which can help the model to
aggregate the target-related information including aspect term information and
sentiment information.

3 Approach

In this section, we introduce our two-stage strategy named Locate-Combine
shown in Fig. 2. In the “Locate” stage, we locate the aspect term corresponding
to the given aspect category. In the “Combine” stage, the aspect category senti-
ment classification model combines the located aspect term and sentiment words
by applying GCN over the dependency tree to learn syntax-aware representation.

3.1 “Locate” Stage

In the “Locate” stage, the goal is to locate the aspect term corresponding to
the given aspect category in the sentence, since we consider that locating the
aspect term in the sentence can provide two benefits for ACSC, which are gener-
ating explainable intermediate results and helping model to leverage syntactical
information.
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Fig. 2. Illustration of our proposed approach.

This task is formalized as follows. Given a sentence and a pre-defined aspect
category set C = {c1, ..., cm}, the goal is to extract the corresponding aspect
term1 tc for each aspect category c in set C. We design a simple method to
solve it, as shown in Fig. 2. We first extract all aspect terms in the sentence
using the ATE model, which is implemented by BERT. Then for each extracted
aspect term, we calculate the cosine similarity score between it with each aspect
category in C and take the most similar aspect category cs as the corresponding
aspect category. Following this method, each extracted aspect term is assigned
to an aspect category. But for some aspect categories, the ATE model may fail to
find the corresponding aspect terms. Hence, we utilize an ACD model to extract
the pseudo aspect term.

The ACD model consists of three layers, the encoder layer, attention layer,
and prediction layer. The encoder layer is implemented by the BERT encoder
and for each word, we take the representation of the first sub-token as the rep-
resentation of it. Then we can obtain the representations of words, {e1, ..., en}.

In the attention layer, we calculate the category-specific attention weights pci
for the input word representations as follows.

sci = W c
2 (Tanh(W c

1 (ei) + bc1)) (1)

pci =
es

c
i

∑n
i=1 e

sci
(2)

rc =
l∑

i=1

pciei (3)

where W c
1 ∈ R

300×768, bc1 ∈ R
300, W c

2 ∈ R
1×300, are the parameters of the

attention layer .

1 In most cases, there is only one aspect term in the sentence corresponding to a given
aspect category. Thus, we mainly consider this situation for simplicity.
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Finally, we use the prediction layer to predict whether a given aspect category
is mentioned.

vc = Sigmoid(W c
3 (rc) + bc3) (4)

where W c
3 ∈ R

1×768, bc3 ∈ R
1, are the parameters of the attention layer.

To obtain the pseudo aspect term for the aspect category, we extract the
words with the top-2 attention weights as the candidate aspect terms and take
the most similar aspect term as the corresponding aspect term.

3.2 “Combine” Stage

In the “Combine” stage, the goal is to predict the sentiment polarity of the given
aspect category leveraging the located aspect term information and syntactical
information. Benefiting from the located aspect term, we can utilize the depen-
dency tree to capture the sentiment words related to the aspect category in the
sentence more easily using the located aspect term as the bridge. Besides, the
aspect category is also very important for ACSC. Hence, we propose an aspect
category sentiment classification model, which can combine the aspect term,
aspect category, and syntactical features to learn target-aware representation
for sentiment prediction. This model, as shown in Fig. 2, consists of three layers
including the encoder layer, GCN layer, and classification layer.

In the encoder layer, we use BERT to represent the words. To incorporate
the aspect category information, we concatenate the sentence with the aspect
category and split them by the special token [SEP]. Specifically, the input format
is “[CLS] sentence [SEP] aspect category”. We take the representation of the first
sub-token for each word as the representation of it. Then we obtain the word
representations, {w1, ..., wl} and the aspect category representation wc. Besides,
we also implement our encoder layer by LSTM. Specifically, we first concatenate
the word embeddings with the word embedding of the given aspect category and
feed them into the LSTM to obtain the word representations.

We utilize the GCN layer over the dependency tree obtained by using SpaCy
to capture the interaction between the aspect term and sentiment words. Specif-
ically, we first represent the dependency tree as an l ∗ l adjacency matrix A and
Ai,j = 1 if there is an edge between node i and node j, and Ai,j = 0 otherwise.
Then we obtain the node representations h

(2)
i as follows.

ci =
1

∑l
j=1 Ai,j

(5)

h
(1)
i =

l∑

j=1

ciAi,j(W
g
1 ([wj ;wc]) + bg1) (6)

h
(2)
i =

l∑

j=1

ciAi,j(W
g
2 h

(1)
j + bg2) (7)
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where W g
1 ∈ R

768×1536, bg1 ∈ R
768, W g

2 ∈ R
768×768, bg2 ∈ R

768, are the parameters
of the GCN layer.

Finally, we take the representation of the located aspect term as the target-
aware representation2 and use the softmax classifier to predict the sentiment
polarity.

4 Experiment

4.1 Datasets

We evaluate our model on four datasets including Rest2014, Rest2014-hard,
RestLarge, and RestLarge-hard. RestLarge is obtained by combining the data
from SemEval 2014, SemEval 2015, and SemEval 2016, and we remove the
samples with conflict polarity just like previous work [5]. Rest2014-hard and
RestLarge-hard are constructed by collecting the examples with at least two
aspects and two sentiments polarities from Rest2014 and RestLarge, respec-
tively. The statistics of datasets are shown in Table 1.

Table 1. Statistics of the datasets

Polarity Rest14 Rest14-hard RestLarge RestLarge-hard

Train Dev Test Test Train Test Train Test

Positive 1,873 306 657 21 2,710 1,505 182 92

Negative 712 127 222 20 1,198 680 178 81

Neural 433 67 94 12 757 241 107 61

4.2 Training Details

Aspect Term Extraction (ATE). We initialize the BERT of our ATE model
using the pre-trained BERT parameters released by the previous work [9]. We
train our ATE model on the training set of the RestLarge dataset. The learning
rate is set to 0.00003. We set the dropout probability to 0.2.

Aspect Category Detection (ACD). Similar to our ATE model, we also
initialize the BERT of our ACD models using the pre-trained BERT parame-
ters released by the previous work [9]. We utilize the Rest2014 and RestLarge
datasets to train our ACD models, which are applied for Rest2014/Rest2014-
hard and RestLarge/RestLarge-hard, respectively. The learning rate is set to
0.001. The optimizer is Adam and the dropout probability is set to 0.4.

2 If there are multiple aspect terms, we average the representation vectors of them
and take the result as the final representation.
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Aspect Category Sentiment Classification (ACSC). We initialize the
word representation for the non-BERT model using 300-dimension glove word
embeddings. The batch size is set to 25 for the non-BERT model and 16 for
BERT-based model. The learning rate is set to 0.01 and 0.00001 for the non-
BERT model and the BERT-based model, respectively. The optimizer is Adam.

4.3 Baselines

We compare our model with two lines of baselines. One line of works is aspect-
aware models including AC-MIMLLN, SCAN, AC-MIMLLN-BERT, and SCAN-
BERT, which capture the aspect term information implicitly. The other line
of works is attention-based models including AT-LSTM, ATAE-LSTM, GCAE,
CapsNet, and CapsNet-BERT, which do not take such information into the
consideration.

– AT-LSTM [8] is proposed for the ATSC task, which uses the attention mech-
anism to obtain the target-aware representation, and we adopt it for ACSC.

– ATAE-LSTM [8] is similar to AT-LSTM, which first obtains the aspect-aware
word representations and then uses the attention mechanism to obtain the
final representation.

– GCAE [10] uses the Gated Tanh-ReLU Units to generate the sentiment fea-
tures according to the given aspect category.

– CapsNet [3] is a novel capsule network based model proposed for ACSC.
– AC-MIMLLN [5] utilizes the attention weights extracted from the ACD model

as the attention weights of the ACSC model, which can help the model to
focus on the target-related words.

– SCAN [4] applies GCN over the constituency parse tree to obtain node rep-
resentations and applies the attention mechanism to obtain the target-aware
representation.

– CapsNet-BERT [4] is similar to CapsNet, which adopts BERT as the encoder.
– AC-MIMLLN-BERT [5] is similar to AC-MIMLLN, which takes BERT as the

encoder.
– SCAN-BERT [4] is similar to SCAN, which adopts BERT as the encoder.
– Auxiliary-BERT-QA-M [6] first constructs the auxiliary sentence by generat-

ing a question and then concatenates the sentence with the auxiliary sentence
as the input of BERT.

4.4 Experimental Results

We conduct the experiments on Rest2014, Rest2014-hard, RestLarge, and
RestLarge-hard datasets to evaluate our strategy. As shown in Table 2, our LC-
BERT model outperforms all baselines, which demonstrates the effectiveness of
our method. We also find that AC-MIMLLN-BERT and SCAN-BERT surpass
Auxiliary-BERT-QA-M and CapsNet-BERT, which indicates that the aspect
term information is helpful for the model to focus on related sentiment words,
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Table 2. Experimental results on the benchmark datasets. † refers to drawing from
the original papers. The best results are bold-typed.

Models Rest14 Rest14-hard RestLarge RestLarge-hard

ACC F1 ACC F1 ACC F1 ACC F1

AT-LSTM 79.75 52.96 52.83 39.72 79.93 65.86 45.73 36.41

ATAE-LSTM 77.70 61.44 64.15 48.93 81.04 64.09 62.39 58.21

GCAE 80.88 68.01 62.26 47.26 85.92† – 70.75† –

CapsNet 80.88 69.16 67.92 58.77 83.72 72.69 71.79 70.62

AC-MIMLLN 81.50 68.21 66.04 57.33 84.91 76.08 70.94 69.96

SCAN 80.70† – 68.30† – 84.38 73.94 67.54† -

LC-LSTM(Ours) 82.43 69.29 71.70 67.76 85.41 77.20 72.65 71.21

Auxiliary-BERT-QA-M 88.39 79.78 69.81 66.40 89.65 82.39 56.84 51.54

CapsNet-BERT 87.77 79.68 69.81 64.85 87.80 78.66 69.23 67.44

AC-MIMLLN-BERT 89.00 81.14 71.70 68.77 89.82 82.47 71.79 70.62

SCAN-BERT 88.61† – 70.94† – 88.91 80.43 71.97† –

LC-BERT(Ours) 89.72 83.46 75.47 72.54 90.19 82.56 73.50 72.49

Table 3. Results of ablation study in terms of F1-score. The best results are in bold.

Models Rest14 Rest14-hard RestLarge RestLarge-hard

LC-BERT 83.46 72.54 82.56 72.49

LC-BERT w/o aspect category 80.07 69.65 81.67 56.16

LC-BERT w/o aspect term 78.31 70.82 82.39 68.56

LC-BERT w/o GCN 79.67 65.83 82.47 71.23

resulting in more accurate sentiment prediction. Moreover, our proposed LC-
BERT obtains better performance than AC-MIMLLN-BERT and SCAN-BERT,
which shows that leveraging the aspect term information in this two-stage way is
also highly effective. We also observe that there is a larger margin between our
model and the baselines on the Rest14-hard and RestLarge-hard datasets, which
indicates that our model can handle the mismatching problem better and capture
the relationship between the given aspect category and sentimentwordsmore effec-
tively benefiting from the aspect term information and syntactical information.

4.5 Ablation Study

We conduct the ablation experiments to distinguish the contribution of each part
and the results are shown in Table 3. There are several different variants of our
LC-BERT model. LC-BERT w/o aspect term randomly selects a word repre-
sentation output by the GCN layer as the final representation. LC-BERT w/o
aspect category only takes the sentence as the input of the encoder layer without
incorporating the aspect category information. LC-BERT w/o GCN takes the
sentence and aspect category as the input and uses the word representation output
by BERT corresponding to the aspect term as the final representation.
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Table 4. Case studies of LC-LSTM. The “Predicted” and “Located” columns show
the predicted results and located aspect terms respectively.

Sentence Category Gold Prediction Located

When the dish arrived it was blazing with
green chillis , definitely not edible by a
human

Food Negative Negative Dish

The food is so good and so popular that
waiting can really be a nightmare

Service Negative Negative Waiting

At night the atmosphere changes turning
into this hidden jewel that is waiting to be
discovered

Ambience Positive Positive Atmosphere

As shown in Table 3, ablating each part hurts the model performance, which
indicates that each part of our model is useful for the sentiment prediction. Com-
paring LC-BERT w/o aspect term with LC-BERT, we can see that ablating the
“Locate” stage decreases the model performance, which shows that the intro-
duced “Locate” stage is useful for ACSC since we can obtain the exact position
of the true target in the sentence through it. We also observe that removing the
GCN layer from our model leads to a sharp reduction in performance, which
indicates that leveraging the syntactical information to combine the aspect term
and sentiment words over the dependence tree is effective for ACSC. Comparing
LC-BERT w/o aspect category with LC-BERT, we find that the aspect category
is also very important for ACSC. It is in line with our expectation because the
model may locate the wrong word in the “Locate” stage and then the aspect
category becomes more vital for accurate sentiment prediction.

4.6 Case Study

To have an intuitive understanding of our proposed model, we present some
cases in Table 4. In the first case, our model first locates the aspect term “dish”
precisely and further utilizes it to detect the sentiment polarity correctly. In
the second case, our model is not confused by the word “food” and locates the
right aspect term “waiting” corresponding to the aspect category “service” . In
the last case, our model locates the aspect term “atmosphere” and predicts the
sentiment polarity correctly. These examples show that our model can locate the
aspect term for the given aspect category and further utilize the aspect term to
obtain better target-aware representation.

4.7 Error Analysis

We conduct the error analysis of our proposed LC-BERT on the test set of
the RestLarge-hard dataset. The results are shown in Table 5. We consider two
types of errors. One is that the model fails to locate the aspect term correctly.
For example, in the second line of Table 5, our model fails to locate the correct
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Table 5. Error analysis of LC-BERT on the test set of the RestLarge-hard dataset.
The “Stage/Percentage” column lists the types of errors and the percentage of them.

Sentence Category Gold Prediction Located Stage/Percentage

it gets crowded at lunchtime
but there are lots of seats in
back and everyone who works
there is so nice.

Service Positive Negative Crowded Locate/61.9%

The ambiance was pretty cool
, but not worth the hassle

Misc Negative Positive Hassle Combine/38.1%

target “everyone” and extracts the word “crowded” as the target. This kind of
error accounts for 61.9% of all errors. To correct it, introducing the syntactic
information may be helpful. The other one is that the model locates the aspect
term correctly but fails to predict the sentiment polarity of the given aspect
category. We take the sample in the third line of Table 5 as an example. The
model locates the right aspect term “hassle” but wrongly detects the sentiment
polarity. The possible reason is that the model is confused by the words “pretty
cool” and classifies this example as “positive”. This kind of error accounts for
38.1% of all errors. To address it, removing words unrelated to the given aspect
category may be a potential solution.

5 Conclusion

In this paper, we propose a novel two-stage strategy named Locate-Combine
to leverage the aspect term information in a more straightforward way. In the
“Locate” stage, we locate the aspect term of the given aspect category, which
acts as the bridge between the aspect category and the sentiment words. We
then combine the located aspect term and related sentiment words to learn
syntax-aware representation by utilizing GCN over the dependency tree in the
“Combine” stage. The extensive experiments on public datasets demonstrate
the effectiveness of our proposed two-stage strategy, which achieves state-of-
the-art performance. Moreover, we conduct the comprehensive error analysis by
analyzing the explainable intermediate results output by our model for further
improvement. For future work, we would like to investigate more effective ways
of locating the corresponding aspect term given the aspect category.
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Abstract. Emotion classification has become a hot research topic in
natural language processing due to its wide application. Existing studies
suffer from the error propagation problem when using the syntax infor-
mation in emotion classification since the parser can not produce per-
fect syntax trees. To address this problem, we propose a new approach
by comparing and combining different levels of syntactic information to
make full use of syntactic information and alleviate the error propagation.
First, we propose to use graph convolutional networks (GCN) to encode
dependency trees, in which the probability matrix of all dependency arcs
(edge-weighted graph) is treated as the GCN adjacent matrix. Next, we
extract the dependency parser encoder hidden representations as the
implicit syntactic representations, which can directly avoid the error
propagation problem. Finally, we fuse the two different syntax-aware
information and inject them into our baseline model as extra inputs.
Further experimental results show that the explicit and implicit syntac-
tic information can improve the performance of a BERT-based system
which is much stronger than the baseline. In addition, we find that the
syntactic knowledge that BERT can express is limited, and the syntactic
information of our model brings more contributions, which makes our
model consistently outperform the BERT on different sentence lengths.

Keywords: Emotion classification · Syntactic information · BERT

1 Introduction

Emotion classification is an essential task in natural language processing (NLP),
which aims to detect the emotion labels from the text, such as joy, anticipa-
tion, trust, optimism, and so on. The advent of social media and its prosperity
enables the creation of massive online user-generated content including opinions
and product reviews. For example, one of the most popular platforms, Twitter,
has reached 192 million daily active users in the third quarter of 2020 [10]. Ana-
lyzing such user-generated content and detecting emotions can be widely used in
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Nothing is more beautiful than real smile that has struggled through tears

root

nsubj
cop
advmod prep amod

pobj nsubj
aux

rcmod

prep pobj

Fig. 1. An example of the full dependency tree.

artificial intelligence customer service [14], social events analysis [20], and even
election prediction [25].

In literature, there is a large amount of studies on emotion classification, and
both statistic and neural models have been used to predict emotions from the
post in social media, such as k-nearest neighbours (KNN) [26], support vector
machines [2], long short-term memory (LSTM) [13], attention mechanism [15],
transfomer [3], and so on. However, most previous studies paid too much atten-
tion to improve the model architectures with advanced neural network techniques
but ignored the valid syntactic information of texts. Figure 1 shows a syntactic
dependency result of an example. The syntactic dependency information identi-
fies subject-verb, adverbial, and other grammatical structures and then analyzes
the relationship between different elements in the text, which can help the model
understand the text content better and facilitate the emotion classification.

In recent years, some emotion classification studies consider to leverage the
syntactic information to help understand the text and detect the emotions. Wang
et al. designed a new neural network model by encoding sentences’ syntactic
dependency trees and document topical information into the document repre-
sentation [17]. Lai et al. applied a graph convolutional network (GCN) on the
preliminary word features from Bi-LSTM according to the syntactic trees [9].
Wang explored a syntax-level self-attention layer to learn a syntax-aware vec-
tor for each word [16]. However, most of them only consider the syntactic tree
information (1-best dependency trees) directly from the syntactic parser out-
puts, which may contain some incomplete and inaccurate information. Because
the present syntactic parsers are trained under the standard texts, while the
texts of Twitter include some informal statements [24], which affects the parsing
accuracy in Twitter posts. In addition, using the automatic generated syntac-
tic trees may lead to error propagation problem, which is a common problem
in pipeline based methods. Accordingly, we argue that 1) the dependency arc
scores of dependency trees from decoder provide confidence of each dependen-
cies that are more valid than the 1-best tree, 2) we can extract encoder output
representations from dependency parsers to serve as a kind of implicit syntactic
representations, which can avoid the error propagation problem. In this paper,
we propose an emotion classification model with both explicit and implicit syn-
tactic information. Specifically, we first extract the hidden layer representations
from the encoder of dependency parser model, which is used as implicit syntactic
information. Then, we extract the probability matrix of all dependent arcs (edge-
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weighted graph) after biaffine scorers from the decoder of dependency parser, and
employ GCN to generate the explicit representation. Finally, we incorporate the
two types of syntax-aware representations into the emotion classification model
as external inputs of the input layer.

Our proposed model not only provides more valid linguistic information, but
also alleviates the error propagation problem by using the explicit and implicit
syntactic representations. Experimental results on the public SemEval2018 Task1
dataset validate the superiority of our proposed model over the baseline models.
Our main contributions of this paper are as follows:

1. Compared to the 1-best tree, our model achieves better results when the
GCN encodes explicit syntactic information with the probability matrix of
all dependency arcs (edge-weighted graph), containing more structural infor-
mation.

2. Combining implicit (Imp) and explicit (Exp) syntactic representations brings
further improvement compared with using them separately on our base model.

3. The benefit from syntactic information is not entirely overlapped by BERT
representations in this task, especially on long-distance sentences.

2 Related Work

The current mainstream approaches of emotion classification are deep neural-
network models. Early on, the bidirectional long-short term memory (BiLSTM)
network models consider the sequential order between words on emotion analysis
[13]. FastText model uses a subword embedding strategy which is much faster
than most deep learning models and is comparable in performance to some deep
learning models for the emotion classification task [7]. In recent years, consider-
ing relevant text sentiment ranking (RERc) is constrained by sentiment relations
[27]. Attention mechanism predictive model focuses on sentiment content, incor-
porating convolutional neural networks fused with transfer learning (NTUA-
SLP) [1]. After 2019, there is more progress on emotion classification with the
development of large-scale pre-trained language model like Pre-training of Deep
Bidirectional Transformers for Language Understanding (BERT) [3]. After that,
researchers consider the inclusion of more external information, such as basic
information about the individual with personal information for emotion predic-
tion [28], multi-label emotion classification considering latent emotional memo-
ries (LEM) [6]. BERT-based graph convolutional network (BERT-GCN) is used
to focus on the association between emotion and emotion [19].

The accuracy of syntax can reach over 90% in standard texts with the devel-
opment of deep neural network techniques [24]. Existing methods effectively inte-
grate syntactic information into the corresponding natural language processing
tasks to boost the performance. Xia et al. use a multi-task learning approach
for dependency parsing and semantic role labeling that obtains good perfor-
mance [18]. Duan et al. use syntax-awareness for data augmentation to improve
the performance of machine translation [5]. Zhang et al. use the syntactic model
to improve the performence of opinion role labeling [23]. Of course, there are
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various syntax-ware works in emotion classification, such as considering combin-
ing syntactic tree information with self-attention [16] and combining syntactic
tree information with graph convolutional network [9].

Different from previous works, we add different level of syntactic information
(implicit and explicit syntactic information) into the fine-tuned BERT-based
baseline model to alleviate the error propagation problem and make full use of
the syntactic information to boost the performance of model.

3 Proposed Framework

Fig. 2. Overview of our model. The left is the dependency parser model, and the right
is the emotion classification model (BERT). Our model concatenates the explicit and
implicit representations with the basic emotion classification model.

As shown in Fig. 2, our model framework consists of two models, a sentiment
classification model and a dependency parsing model. Overall, given one sen-
tence, we first feed it into the dependency parsing model to get the explicit
and implicit syntactic representations. Then, we combine the two different rep-
resentations and inject them into our basic emotion classification model as extra
inputs. In the following, we will introduce the baseline model, the employed
dependency parser, the explicit and implicit syntactic representations one by
one.

3.1 Baseline Model

In general, we denote a sentence with n words S = {W1,W2...,Wn}. We choose
the emotion classifier with pre-trained language model (BERT-base)1 as the

1 www.huggingface.co.

www.huggingface.co
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baseline model. To fit the BERT model, the data are preprocessed to obtain
token embeddings, segment embeddings, and position embeddings. Following the
common practice, the first token of each sequence is treated as the special classi-
fication embedding ([CLS]). After the BERT model, we get the output represen-
tation, denoted as {t[CLS], t1, t2, . . . , tn}. Please note that since BERT is based
on sub-word operations. For example, the word “smartest” becomes [“smart”,
“##est”] after the BERT sub-word operation. This paper takes the first sub-
word representation (“smart”) representing the whole word (“smartest”).

The sentence representation is denoted as T = {t1, t2, .., tn}. Next, the self-
attention is used to obtain attention for the context words to enhance the role
of emotion-specific words. Formally, the self-attention uses word representations
to construct the weight for each word in one sample:

vi = tanh(Wti + b) (1)

ai =
exp(vi)∑n
i=1 exp(vi)

(2)

V =
n∑

i=1

aiti (3)

Wi is the weight matrix, bi is the bias, ti is the input vector of the BERT output
for word Wi. ai denotes the importance of the i-th word of the current text,
where

∑n
i=1 ai = 1 and n represents the total number of words. The output of

the attention V is combined with [CLS] and then fed into one middle hidden
layer (a fully connected linear layer). Finally, the classifier passes the middle
hidden representation into last fully connected linear layer with label number
output size (number of emotion labels). We use Sigmoid function over the final
output with a threshold to predict the presence/absence of one emotion label of
the emotion categories and use a cross-entropy loss function.

The right part of Fig. 2 shows the overall workflow of our baseline model
except for Exp repr and Imp repr.

3.2 Dependency Parser

As shown in the left part of Fig. 2, we use the state-of-the-art biaffine parser [4] as
the dependency parser module. The dependency parser consists of a multi-layer
BiLSTM encoder and a biaffine scorer decoder. The BiLSTM encoder is used
to encode the input sentence to get the contextualized word representations.
Given the encoder output, the dependency scores of each word pair (wi → wj)
is computed with the biaffine scorer. With the scores of all dependencies, we
use the maximum spanning tree (MST) algorithm to obtain the highest-score
unlabelled dependency tree, and then independently decide the syntactic label
for each dependency arc. For more details, please refer to the original paper of
Dozat and Manning (2016) [4].

We argue that the parser encoder learnt implicit syntactic information and
the dependency score matrix provides more valid information than the 1-best
tree, which we will discuss in the following sections.
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3.3 Explicit Method

As a classical way to utilize syntactic information, previous works usually use
syntactic parser to parse sentences into syntactic trees, and then use various
methods to explicitly encode the trees to get specific representations for tar-
get tasks [9,16]. However, this kind of methods usually have error propagation
problem, because the employed syntactic parser cannot generate fully correct
syntactic trees. To alleviate this problem, we propose an enhanced syntax-aware
graph convolutional networks (SynGCN) that uses the dependency arc score
matrix as the adjacent matrix. On the one hand, using the dependency scores as
the adjacent matrix of the GCN module allows all connections for every nodes
that alleviates the error propagation problem of using automatic dependency
tree. On the other hand, the dependency score matrix provides valid dependency
attention for every word pair in one sentence, which conveys richer structural
information than the traditional 1-best dependency tree.

As show in Fig. 2, we first calculate the basic GCN [8]. We represent a graph
as G = (V,E), where V and E are the nodes and edges, respectively. The i-th
node of layer l is computed as follows:

hl
i = ρ(

n∑

j=1

AijW
lhl−1

j + bl) (4)

where A is the adjacency matrix, which is the dependency arc score matrix
(“dependency arc scores” in Fig. 2) that summed a diagonal matrix. W and b
are the model parameters, and ρ is the activation function. Specifically, h0 is the
initial input word vector that are generated by the word2vec2 tool. The output
of SynGCN is fed into the baseline model as extra inputs.

3.4 Implicit Method

Recently, the very popular pre-trained language models (e.g. ELMo [12] and
BERT [3]) are trained from large-scale training corpus. These large-scale train-
ing corpus trained language models have gained much attention, which pro-
duce strong implicit representations, boosting many NLP tasks. Inspired by
pre-trained language models and previous works [18,22], we try to migrate the
implicit syntactic representations to our sentiment classification model to ver-
ify the effectiveness. Different from the multi-task strategy [18], we extract the
implicit syntactic representation as follows:

→
ht = LSTM(ht−1, xt)
←
ht = LSTM(ht+1, xt)

ht = W→
h

→
ht +W←

h

←
ht +b

(5)

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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→
ht and

←
ht are the t-th step left-to-right LSTM output and right-to-left LSTM

output in the top encoder layer of the dependency parser. ht is the extracted
implicit syntactic representation (Imp repr in Fig. 2). The left bottom part of
Fig. 2 shows the process.

3.5 Fusion of Explicit and Implicit Information

The explicit syntactic representations encode the dependency structure informa-
tion and the implicit syntactic representations convey the structural information.
We hypothesize that the two syntactic representations are different and some-
what complementary. Therefore, we fuse the two information at the input layer
in our final model, which is denoted as:

Ei = Expi ⊕ Impi ⊕ BERTi. (6)

Figure 2 shows the overall workflow of our proposed framework.

4 Experiments

4.1 Settings

Dataset. We conduct experiments on the public SemEval 2018 Twitter English
dataset [11]. SemEval contains 11 emotion labels, namely: anger, anticipation,
disgust, fear, happiness, love, optimism, pessimism, grief, surprise, and trust.
Each sentence may contain more than one emotion label. The total number of
sentences is 10983, including 6,838 training sentences, 886 validation sentences,
and 3,259 test sentences. Besides, the total number of words is 32,557, of which
3,419 sentences have more than three emotion labels, 4,442 sentences have two
emotion labels, and 1,563 sentences have one emotion label.

Dependency Parsing. Following the standard training approach for syntactic
parsing, biaffine parser is used to train the dependency parsing according to the
Stanford Parser V3.0 with an unmarked dependency success rate (UAS) 95% on
the English dataset Penn Treebank data (PTB). In this paper, the biaffine parser-
trained model is used to predict SemEval data to obtain the 1-best syntactic tree,
the explicit and the implicit syntax information of the syntactic state. For the
other settings, following the work of Dozat [4].

Evaluation. For comparison with previous works, we conduct the experiments
and report the macro F1-score.
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Hyper-parameters. For the emotion classification module, we follow most
hyper-parameter settings of Devlin [3]. The Adam optimizer trains our models
with a learning rate of 3e-5 and weight decay of 1e-8. We use the dropout rate
of 0.5 and the batch size is set to 64. For the parameters of the dependency
parser, we mostly follow Dazat [4]. The hidden size of SynGCN is 150 and the
hidden size of BiLSTM is 800. The input of SynGCN model is 300-dimensional
word embeddings. The threshold of the final output is set to 0.5. The dimension
of middle linear layer is 256. The training process is early stopped if the peak
performance on the development data does not increase in 10 consecutive epochs.

4.2 Base Models

We compare our model with the following models.
BiLSTM [13] is used to encode contextualized information of sentences for

predicting emotions.
FastText [7] adopts sub-word embedding strategy. FastText is often on par

with deep learning classifiers in terms of accuracy.
RERc [27] utilizes relevant sentiment ranking in texts subject to sentiment

relations.
NTUA-SLP [1] predicts affective content in tweets with deep attentive

Recurrent Neural Networks and transfer learning.
BERT-DK [21] devises a simple method to obtain domain knowledge and

further propose a method to integrate domain knowledge with general knowledge
based on deep language models to improve performance of emotion classification.

BERT-GCN [19] captures the dependencies among different emotions
thro-ugh graph networks. These graphs are constructed by leveraging the co-
occurrence statistics among different emotion categories.

LEM [6] considers prior emotion distribution in a sentence and effectively
captures the context information closely related to the corresponding emotion.

Baseline [3] chooses the emotion classifier with pre-trained language model
(BERT-base) as the baseline model. The details are described in the base model
section.

Baseline + Exp1−best + Imp is the same model as our proposed model
(imp+exp). The only difference is that the adjacency matrix of the GCN is
constructed in the same way as proposed by Lai et al.(2020) [9], which aims to
verify the difference in performance between our model and the 1-best syntactic
tree GCN.

4.3 Main Results

Table 1 shows the results of our proposed framework and comparison with previ-
ous works. First, we can see that both the explicit and implicit methods outper-
forms our strong BERT-based baseline model. Second, our final model that com-
bines the explicit and implicit syntactic information achieves the best reported
result of 0.571 F1 score. Finally, we can see that using the 0–1 adjacent matrix
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Table 1. Experimental results and comparison with previous works on SemEval (2018)
test data.

Models F1

BiLSTM 0.427

FastText 0.438

RERc (2018) [27] 0.539

NTUA-SLP (2018) [1] 0.528

BERT-DK (2019) [21] 0.549

BERT-GCN (2020) [19] 0.563

LEM (2020) [6] 0.567

Baseline 0.550

Baseline + Exp 0.559

Baseline + Imp 0.556

Baseline + Exp1−best + Imp 0.560

Baseline + Exp + Imp 0.571

from the 1-best tree in the explicit method hurt the performance, which only
achieves 0.560 F1 score, illustrating the effectiveness of using the dependency arc
scores matrix as the adjacent matrix. Furthermore, we list the detailed F1 scores
regrading to different emotions in Table 2. We can observe that our syntax-aware
framework outperforms our baseline model in most emotions.

Table 2. Detailed F1 scores of each emotion on SemEval2018.

Emotion Baseline Baseline+Exp Baseline+Imp Baseline+Exp+Imp

Fear 0.716 0.721 0.731 0.742

Anticipation 0.316 0.303 0.295 0.319

Disgust 0.738 0.718 0.725 0.719

Anger 0.775 0.760 0.767 0.763

Joy 0.840 0.837 0.836 0.838

Love 0.546 0.594 0.580 0.602

Optimism 0.688 0.722 0.713 0.725

Pessimism 0.300 0.351 0.322 0.377

Sadness 0.681 0.678 0.686 0.686

Surprise 0.294 0.275 0.301 0.282

Trust 0.160 0.194 0.153 0.227

F1 0.550 0.559 0.556 0.571
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4.4 The Influence of Sentence Length

As shown in Fig. 3, we investigate the performance of different models at dif-
ferent sentence lengths. We can find that our proposed method consistently
outperforms both BiLSTM and BERT, especially in the range of 35–45, which
we think because the syntactic trees effectively capture long-range dependen-
cies. Further, we can find that our syntax-aware framework outperforms than
the BERT-based baseline model, indicating that the contribution of syntactic
information is not entirely replaced by BERT representations.

Fig. 3. The F1 values of BiLSTM, BERT and ours against the sentences with different
lengths on the SemEval2018.

Table 3. The examples of case study.

Post Baseline Ours Gold

Nothing is more beautiful than
real smile that has struggled
through tears

Joy optimism Joy optimism trust Joy optimism trust

Life is too short to be jealous,
hating, keeping up mess, and
worrying about things that do
not concern you

None Optimism Optimism

When you are with your friend
and you are still laughing
@Tereza Gray #laugh

Joy Joy love Joy love

4.5 Case Study

To better understand the usefulness of syntactic information. We give a case
study of using baseline and our proposed syntax-aware framework from SemEval
test set in Table 3. From the results of models, we presume that our baseline
does not capture enough abundant syntactic information, resulting in bias in
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recognition. In detail, for example, in the sentence Nothing is more beautiful than
real smile that has struggled through tears., the results of the baseline model are
joy and optimism. As show in Fig. 1, we can see that the syntactic structure
gives an implicit meaning of trust by the phrase Nothing is more beautiful than
real smile, so our syntax-aware framework correctly predict it.

5 Conclusion

We present a syntax-aware emotion classification approach that utilizes both
explicit and implicit syntactic information, where the explicit information refers
to syntactic structure information and the implicit information refers to the rep-
resentations extracted from the encoder of a dependency parser. Experimental
results and detailed analyses demonstrate that our approach effectively captures
syntactic information and successfully integrated into BERT-based model. In
the future, we will explore more useful external expertise and combine it with
the emotion classification model to improve the performance.
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Abstract. Humor detection attracts increased attention in natural lan-
guage processing for its potential applications. Prior work focus on ana-
lyzing humor on isolated, textual data, but humor usually comes from
the interaction among speakers in a multimodal way. In this paper, we
proposed a novel dataset named MUMOR, which consists of multimodal
dialogues in both English and Chinese. It contains a total of 29,585 utter-
ances belonging to 1,298 dialogues from two TV-sitcoms. We manually
annotated each utterance with humor, emotion, and sentiment labels. To
our best knowledge, this is the first corpus containing Chinese conver-
sations for humor detection. This dataset could be used for research on
humor detection, humor generation, and multi-task learning on emotion
and humor analysis. We released this dataset publicly.

Keywords: Mulimodal · Sentiment analysis · Humor detection

1 Introduction

Humor plays an important role in human communication. It not only creates an
entertaining atmosphere, but also helps regulate conversations, reduce stress, and
build trust between partners [1]. Humor recognition attracts increased attention
for its potential application in human-computer interaction, which can be used
in advertising, healthcare and education area [2].

Recent years, there are many papers about construction of humor detection
dataset. Mihalcea and Strapparava [3] introduced a dataset containing 16,000
humorous and 16,000 non-humorous text in English. The humorous data are
one-liners collected from Internet, and the non-humorous sentences were col-
lected from one-liners, Reuters titles, BNC sentences, and proverbs. Zhang and
Liu [4] constructed an English tweets dataset for recognizing humor on Twit-
ter. The corpus contains 3,000 tweets with annotation of 3 categories: humorous
tweets, non-humorous tweets, and humorous non-tweets. Castro et al. [5] estab-
lished a Spanish corpus for humor detection. They collected 39,363 tweets from
both humorous accounts and non-humours accounts. After filtering and man-
ually labeling, they finally got a corpus containing 33,531 Spanish tweets with
humorous and non-humorous labels. Khandelwal et al. [6] proposed a corpus with
3,543 English-Hindi code-mixed tweets. Each tweet is annotated with humorous
or non-humorous label. Blinov et al. [7] constructed a large size dataset for humor
c© Springer Nature Switzerland AG 2021
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recognition in Russian. They collected jokes and funny dialogues from various
online resources. This dataset contains more than 300,000 short tests, which is
significantly larger than any previous humor-related corpus.

Most of the previous work in the field of humor detection focusing on isolated,
textual data, few works have been devoted to detecting humor in conversations.
Bertero and Fung [8] proposed a LSTM based network to detect humor in dia-
logues. They constructed a corpus with 43,672 utterances from 1,589 scenes.
The corpus is collected from the subtitles and scripts of the TV-sitcom “The
Big Bang Theory”. In their later work [9], they combined acoustic and language
features to detect humor in conversations. Experiment results on three English
sitcom corpus showed that combining the acoustic features brought improvement
on humor detection.

It is important and difficult to detect humor in conversations. The formation
of humor has a setup process. Sometimes one sentence itself is not humorous,
but it becomes humorous when combined with the context. And the interaction
between speakers in a dialogue often produces humorous effect. In addition,
multimodal information also helps detect humor. Sometimes the reason makes
an utterance funny is the vocal tonality, facial expressions, and body gesture
of the speaker but not the meaning of the utterance text. And a multimodal
dialogue scene is a common scenario in reality. Detecting humor in multimodal
dialogue is a very challenging task. It requires the model to obtain the contextual
information and integrate the features of different modalities.

Figure 1 shows an example of humor in multimodal dialogue. The topic of this
dialogue is quitting smoke. Each utterance in this conversation, if being treated
separately, is not humorous. However, considering the contextual information the
emotional changes of the characters in the dialogue, utterance 3, 4, 6 become
humorous.

In this work, we constructed Multimodal Utterance-level Humor Dataset
(MUMOR), a dataset for humor detection in multimodal conversations. It con-
tains two language corpora: English and Chinese. Both corpora contain textual
dialogues with their corresponding video and audio segments, which means each
utterance in this dataset has three modal sources. MUMOR provides humor label
for recognizing humor in dialogues. Furthermore, each utterance is annotated
with emotion and sentiment labels, which can be used in multi-task learning on
emotion and humor analysis as research has shown that modeling sentiment is
effective for humor detection [10]. Our contributions are as follows.

– We proposed a dataset, MUMOR, contains both English and Chinese corpus.
To our knowledge, this is the first Chinese conversational corpus for humor
detection.

– We introduced the data processing and labeling process of this dataset, which
has reference significance for the construction of multi-modal data set. This
paper shows the data distribution and statistical information of MUMOR.

– MUMOR provides audio, visual, and textual modal sources. It is a multilin-
gual, multi-label dialogue dataset. It can be used for multi-modal sentiment
analysis, humor recognition and dialogue generation research.
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Fig. 1. A example of humor in multimodal dialogue.

2 Dataset

2.1 Data Source

The MUMOR dataset contains English and Chinese corpus which we name as
MUMOR-EN and MUMOR-ZH, respectively.

MUMOR-EN is constructed based on the MELD dataset [11]. MELD is a
multimodal dataset used for emotion recognition task. It contains 1,433 dialogues
from TV-sitcom “Friends”. Each dialogue contains several utterances belonging
to the same scene. And each utterance encompasses audio, visual and textual
modalities. Since the purpose of our dataset is to recognize humor in long con-
versations rather than short texts, we discarded the conversations with a small
number of utterance in the original dataset. We filtered out dialogues with less
than 3 utterances and made humor annotation on the rest data.

For MUMOR-ZH, we choose a popular Chinese sitcom (I Love
My Family) as our data source. We collected 81 episodes of this TV series video
and extracted utterance text and its timestamps from subtitle files. We cut the
video into clips according to the timestamps of each utterance. The utterances
are grouped into dialogues following the constraint that all the utterances in a
dialogue comes from the same episode and scene. Finally, we got 19,103 utter-
ances belonging to 519 dialogues.

2.2 Data Format

Each utterance is identified by a dialogue ID and an utterance ID, which also
name the corresponded video clip file saved in .mp4 format.

In Table 1, we show the format of our dataset, which contains the information
of the utterance, the speaker, the humor label, the emotion label, the sentiment
label, the dialogue ID and the utterance ID.
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Table 1. Dataset format.

Utterance Speaker Humor Emotion Sentiment D ID U ID

All right, there you go! Ross Non-humorous Joy Positive 439 12

Yeah, you hang in there
Teddy!

Joey Non-humorous Anger Negative 439 13

I’m Andrew, and I didn’t
pay for this pear.

Older Scientist Humorous Neutral Neutral 439 14

Okay, good-good for you. Ross Non-humorous joy Positive 439 15

I’m Rhonda, and these
aren’t real!

Tour Guide Humorous Neutral Neutral 439 16

2.3 Data Annotation

The MUMOR dataset contains humor, emotion, and sentiment labels for each
utterance. We ask three annotators to watch the video clips with subtitles of
each utterance, and let them decide whether this utterance is humorous or not
and which kind of emotion it belongs to.

The annotators are Chinese postgraduate students with at least 10 years of
English learning experience. In addition, we displayed both English and trans-
lated Chinese subtitles while annotating English data. Before the formal anno-
tation, all annotators did some pre-annotation test to ensure the quality of the
annotation.

For humor label, we provide two categories: humorous and non-humorous.
The overall Fleiss’ kappa score of humor annotation process is 0.81, which indi-
cates a substantial agreement among annotators.

For emotion label, We keep the original emotion labels in MELD dataset for
MUMOR-EN, and make our emotion annotation by 3 annotators on MUMOR-
ZH. The emotion label contains six universal emotions Joy, Sadness, Fear, Anger,
Surprise, and Disgust [12] in addition with Neutral. For utterances that 3 anno-
tators can not reach agreement, we label it with a None label. There exists 410
None in totally 19,103 utterances. The Fleiss’ kappa score of emotion task is
0.45 (kappa of MELD emotion annotation process is 0.43).

For sentiment label, we apply the scheme proposed by Poria et al. [11]. It
considered Anger, Disgust, Fear, Sadness as Negative, Joy as Positive and made
further annotation in class Surprise to decide whether is Positive or Negative.
Our 3 annotators labeled the utterances in MUMOR with the tactic mentioned
above. The Fleiss’ kappa score of sentiment annotation process is 0.84.

3 Dataset Analysis

First, we display the main statistical information of the two language data in
Table 2.

It can be seen that the scale of the Chinese data is about twice that of
the English data, showing a roughly 2:1 ratio between the total duration of
the video and the total number of utterance. The length of an utterance is the
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Table 2. Data statistics.

MUMOR-EN MUMOR-ZH

Total video duration (h) 9.03 18.12

Avg duration of utterance (s) 3.11 3.42

# Dialogues 779 519

# Utterances 10,482 19,103

D-length 13.46 36.81

U-length 10.37 10.04

Humorous percentage (%) 24.59 28.36

# Speakers 259 91

Total number of words 108746 191770

Number of unique words 6869 17804

number of words in it, this number on the Chinese and English data is very close,
being 10.04 and 10.37 respectively. The average duration of one utterance is also
relatively close, 3.42 s and 3.11 s respectively. It can be seen that the narrative
length and speech speed of the actors in the two sitcoms are relatively close.
The big difference between the two languages is the length of the conversation.
Among them, the value of Chinese data is 36.81, which is close to three times
of 13.64 on English data. It indicates that a paragraph in the Chinese data
has a longer sequence and contains more context information. In addition, the
proportion of humor in the data of different languages is similar, and there is not
much difference. The percentage of humor in the Chinese data is 28.36%, and
the median value of the English data is slightly lower, at 24.58%, and the ratio
of positive and negative cases is about 3:1. The Chinese data contains a total
of 191,770 words, of which the size of the non-repeated vocabulary is 17,804.
In contrast, there are only 6,869 different words in the English data. It can be
seen that the vocabulary variety of the Chinese data is higher than that of the
English data.

We split our dataset into training, development, and testing set on two cor-
pus, respectively. Table 3 shows the data statistics on the 3 sets. It can be seen
that the main statistical information on the training, development, and testing
set is very close.

Figure 2 shows the distribution of humor percentage in one dialogue on two
corpora. There are 9 Chinese dialogues that do not contain humorous utterances,
while the number is 20 in English corpus. The proportion of humorous utterances
in most conversations is 10% to 40%. While the 20%-30% range had the largest
number of dialogues, with 252 dialogues in the Chinese corpus and 192 dialogues
in the English corpus.

We also calculate the utterance proportion for all sitcom characters. For those
with less than 2% utterances, we group them as Other. The result is shown at
Fig. 3. We can see both corpus contain 6 main characters, and the utterance
proportion of main characters in the English corpus is more balanced.
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Table 3. Dataset division.

MUMOR-EN MUMOR-ZH

Train Dev Test Train Dev Test

# Dialogues 551 70 158 348 43 128

# Utterances 7,472 914 2,096 12,677 1,632 4,794

D-length 13.56 13.06 13.27 36.43 37.95 37.45

U-length 10.34 10.20 10.59 9.99 10.49 10.02

Humorous percentage % 23.73 27.02 26.62 28.76 26.23 28.04

# Speakers 215 36 75 76 24 51

Fig. 2. Humor distribution.

Figure 4 shows the humorous percentage of each character in two corpora,
respectively. We can see some characters with lower utterance proportion but
have higher humor percentage, they played an important role in pleasing the
audience, like Yuanyuan and Chandler in their respective sitcoms. Both of them
have a humorous percentage of over 33%.

4 Comparison with Existing Dataset

In this section, we will compare MUMOR dataset with two related multimodal
datasets and introduce the potential applications of our dataset.

UR-FUNNY [13] is a multimodal dataset for humor detection. It contains
16,514 speech data extracted from TED speech. Each speech segment contains
several utterances and labeled with humours or non-humours label. The positive
instances end with a punchline utterance, the negative instances sampled from
sentences in the same distribution but not end with a punchline. UR-FUNNY
dataset is making classification on dialogue level while MUMOR dataset works
on utterance level. From the example in Fig. 1, we can see that compared with
the punchline in the speech, the humor in the dialogue does not only appear in
the ending utterance, but is distributed in the whole dialogue. Furthermore, the
average length of context in UR-FUNNY dataset is 2.86 which is much shorter
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Fig. 3. Character distribution.

Fig. 4. Humor distribution.

than that in MUMOR dataset, which means models need powerful context mod-
eling capabilities to achieve good results on MUMOR dataset.

MUStARD [14] is a multimodal dataset for sarcasm detection. Its data are
extracted from three English sitcoms. Sarcasm utterance in this dataset is accom-
panied with several historical utterances as its context which is much shorter
than the length of context in MUMOR dataset. Unlike MUStARD dataset,
MUMOR dataset focus on humor detection. Although there is a strong rela-
tionship between sarcasm and humor, humor does not only come from sar-
casm. Table 4 shows the comparison between MUMOR dataset and the existing
dataset.

Table 4. Comparison with existing dataset.

MUMOR UR-FUNNY MUStARD

Number of videos 1298 16514 690

Avg duration of utterance(s) 3.31 4.64 5.22

Annotation granularity Utterance-level Dialogue-level Dialogue-level

Labels Humor, sentiment, emotion Humor Sarcasm

Languages English & Chinese English English
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MUMOR dataset can be used in the research of detecting humor in conversa-
tions involving multiple speakers. It can also be used to study humor differences
in multiple languages as it provides corpus in both Chinese and English. In addi-
tion, the emotion and sentiment labels can be used to analysis the relationship
between emotion and humor through multi-task learning.

5 Conclusion and Future Work

In this work, we constructed MUMOR, a multimodal dialogue dataset. It pro-
vides two language corpus: English and Chinese. It totally contains 29,585 utter-
ances from 1,298 dialogues from two sitcoms. Each utterance in MUMOR has
textual, audio, and visual modal sources. We introduced the process of building
this dataset and the kappa score indicated a high quality of our dataset.

Our dataset provided emotion, sentiment and humor label. Moreover, it can
be used for emotion recognition, humor response generation, and multi-task
learning on emotion and humor analysis. In addition, research about multimodal
feature extraction and fusion can be explored on our dataset.
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Abstract. The rapid development of social media has brought the pros-
perity of online economy. Recently, product promotion in social networks
has become an essential way of online marketing. As one of the most com-
mon marketing means, Content Marketing (CM) inserts advertisements
into regular articles in a roundabout and covert way. However, the val-
ues and characteristics of products are often exaggerated to attract users’
attention. It could cause severe economic losses to users and influence the
creditworthiness of the platforms. In this paper, we model the problem
of advertisement extraction from CM articles as a sentence classification
task. We propose a topic-enhanced deep neural network to encode the
semantic information of a sentence for classification. Motivated by the
characteristics of CM articles, we develop a segment-aware optimization
method that considers the label transitions of sentences in different seg-
ments of an article to improve the performance of the classifier. Experi-
mental results based on real-world datasets demonstrate the superiority
of the proposed method over state-of-the-art approaches.

Keywords: Content marketing articles · Classification · Topic.

1 Introduction

With the rapid development of online social media, more and more people use
social media to communicate and obtain news information. As the leading social
media platform in China, WeChat has about 1.213 billion monthly active users,
covering more than 200 countries by January 2021 [1]. WeChat has an impor-
tant function named “Official Accounts”, where users can subscribe to interesting
accounts. WeChat allows any legal users to register an “Official Account”, where
they can post their opinions and knowledge through articles, pictures, videos,
and other kinds of content to attract followers. Due to their high influence, some
select accounts are hired for online product marketing. However, advertisers usu-
ally exaggerate facts to attract consumers, causing economic losses of consumers
and harming the creditworthiness of the platform. Therefore, it is desirable to
identify advertising content for the purpose of supervision, which benefits both
users and the platform.
c© Springer Nature Switzerland AG 2021
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A CM article is a new form of popular online mode for “advertorials”. It
is manifested with a specific purpose for product promotion. As direct product
promotion articles are more likely to be detected and blocked, advertisers usually
create CM articles by embedding advertising content into normal articles about
hot spots. Thus, users read the advertisement parts involuntarily. Besides, the
advertising content usually contains positive and affirmative words and phrases.
Figure 1 shows an example of a CM article from a WeChat Official Account.
The left part is a screenshot of the CM article, and the right is the English
version obtained by Google Translate. The red box contains the normal content,
the yellow part contains the transitional sentences from the normal part to the
advertisements, and the green part is the advertising content.

Fig. 1. An example of a CM article. (Color figure online)

There are already some researches to detect CM articles. Liang et al. [9]
proposed a graph-based approach to detect CM articles in WeChat. However,
the method fails to extract the advertisements from the detected CM articles.
Extracting advertisements from marketing articles can benefit both users and
the platform from two aspects. First, the platform can remove identified adver-
tisements and thus improves the quality of the experience. Second, the platform
can further identify illegal advertisements such as illegal drugs and phishing
content. However, this task faces two challenges. First, the transition from nor-
mal content to advertisements is carefully designed, usually with few sentences
connecting two topic-separated parts. Second, there are much fewer advertising
sentences than normal ones in a CM article, which significantly increases the
difficulty of identifying them.

In this paper, we study the task of extracting advertising content from a
CM article, which is modeled as a sentence classification task. To address the
first challenge, we propose a topic-enhanced deep neural network to enrich sen-
tence encoding. Both the semantic information and topic features are utilized to
generate sentence embeddings.

To address the second difficulty, we develop a segment-aware optimization
method for sentence classification.
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Our proposed model can capture the characteristics of CM articles and we
conduct extensive experiments to evaluate the effectiveness of our model based
on real-world datasets.

2 Related Work

2.1 Text Classification

Extracting advertisements from CM articles is essentially a text classification
problem, which is fundamental in natural language processing (NLP). Some
researchers employed the long and short-term memory (LSTM) models for text
classification and achieved encouraging results [14,16]. Character-level CNNs are
designed for short text classification [2]. Wang et al. [17] incorporated entities
and relations from knowledge graphs (KGs) to enrich the semantics of short
texts. Yao et al. [7] employed the standard graph convolutional networks (GCN)
for both long and short text classification and achieved superior performance
over state-of-the-art text classification methods. Hu et al. [19] proposed a het-
erogeneous information network framework, which integrates several types of
additional information to address the semantic sparsity problem in text clas-
sification. Wieting et al. [8] explore various methods for computing sentence
representations from pretrained word embeddings without any training.

2.2 Topic Models

Topic models have been proposed to uncover the latent semantic structure of text
corpus. Hoffmann [3] proposed a probabilistic latent semantic analysis (PLSA)
for topic extraction. Beli et al. [4] proposed the most commonly used and effec-
tive topic model of Latent Dirichlet Allocation (LDA). However, traditional topic
models are not suitable for short texts. Some researchers tried to aggregate
short texts into lengthy pseudo-documents based on some additional informa-
tion. Hong et al. [5] conducted a comprehensive empirical study of topic models
in Twitter. Yan et al. [6] proposed a Biterm topic model (BTM), which learns
topics by directly modeling the generation of word co-occurrence patterns in the
whole corpus. BTM uses the aggregated patterns in the whole corpus to solve
the sparsity problem encountered at the document-level. Angelov [21] proposed
a top2vec model to find topics which are significantly more informative and
representative of the corpus trained on than probabilistic generative models.

3 Method

3.1 Problem Definition

Content Marketing starts with attractive topics (e.g., hot spots) and transits to
product promotion gradually. The two parts are usually about different topics
and have different narrative styles. This paper focuses on distinguishing between
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advertising sentences and normal ones in Content Marketing articles. Specifi-
cally, a CM article A contains a sequence of n sentences A={s1, ..., si, ..., sn}.
Our purpose is to find the advertising sentences in A. We propose a sentence
classification method to achieve this goal. Figure 2 presents an overview of the
proposed method. The input of the model is a sentence of an article, which con-
tains a sequence of words. The input is that in order to play the role, Zhang
Junning cut a head of hair, clever temperament receded, the whole beautiful
and handsome.

We use P (y|s, θ) to denote the probability of sentence s being classified into
label y ∈ {0, 1}, where θ represents the parameters of the method, and y=1
represents that s is advertising.

Fig. 2. Model architecture.

3.2 Topic-Enhanced Neural Network

Sentence Encoding. Given a sentence contains n words, we denote the sen-
tence as s = {w1, w2, ..., wn}. The goal of this model is to learn the semantic
representation ss for a given sentence s. We use the pre-trained word embeddings
trained by word2vec for word vector initialization. In this paper, we employ the
Bi-directional LSTM (BiLSTM) proposed by Hao et al. [10].

−→
ht =

−−−−→
LSTM(wt,

−−→
ht−1) (1)

←−
ht =

←−−−−
LSTM(wt,

←−−
ht−1) (2)
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We concatenate
−→
ht and

←−
ht to obtain a hidden state ht of a sentence. Let the

number of hidden units for each unidirectional LSTM be u. For simplicity, we
denote all the ht’s as a matrix H ∈ R

n×2u:

H = [h1, ...,hi, ...,hn] (3)

Self-attentions do not depend on the order of words, which could improve
the expressive power of RNN. So we introduce a self-attention mechanism to
address this problem. Specifically, we use the scaled dot-product attention [11].
The purpose is to learn the word dependence within a sentence and capture
the internal structure of a sentence. Given a matrix of n query vectors Q ∈
R

n×2u, keys K ∈ R
n×2u and values V ∈ R

n×2u, the scaled dot-product attention
computes the attention scores as follows:

A = Attention(Q,K,V) = softmax(
QKT

√
2u

)V (4)

where Q, K, V are obtained by linear transformations, i.e., Q = HWQ, K =
HWK , V = HWV , WQ, WK , and WV are randomly initialized matrices, and√

2u is the scaling factor to avoid focusing too much on a word. The output of
the attention layer is a matrix denoted by A ∈ R

n×2u.
Next, we use a max-pooling layer over A to acquire the sentence representa-

tion ss ∈ R
2u, i.e., choosing the highest value on each dimension of the vectors

to capture the most important feature.

Topic Enriching. We use a convolutional neural network to obtain the topic
features of a sentence. The input is the topic feature matrix of a sentence. The
topic feature matrix Z ∈ R

N×K is obtained by the Biterm topic model (BTM).
BTM is a topic model designed for short text, which models the generation of
word co-occurrence patterns in the whole corpus. where N is the number of
words contained in the whole corpus, and the K is the number of the topics.

In the topic feature matrix, each row represents the probability of a word
belonging to different topics. We combine the topic probability distributions of
words to get the topic feature representation of a sentence, which is represented
as T:

T = [t1, ..., ti, ..., tn] (5)

where ti is the i-th word topic feature of the sentence, and the n is the number
of words in the sentence. The feature matrix of the input layers are feed to the
convolutional layers to extract local topic features of sentences:

C(i)
t = f(Wt · Ti:i+l−1 + bt) (6)

where C(i)
t is the output of the convolution layer, f() is the ReLU activation

function, Ti:i+l−1 represents the convolution operation from i-th to (i + l − 1)-
th, l is the size of the convolution kernel, Wt is a weight matrix, and bt ∈ R

is a bias term. Then, we apply the max-pooling over the feature map produced
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by the convolution layer. Finally, we concatenate ss and st to obtain the final
embedding of a sentence s, which is fed into a fully connected layer. Finally, we
use an output layer to acquire the probability of each class label.

3.3 Segment-Aware Sentence Classification

CM articles implicitly follow some patterns, which can be exploited to improve
the classification performance. For example, advertising sentences often appear
at the end of the CM articles. Moreover, an advertising sentence is usually fol-
lowed by another one. These patterns allow us to boost the classification perfor-
mance. However, the number of advertising sentences is much fewer than that
of normal ones in a CM article. The comparison is shown in Table 1. Therefore,
directly counting the label transitions in the entire article will weaken the tran-
sition probability. That is, sentences have different label transition probability
matrices at different positions in a CM article. To address this issue, we set a
parameter α ∈ {0, 1} to control the statistical scope of an article. Specifically,
we calculate two transition matrices in different segments of a CM article. The
first segment is from the first sentence to �nα�-th sentence, and the second is
from (�nα� + 1)-th to the end. In this way, we can capture the label transition
probability of CM articles in fine granularity. Let M(1) ∈ R

2×2 denotes the tran-
sition matrix of different labels in successive sentences for the first segment. The
label transition probability matrix computes the probability as follows:

Mij =
#Nij

#N
(7)

where #Nij is the number that a sentence with label i is followed by a sentence
with label j in the first segment, #N is the total number of sequential label
transitions. Similarly, we can calculate the transition matrix M(2) for the second
segment. The label transition matrix reflects the dependencies between the labels
of adjacent sentences. Let P be the predicted probability matrix output by the
neural network, where Pi,yi

indicates the score that the label yi assigned to the
i-th sentence. In order to model dependencies between subsequent labels, the
score of a label is defined as the sum of the probabilities of individual labels and
the transition probabilities. The score of a prediction label is defined as follows:

̂Pi,yi
= Pi,yi

+ Myi−1yi
(8)

where yi−1 is the label of the predecessor sentence.
The first sentence in a CM article has no label transition probability. The

prediction of the first sentence takes the probability Pi,yi
. Finally, the obtained

probability matrix ̂P is normalized by taking a softmax operation over all pos-
sible labels:

P̄i,yi
= softmax(̂P) =

e
̂Pi,yi

∑

ŷi∈Y e
̂Pi,ŷi

(9)
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where Y ∈ {0, 1} denotes the set of labels. The objective of the training is to
minimize the cross-entropy loss:

Loss = −
n

∑

i=1

yi log P̄i,ŷi
(10)

where yi is the ground-truth label, and n is the number of sentences in a CM
article.

4 Experiment

4.1 Experimental Settings

Dataset. We crawled the articles from WeChat official accounts and manually
marked 700 CM articles with the assistance of the graph-based algorithm [9].
The paper proposed a novel approach to enhance the detection based on the
sentence and word graph analysis. And they extract both the graph-related and
community-related features from the graphs of the two types, respectively. After
that, a supervised classifier is trained based on a manually labeled dataset.

After getting the dataset, we use Chinese and English punctuation to split
a CM article into a sentence sequence. We use “jieba” to cut words and remove
the stopwords. Then, we labeled the sentences containing advertising content.
Table 1 shows a summary of the dataset.

Table 1. Summary of the dataset.

Statistic Results

# of CM articles 700.00

Training set 560.00

Test set 140.00

of normal sentences 48719.00

of advertising sentences 11944.00

Avg. # of a CM article contains normal sentences 69.60

Avg. # of a CM article contains advertising sentences 17.06

Avg. # of a normal sentence contains words 23.64

Avg. # of an advertising sentence contains words 36.93

Compared Methods. To evaluate the effectiveness of our model, we compare
it with the following methods.

• Text CNN: This model is a classic baseline for sentence-level text classifica-
tion. In this experiment, we use pre-trained word embeddings to initialize the
representations of words [22].
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• RCNN: Lai et al. [20] proposed a recurrent convolutional neural network for
text classification. It uses RNN to capture contextual information and uses
CNN to capture the most prominent information of the text.

• Topic CNN: This model solves the task of advertising extraction from CM
articles, which is to construct a convolutional neural network with two chan-
nels, including the traditional semantic CNN channel and the topic CNN
channel [18].

• Fast Text: Joulin [15] proposed a simple and efficient text classification
method. It treats the average of word/n-grams embeddings as document
embeddings and then feeds them into a linear classifier.

• Text GCN: Yao et al. [7] employed the standard graph convolutional net-
work for text classification. It outperforms state-of-the-art text classification
method without using external knowledge.

Paramater Settings. For the comparative experimental models, we keep the
parameter settings as those in the original paper. We use the pre-trained word
embeddings trained by word2vec, and the dimension d is set to 300. The BTM
model is used to obtain the potential topic information of sentences and uses
the optimal parameter settings in the original paper except for the number of
topics K. In our model, we set the number of topics K to be 90, and the value
of parameter α is 0.5. We train this model for a maximum of 100 epochs using
Adam optimizerf [12] and stop training if the test loss does not decrease. We set
the learning rate as 0.001, dropout as 0.5.

4.2 Experimental Results

Table 2 shows the experimental results of different methods. It is shown that our
approach achieves the best performance and significantly outperforms all base-
line models. The results demonstrate that CNN-based models better precision
than other baseline methods. However, these methods have lower recall than
other methods. Different from these methods, our model achieves both the high-
est precision and recall. These findings verify the effectiveness of the proposed
method in the task of extracting advertising content.

Table 2. Performance comparison.

Model Precision Recall F1

TextCNN 0.8151 0.5155 0.6316

RCNN 0.8273 0.5278 0.6445

TopicCNN 0.8318 0.5301 0.6475

FastText 0.7667 0.6326 0.6932

TextGCN 0.7876 0.6450 0.7092

Ours 0.8662 0.6476 0.7411
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4.3 Impacts of Topics

The above analysis shows that the topic information is an important feature.
Adding latent topic information can enrich sentences’ semantic encoding. When
the number of topics is too small, there is little difference in the topic information
of each word. When the number of topics is too large, the topic granularity is
finer and the words will be overly divided into topics.

Figure 3 displays the impacts of the number of topics on the performance
of the proposed model. The results display that the performance of our model
increases as the number of topics increases. When the number of topics reaches
90, the model reaches its optimum. When the number of topics is larger than
90, the performance of the model decreases as more topics are added. Therefore,
K = 90 is an optimum setting of the number of topics.

Fig. 3. The changes of F1 versus the
number of topics K.

Fig. 4. The probability of label transfer
for different percentages of sentences.

4.4 Impacts of the Parameter α

The parameter α, which controls the segmentation of an article, is also an impor-
tant factor affecting the performance of the model. It is used to obtain more
accurate label transition probability matrices to improve the classification accu-
racy.

In this section, we employ “N->A” to represent that a sentence labeled as
normal is followed by a sentence labeled as advertising; “N->N” indicates that a
sentence labeled as normal is followed by a sentence labeled as normal; “A->A”
represents that a sentence labeled as advertising is followed by a sentence labeled
as advertising; and “A->N” suggests that a sentence labeled as advertising is
followed by a sentence labeled as normal.

We analyze the probabilities of different transition cases at different positions
of CM articles. We evenly divide a CM article into ten portions and calculate the
transition probabilities for each portion. Figure 4 shows the statistical results.
It is shown that all CM articles begin with normal sentences. Moreover, the
transition probability of “A->A” increases gradually, indicating that advertising
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content is more likely to appear in the second half of CM articles. The transition
probability of “N->A” reaches its peak at the 9th portion, suggesting that most
advertisements are short and appear at the end of CM articles.

Fig. 5. Transition probabilities under different conditions

The left side of Fig. 5 presents the label transition probabilities calculated
by setting α to be 0.7. It is shown that the transition probabilities calculated
based on the two segments are very different. And the other side of Fig. 5 shows
the label transition matrix calculated based on whole CM articles without using
segments. From the Fig. 5, we can see that directly calculating a label transfer
matrix without considering the advertising sentence positions in the CM articles
will reduce calculated transition probabilities and thus harm the performance.

Figure 6 displays the effects of parameter α on the performance of the pro-
posed model. The results show that F1 scores of the proposed model increase as
α becomes larger when α < 0.5. The performance reaches the peak when α = 0.5
and then decreases gradually with the increase of α. According to the results,
we set α = 0.5 as the default.

4.5 Ablation Analysis

In this experiment, we perform an ablation study to evaluate the effectiveness
of two schemes. We compare the performance of four different methods: the full
model, a model without considering topics (-topics), a model without considering
segments (-segments), and a model without considering the effects of topics and
segments (-topic&segments). The experimental results are presented in Table 3.
The full model achieves the best performance without surprise. And, the topics
and segments are complementary to each other.
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Fig. 6. The change of F1 with the value of parameter α.

Table 3. Ablation analysis.

Model Precision Recall F1

Full Model 0.8662 0.6476 0.7411

-segments 0.8497 0.6313 0.7243

-topic 0.8533 0.6238 0.7202

-topic&segments 0.8349 0.6077 0.7034

5 Conclusion

In this paper, we propose a segment-aware sentence classification method for
advertising sentences extraction from CM articles. We develop a topic enrich-
ing module to capture the semantic information of sentences. A segment-aware
optimization scheme is proposed to capture the characteristics of CM articles.
Experimental results demonstrate that our method outperforms state-of-the-art
approaches for the advertisement extraction task.
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Abstract. Recent research has shown that, since the ultimate goal of Bayesian
perspective is to infer a posterior distribution, it is demonstrably more direct
to impose domain knowledge directly on the posterior distribution. This paper
presents a model by imposing lexical common-sense knowledge as constraints
on the posterior distribution, under the conventional regularized Bayesian frame-
work. We then improve the latent topic modeling with help of the aforemen-
tioned model, and experimental results show that, combining lexical common-
sense knowledge and Bayesian modeling, is beneficial for prediction.

Keywords: Lexical knowledge · Common sense · Bayesian modeling · Topic
model

1 Introduction

Recently, many research has demonstrated that, incorporating structural domain knowl-
edge into the conventional machine learning task, is an effective way to improve the
accuracy [12,19,24] or the interpretability of latent representations [1,10]. Especially,
[31] and [14] show that, Bayesian perspective provides a precise mathematical frame-
work to incorporate extra domain knowledge via Bayes’ rule. The regularized Bayesian
framework (RegBayes) [31] imposes domain knowledge via posterior constraints, using
a variational representation of Bayes’ rule. RegBayes has had significant success in
learning discriminatory Bayesian models [29,30]. [14] present a direct approach by
imposing First-Order Logic (FOL) rules on the posterior distribution, which unifies
FOL and Bayesian modeling under the RegBayes framework. Besides, this approach
could automatically estimate the uncertainty of FOL rules when they are produced by
humans, so that reliable rules are incorporated while unreliable ones are ignored. [14]
provides a reasonable and clear Implementation path for introducing domain knowledge
into Bayesian perspective.

Inspired by [14], we investigate whether lexical common-sense knowledge could be
adopted for Bayesian model. In this paper, we follow the overall architecture of [14],
and introduce lexical RegBayes (lRegBayes), a principled framework to robustly incor-
porate rich and uncertain lexical common-sense knowledge—concept, mainly consists
of isA semantics and isAttributeOf semantics provided by lexical knowledge
graph Probase, in machine learning tasks, such as topic modeling. Psychologist Gre-
gory Murphy began his highly acclaimed book [15] with the statement “Concepts are
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 643–651, 2021.
https://doi.org/10.1007/978-3-030-88480-2_51
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the glue that holds our mental world together”. Still, Nature magazine book review calls
it an understatement, because “Without concepts, there would be no mental world in the
first place” [3]. Doubtless to say, the ability to conceptualize is a defining characteristic
of humanity. [10,23] The idea of using learned concepts [27] to improve machine learn-
ing and natural language processing tasks has been explored previously, including text
embedding [25], text conceptualization [21], information retrieval [24], entity disam-
biguation [4], query understanding [22], semantic conceptualization [17], text segmen-
tation [9], knowledge graph completion [26], and so on. Previous work has shown con-
cept’s strong interpretability and anti-nose capability, which is effective and robust in
helping understanding semantic and could be combined with the conventiaonal machine
learning methodology. Especially, we propose the use of concepts to guide the conven-
tional RegBayes. This provides more flexibility in text modeling and also the ability to
infer the posterior on latent codes, which could be useful for visualization and down-
stream machine learning tasks.

2 Preliminary

To enhance the representation ability of the proposed framework, this paper introduces
extra lexical knowledge (i.e., concept knowledge from Probase [21,27] emphasized
here), which has been proved to be effective in helping understanding semantic in many
NLP tasks [24,27,28].

2.1 Definition

(Def.1) Concept. Following [10,23], we define a “concept” as a set or class/category
of “entities” or “things” within a domain, such that words belonging to similar classes
get similar representations. E.g., “microsoft” and “amazon” could be represented by
concept COMPANY. Probase [27] is used in our study as knowledge graph.

(Def.2)Conceptualization.Given a text si = {w1, w2, · · · , w|si|}, whereinwi denotes
a word, text conceptualization algorithm enables to select the open-domain concepts
Csi

= {< ci, pi > |i = 1, · · · , } from the knowledge graph Probase which own the
optimal ability for discriminatively representing the given text si. E.g., given a text
as input (e.g., “microsoft unveils office for apple’s ipad”), we generate the concepts
Csi

= {<COMPANY,0.8567>,<BRAND,0.7457>,<PRODUCT,0.5471>, · · · }
from Probase for this text context. Besides, the concept vector θi is generated based
on ci and its corresponding probability pi: each dimensionality of θi represents the
probability pi of the concept ci in the given text.

2.2 Probase

Probase1 is widely used in research about text understanding [21,22,27], text repre-
sentation [10,25], information retrieval [24], and knowledge graph completion [26].
Probase uses an automatic and iterative procedure to extract concept knowledge from
1.68 billionWeb pages. It contains 2.36 millions of open-domain terms, and each term is

1 https://concept.research.microsoft.com/.

https://concept.research.microsoft.com/
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Fig. 1. The example sketch of the lexical knowledge graph Probase [27].

a concept, an instance (respect to a word occurring in given text in this study), or both.
Meanwhile, it provides around 14 millions relationships with two kinds of important
knowledge related to concepts: concept-attribute co-occurrence (isAttrbuteOf) and
concept-instance co-occurrence (isA). For clarity, Fig. 1 sketches the organization of
instances and their corresponding concepts defined in Probase [25]. Moreover, Probase
provides huge number of high-quality and robust concepts without builds. Therefore,
lexical knowledge graph Probase is utilized in this paper for leveraging lexical seman-
tics for boosting efficiency of language modeling, with help of its strong interpretability
and anti-nose capability.

3 Methodology

3.1 RegBayes Framework

Suppose a Bayesian latent variable model with observed random variables O ∈ O and
hidden variables H ∈ H. In this case, conventional Bayesian inference calculates the
posterior distribution P(H|O) from a prior P0(H) and a likelihood model. It is usu-
ally hard to make sure whether the aforementioned posterior (P(H|O)) satisfies (all)
common-sense knowledge constraints or not. On the contrary, the recently-proposed
RegBayes framework [31] allows domain knowledge to directly influence the posterior,
i.e., (P(H|O)). Especially, it RegBayes reaches this target by penalizing distributions
that differ in the expected value of feature functions. Nonetheless, the domain knowl-
edge considered in RegBayes has been max-margin posterior constraints, which could
be too narrow and inapplicable to machine learning [14]. In our study, each feature func-
tion σi, and the “belief label” of the corresponding feature ρi, are induced from lexical
common-sense knowledge, which is also reviewed as a kind of semantic constraint.

3.2 LRegBayes with Lexical Common-Sense Knowledge

Based on [14,31] introduces First-Order Logic (FOL) rules into regularized Bayesian
model, and proposes an elastic framework for absorbing extra domain knowledge,
named as Robust RegBayes. Following the architecture of [14], this paper investigating
how to leveraging lexical common-sense knowledge for boosting Bayesian modeling.
Therefore, in this paper, we propose a lRegBayes framework by introducing lexical
common-sense knowledge into conventional RegBayes. Inspired by [14], we could also
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define the inference procedure of our lRegBayes as a constrained optimization prob-
lem:

min
P̂(H)∈P,ηi∈RL

+

KL[(P(H) ‖ P(H|O)) + Ω
∑

i

ηi] (1)

s.t.|EP̂(H)[σl(H,O)] − ρi| ≤ ε + ηi (2)

wherein, P represents the appropriate probability; ηi ∈ R
N
+ is the vector of N slack

variables, one for each lexical knowledge constraint; P(H|O) indicates the posterior
distribution via Bayes’ perspective; ε indicates a positive precision parameter which is
usually small; and notation Ω indicates a regularization parameter.

To adequately broaden the scope of common-sense knowledge used in Reg-
Bayes, we consider isA constraints [10,25] between concepts and instances2 and
isAttrbuteOf constraints among between concepts3 in this paper, which could be
derived easily from the high-quality lexical knowledge graph Probase [27]. Probase pro-
vides huge number of high-quality, structural and robust isA/isAttrbuteOf con-
straints without builds, which have been demonstrated readily represented and adopted
for many NLP tasks [21,23,24]. Moreover, Probase has the goal of modeling lexical
common-sense constraints in probabilistic terms.

Formally, we denote μi be the i-th lexical common-sense constraint represented
in “triple” form (i.e., “(instance, isA, concept)” for isA relation, and “(concept,
isAttrbuteOf, concept)” for isAttrbuteOf relation) over instantiations (h, o)
of the variables (H,O). Feature function σi, respect to the corresponding constraint μi,
is defined as follows: σi = 1

|Ui|
∑

μi∈Ui
I(μi(h, o)). Wherein, I(·) represents a indica-

tion function.
Similar to conventional RegBayes, the proposed lRegBayes aims at effecting a sep-

arate Bayes model. Therefore, lRegBayes truly combines lexical common-sense and
Bayesian modeling. Hence, we could automatically learn the weights of lexical con-
straint. In the proposed framework, we learns the constraint’s weights from relatively
easier-to-obtain belief labels ρi via solving a dual optimization problem, like [14].

3.3 LDA Driven by lRegBayes

This section describes how the proposed lRegBayes to learn LDA topics by incorpo-
rating lexical common-sense knowledge. In conventional LDA, each document d is
drawn from an mixture of K topics, i.e., {τk|k ∈ [1, · · · ,K]}. Each topic τk is defined
as a multinomial distribution over a given vocabulary and follows a Dirichlet prior
P(τk|β) = Dir(τk|β). For document d, we draw a topic distribution θd from Dirichlet
distributionP(θd|α) = Dir(θd|α). For the j-th word in document d: (i) we draw a topic
assignment zdj

from the multinomial parametrized by θd, P(zdj
= τk|θd) = θd,k; (ii)

and then draw the word wd,j from the selected topic τzdj
, P(wd,j |zd,j , τ) = τzd,j ,wd,j

.
With efforts above, the joint distribution of LDA can be formulated as follows:

P(W,Z, τ, θ|α, β) = [
∏

k

P(τk|β)](
∏

d

P(θd|α)
∏

j

P(zd,j |θd)P(wd,j |zd,j , τ)) (3)

2 E.g., word-formed instance “Microsoft” isA concept COMPANY.
3 E.g., concept BIRTHDAY isAttrbuteOf concept PERSON.
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wherein, notation W denotes the set of the observed words and W = {wd,j}. Besides,
Z = {zd,j}, θ = {θd,k}, and τ = {τd,k} are the hidden variables. Bayesian modeling
tries to infer the posterior over hidden variables P(W,Z, τ, θ, α, β).

In this situation, for lexical common-sense knowledge, we assume that all the lexical
constraints are defined over the instantiation of wordsW and hidden topic assignments
Z, following [14]. For simplicity, the we omit the uncertainty belief label proposed by
[14], which is designed as a spike-slab likelihood form, for handling the uncertainty
in domain knowledge. Note that, Bayesian methods naturally handle noise in extra
knowledge, which is especially important when domain knowledge is collected from
the crowd [5,18].

With efforts above, we now have H = {Z, θ, τ} and O = W. Based on Eq. (1), we
get the optimization of learning lRegBayes driven LDA, as follows:

min
P̂(H)∈P,ηi∈RL

+

KL[(P(H,ρ) ‖ P(H,ρ|W, α, β)) + Ω
∑

i

ηi] (4)

s.t.E{EP̂(Z)[σl(Z,W)] − EP̂(ρi)
[ρi]} ≤ ε + ηi,∀i = 1 · · · N (5)

4 Experiments

Many recent research have been done on releasing an informative prior, either directly
[8] or by imposing parameter constraints and confidence values indirectly [13]. In this
experimental section, we evaluate our lRegBayes on text clustering task, which belongs
to indirect evaluation task, and interpret its improvements quantitatively.

4.1 Datasets

For text clustering task, we use three datasets: NewsHeadline, Twitter and TREC,
described as follows:

NewsHeadline: Because news headlines usually contain few words and many spe-
cial or ambiguous words, this paper, we extract news headlines and first-sentences from
a news corpus containing 8.14 million articles searched from Reuters and New York
Time. The news articles are classified into six categories: economy, religion, science,
traffic, politician, and sport. These categories are utilized as the ground-truth labels
for short-text clustering experiments. Similar to [21], we randomly select 30,000 news
headlines and first-sentences in each category.

Twitter:We utilize two official tweet collections released in TRECMicroblog Task
2011/2012 [16] and TREC Microblog Task 2013/2014 [11], to construct this dataset.
By manually labeling, the dataset contains 435,987 tweets which are in four cate-
gories: food, sport, entertainment, and device/IT company. Similarly, these categories
are utilized as the ground-truth labels for short-text clustering experiments. The URLs
and stop-words are all removed, and the average length of the tweets is 10.05 words.
Because of noise and sparsity, this dataset is more challenging.

WikiFirst: This dataset includes 330,000Wikipedia articles, and is divided into 110
categories based on the mapping relationship between Wikipedia articles and Freebase
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topics [28]. E.g., Wikipedia articles “The Big Bang Theory” are mapped into category
TV program. Each category contains 3,000 Wikipedia articles. We only keep the first
sentence of each Wikipedia article in this dataset, and the average length of the first
sentence is 15.43 words. It is a very challenging data set because of its large number
of categories, strong diversity of categories and its distinct correlation among many
categories.

4.2 Alternative Algorithms

We compare the proposed lRegBayes-LDA with the following baselines:
BOW: It represents short-text as bag-of-words with the TF-IDF scores [20]. Words

with high frequency in the current short-text while low frequency in the entire dataset,
will be assigned with a higher TF-IDF score.

LDA: It represents short-text as its inferred topic distribution [2], and the dimen-
sions of the short-text vector of is number of topics as we presuppose.

ESA:Unlike LDA, which utilizes the distribution of latent topics to represent short-
text, this algorithm calculates TF-IDF scores of words and concepts on the Wikipedia
articles (i.e., and dataset Wiki, and Wikipedia articles is regarded as “topics” in this
algorithm), and uses the distribution of Wikipedia articles to represent short-text [6,7].

Moreover, TWE [12] is recently proposed for word vector and short-text vector
generation with help of conventional LDA. Similarly, we replace LDA module with
our lRegBayes-LDA, and obtain the variant of TWE as another baseline, denoted as
lRegBayes-TWE.

4.3 Experiment Settings

For auxiliary training the aforementioned LDA, ESA, BOW and so on, we introduce a
Wikipedia snapshot, and hypothesize that retrieving from a large and high-fidelity cor-
pus will provide cleaner language. Therefore, we construct aWikipedia dataset (denoted
as Wiki dataset here) for training comparative models if necessary, with the following
rules proposed in [10]: (i) we remove the articles less than 100 words, as well as the
articles less than 10 links; (ii) we remove all the category pages and disambiguation
pages; (iii) we move the content to the redirection pages. Finally, we obtain about 3.74
million Wikipedia articles for indexing and training.

In text clustering task: (i) we set the topic number to be the cluster number or twice,
and report the better of the two. (ii) we use two methods to train all the alternative algo-
rithms: train them only on the datasets used in short-text clustering experiment (because
the data used here is short-text, so the topic model is greatly affected by data’s sparsity);
train them on the Wikipedia dataset Wiki as well as the datasets used in the following
short-text clustering experiment. For ESA, we select the Top-1,000, Top-2,000, Top-
5,000 and Top-10,000 concepts (respect to Wikipedia articles) as the clustering features
respectively, and report the better of them.

4.4 Performance Summary

The results in Table 1 show that, the proposed lRegBayes framework has the ability
for boosting conventional machine learning algorithms. It demonstrates the improved
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Table 1. Performance of short-text clustering task. The superscript † denotes statistically signifi-
cant improvements over TWE [12] (p∗ < 0.05).

Models NewsHeadline Twitter WikiFirst

Purity ARI NMI Purity ARI NMI Purity ARI NMI

BOW [20] 0.614 0.566 0.674 0.275 0.260 0.292 0.294 0.415 0.525

ESA [7] 0.725 0.669 0.797 0.404 0.382 0.430 0.337 0.476 0.602

LDA [2] 0.614 0.567 0.675 0.314 0.297 0.334 0.311 0.439 0.555

lRegBayes-LDA (Ours) 0.650 0.600 0.714 0.332 0.314 0.353 0.329 0.464 0.587

TWE [12] 0.741 0.684 0.814 0.378 0.358 0.402 0.375 0.529 0.669

lRegBayes-TWE (Ours) 0.781† 0.721 0.858† 0.398 0.327 0.424 0.375 0.557† 0.705†

task performance and topic interpretability in both machine learning, and the improve-
ment ability from common-sense knowledge for traditional machine learning methods.
Interestingly, the performance of the simplest baseline algorithm, BOW, is comparable
to that of LDA, both of which are significantly worse than other algorithms. We try
to set the number of topics of LDA as the number of clustering clusters or twice fol-
lowing [21,22], and the former’s experimental results are better, which indicates that
with the increase of the topic number, the clustering effect actually shows a downward
trend. Compared with LDA, the performance of ESA based on Wikipedia improves
significantly, and this phenomenon could be explained as that it is important to lever-
age extra knowledge resources for understanding concepts. The comparison between
TWE and its lexical common-sense driven variant lRegBayes-TWE, shows a novel
way for improving model’s performance. That is, the proposed lRegBayes plays like a
plug-in, and experimental results demonstrate that by plugging our lRegBayes, the per-
formance of TWE is improved significantly. E.g., lRegBayes-TWE exceeds original
TWE by 5.41%, 5.43% and 5.38% respectively in the aforementioned datasets (mea-
sured by metric NMI). Without doubt, this indicates that the proposed lRegBayes has
provided a flexible and natural modeling tool to improve conventional machine learning
algorithms by integrating extra knowledge, such as lexical common-sense knowledge
emphasized in this paper. We could conclude that, the proposed model could extend
the scope of RegBayes prior knowledge by allowing lexical common-sense constraints.
Moreover, as discussed above, no existing RegBayes model has explicitly modeled the
noise in extra knowledge. We does not deliberately and explicitly model the uncertainty
in lexical common-sense knowledge, compared with [14] which introduces a spike-and-
slab prior and allows to automatically and selectively incorporate high-quality lexical
domain knowledge while ignoring low-quality ones. This is mainly because the qual-
ity of lexical knowledge graph Probase is guaranteed. Note that, other types of domain
knowledge could also be introduced into our lRegBayes, because of the flexibility and
universality of this framework.

5 Conclusions

For boosting Bayesian modeling, this paper proposes lexical RegBayes (abbreviated as
lRegBayes) for utilizing lexical common-sense knowledge. We then apply our approach
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to latent topic modeling tasks. Experimental results demonstrate that, incorporating
domain knowledge (e.g., concept emphasized here) as constraints, is beneficial for pre-
diction. By combining lexical common-sense knowledge and Bayesian modeling, we
not only improve the task performance but also model interpretability.
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Abstract. User reviews contain rich information about user interests
in items. Recently, many deep learning methods have attempted to
integrate review contents into user preference rating prediction, help-
ing to solve data sparseness problems. However, existing methods suf-
fered from an inherent limitation that many reviews are noisy and con-
tain non-consecutive viewpoints, besides, they are insufficient to capture
inter-viewpoint relationships. Incorporating useful information is help-
ful for more accurate recommendations. In this paper, we propose a
neural recommendation approach with a Diversity Penalty mechanism
and Capsule Networks, named DPCN. Specifically, the diversity penalty
component employs weight distributed matrices with the penalization
term to capture different viewpoints in textual reviews. The capsule net-
works are designed to aggregate individual viewpoint vectors to form
high-level feature representations for feature interaction. Then we com-
bine the review feature representations with the user and item ID embed-
ding for final rating prediction. Extensive experiments on five real-world
datasets validate the effectiveness of our approach.

Keywords: Recommender systems · User reviews · Capsule
networks · Rating prediction

1 Introduction

A core task in recommendation systems [1] is learning accurate representations of
users and items to capture users’ preferences. The earlier recommendation meth-
ods [11] learn user and item presentations from the user-item rating matrix. For
example, Collaborative Filtering (CF) [15] methods are the successful approaches
for recommender systems, which utilizes user-item interaction records for rating
prediction. However, there are numerous users and items in the online platforms,
the user-item rating matrix will be very sparse, matrix-based methods may suffer
from the data sparsity problem.

To remedy this problem, review-based recommendation methods [7] are pro-
posed. In recent years, many online shopping platforms allow users to write
reviews after purchasing commodities, along with rating scores to express users’
c© Springer Nature Switzerland AG 2021
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likes or dissatisfaction. For example, a review like “I only wish I would have
purchased it sooner” may infer the user’s favorite for the product. Because of
the abundant information contained in the review content, it is potential to dig
out the textual review to make a personality recommendation.

Several recommendation systems have harnessed the information of both rat-
ings and reviews [7] to predict user ratings for more accurate recommendations.
Further, owing to the excellent capability of deep learning techniques, many
recent models [8,9,13,20] use the deep neural network to model the user and
item representations by the reviews. In these works, the convolutional neural
network (CNN) is widely used, by encoding the word embedding to capture the
corresponding latent features in the reviews. Examples include DeepCoNN [20],
D-attn [13], CARL [17] and DAML [8].

While these proposed methods have performance in good results, some lim-
itations prevent their performance from improving further. Firstly, the exist-
ing methods may be insufficient to model the long-term and non-consecutive
viewpoints written in the same review. Secondly, one user may have different
emotional expressions for one item, for example, customers like the color of the
product but don’t like the shape of it. Hence, it is beneficial to consider diverse
aspects of review content.

To overcome the above issues, we proposed a model based on the penalty
mechanism and capsule networks for rating prediction, named DPCN. To capture
different viewpoints and aspects in review content, DPCN employs a weight dis-
tribution matrix with penalization term to model the review texts into diversity
feature vectors. The capsule networks are used to aggregate various feature vec-
tors into high-level feature representations by dynamic routing [12]. Finally, the
represent vectors are concatenated and feed into the feature interaction module
for rating prediction. Our experiments demonstrate the effectiveness of DPCN
in rating prediction tasks on five datasets. The main contributions of our work
are summarized as follows:

– We proposed DPCN, a novel review-based recommendation model that can
effectively model the diverse viewpoints of review texts to improve the rec-
ommendation performance.

– A diversity penalty mechanism is employed to capture long-term or non-
consecutive viewpoints. We manually annotate a subsets of multi-viewpoint
reviews to verify the effectiveness of penalization strategy.

– We design some experiments to demonstrate that capsule networks can pre-
serve and aggregate the distribution of feature to help improve recommenda-
tion performance.

– Extensive experiments conducted on five real datasets demonstrate that our
proposed framework generates certain better results compared to existing
recommendation methods.

2 The Proposed Model

In this section, we describe our model framework for learning and predict-
ing users’ preferences in detail. Users’ review texts contain numerous semantic
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information that can effectively express customers’ tendencies and interests. So
we design a hierarchical model that contains two components: the diversity con-
textual viewpoints learning component and the high-level features aggregation
component. Figure 1 illustrates the overall architecture of DPCN model.

– The diversity contextual viewpoints learning component: This part
utilizes transformer encoder layers accompanying with the penalty mechanism
to gain the semantically meaningful distributed representations of individual
words.

– The high-level features aggregation component: This part makes use
of the capsule networks that make it possible to capture the features which
are consistently important for disparate aspects [19].

After getting user and item high-level feature distributions respectively. We
combine the feature vectors with ID embedding and employ the Neural Factor-
ization Machine (NMF) [2] to model the nonlinear interactions between user and
item representations.

Fig. 1. The architecture of DPCN model in detail. ws1 and ws2 are trainable weight
matrices. The ⊗ denotes element-wise product, the ⊕ denotes vector concatenation
operation.

2.1 Contextual Viewpoints Learning Component

Users’ Review Texts Encoder: Given Du,i = w1, w2, · · · , wn denote the user
or item review document, where n is the length of the document words, we
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firstly map each word into its d-dimensional embedding representation: Eu,i =
e1, e2, · · · , en by an embedding layer.

Now each element in the sequence Eu,i is independent with each other. To
acquire some dependency between context words within a single sentence, we
use a shared transformer encoder layer [14] to process the embedding texts and
get the sentence-level hidden state representations hu and hi.

Diversity Viewpoints Learning Layer: The viewpoints learning layer focuses
on the informative parts of the sentence, and it is expected to reflect aspects or
significance information in the context. We take the whole hidden states as input,
and output a vector of viewpoint distributed weight a:

a = softmax(vs2tanh(Ws1H
T )) (1)

Here vs2 ∈ R
1×da and Ws1 ∈ W

da×l are the trainable weight vector and the
trainable weight matrix respectively. The softmax ensures all the computed
weight sum up to 1. The calculation result of the equation is a vector a which
represents tendencies distribution of the sentence, and in the next section we
will use it as input for capsule networks.

Vector a can indicate one aspect of one document text. However, there are
multiple attributes in a sentence that compose a complete semantic space. We
want to capture different information on content and need various weight vectors
to get diversity information of the sentence. Thus we extends the vs2 vector to a
r×da matrix, note it as Ws2, r denote the different focus points of the distributed
representation, and the vector a will extend to a matrix A:

A = softmax(Ws2tanh(Ws1H
T )) (2)

To avoid similar summation weights for all the weight vectors ar in the matrix A,
we utilize penalization term [6] to encourage the diversity of summation weight
vector and force each vector to be focused on a single aspect, and the penalization
term calculation formula is as follows:

P =
∥
∥AAT − E

∥
∥
2

F
(3)

Here ‖∗‖ represents the Frobenius norm of a matrix, which ensure that the
weight distribution vectors ar have no overlap with each other. E is an identity
matrix. If two vectors ak and at have the same distribution, their summation
over elements aT

k at at corresponding position in penalization P will be a positive
value, otherwise very small value. We will optimize P along with the original
loss to obtain diverse focus to the contextual information.

Distribution weight matrix A is shared by both user document and item
document. According to the distribution weight, the meaningful distribution of
each word in the user and item documents can be computed as follows:

S = AH (4)

Hence we obtain user and item distributed feature matrix, representing as Su =
su1 , su2 , · · · , sur and Si = si1, s

i
2, · · · , sir.
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2.2 High-Level Features Aggregation Component

As argued in paper [12], the structure of capsule networks makes it possible to
model the complex latent features to generate high-level features. We abstract
the process as learning the child-parent relationship.

In order to generate high-level parent vector vj from child capsule ui, we use
an intermediate capsule uj|i and a share weight matrix Wsh ∈ R

c×dc×n, where n
is the dim of input vector, c is the number of parent capsules in the layer above,
and dc is the dim of parent capsules. Thus the intermediate vector ûj|i will be
calculated as:

ûj|i = Wshui + b̂j|i (5)

Where ui is a child capsule in the layer below and b̂j|i is the bias term. In this
paper, ui is the user or item distributed feature vector calculating in Eq. 4, this
means that input vector of capsule networks is ui = sr ∈ R

n.
In order to ensure that every intermediate capsule map into appropriate out-

put parent vector: ûj|i → vj . A dynamic routing strategy is used to iteratively
change the connection weight and detect whether a feature is present in any
position of the feature distribution. The pseudo-code of dynamic routing algo-
rithm is shown in Algorithm 1. bij is the logarithmic prior probability from the
ith capsule to the jth capsule, and initialized to 0.

Algorithm 1. Dynamic routing algorithm
Input: uj|i; τ
Output: vj ;
1: for all capsule i in layer l and capsule j in layer l + 1 : bij ← 0
2: for τ iterations do
3: for all capsule i in layer l : cij ← exp(bij)∑

j exp(bij)
;

4: for all capsule j in layer l + 1 : sj ← ∑
i cijuj|i;

5: for all capsule j in layer l + 1 : vj ← Squash(sj);
6: for all capsule i in layer l and capsule j in layer l + 1 : bij ← bij + uj|iv̇j ;
7: end for
8: return vj

In the routing procedure, bij is normalized by softmax to gain cij which
represents the connection weight from capsule i to capsule j. Then we sum the
products of all intermediate vectors uj|i and corresponding connection weights
cij to get original parent capsule sj . A squash function is used on original parent
capsule sj to get output parent capsule vj . To adapt the squash function to our
task, we modify the formula as:

vj =
‖sj‖

√

‖sj‖2 + 0.5

sj
‖sj‖ (6)
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The squash result v̂j is used to update logarithmic probability bij . After dynamic
routing process, we gain output parent capsule vj that denote high-level features
compressed from latent feature capsules sr.

2.3 Feature Interaction Component

We use one-hot encoded vector ou and oi to describe the user and item ID
number respectively. Then the one-hot vector is mapped to low-dimensional
factor vectors through the latent factor matrices Qu and Qi in the embedded
layer, which expressed as qu = Quou and qi = Qioi.

User or item ID information can contain some inherent information to some
extent, thus we combine the ID embedding with the output parent capsules to
form a concatenated vector x.

x = δ[vu ⊕ qu ⊕ vi ⊕ qi] (7)

Where ⊕ is concatenation operation; δ is the activation function. We feed x ∈ R
m

into a Neural Factorization Machine [2] to predict rating:

r̂u,i(x) = ŵ0 +
|x|
∑

k=0

ŵkxk + f(x) (8)

In which ŵ0 is the global bias term,
∑|x|

k=0 ŵkxk denotes the weight of feature
and ŵk is the coefficient for latent feature vector. The third term f(x) is used
for feature interactions, and can be expressed as:

f(x) =
1
2
[(

|x|
∑

k=1

xjvj)2 − (
|x|
∑

t=1

xtvt)2] (9)

Where xi represent the ith feature value in vector x. vi ∈ R
m is the embedding

vector for ith feature. Finally, we optimize parameters by useing mean squared
error (MSE) as the loss function:

L =
∑

(u,i)∈(U,I)

(r̂u,i − ru,i)2 + λ
∥
∥AAT − E

∥
∥
2

F
(10)

Where (U, I) denotes the set of user-item pairs in training data. λ is a constant.
∥
∥AAT − E

∥
∥
2

F
is the Frobenius norm mentioned in Eqs. 3, which punishes redun-

dancy problems if the diversity penalization mechanism provide similar vector
for different inputs of the cupsule networks.
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Table 1. Statistics of the five datasets.

Datasets Users Item Ratings Words per user Words per item Density

Office Products 4,905 2,420 53,228 197.93 229.52 0.448%

Digital Music 5,540 3,568 64,666 216.21 266.51 0.327%

Video Games 24,303 10,672 231,577 188.79 260.60 0.089%

Tools Improvement 16,638 10,217 134,345 162.53 212.48 0.079%

Beauty 22,363 12,101 198,502 252.31 328.03 0.070%

3 Experiments

We conduct experiments on five benchmark datasets in different domains from
Amazon Product Review corpus1 for performance evaluation.

3.1 Experimental Settings

Datasets: Amazon review datasets has been widely used for product recommen-
dation, and the following 5-core review subsets are used for evaluation: Office
Products, Digital Music, Video Games, Tools Improvement and Beauty. For each
dataset, we randomly split the user-item pairs into 80% training set, 10%vali-
dation set and 10% testing set, and for each document of user-item pairs, we
amputate(pad) the long(short) review document to the same length. Note that
the user-item pairs must have at least one interaction review in the training set,
and for the test set, the interaction reviews are excluded. Table 1 summarizes
the details of these experimental datasets.

Baselines: We compare our model with both conventional methods and state-
of-art rating prediction methods:

– PMF: Probability Matrix Factorization [11], which makes use of rating
between users and items to predict final scores via matrix factorization.

– CMLE: Collaborative Multi-Level Embedding model [18] integrates word
embedding with standard matrix factorization model, which allows the model
to have the ability to capture word local context information.

– ConvMF: Convolutional Matrix Factorization [3] utilizes CNN to extract
latent features from review documents and makes prediction through PMF.

– DeepCoNN: Deep Cooperative Neural Networks [20] makes use of two CNN
networks to extract latent feature from review documents and then uses FM
to predict the rating.

– D-attn: Dual Attention CNN model [13] designs local and global attention
to form review representations, and the dot product between the user and
item embedding is used to gain the rating.

– PARL: This method proposes a method to exploit user-item pair-dependent
features from auxiliary reviews written by like-minded users to address the
data sparsity problem of recommender system [16].

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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– CARL: Context-Aware User-Item Representation Learning [17], which uses
attention mechanism and convolution operation for feature learning and fac-
torization machine for high-order feature interactions.

– CARP: Capsule Networks Based Model For Rating Prediction [5] devises
to extract the informative logic units from the reviews and infer their corre-
sponding sentiments.

– DAML: Dual Attention Mutual Learning [8] utilizes local and mutual atten-
tion of the convolutional neural network to jointly learn the features of
reviews.

Among these methods, PMF only utilizes the user-item rating for prediction.
The other methods all make use of the review documents for extracting features
and making predictions.

Hyper-Parameters Setting: We use the hyper-parameters reported in base-
line method papers. The word embeddings are randomly initialized and the
dimension size of word embedding is set to 300 (i.e., d = 300). All neural meth-
ods are trained using Adam [4], applying a learning rate of 0.002, the batch size
for all datasets are set to 200.

For DPCN, we use two transformer encoder layers with 8 heads, and the
distribution weight matrix has 30 rows (i.e., r = 30), which means we want
them to focus on 30 overall aspects of the review documents. The penalization
term coefficient λ is set to 0.3. And in the capsule networks part, the iteration
number τ is set to 3 for each dynamic routing, the capsule nums are set to 16
and the dimension of each capsule is set to 32.

Evaluation Metric: The performance of the recommendation methods are eval-
uated by Mean Squared Error (MSE),

MSE =
1

|(U, I)|
∑

(u,i)∈(U,I)

(r̂u,i − ru,i)2 (11)

where (U, I) is the set of the user-item pairs in the test set.

3.2 Performance Evaluation

The overall performances of all the methods are reported in Table 2. Several
observations can be made:

As shown in Table 2, DPCN consistently achieves the best performance across
the five datasets. We can observe that the average improvement of DPCN against
the best baseline is 2.91%, which indicates that learning diversity inter-viewpoint
information yields a better understanding of customers’ interests. Moreover,
DPCN achieves 3.14% relative improvement on the sparsest dataset Beauty,
which shows that the DPCN model can solve the sparse problem to a certain
extent. The performance gap compared with other baseline methods validates
DPCN model can capture more knowledge about customers’ preferences and
makes great prediction.



660 X. He et al.

Table 2. The performance of different recommendation algorithms evaluated by MSE.
The best results are in boldfaces and the second best results are underlined. � %
denotes the relative improvement of DPCN over the best baseline.

Method Office products Digital music Video games Tools improvement Beauty

PMF 1.091 1.211 1.669 1.564 2.113

CMLE 0.761 0.883 1.254 1.023 1.508

ConvMF 0.960 1.084 1.449 1.240 1.601

DeepCoNN 0.860 1.060 1.238 1.063 1.498

D-attn 0.824 0.914 1.142 1.046 1.476

PARL 0.731 0.849 1.117 0.955 1.334

CARL 0.723 0.832 1.103 0.941 1.226

CAPR 0.719 0.820 1.084 0.960 1.243

DAML 0.728 0.816 1.112 0.943 1.211

DPCN 0.681 0.781 1.080 0.927 1.173

� % 5.28 4.28 0.37 1.49 3.14

Table 3. Model Performance on the subsets of discontinuous views with and without
the penalization term.

Train on subset Method Office Digital Video Tools Beauty

� With penalization 0.687 0.783 1.079 0.929 1.174

Without penalization 0.713 0.798 1.088 0.945 1.181

� % 3.65 1.88 0.83 1.69 0.60

� With penalization 0.691 0.781 1.087 0.934 1.178

Without penalization 0.723 0.803 1.106 0.967 1.197

� % 4.42 2.74 1.71 3.41 1.59

Fig. 2. Review text contains multiple and non-consecutive viewpoints. For example,
underline and bold part expressed different preferences of one user.
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Table 4. Impact of different numbers of iterations in dynamic routing. The best results
are highlighted in boldface.

τ Office products Digital music Video games Tools improvement Beauty

1 0.693 0.792 1.093 0.938 1.182

2 0.690 0.785 1.086 0.931 1.174

3 0.681 0.781 1.080 0.927 1.173

4 0.687 0.780 1.082 0.926 1.174

3.3 Effectiveness of Penalization Term

In this section, we conduct experiments to explore the effectiveness of the penal-
ization term in our recommendation model. Figure 2 shows the situation of
reviews which contain discontinuous viewpoints. The reviewers may have some
dissatisfaction with the commodity, but it is acceptable on the whole, so the
reviewers will give ratings that are not very extreme (1/5 or 5/5).

We manually annotate datasets of non-consecutive reviews to reveal the
penalization term has a contribution to capture diversity viewpoints. We select
comments with scores between 2 and 4 and then judge whether they contain
more than two viewpoints. After these steps, we get subsets of five benchmark
datasets, each contain about 300 pieces of data. We fine-tune the model on each
subset with and without the penalization term, Table 3 shows the MSE of two
methods. The score of manual annotating subset is between 2 and 4, so the
performance of the fine-tune model is declining compared to the original model.
We compare the percentage of performance improvement, and can find that the
model trained on the subset is more sensitive to expression fluctuations. The
results indicate that the penalization term is helpful for learning discontinuous
viewpoints.

3.4 Analysis of Capsule Networks

The Impact of Dynamic Routing: We present the results of performance
with different iteration numbers τ in dynamic routing. As shown in Table 4. It is
obvious to see that more than two iterations lead to performance improvement
of our model, it justifies our assumption that the usefulness of input capsules
are aggregated to form high-level features. The optimal iterations for learning
latent features are 3 in general.

The Effectiveness of The Capsule Networks: We visualize the sparse pat-
tern of the children capsules and parent capsules in the embedding space by
applying t-SNE visualization [10]. As shown in Fig. 3, we evaluate DPCN model
on one review document of Tools Improvement datasets. Extracting the vectors
from the capsule networks and visualizing high-dimensional data by giving each
datapoint a location in a two-dimensional map. It is obvious that the parent
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Fig. 3. t-SNE visualization for the children capsules and parent capsules on the Tools
Improvement datasets.

capsules are more sparse than the child capsules, which indicates that the par-
ent capsules can similarly abstract away from different surface realizations in the
embedding space [19].

4 Conclusion

In this paper, we propose a CapsNets based model for predicting users’ pref-
erences by learning reviews. Specifically, the diversity penalization mechanism
is applied to obtain meaningful distributed representations of individual view-
points. The capsule networks are employed to aggregate the features which are
consistent important for disparate viewpoints. We evaluate our model on five
Amazon datasets, the experimental results show that our method achieves cer-
tain improvement over existing recommendation methods.
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Abstract. Recent studies often utilize the Graph Convolutional Net-
work (GCN) to learn label dependencies features for the multi-label
text classification (MLTC) task. However, constructing the static label
graph according to the pairwise co-occurrence from training datasets may
degrade the generalizability of the model. In addition, GCN-based meth-
ods suffer from the problem of over-smoothing. To this end, we propose
a Residual Dynamic Graph Convolutional Network Model (RDGCN)
(https://github.com/ilove-Moretz/RDGCN.git) which adopts a label
attention mechanism to learn the label-specific representations and then
constructs a dynamic label graph for each given instance. Furthermore,
we devise a residual connection to alleviate the over-smoothing prob-
lem. To verify the effectiveness of our model, we conduct comprehensive
experiments on two benchmark datasets. The experimental results show
the superiority of our proposed model.

Keywords: Graph Convolutional Network · Multi-label text
classification · Dynamic label graph · Residual connection

1 Introduction

Multi-label text classification (MLTC) task, which aims to assign multiple non-
exclusive labels to the given text, is a fundamental task in natural language
processing. It plays a critical role in wide applications [2,17].

Traditional methods [1,3] generally encode the feature of the given text
and adopt multiple binary classifiers to predict the corresponding labels, which
neglects the correlations between different labels. To learn the label interac-
tions, recent studies adopt the Graph Convolutional Network (GCN) [24], which
constructs the label graph to learn semantic interactions between labels. These
methods have achieved great progress due to the topology of label graphs treat-
ing labels as graph vertices and the feature aggregation ability of the graph.

Despite the progress, previous GCN-based methods are still limited. Most
existing studies construct the static label graph according to the pairwise co-
occurrence [14] from training datasets. However, there exists bias between the
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 664–675, 2021.
https://doi.org/10.1007/978-3-030-88480-2_53
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static label graph and the specific text. As shown in Fig. 1, the label ‘Horror’
strongly correlates to the label ‘Thriller’, while it weakly correlates to the label
‘Romance’ in the static label graph constructed from the training datasets. How-
ever, the specific text describes a love story of the vampire whose label ‘Horror’
is co-occurrence with ‘Romance’ rather than ‘Thriller’. This bias between the
static label graph and the specific text may make the model incorrectly predict
the label ‘Thriller’ and miss the label ‘Romance’. To deal with the problem of
bias between the static label graph and the specific text, a label attention mech-
anism is devised to capture the label-specific representations for each instance.
Based on the above label representations, we further utilize the convolutional
operation to construct a dynamic label graph, which reflects the unique label
interactions for each instance. However, GCN-based methods may suffer from
the problem of over-smoothing, which leads to features of graph vertices converg-
ing to the same value [11]. The decrease of the diversity between the features of
labels will make the GCN-based model predict the labels incorrectly. Although
decreasing layers of the label graph can alleviate the problem of over-smoothing,
the shallow layers structure can not learn “high level” features of labels, which
is not conducive to labels prediction. We introduce the residual connection [6]
to the GCN, which can alleviate the problem of over-smoothing and learn the
“high level” features of labels at the same time. Different from the work [6] which
connects the input of the layer and the output of the layer, our model adopts the
residual connection between the initial input of the first layer and the output of
each layer. The initial input of the first layer is more diverse. Adding the initial
input of the first layer to the output of each layer can alleviate the trend of
features of labels to be the same value. To demonstrate the effectiveness of our
model, we evaluate our model on two benchmark datasets. We show that: 1) The
dynamic label graph performs better than the static label graph. 2) The resid-
ual connection can boost the performance of GCN on the MLTC task, and the
proposed residual connection strategy in this paper outperforms the traditional
residual connection raised by [6].

The main contributions of this paper can be summarized as follows:

– To learn the unique label interactions for each instance, we devise a label
attention mechanism and construct a dynamic label graph to adequately learn
the label-specific features.

– To alleviate the problem of over-smoothing and learn the “high level” features
of labels on the MLTC task, we propose to adopt the residual connection to
the GCN.

– Extensive experiments show that the dynamic label graph and the proposed
residual connection can improve the classification performance on two public
MLTC datasets.
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Fig. 1. An example of the static label graph. The black lines represent strong correla-
tions between labels, while the gray lines represent weak correlations. And the standard
labels of the input text are marked with orange. (Color figure online)

2 Related Work

Significant progress has been made on the MLTC task. Some studies [3–5] trans-
form the MLTC task into a set of binary classification tasks, which ignores the
label correlations.

To explore the label correlations, many transformation methods [1,22] take
advantage of correlations between labels. With the development of the neural
networks, many studies are proposed based on CNN [10], RNN [16] and etc. They
explore the “high-level” features from instances and label words. The work [21]
adopts the attention mechanism to capture long-distance correlations among
words and labels. However, none of these studies could learn structure informa-
tion among labels.

To deal with this problem, some studies resort to graphical architectures. [8]
constructs a label co-exist graph to extract the label correlation information.
[23] establishes an explicit label graph to better explore the label space. Some
studies adopt different graph models such as Graph Attention Network(GAT)
[14], Graph Isomorphism Network (GIN) [25] and Graph Convolutional Net-
work(GCN) [24] to capture the attentive dependency structure among the labels.
Unfortunately, they can not work well because they neglect the problem of
over-smoothing and construct the static label graph from statistics of training
datasets which leads to the bias between the static label graph and the specific
text. Recent work [11] introduces residual connection [6] used in the CNN model
to the GCN on the task of point cloud semantic segmentation to alleviate the
problem of over-smoothing. However, the traditional residual framework of [11]
connecting the input of the layer and the output of the layer still has the problem.
In the traditional residual, the input of the layer is the output of the previous
layer which still has the trend of over-smoothing and the trend of over-smoothing
will accumulate. To deal with this problem, we adopt the residual connection
between the initial input of the first layer and the output of each layer. This
residual connection strategy can alleviate the problem of accumulation of the
trend of over-smoothing, which boosts the performance of the MLTC task.
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Fig. 2. The framework of our model.

3 Method

Given a sentence X = {x1, x2, .., xN} with N tokens, the MLTC task aims to
predict its corresponding label set Y = {yi}Si=1, where S is the number of labels.
Note that each label yi is selected from a predefined set L = {l1, l2, ..., l|L|} with
|L| labels.

To deal with the MLTC task with GCN, three issues should be considered,
including capturing the interactions between different labels, learning useful fea-
tures, and alleviating the over-smoothing problem caused by deep layers GCN.
To this end, we propose a residual dynamic graph convolutional networks model
in this paper. The overall framework of our model is illustrated in Fig. 2. Specif-
ically, our model consists of an encoding layer, a label attention mechanism, a
residual dynamic GCN, and a label prediction layer. We first utilize the bidi-
rectional long short-term memory network(BLSTM) [7] as the encoding layer to
learn the contextual semantics of each token. Then, we devise a label attention
mechanism to obtain the label-specific representations for each instance, which
aims to highlight the important semantics corresponding to each label. Based
on these representations, we further design a residual dynamic GCN to learn
the features of labels. Finally, we use the binary classifier as the label prediction
layer to assign the corresponding labels to each instance.

3.1 Encoding Layer

Given a sentence X, we first adopt the BLSTM to capture the contextual
semantics for each token. Concretely, we use the word embedding as the ini-
tial representation ei ∈ R

de of each token and feed the initial representation
sequence E = {e1, e2, ..., eN} into BLSTM to encode the contextual representa-
tion sequence H = {h1,h2, · · · ,hN},hi ∈ R

dh :



668 B. Wang et al.

hi =
[−→
hi;

←−
hi

]
,

−→
h i =

−−−−→
LSTM

(
ei,

−→
h i−1

)
,

←−
h i =

←−−−−
LSTM

(
ei,

←−
h i+1

)
, (1)

where
−−−−→
LSTM and

←−−−−
LSTM are the forward LSTM and the backward LSTM, respec-

tively. And dh is the dimension of the hidden representations.

3.2 Label Attention Mechanism

We couple a label attention mechanism upon the encoding layer to capture the
specific semantics of each label according to the given text. Specifically, we first
initialize the label embeddings Z = {z1, z2, ..., z|L|}, zi ∈ R

dz with the random
values, where dz represents the dimension of the label embedding. Then, we
project the hidden representations of tokens and the label embeddings into the
key K ∈ R

N×dl and the query Q ∈ R
|L|×dl as follows:

K = HWK , Q = ZWQ, (2)

where WK ∈ R
dh×dl and WQ ∈ R

dz×dl are the trainable parameters. And dl
denotes the dimension of the attention mechanism.

Based on these, We obtain the label-specific representations V for each
instance as follows:

V = softmax(QKT )H, (3)
where V = {v1, v2, ..., v|L|}, vi ∈ R

dh , vi denotes the feature of the i-th label.

3.3 Residual Dynamic GCN

Construct Dynamic GCN. For the multi-label classification task, it is cru-
cial to capture and utilize the interactions between different labels. Thus, we
adopt the label graph to represent the correlations between labels, which treats
the features of graph vertices as the features of labels. Previous studies usually
construct the correlation matrix of the static label graph from statistics of train-
ing datasets which causes the frequency-bias problem. In this paper, we adopt
the dynamic label graph. For each instance, we construct the correlation matrix
Ad ∈ R

L×L of the dynamic label graph using the label-specific representations
V obtained in the previous section.

Ad = σ(Conv1(V ′)), (4)

where σ(·) is the sigmoid activation function, Conv1(·) is the 1-D convolutional
neural network, V ′ ∈ R

|L|×(2∗dh) is obtained by concatenating V and vg ∈ R
dh ,

which is obtained by Average Pooling(AP) on the V . Formally, V ′ is defined as:

V ′ = [(v1; vg), (v2; vg), ..., (v|L|; vg)]. (5)

The general graph convolution operation at the l-th layer can be formulated as:

V l+1 = f(AdV lWd), (6)

where f(·) is the LeakyReLU activation function, V l = {vl
1, v

l
2, · · · , vl

|L|}, vl
i ∈

R
dh is the input of the l-th layer. V l+1 is the output of the l-th layer and the

input of l+1-th layer, Wd is the learnable weights of GCN. V is the initial input
of the first layer.
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Residual Connections in GCN. To reduce the accumulation of the trend of
over-smoothing, we propose a new residual connection. As shown in Fig. 2, the
initial input V of the first layer is added to the output of each layer. We update
the graph convolution operation as:

V l+1
res = f(AdV l

resWd) + V, (7)

where V l+1
res is the output of l-th layer after adding a residual connection. After

the last layer, we fuse the output of each layer. We first concatenate the output
of each layer as follows:

V concat = [V 1
res : V 2

res : · · · : V k+1
res ], (8)

where, k is the number of layers, V concat ∈ R
|L|×((k+1)∗dh). Then, we utilize 1-D

convolutional neural network to fuse V concat to the final output V f as follows:

V f = f(Conv1(V concat)), (9)

where, f(·) is the LeakyReLU activation function, Conv1(·) is the 1-D convolu-
tional neural network, V f = {vf

1 , vf
2 , · · · , vf

|L|}, vf
i ∈ R

dh .

3.4 Label Prediction

To accurately predict the multiple labels for the given sentence, we formulate
the MLTC task to a binary classification task on each label. Specifically, we use
the Sum-Pooling(SP) operation to distill the final output of the residual GCN
and predict the probability of each label ŷi as follows:

ŷi = σ(SP (vf
i )), (10)

where vf
i is the final output of the i-th label,i ∈ {1, .., |L|}, and σ(·) is the sigmoid

function.
During training, we minimize the binary cross-entropy loss function as fol-

lows:

L = −
M∑
j=1

|L|∑
i=1

(yij log (ŷij)) + (1 − yij) log(1 − ŷij), (11)

where M is the number of training instances, yij ∈ {0, 1} denotes the ground
truth, and ŷij is the final prediction. Note that yij = 1 represents that the i-th
label appears in the j-th instance, and vice versa.

During testing, the i-th label is predicted for the j-th instance if ŷij is higher
than the given threshold β.
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Table 1. Statistics of datasets. “Samples” and “Labels” denote the total number of
samples and labels, respectively. “W/S” is the average number of words per sample
and “L/S” represents the average number of labels per sample.

Dataset Samples Labels W/S L/S

AAPD 55840 54 150.72 2.41

SLASHDOT 3782 22 31.70 1.18

4 Experiments

In this section, we first introduce the datasets, evaluation metrics, baselines, and
experimental details. Then we compare our model with the baselines. Finally,
we conduct extensive ablation studies and analyze experimental results.

4.1 Datasets

To evaluate the performance of our model, we conduct experiments on two
datasets. The dataset statistics are summarized in Table 1.

AAPD: This dataset is provided by [20]. AAPD consists of the abstracts and
corresponding subjects of 55840 papers in the field of computer science. There
are 54 subjects in total, and each paper may be related to multiple subjects.

SLASHDOT: This dataset is provided by MEKA1, a multi-label extension to
WEKA. It is a collection of news about science and technology from the Slashdot
website, containing 3782 pieces of news with 22 subjects.

4.2 Evaluation Metrics

We use the Micro Precision, Recall, and F1-score as main evaluation metrics.
Micro Precision and Recall: For binary classification tasks on the single label,

Precision represents the fraction of positive instances among the instances pre-
dicted as positive, and Recall represents the fraction of successfully predicted
positive instances among all positive instances. Micro Precision and Recall are
used in multi-label tasks, which calculate Precision and Recall on all labels.

Micro F1-score: Micro F1-score [13] is used to evaluate the quality of multi-
label binary models, which measures the F1-score of the aggregated contributions
of all labels. It is the harmonic mean of Micro Precision and Recall.

4.3 Baselines

To demonstrate the effectiveness of our model, we adopt the following baselines.
LP: [18] transforms a multi-label problem to a multi- class problem with one

multi-class classifier trained on all unique label combinations.
XML-CNN: [12] uses Convolutional Neural Network(CNN) and adopts a

dynamic max pooling scheme to capture fine-grained features of the texts.

1 https://sourceforge.net/projects/meka/.

https://sourceforge.net/projects/meka/
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Table 2. The mean value and standard deviation of the results on two benchmark
datasets (%). The best results are marked as bold.

SLASHDOT AAPD

Precision Recall F1-Score Precision Recall F1-Score

LP 52.59 53.00 55.97 52.79 55.97 54.82

XML-CNN 56.91(±1.43) 37.4(±1.43) 45.12(±1.10) 67.67(±1.3) 57.16(±0.67) 61.96(±0.37)

LSAN 55.85(±2.48) 45.56(±4.90) 50.02(±2.75) 72.71(±0.74) 63.96(±1.39) 68.05 (+0.94)

LAHA 65.20(±3.22) 52.18(±1.32) 57.92(±1.15) 75.73(±0.71) 64.16(±2.16) 69.44(±1.09)

Ours 65.36(±2.59) 61.18(±2.03) 63.15(±1.09) 77.89(±2.57) 65.86(±2.03) 71.32(±0.63)

LSAN: [19] adopts a label-specific attention network to extract semantic rela-
tions between labels and documents, identifying the label-specific document rep-
resentation.

LAHA: [8] uses a hybrid attention deep neural network model to extract
semantic relations between documents and labels with a label co-exist graph, to
establish an explicit label-aware representation for each document.

4.4 Experimental Setting

Each instance is truncated at the length of 500. We initialize the word embedding
with pre-trained Glove 840B vectors [15]. The dimension of hidden states for
LSTM and label embeddings is 200. The dimension of key and query is 50.
During training, we use the Adam [9] optimizer. The learning rate, dropout, and
batch size are set to 0.001, 0.5, and 32, respectively. We set β to 0.5. To obtain an
estimate of the generalization performance of each method, we train each neural
network model five times using random seed 1000, 1001, 1002, 1003, 1004. And
we show the mean value and standard deviation of the results. LP is not the
neural network model, we only report the best result. We conduct experiments
with a number of different GCN layers and obtain the best results with three
layers of GCN on the AAPD and SLASHDOT.

4.5 Results

The experimental results are shown in Table 2, where “Ours” represents our
model RDGCN.

LSAN utilizes an attention mechanism to detect the semantic connections
between labels and instances. So LSAN outperforms XML-CNN on all datasets.
However, it only focuses on the simple interactions between labels and content.
Based on LSAN, LAHA adopts the graph to capture the structure informa-
tion between labels, which makes the model achieve higher scores. Our model
adopts residual connection to GCN to alleviate the problem of over-smoothing
and learn “high level” structure information between labels. Our model also con-
structs a dynamic label graph to alleviate the bias between the label graph and
the specific text. So the effectiveness of our model is significantly improved on
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Table 3. The mean value and standard deviation of the ablation results(%). The best
results are marked as bold.

SLASHDOT AAPD

Precision Recall F1-Score Precision Recall F1-Score

w/o res 64.94(±2.70) 60.04(±2.73) 62.31(±0.88) 77.35(±1.93) 64.13(±1.03) 70.10(±0.53)

w/o dynamic 63.18(±2.45) 58.33(±3.54) 60.55(±1.25) 77.47(±1.16) 64.73(±0.86) 70.52(±0.32)

Ours 65.36(±2.59) 61.18(±2.03) 63.15(±1.09) 77.89(±2.57) 65.86(±2.03) 71.32(±0.63)

all datasets in F1-score, precision, and recall. Compared with baselines, the pro-
posed model achieves 0.16% precision, 9% Recall, 5.23% F1-score improvements
on the SLASHDOT dataset and 2.16% precision, 1.7% recall, 1.88% F1-score
improvements on the AAPD dataset.

4.6 Ablation Study

We try to demonstrate the effectiveness of the residual connection via the
ablation experiment. As shown in Table 3, “Ours” represents the proposed
model RDGCN, “w/o res” represents our model without residual connection.
As expected, “w/o res” performs poorly, which verifies the effectiveness of resid-
ual connection. The experimental results of “Ours” gets 0.42% precision, 1.14%
recall, 0.84% F1-score improvements on the SLASHDOT dataset and 0.54% pre-
cision, 1.73% recall, 1.22% F1-score improvements on the AAPD dataset.

To demonstrate that constructing the dynamic label graph boosts the classi-
fication performance of our model, we compare with experimental results using
the static label graph. The correlation matrix of the static label graph is con-
structed according to the pairwise co-occurrence from training datasets [14]. We
replace the dynamic label graph of our model with a static label graph, which is
represented by “w/o dynamic” in Table 3. Compared with “w/o dynamic”, our
model shows the improvement over “w/o dynamic”, which demonstrates that
the dynamic label graph can capture the associations between different labels in
a specific text by automatically learning the dynamic correlation matrix. The
experimental results of “Ours” gets 2.18% precision, 2.85% recall, 2.6% F1-score
improvements on the SLASHDOT dataset and 0.42% precision, 1.13% recall,
0.8% F1-score improvements on the AAPD dataset.

4.7 Comparison with the Traditional Residual Connection

We also conduct the experiments using the traditional residual connection from
[11] which is used in the CV task. In Fig. 3, “Ours” represents the proposed
model RDGCN, “TradRes” represents the model using the traditional residual
connection. For the “TradRes”, we also experiment with different GCN layers.
Consistent with our model, “TradRes” obtains the best experimental results
with the three-layer GCN on both two datasets.
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Fig. 3. Comparison of our model and the traditional residual connection method.

As shown in Fig. 3 the residual connection we proposed performs better than
the traditional method on two datasets. The traditional residual connection con-
nects the input of the layer and the output of the layer, while our model adopts
the residual connection between the initial input of the first layer and the out-
put of each layer. It demonstrates that connecting the initial input of the first
layer and the output of each layer can reduce the accumulation of the trend of
over-smoothing, which can boosts the performance of the model.

4.8 Analysis of Different GCN Layers

In Fig. 4, we also report the mean value of the F1-score of different GCN layers.
“Ours” represents our model RDGCN. “w/o res” represents our model without
residual connection.

As the number of layers increases, the F1-score of “Ours” first increases and
then decreases on both two datasets. And when the number of GCN layers is
three, our model achieves the highest F1-score. The results of “w/o res” show a
similar trend, first increases and then decreases, on the SLASHDOT dataset. The
difference is that “w/o res” obtains the best performance on the SLASHDOT
dataset based on the two-layer GCN. On the AAPD dataset, “w/o res” achieves
the best result using one layer GCN, and as the number of layers increases, the
overall trend decreases.

We can observe that the result of “Ours” is always better than “w/o res”
using any number of GCN layers on both two datasets. The best results of “Ours”
are 0.74% (F1-score) and 0.58% (F1-score) higher than the best results of “w/o
res” on the SLASHDOT and AAPD datasets, respectively. It demonstrates that
utilizing residual connection is better than utilizing the GCN with the shallow
layers structure since the deeper GCN layers can learn “high level” label features.
In addition, the results of “Ours” can perform well on deeper GCN layers due
to the residual connection, which demonstrates that the residual connection can
alleviate the problem of over-smoothing and boost the performance on the MLTC
task.
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(a) SLASHDOT (b) AAPD

Fig. 4. Comparison of different GCN layers.

5 Conclusion

In this paper, we focused on the MLTC task and proposed a residual dynamic
GCN model to learn “high level” features of labels caused by multi-layers GCN.
We devised a label attention mechanism to capture the label-specific features
for each instance. Based on these features, a dynamic label graph was designed
to alleviate the bias between the static label graph and the specific text. The
residual connection was proposed to alleviate the problem of over-smoothing and
learn the “high level” label features. The extensive experiments demonstrated
that our model achieves significant improvements.
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Abstract. Sentence ordering is a task arranging the given unordered
text into the correct order. A feasible approach is to use neural networks
to predict the relative order of all sentence pairs and then organize the
sentences into a coherent paragraph with topological sort. However, cur-
rent methods rarely utilize the context information, which is essential for
deciding the relative order of the sentence pair. Based on this observa-
tion, we propose an efficient approach context-enhanced pairwise com-
parison network (CPCN) that leverages both the context and sentence
pair information in a post-fusion manner to order a sentence pair. To
obtain the paragraph context embedding, CPCN first utilizes BERT to
encode all sentences, then aggregates them using a Transformer followed
by an average pooling layer. Finally, CPCN predicts the relative order
of the sentence pair by the concatenation of the paragraph embedding
and the sentence pair embedding. Our experiments on three benchmark
datasets, SIND, NIPS and AAN show that our model outperforms all
the existing models significantly and achieves a new state-of-the-art per-
formance, which demonstrates the effectiveness of incorporating context
information.

Keywords: Sentence ordering · Context information · Pairwise
comparison

1 Introduction

Text coherence is essential in natural language processing(NLP) and coherence
makes it much easier for us to read and understand the text. Sentence ordering
is a task that aims at arranging the unordered text into the right order, which
maintains the coherence of the text. Sentence ordering plays a significant role
in down stream applications such as concept-to-text generation [12,13], multi-
document summarizing [1,20], storytelling [8,11], recipe generation [4].

Recent work uses neural network to model the coherence of text and predict
the order of the text. These approaches can be classified into two kinds: sequence
generating model and pairwise model. Sequence generating model uses neural
network to model the probability of the next sentence depending on the previous
predicted sentences [6,9,14,19,23,25]. However, if one sentence is placed in the
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 676–687, 2021.
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wrong position, the sentences after will be placed unreasonably based on the
wrong previous prediction. Pairwise models utilize local information(sentence
pair information) to predict the relative order of two sentences with a classifier.
Then these models organize the text with the relative order by maximizing
the scores of all sentence pairs in the permutation or topological sort [5,18,21].
However, these models do not utilize the global information(context information)
to infer the relative order of two sentences. In some time it is hard to determine
the relative order without the context (Table 1).

Table 1. An example of sentences in SIND dataset and the order is on the left

Order Sentences

(1) We set up our chair for the softball game

(2) They were getting ready to play. The ball was thrown

(3) She ran to catch the ball

(4) Our team scored a point

(5) We enjoyed relaxing and watching the game

We take an example in SIND dataset, which is one benchmark dataset of
sentence ordering task. We denote the sentence i by si. Without the context, we
do not know the relation of s3 and s5 and it is hard to determine the relative
order of this pair. With s1 we can know the “game” in s5 refers to the softball
game. With s2 we know the “ball” in s3 refers to the ball in this softball game.
With s4 we know the action of catching the ball in s3 results in scoring a point
and scoring a point makes the audience enjoyed and relaxed in s5. So s5 is the
result of s3 and the relative order is easy to decide. In this example, the global
information is the information in s1, s2 and s4. It gives the scene and the process
of the event, which is essential to predict the relative order of s3 and s5.

To incorporate both the global and local information of the text, we propose a
new and simple approach named context-enhanced pairwise comparison network
(CPCN). CPCN utilizes both global and local information through post-fusion
to predict the order of a sentence pair. To obtain local information, we follow
B-Tsort [21] to leverage BERT to get a single representation for each sentence
pair in the text. To obtain global information, we use BERT to encode each
sentence. Then we input the embeddings of all the sentences in the text to a
Transformer Network. The self-attention layers in Transformer Network can help
the information sharing among sentences in the paragraph. Then we fuse all the
sentence embeddings by an average pooling layer to get the global information
of the context. We concatenate the two levels of information as an input of the
MLP to predict the relative order of sentence pair. With the relative order of all
pairs of sentences, we use topological sort to organize sentences into the right
order. By the experiments of three benchmarks in the field of sentence ordering,
SIND caption dataset, NIPS abstract dataset and AAN abstract dataset, our
model outperforms all the existing models, becoming the new state of the art.
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To summarize, our contributions are in two-fold: 1) we propose a new model
CPCN, which combines global and local information in a post-fusion manner.
2) we conduct extensive experiments. The results show that CPCN outperforms
existing methods, and clearly demonstrates the effectiveness of incorporating
context information into pairwise ordering approaches.

2 Related Work

Early work on sentence ordering uses transition probabilistic model based on
linguistic features [15], content models based on Hidden Markov Models [3],
and entity based approach [2]. Recent work uses neural network to model the
coherence of text and predict the order of the text. We review two kinds of neural
network approaches which are the most prevalent and efficient.

2.1 Sequence Generating Models

This kind of approaches uses neural network to predict sentence locations as a
sequence and treat this as a seq2seq problem. Many researchers put efforts into
getting a more efficient encoder and decoder of sentences and the paragraph.
Gong et al. (2016) [9] use pointer network as a decoder to sequentially choose
the next sentence with the embeddings produced by the encoder. To connect
information in different sentences, Cui et al. (2018) [6] introduce self-attention
into the paragraph encoder. To model the connection between entities and sen-
tences and between sentences that share same entities, Yin et al. (2019) [24]
refine the encoder with an entity transition graph. Kumar et al. (2020) [14]
find applying BERT as a sentence encoder and feed forward neural network as
a decoder can improve the performance. Moreover, Yin et al. (2020) [23] find
adding supplementary loss functions during the training process is also helpful.
To model the connection between sentences at different distances, Yutao Zhu et
al. (2021) [25] employ multiple GNNs and fuse them with a MLP network. How-
ever, in this category of approach, the prediction of one sentence is dependent
on the sentences that have been predicted.

2.2 Pairwise Models

This kind of models aims at improving the method to predict the relative order of
sentence pairs. Chen, Qiu, and Huang (2016) [5] encode the sentence with CNN
and LSTM. Then they infer the relative order with representations of sentences
by use of feed forward neural network. They maximize the sum of the scores of
all sentence pairs in the candidate order to predict the text order. Prabhumoye,
Salakhutdinov, and Black (2020) [21] utilize the next sentence prediction objec-
tive of BERT to encode the sentence pair and arrange the sentences into text
with topological sort. This kind of approach fails to consider the global context
and the relative order of some sentence pairs can not be decided without the
other sentences. In our model, information in other sentences is connected to
the sentence pair by use of Transformer Network to solve this problem.
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3 Task Description

Given an unordered document consisted of n sentences, D = {so1 , . . . , son},
where the random order is o = [o1, . . . , on]. Our task aims to find the right order
of the sentences o∗ = [o∗

1, . . . , o
∗
n] . such that

P (so∗
1
, . . . , so∗

n
|D) ≥ P (so1 , . . . , son |D) for any permutation of 1, 2 . . . n o

(1)
where P (so1 , . . . , son |D) means the probability of [o1, o2, . . . on] to be the right
order of the sentence set D.

4 Methodology

Fig. 1. Model overview

4.1 Overview

Our model includes 2 phases, where the first phase is context-enhanced pairwise
ordering network and the second phase is topological sort. Context-enhanced
pairwise ordering network contains 3 parts, global information encoder, local
information encoder and post-fusion. The model pipeline is illustrated by Fig. 1.
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4.2 Global Information Encoder

As BERT [7] is a powerful pretrained language model that can learn the token
and sentence level information, we use BERT to encode each sentence in the
paragraph. The input to the BERT model is a “[CLS]” token, followed by the
sentence to encode and we use the hidden state corresponding to “[CLS]” as the
encoding of the sentence. Next, we pass the embeddings of all sentences to a
Transformer Network with self-attention layers. To handle the unordered nature
of the input, we remove the position embedding layer. Based on the encoding for
each sentence, we use an average pooling layer to encode the whole paragraph
for the global information. The self-attention mechanism can connect different
sentences which allows information sharing among sentences in a paragraph.

4.3 Local Information Encoder

For each pair of sentences in the paragraph, we leverage the next sentence pre-
diction objective of BERT to encode the sentence pair. Sentence pair are packed
together and separated by “[SEP]”, then we add “[CLS]” to the head to form
the complete input sequence of the BERT model. We use the hidden state cor-
responding to “[CLS]” as the encoding of the sentence pair.

4.4 Post-fusion

For each sentence pair, We concatenate the encoding of the sentence pair and the
paragraph as a input to a classifier to predict the relative order of the sentence
pair. Let vij denote the encoding of the sentence pair and vp denote the encoding
of the paragraph that contains the sentence pair. Then

pij = MLP ([vij ;vp]) (2)

where pij denotes the relative order of the sentence pair.

4.5 Organizing into Text

With the relative order of the sentence pair, we can utilize different approaches
to organizing the sentence into the text, such as maximizing the sum of prob-
ability of the relative order between the sentence pairs in the permutation and
topological sort. In our experiment, we use topological sort. Topological sort is a
standard algorithm to order vertices of directed graphs in linear time complexity.
For each edge from u to v, u is placed before v in the order that topological sort
produces. In our case, each sentence composes a vertex and each pair of vertices
has an edge. The direction of the edge between two sentences is decided by the
relative order that we have predicted before. Based on the relative order of all
sentence pairs, we organize the full paragraph by use of topological sort.
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5 Experiments

We conduct experiments on three standard public sentence ordering datasets,
SIND dataset, NIPS dataset and AAN dataset. These datasets are commonly
used in previous sentence ordering work [6,14,21,25]. We compare three kinds
of baseline models with our approach. In the experiment, we apply our CPCN
with topological sort. Following Prabhumoye, Salakhutdinov, and Black [21], we
name the whole method C-TSort(C stands for CPCN).

Table 2. The statistic of datasets

Datasets Min Max Avg Train Dev Test

NIPS 1 15 6 2448 409 402

AAN 1 20 5 8569 962 2626

SIND 5 5 5 40155 4990 5055

5.1 Dataset

The statistics of the datasets is shown in Table 2 where MIN, MAX, AVG mean
the maximum, minimum and average number of sentences in a data instance.

NIPS [19]: This dataset contains abstracts from NeurIPS papers and the aver-
age number of sentences in a paragraph is 6. It is splitted into training set, dev
set and test set by the publishing year.

AAN [19]: This dataset contains abstracts from ACL papers and the average
number of sentences in a paragraph is 5. It is splitted into training set, dev set
and test set by the publishing year.

SIND [10]: In this dataset, each paragraph has 5 sentences and corresponds to
the caption of an image.

5.2 Baselines

Traditional Methods: Traditional methods use linguistic features or neural
network to maximize coherence of text. We use Entity Grid [2] and Window
Network [17] as baselines.

Pairwise Models: B-TSort [21] utilizes BERT to predict the relative order of
sentence pair and organize into the text with topological sort. This is the current
state-of-the-art.
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Sequence Generation Models: This kind of models treats the task as a
sequence generating problem. We select the typical methods below.
CNN/LSTM+PtrNet [9]; Variant-LSTM+PtrNet [19]; ATTOrderNet [6];
HierarchicalATTNet [22]; SE-Graph [24]; ATTOrderNet+TwoLoss [23]; Rank-
TxNet+ListMLE [14]; Constraint-Graph [25].
The last model is a competitive model this year.

5.3 Evaluation Metric

We use Kendall Tau (τ) and Perfect Match Ratio (PMR) as evaluation metrics,
both being commonly used in previous work [6,9,14,19,23,25].

Kendall Tau ( τ): It computes the percentage of the sentence pair that is

predicted in the wrong relative order [16]. τ = 1 − 2I/

(
vi
2

)
, where I is the

number of sentence pairs which is inverted in the prediction and vi is the number
of sentences in the paragraph.

Perfect Match Ratio (PMR): It measures the percentage of instances where
the predicted sentence order is totally equal to the real order [5]. That is PMR =
1
N

∑N
i=1 I {ôi = o∗

i }, where N denotes the number of instances in the dataset. ô
and o∗

i mean the predicted and real order of instance i. It is the strictest metric.

Table 3. Results

NIPS AAN SIND

Model τ PMR τ PMR τ PMR

Traditional method Entity Grid 0.09 – 0.10 – – –

Window Network 0.59 – 0.65 – 0.28 –

Sequence generation model CNN + PtrNet 0.6976 19.36 0.6700 28.75 0.4197 9.50

LSTM + PtrNet 0.7373 20.95 0.7394 38.30 0.4833 12.96

Variant-LSTM + PtrNet 0.7258 22.02 0.7521 40.67 0.4878 13.57

ATTOrderNet 0.7466 21.22 0.7493 40.71 0.4823 12.27

HierarchicalATTNet 0.7008 19.63 0.6956 30.29 0.4814 11.01

SE-Graph 0.7370 24.63 0.7616 41.63 0.4804 12.58

ATTOrderNet + TwoLoss 0.7357 23.63 0.7531 41.59 0.4952 14.09

RankTxNet + ListMLE 0.7316 20.40 0.7579 36.89 0.5560 13.93

Constraint-Graph 0.8029 32.84 0.8236 49.81 0.5856 19.07

Pairwise model B-TSort 0.8100 32.59 0.8290 50.38 0.6000 20.32

Ours 0.8181 34.32 0.8330 51.03 0.6173 22.33

5.4 Results

By Table 3, we can see our model outperforms all the baselines on both τ and
PMR on the three datasets. Our model outperforms the previous best method
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B-TSort, which is also a pairwise model, by about 0.8% τ score and 1.7% PMR
score in NIPS dataset, 0.4% τ score and 0.7% PMR score in AAN, 1.7% τ score
and 2.0% PMR score in SIND. The results show that it is efficient to utilize
the global information to help predict the relative order of the sentence pair.
Comparing with the best-performing sequence generating approach Constraint-
Graph, the prediction of current time step in our model is independent on the
previous and it brings about 2% more score in all datasets and metrics. The most
significant improvement is on SIND, where our method beats Constraint-graph
by about 3% score in τ and PMR. We believe because all data instances in SIND
have 5 sentences, and the context information is much more important in this
situation compared to instances that only have 1 or 2 sentences.

Moreover, we divide the dataset into 3 parts on the numbers of sentences
to prove the global information encoder catches the context information that is
useful to decide the relative order between sentence pair. Because each paragraph
in SIND dataset has equal number of sentences, we do this test on NIPS and AAN
abstract. Table 4 shows that generally, our method gets higher results on all 3
segments. Moreover, if there are more the sentences in the sample, the difference
of performance between ours and B-TSort is larger. This shows utilizing the
global information can improve the prediction of relative sentence order as the
information of context expands.

Table 4. Tau score in AAN and NIPS

AAN NIPS

Model NUM

All 1–3 4–8 9–15 All 1–3 4–6 7–20

B-TSort 0.8296 0.8908 0.8226 0.7224 0.8105 0.9298 0.8199 0.7865

Ours 0.8331 0.8937 0.8261 0.7276 0.8181 0.9298 0.8338 0.7875

Difference +0.0035 +0.0029 +0.0035 +0.0052 +0.0076 0 +0.0139 +0.0010

5.5 Ablation Study

We propose 2 new models and compare them with our approach C-TSort and 2
competitive baselines to explore the impact of different modules of our model.
The ablation results are illustrated by Table 5.

Ablation Model 1. To test the effect of information sharing among sentences,
we propose this ablation model. In global information encoder, we remove the
Transformer Network and pass the sentence embeddings to average pooling layer
straightly. By Table 5, we can see C-TSort outperforms the ablation model 1 by
about 1% score in all datasets and metrics. It proves information sharing in the
generation of the context is essential to predict the relative order of the sentence
pair.
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Table 5. Ablation results

NIPS AAN

Model τ PMR τ PMR

Baseline

B-TSort 0.8100 32.59 0.8290 50.38

Constraint-Graph 0.8029 32.84 0.8236 49.81

Ours

C-TSort 0.8181 34.32 0.8330 51.03

Ablation model 1 0.8090 33.08 0.8279 50.04

Ablation model 2 0.8054 33.33 0.8303 51.45

Pre-fusion model 0.7923 28.86 0.8127 47.52

Ablation Model 2. To compare the efficiency of different manners of infor-
mation sharing among sentences through post-fusion to help predict the relative
order of sentence pair. We revise the approach to generating the global encoding
and propose another post-fusion based model. In the global encoder, the input
of BERT is a “[CLS]” token, followed by a sequence of tokens of unordered con-
text. We apply the first embedding corresponding to the “[CLS]” token as the
paragraph embedding. Then we concatenate it with the sentence pair embedding
to predict the relative order by a classifier and arrange with topological sort. By
Table 5, we can see our model C-TSort outperforms ablation model 2 in most of
the datasets and metrics. It proves the Transformer Network of C-TSort is more
efficient in information sharing among sentences to order the sentence pair. We
believe that using the whole paragraph as the input of BERT introduces noise
in token level, which affects the performance on sentence pair ordering. More-
over, ablation model 2 also beats baselines in both datasets and metrics, which
proves post-fusing context information helps predict the relative pairwise order.

5.6 Comparing with Pre-fusion

Pre-fusion of global and local information can connect the information directly
in a token-level and is also an approach that deserves consideration. To compare
the pre-fusion and post-fusion approach on incorporating global and local infor-
mation to predict the relative order of sentence pair, we propose a new model
based on pre-fusion of global and local information. We utilize BERT to fuse the
global and local information. For each sentence pair s1 and s2, the input of BERT
is “[CLS] s1 [SEP] s2 [SEP] context”, where context is the given unordered text.
Then we use the first hidden state of BERT corresponding to the “[CLS]” token
to predict the relative sentence order with a MLP classifier and organize the
text by topological sort. By Table 5, it shows out model C-TSort beats this pre-
fusion model by over 2% score in all datasets and metrics. It proves post-fusion
is more efficient in including global and local information to predict the relative
order of sentence pair. We believe that as the whole paragraph usually contains
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a huge amount of information, which far beyond what actually needed, the noise
is inevitably introduced through intensive information sharing inside BERT and
undermines the performance on the prediction (Table 6).

6 Case Study

We take several examples in SIND dataset where B-TSort is not able to predict
correctly without global context while our model gets the perfect match.

Table 6. Several cases

Right order Sentences Ours B-TSort

(1) We set up our chair for the softball game (1) (1)

(2) They were getting ready to play. The ball was thrown (2) (2)

(3) She ran to catch the ball (3) (3)

(4) Our team scored a point (4) (5)

(5) We enjoyed relaxing and watching the game (5) (4)

(1) Becca and Bob posed for a picture before their hike (1) (1)

(2) We hiked over this bridge. It felt a little unstable (2) (2)

(3) The water was really roaring fast. The water was really cold (3) (4)

(4) The rocks were neat to look at. We wanted to see it all (4) (3)

(5) At the end of the day we were at the top. The view was just beautiful (5) (5)

(1) The Karate Championship was a big hit! (1) (1)

(2) All the best fighters showed their kicks (2) (2)

(3) Legs and fists were flying around (3) (3)

(4) It was very fun to see all this action (4) (5)

(5) Our family came away with four trophies, we were really happy (5) (4)

In example 1, we can not decide the relative order between s4 and s5 without
the context information, so B-TSort does the wrong prediction on this pair. By
s1, s2 and s3 we know the action “she caught the ball” leads to scoring a point,
so s4 should follow s3 and s5 should be a conclusion corresponding to the first
sentence s1. The relative order between s4 and s5 can be determined by the
context.

In example 2, the relative order of s3 and s4 is hard to decide without the
context because both the water and rocks can appear first in the description.
However, with s2, we know the description of river should follow the bridge and
the water is cold and fast in s3 corresponds to the feeling of unstable in s2.
Therefore, s3 should follow s2 and the relative order of s3 and s4 is easy to
determine.

In example 3, we can not know what the “action” refers to in s4 and the
connection of s4 and s5 without the context. B-TSort predicts the wrong relative
order of s4 and s5. However, by s2 and s3, we can know the “action” refers to
the competition of the fighters, so s4 should follow the s2 and s3. The “trophies”
in s5 corresponds to the “Karate Championship” in s1. s5 gives the result of the
competition and it should be the conclusion of the text. The relative order of s4
and s5 can be determined with the context information and our model predicts
it right.
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7 Conclusion

In this paper, we propose a new and simple model CPCN for sentence ordering
where we combine the global and local information through post-fusion to predict
the relative order of the sentence pair. This is based on the observation that the
context information is essential to predict the relative order of the sentence pair.
We utilize BERT to encode each sentence and pass the sentence embeddings to a
Transformer Network and an average pooling layer to get the context embedding.
Then we concatenate the context embedding and sentence pair embedding as the
input of a MLP classifier. At last we organize into the text with topological sort.
Our model achieves the state of the art on three benchmarks in the field of
sentence ordering.
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Abstract. Pun location is to identify the punning word (usually a word
or a phrase that makes the text ambiguous) in a given short text, and pun
interpretation is to find out two different meanings of the punning word.
Most previous studies adopt limited word senses obtained by WSD(Word
Sense Disambiguation) technique or pronunciation information in isola-
tion to address pun location. For the task of pun interpretation, related
work pays attention to various WSD algorithms. In this paper, a model
called DANN (Dual-Attentive Neural Network) is proposed for pun
location, effectively integrates word senses and pronunciation with con-
text information to address two kinds of pun at the same time. Further-
more, we treat pun interpretation as a classification task and construct
pun-gloss pairs as processing data to solve this task. Experiments on the
two benchmark datasets show that our proposed methods achieve new
state-of-the-art results. Our source code is available in the public code
repository (https://github.com/LawsonAbs/pun).

Keywords: Pun location · Pun interpretation · Pronunciation ·
Pun-gloss pairs · Word Sense Disambiguation

1 Introduction

Puns where the two meanings share the same pronunciation are known as homo-
phonic (i.e., homographic puns), while those relying on similar but not identical-
sounding signs are known as heterophonic (i.e., heterographic puns). Figure 1
shows two examples. Pun location aims to find the word appearing in the text
that implies more than one meaning and pun interpretation is an attempt to
give the two word senses of the punning word.

Pun location and interpretation have a wide range of applications [11,12].
Sequence labeling is a general framework to solve pun location [2,20,21]. Cai et
al. [2] proposed Sense-Aware Neural Model (SAM) which is built on the WSD
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 688–699, 2021.
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Fig. 1. Two samples drawn from two different types puns and their corresponding
punning words with the glosses (the definition of word senses) from WordNet (https://
wordnet.princeton.edu/).

(Word Sense Ambiguation) algorithms. It suffers from the bias because of the
following reasons: (1) It is inadequate to identify the punning word by using two
distinct word senses; (2) The results produced by the WSD algorithms are not
always correct, so the error propagation can not be ignored. Moreover, they fail
to address the heterographic puns task. Therefore, Zou et al. [20] add a pro-
nunciation module to the model which is named PCPR(Pronunciation-attentive
Contextualized Pun Recongnition) to solve the heterographic puns. However,
only utilizing the contextual and pronunciation information, PCPR omits the
word senses which are the most important elements in natural language. Accord-
ing to the categories of puns, it is intuitive to assume that both word senses and
pronunciation are the key points in pun location. So to resolve this problem,
we propose a model called DANN(Dual-Attentive Neural Network) to cap-
ture the rich semantic and pronunciation information simultaneously. In DANN,
the sense-aware and pronunciation-aware modules employ the word meanings
and phoneme information respectively. Firstly, unlike SAM, we capture seman-
tic information by paying attention to all meanings of the word automatically
rather than selecting several word senses by WSD algorithms in advance. Sec-
ondly, we consolidate word senses, context, and pronunciation information to
deal with all kinds of puns.

For pun interpretation, Duluth [14] and BuzzSaw [13] both use the WSD
algorithm to choose the most probable meaning for the punning word. Specifi-
cally, Duluth uses 19 different configurations to create a set of candidate target
senses and choose the two most frequent senses from them as the final predicted
value. However, one limitation of this approach is the uncertain level of accuracy
of the WSD algorithms, which vary from word to word and domain to domain
[14]. Different from Duluth and BuzzSaw, we treat pun interpretation as a sen-
tence pair matching task, that is, we use a pre-training model (e.g., BERT) to
select the best matching pun and paraphrase pairs. Concatenating the pun and
the gloss of the punning word to one whole sentence, we classify it as yes or no
to identify the word sense is correct or not.

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/


690 S. Liu et al.

In summary, our contributions are as follows: (1) We take full advantage
of semantic and phonetic features to conduct the pun location. By the dual-
attentive module, both of them can be taken into account.
(2) We further explore which meanings of words can lead to rhetorical effects,
which is essential for understanding puns. Compared with the simple WSD algo-
rithms, an innovative method through pun-gloss pairs to solve the pun interpre-
tation greatly improves the experimental result.
(3) Both models achieve state-of-the-art performance in the benchmark dataset.

2 Related Work

2.1 Pun Location

Fixed patterns or characteristics are proposed to solve pun location [8,12,14].
Yang et al. [19] creatively designed a set of features from four aspects as follows:
(a) Incongruity; (b) Ambiguity; (c) Interpersonal Effect; (d) Phonetic Style.
Based on the characteristics of manual design, Duluth [14] proposed approaches
that relied on WSD and measures of semantic correlation. Using some feature
components, Vechtomova et al. [17] ranked words in the pun by a score calculated
as the sum of values of eleven features. Indurthi et al. [8] select the latter word as
a punning word from the maximum similarity word pair. A computational model
of humor in puns based on entropy was proposed in [9]. PMI (Pointwise Mutual
Information) [3] to measure the association between words is used in [15]. Doogan
et al. [5] proposed a probabilistic model to produce candidate words. Feng et al.
[6] first collect 10 kinds of features for this task, then they use logistic regression
to find out which word is punning and use the weight of different features to
explain why a punning word is detected.

Based on neural network, some methods are proposed to solve pun location
[2,10,20]. Mao et al. [10] proposed CSN-ML (Compositional Semantics Net-
work with Task Learning) to capture the rich semantic information of punning
words in a sentence. Cai et al. [2] proposed SAM (Sense-Aware Neural Model)
which is built on limited WSD results. Their main idea is modeling multiple
sequences of word senses corresponding to different WSD results, which were
obtained by various WSD algorithms. Zhou et al. [20] proposed a model named
PCPR (Pronunciation-attentive Contextualized Pun Recognition) with current
best effectiveness.

Different from these work, we incorporate both semantic and phonetic infor-
mation into the model and solve pun location perfectly.

2.2 Pun Interpretation

Duluth [14] use a WSD algorithm on different configurations and then take
the MFS(Most Frequent Senses) strategy to predict the appropriate meaning for
punning word and get the current best performance. However, the MFS strategy
is too fixed to address the problem of selecting word senses. Instead of using the
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WSD algorithm directly, we get the meanings from top-2 pun-gloss pairs with
the highest probability as the final results for each target word.

BuzzSaw [13] hypothesize that a pun can be divided into two parts, each con-
taining information about the two distinct senses of the pun, can be exploited for
pun interpretation, then they use the method that loosely based on the Lesk algo-
rithm to get the meaning for each polysemous word. Due to error propagation,
the pipelined way do not get the best performance in this problem. Therefore,
we use pun-gloss pairs to fuse the pun and the gloss of the punning word to one
sentence and reduce the process directly. The corresponding experiment shows
that our model outperforms all other models.

3 Methodology

Figure 2 shows our model architecture for pun location. Our model is a sequence
labeling system, which is based on the adaptation of the BIO annotation [‘O’,
‘P’], where P stands for the punning word tokens and O stands for other tokens.
With this tagging scheme, each word in a sentence will be assigned a label.

Fig. 2. The model architecture of Dual-Attentive Neural Network for Pun Location.
We use a dual-attentive module to focus on crucial word senses and pronunciation.

Table 1 shows the main construction of training data to solve pun interpre-
tation. Inspired by the GlossBERT [7], we use the pun-gloss pairs to capture the
correlation between the pun and the gloss of target word. Conventional WSD
methods usually return the sense with the highest score. Similarly, we can choose
the best and second-best word meanings according to the maximum and sub-
maximum probability values returned in the classification process.
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Table 1. The sample was taken from SemEval-2017 task 7 dataset to explain the con-
struction methods that concatenating the pun and the gloss. The ellipsis “...” indicates
the remainder of the sentence.

Homographic pun:

I used to be a banker but i lose interest

Pun-Gloss Pairs of the punning word Label Sense Key

[CLS] I used to be a ...[SEP] a sense of concern ... [SEP] Yes interest%1:09:00::

[CLS] I used to be a ...[SEP] a reason for wanting ... [SEP] No interest%1:07:01::

[CLS] I used to be a ...[SEP] excite the curiosity of ... [SEP] No interest%2:37:00::

[CLS] I used to be a ...[SEP] a fixed charge for ...[SEP] Yes interest%1:21:00::

3.1 Pun Location

Sense-Aware Module. The highlight of our model is using the sense-attention
module to focus on pertinent word senses automatically.

As shown in the lower left corner of the Fig. 2. Firstly, we get all definitions of
the word senses from WordNet for each content word in a pun and denote them
as {d1,1, ..., d1,i, ..., dn,n}. Secondly, we use BERT [4] to process each definition
and use its [CLS] token embedding as the representation and denoted them
as {s1,1, ..., s1,i, ..., s1,n}. For each word sense embedding si,j of the word wi,
we project si,j to a trainable vector s

′
i,j to represent its meaning properties.

Based on the word sense embeddings, we apply the attention mechanism [16]
to simultaneously identify important meanings and derive the compositive word
sense embedding ES

i .
Specifically, the embedding of word senses are transformed by a fully-

connected hidden layer (i.e., FS(·)), and then multiplying by the query vector
(i.e., q) to measure the importance scores αi,j of word sense embeddings as
follows:

vi,j = FS(si,j) (1)

αi,j =
vi,j · q

∑
k vi,k · q

(2)

Finally, the synthetical sense embedding ES
i can be generated by the weighted

combination of various embeddings as follows:

ES
i =

∑

j

αi,j · s
′
i,j (3)

We select context-sensitive paraphrases to help determine whether a word is
the target word through using the attention mechanism. Nevertheless, not all
words in the input sentence W1,W1, ...,Wn have the same number of meanings,
so this is a hyperparameter, which will be described in Sect. 4.2. After that, a
synthetic representation vector (i.e., Es

i ) of the various meanings of each word
will be got.
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Pronunciation-Aware Module. It is well-known that pronunciation plays
an essential role in the language. Inspired by the PCPR, we also introduce a
pronunciation-aware module into DANN to solve the heterographic puns. By pro-
jecting pronunciation to the embedding space, words that sound alike are nearby
to each other [1]. Each word is divided into phonemes (i.e., {r1,1, ..., r1,i, ..., rn,j})
which represent the characteristics in pronunciation. Each phoneme is projected
to a phoneme embedding space (i.e., {u1,1, ..., u1,i, ..., un,j}). Pronunciation vec-
tor (i.e., EP

i ) can be obtained with the attention mechanism. Through the pro-
nunciation component, we can join words with the same sound together.

Implementation Details. In our work, we use BERT to get all word embed-
dings for the whole input sentence. So we can get Ec, Es, Ep to present contextual
embedding, word sense, and pronunciation embedding of the word respectively.
Then our model concatenates these embeddings and converts them to a project
layer, we can get every word’s predicted value yi.

Specifically, first, the BERT model processes the input then gets every word’s
contextual embedding, we denote them as Ec. Second, we use every word’s pro-
nunciation embedding, and after the attention process, we get embedding Ep to
denote the important pronunciation. Third, word sense embedding serves as the
input of the sense-attention module to get the compounded representation of the
word, we denote it as embedding Es. Last, all embedding parts are concatenated
to get the final expression (i.e., Ei) of i-th word.

Ei = Es
i ⊕ Es

i ⊕ Ep
i

Ei will be transferred to a project layer to determine whether the i-th word is a
punning word.

3.2 Pun Interpretation

Framework Overview. BERT uses a “next sentence prediction” task to train
text-pair representations, so it can explicitly model the relationship of a pair
of texts, which has shown to be beneficial to many pair-wise natural language
understanding tasks [4]. To fully leverage gloss information, we construct pun-
gloss pairs over puns and all possible senses of the punning word in WordNet,
thus treating the WSD task as a sentence-pair classification problem.

Table 1 shows the main construction process of training examples. The sen-
tence containing the punning word is denoted as a pun sentence. For pun-
ning words, we extract glosses of all senses from WordNet. An example in
homographic pun gives a detailed introduction of the construction method (See
Table 1). Interest is a punning word. [SEP] mark is added to the pun-gloss pairs
to separate pun from paraphrasing. Each target word has a set of pun-gloss pair
training instances with label ∈ {yes, no}.

The pun-gloss pairs will serve as inputs to the BERT, and the output of
the model is yes or no. The “yes” represents the gloss following the pun is the
sense definition of the punning word, the “no” stands for the contrary meaning.
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For clarity and convenience, we use the sense key from WordNet to stand for
concrete definition.

Implementation Details. We use BERT as our pre-training approach. In
training, we get the whole sentence and use BERT to get the [CLS] token embed-
ding, then a linear layer is used to obtain the classification results. Cross-entropy
loss is used when adjusting model weights during training. When testing, we out-
put the sense key of the punning word with the two maximum probabilities for
each pun-gloss pair.

4 Experiment Settings

4.1 Dataset and Evaluation Metrics

We evaluate our models on the SemEval-2017 shared task 7 dataset1. Homo-
graphic puns and heterographic puns have 1607 and 1271 samples respectively.
Due to the limited data and keep the equity of evaluation, we perform ten cross-
validation as the same as PCPR and SAM, then use the average of the evaluation
result as the final score. Meanwhile, we use the same metrics with them.

4.2 Baselines

Pun Location. We compare our model with the following baselines. (1) Olga
[17]. (2) Idiom Savant [5]. (3) Fermi [8]. (4) ECNU [18]. (5) BERT [4]. (6) LRe-
gression [6]. (7) SAM [2]. (8) JDL [21]. (9) PCPR [20]. We directly quote the
experimental results of these baselines except BERT.

Pun Interpretation. The top-3 competition models in SemEval-2017 task-7
would be used as the baselines.

4.3 Hyperparameters

Different words have different numbers of meanings, so the number of word senses
that should be obtained in the model is a hyperparameter which is denoted as
ds. In our work, we use 50 different meanings of a word, and if the word does
not have 50 meanings, then it will be initialized to zero embeddings.

5 Experimental Results and Analysis

5.1 Pun Location

Table 2 shows the specific experimental results. Compared to PCPR, DANN
achieves the highest performance with 1.5% and 0.6% improvements of F1 for
1 https://alt.qcri.org/semeval2017/task7/.

https://alt.qcri.org/semeval2017/task7/


DANN for Pun Location and Using Pun-Gloss Pairs for Interpretation 695

Table 2. Results of DANN and strong baselines on Semeval-2017 task 7 for pun loca-
tion. * means that the experiments are reproduced in our work.

System Homographic Hetergraphic

P R F1 P R F1

Olga 0.652 0.652 0.652 0.797 0.795 0.796

Idiom Savant 0.663 0.663 0.663 0.684 0.684 0.684

Fermi 0.521 0.521 0.521 – – –

ECNU 0.337 0.337 0.337 0.568 0.568 0.568

BERT* 0.884 0.870 0.877 0.924 0.925 0.924

LRegression 0.762 0.762 0.762 0.849 0.849 0.849

SAM 0.815 0.747 0.780 – – –

JDL 0.835 0.771 0.802 0.814 0.775 0.794

PCPR 0.904 0.875 0.889 0.942 0.904 0.922

DANN 0.895 0.914 0.904 0.918 0.939 0.928

the homographic and heterographic datasets respectively. By applying the sense-
attention module, we pick out the most valuable meanings to conduct the detect-
ing punning word task. Our model outperforms all baseline models, which indi-
cates that the sense-aware module plays a crucial role, especially in homographic
puns.

5.2 Pun Interpretation

Table 3 shows that our model achieves the highest performance with 9.16%
improvements of F1 against the best among the baselines (i.e. Duluth) for the
homographic puns. We posit the reason is that our model makes a good connec-
tion between the pun and the gloss of the punning word. So it is possible to see
if a relevant definition matches the pun.

Table 3. Results of our model and baselines on Semeval-2017 task 7 for pun interpre-
tation.

System Homographic

P R F1

Duluth 0.144 0.168 0.155

BuzzSaw 0.152 0.156 0.154

Ours 0.247 0.247 0.247

Figure 3 shows two examples of the explanation in homographic puns.
In the first example, all displaying senses are nouns, relief%1:12:00:: and
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Fig. 3. The sense key with top-5 probability for each target word in two samples. The
punning words are underlined, and an asterisk indicates the meaning of the word that
causes a pun.

relief%1:06:00:: have a higher score because they are closely related to the con-
text. In the second example, although frank%5:00:00:direct:02 (adjective) and
frank%1:13:00:: (noun) have different parts of speech, they could also get rel-
atively higher attention scores in this process. We assume that the possible
reasons are as follows: (1) It is easy to find out the primary meaning of frank,
so the probability of frank%5:00:00:direct:02 is the greatest. (2) The synonyms
of frank%1:13:00:: include hot dog%1:13:01::. The gloss (i.e., a smooth-textured
sausage of minced beef or pork usually smoked; often served on a bread roll)
of frank%1:13:00:: have a correlation with hot dog, so it has the second highest
probability score.

5.3 Analysis

Case Study. Table 4 shows the experimental results on several cases between
PCPR and DANN. It is obvious to find a significant difference in homographic
puns. The valid reason is that the rich semantic information is captured by
DANN but forgotten by PCPR. In the first case, patent is predicted by the
former but lies by the latter. We can infer that only considering pronunciation
will introduce bias to the model, but the DANN could correct this bias caused
by insufficient information through introducing word senses. Except for words
with more meanings like get, our model got the correct answer on almost every
sample. Because these words have so many meanings, it is not a simple matter
to find out exactly one definition of them.
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Table 4. The cases of homographic puns (shown in bold) identified by PCPR and
DANN models.

Sentence PCPR DANN

He stole an invention and then told patent lies lies patent

A thief who stole a calendar got twelve months – months

Finding area is an integral part of calculus calculus integral

Effect of Number of Word Senses. Figure 4 shows the diverse results of the
model with a different number of meanings. There is no doubt that the more
word senses you use, the higher the F1 score you will get. Meanwhile, to keep fair
comparison, the hyperparameters we use are exactly the same as in the PCPR,
such as phoneme embedding size dp and attention size dA.

Fig. 4. Performance over different word sense number in homographic and heterograhic
puns.

6 Conclusions and Future Work

In this paper, we propose a novel SOTA model named DANN, which leverages
word senses and pronunciation to solve pun location. Empirically, it outper-
forms previous methods that rely heavily on handcrafted features or another
single characteristic. Moreover, we formulate pun interpretation as a classifica-
tion task and construct pun-gloss pairs to solve it. The experiments show that
this method achieves the new best performance with nearly 9.2% improvement
in homographic puns. In the future, we plan to focus on exploring more effective
ways to pun interpretation. Furthermore, due to the rich emotional information
in puns, we want to incorporate it into sentiment analysis and text generation
to make the machine look smarter.

Acknowledgements. We thank the anonymous reviewers for their thoughtful com-
ments. This work has been supported by Shanghai Transsion Co., Ltd.
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Abstract. Few-shot text classification has been largely explored due to
its remarkable few-shot generalization ability to in-domain novel classes.
Yet, the generalization ability of existing models to cross-domain novel
classes has seldom be studied. To fill the gap, we investigate a new task,
called cross-domain few-shot text classification (XFew) and present a
simple baseline that witnesses an appealing cross-domain generaliza-
tion capability while retains a nice in-domain generalization capabil-
ity. Experiments are conducted on two datasets under both in-domain
and cross-domain settings. The results show that current few-shot text
classification models lack a mechanism to account for potential domain
shift in the XFew task. In contrast, our proposed simple baseline
achieves surprisingly superior results in comparison with other models
in cross-domain scenarios, confirming the need of further research in the
XFew task and providing insights for possible directions. (The code and
datasets are available at https://github.com/GeneZC/XFew).

Keywords: Cross-domain setting · Few-shot learning · Text
classification

1 Introduction

Few-shot text classification aims at learning a text classifier for low-resource
classes (a.k.a. novel classes, with only few labeled examples in each class) with
the aid of high-resource classes (a.k.a. base classes, with abundant labeled exam-
ples in each class). In light of advancements in few-shot learning, the approaches
to few-shot text classification can be categorized into three streams: metric-
based [2,9,17–20], optimization-based [7], and model-based [15] ones. Despite of
their differences in formulation, these methods are all used to transfer the ability
of learning within few shots on labeled data, from base classes to novel classes.
This formulation is also referred to as learning-to-learn or meta-learning. It is
noteworthy that transductive transfer learning and inductive transfer learning
are not up to the task’s concern, as the former requires large amounts of unla-
beled data and cannot handle disparate label set, while the latter suffers from
insufficient labels.
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Whereas having achieved compelling performance, existing few-shot text clas-
sification models are fundamentally limited by the implicit demand of few-shot
learning for a similar data distribution between the novel classes and base classes.
Thus, the models facing a gap between base classes and novel classes can produce
sub-optimal results in two aspects. First, task discrepancy between base classes
and novel classes can be harmful for models that are employed in real-word
applications. For instance, if a model is trained in a few-shot fashion on base
classes which are leveraged for news topic categorization, then the model cannot
be directly adapted to sentiment classification appropriately. Second, there may
exist domain shift between base classes and novel classes. An illustrative exam-
ple could be that, base classes are to classify the intents of utterances related to
banking while novel classes are aimed to discriminate the intents of medical ques-
tions. While the task discrepancy is to some extent addressed by [20], in which
diverse metrics are proposed and properly combined to boost the performance
of metric learning, the issue of domain shift lying in few-shot text classification
is still challenging yet to be tackled.

To this end, we investigate a new task, namely cross-domain few-shot text
classification (henceforth XFew). To our best knowledge, our work is the first
investigation on the cross-domain few-shot learning task in the area of text
classification. To facilitate the understanding of XFew, we present a simple
baseline for XFew besides examining the cross-domain generalization ability of
prior models. The baseline is inspired by [5], where a model is pre-trained on all
base classes in a supervised manner and fine-tuned on novel classes, with only
the classification layer2 being tunable. Further, based on recent observations in
few-shot learning that the pre-trained model without the learned classifier, but
alternatively with an instantly induced classifier, is strong enough for various
few-shot image classification benchmarks [6,10], we replace the fine-tuning stage
with an induction stage in our baseline. Therefore, after pre-training, we estimate
labels of unlabeled examples by instead applying the induced classifier.

A set of in-domain and cross-domain experiments are conducted with two
datasets, consisting of queries from home domain and banking domain. The
differences between in-domain and cross-domain results reveal that a range of
state-of-the-art few-shot text classification approaches fall short in cross-domain
generalization, indicating that XFew is a challenging task that should be fur-
ther studied. Surprisingly, our simple baseline achieves superior results on cross-
domain settings while preserves competitive results on in-domain settings.

2 Related Work

A variety of methods have been developed for few-shot text classification, which
can be folded into two main groups according to the core ideas of these algo-
rithms, i.e., metric-based and optimization-based ones.

Metric-based methods basically learn metrics to measure the proximity
between samples in query set and those in support set, therefore determining the
2 The layer is a fully connected layer armed with softmax.
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labels of query samples based on the labels of nearest support samples. To list a
few, the prototypical network [17] takes the mean of feature vectors from support
samples for each class as a class centroid, and conducts proximity measurement
between query samples and class centroids based on their euclidean distance. The
relation network [18] directly learns a metric by exploring the relations between
each pair of individual query sample and support sample, i.e., if a concerned
pair belong to the same class, then the similarity of the pair should be 1, and
0 otherwise. The induction network [9] leverages dynamic routing algorithm to
replace the simple averaging strategy used in the prototypical network.

Different from metric-based approaches, optimization-based models target at
finding an effective initialization so that they could adapt to any task with only
few labels available. Model-agnostic Meta-Learning, in short MAML [7], is in
each episode fast adapted on the support samples, then updated with second-
order gradients3 back-propagated from loss computed on the query samples.

While both metric-based and optimization-based models have achieved com-
petitive results in few-shot text classification, they may fail in the XFew task
when the base classes and novel classes are from dissimilar domains. On the one
hand, metrics may vary from one domain to another domain. On the other hand,
a good initialization in a domain can be inferior for other domains.

Note that potential domain shift within few-shot learning framework has
been studied in image classification scenarios [5,10]. [5] presents an experimen-
tal setting for evaluating the cross-domain generalization ability for few-shot
image classification algorithms. And [10] establishes a standard benchmark for
cross-domain few-shot learning in the context of images. Likewise, [8] imposes
the domain adaptation challenge for few-shot relation extraction. However, how
existing systems perform on cross-domain few-shot text classification is under-
explored.

3 Background

Suppose we have a set of base classes Cb = {Cb
i }|Cb|

i=1 with plentiful examples in
each class, and a set of novel classes Cn = {Cn

i }|Cn|
i=1 with few examples in each

class. Here, | · | denotes the size of a set. Either a base class or a novel class C
can be decomposed into examples {(xi, yi)}|C|

i=1, where xi is a text and yi is the
corresponding label. The goal of few-shot text classification is to train a text
classifier on base classes that can adapt to novel classes efficiently.

To achieve the goal, an episode-based training scheme is adopted in previ-
ous work. Basically, the episode-based scheme is organized in an n-way k-shot
paradigm. Episodes (a.k.a. tasks) are sampled from Cb for training. For each
episode, there is a support set (for training in an episode) containing n classes
with k examples in each class. Furthermore, additional q examples, which do
not overlap with those in the support set, are sampled in each way as a query
set (for testing in an episode). In doing so, models trained on training episodes

3 MAML can be simplified with first-order gradients, though.
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are expected to obtain a remarkable performance when adapted to unseen novel
classes since training episodes are made to mimic the low-resource situation in
novel classes. The whole training procedure is given in Algorithm 1.

Algorithm 1. Episode-based training.
1: for each episode do
2: Sample n classes {Cj}nj=1 from Cb. � label is re-mapped herein.
3: for each sampled class Cj do
4: Sample k examples to form Sj .
5: Sample q examples to form Qj that are mutually exclusive with Sj .
6: end for
7: Adapt model with support set {Sj}nj=1, and update parameters of the model

with query set {Qj}nj=1.
8: end for

Cross-domain few-shot text classification (XFew) typically falls into the
framework of few-shot text classification. However, the base classes and novel
classes in XFew are distinct in term of domain distributions. The current for-
malization posits that the data distribution of base classes and novel classes
should be akin to each other. Therefore it is difficult to generalize the conven-
tional few-shot text classification approaches to cross-domain scenarios. As a
result, an investigation in XFew is needed.

4 A Simple Baseline for XFEW

We present a simple baseline without any tricky magics. An overview of our
proposed baseline is given in Fig. 1, which essentially contains two stages, that
is, pre-training stage and induction stage. At pre-training stage, the baseline pre-
trains the encoder and the classifier on all base classes in an supervised manner.
At induction stage, the baseline adaptively induces a classifier with a few offer
instances.

Fig. 1. An overview of our simple baseline for XFew.
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4.1 Pre-training Stage

Motivated by pre-train-then-fine-tune pipeline for few-shot learning [5], our
model is pre-trained on all base classes in a supervised manner. Concretely,
the model is composed of an arbitrary encoder fθ and a classifier gφ (typically
a fully connected layer followed by a softmax layer). Output of the model is
thereby:

yi = gφ · fθ(xi). (1)

where gφ · fθ is a composited function.
We pre-train the model via a |Cb|-way cross-entropy objective, that is:

L = −
∑

Cj∈Cb

∑

xi∈Cj

log(1(yi, yi)) (2)

where 1(y, i) is a function that returns i-th element of y.

4.2 Induction Stage

Recent studies [6,10] uncover the fact that the encoder in a pre-trained model,
i.e., fθ, can be considered as a feature extractor and straightforwardly applied
to find novel class centroids by averaging feature vectors belonging to the same
class:

wj =
∑

xi∈Sj

fθ(xi)/k (3)

where wj is the class centroid accounting for the j-th class.
These class centroids can be regarded as weights of classifier, which replaces

the function of the learned classifier, thereby waiving the fine-tuning stage as
required by pre-train-then-fine-tune paradigm. When additionally armed with a
constant distance metric, e.g., cosine distance, the induced classifier can be used
to determine labels of unlabeled data:

yi,j = softmax(α · w�
j fθ(xi)/‖wj‖‖fθ(xi)‖), xi ∈ Q (4)

where yi,j means the j-th element of yi, and ‖ · ‖ represents 2-norm. α here is
a term to enlarge cosine values so that they can be treated differently by the
softmax function.

In addition, without the fine-tuning stage, the potential over-fitting and neg-
ative transfer issues that may hinder effectiveness of pre-trained models are
alleviated. Hereafter, we call our proposed model Pre-trained Network (in short
PtNet).

5 Experiment

5.1 Datasets and Evaluation Metrics

In order to evaluate cross-domain generalization ability of state-of-the-art few-
shot text classification systems, we introduce two data collections for XFew.



A Simple Baseline for XFew 705

These instances are thus from two domains. The former collection contain queries
from the Home domain [13]4, while the latter one is from Banking domain [4].
Based on the two domains, we construct cross-domain pairs by combining above
two domains. We first regard all classes in Home domain as the base classes
(or source) and all classes in Banking domain as the novel classes (or target).
We name the cross-domain pair as Home2Banking. Conversely, we can have
Banking2Home in a similar way. Moreover, base classes are further randomly
divided into classes for training and validation. Statistics of all datasets are
given in Table 1.

Table 1. Statistics of all datasets.

Home Banking Home2Banking Banking2Home

# (base) classes for training 39 49 56 70

# (base) classes for validation 6 7 7 7

# (novel) classes for test 18 21 77 63

As we can observe, the numbers of base classes are generally larger than
those of novel classes. We can hence generate more non-overlapped episodes for
training. Meanwhile, the numbers of novel classes are not very small. This means
we could produce enough testing episodes under a n-way k-shot paradigm and
take the averaged results for a more robust evaluation.

We evaluate existing few-shot text classification models and our proposed
baseline on these datasets. Experiments are carried out under 5-way 1-shot,
5-shot, and 10-shot settings. The numbers for training episodes, validation
episodes, and testing episodes are 4000, 200, and 4000, respectively. Averaged
accuracy over all testing episodes is adopted as the evaluation metric, with a
0.95 confidence level under the one-tailed hypothesis test.

5.2 Baselines

Here we list baselines for comparison as below:

– InductNet [9] uses dynamic routing to induce prototypes for classification.
– RelationNet [18] alternatively learns a metric for classification with instance-

wise measurement.
– MAML [7] proposes an optimization-based algorithm to achieve meta-learning

with high-order gradient descent.
– ProtoNet [17] employs averaging representations as prototypes and carry out

measurement with a constant metric.

4 Some literature regards different scenarios in the dataset as separate domains. How-
ever, we think the domain shifts among them are not sufficiently large, so that in
this work we do not consider them as different domains.
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5.3 Implementation Details

In all of our experiments, we utilize 300-dimensional GloVe word vectors [16]
to initialize the embeddings [3]. Except that InductNet in accordance with its
original setting uses a bidirectional LSTM [11] coupled with attention mech-
anism [1,14] as the encoder (i.e., fθ), all other models benefit from the CNN
structure as suggested in [12]. Specifically, the CNN architecture is composed of
three independent one-dimensional convolutional layers and the filter widths of
these layers are respectively 3, 4, and 5. Considering overall parameter scale and
efficacy, the number of filters in each convolution for RelationNet is set to be 50,
while 100 for ProtoNet, MAML, and PtNet.

Furthermore, throughout the experiments, the size of query set in an episode
is 15. We employ Adam optimizer with a learning rate 0.001 and a regulariza-
tion coefficient 0.00001 for training. All trainable parameters are initialized with
uniform distribution. The patience epoch number is set to 5 for early stopping.
The α is 20.

Table 2. In-domain comparison results (%) under 5-way 1-shot, 5-shot, and 10-shot
settings. Results in bold are the best performing ones under each setting.

Model Home Banking

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

InductNet 63.19 ± 0.41 71.67 ± 0.31 74.90 ± 0.29 76.72 ± 0.38 85.00 ± 0.27 85.41 ± 0.25

RelationNet 63.38 ± 0.41 74.81 ± 0.33 73.19 ± 0.34 81.31 ± 0.35 88.00 ± 0.26 89.57 ± 0.23

MAML 58.58 ± 0.38 68.44 ± 0.35 71.01 ± 0.32 69.51 ± 0.39 81.58 ± 0.29 84.03 ± 0.26

ProtoNet 67.91 ± 0.39 82.92 ± 0.26 86.15 ± 0.22 82.59 ± 0.31 92.20 ± 0.17 93.44 ± 0.14

PtNet 63.82 ± 0.38 83.32 ± 0.23 86.63 ± 0.20 75.83 ± 0.34 89.80 ± 0.20 92.08 ± 0.16

Table 3. Cross-domain comparison results (%) under 5-way 1-shot, 5-shot, and 10-shot
settings. Results in bold are the best performing ones under each setting.

Model Home2Banking Banking2Home

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

InductNet 46.15 ± 0.36 54.64 ± 0.33 54.52 ± 0.31 44.54 ± 0.34 57.78 ± 0.32 64.98 ± 0.31

RelationNet 43.55 ± 0.35 56.89 ± 0.32 55.26 ± 0.31 42.10 ± 0.34 55.00 ± 0.32 57.19 ± 0.30

MAML 44.42 ± 0.34 52.07 ± 0.36 35.90 ± 0.31 37.53 ± 0.30 46.31 ± 0.31 44.51 ± 0.33

ProtoNet 56.90 ± 0.34 79.23 ± 0.28 82.90 ± 0.24 54.62 ± 0.35 78.32 ± 0.27 82.02 ± 0.24

PtNet 50.78 ± 0.34 77.14 ± 0.27 84.35 ± 0.21 58.87 ± 0.36 81.34 ± 0.26 84.95 ± 0.22

5.4 Comparison Results

Table 2 displays the results of in-domain comparison while the cross-domain
comparison results are presented in Table 3. A key observation is that models
performing competitively on two in-domain datasets perform less encouragingly
on cross-domain datasets, implying that XFew is a challenging task that needs
to be further studied.



A Simple Baseline for XFew 707

PtNet with forthright learning regime could achieve comparable results with
rather complicated models on in-domain datasets, urging the necessity of revisit-
ing current few-shot text classification approaches. PtNet can outperform other
models by large margins on cross-domain datasets. This phenomenon demon-
strates that PtNet has better cross-domain generalization ability than the exist-
ing models. When the shot number is small, PtNet can be sub-optimal, however,
the margin is alleviated when the shot number becomes larger.

We conjecture the reason why PtNet performs better is that episode-based
training scheme may limit the discriminative capacity on unseen classes. Partic-
ularly, PtNet is trained to discriminate more classes than other episode-based
models (with only 5-way at one episode). Thus, when a model is directly applied
to novel classes, it is easier for PtNet to make class centroids far from each other.

6 Conclusion and Future Work

In this paper, we investigate a new NLP task namely cross-domain few-shot
text classification (XFew). We find that although existing systems could reach
good results on in-domain datasets, they struggle to yield competitive results
on cross-domain datasets. Therefore, we propose a pre-training based simple
baseline for the XFew task, which achieves largely better results than other
models on cross-domain datasets.

Based on the empirical results, we believe there are two promising directions
needed to be explored. The first is to take a new perspective for few-shot learning
which goes beyond episode-base training scheme. The second is to improve cross-
domain generalization ability of few-shot text classification from the perspective
of low-resource domain adaptation.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (grant No. 2018YFC0831704) and Natural Science Founda-
tion of China (grant No. U1636203).
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Abstract. NT (Naming-telling) Clause Complex Framework defines the
clause complex structures through component sharing and logic-semantic
relationships. In this paper, we formalize component sharing recognition
as a multi-span extraction problem in machine learning. And we pro-
pose a model with mask strategy to recognize the shared components of
cross punctuation clauses based on pre-training models. Furthermore, we
present a Chinese Long-distance Shared Component Recognition Dataset
(LSCR) with four domains, including 43k texts and 156k shared compo-
nents that need to be predicted. Experimental results and analysis show
that our model outperforms previous methods in large margin. All the
codes and dataset are available at https://github.com/smiletm/LSCR.

Keywords: Deep learning · Shared component recognition · Dataset ·
Pre-training

1 Introduction

The phenomenon of cross punctuation clauses component sharing often occurs
in Chinese text processing. This long-distance shared component often plagues
many Natural Language Processing (NLP) downstream tasks [6]. Although we
blindly collect a large amount of data and increase the width and depth of
the pre-training model today, there are hardly very effective solutions to this
difficulty.

Table 1. Three punctuation clauses

As shown in Table 1, there are three punctuation clauses. If the last two
punctuation clauses are analyzed independently, it can be found that they are
incomplete. This situation of missing shared component is very common in Chi-
nese texts. It also causes a lot of difficulties for many NLP tasks. For example,
c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 709–720, 2021.
https://doi.org/10.1007/978-3-030-88480-2_57
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in Chinese-English machine translation, the phenomenon of long-distance com-
ponent sharing often causes the existing translation systems to fail to accurately
identify the correct target of the utterance (Naming or Telling), which affects
the result of the translation. We have conducted a survey in which we input
this simple sentence (He finds a girl-
friend who is very beautiful, and he is very happy.) to the current mainstream
Chinese-English translation engines, such as Google, Baidu, and Bing etc. The
translation results are shown in the upper part of Table 2. From the perspective
of human cognition, it is easy to correspond (very beautiful) with

(girlfriend), and (very happy) with (he). However, the
translations of these engines are too blunt to express the corresponding Naming-
Telling relationship in the source text. We have been thinking about how to
combine the rules of Chinese language with the deep learning model to improve
this phenomenon, instead of blindly increasing the complexity of the model and
collecting more corpus without knowledge. Assuming that we can fill in the miss-
ing components (Naming or Telling) of every small punctuation sentence, can
this phenomenon be alleviated? Therefore, we fill in the missing components of
each small punctuation sentence in the previous sentence, and then input the
whole sentence into the translation engine, and the result is shown in the lower
part of Table 2. Obviously, it can be found that most of the current translation
engines can carry out good translations results for the completed Chinese text.
This process might look a bit like turning a long sentence into short sentence. At
least, compared with the previous studies, it alleviates the problem of ambiguity
caused by long-distance sharing components, but there is still a certain distance
from achieving the truly authentic English.

Table 2. The upper part is the translation result of the original input. The lower part
is the translation result after filling shared components.(2021.6.1)

Based on the problem of the sharing of long-distance components in Chinese,
the concept of Naming and Telling was proposed in [15] to define the concept of
Naming Structure and formed NT clause theory [14,16]. As show in Table 3, the
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NT clause theory contains four main pattern: Stack Pattern, New branch Pat-
tern, Postposition Pattern and Influx Pattern. The theory of NT clause reveals
the organization form of Chinese text in micro topic level, and proves its high
coverage and operability in a number of corpus [5,11,12].

Naming and Telling. The concepts of Naming and Telling belong to the prag-
matic category. A Naming is the starting point of an utterance, while a Telling
is the description of the Naming. A Naming is usually a word or a phrase in a
punctuation clause or the whole punctuation sentence. Refer to the top of every
pattern in Table 3 for more details.

NT Clause. The combination of a Naming and one of its Tellings is called a
NT clause. In many punctuation clauses, the Naming is missing or Telling is
in complete, which will result in the incompleteness of the punctuation clause
semantics. Based on the context, the NT clause completes the missing component
of the punctuation clause, and restores the original semantics as much as possible.
Refer to the bottom of every pattern in Table 3.

In the previous work, we constructed a Chinese Clause Complex Bank
(CCCB) based on the theory of Chinese clause complexes. It is a two-dimensional
tagging format with newline indentation, which covers news, novels, government
work reports, and encyclopedic, and contains more than 50w characters and
more than 1.4w NT-Clauses.

In this work, we constructed a LSCR dataset for learning and research. We
manually cleaned the CCCB corpus, and formed a dataset of about 5w by con-
catenating multiple consecutive clause complexes in context. Then we present
an end-to-end model to identify shared components.

Our contributions can be summarized as below:

– We build a LSCR dataset based on the original manually labeled CCCB,
which can be used for researches on Chinese-English machine translation,
Chinese information extraction, etc., and served as a benchmark for studying
sentence level Co-reference Resolution. The LSCR dataset will continue to be
maintained with the CCCB labeled dataset expanding.

– We present an end-to-end model for the long-distance shared component
recognition. Moreover, we conducted a series of experiments on the current
mainstream pre-training models.

2 Related Work

So far, many researchers have studied the long-distance component sharing rela-
tionship based on the Chinese Clause Complex theory. These approaches can
be mainly divided into two categories: one employs traditional machine learning
[6–9] and the other deep learning [17]. But these methods just based on a single
pattern (Stack Pattern). For example, [17] proposed a neural network model
based on Attention and LSTM to recognize the sharing components of Stack
Pattern. These methods are too limited to be universal. In order to solve this
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Table 3. Four main Chinese Clause Complex patterns and corresponding Chinese NT
clauses

problem, we rethink the Chinese Clause Complex theory and propose a more
general method (see Subsect. 4).

In recent years, pretrained language models, such as BERT [3] and GPT [13],
have been successful in many natural language processing tasks. This approach
is very effective, because these models are able to effectively encode contextual
information through their attention mechanism and adapt to a variety of NLP
tasks with a large amount of training data. And subsequent models, such as
UniLM [4], Big Bird [19] and so on, have further improved the attention mecha-
nism for different tasks on the basis of BERT. This work combines the pre-trained
language models to research the long-distance component sharing relationship.
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3 Dataset

We did a lot of cleaning and proofreading work on CCCB and finally got the
LSCR dataset. First, we convert the CCCB manually labeled into a form that
can be computed through its labeled rules. Then, in the process of cleaning,
we used its context relationship to concat previous or next sentences to expand
sample, and finally got the LSCR dataset. The dataset is all in simplified Chinese
format, which covers the four major areas of novels, news, encyclopedia entries,
and government work reports. It has 43944 texts, 156816 shared component
predictions. The details of LSCR are as shown in Table 4.

Table 4. The details of dataset in different splits of LSCR. The Count is the number
of text. The Total is the total of all types (Stack, New branch, Postposition, Influx) of
shared components that need to be predicted.

Split Count Stack New branch Postposition Influx Total

Train 29493 92640 6143 2347 1389 102519

Vail 8037 29118 1769 714 344 31945

Test 6414 20312 1188 499 353 22352

Total 43944 142070 9100 3560 2086 156816

3.1 Details

Table 5. The X is the input text. The P represents the position. In this example,
P = 1 represents that there is missing shared component near (tong). S represents
the missing shared component at the P position. In here, It’s missing (South
Korea). The start and end positions of the are 13 and 14 respectively in this text.

According to our analysis of CCCB and Chinese text, it’s easily found that the
missing contents often span multiple punctuation sentences. This may be like a
multi-hop extractive task. In order to hold the information of the original sen-
tence as much as possible, this problem is simplified in LSCR, and we only need
to predict the nearest shared component segment. In addition, we also found that
most of the missing positions of shared components are at the beginning or end
of punctuation sentences. Therefore, the missing positions of shared components
given in LSCR dataset are all at the beginning or end of punctuation sentences.
The position in the middle of the sentence is not covered. We simply made a
formal definition for the LSCR dataset, which defined as X = {T}, Y = {P, S}
in Table 5. Where T means text, P means the position of the missing shared
component, S means the missing shared component at the P position.
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Fig. 1. The overall architecture of our model. The “*” represents this token may be a
punctuation mark.

4 Methodology

4.1 Overall Architecture

In this section, we will describe our model in detail. We have proposed a novel
neural network architecture to recognize sharing components. The overall archi-
tecture of our model is shown in Fig. 1, which consists of encoder network and
locator network. The encoder network aims to obtain contextual information,
which is based on BERT. The locator network aims to find positions of the miss-
ing contents. We will detail each component below. At the end of this section,
we will describe the model learning.

Encoder Network. The encoder network is a gathered contextual informa-
tions model based on BERT. The input is the sequence of tokens embed-
dings E = (em1, et1, et2, em2, . . . , etn, emk), where etn denotes the embedding
of token tn, emk denotes the embedding of mask mk, which is the sum of word
embedding, position embedding, and segment embedding of the character, as in
BERT. The output is the output of last Transformer encoder block of BERT,
E′ = (e′

m1, e
′
t1, e

′
t2, e

′
m2, . . . , e

′
tn, e

′
mk). Then the output will be passed into the

Locator Network.
BERT consists of a stack of 12 Transformer encoder blocks taking the entire

sequence as input. Each block contains a Multi-Head Attention mechanism,
which consists of several attention layers running in parallel. In our model, The
fully connected attention matrix of BERT is replaced by a sparse attention
matrix, which called Fence-Attention. Then output followed by a feed-forward
network. These are defined as:
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MultiHead(Q,K, V )

= Concat(head1, . . . , headh)WO (1)

headi = FenceAttention(QWQ
i ,KWK

i , V WV
i ) (2)

FNN(X) = max(0,XW1 + b1)W2 + b2 (3)

where Q, K, V are the same matrices representing the input sequence or the
output of the previous block, MultiHead, FenceAttention, and FNN denote
multi-head self-attention, self-attention, and feed-forward network respectively,
WQ

i ,WK
i ,WV

i are parameters of every headi, WO, W1, W2, b1, b2 are parameters
of linear transformation.

Our calculation of attention function is a bit different from that in BERT.
We add Fence-MASK in it as follows:

FenceAttention(Q,K, V )

= softmax(
QKT

√
dk

+ Fence-MASK)V (4)

where dk is the dimension of keys and acts as scaling factor, Q,K,V are the
products of different linear transformations of the same matrices.

Fig. 2. FenceAttention. The left is Fence-MASK. The Global Attention is like being
cut into two parts, Sentence Attention and MASK-Sentence Attention.

FenceAttention. This attention mechanism is shaped a bit like Fence, so we
call it as Fence-Attention which is a local attention mechanism used to remove
unnecessary informations. In the left of the Fig. 1, we insert some [MASK] in the
sentence as the input. Intuitively, if we insert too many [MASK] in the input,
this will add some noises that produced by inserted [MASK], and interfere with
the model learning useful information from context. The Fence-Attention is as
shown in Fig. 2.
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The Fence-MASK is as shown on the left of the Fig. 2, and we let the inserted
[MASK] just focuses on itself and the context, instead of other inserted [MASK],
and other parts only focus on the context. In this way, we split the Global
attention into the Sentence attention and Mask-Sentence attention through the
Fence-MASK, thus reducing unnecessary noise from inserting extra [MASK].
The FenceAttention is constructed by the Fence-MASK.

Locator Network. The locator network is an attention span network. The
input is the output of the encoder network E′ = (e′

m1, e
′
t1, e

′
t2, e

′
m2, . . . , e

′
tn, e

′
mk),

where e′
tn and e′

mk respectively denote the embedding of the token n and mask
mk through the encoder network. Then the embedding of token and mask are
extracted separately, defined as:

Hs
t = extract(E′Ws + bs, Post) (5)

Hs
m = extract(E′Ws + bs, Posm) (6)

He
t = extract(E′We + be, Post) (7)

He
m = extract(E′We + be, Posm) (8)

where E′ is the output of the encoder network, Post and Posm respectively
represents the positions of tokens and masks, Ws, Ws, be, be are parameters, the
script s and e respectively represent the start and the end, extract is a gather
function that based positions to collect vectors.

Then the Hm and Ht of start and end respectively input to the attention and
softmax to get the position probabilities of start and end of each mask missing
content, which is defined as

Pc(ms
i = si|X) = softmax(Hs

m · Hs
t
T )[si] (9)

Pc(me
i = ei|X) = softmax(He

m · He
t
T )[ei] (10)

where Pc(ms
i = si|X) and Pc(me

i = ei|X) is the conditional probability that the
position of the missing contents mi is (si, ei) in the input X, softmax is the
softmax function.

4.2 Learning

The learning of our model is conducted end-to-end, provided that BERT is pre-
trained and training data is the same input format.

The learning process is divided into two parts to optimize, which correspond
to the start position and the end position recognition of the missing contents.

L = −1
2
(

n∑

i=1

logPc(ms
i = si|X) +

n∑

i=1

logPc(me
i = ei|X)) (11)
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5 Experimental Results

5.1 Experiment Setting

Many recent studies show that pre-trained language models (PLMs) have
become a powerful encoder in many downstream task. We also use PLMs (bert-
base-chinese1, chinese-bert-wwm2, chinese-roberta-wwm3 [2]) as the backbone
encoder in our model and initialize with the corresponding pre-trained cased
weights. In all of our examples, we train 4 epochs of train set, then evaluate on
the dev set to select the best model and evaluate it on the test set. The hidden
size is 768, the max input length is 512, the number of layers and heads is 12
and the input batch is 16. Models are implemented by Tensorflow2.X framework
[1] and Huggingface transformers [18]. All models are optimized by AdamW [10]
with the learning rate of 5e-5. Moreover, according to our experiments, we found
that the model can obtain better results when the weight of the loss at the miss-
ing component and the loss at the non-missing component is 5 : 1. We thus set
w = 5 in all experiments (loss = lossnon + w ∗ lossmiss). All the experiments
are conducted with CUDA on one NVIDIA 24GB-TITAN RTX.

We use Sentence Accuracy(S), Precision(P ), Recall(R) and F1-score(F1) as
metrics to evaluate the model performance in LSCR. Where S is targeted for the
whole sentence, and only when all missing components in the whole sentence are
predicted correctly can it be positive, while P,R, F1 is targeted for each missing
component in the sentence.

5.2 Main Results

We have evaluated several current mainstream pre-trained models on LSCR, and
the results are shown in the Table 6. In the horizontal comparison, RoBERTa-
wwm-ext+FA (Fence Attention) got the best results. (Where +FA means that
Fence-Attention is added to the original model.) But the highest in S is only
51.36%, and the highest in F1 is only 73.00%. As the previous contents intro-
duced, the task of identifying shared components is very difficult. On the one
hand, we need to find the position of predicting, on the other hand we need the
model to predict the missing content.

5.3 Ablation Study

We carried out ablation study on the way of inserting [MASK] to predict and
adding FA. Table 7 shows the results on LSCR test set. In the table, -m represents
not inserting [MASK] in input text to make predictions, thus the attention mask
mechanism is the same as BERT, just using the Chinese characters at the begin-
ning and end of each punctuation sentence to make predictions. From compari-
son of BERT-base -m vs BERT-base, BERT-wwm-ext-base -m vs BERT-wwm-
ext-base and RoBERTa-wwm-ext -m vs RoBERTa-wwm-ext, we find the way of
1 https://github.com/google-research/bert.
2 https://huggingface.co/hfl/chinese-bert-wwm-ext.
3 https://huggingface.co/hfl/chinese-roberta-wwm-ext.

https://github.com/google-research/bert
https://huggingface.co/hfl/chinese-bert-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
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Table 6. Results of models on LSCR test dataset.

Models S P R F1

BERT-base+FA 50.09 73.63 69.42 71.46

BERT-wwm-ext-base+FA 50.14 73.11 69.00 70.99

RoBERTa-wwm-ext+FA 51.36 74.18 71.85 73.00

Table 7. Ablation study results of models on LSCR test dataset.

Models S P R F1

BERT-base -m 49.39 72.43 69.01 70.68

BERT-base 49.95 72.63 69.32 70.93

BERT-base+FA 50.09 73.63 69.42 71.46

BERT-wwm-ext-base -m 50.39 73.40 69.68 71.49

BERT-wwm-ext-base 51.51 73.85 70.28 72.02

BERT-wwm-ext-base+FA 50.14 73.11 69.00 70.99

RoBERTa-wwm-ext -m 51.90 73.88 71.82 72.84

RoBERTa-wwm-ext 51.70 73.95 71.60 72.76

RoBERTa-wwm-ext+FA 51.36 74.18 71.85 73.00

inserting [MASK] in input text can improve precision of model. Adding FA can fur-
ther improve F1 of BERT-base and RoBERTa-wwm-ext. Moreover, after adding
FA, the RoBERTa-wwm-ext got the best results on the LSCR test set.

5.4 Discussions

We observed that our method is able to make effective use of global context infor-
mation. For example, there is a Chinese Clause Complex

(We thought the principal and the textbooks were talking nonsense. After discov-
ering the rosin in the coal, I realized that the principal did not lie to us, nor did the
textbook lie to us.). Each missing components, in the sentence, is shown in Table 8.
The punctuation sentences (discovered the rosin in the
coal,), (realized that theprincipal didnot lie tous) and

(nor did the textbook lie to us.) are semantically incomplete
sentences, which all miss some contents. The first two missing subject (we).
The lastmisses subject, adverbandverb (Thenwe realized).Weana-
lyze attention matrix of the last transformer encoder block in Encoder(Bert-base),
as show in Fig. 3, and find that the addition of the Fence-MASK enables the model
to concentrate useful information on the [MASK] more effectively.
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Table 8. Each missing components of the sentence

Fig. 3. The attention visual analysis of the last transformer encoder block in the
Encoder (Bert-base). The [MASK] of the left figure can pay more attention to
than the right. The darker the color, the greater the weight there. (Left) with the
Fence-MASK. (Right) without the Fence-MASK.

6 Conclusion

In this paper, we propose LSCR, a shared component recognition dataset. This
is the first Chinese sentence-level shared component recognition dataset. There
are few datasets on Chinese sentence-level shared component recognition. This
dataset can be used to research in this area. By using mainstream PLMs as
backbone encoder, we carry out a series of experiments on LSCR, demonstrating
that sentence-level shared component recognition remains a challenging problem
and worth exploring. The LSCR will continue to be updated with the CCCB
expanding. We hope these works can promote the development of many NLP
downstream tasks, such as Reading Comprehension, Machine Translation, Infor-
mation Extraction, Search, and so on.
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BERT-KG: A Short Text Classification Model
Based on Knowledge Graph and Deep Semantics
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Abstract. Chinese short text classification is one of the increasingly significant
tasks in Natural Language Processing (NLP). Different from documents and para-
graphs, short text faces the problems of shortness, sparseness, non-standardization,
etc., which brings enormous challenges for traditional classification methods. In
this paper, we propose a novel model named BERT-KG, which can classify Chi-
nese short text promptly and accurately and overcome the difficulty of short text
classification. BERT-KG enriches short text features by obtaining background
knowledge from the knowledge graph and further embeds the three-tuple infor-
mation of the target entity into a BERT-based model. Then we fuse the dynamic
word vector with the knowledge of the short text to form a feature vector for
short text. And finally, the learned feature vector is input into the Softmax clas-
sifier to obtain a target label for short text. Extensive experiments conducted on
two real-world datasets demonstrate that BERT-KG significantly improves the
classification performance compared with state-of-the-art baselines.

CCS Concepts: Computer methodologies · Artificial intelligence · Natural
language processing · Lexical semantics

Keywords: Short text classification · Knowledge graph · BERT-based model

1 Introduction

In the last decade, the rapid development of Internet technology accelerates the devel-
opment of mobile social network platforms, such as Weibo, Twitter, etc. These plat-
forms generate more and more Chinese short text messages, e.g., online news, instant
messaging, and user comments. Understanding these short texts are useful in a wide
range of applications, e.g., information retrieval, text recommendation, and relation
extraction. As the fundamental task in understanding short texts, short text classifica-
tion has attracted significant attention in both academia and industry. Compare with
documents and paragraphs, short text faces the difficulty of shortness, sparseness, non-
standardization, and noises [1]. How to effectively extract text features and choose an
appropriate classification model to classify short text has become a difficult problem in
current research.

To address the aforementioned limitations of short text, most existing short text
classificationmethods use pre-trained static word vectors to represent short text features,
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e.g., Word2Vec and GloVe. However, these methods based on static word vectors ignore
the current context and have limited ability to understand non-standardization of short
text. To solve this problem, Peter et al. [4] proposes Embeddings fromLanguageModels,
ELMo which uses large-scale corpus to train a two-way language model, and then
combines the hidden layer features to get the dynamic word vector. This model can not
only express the grammatical and semantic features of words, but also change according
to the semantics of context. Furthermore,Alec et al. [5] proposes a generative pre-training
(GPT)model, capturingmore text semantic informationwith the cost of computing speed
decreases compared with ELMo. To solve the sparseness problem, existing approaches
enrich the short text from external resources, such as Wikipedia and knowledge bases.
These approaches, however, rely on a large number of external data, which cannot easily
extend to some specific domains or languages.

In this paper, we propose a novelmodel namedBERT-KG,which alleviates the spare-
ness and non-standardized problems by introducing the knowledge graph and BERT.
Specifically, The main contributions of our BERT-KG are summarized as follows:

• BERT-KG enriches the features of short text by obtaining background knowledge
from the knowledge graph and further embeds the three-tuple information of the
target entity into a BERT-based model.

• By improving the input layer of the BERT model, we input short text and its
background knowledge into the BERT model for short text classification.

• We designed a Whole Word Masking Transformer model for short text classification
for the BERT model, so as to capture the boundary relationship between words from
the given short text andbackgroundknowledge, and eliminate the influence of invisible
words in the visible matrix at the same time.

• We evaluate our proposed approach based on two public real-world datasets. The
results show that our method outperforms some common short text classification
baselines in literature.

2 Related Work

In recent years, deep learning has made remarkable progress in many subfields of artifi-
cial intelligence. In the aspect of natural language processing, deep learning models are
often used to explore and obtain better solutions to sparsity problems. In 2014, Kim [7]
uses a convolutional neural network on sentence-level text classification task for the first
time and proposes TextCNNmodel. Themodel uses the pre-trainedword vectormodel as
input, and the convolutional neural network to automatically learn text sentence-level fea-
tures for text classification. Then, Zhang et al. [8] proposes CharCNN, a character-level
convolutional neural network text classification model, which uses character vector as
model input, and performs text classification based on the character-level features of the
text extracted by the convolutional neural network. Convolutional neural network-based
text classification model can quickly extract important features of text, but it ignores
the word order and context information of text, resulting in information loss. In order to
solve this problem, Lai et al. [9] proposes RCNN model, which constructs the context



BERT-KG: A Short Text Classification Model 723

of a word through a bidirectional RNN model, then splices with the word vector of the
word, and convolutional neural network extracts text features for text classification. Lee
et al. [10] applies RCNN to short text classification, considering the context of words
in short text, and achieves good experimental results. Some scholars regard the word
frequency in short text as features [11], and construct feature engineering to distinguish
the semantics of feature words in short text to solve the non-standard problem of short
text. However, this kind of method ignores the context, and has defects in capturing and
understanding deep semantic information.

Jacob et al. [12] proposes the pre-training model of BERT, which also adopts a
two-stage process. Moreover, BERT increases the data scale of the language model
while adopting the bi-directional language model, and then fine-tunes the pre-training
languagemodel generated byBERTbased on the dataset of downstreamnatural language
processing tasks. Zhou Y et al. [13] proposes a Chinese short text classification method
based on BERT, which uses BERT and training models to extract sentence-level feature
vectors of short texts, and then applies them to short text classification.

In order to solve the problem of sparse features, Google [14] has introduced the
concept of knowledge graph based on the SemanticWeb, which is widely used in intelli-
gent search and intelligent question answering. Subsequently, knowledge graphs such as
freebase [15], DBpedia [16], Yago [17], and probase [11] have emerged in academic and
industrial circles. By incorporating the semantic web structure, knowledge graph orga-
nizes knowledge in the form of a directed graph, which improves the way of its storage
and acquisition. In addition, high-quality knowledge can be extracted from knowledge
graph, which can be used to expand the features of short text and effectively solve the
difficulty brought from sparse features of short text.

3 BERT-KG Model

3.1 Framework

We first present the general framework of the proposed BERT-KG with the basis of the
knowledge graph and BERT. It aims to embed both context-aware information in a given
short text and implicit information obtained from the knowledge graph into a unified
representation, such a dense representation will be the input of BERT for the short text
classification task.

As shown in Fig. 1, BERT-KG contains four components: (1) feature extraction
layer, (2) knowledge extraction layer, (3) hybrid coding layer and (4) BERT model
layer. According to these four parts, the short text and its implicit knowledge will be
effectively integrated and embedded. Then, the BERT model is used to learn and absorb
this information for short text classification. The detailed description of BERT-KG is as
follows:

(1) Feature extraction layer: We first make segmentation for short text and remove
stop words. Then, we obtain a text sequence with a fixed length of n, which is
recorded as W = (w1,w2, . . . ,wn), and be used as the input representation of the
subsequent BERT model. Next, the keywords of short text are extracted by TKE
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Fig. 1. Framework of BERT-KG

algorithm [18], and get the set of short text keywords set of length of H, which is
denoted as KW = (kw1, kw2, . . . , kwn). In particular, it will be used for obtaining
the background knowledge of the short text in the following knowledge extraction
layer.

(2) Knowledge extraction layer: BERT-KG enriches the characteristics of short text
by exploiting the implicit knowledge of the short text from the knowledge graph.
Specifically, we link the keywords in the short text entity, and then take the linked
results as feature expansion items.

(3) Hybrid coding layer: The hybrid coding layer is the core part of the model. We
improve the input layer of the BERT model to input short text and its background
knowledge into the BERT model for short text classification. Specifically, we first
build a sentence tree inspired byLiu et al. [9] to generate an input sequencewhere the
background knowledge is included in that tree and the sentence tree is transformed
into a sequence containing entity relationships. Then, the position coding in the
original model is replaced by the soft position coding, so that the knowledge in the
sequence can be input into the BERT model. Besides, the visible matrix is built for
avoiding the appearance of noise during knowledge input.

(4) BERT model layer: BERT model layer can receive dense representation from our
improved input layer. We improves the transformer model in the Bert model and
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replaces it with Whole Word Masking Transformer model [6], so that the boundary
relationship between words can be captured from the given short text and back-
ground knowledge, and the influence of invisible words in the visible matrix can
be eliminated.

Since the feature extraction layer and knowledge extraction layer are implemented by
TKE algorithm and CSEL algorithm, respectively, we will not repeat them here. Next,
we will introduce in detail the sentence tree generation, soft position coding, visible
matrix in the hybrid coding layer, and the Whole Word Masking Transformer model in
the BERT layer.

3.2 Sentence Tree Generation

From the feature extraction layer, we can get the word sequenceW = (w1,w2, . . . ,wn)

and the keyword setKW = (kw1, kw2, . . . , kwn) of the short text, where the keyword set
is a subset of the corresponding set of the word sequence. Assuming that the index of the
keyword kwjin the original short text segmentation result is i, the corresponding target
entity with wi as the entity reference and its entity relationship triple can be obtained
from the knowledge extraction layer, denoted as

(
wi, rj, ek

)
, wherewiand ekare the name

of the entity and rjis the relationship between the two entities. (wistands for multiple
meanings).

According to the short text word sequence and keyword entity relation triple tuple,
the process of generating the sentence tree is as follows: the entity ek in the triple tuple is
taken as the leaf node, and the relation entity corresponding to the keyword is taken as
the subtree, which is connected with the keyword node. For the keywords with multiple
triples, the depth of the one triplet subtree cannot exceed one. In this paper, sentence
tree is a concrete representation of short text keywords, entities and the relationship
between them: keywords are used as root nodes, entities are used as leaf nodes, and they
are connected by relationships. This makes the input data attached with a priori feature
information. Combined with the soft position coding operation later, it can improve the
classification results. The sentence tree can be written as:

stree = {w1,w2{(r21, e21), (r22, e22), (r23, e23)}, . . . ,wi{(ri1, ei1), (ri2, ei2), . . . , (rim, eim)}, . . . ,wn}

E.g., given a short text sequence:
(苹果下调第一季度销售预期) (Apple Decrease First Quarter Sales Expectation),
after adding the involved background knowledge, the sequence’s sentence tree will

be:
(苹果{(类型, 公司), (首席执行官, 蒂姆 库克), ……} 下调 第一 季度 销售 预

期) (Apple {(type, company), (CEO, Tim Cook),…} Decrease First Quarter Sales
Expectations). (Format problem).

Converting the above sequence directly into the character-level Token input of the
BERT model will cause various noises. To this end, the input layer in the original BERT
must be improved so that it can correctly fuse the short text structure information with
the introduced external knowledge. The specific strategy after improving is to use soft
location coding and involve the visible matrix.
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3.3 Extended Short Text Location Coding

In theBERTmodel, location coding is used to supplement sentence structure information
that cannot be captured by the self-attention mechanism. However, the original position
codingmethod can not fully or even incorrectly obtain the sentence tree after introducing
external knowledge. When Liu et al. [18] Input complex sentences, soft position coding
has been proved to be able to input the sentence information into the model completely
through a two-dimensional matrix. For this reason, BERT-KG uses soft location coding
to encode the original short text Token sequence continuously by using the structure of
sentence tree. For the knowledge introduced by keywords, BERT-KG will encode the
knowledge according to the keyword Token encoding. For instance, given the sequence:

(苹,果,类,型,公,司,首,席,执,行,官,蒂,姆,库,克, ……,下,调,第,一,季,
度,销,售,预,期).

A comparison diagram of the soft position coding and the original position coding
is shown in Fig. 2:

Fig. 2. Comparison of soft location coding and original position coding.

For the subscript digit encoding section in Fig. 2, using soft location coding can
restore the correct syntax structure information of short text, while it also brings a new
problem: theremay bemore than one token corresponding to the same location encoding.
E.g., tokenwith location code “3” has (下), (类), and (首). Similarly, Tokenwith location
code “4”, “5”, “6” … “11” also has many Tokens. If only soft locations are used, the
model will produce token problems after (下) that may be (调), (席),or (型), affecting
the correct understanding of semantics. Therefore, it is very necessary for us to further
solve the contextual multi-Token correspondence problem of soft location coding by
introducing a visible matrix. The detailed strategy will be described in detail below.

One difficulty in soft position coding is that position coding generates multiple cor-
responding tokens, which prevents the model from understanding the correct semantics.
Take the sequence shown in Fig. 2 as an example, there are three Tokens coded as “3”, and
the Token that ultimately reflects the correct semantics should be (下), not (类) or (首) in
the introduced external knowledge, while the Token appearing after (下) should be (调),
not (型) or (席) in the introduced external knowledge. In summary, the disturbing fac-
tors to the model understanding of Token itself and its context come from the introduced
external knowledge. Furthermore, according to the sentence tree structure, the token of
external knowledge is all in the branch of the sentence tree, thereby Token that introduces
external knowledge can be shieldedwhen understanding the original short text context. In
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addition, Token that is originally short text can be shielded when understanding external
knowledge. As such, we can tackle the above problem by preventing incorrect semantic
understanding.

Visible matrix makes the embedding of a Token come only from the context of the
same branch in the sentence tree according to the structure of the sentence tree, shielding
the influence of Token between different branches. Visible matrices can be formalized
as:

Mij =
{
0,wi and wjon the same branch of the sentence tree
−∞,wi and wjon the different branch of the sentence tree

where iand jare the result of encoding the Token ofwiandwjby using the originalmethod.

3.4 Whole Word Masking Transformer Model

After using soft position coding for short texts containing background knowledge and
generating a visible matrix for them, we input them into the BERT model for short text
classification. However, the structure of the benchmark BERT model cannot receive
visible matrix as input directly. Meanwhile, the Token input for Chinese is on character
level. If it is not processed well, the word breaking information of short text will be lost.
To solve the above two problems, this paper proposes to develop the Transformer model
in the original BERTmodel structure and obscures the whole wordmasking Transformer
model (WholeWordMasking,WWM).The process of improving theTransformermodel
is divided into the following two steps:

1. Enhance the structure of the Transformer model in the BERT model. The self-
attention mechanism in the structure of the Transformer model will be modified,
and the visible matrix is added to its Softmaxfunction to reduce the noise introduced
by the invisible Token. Then, adding the visible matrixMwill achieve the following
equation:

Attention
(
Q′,K′,V ′) = Softmax

(
Q′K′T + M√

dk

)

V ′

After the visible matrix M is added, where two Tokens belong to the same branch of
the sentence tree, the result of attention calculation is not affected. On the other hand,
the two Tokens correspond to take the value −∞ in the visible matrix, which makes the
value of attention obtained by the Softmaxfunction approach to 0.

2. Improve themaskingmethod inMLMmodels.We use the result of text segmentation
where the Token of each character belonging to a word is masked so that the pre-
trained model predicts every masked Token in the same word, that is, the whole
word masking. Taking sequence (苹, 果, 类, 型, 公, 司, 首, 席, 执, 行, 官, 蒂,
姆, 库, 克, ……, 下, 调, 第, 一, 季, 度, 销, 售, 预, 期) as an example, in the
feature extraction layer, the segmentation of the sequence has been obtained, and
background knowledge can be united to further segmentation. If the character-level
masking method of the original BERT model is used, the result of the masking
sequence is:
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([MASK]果类型公司首席执行官蒂姆库克……下调第一季度
销 [MASK]预期)

Using the whole-word masking method, the masking sequence results are as
follows:

([MASK] [MASK]类型公司首席执行官蒂姆库克……下调第一
季度 [MASK] [MASK]预期)

Thus, byusingwholewordmasking to learnwordboundaries,we enable the basic
BERT model to have a certain understanding of word granular context semantics.

3.5 Model Training

The short text classification model training BERT-KG algorithm is described as follows:
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4 Experiments and Results Analysis

4.1 Experimental Setting

In this paper, we choose two datasets, namely DS1 and DS2, to evaluate our proposed
model where external knowledge was derived from the CN-DBpedia knowledge map
[16]. In detail, DS1 is the headline data set for Toutiao. This experiment uses 21,000 data
for seven categories including technology (news_Tech), Finance (news_Finance), enter-
tainment (news_Entertainment), international (news_World), automobiles (news_Car),
culture (news_Culture) and sports (news_Sports). Test results are evaluated by 5-fold
cross-validation. In addition, DS2 is a multi-topic categorized dataset of Weibo. This
experiment uses 21,000 data from seven categories: (小米,同桌的你,房价,恒大,公
务员,韩剧,贪官,) and also uses five-fold cross-validation to gain the test results.

4.2 Experimental Metrics

The results of short text classification are also evaluated by recall rate, accuracy rate, F1
score and Macro-F1 score. F1 score is used to comprehensively measure the recall rate
and accuracy rate of two categories, while F1 macro average score is used to expand the
evaluation index to multi category problems.

Recall (R): recall rate, indicates the proportion of samples that are correctly predicted
to be positive to the samples that are actually positive.

R = TP

TP + FN

Precision (P): refers to the proportion of correctly predicted positive samples to all
predicted positive samples.

P = TP

TP + FP

F1 score (F1): is a metric to comprehensively measure the recall and accuracy of
text classification results.

F1 = 2 × R × P

R + P

Macro-F1: is the average F1 score of each category, which is used to comprehen-
sively evaluate the results of multi-classification problems.

4.3 Comparison Model Selection

In order to verify the effectiveness of the proposed BERT-KGmodel for short text classi-
fication task, this paper compares the short text classification results of Word2Vec+KG,
benchmark BERT model, BERT-KG model based on character granularity masking
and BERT-KG model based on whole word masking. Here we set up the following
comparative test:
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1. The feature expansion method based on knowledge graph and TextCNN classifica-
tion model is used to classify short text. The target entity and its context information
of short text keywords are obtained from knowledge graph to enrich the context
features of short text, and then input into TextCNNmodel for short text classification.

2. Short text classification based on benchmark BERT model (BERT-BASE): Short
text representation is performed without introducing external knowledge, and then
the short text is classified.

3. Short text classification (BERT-KG(CM)) based on the BERT-KG model of char-
acter granularity masking: merges external knowledge into the benchmark Bert
model to enrich the functions of short texts, and fine-tunes them according to the
text classification task after obtaining the BERT-KG model to achieve short text
classification.

4. Short text classification (BERT-KG(WWM)) based on the best-kg model of whole
word masking: On the basis of BERT-KG, the whole word masking method is used
to train the BERT model. According to the text classification task, the model is
fine-tuned for short text classification.

The classification results of each model on datasets DS1 and DS2 are shown in
Table 1 and Table 2, respectively.

Table 1. Short text classification results of DS1

Model Index Category

Tech Finance Entertainment World Car Culture Sports Average

Word2Vec
+
KG

R 0.756 0.773 0.783 0.754 0.785 0.764 0.789 0.772

P 0.775 0.761 0.772 0.736 0.764 0.749 0.772 0.761

F1 0.766 0.767 0.778 0.745 0.774 0.756 0.781 0.767

BERT-BASE R 0.772 0.798 0.810 0.773 0.814 0.787 0.819 0.796

P 0.789 0.778 0.797 0.753 0.793 0.772 0.792 0.782

F1 0.780 0.788 0.803 0.763 0.803 0.779 0.805 0.789

BERT-KG
(CM)

R 0.788 0.810 0.814 0.779 0.822 0.802 0.824 0.806

P 0.800 0.788 0.797 0.758 0.797 0.779 0.800 0.788

F1 0.794 0.799 0.805 0.768 0.809 0.790 0.812 0.797

BERT-KG
(WWM)

R 0.791 0.810 0.818 0.785 0.826 0.807 0.830 0.810

P 0.804 0.791 0.800 0.759 0.797 0.784 0.799 0.791

F1 0.798 0.801 0.809 0.772 0.811 0.795 0.814 0.800

According to Table 1, After extracting the deep semantics of short text based on
BERT-KG model on DS1, we can observe that: (O1) Compared with the method which
only uses the shallow semantics in Sect. 3, the F1 score of short text classification results
is up to 3.3%, which proves that… (O2) Compared with the benchmark BERT model,
the F1 score of the short text classification results of the BERT-KGmodel is the highest,
which is increased by 1.1%, indicating that the incorporation of external knowledge to
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expand the short text features is effective. (O3) By comparing the results of BERT-KG
(CM) and BERT-KG (WWM)models on DS1, it can be concluded that the short text is a
news headline, and the words are relatively strict and the word boundaries are relatively
clear. The F1 score of classification results based on the BERT-KG (WWM) model is
0.3% higher than that of the BERT-KG (CM) model, which indicates that the BERT
model trained by the method of whole word masking can learn more semantic features
of short texts to a certain extent.

Table 2. Short text classification results of DS2

Model Index Category

Millet My old

classmate

House

price

Evergrande Civil servant South

Korean

TV soaps

Corrupt officials Average

Word2Vec

+

KG

R 0.797 0.747 0.789 0.771 0.798 0.775 0.789 0.779

P 0.778 0.757 0.768 0.761 0.810 0.763 0.785 0.775

F1 0.788 0.772 0.778 0.766 0.804 0.769 0.782 0.777

BERT-BASE R 0.817 0.763 0.804 0.786 0.812 0.793 0.796 0.796

P 0.794 0.776 0.784 0.773 0.826 0.780 0.806 0.791

F1 0.805 0.770 0.794 0.779 0.819 0.786 0.801 0.793

BERT-KG

(CM)

R 0.824 0.770 0.807 0.789 0.820 0.799 0.799 0.801

P 0.796 0.782 0.788 0.780 0.829 0.785 0.811 0.796

F1 0.810 0.776 0.798 0.785 0.824 0.792 0.805 0.799

BERT-KG

(WWM)

R 0.828 0.773 0.812 0.794 0.822 0.806 0.805 0.806

P 0.805 0.778 0.788 0.779 0.831 0.781 0.811 0.796

F1 0.816 0.775 0.800 0.786 0.827 0.793 0.808 0.801

According to Table 2, after extracting the deep semantics of short text based on the
BERT-KG model on DS2, we can observe that: (O1) Compared with the method which
only uses the shallow semantics in Sect. 3, the F1 score of short text classification results
is up to 2.4%, and the accuracy of each classification category is significantly improved.
Combined with the characteristics of DS2, it can be concluded that the BERT-KGmodel
can effectively extract the deep semantics of the short text and reduce the noise impact of
the nonstandard part of the short text. (O2)Compared with the benchmark BERTmodel,
the F1 score of the short text classification result of the BERT-KG model is the highest,
which is increased by 0.8%, indicating that the introduction of external knowledge is
effective to expand the features of the short text with non-standard. (O3) In DS2, short
text with relatively random words and fuzzy word boundaries is a microblog published
by users. We observe that the F1 score of classification results based on the BERT-KG
(WWM) model is 0.2% higher than that of the BERT-KG (CM) model, which is slightly
lower than that on data set DS1. However, it is also clear that the method of whole word
masking helps to improve the model’s ability to understand the semantics of short text.
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5 Conclusions

In this paper, we propose a short text classification model, i.e., BERT-KG, which com-
bines knowledge graph and deep semantics. In this model, sentence tree and soft position
coding are used to embed the feature expansion term into the input representation of the
Bert model. Then, the structure of the original BERTmodel is developed, and the visible
matrix and full word masking are introduced to make the model contain a certain word
granularity learning ability. In the end, the BERTmodel is fine-tuned to get the short text
classification results. Through the experiments on two sets of datasets, we conduct the
experiments on both our proposed BERT-KG and benchmarks, and experimental results
show that our BERT-KGmodel can achieve the best short text classification results when
tackling the issue of irregularities for short texts.
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Abstract. Recently, pre-trained language models have gained dramatic
progress on grammatical error correction (GEC) task by fine-tuning on a
small amount of annotated data. However, the current approaches ignore
two problems. On the one hand, the GEC datasets suffer from annota-
tion errors which may impair the performance of the model. On the
other hand, the correction difficulty varies across sentences and the gen-
erating difficulty of each token within a sentence is inconsistent as well.
Therefore, hard and easy samples in GEC task should be treated differ-
ently. To address these issues, we propose an uncertainty-aware self-paced
learning framework for GEC task. We leverage Bayesian deep learning
to mine and filter noisy samples in the training set. Besides, we design
a confidence-based self-paced learning strategy to dynamically adjust
the loss weights of hard and easy samples. Specifically, we measure the
confidence score of the model on the samples at the token-level and
the sentence-level, and schedule the training procedure according to the
confidence scores. Extensive experiments demonstrate that the proposed
approach surpasses the baseline model by 2.0+ point of F0.5 scores on
several GEC datasets and proves the effectiveness of our approach.

Keywords: Grammatical error correction · Bayesian neural network ·
Self-paced learning

1 Introduction

Grammatical error correction (GEC) is the task of automatically detecting and
correcting grammatical errors in sentences. Previous studies treated the GEC
task as a translation task, where the erroneous sentence and the correct sen-
tence corresponded to the source sentence and the target sentence, respec-
tively [33]. Based on this concept, statistical machine translation (SMT) and
neural machine translation (NMT) models have been utilized to implement the
GEC task with remarkable results [5,12]. Many researchers have concentrated
attention on expanding the GEC dataset and proposed multiple data augmen-
tation methods [16,34]. In recent years, higher grades have emerged due to pre-
trained language model [15]. By fine-tuning on a small number of annotated data,
the pre-trained language model is capable of achieving excellent performance.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 734–745, 2021.
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However, the current approaches suffer from two problems. Common GEC
datasets contain inappropriately corrected sentence pairs, which will disrupt the
model from learning GEC task. [22] investigated this problem in detail and
demonstrated that removing noisy data can facilitate the performance of the
model. Apart from that, existing methods neglect a characteristic of the GEC
task, where the correction difficulty varies across sentences and the generating
difficulty of each token within a sentence is inconsistent as well. Treating these
samples equally ignores the diverse complexities of data and the learning status
of the current model, which enhances the challenge of model learning. Therefore,
we should assign different weights to easy and hard samples according to the
current capability of the model.

To address the above issues, we develop an uncertainty-aware self-paced
learning framework for GEC task. We first filter noisy samples from the dataset
to reduce their impact on the model. With the help of a pre-trained model, we
estimate the uncertainty of each sample using Bayesian deep learning so as to
mine the noisy samples in the dataset. Furthermore, we design a confidence-
based self-paced learning strategy to dynamically adjust the loss weights of hard
and easy samples. Concretely, we measure the model’s confidence scores on both
token-level and sentence-level, whereby the losses are re-weighted in training.
The model will simulate the human learning process where it learns simple sen-
tences and easy parts of sentences first followed by complex sentences or difficult
parts. To corroborate the effectiveness of our framework, we conducted extensive
experiments based on the bart [18] model. The experimental results demonstrate
that the proposed framework surpasses the baseline model by 2.0+ point of F0.5

scores on several GEC datasets, proving that our framework can bring a boost
to the pre-trained model. The contributions of our paper are as follows:

– We develop an uncertainty-aware self-paced learning framework for GEC task.
– We leverage Bayesian active learning to automatically mine and filter the

noisy samples in the dataset.
– We design a confidence-based self-paced learning strategy to dynamically

adjust the loss weights of hard and easy samples.
– Experiments demonstrate that our framework can enhance the behavior of

pre-trained language models on GEC task.

2 Background

2.1 Grammatical Error Correction

Assume that D = {xi, yi} is a GEC dataset consisting of |D| error-corrected
sentence pairs, in which xi is the i-th source sentence and yi is its corresponding
corrected sentence. Each xi is a sequence of m tokens: xi = {xi

1, x
i
2, · · · , xi

m},
and each yi is a sequence of n tokens: yi = {yi

1, y
i
2, · · · , yi

n}. Suppose that the
NMT framework is utilized as the GEC model [6], so the model need to produce
the following conditional probabilities:

p(yi|xi; θ) =
n∏

t=1

p(yi
t|yi

<t, xi; θ) (1)
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where θ is model parameters, and yi
<t = {yi

1, y
i
2, · · · , yi

t−1} represents the pre-
vious generated tokens. Usually, the model is optimized by using maximum
likelihood estimation (MLE), which is equivalent to minimizing the negative
log-likelihood (NLL) loss:

Li = − 1
n

n∑

t=1

log p(yi
t|yi

<t, xi; θ) (2)

2.2 Bayesian Neural Network

Bayesian neural network [8] assumes that a prior probability distribution can be
represented by a set of model weight parameters. For the case of the classification
task, assume there is a likelihood model:

p(y = c|x, θ) = softmax(fθ(x)) (3)

where fθ(x) is the model output with parameters θ.
Bayesian inference attempts to estimate the prior distribution p(y = c|x,D)

based on the true posterior distribution p(θ|D). However, this posterior distribu-
tion requires finding all possible model weights, which is infeasible in practice.
To implement approximate variational inference, [8] proposed to approximate
the posterior distribution qω(θ) through Monte Carlo dropout (MC dropout),
which performs random dropout before every weight layer during the training
and test phase. MC dropout can minimize the Kullback-Leibler (KL) divergence
between the approximating distribution and the true posterior p(θ|D):

p(y = c|x,D) =
∫

θ

p(y = c|x, θ)p(θ|D)dθ

≈
∫

θ

p(y = c|x, θ)qθ(θ)dθ

≈ 1
M

M∑

m=1

p(y = c|x, θ̃m)

=
1
M

M∑

m=1

softmax(f θ̃m(x))

(4)

where M denotes the sample times, θ̃m ∼ qω(θ), and qω(θ) is the Dropout
distribution [8,26]. In other words, MC dropout is equivalent to performing M
forward passes through the network and averaging the outputs of the softmax.

3 Methodology

In this paper, we employ a pre-trained sequence-to-sequence model (like BART)
as the backbone, in this way to ensure that the model has the good ability to
generate sentences and evaluate the uncertainty of sentences. Our framework
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Fig. 1. Illustrations of uncertainty-aware self-paced learning framework.

is derived by extending the standard training procedure with two components,
as shown in the Fig. 1, namely: (i) Sample selection: Inspired by deep Bayesian
active learning, we estimate each sample’s uncertainty, and then remove the
extremely confusing samples, which tend to be the noise data in the dataset, i.e.,
inappropriately corrected sentence pair. (ii) Confidence-based self-paced learn-
ing: We measure the confidence scores of the model on two granularities, namely
the token level and the sentence level. Then we utilize the confidence scores to
re-weight the loss during training, which adjusts the emphasis on hard and easy
samples. In the following, we will explain these two components in detail.

3.1 Sample Selection

We adopt uncertainty-aware methods as our sample selection strategy. Specifi-
cally, the difficulty of the sample is measured by Bayesian Active Learning by
Disagreement (BALD) [11]. BALD aims to select samples that maximize the
information gain about the model parameters, i.e. maximize the mutual infor-
mation between predictions and model posterior:

I[yi, θ|xi,D] = H[yi|xi,D] − Ep(θ|D)[H[yi|xi, θ]] (5)

where H[yi|xi, θ] denotes the entropy of yi given xi and model weights θ. [9]
approximated the above function with the approximate distribution qω(θ) as
follows:

I[yi, θ|xi,D] = −
∑

c

(
1
M

∑

m

p̂m
c ) log(

1
M

∑

m

p̂m
c ) +

1
M

∑

m,c

p̂m
c log(p̂m

c ) (6)

where p̂m
c = softmax(f θ̃m(x)). A high value of I[yi, θ|xi,D] indicates the model

is highly confused about the expected output of the instance xi. We will mine
noisy samples based on this uncertainty.

In the prior works [9], this acquisition function was used for mining valu-
able samples to speed up the training procedure. The purpose of this paper is
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the opposite of that. Within the pre-trained model context, samples with large
information gain are more likely to be noisy samples, so we need to remove these
extremely confusing samples. We sort all samples by the value of I[yi, θ|xi,D]
from largest to smallest, and filter the top p% of samples. The remaining samples
are considered clean samples and served as the training set.

3.2 Confidence-Based Self-paced Learning

Token-level confidence The difficulty of generating each token within the same
sentence is different. Intuitively, the common tokens and copied tokens are easy
to generate, while rare tokens and modified tokens are difficult to generate. We
perform M Monte Carlo dropout sampling on the model to obtain M condi-
tional probabilities. We utilize the variance of the probabilities to measure the
prediction uncertainty of each token. In the early period of training, the model
has a higher prediction probability mean and variance for easy tokens, but a
lower prediction probability mean and variance for hard tokens. As the model
capability grows, the model gets higher probability means and lower variances
for easy tokens, while both probability means and variances increase for hard
tokens. Thus, easy samples have higher uncertainty in the early stages and harder
samples have higher uncertainty in the later stages. The uncertainty reflects the
model’s confidence in the prediction results. The token-level confidence scores
are calculated as follows:

α̂i
t = V ar{p(yi

t|yi
<t, xi; θ̃m)}M

m=1 (7)

where α̂i
t denotes the confidence score of the token yi

t, and V ar{p(yi
t|yi

<t, xi; θ̃m)}
denotes the corresponding probability variance. In order to smooth the train-
ing process and maintain the loss scale, we normalize the confidence scores by
softmax function:

αi
t =

exp(α̂i
t/τ)∑n

j=1 exp(α̂i
j/τ)

(8)

where τ indicates a temperature. A higher temperature will smooth the weight
distribution, so we can adjust the extent of discrimination between hard and
easy samples by varying the temperature.

Sentence-level confidence In addition to token-level confidence, we also focus
on sentence-level confidence. As the sentence length, the number of rare tokens,
and the number of grammatical errors increase, the difficulty of correcting the
sentences increases as well. Similar to the token-level confidence, the confidence
score β̂i of the sample (xi, yi) is measured by the variance of the average predicted
probability of the sentence:

β̂i = V ar{p(yi|xi; θ̃m)}M
m=1 (9)
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where V ar{p(yi|xi; θ̃m)} indicates the variance of predicted probability with
respect to yi. We also normalize the confidence scores as:

βi =
exp(β̂i/τ)

∑N
j=1 exp(β̂j/τ)

(10)

where N indicates the mini-batch size.

Training Strategy. Io govern the learning schedule automatically, we leverage the
confidence scores as factors to re-weight the loss during training. As described
earlier, the model has a higher uncertainty for easy samples in the early stage,
and the model focuses on easy samples. As training continues, the uncertainty of
hard samples gradually increases and the model focuses more on hard samples.
Thus, for each sentence yi, the log-likelihood can be calculated as:

Li =
1
n

n∑

t=1

αi
t log p(yi

t|yi
<t, xi; θ) (11)

We use the mini-batch approach for training, so the loss of a batch is:

L = − 1
N

N∑

i=1

βiLi (12)

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We use the BEA-2019 shared task [3] data as our training and devel-
opment sets. Concretely, we train our models on NUCLE [7], FCE-train [32],
Lang-8 [27], and W&I+LOCNESS [31] datasets, and we use W&I-dev as the
development set. In the evaluation phase, we evaluate our model on CoNLL-
2014 test set, FCE test set and BEA-2019 test set, respectively.

Metrics. For CoNLL-2014 test set and FCE test set, we report scores measured
by the M2 scorer. For BEA-2019 test set, we use the ERRANT scores for evalua-
tion. All our results are average of four distinct trials using four different random
seeds.

4.2 Experimental Setting

We conduct our experiments using the BART-large model implemented by
fairseq1 toolkit. Following [24], we apply two stages of fine-tuning to the model.
We set p = 10, i.e., filter 10% of the samples. We set the number of MC dropout

1 https://github.com/pytorch/fairseq.

https://github.com/pytorch/fairseq


740 K. Dang et al.

Table 1. Comparison with existing models. A bold value indicates the highest score
within the column. †Trained on additional data.

Models CoNLL-2014 BEA-2019 FCE

P R F0.5 P R F0.5 P R F0.5

This work

BART 70.8 44.4 63.3 69.4 59.3 67.1 69.4 40.7 60.8

+ sample selection 70.9 46.3 64.0 70.4 63.0 68.8 74.2 45.8 66.0

+ self-paced learning 72.6 46.6 65.3 72.3 60.7 69.6 76.1 48.4 68.2

Recent GEC Systems

Mita et al. [22] 63.8 52.4 61.1 59.9 66.9 61.2 – – –

Lichtarge et al. [19] 69.4 43.9 62.1 67.6 62.5 66.5 – – –

Kiyono et al. [16] 67.9 44.1 61.3 65.5 59.4 64.2 – – –

Omelianchuk et al. [24]† 77.5 40.1 65.3 79.2 53.9 72.4 – – –

Kaneko et al. [14] 69.2 45.6 62.6 67.1 60.1 65.6 59.8 46.9 59.7

samples to 5 and the temperature τ to 0.1. The dropout ratio and label smooth-
ing factor are both set to 0.1. We utilize the AdamW optimizer with a learning
rate 5e − 5 and a dynamic batch of 2,000 tokens. The warmup updates is 500
and the total update steps is 5,000. The accumulation steps is set to 4. Dur-
ing the inference phase, we use greedy decoding to correct the sentence. Note
that we don’t use any additional corpus and pre-processing and post-processing
operations, such as ensembling models and re-ranking outputs.

4.3 Main Results

We compare our model with several previous state-of-the-art GEC systems. We
choose the single-model GEC system of the same scale as the baselines for a
fair comparison. [22] proposed a self-refinement strategy to denoise the dataset
and reduce the impact of noisy data on the model. [19] incorporated delta-
log-perplexity into a training schedule for GEC. [16] applied back translation
to generate pseudo-data to enhance the model. [24] designed a GEC sequence
tagger and produced promising results on the basis of pre-trained models. [14]
integrated a pre-trained masked language model into an encoder-decoder model
for GEC to improve the model’s performance.

As shown in Table 1, our approach outperforms most existing GEC systems
without the help of additional data and assistive technologies. Compared to sim-
ply fine-tuning BART, our approach is proven to produce a significant improve-
ment to the model. For the BEA-2019 data, sample selection brings a 1.7 point
improvement in F0.5 score over the baseline. On this basis, self-paced learning
delivers a boost of 0.8 point to the model. Sample selection reduces the effect of
noisy samples and enhances the recall of the model. Self-paced learning gradu-
ally emphasizes the focus on hard samples, which brings an increase in precision
for the model.
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Fig. 2. Affects of filter ratio p on CoNLL-2014 and BEA-2019 test set.

4.4 Analysis of Filter Ratio p

In this section, we explore the effect of different filtering ratios p under the
premise of label smoothing cross-entropy loss. We conduct experiments by vary-
ing only the value of p on CoNLL-2014 and BEA-2019 test sets. Figure 2 shows
that the performance of the model is significantly improved on both the datasets
when the filter ratio increases from 0 to 10%. As the filter ratio continues to rise,
the model declines in performance on CoNLL-2014 and has a slight enhancement
on W&I. It indicates that filtering a small number of noisy samples is beneficial
for improving the model’s performance because noisy data in the training set can
disrupt the model from learning error correction. However, filtering too many
samples prevents the model from taking full advantage of the annotated data,
which can degrade the generalization ability of the model. So we need to find a
trade-off when filtering the noisy samples. We choose 10% as the filtering ratio
in the following experiments.

4.5 Analysis of Temperature τ

As aforementioned, temperature τ is utilized to adjust the extent of discrimi-
nation between hard and easy samples. Under the premise of filtering 10% of
the data, we perform experiments to evaluate the effect of τ . We also com-
pare our approach with label smoothing cross entropy-loss and focal loss [20].
As shown in Fig. 3, confidence learning generally outperforms label smoothing
cross-entropy loss, indicating the necessity to treat hard and easy samples dif-
ferently. The model achieves the best performance at τ of 0.1. This is because
a larger τ smooths the weight distribution and discriminates less between hard
and easy samples. GEC task entails greater differentiation of the samples so a
smaller temperature should be chosen. We also conduct experiments with focal
loss [20] under the same conditions. The experimental results show that focal
loss degrades the performance of the model. The reason for this phenomenon is
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Fig. 3. Affects of temperature τ on CoNLL-2014 and BEA-2019 test set. LS denotes
label smoothing cross-entropy loss. FL denotes focal loss.

that focal loss overemphasizes the importance of hard samples and causes the
model to make errors on easy samples. This also suggests that it is ineffective for
GEC task to increase the weights of hard samples merely. Dynamically adjusting
the hard and easy sample weights is favorable for the model to learn GEC task.

4.6 Analysis of Self-paced Learning

To explore how self-paced learning adjusts the learning procedure, we visualized
the token-level weight distribution in Fig. 4. We consider the first epoch as the
early training period and the fourth epoch as the later training period. We
observe that the model focuses more on common tokens or the copied tokens in
the early period. As the training proceeds, the model gradually emphasizes rare
tokens or corrected tokens. This phenomenon validates our idea that self-paced
learning allows the model to learn generating sentences from easy to complex.

Fig. 4. Two visualization examples of token-level weight distributions.
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5 Related Work

5.1 Grammatical Error Correction

Neural network-based models emerge as the dominant approach to grammar
correction. Researchers treated the GEC task as a machine translation task and
applied NMT models [5,6,13] to obtain remarkable results. Recently, benefit-
ing from the development of pre-trained language models, several edit-based
models have been proposed for GEC task. [1,21,24] designed different editing
modes and gained promising results in terms of both accuracy and inference
speed. Moreover, some researchers have focused on enlarging the training corpus
and proposed various data augmentation methods, such as noise inject [34,35],
back translation [16], round-trip translation [10] and constructing adversarial
examples [29]. In addition, there exist some explorations on GEC datasets. [22]
investigated noisy data problem in GEC and proposed a self-refinement strategy
to address it. [19] adopted delta-log-perplexity to reweight the GEC data.

5.2 Sample Selection

The philosophy of curriculum learning [2] is that neural networks learn the easier
aspects of the task first followed by the more complex ones. It is a challenge to
automatically distinguish between simple and hard samples. Prior researchers
proposed self-paced learning [17] to select easy samples based on model confi-
dence or lower loss during training. [25] leveraged hard sample mining (anti-
curriculum learning) to deal with the hard and easy sample imbalance problem.
[23] incorporated active learning with self-training to filter and utilize samples
with high confidence. [30] applied meta-learning to the self-training framework
to adaptively select and re-weight the samples.

5.3 Uncertainty-Aware Learning

DL research has mainly considered aleatoric uncertainty (AU) and epistemic
uncertainty (EU). [8] proposed Bayesian neural networks to estimate the uncer-
tainty of models. Based on the uncertainty, a large number of research works
have emerged, such as sample selection [23], learning scheduling [28], mining
difficult samples [4], etc.

6 Conclusion

In this work, we develop an uncertainty-aware self-paced learning framework
for GEC task. We address the noisy data problem by automatic sample selec-
tion. Furthermore, we propose a confidence-based self-paced learning strategy
to dynamically adjust the hard and easy sample loss weights. The experimental
results illustrate that our approach can boost the pre-trained language model,
obtaining a 2.0+ point gain on several datasets compared to the baseline model.
In the future, our approach can be extended to semi-supervised learning in com-
bination with data augmentation methods to improve GEC performance.
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Abstract. Metaphoric expression is widespread and frequently used to
convey emotions. When it comes to metaphor recognition and analysis,
there are still not enough samples for these tasks. In this study, we tar-
get on recognizing verb metaphors and analyzing their emotions via data
augmentation. To this end, we firstly propose a sentence reconstruction
method to prune the dependency parsing tree, and thus alleviates the
disturbances caused by the noise information. Then, the data augmen-
tation strategies are proposed based on Seq2Seq model and the recon-
structed sentence, which generate sufficient candidate samples after an
effective quality evaluation. Finally, a proposed model is trained with
the extended dataset, and it achieves the recognition and emotion anal-
ysis for metaphors. Experiments are conducted on Chinese and English
metaphor corpus respectively, and results show that our proposed model
has the best performance compared with the baseline methods.

Keywords: Metaphor recognition · Data augmentation · Sentence
reconstruction · Dependency parsing tree

1 Introduction

In our daily life, individuals are inspired by the objects of real world. We fre-
quently use metaphors to illustrate latent ideas, perceptions and emotions, which
promotes the enrichment and evolution of language. In the book “The Metaphor
We Live By”, [13] believe that metaphor is ubiquitous and inevitable, which
is not only the polysemy of words but also an indispensable rhetorical device.
According to some related statistics studies [1,14], about one-third of sentences
are generated in the form of metaphor expression, and this proves that metaphor
is inseparable from human language and cognition. Hence, in many studies of
linguistics, metaphor mostly adopts certain words to express another concept
rather than taking their literal meaning. For instance, in the metaphor sen-
tence: “ ” (You are a just-in-case), “just-in-case” empha-
sizes the unstable relationship, its metaphorical meaning is “the second substi-
tute”, and the author expresses a negative emotion. However, since there is no
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emotion vocabulary occurred in this sentence, literal translation cannot predict
the implicit emotion. Furthermore, some brain and cognitive activates more emo-
tions in the human brain than the literal language in the same context [2]. Thus,
the emotion analysis is an essential part of metaphor analysis. Take this sentence
as a example: “ ” “(The town is frozen by the music)”, the
verb “frozen” is used to embody the relationship between music and architecture.
From above examples, we can find that metaphorical rhetoric acts as a bridge
connecting source and target domains conceptually.

To investigate the underlying mechanisms in metaphors and analyze the
implicated emotion automatically, many studies on sentiment analysis of
metaphorical texts have been proposed. [19] constructs an emotion lexicon based
model for this problem. Strzalkowski [18] proposes an approach, which recognizes
the emotion associated with metaphorical language automatically.

Although existing research provides some foundation, there are still some
urgent work to be carried out, such as work at the data level. The metaphor data
set can be regarded as Low-Resource. Due to data annotation costs a lot, there is
a lack of metaphorical data. Most of existing works tent to make the best use of
limited semantic resources, the me which utilize the whole metaphor sentences
as input units and make some progress. However, the interpretability of these
work is not satisfied. These work lacks an analysis of the reason of metaphor,
such as the role and function of different words in a special metaphor.

In fact, metaphorical information is only implied among a few special words
in metaphors. The rest words might be unimportant, and they will introduce
some noise, and affect the results of metaphor recognition and emotion classifi-
cation tasks. As shown in Table 1, we list important and non important words
in a metaphorical sentence. If the important words are obscured, it will com-
pletely change the original meaning of the sentence. But if the insignificant
words are obscured, it will not affect the sentence understanding. On the con-
trary, this will make the metaphor sentence more concisely and easy to read. The
“ ” (tasted) in the first example plays a key role in the metaphorical sen-
tence, “ ” (tasting life) refers to carefully think about the life. In the
second example, “ ” (rebuilding) also plays a key role in this metaphorical
sentence, it means giving the second chance in one’s life.

According to the phenomena above, we try to explore a kind of an effective
method to reconstruct the metaphor and get rid of noise, which will make the
metaphor sentences more focused on the core words, and also help metaphor
understanding, such as judging whether a sentence is a metaphor or not. Fur-
thermore, based on the core meaning of these metaphors, we introduce a data
augmentation approach to expand the metaphor dataset, which will provide more
sufficient and workable training data, leading to better effect of model training.

The contributions of this paper are summed as the following three-folds:

• We propose a sentence reconstruction method for obtaining important infor-
mation of metaphors, and it will reduce the influence of some noises in
metaphorical sentences.
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Table 1. The effect of masking different words.

• Data augmentation strategies based on the sentence reconstruction has been
proposed, which utilize the core information of metaphors to generate suffi-
cient candidate samples.

• We conduct detailed experiments on both Chinese and English metaphor
corpus respectively, and the results show that our model achieves the best
performance in metaphor recognition and emotion analysis.

2 Related Work

2.1 Metaphor Recognition

Recently, there are many different types of NLP models have been used for
metaphor recognition task, and they provide important references for this task.
Shutova [16] tends to map the concepts between source and target domains,
and this theory is originally from conceptual metaphor theory [13]. Also, Many
models primarily rely on contextual information to predict whether a targeted
phrase is metaphoric [5] or not.

Verb metaphor recognition is an important task of metaphor recognition.
Hongyan [9] uses conditional random fields model and maximum entropy model
to recognize verb metaphor and points out that there is no mature syntactic
and semantic tool for metaphor analysis in Chinese. Klebanov [11] investigates
the effectiveness of semantic generalizations and classifications for capturing the
regularities of the verbs’ behavior, and tries to mining their metaphoricity from
orthographic word unigrams. For noun metaphor recognition, Fu [6] develops
hierarchical clustering for Chinese noun phrases in order to recognize metaphor-
ical phrases. However, due to the lack of semantic information, their models can
only cover a small part of Chinese nouns.
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Although these works have achieved some results, they did not analyzed
the role of different words in metaphorical sentences, especially the core words.
Based on the above analysis, the accuracy of metaphor recognition results will
be improved to a large extent by distinguishing them properly.

2.2 Data Augmentation

Data augmentation has been proved to be an effective way to expand dataset
and improve the results. Unfortunately, in metaphor recognition and emotion
analysis tasks, there is no related research that specifically adopts data augmen-
tation strategy to improve their results. Previous works usually have adopted
Generative Adversarial Networks [7] to directly generate augmented data.

In these years, Cubuk et al. [3] proposes automatic data augmentation, which
uses a hypernetwork to train the target model. There are also some template-
based operations, like Wei et al. [20], and they presents a four text operations to
augment data. Since random replacement used in template-based method might
replace the core words in metaphors, in this paper, we introduce the model based
on Seq2seq to achieve data augmentation.

3 Data Augmentation Based on Sentence Reconstruction

In this section, we aim to provide a data augmentation method based on sen-
tence reconstruction (DASR), which is used to solve the problem of metaphor
recognition and metaphor emotion analysis tasks.

Fig. 1. The framework of the entire approach. Step 1 represents metaphors with sen-
tence reconstruction. Step 2 shows two methods of data augmentation (S2L, L2S).

To achieve this goal, our method is divided into two steps. First, we extract
the core meaning in a metaphorical sentence through dependency parsing tree.
And then, we train a Seq2Seq model for data augmentation. The ends of this
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Seq2Seq model are the original metaphorical sentence and the reconstructed
sentence. The reconstructed sentence is used as the input or output of Seq2Seq
model, which will generate different data augmentation methods. Specific infor-
mation can be seen in Subsect. 3.2. In the end, we use the generated data to
assist us in metaphor recognition and metaphor emotion classification. The spe-
cific frame diagram is shown in Fig. 1.

3.1 Sentence Reconstruction

Based on the observation of metaphors, we find that metaphors are only implied
between a few specific words, and these words are the core words of a metaphor.
While some unimportant words might introduce noise for metaphor recognition
or emotion classification tasks. Hence, we decide to reconstruct the sentence
based on the relationship of dependency parsing tree. Dependent parsing tree
can correctly reflect the relationship between words in sentences.

We use the StanfordNLP developed by the Stanford University Natural Lan-
guage Processing Group to generate a dependency parsing tree [15]. We assume
that the “ROOT” of a sentence is the most important sentence in a metaphorical
sentence. Where “ROOT” is defined that The root grammatical relation points
to the root of the sentence. The example of the dependency parsing tree is shown
in Fig. 2. The metaphor sentence: I dream tomorrow, and this country will stand
up. In this tree, its root, dream, is indeed the core of this sample. We selectively
retain and delete words according to the universal dependency relations provided
by Stanford University [4], which gives 37 universal syntactic relations. We only
keep the following groups of relationships as follows, for these relations can keep
the SVO structure of the metaphor sentence to the a large extent:

Fig. 2. Dependency parsing tree generated by StanfordNLP. Where “dream” is the tree
“ROOT”, and it means the root of the grammatical sentence. In this tree, each word has
a “relationship” in addition to its own meaning, and it represents its relationship with
other words in the dependency parsing tree. The red font represents the core meaning
of this metaphor (Color figure online)

root: the root grammatical relation points to the root of the sentence. nsubj:
a nominal subject is a nominal which is the syntactic subject and the proto-agent
of a clause. obj: the object of a verb is the second most core argument of a verb
after the subject. csubj: a clausal syntactic subject of a clause. ccomp: the main
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component of the complement clause. xcomp: an open clausal complement of
a verb or an adjective is a predicative or clausal complement without its own
subject. compound:prt: a particle verbs. (Provided that the verb to which it
belongs is root or conj.) conj: a conjunct is a relation between two elements that
are coordinated.

The red part in Fig. 2 indicates dependency parsing tree after reconstruction
with the specific example. The new generated sentence is: I dream country stand
up. Note that these relationships may not exist together in a sentence, but as
long as the relationship appears, it will be retained to generate a new sentence.
Obviously, the word retained already contains the metaphorical information of
the original sentence, and the unimportant information is removed. Furthermore,
it is more concise, easier to be analyzed, and the removed words can be replaced
with any other related word. Based on this sentence reconstruction mechanism,
we reconstruct all the metaphor sentences for the next step, and apply them as
the input for the data augmentation.

3.2 Data Augmentation

The sentence reconstruction above can be seen as condensing the core content
of metaphorical sentences through linguistic rules. Through the core content of
the obtained metaphor, we consider the following two ways to expand the data.
Both methods are based on the Seq2Seq model, but their input and output are
different. We define two approaches as: Long2Short(L2S), Short2Long(S2L). The
example is presented in Table 2.

Table 2. Sentences reconstructed by different approaches. The red part is the core
word in the metaphorical sentence.

Generating Short Sentences from Long Sentences. We use the original
metaphor sentence as input (source sentence) for the encode end, and the short
sentence reconstructed based on linguistic rules as output (target sentence) at
the decode end. We can find that from the perspective of sentence structure,
although great changes have taken place in semantics, there are still metaphorical
elements implied in the generated sentence shown on the row Long2Short of
Table 2. We can think that the generated short sentence imitates the previous
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noun metaphorical sentence pattern and generates a similar noun metaphorical
sentence pattern.

Generating Long Sentences from Short Sentences. Contrary to the afore-
mentioned strategy, we also use short sentences reconstructed based on the lin-
guistic rules as the input of the encode end (source sentence), with the original
metaphor sentence as the output of the decode end (target sentence) to conduct
sentence reconstruction. As shown in the row Short2Long of Table 2, following
this strategy, it still maintains the metaphorical elements with the great semantic
and structure changes.

Based on these two methods, we can improve the results of metaphor recog-
nition or metaphor emotion analysis with limited metaphor resources.

4 Experiments

4.1 Datasets

In order to explore the generality of metaphors between different languages,
we conduct experiments on Chinese metaphor dataset (CMRSA) and English
metaphor (VUA) dataset. Relevant statistics can be seen in Table 3.

Table 3. VUA and CMRSA Datasets information

Datasets Data Classes
Train set Test set

CMRSA-Task 1 4394 1100 3
VUA 7529 2694 2

Table 4. Emotion analysis dataset information on CMRSA-Task 2

Joy Love Angry Sadness Fear Disgust Surprise Total

Train 362 1662 124 524 171 705 82 3630
Test 111 407 34 135 41 158 23 909

CMRSA. Chinese Metaphor Recognition and Sentiment Analysis(CMRSA) is
the largest publicly available metaphor dataset, which consist of two tasks –
metaphor recognition and emotion analysis [21] for metaphors. The corpus is
used by the CCL-20181 Metaphor Task. The Chinese verb metaphor recognition
task aims to recognize whether a sentence is a verb metaphor, a noun metaphor
or a non-metaphor sentence. While the emotion analysis of Chinese metaphor is
to predict the emotion categories of a metaphor in terms of 7 classes (joy, love,
angry, sadness, fear, disgust, and surprise), the details can be seen in Table 4. We
1 http://www.cips-cl.org/static/CCL2018/call-evaluation.html.

http://www.cips-cl.org/static/CCL2018/call-evaluation.html
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test our methods on both metaphor recognition and metaphor emotion analysis
tasks.

VUA. VU Amsterdam Metaphor Corpus2 (VUA) is the authoritative data set
of the English metaphor [17]. Every word in the corpus is labeled, guided by
MIP. Metaphor recognition has been treated as a sequence tagging task by
the NAACL-2018 Metaphor Shared Task. We apply a classification method to
achieve verb tracks. After de-duplicating the data set, as long as the verb has
a metaphor label in this sentence, we think that this sentence belongs to verb
metaphor, and then this dataset can be used in verb metaphor recognition task
for comparison.

4.2 Baselines

We have selected several strong baselines to verify that our method achieve
good results in both Chinese and English metaphor datasets. All the following-
mentioned data augmentation methods are expanded to the training set, and
BERT is used for classification.

• Character Augment. Augmenting data in character level. For English data,
we directly replace characters randomly according to the keyboard distance.
For Chinese data, we used two methods for character-level enhancement:
1. Randomly disassemble the Chinese characters into radicals 2. Randomly
replace the pinyin of the Chinese characters according to the keyboard distance,
and then spell out the Chinese characters. 30% of word will be augmented.

• Word Embeddings Augment. Besides character augmentation, word level
is important as well. We make use of word embeddings to find most similar
group of words to replace original word, like word2vec. For English data, we
used Google-News word vectors. For the Chinese data, we used the Tencent-
AILab-ChineseEmbedding word vectors. 30% of word will be augmented.

• Contextual Word Embeddings Augment. To benefit from the develop-
ment of transformer models, we can use language models to predict possible
target word, like BERT. We use of bert-base-chinese pretrain model for Chi-
nese dataset, bert-base-uncased pretrain model for English dataset. 30% of
word will be augmented.

• Sentence Augment. Using the creativity of the model, we hope to continue
writing based on metaphorical sentences, which can be seen as an explanation
or description of metaphorical sentences, such as the GPT model.

• RNN-MHCA [8]. This is a result of the current state of the art on the word-
level level of the VUA metaphor dataset. We use this method as a powerful
baseline for two sentence-level metaphor tasks.

4.3 Experimental Results and Analysis

Metaphor Recognition. In order to verify the effectiveness of our method,
we use F1-score as the main measurement for method performance. We test our
2 http://ota.ahds.ac.uk/headers/2541.xml.

http://ota.ahds.ac.uk/headers/2541.xml
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Table 5. The performance on two metaphor analysis tasks.

Metaphor recognition Metaphor emotion analysis
VUA CMRSA-Task 1 CMRAS-Task 2

Bert baseline 78.11 85.09 46.83

Character augment Replace 77.90 84.88 46.17
characters radicals - 85.15 45.90

Word embeddings augment 78.69 85.77 46.89
Contextual word embeddings augment 79.13 86.02 47.15
Sentence augment 78.91 86.23 47.33
RNN-MHCA 79.30 85.51 46.45
DASR (Bert sentence pair) 80.19 86.32 47.27
DASR (Supplement data) 80.65 86.44 47.72

method on the English metaphor dataset VUA and Chinese metaphor dataset
CMRSA in sentence-level metaphor recognition. The results is shown in Table 5.
All data augmentation processes the training set once by default. For the model
performances of VUA corpus results are worse than CMRSA corpus, it is because
the source of VUA corpus coming from some more formal written text, while
most of the data in CMRSA corpus comes from the Internet, they are different
from sources and languages. Also, the CMRSA dataset obtained from Internet
is more informal, they are easy to be reconstructed.

Our data augmentation based on sentence reconstruction (DASR) model
start from analyzing the dependency grammar tree, and also consider the gram-
matical information and hierarchical relationships of metaphorical sentences to
some extent. It shows the effectiveness of hierarchical analysis.

After data augmentation, more data is used for training, thus the result is
improved. According to the results, supplementing the generated pseudo-data as
training data can improve the metaphor recognition tasks in Chinese and English
to a certain extent, and achieve the best results compared with the baseline.

We used two methods to use this data. The first way is to directly expand the
training set, so that the model can get more training samples, which has always
improved the accuracy of emotion classification. The second one is to generate
the pseudo-data as a sentence pair with the original sentence, and it lets the
model find the corresponding semantic meaning from these two sentences. For
example, is it a verb metaphor or a noun metaphor. In general, noun metaphors
use one object to refer to another, and the generated sentences also have the
same structure.

The method of using sentence pairs is worse than the method of expanding
the training set. It might be because when the input is sentence pairs, and
Bert is looking for the relationship between sentence pairs. Some core words of
metaphorical sentences are not particularly obvious, and the generated pseudo-
data is also not with a high quality, so Bert cannot accurately find the similar
structure between the two sentences. Then the result will be worse than the
method of expanding the data set.
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Metaphor Emotion Analysis. Metaphor is a typical non-literal expression,
often expressing emotions through implicit and indirect language. In fact, emo-
tion often appears in the form of metaphor [12]. The core words of metaphorical
sentences can often express certain emotions. Also, metaphor recognition and
metaphor emotion analysis are inseparable, thus we also use our proposed data
augmentation method to verify the effect on metaphor emotion analysis task.
The metaphor emotion analysis result is also shown in Table 5. It is a 7-classes
task, our method still achieves the best results on this emotion analysis dataset.
This means that our data augmentation method can also capture the emotions
of metaphorical sentences in emotion analysis tasks, and generate corresponding
pseudo-data for these emotions.

In the CMRAS emotion analysis task, there is less train data on emotion
categories, such as angry and surprise. Through the data augmentation method,
the models can effectively learn how to recognize the emotion, so the accuracy
of the results is improved to a certain extent.

Sentence Reconstruction with Dependency Parsing Tree. We also
explore the core part of metaphor from the dependency parsing tree. We believe
that “Root” in the dependency parsing tree is very important for verb metaphors.
The subsequent data augmentation is also based on obtained words from the
dependency parsing tree. In order to find out whether which ones are core words
in metaphor, we have made the following hypothetical experiments on VUA and
CMRSA dataset. We mask “Root” in metaphor sentences, or other unimpor-
tant word (word don’t reserved in Subsect. 3.1). The analysis results are shown
as in Table 6. To verify this, The experiment is conducted with the CNNs text
classification [10] and randomly initialize 300-dimensional word vectors.

Table 6. The results of masking different words on metaphorical classification task.

Datasets Original sentence Root-masked sentence Unimportant-masked sentence

VUA 60.23 58.23 64.92
CMRSA-Task 1 75.57 69.82 76.18

Regardless of the Chinese and English dataset, if the core word (ROOT) of
a sentence is masked, it will affect the results of metaphor recognition. On the
contrary, if the unimportant words in the sentence is masked, it will improve the
accuracy of the metaphor recognition to a certain degree. As for why the effects
of masks on Chinese and English data sets are different, as far as we know, most
of the Chinese data sets are verb metaphors in this CMRSA, and ROOT words
are mostly verbs. We learn that the ROOT node of the dependency parsing tree
plays a vital role in metaphorical sentences. In contrast, dependency parsing
trees have some relationships that are not much important. It might become the
noise part of the sentence. This implies that we should retain core information
and remove the noise information for sentence reconstruction. Through these
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core meanings, for data augmentation part, we can obtain similar metaphorical
sentences to assist metaphor recognition or metaphor emotion analysis tasks.

Two Approaches for Data Augmentation. As mentioned in Sect. 3.2, we
propose two methods to enhance the data: Generating Short sentences from Long
sentences (S2L), Generating Long sentences from Short sentences (L2S). Both
of these data augmentation methods start from the core words of metaphor. The
methods are used to generate pseudo data as a supplementary training set. The
results on two data sets are shown in Table 7. Although the pseudo sentences
generated using the S2L method introduce some additional information. But
the generated patterns are all metaphorical and generate more pseudo-data for
training model, so the classification results of the model are improved.

Table 7. The performance on two tasks using different data augmentation methods.

Datasets S2L L2S

VUA 80.65 79.52
CMRSA-Task 1 86.44 85.95
CMRSA-Task 2 47.72 47.04

S2L method can generate more pseudo-data than L2S method. Because
in S2L mode, input is the core word of metaphor, and output is the com-
plete metaphor sentence. When generating pseudo-data, the input becomes a
metaphorical sentence, so that the output becomes richer and contains more
content. In L2S mode, the input is a complete metaphor sentence, while the
output is the metaphor core word during training, thus metaphorical sentences
used in such training way cannot be reused model, so the classification results
of the model are improved.

5 Conclusion and Future Work

Metaphor, as a frequently used expression in our daily life, has become a
crystallization of human language and culture. Based on the characteristics of
metaphor, we propose an effective method to prune the dependency parsing tree,
and it will focus on the more important of core words for metaphor data aug-
mentation. By using data augmentation with sentence reconstruction to obtain
the new generated data, the results of metaphor recognition and metaphor emo-
tion analysis tasks are improved, and the model achieves the best performance
on both Chinese and English metaphor dataset.

In the future, we will explore other sentence reconstruction methods to better
analyze the core information of the metaphor sentences. Constraints can be
added during training. It is required to have a certain degree of similarity between
the generated text and the original sample. Meanwhile, how to generate more
high-quality metaphorical sentences is also our important goal.
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Abstract. To quantitatively and intuitively explore the generalization
ability of pre-trained language models (PLMs), we have designed sev-
eral tasks of arithmetic and logical reasoning. We both analyse how well
PLMs generalize when the test data is in the same distribution as the
train data and when it is different, for the latter analysis, we have also
designed a cross-distribution test set other than the in-distribution test
set. We conduct experiments on one of the most advanced and publicly
released generative PLM - BART. Our research finds that the PLMs can
easily generalize when the distribution is the same, however, it is still
difficult for them to generalize out of the distribution.

Keywords: Pretrained language model · Generalization ·
Mathematical reasoning

1 Introduction

Neural networks have shown strong capabilities in a range of NLP tasks [18,19].
Recently, pretrained language models (PLMs) have achieved significantly levels
of performance gains on many benchmark datasets [3,8,15]. Recently, some work
shows that neural networks are lack of generalization ability in mathematical and
logical reasoning [11,13]. This can lead to more understanding of the limitation
of existing models and motivate future work. However, no work has been done
to quantitatively or intuitively explore the conditions under which PLMs can
generalize, in terms of whether PLMs can understand the internal mathematical
rules and logical rules. The example of mathematical rules is shown in Fig. 1. We
suppose that if the model can effectively learn the underlying rules of Addition
and Subtraction when giving sufficient training data, it can generalize to all
two-number addition and subtraction calculation.

c© Springer Nature Switzerland AG 2021
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Fig. 1. Example mathematical rules for Addition and Subtraction. If the model can
master these rules, we suppose it can generalize well on all two-number addition and
subtraction samples.

To this end, we conduct quantitative insights by designing a series of tasks for
simple mathematical operations and logical reasoning, which includes number-
ing, addition, subtraction, comparison, and symbolic logic. We construct a set of
corresponding datasets, where instances are in the form of text or mathematical
expressions. Some examples are shown in the next section. For example, in the
Addition task, ‘100 + 200’ is the question and ‘300’ is the answer.

There are various types of generalization [7,10], such as question generaliza-
tion on distribution differences between training set and test set [20], and answer
generalization on distribution differences between training set and test set [13].
For example, in the Addition task, if the question and answer numbers in train-
ing data are of three-digit, but the question and answer numbers in the testing
data are of two- or four-digit, they are in different distribution. To cover each
type of generalization, we use different kinds of tasks and corresponding dataset.
For example, we use addition to test the generalization on the question distri-
bution differences data between training and testing. In this task, the numbers
in the training set and development have three digits. However, the numbers in
test set is set to consist of two, three, and four digits.

We conduct experiments using BART [8] since they can generate arbitrary
text sequences and have been shown to achieve the state-of-art results on numer-
ous Natural Language Processing (NLP) tasks. For each task, we fine-tune BART
with training data, validate on the development set and finally evaluate on the
test set. We find that strong PLMs can address simple generalization of the
same answer distribution for counting, arithmetic and logic tasks. But they can-
not master the underlying rules of arithmetic reasoning, for example, the model
trained on 3-digit addition can handle the addition expressions with 2-digit or
4-digit.

We will release all the code and data set for future study.

2 Task

We construct five tasks related to algebraic and logical reasoning, namely Num-
bering, Addition, Subtraction, Comparison, Symbolic Logic. In order
to test the generalization ability of models on the data with the same distribu-
tion and on the data with the different distribution, we create an in-distribution
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Table 1. Data statistics of each task. For each task, we list the in-distribution dataset
and cross-distribution test set.

Task Train set Dev set In- + Cross- In- + Cross-
distribution test set distribution dataset

Numbering - Counting 3,744 468 468 + 2,610 4,680 + 2,610

Numbering - Listing 3,744 468 468 + 2,610 4,680 + 2,610

Addition 256,320 32,040 32,040 + 4,000 320,400 + 4,000

Subtraction 256,320 32,040 32,040 + 4,000 320,400 + 4,000

Comparison 648,000 81,000 81,000 + 6,100 810,000 + 6,100

Symbolic Logic 40,000 5,000 5,000 + 2,200 50,000 + 2,200

Fig. 2. The Numbering task has two subtasks, namely Counting and Listing.

dataset and a cross-distribution dataset for each task. The in-distribution dataset
contains train set, development set and test set that are in the same distribution.
The cross-distribution dataset only serves as the test set and it is in the differ-
ent distribution in contrast to the in-distribution dataset. We believe that if the
model can understand the underlying rules of arithmetic and logical Reasoning,
it can both generalize well on in-distribution and cross-distribution test set.

Numbering
This task comprises two symmetric subtasks, namely Counting and Listing.
Examples are shown in Fig. 2. The Counting task asks the model to count the
number of characters in the input sequence. For example, ‘A A A A A A’ is a
sequence with length ‘6’. The Listing task asks the model to output a list with
a specific length and character. For example, the model receives a command
‘Generate a list of 6 A’ and the result is ‘A A A A A A’.

Addition
The Addition task is the standard summation of two input numbers. In order to
make sure that all numbers are in the same distribution during training, we use
only the equations whose left-hand-side and right-hand-side are both three digits
in the in-distribution dataset. We also adopt two-digit and four-digit numbers on
both sides in cross-distribution test set to further test the generalization ability
of models. One example is shown in Fig. 3a.
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(a) Description of Addition task. (b) Description of Subtraction task.

(c) Description of Comparison task. (d) Description of Symbolic Logic task.

Fig. 3. The descriptions of four kinds of subtasks.

Subtraction
The Subtraction task the standard tack to subtract a subtrahend from a minuend.
In order to make sure that all numbers are in same distribution during training, we
use only equations whose left-hand-side and right-hand-side are both three digits
in the in-distribution dataset. We also adopt two-digit and four-digit numbers on
both sides in cross-distribution test set to further test the generalization ability of
models. A example of Subtraction task is shown in Fig. 3b.

Comparison
The Comparison task is to determine which of the two numbers is greater or
smaller. In order to make sure all numbers are in same distribution during train-
ing, we use only equations whose left-hand-side and right-hand-side are both
three digits in the in-distribution dataset. We also adopt two-digit and four-digit
numbers on both sides in cross-distribution test set to further test the general-
ization ability of models. One example is shown in Fig. 3c.

Symbolic Logic
As shown in Fig. 3d, this task is to reason over symbolic logic expressions. The
input question expression consists of six basic components, which are ‘0’, ‘1’,
‘&’, ‘|’, ‘¬’ and ‘→’, representing FALSE, TRUE, AND, OR, NOT and IMPLY,
respectively. The output answer is either 0 or 1, which represent FALSE and
TRUE, respectively. This task asks the model to reason over the input logic
expression and determine whether it is true or false.

In order to make sure all expressions are in the same distribution during
training, we use only the expressions that contain 6–10 basic ‘0’ and ‘1’ compo-
nents. For testing the generalization ability of models, we also adopt the some
expressions with 1–15 basic ‘0’ and ‘1’ components in the test set.
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Different from the other tasks, we select a subset from the overall dataset
to serve as the in-distribution dataset because the data is large. We take only
10,000 of expressions with X basic components, where X is a number between
6–10, respectively. So, we end up with 50,000 samples in the in-distribution
dataset.

Metrics. We use Exact Match to compute accuracy for Numbering, Addi-
tion, Subtraction and Comparison tasks. However, for the Symbolic Logic task,
since the answer distribution is unbalanced (84% answers are ‘1’), we use the F1
score as the metric.

3 Experiments

In this section, we separate the generalization experiments to In-Distribution
Generalization experiments and Cross-Distribution experiments. In the for-
mer, the testing data is in the same distribution with the training data. In the
latter, the testing data is in the different distribution from the training data. We
suppose that if the model can master the underlying rules of the mathematical
and logical reasoning, it should achieve 100% accuracy on both In-Distribution
Generalization experiments and Cross-Distribution experiments.

We have organized the details of in-distribution data and cross-distribution
data in this section. In addition, We also sorted out the examples of them and
put the examples in the Appendix Table 11.

3.1 Experimental Settings

We adopt BART [8] namely due to the following reasons. First, it is a genera-
tive pretrained language model, which means that they can generate arbitrary
sequences of tokens. This is essential for the addition and subtraction task. Sec-
ond, it has achieved state-of-art results on numerous tasks and they has received
much research attention. Last, it has released model checkpoints, thus it can be
more standardized and more fair can evaluate them.

For the BART [8] model, we conduct experiments on the publicly released
‘BART-Large’ checkpoint2. We insert spaces between numbers while represent-
ing them in the data. For example, ‘111’ is written as ‘1 1 1’ both in the question
and answer. For the character sequence in the Numbering task, we also insert
spaces between the sequence, such as ‘A A A’.

3.2 In-Distribution Generalization

In this subsection, we mainly explore models’ generalization ability on test data
which in the same distribution with train data. For the Counting subtask of the
Numbering task, each question is a sequence with 10–99 same character which

1 We also present two extra interesting analysis in the Appendix.
2 https://huggingface.co/facebook/bart-large/tree/main.

https://huggingface.co/facebook/bart-large/tree/main
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Fig. 4. The in-distribution results on each task.

is one character among the alphabet; each answer is an integer between 10 and
99. For the Listing task, each question is a textual sequence ‘Generate a list
with X Y ’, where X is an integer between 10 and 99 and Y is one character
among the alphabet; each answer is a sequence with 10–99 same characters. For
the Addition task, each question is an addition expression, and the answer is a
sum number. Each number in the question and answer is three digits. For the
Subtraction task, each question is an subtraction expression , and the answer is
a difference number. Each number in the question and answer is of three-digit.
For the Comparison task, each question is made of two numbers and each answer
is a single symbol which is either ‘>’ or ‘<’ or ‘=’. The numbers in the question
are all of three-digit. For the Symbolic Logic task, each question is a sequence
with 5–10 basic ‘0’ and ‘1’ components; each answer is either 0 or 1.
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For testing generalization ability on the same distributional data, we explore
how the number of training samples affects the generalization. For each task,
we extract subsets from the in-distribution train set and train on the subsets,
but keep the distribution of development set and test set the same. Thus, we
analyse how the number of training samples influences the performance, which
also indicate the generalization ability of models on the data with the same
distribution.

The in-distribution results on the Numbering task are shown in Fig. 4b
Fig. 4a. For the Listing subtask, we find that the model’s generation results are
very unstable, which means that the outputs often contain other tokens other
than the needed character. For example, when the input is ‘Generate a list of
6 A’, the output can be ‘A A a Aa E T A’. When the sequence length increases,
this kind of disruption will be more likely to occur. So, results are always around
zero. We suppose this result is result from the instability of the generative model
itself, because we also observe this situation from other generative models, such
as T5 [16]. So, we mainly analyse the Counting task rather the Listing task in
the following sections.

It can be seen that when the number of training samples increase, the per-
formance of Counting will also improve.

The in-distribution results on the Addition task are shown in Fig. 4c. We
can seen that when the number of training samples is 1600 (0.5% of the dataset),
the model can achieve 99% accuracy; even when the number of training samples
is reduced to 160 (0.05% of the dataset), the model can still achieve around 40%
accuracy. The in-distribution results on the Subtraction, Comparison, Sym-
bolic Logic task are shown in Fig. 4d, Fig. 4e and Fig. 4f, respectively. It can
be seen from the figures that when the number of training samples increase, the
model can perform better in the in-distribution test set. And when the training
samples increase to several hundreds, the model can achieve around 100% accu-
racy or F1, showing BART’s ability on the in-distribution generalization. Thus,
we are wondering whether the model has truly learn the underlying rules of these
tasks or they just use some spurious correlations to solve these questions, so, we
design cross-distribution generalization test set to further explore the model’s
generalization ability in the following section.

3.3 Cross-Distribution Generalization

In this section, we analyse how models generalize (1) when test question dis-
tribution is different from train question while the test answer distribution is
the same; (2) when test answer distribution is different from the train answer
while the test question distribution keeps the same; (3) when the test question
distribution and test answer distribution are both different from train set. We
have designed testing data for different types of cross-distribution on each task
and list examples of the testing data in this section.
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3.3.1 Varying Questions
In this part, we mainly talk about when the test question distribution is differ-
ent from the train question while the test answer distribution keeps the same,
how strong is the model’s generalization ability. So, we use the Counting, Addi-
tion, Subtraction, Comparison, and Symbolic Logic tasks to analyse. For the
Counting task, we use the instances whose character is not in letters of an
alphabet while the number is still of two-digit. For example, the question is
‘@ @ @ @ @ @ @ @ @ @’ and the answer is ‘10’. For the Addition task, we use
the instances whose at least one added number is of two-digit. But we make sure
answers of selected equations are all of three-digit. For example, the question is
‘50 + 170’, the answer is ‘220’. For the Subtraction task, the situation is simi-
lar to the Addition task, we use the instances whose at least one number is of
four-digit. But we make sure answers of selected instances are all of three-digit.
For example, the question is ‘1000 − 500’, the answer is ‘500’. For the Compar-
ison task, the situation is also similar, we use the instances whose at least one
number is of two-digit or four-digit. For example, the question is ‘56 176’, the
answer is ‘<’. For the Symbolic Logic task, the situation is also similar, we use
the instances which has 1–5 or 11–15 basic ‘0’ and ‘1’ components. For example,
the question is ‘not 0 and 1 or 0’, the answer is ‘1’.

3.3.2 Varying Answers
In this part, we mainly talk about when the test answer distribution is different
from the train answer while the test question distribution keeps the same, how
strong is the model’s generalization ability. As a result, we use the Addition and
Subtraction to analyse.

For the Addition task, we use the instances whose two numbers are of three-
digit while the answer is of four-digit. For example, the question is ‘500 + 600’,
the answer is ‘1100’. For the Subtraction task, the situation is similar to the
Addition task, we use the instances whose two numbers are of three-digit while
the answer is of two-digit. For example, the question is ‘550 − 500’, the answer
is ‘50’.

3.3.3 Varying Instances
In this part, we mainly talk about hen the test question distribution and test
answer distribution are both different from the train set, how strong is the
model’s generalization ability. So, we use the Counting, Addition and Subtrac-
tion tasks to analyse.

For the Counting task, we use the instances whose character is not in letters
of an alphabet and number is not of two-digit. For example, the question is
‘@ @ @ @ @ @ @ @ @’ and the answer is ‘9’. For the Addition task, we use the
instances whose at least one number in question is of two- or four-digit and the
answer number is also of two- or four-digit. For example, the question is ‘50 +
960’, the answer is ‘1010’. For the Subtraction task, the situation is similar to
the Addition task, we use the instances whose at least one number is of two- or
four-digit and the answer is also of two- or four-digit. For example, the question
is ‘1100 − 50’, the answer is ‘1050’.
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Table 2. The performance of BART on cross-distribution test set. For each task and
different distribution type, we select the model checkpoint which has achieved 100%
accuracy/F1 on the corresponding in-distribution test set. Note that the random result
on Comparison is around 49.9%.

Task Question
cross-distribution

Answer cross-
distribution

Instance
cross-distribution

Counting 379/380 (99.7%) / 12/1259 (0.95%)

Addition 15/1,500 (1.0%) 0/1,500 0/1,000

Subtraction 13/1,500 (0.87%) 0/1,500 1/1,000 (0.1%)

Comparison 2,555/5,600
(45.63%)

/ /

Symbolic Logic 2,200/2,200 (100%) / /

3.3.4 Analysis on Different Cross-Distributions
The model’s performance on the test set of different types of cross-distributions
is shown in Table 2. From the table, we can see that although BART has achieved
100% accuracy on the in-distribution testing data, it fails to generalize on the
cross-distribution testing data of arithmetic reasoning tasks.

Results of Counting and Symbolic Logic task on cross-distribution testing
data are quite high. However, for Counting task, all correct instances are the
instances which have different length but have the same character distributions
with the training data. In addition, the cross-distribution testing data only have
length difference from the training data. Thus, we can conclude that the model is
not sensitive to the length of question if the basic components does not change.
This conclusion is also consistent with the result of [2]. In addition, the results
show that the model is especially weak in generalizing to the instances with
different answer distributions.

To conclude, the model is still struggling on cross-distribution generalization,
especially the carrying and borrowing in Addition and Subtraction tasks.

4 Related Work

Some works have investigated in Mathematical problems in NLP [4,22,25].
DROP [4] is a reading comprehension dataset comprising several kinds of mathe-
matical tasks, such as Subtraction and Selection. However, all answers of its ques-
tions can be directly or indirectly found in the corresponding passages. Math23L
[22] is simple math word problem dataset with 23k problems. Its problem is of
the simple English context format, along with the equation and the answer.
Ape210K [25] is a Chinese simple math word problem dataset with 210k ques-
tions. The questions are similar to Math23L’s questions. The data are taken from
some elementary school math word problems. These datasets do not contain a
generalization test set, the test set is in the same distribution with the train
set. In addition, the often used methods for these datasets are first to predict
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the equations or expression for the question and then to use calculation tool
to get the result [22,23]. However, our work concentrate on the generalization
ability of models. Thus, we have designed test set with different distribution. In
addition, we try to use the model to directly solve the questions, aiming test
model’s internal ability of understanding the deep rules of arithmetic and logical
reasoning.

Some works have researched on models’ the internal ability of solving mathe-
matical expressions. [20] has investigated that how will different types of embed-
ding, such as BERT [3] and GloVe [14], affect the performance of the same
NAQANet model [4] on the same tasks including List Maximum, Decoding and
Addition. Besides, this work [20] also explore that how the way numbers are
represented and the way to do tokenization affect the performance of models. [5]
try to inject numerical reasoning skill by adding a calculation module into the
PLMs, which helps the performance on DROP [4] dataset.

There are also some works research focusing on the generalization ability of
neural network models. [7] research on the compositional generalization skills of
sequence-to-sequence models, such as LSTM [6] and GRU [1]. [10] explain that
the generalization test in machine learning (ML) is not very reasonable, they
put forward seven suggestions to better evaluate the generalization ability of
ML models. [9] and [21] find that the PLMs cannot generalize well on Closed-
book QA task [17], the model can handle the test instances which overlap with
the train data, however, they cannot solve the non-overlapped instances. [12]
find that even when the model’s architecture is set, the generalization ability
of the model is still influenced largely by the random luck, the random initial-
ized weights and other things. [2] perform Transformer-based models on simple
logic reasoning test, and their results show that the model can get quite promis-
ing results and the model is not sensitive to the question length. [24] analyses
the generalization ability on the relation extraction task and find some specific
problems can induce a significant decline in model performance.

5 Conclusion

We have designed a series of tasks for evaluating BART on simple mathematical
operations and logic reasoning, which includes numbering, addition, subtraction,
comparison, and symbolic logic. We constructed a corresponding in-distribution
datasets, and also designed cross-distribution test set to further evaluate the
model’s generalization ability. If the model can understand the underlying rules
of these mathematical operations and logic reasoning, it can generalize well on
both in-distribution and cross-distribution test set. Our experiments showed that
BART can only generalize on the in-distribution test set but cannot perform
well on the cross-distribution test set, showing that the most advanced PLM
still cannot understand the underlying rules of simple mathematical operations
and logic reasoning.
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Abstract. The natural language processing of sign language is an important task
in the field of artificial intelligence and information processing. In this paper,
we propose an attention-enhanced graph convolutional networks (AEGCNs) for
sign language recognition (SLR). First, there are four kinds of adaptive graphs for
graph convolution and each graph topology can be either uniformly or individually
learned based on the skeleton data in an end-to-endmanner. In addition,we employ
the spatial-temporal-channel attention mechanisms to give higher weight to the
relative important joints, frames and features, and the higher-order connection
with Chebychev polynomial approximation to enlarge the receptive field of graph
convolution. Meanwhile, the information of both the joints and bones is simul-
taneously modeled in a framework, which further improves the representation of
the movement about hand and finger. Finally, experiments on the DEVISIGN-D,
DSL50 and ASL20 datasets show that the accuracies for top1 of three datasets
reach 82.96%, 95.09% and 90.23% respectively and the accuracies for top5 of
three datasets achieve 96.07%, 99.18% and 100% respectively. Compared with
ST-GCN and BHOF, the accuracy of AEGCNs obtains significant improvements
of+33.5% and+5.32% on ASL20 datasets, respectively, which demonstrates the
effectiveness of our method on SLR.

Keywords: Skeleton-based sign language recognition · GCNs · Adaptive
graph · Higher-order connection · Attention mechanism

1 Introduction

Sign language [1] is the primary language for the deaf and hard of hearing. Currently,
with the development of information technology, the focus on the information processing
of spoken language and written language, is gradually to depth computing. However,
the sign language information processing is seriously lagging behind and remains at
the starting stage. The essential difference between sign language processing and tradi-
tional language processing is spatial modeling. Sign language recognition (SLR) aims to
automatically transcribe sign language to text or speech by the computer. In this paper,
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we address the problem of modeling the dynamic spatial-temporal correlations of the
skeleton-based sign language.

Recently, the skeleton-based SLR has achieved promising performance. Some
skeleton-based SLR approaches [3, 4] convert the sequence of skeletons as a sequence
of vectors, to capture the joints’ relationship in both temporal and spatial domains.
And some other skeleton-based methods [5, 6] convert the sequence of skeletons into
pseudo-images by reorganizing the joints’ coordinates into a 2D map and employ the
CNN model to extract temporal and spatial features. As these approaches convert the
skeleton into a sequence or a regular grid, it cannot utilize the complex, irregular and
non-Euclidean the skeleton structure.

Fig. 1. Illustration of the AEGCNs pipeline: (a) Workflow of the multi-sream AEGCNs (joints,
bones); (b) AEGCNs block architecture; the GCN and TCN represents the spatial and temporal
GCN respectively, both of which are followed by a BN and ReLu layer; (c) GCN module used in
the AEGCNs block. There are four kinds of sub-graphs, i.e., GGm, SGm, TGm, STGm, Arm, and
three kinds of attention sub-modules, i.e., SA, TA, CA. Here, © denotes the matrix concatenation.
⊕ Denotes the elementwise summation. ⊗ Denotes the matrix multiplication. Mv Denotes the
number of subsets. T Denotes the gating mechanism.

Subsequently, the great effort in skeleton-based SLR has shown graph convolutional
networks (GCNs) [2, 7, 9–11] is an effective solution to the skeleton data. In contrast
to other methods, GCNs-based can treat the skeleton data as a graph structure repre-
senting the body joints (graph nodes) and their natural connections (graph edges). Our
GCNs-based SLRmethod, namely an attention-enhanced graph convolutional networks
(AEGCNs), as shown in Fig. 1, mainly contains three improvements: (1) A novel adap-
tive graph convolutional layer (GCN) is proposed and multiple graphs are parameterized
for graph convolution, namely the global graph (GG), the spatial graph (SG), the tem-
poral graph (TG), the spatial-temporal graph (STG). The global graph determines the
basic graph topology for SLR. The spatial, temporal, spatial-temporal graph respec-
tively provides more flexibility of the model and brings more generality to adapt to
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various data samples. The multiple graphs are fused by used a gating mechanism (�),
which can adaptively adjust their importance in each of the model layers. (2) Multiple
attention-augmented mechanisms, i.e., spatial attention (SA), temporal attention (TA)
and spatial-temporal attention (STA), are introduced to select the relatively important
information of the joints, frames and channels, which can better understand sign lan-
guage. (3) The appropriately higher-order connections are well introduced to enlarge
the receptive field of graph convolution. (4) To further improve the representation of the
movement about the hand and finger, we refer the 2D/3D coordinates of the skeleton
data as the first-order information, i.e., the joint, and exploit the second-order informa-
tion, i.e., the bone between two joints. In detail, the bone information is reformulated
as a vector pointing from its source joint to its target joint. Our proposed AEGCNs can
effectively learn the features between the joints and bones in end-to-end manner, and
notably improve the performance.

2 AEGCNs Method

2.1 Graph Construction

In this study, we define a skeleton sequence as a spatial-temporal graph G = (V ,E,A),
where V = {vti|t = 1, · · · ,T , i = 1, · · · ,N } is a set of nodes with N joints and T
frames;E is a set of edges, comprised by the subsets ofES = {

vtivtj|(i, j) ∈ H
}
andET ={

vtiv(t+1)i
}
, the first subset ES is a set of the spatial edges corresponding to the natural

connections in human joints at each frame, where H is the set of naturally connected
human joints, the second subset ET is a set of the temporal edges corresponding to the
same human joint connection in sequent skeletons; A ∈ R

N×N denotes the adjacency
matrix of graph G, which is a symmetric binary matrix defined as Aij = 1 if there is a
connection between nodes vti and vtj in time step t, otherwise Aij = 0. Given A as the
spatial graph adjacency matrix that represents the joint connections in a single skeleton,
the normalized adjacency matrix Â with self connections is computed as [8]:

Â = D− 1
2 ÃD− 1

2 (1)

where Ã = A + I , D is the diagonal degree matrix of Ã, Dii = ∑N
j Aij.

2.2 Adaptive Graph Convolution

The spatial-temporal GCNs for the skeleton data contains the graph convolution to
capture the spatial pattern and the common standard convolution to describe the temporal
feature. In this work, we propose an adaptive graph convolutional layer, where the sub-
graph topology is optimized together with other parameters of the network in an end-to-
end learningmanner, i.e., GG, SG, TG, STG. The graph is unique for different layers and
samples, which greatly increases the flexibility of the model. Meanwhile, it is designed
as a residual branch, which can guarantee the stability of the original model.

In detail,we apply the layered propagation rule ofGCNsproposed in [8] to implement
the proposed adaptive graph convolutional layer, as shown in Fig. 1(c), which constructs
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as follows:

Xout =
∑M

m
WmXin

(
Ar
m + GGm + αSGm + βTGm + γ STGm

)
(2)

where, Xin ∈ R
2Cin×T×N is the input feature vector, Cin denotes the input number of

channels, T denotes the number of skeletons, N denotes the number of joint at each
skeleton. Xout ∈ R

2Cout×T×N is the output feature vector, Cout denotes the out number
of channels. M is represents partitioning strategy mentioned in [8], which divides the
neighbor nodes of each joint into three subsets, namely M = 3, m denotes the index
of subset. Wm ∈ R

2Cout×2Cin is weighting matrix to extract the node features of each
partition.

Higher-Order Connection (Ar
m): here, the graph is determined by the adjacency

matrix A. The respective field of GCN convolution can be enlarged by the introduction
of higher-order connection, while can increase the computational expense compared to
one-order connection. Current work [11] discovered that the two-order hop connection
was much welcomed than any other one. When r = 2, Ar

m is defined as follows:

A2
m = 4A2 − A − 2In (3)

where, A is an N ×N adjacency matrix, which represents the graph of the natural human
joint connections, In is its identity matrix. when r = 1,A1

m is the summation of adjacency
matrix A and identity matrix In, i.e., Ã, as in Eq. 1. Here, the r set as 2.

The First Sub-graph (GGm) is the global graph learned from the skeleton data. It
represents the graph topology that is more suitable for the SLR task. And it is initialized
with the adjacency matrix (Ã) of the human-hand-based graph in Eq. 1. Compared with
Ã, the elements of GGm are parameterized and updated together with other parameters
in the training process.

The Second Sub-graph (SGm) is the spatial graph that can learn a unique topology for
each sample in spatial dimension. To determine how strong the connections between
two vertexes is, we use the normalized Gaussian function to calculate the similarity of
the two vertexes as the correlation P

′
i,j [12]:

P
′
i,j = exp

(
θ(i)T ⊗ φ(j)

)

∑N
j=1 exp

(
θ(i)T ⊗ φ(j)

) (4)

where the ⊗ represents matrix multiplication. The θ(.) and φ(.) are two embedded
functions, and can be achieved by the channel-wise convolution filter. In this way, the
dynamic correlations between vertexes can be captured to build the spatial graph. Since
the normalized Gaussian is equipped with softmax operation, the SGm can be computed
based on Eq. 4 as follows:

SGm = softmax
(
XT
inW

T
θmW∅mXin

)
(5)

where Xin ∈ R
2Cin×T×N is the input feature vector, and its transpose is XT

in. Wθm and
W∅m are the parameters of the embedding function θ(·) and φ(·), respectively.
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The Third Sub-graph (TGm) is the temporal graph that can learn a unique topology for
each sample in temporal dimension. In detail, we introduce two temporal convolutions
to extract the temporal information of each vertex correlations with Eq. 4. In this way,
the vertex interaction between neighbor frames is involved when we calculate the vertex
connections. To this regard, we also introduce a Gaussian function, as in Eq. 4, to
computer the vertex correlation and to build individual temporal graph TGm, as in Eq. 5.
The functions θ(·) and φ(·) are implemented by the temporal convolution.

The Fourth Sub-graph (STGm) is the spatial-temporal graph that can learn a unique
topology for each sample in spatial-temporal dimension. Here, we build the spatial-
temporal graph STGm is straightforward to use the two graphs:SGm and TGm.

Gating Mechanism (�): For bottom layers of the AEGCNs network, the receptive
fields are small and the features are mostly low-level features, which limits the ability of
learning the graph topology from diverse samples. Thus, the global graph, such asGGm,
should be more important in these layers because it is irrelevant with the input features.
But for top layers, the model gathers more comprehensive information and the features
are more semantic, which provides more diversity and requires more individuality of the
graph topology. Thus, the individual graph, such as SGm, TGm, STGm, should be more
important because it is constructed based on the input features and is individual for each
of the samples.

To address this problem, we apply gating mechanism to adjust the importance of
the individual graph for different layers. In detail, the SGm, TGm, STGm is respectively
multiplied with parameterized coefficient α, β, γ , which are unique for each layer and
are updated in the training process. Here, these α, β, γ are initialized to be 0.

In addition, multiple attention-augmented mechanisms proposed in [9], i.e., SA, TA
and STA, are embedded in graph convolutional layer to helps the model paying more
attention to the important joint, frame and feature.

2.3 Network Architecture

Figure 1 shows the detailed framework of AEGCNs. In Fig. 1(a) shows the overall
architecture of the model, which consists of batch normalization (BN), 9 AEGCNs
blocks, a global average pooling (GAP), fully connected layer (FC) and softmax layer.
The AEGCNs block is the series of spatial GCN (GCN), temporal GCN (TCN) with the
kernel size 9 × 1, BN, ReLU and dropout layer with the drop rate set as 0.5, as shown
in Fig. 1(b). And the number of output channels for each AEGCNs blocks is 64, 64,
64, 128, 128, 128, 256, 256 and 256. Besides, the residual convolutional neural network
(Residual) is applied on eachAEGCNs blocks. In addition, to improve the representation
of the movement about hand and finger, both the joint data (the coordinates of the joints)
and bone data (the direction and length of the bones) are modelled in our framework.

3 Experiments

3.1 Datasets

DEVISIGN-D Dataset [13]. This dataset is a public Chinese dataset for SLR. It con-
tains 500 sign language classes. In total, the dataset contains 6000 videos (4500 trainings,
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750 validations, and 750 test instances). In addition, we randomly selected the estimated
subset for 50 signs from the DEVISIGN-D dataset, called DSL50. We apply the 3-fold
cross-validation to divided the DSL50 dataset (totaling 620 samples) into two subsets
(80% training data and 20% test instances).

ASLLVD Dataset [14]. This dataset is a broad public dataset with video sequences of
thousands of American Sign Language signs. In total, the ASLLVD dataset contains 10 k
samples covering 2745 signs. To validate the proposed approach, we follow the previous
works [7] to randomly select 20 signs from the ASLLVD dataset, called ASL20, totaling
1080 samples. We also apply the 3-fold cross-validation to divided into two subsets (720
training and 360 test instances).

3.2 Implementation Details

Training. All experiments are conducted on the Pytorch platform with one NVIDIA
GeForceGTX1070GPU card. The batch size is 8.We use the stochastic gradient descent
(SGD) with Nesterov momentum (0.9). We use a weight decay of 0.0001 and the initial
learning rate of 0.001. The learning rate decays for DEVISIGN-D dataset by a factor of
10 at the 25th epoch, 50th epoch, 75th epoch and 100th epoch. While the learning rate
decays for DSL50 and ASL20 datasets by a factor of 10 at the 50th epoch, 100th epoch,
150th epoch and 200th epoch.

Data Processing. First, it is necessary to preprocess the aforementioned datasets to be
compatible with the input of AEGCNs. The associated skeleton sequence is shown in
Fig. 2. A sample input skeleton estimated with the OpenPose library [15] is provided in
Fig. 2(a) (60 joint-based skeletons). While the original skeleton included 60 joints, only
28 were considered in this work to reduce runtime and improve algorithm efficiency,
as shown in Fig. 2(b). Furthermore, the bones were computed from the 28 joints and
formed new training data to further boosting the performance of EAGCNs.

Fig. 2. An illustration of skeletal sequence for the sign “AFRAID”. (a) it estimated by the
Openpose with 60 joints. (b) it estimated by the Openpose with 28 joints.

3.3 Ablation Study of Our AEGCNs

Effectiveness of Multiple graph Module. As introduced in Sect. 2.2, there are four
kinds of sub-graphs in our proposed adaptive graph convolutional layer, i.e., the global
graph (GG), the spatial graph (SG), the temporal graph (TG) and the spatial-temporal
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graph (SSG). We test the performance of using each of the graphs along and combing
them together. The results are shown as Ours-GG, Ours-SG, Ours-TG, Ours-STG, Ours-
SG/TG/STG and Ours-GG/SG/TG/STG in Table 1, respectively. It shows that the four
designed graphs can bring notable improvement for the sign language recognition task.
With four graphs added together, the model obtains the best performance.

Besides, we verify the effectiveness of introducing the high-order approximations
(Ar , shown as Our-Ar/GG/SG/TG/STG in Table 1), which suggests the strategy is better.

Moreover, we verify the effectiveness of adding the gating mechanism (G, shown
as Ours-Ar/GG/SG/TG/STG/G in Table 1), which also brings encouraging improve-
ment. Overall, the complete adaptive graph convolutional layer brings improvement of+
13.46% and+3.46% compared with ST-GCN on top1 and top5 accuracies, respectively.

Table 1. Evaluation of multiple graphs module on the DSL50 dataset.

Methods Top1 (%) Top5 (%)

ST-GCN [7] 76.23 94.26

Ours-GG 86.89 96.46

Ours-SG 84.43 96.09

Ours-TG 85.07 96.16

Ours-STG
Ours-SG/TG/STG
Ours-GG/SG/TG/STG
Our-Ar/GG/SG/TG/STG
Ours-Ar/GG/SG/TG/STG/G

85.13
86.04
87.51
89.34
89.69

96.28
96.34
97.58
97.64
97.72

Effectiveness of Multiple Attention Module. In this section, we test the effectiveness
of the proposed Multiple Attention Module introduced in Sect. 2.2. There are three
kinds of sub-modules, i.e., spatial attention module (SA), temporal attention module
(TA), channel attention module (CA), shown as Ours-GG/SA, Ours-GG/TA and Ours-
GG/CA, in Table 2 respectively. It shows that the three sub-modules can help improv-
ing the performance. Then we embed the STC-attention module into adaptive graph
convolutional layer, shown as Ours- Ar/GG/SG/TG/STG/G/SA/TA/CA in Table 2, and
obtains improvements of +16.39% and +4.1% compared with ST-GCN on top1 and
top5 accuracies, respectively.

Effectiveness of Multi-stream Module. Finally, we test the performance of using two
streams and show the results in Table 3. Here, the J and B denote the joint stream and
the bone stream respectively. Clearly, the multi-stream method outperforms the single-
stream method. For single-stream method, the joint stream (J-Ours) better than the bone
stream (B-Ours). This suggests the complementarity of the two streams. By combing
the joints and bones (JB-Ours), it brings notable improvement as expected.
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Table 2. Evaluation of attention module on the DSL50 dataset.

Methods Top1 (%) Top5 (%)

ST-GCN [7] 76.23 94.26

Ours-GG 84.43 96.09

Ours-GG/SA 87.52 96.59

Ours-GG/TA 87.87 96.67

Ours-GG/CA
Ours-GG/STC
Ours-Ar/B/C/D/CD/G/SA/TA/CA

87.61
88.52
92.62

96.72
97.54
98.36

Table 3. Evaluation of multi-stream module on the DSL50 dataset.

Methods Top1 (%) Top5 (%)

J-Ours 92.62 98.26

B-Ours 91.80 97.54

JB-Ours 95.09 99.18

3.4 Comparison with the State-of-the-Arts

Comparison Results on DEVISIGN-D Dataset. We compare the final model with the
state-of-the-art skeleton-based sign language recognition methods on DEVISIGN-D
dataset. The compared methods include ST-GCN [8], AGCN [2] and AAGCN [9]. The
results on DEVISIGN-D are shown in Table 4, which shows our method outperforms
the state-of-the-art methods on recognition accuracy.

Table 4. Comparison on the DEVISIGN-D dataset.

Methods Top1 (%) Top5 (%)

ST-GCN [8] 63.81 87.67

AGCN [2] 72.21 91.87

AAGCN [11]
J-Ours
B-Ours
JB-Ours

80.55
81.13
80.21
82.96

94.28
95.81
95.54
96.07

Comparison Results on ASL20 Dataset. Besides, we make comparisons with state-
of-the-art SLR methods on ASL20 dataset. For a fair comparison, we use the same sign
language data, and the reported results are shown in Table 5. The methods used for
comparisons include traditional methods [16–19], and deep learning methods [7, 20].
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Table 5. Comparison on the ASL20 dataset.

Methods Accuracy (%)

MHI [18] 10.00

MEI [19]
PCA [20]
ST-GCN [7]
HOF [21]
BHOF [22]

25.00
45.00
56.82
70.00
85.00

Ours 90.32

As shown in Table 5, the proposed model achieves the state-of-the-art performance
with a largemargin onASL20, which suggests the superiority of ourmodel. For instance,
compared to the baseline of ST-GCN and BHOF, the accuracy of AEGCNs acquires an
improvement of 33.5% and 5.32% respectively.

3.5 Visualization of the Learned Graphs

There are four kinds of graphs in our model: the global graph and the three individual
graphs. Figure 3 shows an example of the learned adjacency matrices of the global graph
for different subsets and different layers. The first and second rows show the adjacency
matrices of the centripetal subset (S2) and the centrifugal subset (S3) introduced in [8],
respectively. The first column shows the graph structure defined based on the natural
connectivity of the human body, i.e., Â in Eq. 1. Others are the adjacency matrices of the
global graph in different layers. The gray scale of each element in the matrix represents
the strength of the connection.

It shows that the topology of the learned graph is updated and the changes in the
graph topology of the higher layer more than the lower layer. It is possibly because the
information contained in higher layer is more semantic.

Fig. 3. Example of learned adjacency matrices of the global graph.

Similarly, some examples of the learned adjacency matrices of individual graph for
two different samples are included in Figs. 4, 5, and 6. It shows that different samples
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and layers need different graph topologies, which confirms our motivation. For higher
layers, the temporal individual graph is more preferred, which proves the effectiveness
of the proposed temporal function methods.

Fig. 4. Example of learned adjacency matrices of the spatial individual graph.

Fig. 5. Example of learned adjacency matrices of the temporal individual graph.

Fig. 6. Example of learned adjacency matrices of the spatial-temporal individual graph.

Figure 7(a) is a visualization of the skeleton graph for different layers of one sample
(from left to right is the 3th, 5th, 7th and 9th layers respectively). The size of the circle
represents the importance of the corresponding joint. It shows that the model pays more
attention on the joints of hands and head. Besides, for lower layers, the strength of the
connection between the current joints is not obvious. This result is intuitive since the
receptive fields of lower layers are relatively smaller, while the global information cannot
be observed.
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Fig. 7. Visualization of the graphs. (a) Different layers; (b) different samples.

Figure 7(b) shows a similar visualization of Fig. 7(a) but for different samples. The
learned adjacency matrix is extracted from the second subset of the 7th layers. It shows
that the graph structures learned by our model for different samples are also different,
even for the same convolutional subset and the same layer, which also confirms our
motivation that different samples need different topologies of the graph.

3.6 Summary of Performance Analysis

The top1 accuracies of AEGCNs in DEVISIGN-D, DSL50 and ASL20 datasets are
82.96%, 95.09% 90.23% severally, while the top5 accuracies are 96.07%, 99.18% and
100%. In addition, Fig. 8 shows the recognition confusion matrices for testing perfor-
mance from ASL20 and DSL50 datasets, respectively. As see in the figures, the top1
accuracies are high and the AEGCNs achieves good identification performance across
different classes.

Fig. 8. Confusion matrices for testing performance on the ASL20 and DSL50 datasets.

4 Conclusions

In this work, an attention-enhanced graph convolutional networks (AEGCNs) for the
high performance of skeleton-based SLR is proposed. We apply an effective graph con-
volutional layer with four kinds of adaptive graphs to model the embedded spatial and
temporal dynamics. And in order to enlarge the receptive field of GCN convolution,
we introduce the higher-order connections with Chebyshev polynomial approximation.
Besides, to give higher wight to the relative important joints, frames, features, we pro-
pose spatial-temporal-channel attention mechanisms directly embedded in graph con-
volutional layer. Furthermore, we implement an effective fusion method for the joints
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and bones in the AEGCNs framework, which performs well in most classification of
SLR. We hope our work could encourage and facilitate future research on sign language
processing.
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Abstract. In this paper, we propose XGPT, a new method of Cross-
modal Generative Pre-Training for Image Captioning that is designed
to pre-train text-to-image caption generators through four novel gen-
eration tasks, including Adversarial Image Captioning (AIC), Image-
conditioned Masked Language Modeling (IMLM), Image-conditioned
Denoising Autoencoding (IDA), and Text-conditioned Image Feature
Generation (TIFG). As a result, the pre-trained XGPT can obtain new
state-of-the-art results on the benchmark datasets, including COCO
Captions and Flickr30k Captions. We also use XGPT to generate image
captions as data augmentation for the image retrieval task and achieve
significant improvement on all recall metrics.

1 Introduction

Cross-modal pre-training has substantially advanced the state of the art across
a variety of understanding Vision-and-Language (VL) tasks, such as Image-Text
Retrieval [16], Visual Question Answering (VQA) [2], Visual Commonsense Rea-
soning (VCR) [34], Referring Expression Comprehension [17].

However, Vision-and-language generation tasks (e.g., Image Captioning and
Text-to-Image Generation) require the model to not only understand cross-
modal representations but also have generation capabilities. Some existing
encoder-only Vision-language pre-training models are designed for image cap-
tioning. For example, VLP [36] proposed a masked span prediction task dur-
ing pre-training by modifying the self-attention mask and then fine-tuning with
image captioning. Oscar [20] extent Vision language pre-training with tag input
and more large-scale corpus. It pre-trained with masked token task and con-
trastive learning, and then applied to downstream tasks like image captioning.
These two works are only for encoder-only architecture and limited to a simple
span mask task in the pre-training stage.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13028, pp. 786–797, 2021.
https://doi.org/10.1007/978-3-030-88480-2_63
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Motivated by these, we present Cross-modal Generative Pre-Training for
Image Captioning (XGPT). The XGPT model uses a encoder-decoder architec-
ture and is directly optimized for VL generation tasks. To pre-train both encoder
and decoder, we include four generative pre-training tasks: 1) Adversarial Image
Captioning (AIC) to empower the model with more robustness during pre-
training. Compared with VILLA [9] by adding perturbation into encoder only
for understanding tasks, we modify it to adapt both encoder and decoder during
image captioning, 2) Image-conditioned Masked Language Modeling (IMLM),
a span mask generative task to learn the relationship between vision and lan-
guage by predicting consecutive tokens in the decoder side. 3) Image-conditioned
Denoising Autoencoding (IDA), to explore text-image alignments during genera-
tion by using the corrupted caption and attention matrix between two modalities
to recover caption, 4) Text-conditioned Image Feature Generation (TIFG), differ
from image-to-text generating tasks, this task is designed to leverage underlying
semantic in the reverse direction, text-to-image.

In addition to vision-to-language generation, the proposed XGPT can also
help in understanding tasks. To verify the idea, we perform data augmentation
for image retrieval by using our XGPT as a generator. We retrain a model that
has state-of-the-art performance in image retrieval by adding XGPT generated
captions for data augmentation, and achieve significant improvement.

Our contributions can be summarized as follows:

– We introduce XGPT, a new method of Cross-modal Generative Pre-Training
for Image Captioning, design four novel pre-training tasks that are especially
effective for image-to-text generation.

– We achieve state-of-the-art (SotA) results with the same scale pre-training
corpus for COCO Captions, Flicker30k on all metrics. We also present exten-
sive experiments and analysis to provide useful insights on the effectiveness
of each pre-training task and model variant.

– We employ XGPT to help vision-language understanding tasks like image
retrieval by performing data augmentation. After retraining, the model that
has state-of-the-art performance still achieves significant improvement on all
recall metrics.

2 Related Work

Pre-training for NLP Tasks. Recently, pre-trained language models (LM)
over large language corpus have shown great advances for NLP tasks. Three
Transformer-based methods that are most relevant to our approach, namely
MASS [27], Unicoder [13], and BART [19].

MASS [27] adopts the encoder-decoder framework to predict masked frag-
ments given the remaining part of the sentence. Unicoder is a universal lan-
guage encoder pre-trained based on three pre-training tasks. The new tasks help
the model learn mappings among different languages from more perspectives.
BART [19] uses a denoising autoencoder for pre-training. Our method is inspired
by these works, but since images are not sequential data, we have to tailor our
model for cross-modal tasks in particular.



788 Q. Xia et al.

Pre-training for Cross-modal Generation Tasks. Very recently, several
attempts have been made to pre-train models for cross-modal generation tasks.
Both VideoBERT [29] and CBT [28] are seeking to conduct pre-training for
the video captioning task. But they perform pre-training only for the BERT-
based encoder to learn bidirectional joint distributions over sequences of visual
and linguistic tokens. So they have to train a separate video-to-text decoder.
In contrast, Unified VLP [36] uses a shared multi-layer transformer network for
both encoding and decoding. Following UniLM [7], they pre-train the model
on two masked language modeling (MLM) tasks, like close tasks designed for
sequence-to-sequence LM. So target prediction is still masked tokens, not the
whole sentence. However, we find that by using more generative pre-training
objectives can outperform Unified VLP significantly on Image Captioning.

Adversarial Training. Adversarial training (AT) [10,24] is proposed to
improve model robustness and withstand adversarial attacks, and has been well
studied in computer vision. Some recent works in NLP also tried to explore adver-
sarial training for pre-training [3,6,9,12,15,21,31,37]. Zhu et al. [37] shows that
Transformer-based model (BERT, RoBERTa and ALBERT) can be significantly
boosted by adopting large-batch adversarial training. VILLA [9] first propose to
add adversarial perturbations to both image and word embedding for under-
standing tasks and encoder-only model. Inspired by above studies, we propose
to combine feature-level adversarial perturbations with image captioning objec-
tive and prove that AT can also be effective incorporated for generation task
and encoder-decoder architecture.

3 Preliminaries

Linguistic Representation. For each token in the input language sequence, its
representation is a sum of token embedding and position embedding. We denote
the input tokens as w = {w1, w2, ..., wM} and the corresponding representations
as xT = {xT

1 , xT
2 , ..., xT

M}.

Image Representation. For each input image, we first detect objects using
a pre-trained Faster R-CNN model [1]. Here, the top 100 objects with highest
confidence scores are selected, each of which has a feature vector computed by
mean-pooling the last-layer convolutional feature of its region of interest. To
represent the position of each object, we construct a 5-d position vector from
its spatial location (normalized top-left and bottom-right coordinates) and the
fraction of image area it covered. Next, we concatenate the feature vector and
position vector of each object and transform it into another vector by linear
projection, to make sure the dimensions h of linguistic tokens and visual tokens
are identical, and we denote as image regions as v = {v1, v2, ..., vN} and the
corresponding representations as xI = {xI

1, x
I
2, ..., x

I
N}.

Image Refining. Unlike words in text, image regions lack a natural order. To
better model the relationship among objects in an image, we add an additional
image refining layer following AoANet [14] to refine the image representation
before feeding them to the encoder.
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Fig. 1. Cross-modal generative pre-training tasks

4 Cross-modal Generative Pre-Training for Image
Captioning

4.1 Model Architecture

Unlike encoder-only models, Unified VLP and Oscar, XGPT applies a encoder-
decoder architecture and can be pre-trained through different generative pre-
training tasks. Basically, both encoder and decoder are multi-layer Transformer
networks. The encoder reads the source image and sentence and generates a set
of representations in decoder as introduced in Preliminaries.

4.2 Generative Pre-training Tasks

For image captioning, a basic generative task. It only takes images as inputs (sin-
gle modality) and generate the caption. We include four new cross-modal gen-
erative tasks to enhance image captioning that can jointly pre-train the encoder
and decoder.

Adversarial Image Captioning (AIC). A major approach to Image Caption-
ing (IC) is encoder-decoder framework. In natural language processing, adver-
sarial perturbation has proven effective for improving a model’s generalization
and robustness [6,8,37]. We propose to combine adversarial training with an
image captioning objective in this task.

Without adversarial training, the standard objective is to generate the cap-
tion w in an autoregressive manner given the image regions v, by minimize the
negative log-likelihood

LIC = −λIC

T∑

t=1

log pθ(wt|w<t,v) (1)

where w<t is the context history produced by the neural generator, and λIC is
the pre-defined weight of IC loss. This objective requires the model to predict
the whole sentence from scratch.
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Inspired by Zhu et al. [37], we modify the training objective by applying
small perturbation δ to input image embedding xI in the encoder and generated
text embedding xT

<t in the decoder. Denote the model as a function y = fθ(X ),
the number of inner ascent steps as K. We maximize the adversarial loss:

min
θ

E[
1
K

K∑

i=0

max LAIC(fθ(xI + δI
i ,xT

<t + δT
<t,i),y)] (2)

LAIC can be solved reliably by PGD like VILLA [9], a standard method for large-
scale constrained optimization. Take δI

i for example: PGD takes the following
step in each iteration:

δI
i,n+1 =

∏

||δI
i ||≤ε

(δI
i,n + αg(δI

i,n)/||g(δI
i,n)||F ) (3)

where g(δI
i,n) = ∇δI

i
LAIC(fθ(xI + δI

i ,xT
<t), y) is the gradient of the loss, α is the

update steps and
∏

||δI
i ||≤ε performs a projection onto the ε-ball.

Image-conditioned Masked Language Modeling (IMLM). IMLM aims
to teach the model to learn the relationship between vision and language by
predicting consecutive tokens in the decoder side.

XGPT is trained to reconstruct the n-gram masked words through a sequence
to sequence framework. This task is similar in the idea to n-gram MLM in
BERT or Masked Seq-to-Seq in MASS. The difference lies in that (1) the task
encourages the encoder to learn the cross-modality relationships between the
unmasked tokens and image regions, and (2) the decoder has to generate masked
tokens of the fragment, and extract useful image-conditioned information from
the encoder side.

As shown in Fig. 1(a), we concatenate the regions and unmasked tokens as
input to the encoder during pre-training. And we let the decoder predict the
masked fragment by minimzing the negative log-likelihood loss:

LIMLM = −λIMLM

M∑

t=1

log pθ(wt|w<t, ŵ,v)mt (4)

where ŵ is the corrupted caption, and mt = 1 if wt is in the masked fragment,
and 0 otherwise. λIMLM is the pre-defined weight of IMLM loss.

Image-conditioned Denoising Autoencoding (IDA). In IDA we take dis-
tance between feature spaces of two modalities into account, and use an attention
matrix to model the underlying text-image alignments. Besides, IDA forces the
model to reconstruct the whole sentence without giving it the length of the
masked fragment, as illustrated in Fig. 1(b). Specifically, we use single [MASK]

token for fragment prediction. Inspired by text filling task in [19], we first sam-
ple n-gram fragments to be mask and, then, replace each fragment with a single
[MASK] token. This is more challenging because the model have to predict not
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only the missing tokens but also the length of the original sentence. To model
the text-image alignments, we first compute an image-text attention matrix for
each token-region pair (wi, vj): Aij = W [xT

i , xI
j , x

T
i � xI

j ] where W ∈ R3×h is a
trainable weight and � is elementwise multiplication. Then, we represent each
word as the weighted sum of all region representations based on the attention
matrix: xT

i =
∑N

j=1 softmax(Aij)xI
j . Finally, XGPT takes new xT

i as input and
tries to predict the original word sequence w. The loss function is defined as

LIDA = −λIDA

M∑

t=1

log pθ(wt|w<t, ŵ,v) (5)

where ŵ is the corrupted caption, and λIDA is the pre-defined weight of IDA
loss.

Text-conditioned Image Feature Generation (TIFG). Text-to-image
(T2I) generation can be regarded as the inverse problem of image captioning, a
Image-to-Text (I2T) problem. It is natural and reasonable to unify the model to
leverage the underlying semantic in both domains.

In contrast to Uniter [5], which involved image feature generation by learning
to regress the transformer output of each masked region to its visual features,
TIFG aims to regress the decoder output of all image regions conditioned on
text descriptions rather than only the masked regions. As shown in Fig. 1(c), we
employ the encoder-decoder pipeline to convert linguistic representations into
x̄I

i of the same length and dimension as image representations xI
i . Then we

train with mean squared error to supervise the XGPT to generate semantically
consistent image features. Mathematically, this loss can be expressed as:

LTIFG = λTIFG
1
N

N∑

i=1

‖xI
i − x̄I

i ‖22 (6)

where λTIFG is the weight of TIFG loss.

4.3 XGPT Pre-training

We calculate task-specific loss in turns and update the model for each task in
every pre-training iteration. To study how each objective works for pre-training,
we include these tasks with individual weight of loss.

The initial weight of the individual weight of loss is set to λ(T ) = 1, where
T indicates epoch number. XGPT will gradually shift to IC.

We first conduct out-of-domain pre-training on Conceptual Captions (CC)
dataset [26] which contains about 3M image-caption pairs scraped from alt-
text enabled web images. The automatic collection leaves some noise (e.g., not
relevant and too short) in the dataset but brings a massive scale.

Then we use data from downstream tasks with the proposed pre-training
objectives for in-domain pre-training. This step allows the model to adapt to
the target domain. So we reduce the weights of the cross-modal tasks (e.g.,
λIMLM, λIDA, λTIFG → 0.3) and keep the image caption task λIC = 1 unchanged.
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During the fine-tuning stage, the model only takes image features and posi-
tion information as input, and the decoder is trained to predict the whole sen-
tence in an autoregressive manner.

The two-stage pre-training takes about 8 d to converge on 8x V100 GPUs
with a total batch size of 512 by gradient accumulation. For adversarial image
captioning, we set α = 3 during PGD training. We fine-tuned the model 30
epochs with four GPUs.

5 Experiments and Results

5.1 Datasets

The datasets for downstream tasks include COCO Captions [4] and Flickr30k
[33]. In these datasets, each image is labeled with 5 captions. We follow Karpa-
thy’s split1, which gives 113.2k/5k/5k and 29.8k/1k/1k images for train/val/test
splits respectively. We use standard metrics for Image Captioning, including
BLEU@4, METEOR, CIDEr, SPICE, to evaluate the propose method and compare
with other methods.

5.2 Implementation Details

In all experiments, the backbone Transformer of XGPT follows Vaswani et
al. [30], and we modify it to the BERT-based encoder-decoder architecture with
768 hidden units, 8 heads, GLEU activations used as GPT [11]. The dropout rate
is 0.1. We train XGPT with mixed-precision training and FP16, which makes
use of GPUs more efficiently. The Adam [18] with β1 = 0.9, β2 = 0.98 is used
for optimization. The learning rate is varying from 1e − 4 to 2e − 5 for out-of-
domain pre-training with invert square root decay [30]. During the in-domain
pre-training and fine-tuning stage, we take an average of the top-4 pre-trained
weights and reduce the initial learning rate to 1e − 5. For caption inference, we
use greedy search on the validation set and beam search with beam size 5 on the
test set.

5.3 Results and Analysis

Comparisons against SotAs. We compare with several existing methods on
image captioning, including BUTD [1], VLP [36], AoANet [14] and OSCAR [20].
We also apply CIDEr-D optimization [25] to improve model performance with
Self-Critical Sequence training.

Table 1 summarizes the overall results of two tasks. As shown in the table,
our baseline method XGPT outperforms all previous works that do not use pre-
training, like BUTD and AoANet, on C, M, S. It only slightly worse than
AoANet [14] on B@4, partially because AoANet applied AoA to both the
encoder and the decoder.
1 cs.stanford.edu/people/karpathy/.
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Table 1. Comparison with the previous state-of-the-art methods. Bold indicates best
value overall. OSCAR (6.5M) [20] is pre-trained on 6.5 million pairs, while Unified
VLP (3M) [36] and XGPT (3M) are pre-trained on 3 million pairs, which is a subset
of OSCAR’s corpus. C,B@4,M,S stand for CIDEr, BLEU@4, METEOR, SPICE.

Model Flick30k COCO

C B@4 M S C B@4 M S

Approaches that do not optimize for CIDEr

BUTD [1] 56.6 27.3 21.7 16.0 113.5 36.2 27.0 20.3

NBT (with BBox) [23] 57.5 27.1 21.7 15.6 107.2 34.7 27.1 20.1

GCN-LSTM (spa) [32] – – – – 115.6 36.5 27.8 20.9

GCN-LSTM (sem) [32] – – – – 116.3 36.8 27.9 20.9

GVD [35] 62.3 27.3 22.5 16.5 – – – –

AoANet [14] – – – – 119.8 37.2 28.4 21.3

Unified VLP (3M) [36] 67.4 30.1 23.0 17.0 116.9 36.5 28.4 21.2

OSCAR (6.5M) [20] – – – – 123.7 36.5 30.3 23.1

XGPT (3M) 72.0 32.1 24.2 18.4 122.1 36.9 29.6 22.5

Approaches that do optimize for CIDEr

BUTD [1] – – – – 120.1 36.3 27.7 21.4

Unified VLP (3M) [36] – – – – 129.3 39.5 29.3 23.2

AoANet [14] – – – – 129.8 38.9 29.2 22.4

OSCAR (6.5M) [20] – – – – 137.6 40.5 29.7 22.8

XGPT (3M) – – – – 133.4 40.2 29.5 22.6

Compare to other pre-trained models, XGPT is very different in the way
that the four generative pre-training tasks are used and the model architecture
is based on encoder-decoder, as outlined in Fig. 1. With same amount of image-
text pairs, XGPT outperforms the Unified VLP [36] by a large margin, e.g.,
improving M and C by 1 and 5 points. The results demonstrate the effectiveness
of our proposed pre-training scheme. Comparing to OSCAR [20], another pre-
training model which uses much more training data, XGPT which use less than
half of the data only performs slightly better on B@4.

Effectiveness of Proposed Tasks. We analyze the effectiveness of different
pre-training tasks through ablation studies over COCO Captions and Flickr30K.
The results are shown in Table 2.

As for the out-of-domain pre-training stage, AIC outperforms IC by a large
margin (+1.5 on CIDEr), demonstrating that adversarial training is beneficial
for the pre-training and fine-tuning task. There are also significant improvements
across all three tasks (comparing Row 3,4,5 with Row 1 baseline). Among the
three, we observe IDA which helps the model to learn text-image alignments
achieves the biggest improvement, while TIFG the smallest. This is probably
because of the discrepancy of the decoder which is originally designed to predict
captions and the task objective which is to predict all image region features.
When combining all four tasks, we achieve the highest gain of approximately
+4.6 on CIDEr over Row 1.
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Table 2. Ablation analysis of pre-training tasks on COCO Captions.

Stage Pre-training Tasks COCO

C B@4 M S

Out-of-domain (CC) IC 116.4 35.9 28.2 21.1

AIC 117.9 36.1 28.3 21.2

IC + IMLM 117.7 36.2 28.2 21.2

IC + IDA 118.1 36.4 28.3 21.3

IC + TIFG 117.3 36.0 28.2 21.2

IC + IMLM + IDA + TIFG 119.3 36.7 28.4 21.6

AIC + IMLM + IDA + TIFG 121.0 36.7 29.4 22.3

Out-of-domain (CC) +
In-domain (COCO)

IC + IMLM 119.1 36.7 28.5 21.5

IC + IDA 119.2 36.6 28.5 21.6

IC + TIFG 118.2 36.4 28.4 21.3

IC + IMLM + IDA + TIFG 120.1 37.2 28.9 21.8

AIC + IMLM + IDA + TIFG 122.1 36.9 29.6 22.5

Table 3. impacts of weight strategies Evaluation results on COCO Captions.

Model C B@4 M S

Tiny EncDec 110.8 33.7 27.6 20.5

Tiny EncDecShare 112.7 34.6 27.9 20.7

Parameters Sharing. To find the best model setting for image captioning, we
also designed two model variants. EncDec is a Transformer encoder-decoder
architecture in which all weights are initialized randomly. EncDecShare is like
EncDec, but the parameters for self-attention in encoder and cross-attention
between encoder and decoder are shared. We add a signal to distinguish whether
keys and values are from the encoder output or decoder input. complexity won’t
change but the amount of parameters has been reduced. Table 3 reports results of
these settings. Tiny Enc model which simply reuses the encoder for decoding can
outperform Tiny EncDec by a large margin, e.g., improving CIDEr by 1.9. This
is probably because the shared structure can help model to leverage underlying
relationship between two modalities. We use this as the optimal architecture in
Table 1.

5.4 Data Augmentation for Image Retrieval

In addition to generation tasks, our XGPT can also help vision-and-language
understanding tasks, such as image retrieval, by performing data augmentation
as an image description generator. Image retrieval is a task of identifying an
image from a pool given a caption describing its content. We generate 62k more
captions for all 29k images (about 2.1 captions for each) in the Flickr30k train-
ing set, which originally contains 145k captions. We continue to fine-tune the
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open-source state-of-the-art model2 introduced in [22] on the combination of the
augmentation and the original training data.

ViLBERT got 58.2 on R@1, 84.9 on R@5, and 91.5 on R@10. While ViLBERT
trained on augmentated data got 60.4 on R@1, 86.4 on R@5, and 91.9 on R@10.
The improvement is significant (2.2% on R@1, 1.5% on R@5, and 0.4% on R@10).
The higher relative gain on R@1 also indicates that the generator can produce
high-quality image captions which can help the model better understand images.

Table 4. Two examples of generated captions for given images. Underlined text shows
the difference between captions.

5.5 Qualitative Studies

A positive and a negative example in the generation results are provided in
Table 4. In Example A, we can see that XGPT-generated captions are grammat-
ically and semantically correct, and also can increase the diversity of the data.
In Example B, the first sentence contains wrong information (brown−→black);
the second has a duplicated phrase. Both can be considered as noise.

6 Conclusion

In this paper, we present XGPT, Cross-modal Generative Pre-Training for Image
Captioning. Three main pre-training tasks are proposed and the ablation study
2 https://github.com/jiasenlu/vilbert beta.

https://github.com/jiasenlu/vilbert_beta
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shows that the effectiveness of each task is different. The combination of all tasks
achieves stronger performance on all evaluation metrics suggested that they are
complementary to each other. After in-domain and out-of-domain pre-training,
XGPT outperforms state-of-the-art models by a significant margin. For future
works, we are curious about extending XGPT to cross-modal understanding
tasks, such as VQA and VCR.

Acknowledgments. This paper is supported by the National Key Research and
Development Program of China 2020AAA0106700 and NSFC project U19A2065.
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Abstract. Recent years have witnessed great progress in image cap-
tioning based on deep learning. However, most previous methods are
limited to the original training dataset that contains only a fraction
of objects in the real world. They lack the ability to describe other
objects that are not in the original training dataset. In this paper, we
propose an object-extensible training framework that enables a widely-
used captioning paradigm to describe objects beyond the original train-
ing dataset (i.e., extended objects) by generating high-quality training
data for these objects automatically. Specifically, we design a general
replacement mechanism, which replaces the object (An object includes
the object region in the image, and the corresponding object word in the
caption) in the original training dataset with the extended object to gen-
erate new training data. The key challenge in the proposed replacement
mechanism is that it should be context-aware to get the meaningful result
that complies with common knowledge. We introduce the multi-modal
context embedding to ensure that the generated object representation
is coherent in the visual context and the generated caption is smooth
and fluent in the linguistic context. Extensive experiments show that
our method improves significantly over the state-of-the-art methods on
the held-out MSCOCO in both automatic and human evaluation.

Keywords: Image captioning · Extended objects · Context-aware
replacement

1 Introduction

Image captioning is an important task in the intersection between computer vision
and natural language processing. We have witnessed much progress in image cap-
tioning based on deep learning. However, most previous methods can only describe
objects in the original training dataset, but lack the ability to generate captions for
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other objects in the real world. For example, if the original training dataset con-
tains the image-text pairs of “giraffe” but not that of “zebra”, a caption model
built upon it can describe an image with a giraffe but fails to understand one with
a zebra.

The key issue lies in the limitation of the original training dataset that is
manually constructed and contains only a small fraction of objects in the real
world. Supposing we have a “complete” training dataset covering all objects, we
can use it to train a caption model that can describe any object. Therefore, to
enable a caption model to describe objects not in the original training dataset, a
naive solution is to manually construct additional training data for such objects.
However, this process is time-consuming and laborious, which hinders its feasi-
bility in realistic applications. A question naturally arises: can we automatically
generate training data for such objects without manual efforts?

We find that the UpDn model [2] provides convenience for us to achieve the
automatic generation. It represents the input image by object regions instead
of a single feature vector [15] or spatial grids [17], which means it does not
require direct access to the original image and only uses the object representation
instead. Extensive works (e.g., [4,9,13]) follow this captioning paradigm and all
use the object representation, which we define as UpDn-style caption model.
One merit of such models is that it makes generating training data for an object
simple. For example, we want to create a new image-text pair of the object
“zebra” that is not in the original training dataset. Suppose that we already
have an original image with the caption “a giraffe walking across the grass next
to some antelope” as shown in Fig. 1. We could simply replace the giraffe region in
the object representation of the original image by the zebra region from another
unpaired image1 to generate the object representation for the new image. And
we don’t need to generate the new image itself, which is a relatively hard task, as
the UpDn-style caption model only needs the object representation as input. To
generate the corresponding caption for this new image, we can simultaneously
do the replacement of the object word “giraffe” in the original caption and get
“a zebra walking across the grass next to some antelope”.

In this paper, we propose an object-extensible training framework that
enables the UpDn-style caption model to describe objects beyond the original
training dataset (i.e., extended objects) by generating new training data for these
objects automatically. Specifically, we introduce a general replacement mecha-
nism which replaces the object region and object word in the original training
dataset simultaneously with the object region and object word of an extended
object. The generated data can be used to train any UpDn-style caption model
as the input of the UpDn-style caption model is the object representation of an
image rather than the image itself. The entire process of data generation and
model training is automatic and requires no additional manual efforts.

The key challenge in the proposed replacement mechanism is to ensure that
the replacement result is meaningful and complies with common knowledge. In the
example of Fig. 1, if we replace the “giraffe” region-word pair (i.e., object region

1 This image is not paired with a caption and easy to obtain without manual efforts.
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Fig. 1. The framework of the general replacement mechanism.

and object word) with a “bus” region-word pair instead of the “zebra” region-word
pair, we will get ridiculous results in two aspects. First, as the bus region is not
likely to appear togetherwith grass regions or antelope regions in a real valid image,
the resulting object representation is not meaningful. Second, in the caption after
replacement, “a bus walking across the grass ...”, “bus” does not collocate with
“walking” in the natural language. Thus, to ensure that the replacement is mean-
ingful, we need to consider both the visual context of the object region and the
linguistic context of the corresponding object word. To this end, we propose the
context-aware replacement (CAR), which uses the multi-modal context embed-
ding to find the replacement with the most similar visual context and linguistic
context to the given object. In summary, our contributions are three-fold:

– We propose an object-extensible training framework that enables the UpDn-
style caption model to describe extended objects by a general replacement
mechanism.

– We introduce the multi-modal context embedding to make the replacement
process aware of the visual context and linguistic context.

– Extensive experimental results show that the proposed method outperforms
the state-of-the-art methods on the held-out MSCOCO dataset.

2 Related Work

In recent years, image captioning methods based on deep learning have made
much progress [2,12,13,15,17,19]. However, most of them can only describe the
objects in the original training dataset that is manually constructed, and are
difficult to be generalized to other objects in the real world.

Some approaches have been proposed to solve this problem. Deep Compo-
sitional Captioner (DCC) [3] pretrains a lexical classifier and a language model
on unpaired image/text data respectively, and composes them into a caption
model. It further trains the caption model on image-text pairs and transfers
knowledge between semantically-related words. Venugopalan et al. [14] extend
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DCC by jointly training the lexical classifier, language model and caption model
in an end-to-end manner, which obviates the explicit transfer and achieves better
performance. More recently, Yao et al. [18] incorporate the copy mechanism into
the caption model, which can not only generate a word from the language model
but also copy one from objects detected in the image. Li et al. [5] further con-
solidate the method [18] by the pointing mechanism and coverage of objects. In
addition, Mogadala et al. [8] annotate entity labels for images with the guidance
of knowledge base, and build the semantic attention and constrained inference
over these entity labels. Another approach [1] proposes the constrained beam
search, which forces the visual tags of the image to appear in the generated
caption during the inference process. Furthermore, the Decoupled Novel Object
Captioner (DNOC) [16] first generates a sentence with placeholders, and then
retrieves object words from a key-value object memory to fill them. Neural Baby
Talk [7] shares a similar spirit with DNOC, which first generates a sentence with
slots tied to object regions in the image, and then fills the slots by the corre-
sponding object words.

Previous works usually design a special model architecture for image caption-
ing to incorporate more objects, which is tightly coupled with the architecture
itself and difficultly generalized. In contrast, our solution tackles the problem in
a data-driven way, which is fully compatible with any UpDn-style caption model
and thus can seamlessly benefit from its potential improvement.

3 Methodology

3.1 Framework Overview

The general replacement mechanism is shown in Fig. 1, which is composed of the
online flow and the offline flow. Given an image-text pair (R, S) in the original
training dataset Do, we feed it into the online flow to get a new image-text pair
(R′, S′). We perform this procedure on all image-text pairs in Do to obtain an
extended training dataset De, which contains not only objects in Do but also the
extended objects. Finally, we use De to train a caption model that can generate
captions for all the objects in Wobj ∪ Wext, where Wobj and Wext denote the
vocabulary of objects in Do and that of extended objects respectively.

Online Flow. The input is an image-text pair (R, S) in the original training
dataset Do. The symbol R = {r1, r2, ..., r∗

o , ..., rM} is the object representation
of an image and S = {w1, w2, ..., w

∗
o , ..., wN} is the corresponding caption, where

r and w denote an object region and a word respectively. First, from the input we
extract the object word w∗

o ∈ Wobj and identify its corresponding object region
r∗
o via the object grounding. Then, we replace the region-word pair (r∗

o , w
∗
o) by a

new pair (r∗
e , w

∗
e) of an extended object through the context-aware replacement.

Finally, the online flow outputs a new image-text pair (R′, S′) for the extended
object, where R′ = {r1, r2, ..., r∗

e , ..., rM} and S′ = {w1, w2, ..., w
∗
e , ..., wN}.

Offline Flow. Before the data generation of online flow, we offline construct
two data structures leveraged by the context-aware replacement: (1) We build
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Fig. 2. The details of two data structures constructed by the offline flow.

the context rank table with the multi-modal context embedding, which will be
used to find the extended object word w∗

e with the most similar visual and
linguistic context to w∗

o . (2) We generate the extended object region dictionary
by the object grounding, which will be queried with w∗

e as the key to find the
corresponding object region r∗

e .

Caption Model. We employ the UpDn model [2] as a representative of UpDn-
style caption models to verify the effectiveness of our method. The model details
are elaborated in the previous work [2] and we will not go into them since our
focus is the proposed framework in this work.

3.2 Multi-modal Context Embedding

We construct the context rank table based on the similarity of visual and lin-
guistic context between object words, which is measured by the cosine similarity
of their multi-modal context embeddings. The structure of context rank table
is shown in Fig. 2. Each row corresponds to an object word in Wobj , and each
column corresponds to a rank value which is assigned to an object word in
Wobj ∪ Wext. In the corresponding row of an object word wo ∈ Wobj , we rank
each object word in Wobj ∪ Wext from high to low according to the cosine simi-
larity between its multi-modal context embedding and that of wo, and only keep
the top K rank values to ensure that the object words in the row are similar
enough to wo in both visual and linguistic context.

Now we focus on how to obtain the multi-modal context embedding of an
object word. The general idea is to align the visual representation of the object
region and the linguistic representation of the corresponding object word in
a common latent space. We train a model composed of an object detector, a
visual MLP layer fvis, a linguistic MLP layer flin, and an embedding matrix E
initialized with the pretrained GloVe embedding [10]. The input of the model is
an image with its object labels L = {l}, which is composed of the corresponding
object words of objects contained in the image. In the training process, we first
extract the object representation R of the image by an object detector, and
map each object region r ∈ R into the common latent space by the layer fvis.
Then, we also map the corresponding object word (i.e., each label l ∈ L) into
the common latent space by applying the layer flin on its embedding in E. Next,
we define the score function which measures how likely the object region r is to
contain the label l as follows:

sc(r, l) = cos sim(fvis(r), flin(E(l))), (1)
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where cos sim means cosine similarity. Furthermore, for the entire image R, the
score function of containing the label l is defined as:

sc(R, l) = max(sc(r, l)), r ∈ R. (2)

The greater value of sc(R, l) means the image R is more likely to contain the
label l and vice versa. Finally, we define the training loss on the image R:

L(R) =
∑

l∈L

∑

l′∈{LU−L}
max[0, 0.1 − sc(R, l) + sc(R, l′)], (3)

where LU denotes the complete set of labels of all images in the training data,
and l′ is a label that does not appear in the image R. Minimizing L(R) is
equivalent to increasing sc(R, l) and decreasing sc(R, l′) simultaneously, which
forces the labels in L to approach the image R and keep other labels in {LU −L}
away from it in the common latent space. After training, we use flin(E(l)) as the
multi-modal context embedding of l, which is the projection of l in the common
latent space.

The cosine similarity of the multi-modal context embeddings can reflect the
similarity of object words in both visual and linguistic context. On the one
hand, the training loss L(R) makes the labels in similar images (i.e., with a
similar visual context) close to each other in the common latent space. On the
other hand, we have already incorporated the linguistic context into the training
process at the beginning by initializing E with the pretrained GloVe embedding.

3.3 Object Grounding

The object grounding module grounds an object word to its corresponding object
region in the image. In the proposed method, we leverage this module to (1)
ground the object word w∗

o to its corresponding object region r∗
o in the original

image and (2) build the extended object region dictionary. Next, we elaborate
how we achieve the above two goals respectively.

Ground w∗
o to r∗

o . Given the object word w∗
o , we explore two kinds of strategies

to find its corresponding object region r∗
o in the object representation R of the

original image. The first kind of strategy requires ground-truth bounding boxes
of the image that are manually annotated. We first pick out the ground-truth
bounding boxes with the object category corresponding to w∗

o , denoted as B,
and then identify r∗

o as follows:

r∗
o = {r ∈ R|IoU(r, b) > T}, (r, b) ∈ R × B, (4)

where T ∈ [0.0, 1.0] is the threshold value of IoU. The second kind of strategy
requires no manual efforts and is more general. It leverages the object categories
of object regions in R, which are output by the object detector. Specifically, we
regard all the object regions in R with the object category corresponding to w∗

o

as the object region r∗
o .
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Build the Extended Object Region Dictionary. The structure of the
extended object region dictionary is shown in Fig. 2. Each key corresponds to
an extended object word we ∈ Wext, and its value consists of a series of object
regions corresponding to we from different unpaired images. Each object region
re in the value is obtained by grounding we in the object representation R of
an unpaired image.

There are also two kinds of strategies for grounding we to re. The first needs
ground-truth bounding boxes of the image, while the second leverages the object
categories with their confidence scores output by the object detector. In the first
kind of strategy, we identify re as follows:

re = argmax
r∈R

IoU(r, b), (r, b) ∈ R × B, (5)

where B denotes the ground-truth bounding boxes with the object category
corresponding to we. In the second kind of strategy, we first find out all the object
regions with the object category corresponding to we in the object representation
R, and then pick the one with the highest confidence score as re.

Note that the grounding of the object word w∗
o and that of the extended

object words in Wext are slightly different, which makes the replacement more
precise and thus improves the quality of the new generated image-text pair.
When grounding w∗

o to r∗
o , we adopt a relatively loose screening condition to

find out all the object regions possibly corresponding to w∗
o in the original image,

which means that the notation r∗
o may represent multiple object regions instead

of only one. Since the object detector may output multiple object regions that
largely overlap for the same object in an image, this loosely grounding can guar-
antee all of them can be completely removed in the replacement. When building
the extended object region dictionary, we ground each extended object word
we ∈ Wext to only the most accurate object region in an unpaired image. In this
way, when we replace r∗

o with r∗
e , we guarantee the object region r∗

e added into
the object representation exactly contains the extended object.

3.4 Context-Aware Replacement for Automatic Data Generation

Given an image-text pair from the original training dataset Do, we generate a
new image-text pair of the extended object in the context-aware replacement.
We replace the object word w∗

o in the original caption by the extended object
word w∗

e , and replace the object region r∗
o corresponding to w∗

o in the object rep-
resentation of the original image by the extended object region r∗

e corresponding
to w∗

e . We describe the context-aware replacement in Algorithm 1.
To ensure the replacement result is meaningful, we need to find the region-

word pair (r∗
e , w

∗
e) with the most similar context to the region-word pair (r∗

o , w
∗
o).

First, we extract the corresponding row of w∗
o from the context rank table, and

select the most top-ranked extended object word in the row as w∗
e . Then, we

take w∗
e as the key to retrieve its corresponding value from the extended object

region dictionary, and randomly select an object region as r∗
e from a series of

object regions in the value. Note that we do not perform the replacement if there
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Algorithm 1. Context-Aware Replacement (CAR)
Input:
1: An image-text pair (R, S) containing a region-word pair (r∗

o , w∗
o);

2: Context rank table CRT;
3: Extended object region dictionary EORD.
Output:
4: A new image-text pair (R′, S′).
5: CRT(w∗

o) ← corresponding row of w∗
o in CRT

6: if Wext ∩ CRT(w∗
o) �= ∅ then

7: w∗
e ← top-ranked element in Wext ∩ CRT(w∗

o)
8: EORD(w∗

e) ← the value of key w∗
e in EORD

9: r∗
e ← retrieve an object region from EORD(w∗

e)
10: S′ ← in S, replace w∗

o by w∗
e

11: R′ ← in R, replace r∗
o by r∗

e

12: return (R′, S′)
13: else
14: do not perform the replacement
15: end if

is no extended object word in the corresponding row of w∗
o in the context rank

table, which means we can not find a replacement similar enough to the object
in the original image-text pair in both visual and linguistic context.

For each image-text pair in Do, we perform the context-aware replacement
to generate a new image-text pair. Finally, we gather all the new image-text
pairs, and combine them with Do to obtain an extended training dataset De.
Comparing with training on Do, the additional computation cost of training on
De is empirically sub-linear, since each image-text pair in Do yields at most
one new image-text pair (sometimes the replacement will not be successfully
performed as mentioned above). This indicates that our method can scale up on
datasets with different sizes.

4 Experiments

4.1 Experimental Setup

Dataset. For the convenience of comparing with previous works, we evaluate
our method on the held-out MSCOCO dataset, a widely-used benchmark [3]
for image captioning on objects not in the original training dataset. The dataset
consists of four splits: training, validation, test and rest. Follow the previous work
[3], we employ a subset of MSCOCO [6] training set as the training split, which
excludes all the image-text pairs containing at least one of the eight objects:
bottle, bus, couch, microwave, pizza, racket, suitcase, zebra. The eight objects are
used as the extended objects in this setting. We use 50% of MSCOCO validation
set as the validation split, and set aside the other 50% for the test split. We take
the excluded part in MSCOCO training set as the rest split.
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Table 1. Performance (%) on held-out MSCOCO test split.

Model bottle bus couch microwave pizza racket suitcase zebra Avg. F1 CIDEr METEOR SPICE

DCC [3] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 59.1 21.0 13.4

NOC [14] 14.9 69.0 43.8 37.9 66.5 65.9 28.1 88.7 51.8 – 20.7 –

Base+T4 [1] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 77.9 23.3 15.9

KGA-CGM [8] 26.4 54.2 42.1 50.9 70.8 75.3 25.6 90.7 54.5 – 22.2 14.6

LSTM-C [18] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 – 23.0 –

DNOC [16] 33.0 76.9 54.0 46.6 75.8 33.0 59.5 84.6 57.9 – 21.6 –

NBT [7] 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2 84.0 23.9 16.6

LSTM-P [5] 28.7 75.5 47.1 51.5 81.9 47.1 62.6 93.0 60.9 88.3 23.4 16.6

CAR 29.4 75.7 49.7 56.0 73.5 18.7 50.3 94.4 56.0 101.9 26.1 19.3

CAR + T2 37.4 78.5 52.2 58.7 76.6 39.2 56.1 94.5 61.7 100.1 25.8 19.2

In the experiment, we use the training split as the original training dataset Do

(351134 image-text pairs), and generate 302179 new image-text pairs to obtain
the extended training dataset De (653313 image-text pairs). We perform the val-
idation and testing on the corresponding splits respectively. There is no overlap
of data between model training and evaluation.

Evaluation. On the one hand, we evaluate the captioning performance on auto-
matic metrics. On the other hand, We also compute F1-score for the eight
extended objects respectively. For an image in the test split, we regard it as
a true positive example of an extended object only if its generated caption and
at least one of its ground-truth captions both mention the object.

Implementation Details. For each image, we take a pretrained Faster R-CNN
[11] as the object detector to extract 36 object regions as its object representa-
tion. This is aligned with the strong baselines DNOC and NBT which also use
the Faster R-CNN feature. Additionally, considering the generality, we perform
object grounding based on the output of Faster R-CNN, instead of ground-truth
bounding boxes (We discuss the difference in Sect. 4.5). In the context rank table,
we set the value of K to 20.

4.2 Comparison with SOTA Methods

We compare our method context-aware replacement (abbreviated as CAR) with
state-of-the-art methods in Table 1. We can see that our method CAR achieves
comparable average F1-score (Avg. F1) of extended objects compared to the
SOTA methods, which shows that our approach successfully generates captions
for extended objects. By using the constrained beam search [1] (CAR + T2),
our method achieves the best average F1-score (61.7%) while maintaining decent
captioning performance. However, the results on F1-score can only reflect that
the generated caption correctly mentions the corresponding object word of the
extend object that appears in the image. We should also focus on the over-
all captioning performance. We observe that CAR significantly outperforms all
the SOTA methods on automatic metrics. Particularly, CAR improves over the
competitive baseline LSTM-P by 13.6% on CIDEr, 2.7% on METEOR and 2.7%
on SPICE. This indicates that the new generated training data is high-quality
enough for training a caption model to generate natural and fluent captions.
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Table 2. Human evaluation (%) on a sampled subset of held-out MSCOCO test split.
The notation “both” means the judgement holds in both criteria.

Judgement CAR vs. UpDn CAR vs. NBT

object coverage consistency both object coverage consistency both

CAR is better 69.67 ± 0.02 43.00 ± 0.03 38.33 ± 0.06 46.33 ± 0.06 37.67 ± 0.11 23.00 ± 0.02

UpDn/NBT is better 9.00 ± 0.09 25.33 ± 0.00 7.00 ± 0.09 24.33 ± 0.16 35.67 ± 0.11 16.67 ± 0.04

two models are equal 21.33 ± 0.10 29.33 ± 0.04 13.67 ± 0.11 31.67 ± 0.02 26.67 ± 0.39 13.00 ± 0.08

4.3 Human Evaluation

To complement the automatic metrics, we re-implement the strong baseline NBT
[7], and perform the human evaluation on a sampled subset of the held-out
MSCOCO test split to compare our method CAR with it. We also take the
UpDn model [2] for comparison. For each image, we generate three captions with
the compared models respectively, and randomly shuffle them to avoid potential
bias. We ask three human evaluators to compare the generated captions in pair.

Evaluation Criteria. Given two captions generated by different models for the
same image, the evaluators make a judgement about which one is better in two
aspects respectively. The first is object coverage. This criterion reflects how well
the caption covers the objects in the image. If the image contains an extended
object, we also tell the evaluators to focus more on it. The second is consistency.
It measures how consistent the caption is with the image content.

Evaluation Results. We report the results of human evaluation in Table 2.
Comparing with both UpDn and NBT, our method CAR generates more cap-
tions which are better on either object coverage or consistency. Considering the
two criteria simultaneously, our approach also outperforms the other methods.

4.4 Qualitative Examples

As shown in Fig. 3, our method CAR describes the extended objects in all the
examples while the other methods not, which verifies its effectiveness of incor-
porating the extended objects into the caption generation. The red bounding
box in an image indicates the object region with the largest attention weight
when CAR generate the highlighted word. We observe that red bounding boxes
fit well with the extended objects in the images, which reflects that our method
really learns to ground the extended objects in the images correctly.

4.5 Discussion

Ablation Study. We compare our method CAR with its two variants in
Table 3a: 1) UpDn [2]. It represents an UpDn-style caption model which is trained
only on the original training dataset. 2) General Replacement. Besides the origi-
nal training dataset, it also generates new training data for extended objects by
the proposed replacement mechanism to assist the model training. However, it
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Table 3. Discussion on the ablation study of our approach CAR and the effectiveness
of using the ground-truth bounding boxes.

(a) Ablation study to demonstrate contribu-

tions from “replacement (R)” and “context-

aware (CA)” in CAR.

Model R CA Avg. F1

UpDn 0.0

General Replacement � 48.4

CAR � � 56.0

(b) Performance on held-out MSCOCO test

split without/with leveraging the ground-

truth bounding boxes.

Model Avg. F1 CIDEr METEOR SPICE

CAR 56.0 101.9 26.1 19.3

CAR + bbox 56.6 102.2 26.3 19.4

Fig. 3. Qualitative examples of captions generated by different methods.

does not consider the visual context and linguistic context, and just randomly
selects an extended object as the replacement.

First, by adding the “replacement (R)”, general replacement performs much
better than UpDn on average F1-score, while UpDn cannot generate captions
for any extended object (Avg. F1 is 0.0%). This validates the effectiveness of the
proposed replacement mechanism on describing extended objects. Second, by
further adding the “context-aware (CA)”, CAR increases 7.6% on average F1-
score. This indicates that it is necessary to ensure that the replacement result is
meaningful and complies with common knowledge, which improves the quality
of generated training data and thus is beneficial to model training.

Using Ground-Truth Bounding Boxes. As shown in Table 3, the perfor-
mance of our method is further boosted by leveraging the ground-truth bound-
ing boxes (CAR + bbox) to perform the object grounding. This is reasonable
since better grounding will lead to more precise replacement and thus improve
the quality of generated training data.

5 Conclusion

In this paper, we propose an object-extensible training framework based on a
general replacement mechanism, which focuses on the training data generation
of extended objects and is compatible with any UpDn-style caption model. It
paves a new data-driven way to generate captions for extended objects. To ensure
that the generated data is meaningful and complies with common knowledge,
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we introduce the multi-modal context embedding to make the replacement pro-
cess aware of both visual context and linguistic context. It guarantees that the
generated object representation is coherent in visual context and the generated
caption is smooth and fluent in linguistic context. Extensive experiments con-
ducted on held-out MSCOCO shows that our method outperforms the SOTA
methods in both automatic and human evaluation.
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Abstract. Visual dialog is a multi-modal task that requires a dialog
agent to answer a series of progressive questions grounded in an image.
In this paper, we propose Relation-aware Multi-hop Reasoning Network
(i.e. R2N for short) for visual dialog tasks, which can perform multi-hop
reasoning during visual co-reference resolution process in a recurrent
way. At each hop, in order to fully understand the visual scene in the
image, a Relation-aware Graph Attention Network is used, which encodes
each image into graphs with multi-type inter-object relations via a graph
attention mechanism. Moreover, we find that the auxiliary clustering
mechanism on answer candidates is conducive to model’s performance.
We evaluate R2N on VisDial v1.0 dataset. Experimental results on the
VisDial v1.0 dataset demonstrate that the proposed model is effective
and outperforms compared models.

1 Introduction

Multi-modal researches have increasingly drawn more interest, particularly
across computer vision and natural language processing. Researchers have
achieved inspiring progress in various vision-language tasks, including visual
relation detection [12], image captioning [17], and visual question answering
(VQA) [1]. Apart from these, visual dialog [4] is another vision-language task
introduced. It can be regarded as the generalization of VQA, in which the agent
needs to answer a list of questions, or rather, to make a multi-round dialog, with
a certain image as the visual information and a dialog history as the contextual
information.

Inspired by the pattern of how humans think in a real dialog, it is necessary
to conduct a multi-hop reasoning process to answer the question in visual dialog.
Who is asked a question about an image will firstly review the dialog history to
collect some fundamental semantic information about pronouns and some other
co-references mentioned in the question and then scan the given image to ground
it so as to gain visual information. After integrating information from the two

c© Springer Nature Switzerland AG 2021
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sides, comprehensive visual-semantic information is generated and then is able
to recall more detailed semantic information from the dialog history in his mind
to update the comprehensive information and examine the image again based
on previous information. This pattern follows a recurrent way.

Besides this, due to a significant semantic gap between image and natural
language, we believe it is necessary to introduce additional information to build
a bridge between the two. For example, given an image of a tennis player hold-
ing a racket, existing models may recognize the player and the racket, but not
the semantic interaction and geometric position relationship between the two.
Therefore, it is difficult to answer questions such as “Is the player swinging his
racket?” or “Where is the tennis ball?”. Because they require the visual dia-
log system to recognize not only the objects (“player”, “racket”), but also the
semantics about actions (“swing”, “hold”) and locations (“left”, “above”) in
corresponding image, question and dialog history.

To address the two problems, we propose the model Relation-aware Multi-
hop Reasoning Network, or R2N for short, which comprise the Recurrent
Attention Encoder as the core module for multi-hop reasoning so as to simulate
the thinking patterns of natural people. It acquires information from both a
textual encoder and an image features encoder simultaneously and conducts a
reasoning process among the question, the dialog history, and the image in order
to utilize abundant latent information from the two aspects. On the other hand,
with relation-aware graph attention networks, the image features encoder can
extract relation features between visual objects, in order to explicitly introduce
relation information into image encoding process. Therefore, R2N can handle
this multi-hop reasoning task which can act like a refiner to resolve higher-
order interactions, including semantic and geometric interactions, between the
representation of question and dialog history and the features of image areas
iteratively.

Our main contributions are fourfold:

– We introduce a recurrent model structure to visual dialog task to execute a
multi-hop reasoning process and meanwhile guarantee information interac-
tions among modalities refined in each hop.

– We introduce the explicit relation features of visual objects into the task and
our ablation experiments and results indicate that they facilitate the model
to understand relations between visual objects.

– We use an auxiliary clustering mechanism on answer candidates list and our
experiments show that it helps to improve the NDCG (Normalized Discounted
Cumulative Gain) [3,4] score.

– The experimental results show that our proposed R2N outperforms previous
models and achieves the best results among compared models.
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2 Related Work

2.1 Visual Dialog

Visual dialog (VisDial) is a task that requires a dialog agent to answer a series of
questions grounded in an image. Different from visual question answering(VQA),
the series of questions should capture a temporally-semantic context from a dialog
history and utilize visually-grounded information. The task was proposed by [4]
accompanied by a corresponding dataset VisDial. Attention-based approaches
were previously proposed to address this challenge. The work [9] proposed Neural
Module Network [9] to resolve visual coreference with specific modules. DAN [7]
consists of two attention modules to retrieve the history to clarify ambiguous ques-
tions and perform visual grounding via attention mechanism.

2.2 Multi-hop Reasoning

Nevertheless, these are single-hop approaches, whose ability of reasoning is lim-
ited and they neglect latent information of the interactions among the question,
the dialog history, and the image. Several researchers also investigate multi-
hop reasoning approaches. For example, work [5] propose ReDAN to infer the
answer progressively through multiple reasoning steps. The semantic represen-
tation is updated based on the image and the previous dialog history, and a
recurrently-refined representation is used for further reasoning in the subse-
quent steps. Work [2] propose DMRM which has a dual-channel to capture the
question- and history-aware image features and the question- and image-aware
dialog history features by a multi-hop reasoning process in each channel.

However, these models basically either omits relations between visual objects
or merely allows for implicit relations. Due to the heterogeneity between textual
modality and visual modality, it is necessary to introduce explicit relations, like
spatial relation and semantic relation.

3 Background

In this section, we introduce relation-aware graph attention networks (RGATs)
for the graphs with labeled edges, which are the basis of our proposed model.

RGAT is a special type of networks that operates on graph-structured data
with attention mechanisms. Given a graph G = (V, E), where V and E are the
set of nodes xi and the set of edges eij , respectively. Each edge has an edge type
τe

1, which represents the relation between xi and xj . N (xi) denotes the nodes
which are directly connected by xi. N+(xi) is the set including xi and all its
direct neighbors. we have N+(xi) = N (xi) ∪ {xi}.

Each node xi in the graph has an initial feature h0
i ∈ R

d, where d is the
feature dimension. The representation of each node is iteratively updated by the
graph attention operation. At the l-th step, each node xi aggregates context
1 For brevity, we use τe to denote τeij .
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information by attending over its neighbors and itself. The updated representa-
tion hl

i is calculated by the weighted average of the connected nodes:

hl
i = σ

⎛
⎝ ∑

xj∈N+(xi)

αl
ij

(
Wl

0h
l−1
j + γe

)
⎞
⎠ , (1)

where σ(·) is a nonlinear activation function, e.g. ReLU, and the attention coef-
ficient αl

ij is calculated as:

αl
ij = softmaxj

((
Wl

1h
l−1
i

)T (
Wl

2h
l−1
j + βe

))
, (2)

where Wl
0, Wl

1 and Wl
2 ∈ R

d×d are learnable parameters for projections. γe

and βe are bias terms for edge type or relation τe.
For brevity, we use RGAT(·) to denote the function shown in Eq. (1), i.e.

hl
i = RGAT

(
hl−1
i ,

{(
hl−1
j , τe

) |xj ∈ N+(xi)
})

. (3)

When each edge doesn’t have the edge type, or we don’t take the edge type
into consideration, the bias items γe and βe will be obmitted in Eq. (1) and Eq.
(2). RGAT will degenerate into vanilla graph attention network (GAT), which
is denoted by GAT(·). Accordingly, Eq. (3) is revised as follows,

hl
i = GAT

(
hl−1
i ,

{
hl−1
j |xj ∈ N+(xi)

})
. (4)

4 Proposed Model

Fig. 1. Model architecture overview. From left to right are Encoders for both modali-
ties, the Multi-hop Reasoner (MR) and the Answer Ranker (AR). The MR will do rea-
soning process for T times, where T is a hyper-parameter. Bolded letters like H,D,Q,A
etc. denote feature tensors, and their details will be explained in following paragraphs.
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Our proposed model can be divided into three parts: Encoders (Enc), Multi-hop
Reasoner (MR) and Answer Ranker (AR). In which, the Multi-hop Reasoner
consists of three parts also: History Aware Dialog Encoder (HADE), Rela-
tion Aware Image Encoder (RAIE) and Recurrent Attention Manager (RAM).
Figure 1 illustrates the overview of R2N.

4.1 Encoders

Cross-Modal Encoders. Visual-linguistic multi-modal pretrained models
have significantly improved the performance in visual-textual tasks. ViL-
BERT [13], which is the original one, uses a two-stream structure to model visual
and textual streams separately and then use cross-attention mechanism to do
alignment and fusion on the two streams. We use it as one encoder alternative.
OSCAR [11] uses objects’ tags as additional information to facilitate modality
fusion. We use it as our second alternative. Both of them output a sequence
containing visual features and textual features.

Outputs of Encoders. For brevity, we use O = {H,V} to denote the outputs
of encoders, where H = {hi}Mi=1 ∈ R

M×dhidden is textual features and V =
{vj}Nj=1 ∈ R

N×dhidden is visual features, and M is the number of textual features
while N is the number of visual features. Then pooled features are gained for
both modalities with linear layers and are denoted by h (textual) and v (visual).
With mask matrices, we can split H’s rows into sections corresponding to the
question (Q), the dialog history (D) and an answer candidate (A).

4.2 Multi-hop Reasoner

Multi-hop reasoner is comprised of three sub-modules - History Aware Dia-
log Encoder (HADE), Relation Aware Image Encoder (RAIE) and Recurrent
Attention Manager (RAM). History Aware Dialog Encoder extracts dialog his-
tory relating to the current query, and Relation Aware Image Encoder captures
object features as well as relations between objects based on dialog history and
question. Recurrent Attention Manager introduces the explicit multi-hop reason-
ing process in reference resolution and carries out the modal fusion operation.

History-Aware Dialog Encoder. In this section, we describe the history-
aware dialog encoder (HADE). Similar to the REFER module from [7], relevant
history is extracted by attention mechanism. We then use pooled textual rep-
resentation h as query key to obtain the useful information hc from dialogue
context,

hc = GAT (h,D) . (5)

where h represents the contextual vector and D is the dialog history matrix,
each of its column di is one token’s representation in dialog history.
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Finally, we obtain the history-aware question representation ĥ by:

ĥ = hc ⊕ h. (6)

For brevity, we denote above process as the following function:

ĥ = HADE(h,D). (7)

Relation-Aware Image Encoder. Relation-aware Image Encoder (RAIE)
aims to extract object features and capture relations between objects from the
image. Inspired by the works [12] and [10], we define three kinds of relations:
semantic relation, spatial relation and implicit relation. An example is shown in
Fig. 2.

Fig. 2. Visual objects are boxed in (a), the features of each visual object in (a) consist
of size, position, region feature and spatial feature. (b–d) illustrates three types of
relation graph attention networks, where the nodes are corresponding to visual objects
shown in (a) and the edges are relations. Implicit relations imply a complete graph
while semantic relations and spatial relations are not. For semantic relations, it means
no predicate relations between two visual objects; for spatial relations, it means the
two visual objects are too distant to form any spatial relations.

Graph Initialization
For each visual object oi, we concatenate its feature vi with the output of HADE,
namely ĥ, to obtain the object’s initial representation ôi in each graph. We
anticipate that textual information will be integrated into visual scene graphs
via this method. Specifically, this process can be represented as follows:

ôi = ĥ ⊕ vi, (8)

where ⊕ means a concatenation operation.

Semantic Relation
We use τsem

e to denote the semantic relation between object oi and object oj .
For instance, in Fig. 2(c), the directed relation between player and racket is hold.
The task to extract such directional relation can be formulated as a classifica-
tion task [10,16] and we implement a multi-label classifier to note semantic
relations between image regions with totally 15 labels including a special label
“none”. With the relation information, we can first build a semantic relation
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graph Gsem = (O, Esem), and then obtain the representation gsem
i of each node

oi using RGAT(·) function shown in Eq. (3),

gsem
i = RGAT

(
ôi,

{
(ôj , τsem

e ) |oj ∈ N+
sem(oi)

})
, (9)

where N+
sem(oi) is the set including oi itself and all its direct neighbors in Gsem.

Spatial Relation
Spatial relation τspa

e is a type of relation which indicates the relative position,
distance, intersection and some other spatial features of two objects. As shown
in Fig. 2(d), the directed spatial relation between player and ball is left, because
the ball is in left of the player in Fig. 2(a). Similarly, with the spatial relation
information, we can first build a spatial relation graph Gspa = (O, Espa), and
then obtain the representation gspa

i of each node oi,

gspa
i = RGAT

(
ôi,

{
(ôj , τspa

e ) |oj ∈ N+
spa(oi)

})
, (10)

where N+
spa(oi) is the set including oi itself and all neighbors in Gspa. It’s notable

that the parameters of RGAT(·) in Eq. (10) is different from that in Eq. (9).

Implicit Relation
To model relations between nodes that are not directly connected, we build a
third graph Gimp = (O, E imp). In this graph, we assume that there is an implicit
relation τ imp

e between every pair of nodes oi and oj , i.e. Gimp is a fully connected
graph without labels for edges. Using GAT(·) function shown in Eq. (4), we can
obtain the representation gimp

i of each node oi,

gimp
i = GAT (ôi, {ôj |oj ∈ O}) . (11)

With three representations gsem
i , gspa

i and gimp
i , we can obtain the represen-

tation gi of each object oi as follows,

gi = W
(
gimp
i ⊕ gspa

i ⊕ gsem
i

)
, (12)

where W is a projection matrix. The representation gi contains not only image
information, but also dialogue context and question information. For brevity, we
denote above process as the following function,

gi = RAIE
(
ĥc, {vj |oj ∈ O} , Gsem, Gspa, Gimp

)
. (13)

Recurrent Attention Manager
Recurrent Attention Manager (RAM) maintains a global state xt and updates
it with fused multi-modal information ht using LSTM, i.e.,

xt = LSTMCell (ht,xt−1) . (14)

We take the pooled textual representation h as the initial state x0. The fused
multi-modal information ht is calculated with three steps. The first step is to
obtain useful information from dialogue context D,

ĥ = HADE (xt−1,D) , (15)
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the second step is to fuse text information ĥ with image information using
relation-aware image encoder RAIE(·), i.e.,

v̂ = RAIE
(
ĥ, {vj |oj ∈ O} , Gsem, Gspa, Gimp

)
. (16)

And finally the third step is the Multi-modal factorized bilinear pooling (MFP)
function [18]:

MFP(a,b) = SumPooling(UTa ⊕ VTb, k), (17)

ht = MFP(ĥ, v̂), (18)

where the operation SumPooling(x, k) means using a one-dimensional non-
overlapped window with the size k to perform sum pooling over x. MFP is
adopted because of its well performance in the VQA task [1,18].

At each iteration, the global state contains more information and makes the
history encoding process more specific, thus the module can perform reason-
ing with much longer dependency. The final output will be hT , T is a hyper-
parameter that controls total runs of context updating.

4.3 Answer Ranker

Answer Cluster. Traditional methods calculate the similarity between a cer-
tain answer candidate and the output of contextual representation encoder
directly. We attempt to first perform a clustering operation to get several clus-
tering centers instead. We anticipate that each clustering center represents a
group of semantically-similar answers so that these answers can be ranked with
higher scores or lower scores simultaneously. In this way, the model can gain a
better score on NDCG, which is indicated in the Experiments Sect. 5.3.

In details, we use a conventional clustering algorithm Gaussian Mixture
Model (GMM) to achieve our goal. Given an answer candidate, GMM can out-
put its corresponding clustering center, which has the same dimension and shape
as the answer candidate. Specifically, we denote above process as the following
function,

âi = GMM(ai), (19)

where the âi represents the clustering center of ai and ai is the pooling feature
of the answer candidate from the sequence feature A.

Scores Ranker. Given the candidate answer list and the corresponding clus-
tering centers, and final contextual representation hT , answer ranker computes
the probability of choosing each answer by:

p = softmax (EaWehT ) , (20)

where We is a learnable parameter and the ith row of Ea, ei, is the representation
of ith answer candidate, which is calculated as follows,

ei = âi + ai. (21)

Here p represents a probability distribution over candidate answers. Finally, they
are ranked in descending order by these probability values.
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5 Experiment

Table 1. Retrieval performance on two major metrics on dataset VisDial v1.0 - Mean
Rank of human Response (MRR), Normalized Discounted Cumulative Gain (NDCG),
and other metrics. The higher the better for NDCG, MRR and R@k, while the lower
the better for Mean rank. * indicates the result is implemented by ourselves.

Name Dense Cluster MRR↑ NDCG↑ R@1↑ R@5↑ R@10↑ Mean↓
Attention-based Methods

DAN [7] 63.20 57.59 49.63 79.75 89.35 4.30

DAN* � 61.37 60.21 47.23 77.79 85.92 4.77

Multi-hop reasoning methods

ReDAN [5] 53.74 64.47 42.45 64.68 75.68 6.64

Graph-based methods

DualVD [6] 63.23 56.32 49.25 80.23 89.70 4.11

FGA [15] 63.70 52.10 49.58 80.97 88.55 4.51

Pretrained models

ViLBERT [13] 67.50 63.87 53.85 84.68 93.25 3.32

ViLBERT [13] � 50.74 74.47 37.95 64.13 80.00 6.28

OSCAR* [11] 67.37 66.21 50.22 84.09 92.13 3.42

OSCAR* [11] � � 55.23 71.94 44.09 73.21 81.34 6.03

(ours)

R2N + ViLBERT 67.92 64.77 53.91 84.77 93.38 3.30

R2N + ViLBERT � � 54.29 74.63 43.13 73.86 80.03 5.97

R2N + OSCAR 68.01 66.38 53.21 84.36 93.41 3.26

R2N + OSCAR � � 55.29 72.82 43.93 73.00 80.96 6.05

Table 2. Ablation Study on RGAT. The evaluation metric is MRR. Results are from
the model R2N + ViLBERT

w/o RGAT Implicit only Semantic only Spatial only All

67.54 67.63 67.82 67.71 67.92

5.1 VisDial Dataset and Metrics

We evaluate our proposed model on the VisDial v1.0 dataset [4]. For each ques-
tion, the dialog agent is given 100 candidate answers. Four kinds of evaluation
metrics are used for retrieval performance: (1) MRR (Mean Rank of human
Response), (2) R@k (the existence of human response in top-k ranked), (3)
NDCG (Normalized Discounted Cumulative Gain) [3,4], (4) Mean, mean rank
of all cases.

Previous work [14] found that the dense annotations in VisDial can lead to
better performance on NDCG metrics but may hurt MRRs, which highlights
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Table 3. Ablation Study on the number of multi-hops on R2N + ViLBERT

No. hops 1 2 3 4

MRR 67.59 67.83 67.92 67.97

Time sec./iter 8.34 11.23 14.09 16.94

a trade-off between them. It is due to dense annotations not correlating well
with ground-truth answers to questions. Based on this, we firstly train R2N on
the train split of VisDial, and then fine-tune it on dense annotations. There-
fore, models that can perform better on either MRR or NDCG are obtained
respectively.

5.2 Implementation Details

Relation Aware Image Encoder. We use regions of interest (ROI) extracted
from VinVL [19] for OSCAR. Each image consists of 1-100 ROI(s), and every
pairs of ROIs are connected with directional relations as aforementioned. These
relations are extracted from a relation encoder, which is a simple classifier whose
inputs are features from two certain ROIs and output is a relation label.

Graph Attention Networks. In HADE module, we use multi-head attention
with 8 heads and 2 layers in GAT, and the hidden size is 512. In RAIE module,
multi-head attention with 4 heads and 2 layers is used, in RGAT.

Training Details. We minimize the cross-entropy loss in training and use
Adam [8]. Due to the restriction of GPU memory, we can not train R2N on
the whole candidate list with a size of 100, and hence we sample one positive
example and two negative examples in every turns. However, we have to fit
the GMM with a full list of answer candidates. Depending on this, every sev-
eral rounds, we cancel the sampling mechanism and input all 100 answers for
training.

5.3 Quantitative Results

Baselines. We compare our proposed approach with several models shown in
Table 1. Among them, DAN executes the single-hop reasoning with cross modal-
ity, simply using cross-modal representation as the context vector. ReDAN uti-
lizes dual attention mechanism as well. It is a similar multi-hop reasoning model
to ours, but it neglects relations between visual objects. Moreover, two pretrained
models, i.e. ViLBERT and OSCAR are compared as well because our method
is based on them. We also tried other Visual-Linguistic Pretrained models but
they cannot achieve better results so we didn’t list them above.

Main Results. R2N with ViLBERT outperforms all other approaches on
NDCG with the value of 74.63, in which dense annotations and clustering mech-
anism are used for fine-tuning. Higher NDCG means more semantically-correct
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answers but not only the ground truth answer are ranked higher. Without the
two tricks above, R2N with OSCAR can achieve the best result on MRR, 68.01,
which indicates that the ground truth answer is ranked higher on average. In
the two cases, our model also achieves comparable results on other metrics. We
also collect results of original OSCAR [11], so that we can compare the results
between original OSCAR and R2N + OSCAR and find that R2N can improve
OSCAR’s result. In addition, we analyse the effectiveness of answer candidate
cluster method on DAN and as shown it improves the result on NDCG.

Results with Different Types of Relations. To validate the effectiveness
of relation-aware reasoning, we equip R2N with RGAT of varied relations. To
facilitate comparison, we test the model without RGAT as the baseline tem-
porarily in this part, accompanying with each single type of relations adopted
individually for other three models. Model with all the three types of relations
is evaluated for comparison as well.

Results in Table 2 indicate that all types of relations take effect depending
on the MRRs. Especially, the semantic relation has the greatest influence among
them, since the RGAT with semantic relation has fewer edges. This is because
predicate relations are sparser in comparison with spatial relations and implicit
relations and therefore it has more information according to the entropy theory.
Furthermore, the model with all three types of relations achieves the best MRR
with 0.38 improved, which implies different types of relations have a combined
effect on feature extraction of visual objects.

Results with Different Numbers of Hop. Table 3 demonstrates the influ-
ence of the number of multi-hops on the performance. It can be seen that an
increase in the number of multi-hops can improve the performance on MRR.
Although increasing the number can improve the performance of the model, it
also significantly increases the training time and memory footprint, so we only
take the model with a hop count of 3 as the final model. Model with over 4 hops
will meet the out-of-memory error on our servers.

6 Conclusion

We introduce R2N for visual dialog task. R2N executes multi-hop reasoning to
resolve visual co-reference and ground textual information on image features.
It also takes relation-aware visual information into account. The experimental
results show that R2N outperforms various baselines in this task.
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Abstract. In the past decade, sarcasm detection has been intensively conducted
in a textual scenario. With the popularization of video communication, the anal-
ysis in multi-modal scenarios has received much attention in recent years. There-
fore, multi-modal sarcasm detection, which aims at detecting sarcasm in video
conversations, becomes increasingly hot in both the natural language process-
ing community and the multi-modal analysis community. In this paper, consid-
ering that sarcasm is often conveyed through incongruity between modalities
(e.g., text expressing a compliment while acoustic tone indicating a grumble), we
construct a Contrastive-Attention-based Sarcasm Detection (ConAttSD) model,
which uses an inter-modality contrastive attention mechanism to extract several
contrastive features for an utterance. A contrastive feature represents the incon-
gruity of information between two modalities. Our experiments on MUStARD,
a benchmark multi-modal sarcasm dataset, demonstrate the effectiveness of the
proposed ConAttSD model.

Keywords: Sarcasm detection · Multi-modal analysis · Contrastive attention

1 Introduction

Sarcasm is a form of communication in which the speaker intends to communicate a
contradictory situation or the opposite meaning of what is literally said. Understanding
sarcasm often uses a highly complex structure of multi-modal signals [1]. For example,
we employ three communicative modalities in a coordinated manner to convey our
intentions: language (spoken words), vision (gestures), and audio (voice). Therefore,
it is important to do multi-modal sarcasm detection that recognizes sarcasm in videos,
where the three modalities are present.

According to the studies of multi-modal affective analysis (i.e., sentiment detection,
emotion detection), there are dual dynamics in human communication: intra-modality
dynamics and inter-modality dynamics [2]. Intra-modality dynamics refer to dynamics
within each modality, and inter-modality dynamics refer to dynamics between modal-
ities. Sarcasm detection needs the dual dynamics to find incongruity which is either
from multiple modalities in an utterance or from the context of an utterance [1]. For
example, there are two sarcasm cases in Fig. 1. The sarcasm in Fig. 1(a) is conveyed
by an inter-modality incongruity, where the text indicates a compliment while the facial
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expressions show a disagreement. The sarcasm in Fig. 1(b) is expressed by a textual
incongruity, where the sentence including “ugly” and “itchy” is indicative of negative
sentiment, while the sentence including “favorite” gives a positive sentiment.

Although several studies [1, 3] have investigated multi-modal sarcasm detection,
there are remaining several unsolved research problems. One crucially problem lies
in the modeling of the incongruity between modalities in an utterance. Inter-modality
incongruity often plays an important role in sarcasm detection, e.g., the sarcasm in
Fig. 1(a) is noticed through the contrast between the language modality and the visual
modality. However, to our best knowledge, the feature extraction of the inter-modality
incongruity has not yet been explored in multi-modal analysis. Therefore, more efforts
are required for multi-modal sarcasm detection.

Fig. 1. Incongruity in sarcasm

To address the issue, we propose a Contrastive-Attention-based Sarcasm Detection
(ConAttSD) model, which utilizes a contrastive attention mechanism [4, 5] to extract
inter-modality incongruent information for multi-modal sarcasm detection. As shown
in Fig. 1(a), in the feature space of the focused utterance, the features learned from the
vision and audio should be similar, whereas the features learned from the text and vision
should be different. Thus, we design an inter-modality contrastive attention mechanism,
which produces opponent attention weights for a directed bi-modal variant (e.g., text →
audio), and then generate a contrastive feature to represent the incongruity between the
two modalities.

Overall, our main contributions can be summarized as follows:

– We design a Contrastive-Attention-based Sarcasm Detection (ConAttSD) model to
detect sarcasm in video conversations.
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– We propose an inter-modality contrastive attention mechanism to extract contrastive
features to represent the incongruity between modalities. These contrastive features
can effectively facilitate the detection of sarcasm.

– Experiments on MUStARD (a benchmark multi-modal sarcasm dataset) demonstrate
the effectiveness of our ConAttSD model for multi-modal sarcasm detection.

2 Related Work

2.1 Sarcasm Detection

The studies of sarcasm detection in the textual scenario have been intensively carried out
for many years. In general, text-based sarcasm detection can be divided into rule-based,
statistical-machine-learning-based, and deep-learning-based.

Rule-based sarcasm detection [6, 7] mainly aims to detection sentiment polarity
inconsistency using different rules. Sentiment polarity inconsistency refers to two senti-
ments that are contradictory in their polarity (i.e., negative vs. positive). For example, the
sarcasm in Fig. 1(b) is expressed by sentiment polarity inconsistency. Sarcasm detection
based on statistical machine learning mainly focused on feature extraction. In general,
features are extracted from two perspectives [8]: the characteristics of sarcasm expres-
sions in different-level texts (i.e., special symbols, morphology, syntax) and sentiment
polarity inconsistency. In recent years, sarcasm detection based on deep learning has
been explored, which uses different deep neural networks (DNNs) to extract various
types of textual information. [9] used a bidirectional recurrent neural network to extract
the representation of contextual information. [10] utilized multiple pre-trained models
(involving emotion, sentiment, personality, etc.) to help feature extraction. [11] used
two complementary adversarial learning methods to improve sarcasm detection. [12]
pre-trained the BERTmodel to extract representations with more emotional information
to help sarcasm detection.

Recently, there are concerns about sarcasm detection in multi-modal scenarios. [1]
provided MUStARD, a sarcasm dataset on video conversations, and [3] assigned affec-
tive labels (sentiment and emotion) to each utterance in MUStARD. Moreover, [3]
treated an utterance and its historical context as a whole by concatenating operations and
then used two attention mechanisms (i.e.,inter-segment inter-modal attention and intra-
segment inter-modal attention) to model inter-modality dynamics. In this paper, accord-
ing to the characteristics of sarcasm expressions in videos, we focus on the extracting
of incongruent information between modalities in an utterance.

2.2 Multi-modal Affective Analysis

Multi-modal affective analysis is an important task in the multi-modal analysis commu-
nity, which generalizes text-based sentiment detection or emotion detection to videos.
The challenge in the multi-modal affective analysis is how to effectively model inter-
modality dynamics. In general, the inter-modality modeling methods are designed for
two scenarios: monologue and dialogue.

In amonologue scenario, themodeling ofmulti-modal interactive informationmostly
focuses on the exaction of sequential context information along the time axis. [2]
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proposed a tensor fusion network that can capture the interactive information of any
modal combination. Subsequently, the networkwas strengthened so that themulti-modal
sequence information that changes over time can be dynamically obtained [13, 14]. [15]
proposed a sequence-to-sequence translation model to extract multi-modal interaction
information during the translation from one modality to another modality. [16] used
Transformers [17] to model each modality and used its multi-head attention mechanism
to capture multi-modal interaction information.

In a dialogue scenario, the affective state of a speaker is the result of the interaction
of multiple factors (e.g., contextual information, previous affective state, the expres-
sion styles of the speaker). Therefore, in addition to the sequential context information,
[18] used memory networks to separately model the contextual information of different
speakers in dialogue. [19] used the GRU network [20] to separately model the emotions
of different speakers. [21, 22] used graph convolutional networks to simultaneously
model the emotions of different speakers. [23] proposed two-layer Transformers, which
uses Transformers to extract and modulate intra-modality information. In this paper,
besides the modeling of sequential contexts and speakers in a dialogue, we mainly deal
with inter-modality incongruity in an utterance, which is a specific research issue for
multi-modal sarcasm.

3 Methodology

3.1 Overview

In this section, we describe our proposed ConAttSD model for multi-modal sarcasm
detection. Suppose that a conversation has proceeded for t turns so far with the utterance
sequence Si = {u1, u2,…, ui}, the i-th utterance ui is ready to be tested, and the other
utterances are its historical context. The goal of our multi-modal sarcasm detection is to
assign a binary label (1: sarcasm; 0: no sarcasm) to ui conditioned on ui and its historical
context.

Specifically, as illustrated in Fig. 2, our ConAttSD model comprises two encoders
(sequential context encoder and contrastive-attention-based encoder) and one decoder.
The sequential context encoder dynamically captures intra-modality influence trans-
mitted along with the conversation, and the contrastive-attention-based encoder extracts
incongruent information between modalities in ui by an inter-modality contrastive atten-
tion mechanism. Then, a linear decoder assigns a sarcasm label to ui according to its
representation.
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Fig. 2. The overview of our multi-modal sarcasm detection

3.2 Utterance Representation

Each utterance is represented by three vectors: a textual feature T for linguistic content
(text), an acoustic feature A for acoustic characteristics (audio), and a visual feature V
for visual information (vision).

Textual Feature Extraction
Textual feature T is generated by a pre-trained BERT model [24] and the dimension is
768 (dt = 768).

Acoustic Feature Extraction
The library Librosa [25] is used to extract acoustic features, including Mel-frequency
cepstral coefficients (MFCCs), pitch tracking and voiced/unvoiced segmenting features,
peak slope parameters, and maxima dispersion quotients. The average of the acoustic
features for the focused utterance is used as acoustic feature A, and the dimension is 298
(da = 298).

Visual Feature Extraction
A pre-trained Resnet-152 [26] is used to extract a visual feature for a visual frame. The
average of visual features of all frames in the focused utterance is used as visual feature
V, and the dimension is 2048 (dv = 2048).

3.3 Sequential Context Encoder

Since conversations are highly sequential in nature and contextual information flows
along a sequence of utterances, we propose a sequential context encoder to model the
inter-modality influence between these utterances. As shown in Fig. 2, there are two
sub-encoders used in the sequential context encoder: a GRU-based encoder which uses
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GRU [20] to extract sequential context information, and a Transformer-based encoder
which applies Transformers [17] to the vector output from the GRU-based encoder.

In the GRU-based encoder, we adopt the inter-modal influence modeling proposed
by [27] formulti-modal sentiment detection. For utterance ui, global state gmi and speaker
state qms(ui),i interact together to represent both utterance ui and speaker s(ui) (i.e., the
speaker of the utterance ui), respectively. Notice that a global state gmi is actually a kind
of sequential context information for utterance ui. Formally, both the global state and
the speaker state are iteratively updated as follows.

gmi = GRUm
G

((
umi ⊕ qms(ui),i−1

)
, gmi−1

)
(1)

qms(ui),i = GRUm
P

((
umi ⊕ cmi

)
, qms(ui),i−1

)
(2)

where m ∈ {T ,A,V } is the modality, gmi denotes the global state representation of i-th
turn utterance for the modality m, qms(ui),i denotes the speaker state representation at i-th
turn utterance for the modalitym, cmi is the context representation of i-th utterance using
a dual influence network, which includes both intra-modal and inter-modal information.

In the Transformer-based encoder, we extractmore effective sequential context infor-
mation using Transformers, which have shown superior performance in capturing long-
range dependency thanRNNmodels.ATransformer is composed of a stack ofB identical
blocks, and each block has two sub-layers (including a multi-head self-attention mech-
anism and a Multi-Layer Perceptron) with a residual connection, as shown in Eq. 3. In
this paper, we use a Transformer to capture the dependency inside the global state gmi
(m ∈ {T ,A,V }) and output a sequential context vector hmi for utterance ui, as illuminated
in Fig. 2.

y = LayerNorm(x + Sublayer(x)) (3)

3.4 Contrastive-Attention-Based Encoder

To extract the incongruent information between multiple modalities for sarcasm detec-
tion, we propose an inter-modality contrastive attention mechanism that applies the
contrastive attention mechanism to the three sequential context vectors (hTi , h

A
i and hVi )

outputted from the sequential context encoder.

Contrastive Attention
The contrastive attentionmechanism,which attempts to capture irrelevant or less relevant
parts between two vectors, was proposed by [4] for person re-identification (a computer
vision task), and then used for text summarization (an NLP task) by [5]. In fact, the
contrastive attention mechanism is transformed from the self-attention mechanism used
in Transformers.

Specifically, given three input vectors Q, K and V, the self-attention mechanism is
defined by Eq. 4, and the contrastive attention mechanism is defined by Eq. 5–7. First,
the attention weights ac is calculated by Eq. 5. Then, the opponent attention weights ao is
obtained through the opponent function applied on ac followed by the softmax function,
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as shown in Eq. 6. Compared to the conventional attention weights ac which capture the
most relevant part between Q and K, the opponent attention weights ao focuses on their
irrelevant parts. Lastly, a contrastive vector is generated by Eq. 7, which is the weighted
sum of elements of V and the weights are the opponent attention weights.

y = softmax

(
QKT

√
dk

)
V (4)

ac = softmax

(
QKT

√
dk

)
(5)

ao = softmax(1 − ac) (6)

r = aoV (7)

where Q, K, V are queries, keys and values, respectively, and dk is the dimension of K.

Inter-modality Contrastive Attention
In an inter-modality contrastive attention, a directed bi-modal variant (e.g., T → A :
Q= hTi and K = hAi ) is used as its inputs, and an inter-modality contrastive vector (e.g.,
rT→A
i ) is generated for utterance ui. First, opponent attention weights are learned by
Eq. 6. Then, the opponent attention weights are applied to a modality (e.g., V = hAi ) to
produce the inter-modality contrastive vector by Eq. 7.

As shown inFig. 2, our contrastive-attention-based encoder takes the textualmodality
as the anchor modality, and generates two directed bi-modal variants (i.e., T → A and
T → V ) as input for two inter-modality contrastive attentions, respectively. Then, two
inter-modal contrastive vectors (i.e., rT→A

i and rT→V
i ) are generated, where an inter-

modal contrastive vector (e.g., rT→A
i ) represents the incongruity in its corresponding

input bi-modal variant (e.g., T → A). Thus, through the two inter-modality contrastive
attentions, text can be effectively contrasted with information from audio and vision,
respectively.

3.5 Linear Decoder

As illuminated in Fig. 2, the three sequential context vectors from the sequential context
encoder and the two inter-modal contrastive vectors from the contrastive-attention-based
encoder are concatenated as Eq. 8. Then, the final vector βi is feed to a softmax classifier
to obtain the sarcasm label of utterance ui.

βi =
[
hTi , hAi , hVi , rT→A

i , rT→V
i

]
(8)
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4 Experiment

4.1 Setup

Datasets
In our experiment, we use a benchmark Multimodal Sarcasm Detection Dataset (MUS-
tARD) provided by [1] for multi-modal sarcasm detection. The dataset was collected
from 4 popular TV Series: Friends, the Big Bang Theory, the Golden Girls, and Sarcas-
maholics Anonymous. There are totally 690 samples (i.e., conversations) with an even
number of sarcastic and non-sarcastic samples, and the utterances in each sample consist
of three modalities: vision, audio, and text.

Moreover, there are two experimental setups to use MUStARD for the sarcasm
detection [1]: speaker-dependent and speaker-independent. Compared to the speaker-
dependent scenario, the speaker-independent setup is more challenging because it pre-
vents the detection model using registered speaker’s specific information and requires
the model with a higher degree of generalization. Since it is often a case that a un-
registered speaker appears in a video conversation, we work on the sarcasm detection
with the speaker-independent setup in this paper. Specifically, the speaker-independent
dataset split is used in our experiment, where videos from The Big Bang Theory, The
Golden Girls, and Sarcasmaholics Anonymous are served as the training set and videos
from Friends are used as the testing set. Moreover, the performances are evaluated by
three metrics: precision (P), recall (R), and F1-score (F1).

Baselines
We compare our proposed approach with the following two models using different
encoders.

– Two-attention-based encoder: This is a multi-task learning system developed by [3] to
detect simultaneously detect sarcasm, sentiments, and emotions. For each modality,
the focused utterance and its historical context utterances are concatenated as an input
utterance. Then, two attention mechanisms (i.e.,inter-segment inter-modal attention
and intra-segment inter-modal Attention) are applied to model inter-modality dynam-
ics for the input utterance. Lastly, a multi-task learning framework is used based on
inter-modality interactive information.

– GRU-based encoder: This is a pure sarcasm detection system, which concatenates
three global states fromourGRU-based encoder (i.e., gTi , g

A
i and gVi ) to detect sarcasm

in the focused utterance.

Implementation Details
While training, we use the Adam optimizer [28] to update all hyper-parameters. Each
training batch contains 64 conversations, and the learning rate is set to 0.0001. For GRU,
to reduce over-fitting, dropout [29] is applied, and it is set 0.5. The size of the hidden
representations is 150. For Transformers, the number of blocks B is set to 3, and the
number of heads is 6.
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4.2 Results and Analysis

Model Comparison
We first compare our ConAttSD model with the two baseline models, and list the
performances in Table 1.

Table 1. Sarcasm detection results of different models.

P R F1

Two-attention-based encoder [3] 71.51 71.35 70.46

GRU-based encoder 71.69 70.90 70.82

Sequential Context Encoder (GRU + Transformer) 72.32 72.32 72.26

ConAttSD
(GRU + Transformer + Contrastive Attention)

74.46 74.01 73.97

Table 2. Sarcasm detection results of the sequential context encoder using different modalities.

P R F1

Uni-modal T 53.38 53.39 53.39

A 67.99 67.23 66.52

V 71.42 71.19 71.19

Multi-modal T + A 60.38 60.45 60.35

T + V 70.42 70.34 70.35

A + V 73.17 72.03 71.89

T + A + V 72.32 72.32 72.26

Table 3. Sarcasm detection results of the contrastive-attention-based encoder using different bi-
modal variants.

P R F1

T → A 71.24 71.19 71.07

A → T 71.51 70.90 70.85

T → V 70.29 70.06 70.06

V → T 72.19 72.97 72.58

A → V 70.66 70.34 70.33

V → A 70.91 70.62 70.62

Optimal:
T → A + T → V

74.46 74.01 73.97
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In Table 1, ConAttSD significantly outperforms the two baseline systems. E.g.,
compared to the best baseline system (i.e., the GRU-based encoder), the F1 score
of ConAttSD rises by 3.51%. Specifically, the F1 score rises by 1.44% (from
70.82% to 72.26%) through incorporating the Transformer-based encoder and further-
more increases 1.71% (from 72.26% to 73.97%) by adding the contrastive-attention-
based encoder. This indicates that our Transformer-based encoder and contrastive-
attention-based encoder can effectively extract sequential context information and the
inter-modality incongruent information.

Moreover, from Table 1, we observe that although the baseline model, the two-
attention-based encoder, adopts a multi-task learning framework to use richer label
information (sentiment, emotion, and sarcasm), its performance is still not comparable
to the one of ConAttSD whose input is only sarcasm labels. This indicates that how to
effectively combine affective information and sarcasm for multi-modal analysis needs
more investigation.

Modality Comparison
To further explore the effects of the threemodalities for ourConAttSDmodel,weperform
an in-depth analysis of the sequential context encoder and the contrastive-attention-based
encoder with different modalities, respectively.

First, we evaluate our sequential context encoder with all possible inputs: uni-modal
variants (i.e., T, A, and V ), bi-modal variants (i.e., T + A, T + V, and A + V ), and a
tri-modal variant (i.e., T + A + V ), the performances are shown in Table 2. In Table 2,
the model with the visual modality achieves the best performance among the unimodal
variants. Furthermore, the addition of acoustic modality (i.e., A + V ) slightly improves
the uni-modal baseline (from 71.19% to 71.89% in F1 scores). Finally, the tri-modal
variant achieves the best performance (72.26% in F1 scores).

Then, based on the optimal sequential context encoder whose input is T + A +
V, we evaluate our contrastive-attention-based encoder with all possible inputs. Notice
that the inter-modality contrastive attention requires exactly two modalities, and any
directed bi-modal variant (e.g., A → T ,A → V ) can serve as input to the inter-modality
contrastive attention. The performances are listed in Table 3. In Table 3, the model input
with either V → T or T → A achieves good performances among these directed bi-
modal variants. E.g., the F1 score is 72.58% for V → T and 71.07% for T → A. This
indicates that texts that look seemingly straightforward is noticed to contain sarcasmonly
when vocal tonality and facial expressions are taken into account. After searching all
possible combinations of the directed bi-modal variants, we find that the model with the
two directed bi-modal variants (i.e., T → V and T → A) achieves the best performance
(73.97% in F1 scores).

5 Conclusion

In this paper, we propose a novel Contrastive-Attention-based Sarcasm Detection
(ConAttSD) model for multi-modal sarcasm detection. Experimental results indicate the
capability of our ConAttSD in capturing inter-modal incongruent information by inter-
modality contrastive attention. In the future, wewould like to investigate the combination
of sarcasm and affective information for multi-modal analysis.
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