
Chapter 46
Euler Buckling and Minimal Element
Length Constraints in Sizing and Shape
Optimization of Planar Trusses

Nenad Petrovic , Nenad Marjanovic , and Nenad Kostic

Abstract Structural optimization of trusses is a complex process and requires a
realistic representation of the problem in order to achieve applicable results. In addi-
tion to using typical constraints such as minimal and maximal allowable stress and
minimal displacement, in this paper dynamic constraints for Euler bucking have
been used as well as minimal element length constraints for shape optimization. As
shape variables can give short, impractical elements or even be in the same location,
making the element length effectively 0, the minimal length constraint ensures that
solutions can be produced. These constraints were used on a standard test examples
with 10 and 47 bars using genetic algorithm optimization. Shape optimization results
are compared to results of simultaneous sizing and shape optimization.
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46.1 Introduction

Researchers in the field of structural optimization have redirected their focus on
the benefits of using different optimization methods to find optimal structures using
existing constraint models. This approach has led to marginal improvements in the
time needed to achieve results, but the problems being solved still do not represent
realistic problem requirements. In order to have optimization results directly appli-
cable in practice the mathematical model must represent all factors which are used
in conventional design. Specifically in truss design there are numerous factors which
still need to be addressed and implemented in the optimization process in order to
make results practically applicable. In recent years authors of have made the tran-
sition from using the simpler and less accurate fixed buckling constraints to using
Euler buckling dynamic constraints or other dynamic buckling constraints.

Authors in [1, 2] used different optimization methods to achieve minimal weight
results using Euler buckling constraints with continuous cross-section variables. In
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[3, 4] researchers compared the effects on results between mathematical models
which don’t use buckling constraints and ones which use dynamic constraints for
buckling and continuous cross-section variables. A key factor in defining sizing
optimization problems is cross-section variable definition. In practice, continuous
cross-sections are not practically applicable, which is why authors in [5, 6] presented
a comparison of optimal results for models which use continuous versus discrete
cross-section variables. Most recently in [7] a new approach to sizing optimization
was presented which limits the number of different cross-sections which can be used
in any given solution further increasing the complexity of the problem, but at the
same time bringing results closer to practical use.

Shape constraints are generally given as constraints of node coordinates, as is
done in papers [8, 9]. The problem with this approach is the possibility of creating
overly short elements which are practically inapplicable. Researchers in [10–12] all
achieved impractical shape optimization results with points converging to create
elements shorter than 30 cm, even reaching element lengths shorter than 3 cm.
These results point to a need to apply additional minimal element length constraints
when using shape optimization. This research presents a use of minimal length
constraints for shape optimization. The approach is used on shape and sizing shape
truss optimization examples most commonly found in literature.

46.2 Minimal Weight Truss Optimization

Sizing optimization views cross section parameters as variables and requires an initial
model of the truss. These parameters can be cross section geometry (cross-section
type) and/or dimensions. Shape optimization considers node positions as variables.
The x, y, and z (in space trusses) coordinates can take any value in a previously set
rangewhich is also determined by the precision (minimal used units) of the variables.
Shape optimization is rarely used as the only optimization type. It is usually part of a
sequential optimization processwith sizing optimization, or as in this paper it can also
be simultaneously used with sizing optimization. The typical weight minimization
optimization problem is mathematically defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minW =
i=n∑

i=1
ρi Ai li where A = {A1, . . . , An},

subjected to

⎧
⎨

⎩

Amin ≤ Ai ≤ Amax for i = 1, . . . , n,

σmin ≤ σi ≤ σmax for i = 1, . . . , n,

umin ≤ u j ≤ umax for j = 1, . . . , k.

(46.1)

This paper proposes the use of two more constraints in order to achieve optimal
results which can be applicable in practice. These constraints are an Euler buck-
ling dynamic constraint and a minimal bar length constraint for shape optimization
problems.
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46.2.1 Euler Buckling

Long thin elements subjected to compression are susceptible to buckling therefore
they are checked for stresses which exceed critical buckling stress. The existence of
even a single element exceeding critical values compromises the structures stability
and such solutions are discarded. The use of Euler buckling constraints implies that
only compressed bars are tested using the following expressions:

σ P
Ai ≤ σki where σ P

Ai = FP
Ai

Ai
and σki = Fki

Ai
(46.2)

Stress in compressed elements is given as σ P
Ai , the critical buckling stress is σ ki,

the cross-section area is Ai, calculated axial compression force is FP
Ai and Fki is

Euler’s critical buckling force of the ith element.

Fki = π2 · Ei · Ii
l2ki

,
∣
∣FP

Ai

∣
∣ ≤ Fki for i = 1, ..., n (46.3)

Module of elasticity is Ei, I i is the minimal axial moment of inertia for the cross-
section of the ith element and lki is the buckling length of the ith element from the
set of 1 to n. Depending on the software used for finite element analysis force or
stress constraints can be used. Since sizing constraints vary cross-section areas, and
therefore the moments of inertia in each iteration and shape optimization varies both
the length (critical length) of bars and in some cases direction of the forces in the
bars this constraint is considered as dynamic.

46.2.2 Minimal Element Length Constraint

The minimal element length constraint value for each example is determined by
ex-perience or design guidelines given in literature or corresponding standards. The
mathematical formulation of this constraint is given as:

li ≥ lmin f or i = 1, . . . , n

li =
√

(
xib − xia

)2 + (
yib − yia

)2
(46.4)

The element length li is from the 1 to n range which is between nodes a and b with
coordinates (xia , y

i
a) and (xib,y

i
b) in that order. Existing node coordinate constraints

implicitly define maximal element values therefore they are not necessary, however
if there were a need for such a constraint the same method could be used to create
it. This could be an interesting constraint for avoiding the use of extensions if bar
lengths exceed stock lengths.
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46.3 Optimization Method and Examples

The optimization used for this research is genetic algorithm (GA). The algorithm is
comprised of three elementary operators: selection, crossover, and mutation. Selec-
tion is the process of conveying genetic information through generations. Crossover
denotes the operations (process) between two parents, where an exchange of genetic
information is conducted, and new generations are produced. The mutation operator
creates a random change in the genetic structure of some of the individuals for over-
coming early convergence [2]. Algorithm operation is based on survival of the fittest,
through evolution which allows for the exchange genetic material. Selection is used
as a process of ranking individuals in the population using values from the fitness
function, which defines the quality of the individual.

An original software was created in Rhinoceros 7 using Grasshopper, Galapagos
and Karamba plugins, which allow for the choice of optimization type and the choice
of used constraints. TheGalapagos optimization operator uses GA as its optimization
method. Constraints are developed in the form of penalty functions in order to avoid
unusable solutions.

46.3.1 10 Bar Truss

A common example found in literature for truss optimization is the 10 bar truss
(Fig. 46.1). This truss has 10 independent sizing variables (full round cross-sections)
and 4 shape variables (x and y coordinates for nodes (3) and (4)). Bar elements
are made from Aluminum 6063-T5 whose characteristics are: Young modulus
68,947 MPa, and a density of 2.7 g/cm3. The applied loads are F = 444.82 kN,
in nodes 2 and 4, as shown in Fig. 46.1. The model is constrained with to a
maximal displacement of±0.0508 m of all nodes in all directions, and axial stress of
±72.3689 MPa for all bars. Discrete variables for cross-section diameters are taken
from [5].

Fig. 46.1 10 bar truss
problem
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46.3.2 47 Bar Truss

The 47 bar truss problem has 22 nodes placed symmetrically around the y axis, as
shown in Fig. 46.2. Cross-section elements are grouped in 27 groups according to
the symmetry. This example also uses full round cross-sections, except the mate-
rial used is construction steel. Material characteristics used are: Young modulus
206,842.719 MPa, and a density of 7.4 g/cm3. The structure is subjected to three

Fig. 46.2 47 bar truss
problem
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independent load cases (LC1, LC2 and LC3). The first load case (LC1) consists of
forces F = 26.689 kN in the +x direction and 66.275 kN in the –y direction in nodes
17 and 22. The second load case (LC2) consists of forces F = 26.689 kN in the +
x direction and 66.275 kN in the –y direction in node 17. The third load case (LC3)
consists of forces F1 = 26.689 kN in the +x direction and force F2 = 66.275 kN in
the –y direction of node 22.

The 47 bar truss problem has stress constraints of 137.895 MPa for tension and
103.421MPa for compression. This problem, however, does not have a displacement
constraint. Discrete variables for cross-section diameters are: 6, 8, 12, 12, 14, 15, 16,
17, 18, 20, 22, 24, 25, 28, 30, 32, 35, 36, 38, 40, 45, 50, 55, 56, 60, 63, 65, 70, 75,
80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 140, 150, 160, 170, 180, 190, 200,
220 and 250, in mm.

Shape optimization variables are grouped according to the symmetry. Node
coordinates have the following ranges.

0 m ≤ x(2–8) ≤ 3.05 m, –0.08 m ≤ x(10–14) ≤ 2.29 m, –0.08 m ≤ x(18–20) ≤ 2.29 m,
–0.08 m ≤ x(21) ≤ 3.81 m, –1.52 m ≤ y(4) ≤ 4.57 m, 4.57 m ≤ y(6) ≤ 7.62 m, 7.62 m
≤ y() ≤ 10.67 m, 9.14 m ≤ y(10) ≤ 12.19 m, 10.67 m ≤ y(12) ≤ 13.72 m, 12.19 m ≤
y(14) ≤ 15.24 m and 13.72 m ≤ y(20,21) ≤ 16.76 m.

46.4 Results

Shape optimization results use a 240 mm diameter for the 10 bar truss, and 75 mm
for the 47 bar truss, which are the minimal possible diameters of the most stressed
bars in the initial configurations respectively. Figure 46.3 shows the layout of the
10 bar truss optimal solutions for shape optimization (9371.591 kg) and sizing and
shape optimization (3685.142 kg) where bars 2 and 6 are practically parallel with
bar 9.

Fig. 46.3 Results of the 10 bar truss optimization of shape (left), and sizing and shape (right)

Table 46.1 Node
coordinates for shape and
sizing shape optimization of
the 10 bar truss problem

Node position (m) Shape Sizing and shape

x(1); y(1) (10.584; 1.603) (11.596; 4.284)

x(3); y(3) (10.178; 2.853) (5.789; 8.003)
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Table 46.2 Node
coordinates for shape and
sizing shape optimization of
the 47 bar truss problem

Node position (m) Shape Sizing and shape

x(2); y(2)/–x(1), y(1) (0.91; 0.00) (1.88; 0.00)

x(4); y(4)/–x(3), y(3) (1.03; 2.63) (1.66; 3.11)

x(6); y(6)/–x(5), y(5) (0.96; 5.54) (1.65; 5.92)

x(8); y(8)/–x(7); y(7) (0.68; 8.62) (1.47; 8.55)

x(10); y(10)/–x(9); y(9) (0.42; 10.67) (0.57; 10.43)

x(12); y(12)/–x(11); y(11) (0.37; 11.7) (0.65; 11.91)

x(14); y(14)/–x(13); y(13) (0.39; 12.9) (0.54; 13.31)

x(20); y(20)/–x(19); y(19) (0.39; 12.9) (0.24; 14.62)

x(21); y(21)/–x(18); y(18) (1.71; 15.11) (1.95; 15.15)

Fig. 46.4 Results of the
47 bar truss optimization of
shape (left), and sizing and
shape (right)

Tables 46.1 and 46.2 show the node coordinates for the 10 bar and 47 bar truss
results for both optimization cases respectively.

Figure 46.4 shows the layout of the 47 bar truss optimal solutions for shape
optimization (3204.269 kg) and sizing and shape optimization (1687.102 kg).

All solutions are the best results of at least 10 repeated optimizations of the same
problem with the same initial values repeated for each optimization.

46.5 Conclusion

The results of examples presented in this paper show that the addition of a minimal
length constraint solves the problem of impractically short elements in shape or
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sizing and shape optimization. The data however also shows the imperfections in the
initial configurations. The 10 bar truss when optimized for sizing and shape gives a
resulting structure where even though the nodes do not overlap, the bars are in the
same plane. This leads to the conclusion that the 10 bar truss can be expected to not
need bar (9) in the initial topology if shape is optimized.

Similarly, compared to results from literature of the 47 bar trusswhich use sequen-
tial optimization of sizing then shape, the solutions presented by this research do not
have a convergence of nodes which lead to an impractical solution (Fig. 46.5).

These optimal results are, however, useful for presenting the need for elementary
changes in the initial topology. The solution presented in [13], similarly to [10] shows
that there is possibly no need for bars 15 and 16, and that nodes (19) and (20) should
be joined in the initial model.

It can be therefore concluded that topological optimization is a necessary addi-
tion to the structural optimization process. Simultaneous optimization of all three
factors is the most complex but yields the smallest weight, however this is not always
possible. When optimizing any truss it is best to try all possible combinations of
optimization types in order to adapt the problem to achieve the best results.

Fig. 46.5 Sizing and shape
optimization results for
47 bar from [13]
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