
Chapter 5
Model Selection

Often it is not clear which model you should use for the data at hand—maybe
because it is not known ahead of time which combination of variables should be
used to predict the response, or maybe it is not obvious how the response should
be modelled. In this chapter we will take a look at a few strategies for comparing
different models and choosing between them.

Key Point
How do you choose between competing models? A natural approach to this
problem is to choose the model that has the best predictive performance on
new, independent data, whether directly (using training data to fit the model
and separate test data to evaluate it) or indirectly (using information criteria).

A key issue to consider is the level of model complexity the data can
support—not too simple and not too complex! If the model is too simple,
there will be bias because of important features missing from the model. If
the model is too complex, there will be too much variance in predictions,
because the extra parameters will allow the model to chase the data too much.
(Occasionally, it is better to leave out a term even when it is thought to affect the
response if there are insufficient data to do a good job of estimating its effect.)

Exercise 5.1: Plant Height and Climate
Which climate variables best explain plant height?

Angela collects data on how tall plants are in lots of different places around
the globe. She also has data on 19 different climate variables (precipitation
and temperature summarised in many different ways). She is interested in how
plant height relates to climate and which climate variables height relates to
most closely.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
D. I. Warton, Eco-Stats: Data Analysis in Ecology, Methods in Statistical Ecology,
https://doi.org/10.1007/978-3-030-88443-7_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88443-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-88443-7_5

108 5 Model Selection

What does the question tell us—descriptive, hypothesis test, interval esti-
mation, . . . ?

What do the data tell us—one variable/more, what type of variable is the
response?

So what sort of analysis method are you thinking of using?

Consider Exercise 5.1. The key difference in this example, compared to those of
previous chapters, is that we are primarily interested in choosing the best x variables
(which climate variables height relates to most closely). This is a variable selection
or model selection problem—the goal is to select the best (or a set of best) models
for predicting plant height.

The paradigm we will use for model selection is to maximise predictive
capability—if presented with new data, which model would do the best job of
predicting the values of the new responses?

5.1 Understanding Model Selection

Model selection is a new way of thinking about things compared to what we have
seen before and introduces some new issues we have to consider.

5.1.1 The Bias–Variance Trade-Off

In model selection, as well as trying to choose the right predictors, you are trying
to choose the right number of them, i.e. the right level of model complexity. When
making a decision about model complexity, you are making a decision about how to
trade off bias against variance (Geman et al., 1992). If you make a model too simple,
leaving out important terms, predictions will be systematically wrong (they will be
biased). If you make a model too complex, adding terms that don’t need to be there,
it will “overfit” the data, chasing it too much and moving away from the main trend.
This will increase the variance of predictions, essentially absorbing some of the
error variance into predictions. The outcome of this is usually a J curve in predictive
error, with a steep decrease in predictive error as bias is removed, a gradual increase
in variance with overfitting, and a minimum somewhere in between that optimally
manages this bias–variance trade-off (Maths Box 5.1).

The idea of the bias–variance trade-off applies any time you are choosing between
models of differing complexity—most commonly, when deciding which predictors
and how many predictors to add to a model, but in many other contexts, too.

One example useful for illustrating the idea is when predicting a response as a
non-linear function of a single predictor. Many responses in ecology are thought

5.1 Understanding Model Selection 109

y

x
2 3 4

2

3

4

*

*
*
*
*

*
*

**

*
*

*

**

*

* * *

*
*

Degree = 1

x
2 3 4

2

3

4

*

*
*
*
*

*
*

**

*
*

*

**

*

* * *

*
*

Degree = 2

x
2 3 4

2

3

4

*

*
*
*
*

*
*

**

*
*

*

**

*

* * *

*
*

Degree = 4

x
2 3 4

2

3

4

*

*
*
*
*

*
*

**

*
*

*

**

*

* * *

*
*

Degree = 8

o

*

Training data
Test data

Fig. 5.1: Overfitting a model increases the variance in predictions. Data were gen-
erated using a quadratic model (degree = 2), and training data (black circles) were
fitted with a model that is linear (degree = 1), quadratic (degree = 2), quartic (degree
= 4) or a polynomial with degree 8. Test data (green stars) were used to assess model
fit but were not used in model fitting. The straight line is biased; all other models
can capture the true trend. But as the degree increased beyond 2, the extra model
parameters enabled better tracking of the training data, at the cost of pulling the fitted
model away from the true trend and, hence, away from test data. This is especially
apparent for x-values between 3 and 4, where several large y-values in the training
data “dragged” the fit above the test data for the quartic and 8-degree polynomial
models

to follow such non-linear functions (e.g. growth rate as a function of temperature,
as in Cooper et al., 2001). In Fig. 5.1, the true model is a quadratic trend, and we
consider modelling it using a linear model (a polynomial with degree 1), quadratic
(a polynomial with degree 2), quartic (degree 4), or a polynomial with degree 8. As
the degree of the polynomial increases, so does the number of parameters needed to
fit the model. Note that the linear model misses the curve in the trend (Fig. 5.1) and
so is biased. The quartic and 8-degree polynomials are too complex for the data and
seem to chase them. This reduces the error variance of the data to which the model
was fitted (training data, black curve in Fig. 5.2), but the real test is how well the
model would perform on new test data (green curve). Note the J shape of the green
curve in Fig. 5.2 (well, a mirror image of a J).

Maths Box 5.1: Bias–Variance Trade-Off

Consider a linear model fitted to n observations, giving predictions μ̂ =

(μ̂1, . . . , μ̂n), where μ̂i = β̂0+x′
i β̂ for i = 1, . . . , n. The predictive performance

of the model can be measured using mean squared error (MSE) estimating the
true means μi:

MSE(μ̂) = 1
n

n
∑

i=1
(μ̂i − μi)2

110 5 Model Selection

In practice, we don’t know the μi , so we don’t know MSE(μ̂). But theory tells
us a bit about how it will behave. First, we can write it in terms of bias and
variance:

MSE(μ̂) = 1
n

n
∑

i=1
bias(μ̂i)2 + 1

n

n
∑

i=1
var(μ̂i)

Bias—one way to get bias is to include too few predictors in the model,
missing some important ones. For example, in Maths Box 4.1, we studied
the situation where there was one predictor xi in the model and one missing
predictor zi , where μi = β0 + xiβx + ziβz , and we fit μi = β0 + xiβ∗. In this
situation the bias is

bias(μ̂i) = β0 + xiβ
∗ − (β0 + xiβx + ziβz) = (xiγ − zi)βz = −δiβz

and 1
n

∑

i bias(μ̂i)2 � σ2
z β

2
z , where σ2

z is the error variance when predicting z
from x. Bias gets larger if the missing predictor is more important (larger βz)
and more different from other predictors in the model (larger σ2

z).
Variance—variance increases when there are more predictors in the model,

because estimating extra terms introduces extra uncertainty into predictions.
In Maths Box 3.2, for a linear model with p terms in it, the sum of variances of
μ̂i is pσ2, when predicting on the same set of predictors the model was fitted
to:

1
n

n
∑

i=1
var(μ̂i) = 1

n
pσ2 (5.1)

If we use too many predictors, p will be too large, so var(μ̂i) will be too large.
Our goal in analysis is to build a model that is big enough to capture the main

trends (not too much bias), but not excessively large (not too much variance).
For models with an increasing number of terms, MSE typically follows a J
curve—there is a steep initial decrease in MSE as bias is reduced, because there
are fewer missing predictors, then a gradual increase as too many predictors
are added. The increase is gradual because the 1/n in (5.1) keeps the variance
small relative to bias, except in the analysis of a small, noisy (large σ) dataset,
in which case a small model is often best.

The aim is to find the optimal point in the bias–variance trade-off. This point will
be different for different datasets because it depends not just on how much data you
have and the relative complexity of the models being compared but also on how well
each model captures the true underlying process. In Fig. 5.2, the optimum was at
degree = 2, which was the correct answer for this simulation, since a quadratic model
was the true underlying process from which these data were simulated. (Sometimes,
the optimum can be much smaller than the true model, if the true model is too
complex for our data to fit it well.)

5.1 Understanding Model Selection 111

Degree of polynomial [log scale]

M
ea

n
sq

ua
re

d
er

ro
r

1 2 4 8

0

2

4

6

Training data
Test data

Fig. 5.2: The bias–variance trade-off for polynomial models in Fig. 5.1. Note that for
the test data (green curve), the biased model (degree = 1) has a high predictive error,
and as the model gets overfitted (degree > 2), the predictive error increases due to an
increased variance of predictions. The predictive error for the training data does not
account for overfitting, so it always decreases as more parameters are added to the
model (black curve). Predictive error was measured here using MSE, defined later

5.1.2 The Problem with R2 and P-Values for Model Selection

Many use R2 and P-values to decide how well a model fits, but these aren’t good
tools to use for model selection.

R2 makes no attempt to account for the costs of model complexity—it keeps going
up as you add more terms, even useless ones! If you used R2 as a basis for including
potential predictors in a model, you would end up putting all of them in because that
would maximise R2, irrespective of whether or not each predictor was useful. The
same is true of estimated error variance for the data the model was fitted to (σ̂2),
except this (usually) decreases as you add more terms to the model, as in Fig. 5.2
(black line).

OK, well why not use hypothesis tests? Why not add terms to the model if they are
significant and remove terms if they are not significant? This is commonly done and
for many years was the main strategy for model selection. Much software still uses
this approach as the default, which encourages its use. But there are a few problems
with the technique. From a philosophical perspective, it is not what hypothesis testing
was designed for, there is not really an a priori hypothesis being tested. So it is not
really the right way to think about the problem. From a pragmatic perspective, using
hypothesis testing for model selection has some undesirable properties. In particular,
it is not variable selection consistent, i.e. is not guaranteed to pick the right model
even when given as much data as it wants in order to do so—it overfits, choosing too
complex a model, especially when considering a large number of potential predictors.

112 5 Model Selection

5.1.3 Model Selection as Inference

Recall that statistical inference is the process of making some general claim about a
population based on a sample. So far we have talked about two types of statistical
inference:

1. Hypothesis testing—to see if data are consistent with a particular hypothesis
2. Confidence interval estimation—constructing a plausible range of values for some

parameter of key interest.

Now we have a third type of statistical inference:

3. Model selection—which model (or which set of predictor variables) best captures
the true underlying process from which the data were generated.

This can be understood as statistical inference because again we are using a sample
to make general claims—this time about models (or combinations of predictors),
and how well they predict, instead of about parameters.

Note that model selection should never be used in combination with hypothesis
testing or confidence interval estimation to look at related questions on the same
dataset – these methods of inference are not compatible. The process of model
selection will only include a term in the model if it is considered important – hence
it is doing something kind of like significance testing already. If you were to perform
model selection to choose key predictors, then do a hypothesis test on one of these
predictors, this is known to lead to high rates of false significance, and similarly,
performing model selection then constructing a confidence interval is known to lead
to intervals that are biased away from zero. It is best to think of model selection and
hypothesis testing/CIs as mutually exclusive: you either use one of these approaches
or the other. Although having said this, there is a growing literature on post-selection
inference (Kuchibhotla et al., 2022) which offers approaches to address this, the
simplest of which is data splitting – splitting your data into two independent sets,
and applying model selection to one part, and inference to the other.

Key Point
Model selection can be thought of as a method of inference, alongside hy-
pothesis testing and confidence interval estimation. However, it should not be
applied to the same data you plan to use for a hypothesis test or confidence in-
terval to answer a related question, because these methods won’t work correctly
in this situation, unless using methods specifically designed for post-selection
inference.

5.1 Understanding Model Selection 113

5.1.4 It Gets Ugly Quickly

Consider a situation where you have a set of predictor variables and you want to fit
all possible models (“all subsets”). If there are p predictor variables, there are 2p

possible models—this gets unmanageable very quickly, as in Table 5.1. If you have
200 observations and 10 variables, the use of all subsets means trying to choose
from 1000+ models using just 200 observations. Good luck!

Table 5.1: Variable selection gets ugly quickly—the number of candidate models
increases exponentially with the number of predictor variables, such that it is no
longer feasible to explore all possible models with just 20 or 30 predictors

variables # models to fit
2 4
3 8
5 32
10 1024
20 1,048,576
100 1.27 × 1030

300 More than the number of electrons in the known universe!

This means two things:

• When there are a lot of possible or candidate models being compared, what the
data say is the “best model” should be taken with a grain of salt. When there are
lots of possible models, it is very hard for the data to make the right call.

• Simplify! The fewer candidate models you are comparing, the better—don’t bother
with anything you think is unrealistic, and if you know something is important,
then include it in all candidate models. Try to refine your question. Do you really
need all those variables?

5.1.5 A Cautionary Tale—Building a Spam Filter

In a third-year class several years ago, I asked students, as a group assignment, to
construct an e-mail spam filter. The idea was that they would study regular e-mails
and spam e-mails from their inbox, find predictors to distinguish between them, and
build a model that could predict which e-mails in their inbox were spam.

Some groups put a huge amount of effort into this assignment, using complex
models—usually via logistic regression or some variation thereof (as in Chap. 10),
with a dozen or so carefully constructed predictors that did a near perfect job of
distinguishing spam from real e-mails in the data they built the model on (the

114 5 Model Selection

training data). One group even wrote a program for their spam filter and put it on a
website, so if you copy-pasted text into it, it would return the predicted probability
that your e-mail was spam.

At the other extreme, one group put hardly any effort into the assignment—it
seemed like they had forgotten about the assignment and slapped something together
at the last minute, with a handwritten report and a simple linear model with just a
few terms in (for which model assumptions looked like they wouldn’t be satisfied, if
they had thought to check them).

As part of the assessment, I brought five e-mails to class and asked students to
classify them using their filter (a “test” dataset). Most groups did poorly, getting
one or two out of five correct, but one group managed four out of five correct—the
last-minute group with the simple linear model.

The problem was that students weren’t thinking about the costs of model com-
plexity and were assuming that if they could do a really good job of modelling their
training data, their method would work well on new data, too. So they built overly
complex models that overfitted their data, chasing them too much and ending up
with highly variable predictions, a long way past the optimum on the bias–variance
trade-off. The group with the last-minute, simple linear model had the best predic-
tive performance because their model did not overfit the data, so they ended up a lot
closer to the optimum choice for model complexity.

The way to beat this problem is to use model selection tools, as described in the
following sections, to make sure the level of model complexity is appropriate for the
data at hand—not too complex and not too simple. Directly or indirectly, all such
methods work by thinking about how well a model can predict using new data.

5.2 Validation

The simplest way to compare predictive models is to see how well they predict using
new data, validation. In the absence of new data, you can take a test or hold-out
sample from the original data that is kept aside for model evaluation. The remaining
training data are used to fit each candidate model. Overfitted models may look good
on the training data, but they will tend to perform worse on test data, as in Figs. 5.1
and 5.2 or as in the spam filter story of the previous section.

It is critical that the test sample be independent of the training sample; otherwise
this won’t work (see Maths Box 5.2). If all observations are independent (given x),
then a random allocation of observations to test/training will be fine. If you have
spatial data that are not independent of each other (Chap. 7), a common approach
is to break it into coarse spatial blocks and assign these to training and test datasets
(Roberts et al., 2017, for example).

5.2 Validation 115

Maths Box 5.2: Validation Data Can Be Used to Estimate Mean Squared
Error

Predictive performance can be measured using MSE:

MSE(μ̂) = 1
n

n
∑

i=1
(μ̂i − μi)2

But how can we calculate this when we don’t know the true mean, μi?
We can use new observations, since yi = μi + εi . We can compare the new
responses to their predicted values by estimating the variance of yi − μ̂i . Using
the adding rule for standard deviations (from Maths Box 1.5) yields

σ2
yi−μ̂i

= σ2
μi+εi−μ̂i

= σ2
μ̂i−μi

+ σ2
εi + 2σεi,μ̂i−μi

The first term σ2
μ̂i−μi

is another way of writing MSE. The second term is a
constant. The third term, the covariance of εi and μ̂i , is zero if εi is independent
of μ̂i . This independence condition is satisfied if yi is a new observation that
is independent of those used in fitting the model.

So when using a set of new “test” observations that are independent of
those used to fit the model, estimating σ2

yi−μ̂i
will estimate MSE(μ̂), up to a

constant.

How should we choose the size of the test sample? Dunno! (There is no single
best answer.)

One well-known argument (Shao, 1993) is that as sample size n increases, the size
of the training sample should increase, but as a proportion of n it should decrease
towards zero. This ensures “variable selection consistency”, guaranteeing the correct
model is chosen for very large n.

An example strategy Shao (1993) suggested (which hence became a bit of a thing)
is to use n3/4 observations in the training sample. This can be quite harsh, though,
as in Table 5.2. This rule tends not to be used so much in ecology, but the general
strategy is certainly worth keeping in mind—using a smaller proportion of data in
the training set when analysing a larger dataset, rather than sticking with the same
proportion irrespective of sample size.

Table 5.2: How the suggested number of training observations changes with sample
size if using the n3/4 rule mentioned in Shao (1993)

n 20 50 100 200 1000
n3/4 9 19 32 53 178

116 5 Model Selection

How should we measure predictive performance? For linear regression, the obvi-
ous answer is MSE:

1
ntest

ntest
∑

i=1
(yi − μ̂i)2

where the summation is over test observations, for each of which we compare the
observed y-value, yi , to the value predicted by the model fitted to the training sample,
μ̂i . This criterion was used in Fig. 5.2. Maths Box 5.2 explains how this quantity
estimates the MSE of predictions. It makes sense to use this criterion for models
where we assume equal variance—if not assuming equal variance, then it would
make sense to use a criterion that weighted observations differently according to
their variance. In later chapters, we will learn about models fitted by maximum
likelihood, and in such a situation, it would make sense to maximise the likelihood
on test data rather than minimising MSE.

An example using validation via MSE for model selection is in Code Box 5.1.

Code Box 5.1: Using Validation for Model Selection Using Angela’s Plant
Height Data

Comparing MSE for test data, for models withrain and considering inclusion of rain.seas
(seasonal variation in rainfall)

> library(ecostats)
> data(globalPlants)
> n = dim(globalPlants)[1]
> indTrain = sample(n,n^0.75) #select a training sample of size n^0.75:
> datTrain = globalPlants[indTrain,]
> datTest = globalPlants[-indTrain,]
> ft_r = lm(log(height)~rain,dat=datTrain)
> ft_rs = lm(log(height)~rain+rain.seas,dat=datTrain)
> pr_r = predict(ft_r,newdata=datTest)
> pr_rs = predict(ft_rs,newdata=datTest)
> rss_r = mean((log(datTest$height)-pr_r)^2)
> rss_rs = mean((log(datTest$height)-pr_rs)^2)
> print(c(rss_r,rss_rs))
[1] 2.145927 2.154608
So it seems from this training/test split that the smaller model with just rain is slightly

better.
Try this yourself—do you get the same answer? What if you repeat this again multiple

times? Here are my next three sets of results:
> print(c(rss_r,rss_rs))
[1] 2.244812 2.116212
> print(c(rss_r,rss_rs))
[1] 2.102593 2.143109
> print(c(rss_r,rss_rs))
[1] 2.575069 2.471916

The third run supported the initial results, but the second and fourth runs (and most) gave a
different answer—suggesting that including rain.seas as well gave the smaller MSE. But
when the answer switches, it suggests that it is a close run thing and the models are actually
quite similar in performance.

5.3 K-fold Cross-Validation 117

Data

1
(test)First run: 2

(training)
3

(training)
4

(training)
5

(training)

1
(training)

2
(test)

3
(training)

4
(training)

5
(training)

1
(training)

2
(training)

3
(test)

4
(training)

5
(training)

1
(training)

2
(training)

3
(training)

4
(test)

5
(training)

1
(training)

2
(training)

3
(training)

4
(training)

5
(test)

Second run:

Third run:

Fourth run:

Fi�h run:

Combine results across the five test samples

Fig. 5.3: A schematic diagram of five-fold CV. Each observation in the original
dataset is allocated to one of five validation groups, and the model is fitted five times,
leaving each group out (as the test dataset) once. Estimates of predictive performance
are computed for each run by comparing predictions to test observations, then pooled
across runs, for a measure of predictive performance that uses each observation
exactly once

When using a test dataset to estimate predictive performance on new data, clearly
the test/training split matters—it is a random split that introduces randomness to
results. In Code Box 5.1, four different sets of results were obtained, leading to
different conclusions about which model was better. This issue could be handled
by repeating the process many (e.g. 50) times and averaging results (and reporting
standard errors, too). The process of repeating for different test/training splits is
known as cross-validation (CV).

5.3 K -fold Cross-Validation

A special case of CV is when you split data into K groups (usually K = 5, 5-fold CV,
or K = 10) and fit K models—using each group as the test data once, as in Fig. 5.3.

Results tend to be less noisy than just using one training/test split, because each
observation is used as a test observation once, so one source of randomness (choice
of test observation) has been removed.

118 5 Model Selection

Code Box 5.2: 5-Fold Cross-Validation for Data of Exercise 5.1

> library(DAAG)
> ft_r = lm(log(height)~rain,dat=datTrain)
> ft_rs = lm(log(height)~rain+rain.seas,dat=datTrain)
> cv_r = cv.lm(data=globalPlants, ft_r, m=5, printit=FALSE) # 5 fold CV
> cv_rs = cv.lm(data=globalPlants, ft_rs, m=5, printit=FALSE) # 5 fold CV
> print(c(attr(cv_r,"ms"),attr(cv_rs,"ms")), digits=6)
[1] 2.22541 2.15883

suggesting that the models are very similar, the model without rain.seas predicting slightly
better, but by an amount that is likely to be small compared to sample variation. For example,
repeating analyses with different random splits (controlled through the seed argument):

> cv_r = cv.lm(data=globalPlants, ft_r, m=5, seed=1, printit=FALSE)
> cv_rs = cv.lm(data=globalPlants, ft_rs, m=5, seed=1, printit=FALSE)
> print(c(attr(cv_r,"ms"),attr(cv_rs,"ms")), digits=6)
[1] 2.21103 2.16553
> cv_r = cv.lm(data=globalPlants, ft_r, m=5, seed=2, printit=FALSE)
> cv_rs = cv.lm(data=globalPlants, ft_rs, m=5, seed=2, printit=FALSE)
> print(c(attr(cv_r,"ms"),attr(cv_rs,"ms")), digits=6)
[1] 2.22425 2.14762
> cv_r = cv.lm(data=globalPlants, ft_r, m=5, seed=3, printit=FALSE)
> cv_rs = cv.lm(data=globalPlants, ft_rs, m=5, seed=3, printit=FALSE)
> print(c(attr(cv_r,"ms"),attr(cv_rs,"ms")), digits=6)
[1] 2.2783 2.2373

we are now getting consistent results on different runs, unlike in Code Box 5.1, suggesting
that adding rain. seas to the model improves predictive performance. Also note the answers
are looking much more consistent now than before, with predictive errors within 2–3% of
each other across runs.

How do you choose K? Dunno! (There is no single correct answer to this.)
The most common choices are N-fold or “leave-one-out” CV, 10-fold, or 5-fold

CV. For no particular reason.
You could use the n3/4 rule again; no one ever does, though, in K-fold CV. You

could try some compromise between this and current K-fold conventions; I use
something like the following:

• N-fold or “leave-one-out” cross-validation for small datasets (n < 20, say)
• 10-fold CV for medium-sized datasets (20 < n < 100, say)
• 5-fold CV for large datasets (n > 100, say).

For larger datasets you could go further, in the spirit of Shao (1993), and use two-fold
or start to use increasing values of K but just use one of the folds for training and
the rest for testing (rather than the other way around, as is done for small samples).
This tends not to be done in practice, but there are good theoretical arguments for
such an approach.

5.4 Information Criteria 119

5.4 Information Criteria

Another way to do model selection is to use the whole dataset (no training/test
split) and to penalise more complex models in some way to try to account for the
additional variance they introduce. Such approaches are referred to as information
criteria, largely for historical reasons (specifically, the first such criterion was derived
to minimise an expected Kullback-Leibler information). The two most common
criteria are AIC and BIC, which for linear models can be written

AIC = n log σ̂2 + 2p
BIC = n log σ̂2 + p log(n)

(sometimes plus a constant), where p is the number of parameters in the model, n is
sample size, and σ̂2 is the estimated error variance from the linear model.

The aim of the game is to
choose the model that minimises the information criterion

If we were to try to minimise σ̂2 alone, this would tend to favour complex models,
as if we tried to maximise R2. By adding 2p or p log(n) to the criterion, there is
a larger penalty on models with more terms in them (larger p), so larger models
are only chosen if they appreciably improve the fit of the model (by reducing σ̂2

appreciably). This penalty is intended to approximate the effects on the variance of
predictions when adding unneeded terms to a model.

AIC stands for Akaike information criterion, named after Akaike (1972), although
he originally intended the acronym to stand for “an information criterion” (Akaike,
1974). The 2p is motivated by thinking about predictive performance on test data
and is an approximation to the amount of so-called optimism bias (Efron, 2004) that
comes from estimating predictive performance on the same dataset used to fit the
model in the first place.

BIC stands for Bayesian information criterion, and while the criterion looks
similar, it has quite a different motivation. It was derived as an approximation to
the posterior probability of a model being correct, integrating over all its parameters
(Schwarz, 1978). Despite this Bayesian motivation, it tends not to be used in Bayesian
statistics (Clark, 2007, Chapter 4), but is common elsewhere.

Both criteria can be understood as taking a measure of predictive error and adding
a penalty for model complexity (as measured by the number of parameters in the
model). For linear models, the measure of predictive error is a function of the error
variance, but it will take other forms for other models. The better a model fits the
sample data, the smaller the predictive error. While bigger models will always fit the
sample data better than smaller models, the penalty for model complexity aims to
correct for this.

Both criteria, despite quite different derivations, end up being different only in
the value that is multiplied by the number of parameters in the model. AIC uses a
2, whereas BIC uses log n, which will (as long as n > 7) take a larger value and,
hence, penalise larger models more harshly. Hence when AIC and BIC differ, it is
BIC that is choosing the smaller model. AIC is known to overfit, in the sense that

120 5 Model Selection

even if the sample size is very large, it will often favour a model that is larger than
the best-fitting one. BIC, in contrast, is known to be model selection consistent in a
relatively broad range of conditions, i.e. as sample size increases, it will tend towards
selecting the best model all the time.

The similarities in the form of the criteria motivate a more general approach,
aptly named the generalised information criterion (GIC) (Nishii, 1984), which takes
the form

GIC = n log σ̂2 + λp

where λ is an unknown value to be estimated by some method (preferably from the
data). Usually, we would want to estimate λ in such a way that if sample size (n) were
to increase, λ would get larger and larger (going to infinity) but at a slower rate than
n. One way to ensure this would be to use CV, but with an increasing proportion of
the data in the test sample in larger datasets, as in Table 5.2. This is something of a
hybrid approach between those of the two previous sections, using both information
criteria and CV. The main advantage of this idea is that predictive error is better
estimated, because it is estimated by fitting the model to the whole dataset all at once
(using information criteria), while at the same time, the appropriate level of model
complexity is chosen using CV, to ensure independent data are used in making this
decision.

Code Box 5.3: Computing Information Criteria on R for Exercise 5.1
The AIC or BIC function can be used to compute information criteria for many models:

> ft_r = lm(log(height)~rain,dat=globalPlants)
> ft_rs = lm(log(height)~rain+rain.seas,dat=globalPlants)
> c(AIC(ft_r), AIC(ft_rs))
[1] 479.6605 475.4343
> c(BIC(ft_r), BIC(ft_rs))
[1] 488.2861 486.9351

These results favour the larger model, although not by a lot, so results should be interpreted
tentatively. Note that there is an advantage to the larger model when measured using the BIC
score, because this criterion penalises complexity more harshly.

5.4.1 Pros and Cons of Information Criteria

Information criteria have the advantage that there are no random splits in the data—
you get the same answer every time. This makes them simpler to interpret. (An
exception is when using GIC with λ estimated by CV—in that case, the choice of λ
can vary depending how the data are split into validation groups.)

The disadvantages are that they are slightly less intuitive than CV, derived indi-
rectly as measures of predictive performance on new data, and in the case of AIC
and BIC, their validity relies on model assumptions (essentially, the fitted models
need to be close to the correct model). CV requires only the assumption that the

5.5 Ways to Do Subset Selection 121

test/training data are independent—so it can still be used validly when you aren’t
sure about the fitted model.

This is the first example we shall see of the distinction between model-based and
design-based inference; we will see more about this in Chap. 9.

5.5 Ways to Do Subset Selection

It’s all well and good if you only have a few candidate models to compare, but what
if you have a whole bunch of predictor variables and you just want to find the subset
that is best for predicting y? Common approaches:

• Forward selection—add one variable at a time, adding the best-fitting variable at
each step

• Backward selection—add all variables, then delete one variable at a time, deleting
the worst-fitting variable at each step

• All subsets—search all possible combinations. For p predictors there are 2p

possible combinations, which is not easy unless there are only a few variables (p
small), as in Code Box 5.4.

There are also hybrid approaches that do a bit of everything, such as the step
function in R, as in Code Box 5.5.

Code Box 5.4: All Subsets Selection for the Plant Height Data of Exer-
cise 5.1

> library(leaps)
> fit_heightallsub<-regsubsets(log(height)~temp+rain+rain.wetm+

temp.seas, data=globalPlants,nbest=2)
The results are most easily accessed using summary, but we will look at two parts of the
summary output side by side (the variables included in models, stored in outmat, and the
BICs of each model, stored in bics):

> cbind(summary(fit_heightallsub)$outmat,summary(fit_heightallsub)$bic)
temp rain rain.wetm temp.seas

1 (1) " " " " "*" " " "-21.06175277099"
1 (2) " " "*" " " " " "-19.2868231448677"
2 (1) "*" "*" " " " " "-24.8920679441895"
2 (2) "*" " " "*" " " "-23.9315826810965"
3 (1) "*" "*" " " "*" "-20.9786934545272"
3 (2) "*" "*" "*" " " "-20.3405400349995"
4 (1) "*" "*" "*" "*" "-16.4229239023018"
The best single-predictor model has just rain.wetm and has a BIC of about −21; the

next best single-predictor model has just rain. But including both temp and rain does the
best among the models considered here, with a BIC of about −25.

122 5 Model Selection

Code Box 5.5: Stepwise Subset Selection for Plant Height Data of Exer-
cise 5.1

> ft_clim = lm(log(height)~temp+rain+rain.wetm+temp.seas,
data=globalPlants)

> stepClim=step(ft_clim,trace=0)
> stepClim$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 NA NA 126 260.6727 100.13694
2 - rain.wetm 1 0.6363946 127 261.3091 98.45637
3 - temp.seas 1 1.9256333 128 263.2347 97.41819

This table lists the three steps that were taken along the variable selection path, which ended
up being backward selection (as indicated by the - signs at Steps 2 and 3). In Step 1, all four
predictors are in the model, and the AIC is about 100. At Step 2, rain.wetm is removed
from the model, which has little impact on the log-likelihood (residual deviance is changed
only a little) and reduces the AIC by almost 2. At Step 3, temp.seas is removed from the
model, reducing the AIC slightly further and leaving a final model with temp and rain as
the remaining predictors.

To do forward selection, you need to start with a model with no terms in it and specify a
scope argument with a formula including all the terms to be considered:

> ft_int = lm(log(height)~1,data=globalPlants)
> stepForward <- step(ft_int,scope=formula(ft_clim),

direction="forward",trace=0)
> stepForward$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 NA NA 130 355.9206 132.93585
2 + rain.wetm -1 74.59845 129 281.3221 104.12370
3 + temp -1 16.15030 128 265.1718 98.37867

Again the path has three steps in it, but this time they involve the addition of variables to
the model (as indicated by the + sign). Step 1 starts with an intercept model, but the AIC is
much improved upon the addition of rain.wetm at Step 2. Step 3 adds temp, which also
decreases the AIC.

Notice that we ended up with a slightly different model! But recall that rain and
rain.wetm are highly correlated, so the two final models are actually quite similar.

So which method is best? Dunno! (There is no simple answer.) You can explore
this yourself by simulating data and seeing how different methods go—no method is
universally best. Results of a small simulation looking at this question are given in
Fig. 5.4, but the simulation settings could readily be varied so that any of the three
methods was the best performer.

All-subsets selection is more comprehensive but not necessarily better—because
it considers so many possible models, it is more likely that some quirky model will
jump out and beat the model with the important predictors, i.e. it is arguably less
robust. In Fig. 5.4, all-subsets selection seemed to perform best when looking at AIC
on training data (left), but when considering how close predicted values were to their
true means, forward selection performed better (right). This will not necessarily be
true in all simulations. Recall also that all subsets is simply not an option if you have
lots of x variables.

5.5 Ways to Do Subset Selection 123

Backward selection is not a good idea when you have many x variables—because
you don’t really want to use all of them, and the model with all predictors (the “full
model”) is probably quite unstable, with some parameters that are poorly estimated.
In this situation, the full model is not the best place to start from and you would
be better off doing forward selection. In Fig. 5.4 (right), backward selection was
the worst performing measure, probably because the sample size (32) was not large
compared to the number of predictors (8), so the full model was not a good starting
point.

Forward selection doesn’t work as well in situations where the final model has
lots of terms in it—because the starting point is a long way from the final answer,
there are more points along the way where things can go wrong. In Fig. 5.4 (right), it
was the best performing method, probably in part because in this simulation only two
of the predictors were associated with the response, so this method started relatively
close to the true answer.

Multi-collinearity (Page 70) can muck up stepwise methods—well it will cause
trouble for any variable selection method, but especially for stepwise methods where
the likelihood of a term entering the model is dramatically reduced by correlation
with a term already in the model, the end result being that the process is a lot more
noisy. In Fig. 5.4, all predictors had a correlation of 0.5, and the true model was
correctly selected about 20% of the time. When the correlation was increased to 0.8,
the correct model was only selected about 5% of the time.

ll

l

l

134.8 135.2 135.6 136.0

AIC

All subsets

Forward

Backward

l

l

l

0.94 0.98 1.02 1.06

Mean squared error of µ̂

Fig. 5.4: Results of simulation looking at performance of different subset selection
routines as measured using (left) AIC on training data and (right) MSE predicting
the true mean response, for multiple linear regression with 8 predictors and 32
observations, of which 2 were related to the response. The mean AIC or MSE is
reported across 1000 simulated datasets, together with a 95% confidence interval
for the mean. All subset selection routines used AIC minimisation as their selection
criterion. All pairwise contrasts were significant at the 0.05 level (using paired t-
tests). Note that while all-subsets selection produced the smallest AIC values (indeed
it always chose the model with the smallest possible AIC), it did not have the best
predictive performance, as MSE was about 4% smaller for forward selection

124 5 Model Selection

5.6 Penalised Estimation

A modern and pretty clever way to do subset selection is to use penalised estimation.
Instead of estimating model parameters (β) to minimise least squares

min

{

n
∑

i=1
(yi − μi)2

}

we add a penalty as well, which encourages estimates towards zero, such as this one:

min

{

n
∑

i=1
(yi − μi)2 + λ

∑

j

|βj |
}

This approach is known as the LASSO (Tibshirani, 1996, least absolute shrinkage
and subset selection operator). This is implemented in a lot of recently developed
statistical tools, so many ecologists will have used the LASSO without realising it,
e.g. in MAXENT software under default settings (Phillips et al., 2006).

This looks a bit like GIC, but the penalty term is a function of the size of the
parameters in the model, rather than just the number of parameters. The effect is to
push parameter estimates towards zero (so their penalty is smaller), especially for
coefficients of variables that aren’t very useful in predicting the response. This biases
parameter estimates in order to reduce their sampling variance.

Penalised estimation is a good thing when

• the main goal is prediction—it tends to improve predictive performance (by
reducing variance);

• you have lots of parameters in your model (or not a large sample size)—in such
cases, reducing the sampling variance is an important issue.

The λ parameter is a nuisance parameter that we need to estimate to fit a LASSO
model. The value of this parameter determines how hard we push the slope parameters
towards zero, i.e. how much we bias estimates, in an effort to reduce variance. So
this parameter is what manages the bias–variance trade-off.
λ is large =⇒ most βj = 0
λ is small =⇒ few βj = 0
The parameter λ controls model complexity, determining how many predictors

are included in the model. The full range of model sizes is possible, from having no
predictors included (if λ is large enough) to including all of them (as λ approaches
zero and we approach the least-squares fit). We can choose λ using the same methods
we used to choose model complexity previously—CV is particularly common, but
BIC is known to work well also.

The LASSO can equivalently be thought of as constrained minimisation:

min

{

n
∑

i=1
(yi − μi)2

}

such that
∑

j

|βj | ≤ t

5.6 Penalised Estimation 125

In other words, it can be understood as a least-squares estimator that insists that
the sum of the absolute values of all parameters is no larger than some nuisance
parameter t (which is a known function of λ and the data).

Code Box 5.6: LASSO for Plant Height Data of Exercise 5.1

> library(glmnet)
> X = cbind(globalPlants$temp, globalPlants$rain,

globalPlants$rain.wetm, globalPlants$temp.seas)
> ft_heightcv=cv.glmnet(X,log(globalPlants$height))
> plot(ft_heightcv)
> ft_lasso=glmnet(X,log(globalPlants$height),

lambda=ft_heightcv$lambda.min)
> ft_lasso$beta

Some good news about the LASSO:

• It reduces the sampling variability in parameters, and in predictions, by shrinking
them towards zero.

• It does model selection as part of the estimation process. This happens because
some (or many, depending on the data) parameter estimates are forced to zero by
the LASSO penalty term, and if a parameter estimate is zero, that term has been
excluded from the model.

• It’s fast compared to other model selection methods (Friedman et al., 2010).
• It predicts well (by reducing variance). In fact, use of the LASSO is probably the

main reason why MAXENT software has done well in comparisons of different
methods of species distribution modelling (Elith et al., 2006; Renner & Warton,
2013).

• It simplifies the problem of model selection to one of estimating a single parameter
(λ). Pretty cool that a problem involving choosing between 2p candidate models
(which could be in the millions or larger, see Table 5.1) can be simplified to
estimating just one nuisance parameter.

And the bad news:

• It biases parameter estimates—relationships are flatter than they should be. There
are variations on the LASSO to address this (such as the adaptive LASSO, Zou,
2006).

• Obtaining standard errors is complicated. (And how useful are standard errors
when we know our estimates are biased anyway?) There are approximate methods
for getting standard errors (Fan & Li, 2001), but they are rarely implemented in
software and hard to interpret without concurrent information about the bias in
estimates.

The LASSO, and related developments in fitting sparse models to data (i.e.
models forcing lots of parameters to zero), is one of the more exciting developments
in statistics over the last couple of decades, and there is a huge and rapidly growing
literature on it in statistics journals.

126 5 Model Selection

5.7 Variable Importance

Exercise 5.2: Relative Importance of Climate Variables
Consider again Angela’s height data (Exercise 5.1) and four variables—
average annual temperature (temp), total precipitation (rain), rainfall in
the wettest month (rain.wetm), and variation in mean monthly temperature
(temp.seas).

How important are the different climate variables in explaining plant height?

Sometimes we are interested not just in which variables best predict a response, but
how important they are relative to each other, as in Exercise 5.2. There are a few
options here in terms of how to approach this sort of problem.

Recall the difference between marginal and conditional effects (Sect. 3.1.2)—
the estimated effect of a predictor will change depending on what other terms
are included in the model, because linear models estimate conditional effects. So
when measuring the relative importance of predictors, we can expect to get different
answers depending on what other terms are included in the model, as indeed happens
in Code Boxes 5.7 and 5.8.

One option is to use forward selection to sequentially enter the predictor that
most reduces the sum of squares at each step (Code Box 5.7). This is one way to
order variables from most important to least, but not the only way (e.g. backward
selection, which often leads to a different ordering). The table in Code Box 5.7 is
intuitive, breaking down the overall model R2 into components due to each predictor,
but it does so in a misleading way. By adding terms sequentially, the R2 for the first
predictor temp estimates the marginal effect of temperature, because it was added
to the model before any other predictors. But by the time temp.seas was added to
the model, all other predictors had been included, so its conditional effect was being
estimated in Code Box 5.7. So we are comparing “apples with oranges”—it would
be better to either include all other predictors in the model or none of them when
quantifying the relative effects of predictors.

Code Box 5.7: Sequential R2 for Variable Importance
Proportion of variance explained R2 will be used to measure importance of each predictor;
it can be calculated by dividing the sum of squares explained by the sum of squares from a
model with no predictors in it (ft_int).

Let’s enter the variables sequentially:
> ft_clim = lm(log(height)~temp+rain+rain.wetm+temp.seas,

data=globalPlants)
> ft_int = lm(log(height)~1,data=globalPlants)
> stepAnova = step(ft_int, scope=formula(ft_clim),

direction="forward", trace=0, k=0)$anova
> stepAnova$R2=stepAnova$Deviance/deviance(ft_int)

5.7 Variable Importance 127

> stepAnova
Step Df Deviance Resid. Df Resid. Dev AIC R2

1 NA NA 130 355.9206 130.93585 NA
2 + rain.wetm -1 74.598450 129 281.3221 100.12370 0.209592965
3 + temp -1 16.150298 128 265.1718 92.37867 0.045376129
4 + rain -1 2.586703 127 262.5851 91.09452 0.007267641
5 + temp.seas -1 1.912441 126 260.6727 90.13694 0.005373225

Deviance means the same thing as sum of squares for a linear model, and deviance(ft1)
gets the total sum of squares needed to construct R2. In the line calling the step function,
setting k=0 ensures no penalty when adding terms, so that all four variables get added, in
decreasing order of importance.

We can see that rain.wetm explains about 21% of variation in plant height, temp adds
another 5%, and the other two variables do very little.

But there are different ways we could add these terms to the model! See Code Box 5.8
for alternatives.

Code Box 5.8: Marginal and Conditional R2 for Variable Importance
In Code Box 5.7, we sequentially calculated R2 on adding each term to the model in a way
that maximised the explained variation at each step. Alternatively, we could look at the effect
of the predictors one at a time, their marginal effect:

> stepMargin=add1(ft_int,scope=formula(ft_clim))
> stepMargin$R2=stepMargin$�Sum of Sq�/deviance(ft_int)
> stepMargin

Df Sum of Sq RSS AIC R2
<none> 355.92 132.94
temp 1 66.224 289.70 107.97 0.18607
rain 1 70.761 285.16 105.90 0.19881
rain.wetm 1 74.598 281.32 104.12 0.20959
temp.seas 1 46.401 309.52 116.64 0.13037

It seems that either temp or rain explains about as much variation in plant height as
rain.wetm did, some information we were missing from Code Box 5.7.

Alternatively, we could measure the conditional effect of each predictor by sequentially
leaving each predictor out of the model while keeping all others in:

> leave1out=drop1(ft_clim)
> leave1out$R2=leave1out$�Sum of Sq�/deviance(ft_int)
> leave1out

Df Sum of Sq RSS AIC R2
<none> 260.67 100.137
temp 1 16.0581 276.73 105.968 0.045117
rain 1 3.4438 264.12 99.856 0.009676
rain.wetm 1 0.6364 261.31 98.456 0.001788
temp.seas 1 1.9124 262.58 99.095 0.005373

These values are much smaller because they only capture variation explained by a predictor
that is not explained by anything else. Leaving out temp increases the sum of squares by
4.5%; leaving out other terms increases error by 1% or less.

Code Box 5.8 presents two alternatives: first, estimating the marginal effect of
a predictor, with the variation in height explained by this predictor when included
in the model by itself; or, second, estimating the conditional effect of a predictor,

128 5 Model Selection

with the variation in height it explains not being captured by other predictors. Fitting
the full model and looking at standardised coefficients is another and more or less
equivalent way to look at conditional effects (Code Box 5.9). The advantage of using
standardised coefficients is that this method can be readily applied to other types of
models (e.g. using a LASSO).

Looking at marginal vs conditional effects can give quite different answers (as
in Code Box 5.8), especially when predictors are correlated. Neither of these is a
perfect way to measure what is happening, and both seem to miss some details.

Code Box 5.9: Standardised Coefficients for Angela’s Height Data
Looking at standardised coefficients:

> # first create a dataset with standardised predictors:
> globalPlantStand=globalPlants
> whichVars=c("temp","rain","rain.wetm","temp.seas")
> globalPlantStand[,whichVars]=scale(globalPlantStand[,whichVars])
> # then fit the model:
> ft_climStand = lm(log(height)~temp+rain+rain.wetm+temp.seas,

data=globalPlantStand)
> summary(ft_climStand)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1947 0.1257 9.507 < 2e-16 ***
temp 0.5715 0.2051 2.786 0.00616 **
rain 0.4185 0.3244 1.290 0.19934
rain.wetm 0.1860 0.3353 0.555 0.58013
temp.seas 0.2090 0.2174 0.961 0.33816

Signif. codes: 0 �***' 0.001 �**' 0.01 �*' 0.05 �.' 0.1 � ' 1

Again we see that temp is the most important predictor, followed by rain.

The problem with looking at marginal effects only is that if two predictors are
highly correlated, measuring very similar things, then both can have large marginal
effects, even if one predictor is not directly related to the response. For example, the
marginal effect of temperature seasonality is R2 = 13% (Code Box 5.8, temp.seas),
but there seems to be little effect of temp.seas on plant height after annual temper-
ature (temp) has been added to the model (Code Box 5.7, R2 < 1% for temp.seas).
It seems that the marginal R2 for temp.seas was as high as 13% simply because
it is correlated with temp. The temp predictor on the other hand does seem to be
important, because even after including other predictors in the model, it still explains
about 5% of variation in plant height (Code Box 5.8).

The problem with looking at conditional effects only is that if two predictors are
highly correlated, measuring very similar things, then the conditional effect of each
is small. For example, total precipitation (rain) and rainfall in the wettest month
(rain.wetm) are very highly correlated (Code Box 3.7). Hence the conditional
effect of each, after the other has already been included in the model, is small (Code
Box 5.8) because most of the information captured in rain has already entered the
model via rain.wetm, and vice versa. However, rainfall is clearly important to the
distribution of plant height—it was in all models produced by best-subsets selection

5.7 Variable Importance 129

(Code Box 5.4) and actually explains about 8% of variation after temperature has
been added to the model; a leave-one-out approach misses this part of the story
because rainfall enters the model via two variables. We would need to leave both
rainfall variables out to see this—as in Code Box 5.10.

Exercise 5.3: Variable Importance Output
Compare the R2 results of Code Boxes 5.7 and 5.8. Which table(s) do you
think Angela should report when describing variable importance?

Now look at the standardised coefficients in Code Box 5.9. Do these co-
efficients measure marginal or conditional effects? Which of the R2 tables in
Code Box 5.8 are they most similar to in relative size (e.g. ranking from largest
to smallest)? Is this what you expected?

Code Box 5.10: Importance of Temperature vs Rainfall
Yet another approach is to classify predictors as either temperature or rainfall predictors and
study their relative effect. Looking at the effect of rainfall after temperature:

> ft_onlyTemp = lm(log(height)~temp+temp.seas,data=globalPlants)
> tempAn=anova(ft_int,ft_onlyTemp,ft_clim)
> tempAn$R2=tempAn$�Sum of Sq�/deviance(ft_int)
> tempAn
Analysis of Variance Table

Model 1: log(height) ~ 1
Model 2: log(height) ~ temp + temp.seas
Model 3: log(height) ~ temp + rain + rain.wetm + temp.seas

Res.Df RSS Df Sum of Sq F Pr(>F) R2
1 130 355.92
2 128 289.00 2 66.917 16.173 0.00000056 0.188011
3 126 260.67 2 28.331 6.847 0.00150359 0.079599

Looking at the effect of temperature after rainfall:
> ft_onlyRain = lm(log(height)~rain+rain.wetm,data=globalPlants)
> rainAn=anova(ft_int,ft_onlyRain,ft_clim)
> rainAn$R2=rainAn$�Sum of Sq�/deviance(ft_int)
> rainAn
Model 1: log(height) ~ 1
Model 2: log(height) ~ rain + rain.wetm
Model 3: log(height) ~ temp + rain + rain.wetm + temp.seas

Res.Df RSS Df Sum of Sq F Pr(>F) R2
1 130 355.92
2 128 279.80 2 76.118 18.3964 0.0000001 0.213863
3 126 260.67 2 19.130 4.6233 0.0115445 0.053747

temperature seems able to explain about 19% of global variation in plant height; then rainfall
can explain about 8% more, whereas over 21% of variation can be explained by rainfall alone.
This idea is visualised in Fig. 5.5.

For Angela’s height data, one solution is to aggregate variables into types (tem-
perature vs rainfall) and look at the importance of these variable types as a unit,

130 5 Model Selection

0.0 0.2 0.4 0.6 0.8 1.0
R2

Unexplained

TemmpemTT rature

ainRaa fall

Fig. 5.5: Schematic diagram of relative importance of temperature and rainfall for
Angela’s height data, based on results in Code Box 5.10. Temperature and rainfall
variables jointly explain about 27% of global variation in plant height for Angela’s
data, but temperature and rainfall each on their own explain closer to 20% of variation.
About 5% of variation can be attributed to temperature, about 8% to rainfall, and
the remaining 14% could be explained by either (it is confounded). This sort of plot,
while conceptually helpful, is difficult to generalise to several predictors

as in Code Box 5.10. Each of temperature and rainfall, on its own, seems able to
explain about 20% of variation in plant height, but adding the other variable type
as well explains an additional 5–8% of variation, as visualised in Fig. 5.5. So we
may conclude that temperature and rainfall are both important, separately, rainfall
perhaps slightly more so, but we can do a better job (about 5% better) at explaining
global variation in plant height by looking at temperature as well.

Plenty of alternative approaches could be used here. The simplest is to reduce
multi-collinearity by removing highly correlated responses—this reduces the over-
lap, so conditional and marginal effects become more comparable. For Angela’s data,
we could have reduced the dataset to one temperature and one rainfall variable—a
model with just temp and rain, for example, which ended up being suggested by
step anyway (Code Box 5.5). Another option is to use structural equation modelling
(Grace, 2006) to explicitly build into the model the idea that while temperature and
rainfall are important, each is measured using multiple predictors. A more contro-
versial option is to use a technique that averages measures of variable importance
across different choices of model, which has been very popular in some parts of
ecology under the name hierarchical partitioning (Chevan & Sutherland, 1991).
The issue with that type of approach is that coefficients have different meanings
depending on what other terms are included in the model—recall linear models
estimate conditional effects, so changing what terms are in the model changes what
we are conditioning on. So it makes little sense to average measures of variable
importance across different models, which condition on different things, meaning
we are measuring different things.

5.8 Summary 131

5.8 Summary

Say you have a model selection problem, like Angela’s (Exercise 5.1). We have seen
a suite of different tools that can be used for this purpose. So what should she actually
do? Well, she could try a number of these methods; the important thing is to abide
by a few key principles:

• Model selection is difficult and will be most successful when there are only a
few models to choose between—so it is worth putting careful thought into what
you actually want to compare, and deciding whether you can shortlist just a few
candidate models.

• A key step is choosing model complexity—how many terms should be in the
model? Too few means your model will be biased, too many means its predictions
will be too variable, and we are looking to choose a model somewhere in the
middle. A good way to choose the model complexity for your data is to consider
how well different models predict to new, independent data—directly, typically
using some type of CV, or indirectly, using information criteria.

• If you do have a whole heap of predictors, penalised estimation using methods
like the LASSO is a nice solution that returns an answer quickly, meaning it is
applicable to big data problems. Stepwise methods can also be useful, but it is
worth starting them from a model near where you think the right model will be.
For example, if you have many predictors but only want a few in the final model,
it would be much better to use forward selection starting with a model that has no
predictors in it than to use backward selection from a model with all predictors
in it.

In the analyses for Angela’s paper (Moles et al., 2009), there were 22 potential
predictors, which we shortlisted to 10; then I specially wrote some code to use
all-subsets selection and CV to choose the best-fitting model. With the benefit of
hindsight I don’t think the added complexity implementing an all-subsets algorithm
justified the effort, as compared to, say, forward selection. A decade on, if dealing
with a similar problem, I would definitely still shortlist variables, but then I would
probably recommend a LASSO approach.

Model selection is an active area of research, and the methods used for this
problem have changed a lot over the last couple of decades, so it is entirely possible
that things will change again in the decades to come!

Exercise 5.4: Head Bobs in Lizards—Do Their Displays Change with the
Environment?
Terry recorded displays of 14 male Anolis lizards in the wild (Ord et al., 2016).
These lizards bob their head up and down (and do push-ups) in attempts to
attract the attention of females. Terry measured how fast they bobbed their
heads and wanted to know which environmental features (out of temperature,

132 5 Model Selection

light, and noisiness) were related to head bobbing speed. The data, with one
observation for each lizard, can be found in the headbobLizards dataset.

What type of inference method is appropriate here?
What sort of model would you fit?
Load the data and take a look. Would it make sense to transform any of the

variables in the data prior to analysis?
Which environmental variables best predict head bob speed?

Exercise 5.5: Plant Height Data and Precipitation
Consider Angela’s global plant height data of Exercise 5.1. Angela collected
data on how tall plants are in lots of different places around the globe. She
also has data on eight different precipitation variables. She is interested in how
plant height relates to precipitation and which precipitation variables height
relates to most closely.

Find a subset of precipitation variables that optimally predicts plant height.
Try a couple of different methods of model selection.

Any issues with multi-collinearity among the precipitation variables? Try
to address any multi-collinearity by culling one or two of the main culprits.
Does this affect your previous model selection results?

	5 Model Selection
	5.1 Understanding Model Selection
	5.1.1 The Bias–Variance Trade-Off
	5.1.2 The Problem with R2 and P-Values for Model Selection
	5.1.3 Model Selection as Inference
	5.1.4 It Gets Ugly Quickly
	5.1.5 A Cautionary Tale—Building a Spam Filter

	5.2 Validation
	5.3 K-fold Cross-Validation
	5.4 Information Criteria
	5.4.1 Pros and Cons of Information Criteria

	5.5 Ways to Do Subset Selection
	5.6 Penalised Estimation
	5.7 Variable Importance
	5.8 Summary

