
Chapter 14
Multivariate Abundances—Inference
About Environmental Associations

The most common type of multivariate data collected in ecology is also one of
the most challenging types to analyse—when some abundance-related measure (e.g.
counts, presence–absence, biomass) is simultaneously collected for all taxa or species
encountered in a sample, as in Exercises 14.1–14.3. The rest of the book will focus
on the analysis of these multivariate abundances.

Exercise 14.1: Revegetation and Invertebrate Counts
In his revegetation study (Exercise 10.3), Anthony classified anything that fell
into his pitfall traps into orders, and thus counted the abundance of each of 24
invertebrate orders across 10 sites. He wants to know:

Is there evidence of a change in invertebrate communities due to revegetation efforts?

What type of response variable(s) does he have? How should Anthony analyse
his data?

Exercise 14.2: Invertebrates Settling on Seaweed
In Exercise 1.13, David and Alistair looked at invertebrate epifauna settling
on algal beds (seaweed) with different levels of isolation (0, 2, or 10 m buffer)
from each other, at two sampling times (5 and 10 weeks). They observed
presence–absence patterns of 16 different types of invertebrate (across 10
replicates).

They would like to know if there is any evidence of a difference in inverte-
brate presence–absence patterns with distance of isolation. How should they
analyse the data?
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Exercise 14.3: Do Offshore Wind Farms Affect Fish Communities?
As in Exercise 10.2, Lena studied the effects of an offshore wind farm on fish
communities by collecting paired data before and after wind farm construction,
at 36 stations in each of 3 zones (wind farm, north, and south). She counted
how many fish were caught at each station, classified into 16 different taxa.

Lena wants to know if there is any evidence of a change in fish communities
at wind farm stations, compared to others, following construction of the wind
farm. How should she analyse the data?

This type of data goes by lots of other names—“species by site data”, “community
composition data”, even sometimes “multivariate ecological data”, which sounds a
bit too broad, given that there are other types of multivariate data used in ecology
(such as allometric data, see Chap. 13). The term multivariate abundances is intended
to put the focus on the following key statistical properties.

Multivariate: There are many correlated response variables, sometimes more vari-
ables than there are observations:

– In Exercise 14.1, Anthony has 10 observations and 24 variables.
– In Exercise 14.2, David and Alistair have 57 observations and 16 variables.
– In Exercise 14.3, Lena has 179 observations and 16 variables.

Abundance: Abundance or presence–absence data usually exhibits a strong mean–
variance relationship, as in Fig. 14.1.

You need to account for both properties in your analysis.
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Fig. 14.1: Mean–variance relationships for (a) David’s and Alistair’s data of Exercise
14.2 and (b) the revegetation study of Exercise 14.1
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Multivariate abundance data are especially common in ecology, probably for two
reasons. Firstly, it is often of interest to say something collectively about a community,
e.g. in environmental impact assessment, we want to know if there is any impact of
some event on the ecological community. Secondly, this sort of data arises naturally
in sampling—even when you’re interested in some target species, others will often
be collected incidentally along the way, e.g. pitfall traps set specifically for ants
will inevitably capture a range of other types of invertebrate also. So even when
they are interested in something else, many ecologists end up with multivariate
abundances and feel like they should do something with them. In this second case
we do not have a good reason to analyse multivariate abundances. Only bother with
multivariate analysis if the primary research question of interest is multivariate, i.e.
if a community or assemblage of species is of primary interest. Don’t go multivariate
just because you have the data.

There are a few different types of questions one might wish to answer using
multivariate abundances. The most common type of question, as in each of Exer-
cises 14.1–14.3, is whether or not the community is associated with some predictor
(or set of predictors) characterising aspects of the environment—whether looking at
the effect on a community of an experimental treatment, testing for environmental
impact (Exercise 14.3), or something else again.

In Chap. 11 some multivariate regression techniques were introduced, and model-
based inference was used to study the effects of predictors on response. If there were
only a few taxa in the community, those methods would be applicable. But (as flagged
in Table 11.2) a key challenge with multivariate abundances is that typically there are
many responses. It’s called biodiversity for a reason! There are lots of different types
of organisms out there. The methods discussed in this chapter are types of high-
dimensional regression, intended for when you have many responses, but if you only
have a few responses, you might be better off back in Chap. 11. High-dimensional
regression is technically difficult and is currently a fast-moving field.

In this chapter we will use design-based inference (as in Chap. 9). Design-based
inference has been common in ecology for this sort of problem for a long time
as a way to handle the multivariate property, and the focus in this chapter will be
on applying design-based inference to models that appropriately account for the
mean–variance relationship in data (to also handle the abundance property). There
are some potential analysis options beyond design-based inference, which we will
discuss later.

Key Point
Multivariate abundance data (also “species by site data”, “community com-
position data”, and so forth) has two key properties: a multivariate property,
that there are many correlated response variables, and an abundance prop-
erty, a strong mean–variance relationship. It is important to account for both
properties in your analysis.
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14.1 Generalised Estimating Equations

Generalised estimating equations (GEEs, Liang & Zeger, 1986; Zeger & Liang,
1986) are a fast way to fit a model to correlated counts, compared to hierarchical mod-
els (Chaps. 11–12). Design-based inference techniques like the bootstrap (Chap. 9)
tend to be computationally intensive, especially when applied to many correlated
response variables, GEEs are a better choice when planning to use design-based
inference. Parameters from GEEs are also slightly easier to interpret than those of
a hierarchical model, because they specify marginal rather than conditional models,
so parameters in the mean model have direct implications for mean abundance (see
Maths Box 11.4 for problems with marginal interpretation of hierarchical parame-
ters).

GEEs are ad hoc extensions of equations used to estimate parameters in a GLM,
defined by taking the estimating equations from a GLM, forcing them to be multivari-
ate (Maths Box 14.1), and hoping for the best. An assumption about the correlation
structure of the data is required for GEEs. Independence of responses is commonly
assumed, sometimes called independence estimating equations, which simplifies
estimation to a GLM problem, and then correlation in the data is adjusted for later
(using “sandwich estimators” for standard errors, Hardin & Hilbe, 2002).

Maths Box 14.1: Generalised Estimating Equations
As in Maths Box 10.2, maximum likelihood is typically used to estimate
parameters in a GLM, which ends up meaning that we need to find the values
of parameters that solve the following score equations:

0 =

n∑

i=1
diV(μi)−1(yi − μi)

(where di =
∂μi

∂β =
xi

g′(μi ) , as in Eq. 10.4). The GEE approach involves taking
these estimating equations and making them multivariate, by replacing the
response with a vector of correlated responses, replacing the variance with a
variance–covariance matrix, and hoping for the best:

0 =

n∑

i=1
DiV (μi)−1(yi − μi) (14.1)

V (μi) is now a variance–covariance matrix, requiring a “working correlation”
structure to be specified.

A similar fitting algorithm is used as for GLMs, which means that GEEs
are typically relatively quick to fit.
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Notice that whereas the score equations for GLMs are derived as the gradient
of the log-likelihood function, that is not how GEEs are derived. In fact,
unless responses are assumed to be normally distributed, or they are assumed
to be independent of each other, there is no GEE likelihood function. This
complicates inference, because standard likelihood-based tools such as AIC,
BIC, and likelihood ratio tests cannot be used because we cannot calculate a
GEE likelihood.

Some difficulties arise when using GEEs, because of the fact that they are moti-
vated from equations for estimating parameters, rather than from a parametric model
for the data. GEEs define marginal models for data, but (usually) not a joint model,
with the estimating equations no longer corresponding to the derivative of any known
likelihood function. One difficulty that this creates is that we cannot simulate data
under a GEE “model”. A second difficulty is that without a likelihood, a likelihood
ratio statistic can’t be constructed. Instead, another member of the “Holy Trinity
of Statistics” (Rao, 1973) could be used for inference, a Wald or score statistic.
Maybe this should be called the Destiny’s Child of Statistics (Maths Box 14.2),
because while the Wald and score statistics are good performers in their own right,
the likelihood ratio statistic is the main star (the Beyoncé). Wald statistics have been
met previously, with the output from summary for most R objects returning Wald
statistics. These statistics are based on parameter estimates under the alternative
hypothesis, by testing if parameter estimates are significantly different from what is
expected under the null hypothesis. A score statistic (or Rao’s score statistic) is based
on the estimating equations themselves, exploiting the fact that plausible estimates
of parameters should give values of the estimating equations that are close to zero.
Specifically, parameter estimates under the null hypothesis are plugged into the esti-
mating equations under the alternative hypothesis, and a statistic constructed to test
for evidence that the expression on the right-hand side of Eq. 14.1 is significantly
different from zero.

Maths Box 14.2: The Destiny’s Child of Statistics
Consider testing for evidence against a null model (M0) with parameter θ0,
in favour of a more general alternative model (M1) with parameter θ̂1. There
are three main types of likelihood-based test statistics, the Destiny’s Child of
Statistics (or the Holy Trinity of Statistics, according to Rao, 1973). These can
be visualised in a plot of the log-likelihood function against θ:
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The likelihood ratio test −2 logΛ(M0,M1) = 2�M1(θ̂1; y) − 2�M0(θ0; y)
focuses on whether the likelihoods of the two models are significantly different
(vertical axis).

The Wald statistic focuses on the parameter (horizontal axis) of M1 and
whether θ̂1 is significantly far from what would be expected under M0, using
θ̂1−θ0
σ̂θ̂1

.
The score statistic focuses on the score equation u(θ), the gradient of the

log-likelihood at M0. The likelihood should be nearly flat for a model that fits
the data well. So if M0 is the correct model, u(θ0) should be near zero, and
we can use as a test statistic u(θ0)

σ̂u(θ0)
.

In GEEs, u(θ) is defined, hence θ can be estimated, but the likelihood is
not defined (unless assuming all variables are independent). So for correlated
counts we can use GEEs to calculate a Wald or score statistic, but not a
likelihood ratio statistic. Sorry, no Beyoncé!

14.2 Design-Based Inference Using GEEs

A simple GEE model for abundance at site i of taxon j is
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yi j ∼ F(μi j, φi) such that σ2
yi j

= V(μi j, φ j)
g(μi j) = β0j + x ′iβ j (14.2)

cor(ri j, ri j′ ) = Rj j′ where ri j =
yi j − μi j
σyi j

An offset or a row effect term can be added to account for variation in sampling
intensity, which is useful for diversity partitioning, as discussed later (Sect. 14.3).

A working correlation matrix (R) is needed, specifying how abundances are
associated with each other across taxa. The simplest approach is to use independence
estimating equations, ignoring correlation for the purposes of estimation (assuming
R = I, a diagonal matrix of ones, with all correlations equal to zero), so that the
model simplifies to fitting a GLM separately to each response variable. This is pretty
much the simplest possible model that will account for the abundance property, and
by choosing a simple model, we hope that resampling won’t be computationally
prohibitive.

We need to handle the multivariate property of the data to make valid multivariate
inferences about the effects of predictors (environmental associations), and this can
be done by resampling rows of data. Resampling rows keeps site abundances for all
taxa together in resamples, to preserve the correlation between taxa. This is a form of
block resampling (Sect. 9.7.1). Correlation can also be accounted for in constructing
the test statistic.

The manyglm function in the mvabund package was written to carry out the
preceding operation, and it behaves a lot like glm, so it is relatively easy to use if you
are familiar with the methods of Chap. 10 (Code Box 14.1). It does, however, take
longer to run (for anova or summary), so sometimes you have to be patient. Unlike
the glm function, manyglm defaults to family="negative.binomial". This is
done because the package was designed to analyse multivariate abundances (hence
the name), and these are most commonly available as overdispersed counts.

Code Box 14.1: Using mvabund to Test for an Effect of Revegetation in
Exercise 12.2

> library(ecostats)
> library(mvabund)
> data(reveg)
> reveg$abundMV=mvabund(reveg$abund)
> ft_reveg=manyglm(abundMV~treatment+offset(log(pitfalls)),
family="negative.binomial", data=reveg) # offset included as in

Ex 10.9
> anova(ft_reveg)
Time elapsed: 0 hr 0 min 9 sec
Analysis of Deviance Table

Model: manyglm(formula = abundRe ~ treatment + offset(log(pitfalls)),
Model: family = "negative.binomial")



338 14 Multivariate Abundances and Environmental Association

Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)

(Intercept) 9
treatment 8 1 78.25 0.024 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster
computation)P-value calculated using 999 iterations via PIT-trap
resampling.

Exercise 14.4: Testing for an Effect of Isolation on Invertebrates in Sea-
weed
Consider David and Alistair’s study of invertebrate epifauna settling on algal
beds with different levels of isolation (0, 2, or 10 m buffer) at different sampling
times (5 and 10 weeks), with varying seaweed biomass in each patch.

What sort of model is appropriate for this dataset? Fit this model and
call it ft_epiAlt and run anova(ft_epiAlt). (This might take a couple of
minutes to run.)

Now fit a model under the null hypothesis that there is no effect of distance of
isolation, and call it ft_epiNull. Run anova(ft_epiNull, ft_epiAlt).
This second anova took much less time to fit—why?

Is there evidence of an effect of distance of isolation on presence–absence
patterns in the invertebrate community?

14.2.1 Mind Your Ps and Qs

The manyglm function makes the same assumptions as for GLMs, plus a correlation
assumption:

1. The observed yi j-values are independent across observations (across i), after
conditioning on xi .

2. The yi j-values come from a known distribution (from the exponential family)
with known mean–variance relationship V(μi j).

3. There is a straight-line relationship between some known function of the mean
of yj and x

g(μi j) = β0j + xTi β j

4. Residuals have a constant correlation matrix across observations.
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Check assumptions 2 and 3 as for GLMs—using Dunn-Smyth residual plots
(Code Box 14.2). As usual, the plot function could be used to construct residual
plots for mvabund objects, or the plotenvelope function could be used to add
simulation envelopes capturing the range of variation to expect if assumptions were
satisfied. For large datasets, plotenvelope could take a long time to run, unless
using sim.method="stand.norm" (as in Code Box 14.3) to simulate standard
normal random variables, instead of simulating new responses and refitting the
model for each. As usual, we want no trend in the residuals vs fits plot and would be
particularly worried by a U shape (non-linearity) or a fan shape (problems with the
mean–variance assumption, as in Code Box 14.3), and in the normal quantile plot
we expect residuals to stay close to the trend line. The meanvar.plot function can
also be used to plot sample variances against sample means, by taxon and optionally
by treatment (Code Box 14.3).

Code Box 14.2: Checking Assumptions for the Revegetation Model of Code
Box 14.1

par(mfrow=c(1,3))
ft_reveg=manyglm(abundMV~treatment,offset=log(pitfalls),

family="negative.binomial", data=reveg)
plotenvelope(ft_reveg, which=1:3)
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Code Box 14.3: Checking Mean–Variance Assumptions for a Poisson
Revegetation Model

ft_revegP=manyglm(abundMV~treatment, offset=log(pitfalls),
family="poisson", data=reveg)

par(mfrow=c(1,3))
plotenvelope(ft_revegP, which=1:3, sim.method="stand.norm")
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Plotting sample variances against sample means for each taxon and treatment:
meanvar.plot(reveg$abundMV~reveg$treatment)
abline(a=0,b=1,col="darkgreen")

How’s the Poisson assumption looking?

Exercise 14.5: Checking Assumptions for the Habitat Configuration Data
Consider the multivariate analysis of the habitat configuration study (Exer-
cise 14.4).

What assumptions were made?
Where possible, check these assumptions.

Do the assumptions seem reasonable?
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Exercise 14.6: Checking Assumptions for Wind Farm Data
Consider Lena’s offshore wind farm study (Exercise 14.3). Fit an appropriate
model to the data. Make sure you include a Station main effect (to account
for the paired sampling design).

What assumptions were made?
Where possible, check these assumptions.

Do the assumptions seem reasonable? In particular, think about whether
there is evidence that the counts are overdispersed compared to the Poisson.

14.2.2 Test Statistics Accounting for Correlation

When using anova on a manyglm object, a “sum-of-LR” statistic (Warton et al.,
2012b) is the default—a likelihood ratio statistic computed separately for each taxon,
then summed across taxa for a community-level measure. By summing across taxa,
the sum-of-LR statistic is calculated assuming independent responses (and the job
of accounting for the multivariate property is left to row resampling).

If you want to account for correlation between variables in the test statistic, you
need to change both the type of test statistic (via the test argument) and the assumed
correlation structure (via the cor.type argument). The test statistic to use is a score
(test="score") or Wald (test="wald") statistic, as described previously. The
type of correlation structure to assume is controlled by the cor.type argument.
Options currently available include the following:

cor.type="I" (Default) Assumes independence for test statistic calculation—
sums across taxa for a faster fit.

cor.type="R" Assumes unstructured correlation between all variables, i.e. es-
timates a separate correlation coefficient between each pair of responses. Not
recommended if there are many variables compared to the number of observa-
tions, because it will become numerically unstable (Warton, 2008).

cor.type="shrink" A middle option between the previous two. Use this to
account for correlation unless you have only a few variables. This method shrinks
an unstructured correlation matrix towards the matrix you would use if assuming
independence, using the data to work out how far to move towards independence
(Warton, 2011, as in Code Box 14.4).

Note that even if you ignore correlation when constructing a test statistic, it is
accounted for in the P-value because rows of observations are resampled. This means
the procedure is valid even if the independence assumption used in constructing the
test statistic is wrong. But recall that valid�efficient—while this procedure is valid,
the main risk when using this statistic is that if there are correlated variables you
can miss structure in the data (the scenario depicted in Fig. 11.1). So one approach,
as when making inferences from multivariate linear models (Sect. 11.2), is to try a
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couple of different test statistics, in case the structure in the data is captured by one
of these but not another. This approach would be especially advisable if using Wald
statistics, because they can be insensitive when many predicted values for a taxon
are zero (as in Chap. 10).

Code Box 14.4: A manyglm Analysis of Revegetation Data Using a Statistic
Accounting for Correlation

> anova(ft_reveg,test="wald",cor.type="shrink")
Time elapsed: 0 hr 0 min 6 sec
Analysis of Variance Table

Model: abundMV ~ treatment + offset(log(pitfalls))

Multivariate test:
Res.Df Df.diff wald Pr(>wald)

(Intercept) 9
treatment 8 1 8.698 0.039 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming correlated response via ridge
regularization P-value calculated using 999 iterations via PIT-trap
resampling.

You can also use the summary function for manyglm objects, but the results aren’t
quite as trustworthy as for anova. The reason is that resamples are taken under the
alternative hypothesis for summary, where there is a greater chance of fitted values
being zero, especially for rarer taxa (e.g. if there is a treatment combination in which
a taxon is never present). Abundances don’t resample well if their predicted mean is
zero.

14.2.3 Computation Time

One major difference between glm and manyglm is in computation time. Analysing
your data using glm is near instantaneous, unless you have a very large dataset. But in
Code Box 14.1, an anova call to a manyglm object took almost 10 s, on a small dataset
with 24 responses variables. Bigger datasets will take minutes, hours, or sometimes
days! The main problem is that resampling is computationally intensive—by default,
this function will fit a glm to each response variable 1000 times, so there are 24,000
GLMs in total. If an individual GLM were to take 1s to fit, then fitting 24,000 of
them would take almost 7 h (fortunately, that would only happen for a pretty large
dataset).

For large datasets, try setting nBoot=49 or 99 to get a faster but less precise
answer. Then scale it up to around 999 when you need a final answer for publication.
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You can also use the show.time="all" argument to get updates every 100 bootstrap
samples, e.g. anova(ft_reveg,nBoot=499,show.time="all").

If you are dealing with long computation times, parallel computing is a solution
to this problem—if you have 4 computing cores to run an analysis on, you could
send 250 resamples to each core then combine, to cut computation down four-fold.
If you have access to a computational cluster, you could even send 1000 separate
jobs to 1000 nodes, each consisting of just one resample, and reduce a hard problem
from days to minutes. By default, mvabund will split operations up across however
many nodes are available to it at the time.

Another issue to consider with long computation times is whether some of the taxa
can be removed from the analysis. Most datasets contain many taxa that are observed
very few times (e.g. singletons, seen only once, and doubletons or tripletons), and
these typically provide very little information to the analysis, while slowing compu-
tation times. The slowdown due to rarer taxa can be considerable because they are
more difficult to fit models to. So an obvious approach to consider is removing rarer
taxa from the analysis—this rarely results in loss of signal from the data but removes
a lot of noise, so typically you will get faster (and better) results from removing rare
species (as in Exercise 14.7). It is worth exploring this idea for yourself and seeing
what effect removing rarer taxa has on results. Removing species seen three or fewer
times is usually a pretty safe bet.

Exercise 14.7: Testing for an Effect of Offshore Wind Farms (Slowly)
Consider Lena’s offshore wind farm study (Exercise 14.3). The data contain a
total of 179 rows of data and a Station main effect (to account for the paired
sampling) that has lots of terms in it. Analysis will take a while.

Fit models under the null and alternative hypotheses of interest. Run an
anova to compare these 2 models, with just 19 bootstrap resamples, to estimate
computation time.

Remove zerotons and singletons from the dataset using
windMV = mvabund(windFarms$abund[,colSums(windFarms$abund>0)>1])

Now fit a model to this new response variable, again with just 19 bootstrap
resamples. Did this run take less time? How do the results compare? How long
do you think it would take to fit a model with 999 bootstrap resamples, for an
accurate P-value?

14.2.4 The manyany Function

The manyglm function is currently limited to just a few choices of family and link
function to do with count or presence–absence data, focusing on distributions like the
negative binomial, Poisson, and binomial. An extension of it is the manyany function
(Code Box 14.5), which allows you to fit (in principle) any univariate function to
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each column of data and use anova to resample rows to compare two competing
models. The cost of this added flexibility is that this function is very slow—manyglm
was coded in C (which is much faster than R) and optimised for speed, but manyany
was not.

Code Box 14.5: Analysing Ordinal Data from Habitat Configuration Study
Using manyany
Regression of ordinal data is not currently available in the manyglm function, but it can be
achieved using manyany:

> habOrd = counts = as.matrix( round(seaweed[,6:21]*seaweed$Wmass))
> habOrd[counts>0 & counts<10] = 1
> habOrd[counts>=10] = 2
> library(ordinal)
> summary(habOrd) # Amphipods are all "2" which would return an

error in clm
> habOrd=habOrd[,-1] #remove Amphipods
> manyOrd=manyany(habOrd~Dist*Time*Size,"clm",data=seaweed)
> manyOrdNull=manyany(habOrd~Time*Size,"clm",data=seaweed)
> anova(manyOrdNull, manyOrd)

LR Pr(>LR)
sum-of-LR 101.1 0.12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

What hypothesis has been tested here? Is there any evidence against it?

14.3 Compositional Change and Partitioning Effects on α- and
β-Diversity

In the foregoing analyses, the focus was on modelling mean abundance, but some-
times we wish to focus on relative abundance or composition. The main reason for
wanting to do this is if there are changes in sampling intensity for reasons that can’t
be directly measured. For example, pitfall traps are often set in terrestrial systems to
catch insects, but some will be more effective than others because of factors unrelated
to the abundance of invertebrates, such as how well pitfall traps were placed and
the extent to which ground vegetation impedes movement in the vicinity of the trap
(Greenslade, 1964). A key point here is that some of the variation in abundance mea-
surements is due to changes in the way the sample was taken rather than being due to
changes in the study organisms—variation is explained by the sampling mechanism
as well as by ecological mechanisms. In this situation, only relative abundance across
taxa is of interest, after controlling for variation in sampling intensity. In principle, it
is straightforward to study relative abundances using a model-based approach—we
simply add a term to the model to account for variation in abundance across samples.
So the model for abundance at site i of taxon j becomes
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yi j ∼ F(μi j, φi) such that Var(yi j) = V(μi j, φ j)
g(μi j) = x ′iα + α0i + β0j + x ′iβ j (14.3)

The new term in the model, α0i , accounts for variation across samples in total
abundance, so that remaining terms in the model can focus on change in relative
abundance. The optional term x ′iα quantifies how much of this variation in total
abundance can be explained by environmental variables. The terms in Eq. 14.3 have
thus been partitioned into those studying total abundance (the α) and those studying
relative abundance (the β). Put another way, the effects of environmental variables
have been split into main effects (the α) and their interactions with taxa (the β, which
take different values for different taxa). The model needs additional constraints for
all the terms to be estimable, which R handles automatically (e.g. by setting α01 = 0).

Key Point
Often the primary research interest is in studying the effects of environmental
variables on community composition or species turnover. This is especially
useful if some variation in abundance is explained by the sampling mechanism,
as well as ecological mechanisms. This can be accounted for in a multivariate
analysis by adding a “row effect” to the model, a term that takes a different value
for each sample according to its total abundance. Thus, all remaining terms
in the model estimate compositional effects (β-diversity), after controlling for
effects on total abundance (α-diversity).

A classic paper by Whittaker (1972) described the idea of partitioning species
diversity into α-diversity, “the community’s richness of species”, and β-diversity, the
“extent of differentiation in communities along habitat gradients”.1 The parameters
of Eq. 14.3 have been written as either α or β to emphasise their connections to
α-diversity and β-diversity. Specifically, larger α coefficients in Eq. 14.3 correspond
to samples or environmental variables that have larger effects on abundance of all
species (and hence on species richness), whereas larger β coefficients in Eq. 14.3
correspond to taxa that differ from the overallα-trend in terms of how their abundance
relates to the environmental variable, implying greater species turnover along the
gradient. The use of statistical models to tease apart effects of environmental variables
on α- and β-diversity is a new idea that has a lot of potential.

A model along the lines of Eq. 14.3 can be readily fitted via manyglm using the
composition argument, as in Code Box 14.6. The manyany function also has a
composition argument, which behaves similarly.

1 He also defined γ-diversity, the richness of species in a region, but this is of less interest to us
here.
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Code Box 14.6: A Compositional Analysis of Anthony’s Revegetation Data

> ft_comp=manyglm(abundMV~treatment+offset(log(pitfalls)),
data=reveg, composition=TRUE)
> anova(ft_comp,nBoot=99)
Time elapsed: 0 hr 0 min 21 sec
Model: abundMV ~ cols + treatment + offset(log(pitfalls)) + rows

+ cols:(treatment + offset(log(pitfalls)))

Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 239
cols 216 23 361.2 0.01 **
treatment 215 1 14.1 0.01 **
rows 206 9 25.5 0.02 *
cols:treatment 184 23 56.7 0.01 **

In this model, coefficients of cols, treatment, rows, and cols:treatment correspond
in Eq. 14.3 to β0 j , α, α0i , and β j , respectively.

Which term measures the effect of treatment on relative abundance? Is there evidence of
an effect on relative abundance?

Fitting models using composition=TRUE is currently computationally slow. Data
are re-expressed in long format (along the lines of Code Box 11.5) to fit a single
GLM as in Eq. 14.3, with abundance treated as a univariate response and row and
column factors used as predictors to distinguish different samples and responses (re-
spectively). This is fitted using the manyglm computational machinery, but keeping
all observations from the same site together in resamples, as previously. A limitation
of this approach is that the model is much slower to fit than in short format and may
not fit at all for large datasets because of substantial inefficiencies that a long format
introduces. In particular, the design matrix storing x variables has p times as many
rows in it and nearly p times as many columns! Computation times for anova can
be reduced by using it to compare just the null and alternative models for the test
of interest, manually fitted in long format, as in Code Box 14.7. Further limitations,
related to treating the response as univariate, are that the model is unable to handle
correlation across responses (so cor.type="I" is the only option for compositional
analyses), multiple testing across responses (see following section) is unavailable,
and any overdispersion parameters in the model are assumed constant across re-
sponses (i.e. for each j, we assumed φ j = φ in Code Box 14.6). Writing faster and
more flexible algorithms for this sort of model is possible and a worthwhile avenue
for future research, whether using sparse design matrices (Bates & Maechler, 2015)
or short format.
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Code Box 14.7: A Faster Compositional Analysis of Anthony’s Revegeta-
tion Data
In Code Box 14.6, every term in ft_comp was tested, even though only the last term was of
interest. The data used to fit this model are stored in long format in ft_comp$data, so we
can use this data frame to specify the precise null and alternative models we want to test so
as to save computation time:

> ft_null = manyglm(abundMV~cols+rows+offset(log(pitfalls)),
data=ft_comp$data)
> ft_alt = manyglm(abundMV~cols+rows+treatment:cols
+offset(log(pitfalls)), data=ft_comp$data)
> anova(ft_null, ft_alt, nBoot=99, block=ft_comp$rows)
Time elapsed: 0 hr 0 min 5 sec

ft_null: abundMV ~ cols + rows + offset(log(pitfalls))
ft_alt: abundMV ~ cols + rows + treatment:cols + offset(log(pitfalls))

Res.Df Df.diff Dev Pr(>Dev)
ft_null 207
ft_alt 184 23 56.74 0.01 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments: P-value calculated using 99 iterations via PIT-trap
resampling.

The results are the same (same test statistic and similar P-value) but take about a quarter of
the computation time. Notice also that a main effect for the treatment term was left out of
the formulas. Why didn’t exclusion of the treatment term change the answer?

14.3.1 Quick-and-Dirty Approach Using Offsets

For large datasets it may not be practical to convert data to long format, in which
case the composition=TRUE argument is not a practical option. In this situation a
so-called quick-and-dirty alternative for count data is to calculate the quantity

si = log
p∑

j=1
yi j − log

p∑

j=1
μ̂i j (14.4)

and use this as an offset (Code Box 14.8). The term μ̂ refers to the predicted value
for yi j from the model that would be fitted if you were to exclude the compositional
term. The si estimate the row effect for observation i as the difference in log-row
sums between the data and what would be expected for a model without row effects.
The best way to use this approach would be to calculate a separate offset for each
model being compared, as in Code Box 14.8. If there was already an offset in the
model, it stays there, and we now add a second offset as well (Code Box 14.8).
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Code Box 14.8: Quick-and-Dirty Compositional Analysis of Anthony’s
Revegetation Data
We can approximate the row effects α0i using the expression in Eq. 14.4:

> # calculate null model offset and fit quick-and-dirty null model
> ft_reveg0 = manyglm(abundMV~1+offset(log(pitfalls)), data=reveg)
> QDrows0 = log(rowSums(reveg$abundMV)) - log(rowSums(fitted(ft_reveg0)))
> ft_row0 = manyglm(abundMV~1+offset(log(pitfalls))+

offset(QDrows0), data=reveg)
> # calculate alt model offset and fit quick-and-dirty alt model
> ft_reveg = manyglm(abundMV~treatment+offset(log(pitfalls)),

data=reveg)
> QDrows = log(rowSums(reveg$abundMV)) - log(rowSums(fitted(ft_reveg)))
> ft_row = manyglm(abundMV~treatment+offset(log(pitfalls))+

offset(QDrows), data=reveg)
> anova(ft_row0,ft_row)
Time elapsed: 0 hr 0 min 7 sec
Analysis of Deviance Table

ft_row0: abundMV ~ 1 + offset(QDrows0)
ft_row: abundMV ~ treatment + offset(QDrows)

Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)

ft_row0 9
ft_row 8 1 50.26 0.048 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster
computation)P-value calculated using 999 iterations via PIT-trap
resampling.

This was over 10 times quicker than Code Box 14.7 (note that it used 10 times as many
resamples), but the results are slightly different—the test statistic is slightly smaller and the
P-value larger. Why do you think this might be the case?

The approach of Code Box 14.8 is quick (because it uses short format), and we will
call it quick-and-dirty for two reasons. Firstly, unless counts are Poisson, it does not
use the maximum likelihood estimator of α0i , so in this sense it can be considered
sub-optimal. Secondly, when resampling, the offset is not re-estimated for each
resample when it should be, so P-values become more approximate. Simulations
suggest this approach is conservative, so perhaps the main cost of using the quick-
and-dirty approach is loss of power—test statistics are typically slightly smaller and
less significant, as in Code Box 14.8. Thus the composition argument should be
preferred, where practical.
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Key Point
A key challenge in any multivariate analysis is understanding what the main
story is and communicating it in a simple way. Some tools that can help with
this include the following:

• Identifying a short list of indicator taxa that capture most of the effect.
• Visualisation tools—maybe an ordination, but especially looking for ways

to see the key results using the raw data.

14.4 In Which Taxa Is There an Effect?

In Code Box 14.1, Anthony established that revegetation does affect invertebrate
communities. This means that somewhere in the invertebrate community, there is
evidence that some invertebrates responded to revegetation—maybe all taxa re-
sponded, or maybe just one did. The next step is to think about which of the response
variables most strongly express the revegetation effect. This can be done by adding
a p.uni argument as in Code Box 14.9.

Code Box 14.9: Posthoc Testing for Bush Regeneration Data

> an_reveg = anova(ft_reveg,p.uni="adjusted")

> an_reveg

Analysis of Deviance Table

Model: manyglm(formula = dat ~ treatment + offset(log(pitfalls)),

family = "negative.binomial")

Multivariate test:

Res.Df Df.diff Dev Pr(>Dev)

(Intercept) 9

treatment 8 1 78.25 0.022 *

Univariate Tests:

Acarina Amphipoda Araneae Blattodea

Dev Pr(>Dev) Dev Pr(>Dev) Dev Pr(>Dev) Dev

(Intercept)

treatment 8.538 0.208 9.363 0.172 0.493 0.979 10.679

Coleoptera Collembola Dermaptera
Pr(>Dev) Dev Pr(>Dev) Dev Pr(>Dev) Dev

(Intercept)

treatment 0.117 9.741 0.151 6.786 0.307 0.196
...
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The p.uni argument allows univariate test statistics to be stored for each response
variable, with P-values from separate tests reported for each response, to identify
taxa in which there is statistical evidence of an association with predictors. The
p.uni="adjusted" argument uses multiple testing, adjusting P-values to control
family-wise Type I error, so that the chance of a false positive is controlled jointly
across all responses (e.g. for each term in the model, if there were no effect of that
term, there would be a 10% chance, at most, of at least one response having a P-
value less than 0.1). The more response variables there are, the bigger the P-value
adjustment and the harder it is to get significant P-values, after adjusting for multiple
testing. It is not uncommon to get global significance but no univariate significance—
e.g. Anthony has good evidence of an effect on invertebrate communities but can’t
point to any individual taxon as being significant. This comes back to one of the
original arguments for why we do multivariate analysis (Chap. 11, introduction)—it
is more efficient statistically than separately analysing each response one at a time.

The size of univariate test statistics can be used as a guide to indicator taxa, those
that contribute most to a significant multivariate result. A test statistic constructed
assuming independence (cor.type="I") is a sum of univariate test statistics for
each response, so it is straightforward to work out what fraction of it is due to any
given subset of taxa. For example, the “top 5” taxa from Anthony’s revegetation
study account for more than half of the treatment effect (Code Box 14.10). This type
of approach offers a short list of taxa to focus on when studying the nature of a
treatment effect, which can be done by studying their coefficients (Code Box 14.10),
plotting the subset, and (especially for smaller datasets) looking at the raw data.

Code Box 14.10: Exploring Indicator Taxa Most Strongly Associated with
Treatment Effect in Anthony’s Revegetation Data
Firstly, sorting univariate test statistics and viewing the top 5:

> sortedRevegStats = sort(an_reveg$uni.test[2,],decreasing=T,
index.return=T)

> sortedRevegStats$x[1:5]
Blattodea Coleoptera Amphipoda Acarina Collembola
10.679374 9.741038 9.362519 8.537903 6.785946

How much of the overall treatment effect is due to these five orders of invertebrates? The
multivariate test statistic across all invertebrates, stored in an$table[2,3], is 78.25. Thus,
the proportion of the difference in deviance due to the top 5 taxa is

> sum(sortedRevegStats$x[1:5])/an_reveg$table[2,3]
[1] 0.5764636

So about 58% of the change in deviance is due to these five orders.
The model coefficients and corresponding standard errors for these five orders are as

follows:
> coef(ft_reveg)[,sortedRevegStats$ix[1:5]]

Blattodea Coleoptera Amphipoda Acarina Collembola
(Intercept) -0.3566749 -1.609438 -16.42495 1.064711 5.056246
treatmentReveg -3.3068867 5.009950 19.42990 2.518570 2.045361
> ft_reveg$stderr[,sortedRevegStats$ix[1:5]]

Blattodea Coleoptera Amphipoda Acarina Collembola
(Intercept) 0.3779645 1.004969 707.1068 0.5171539 0.4879159
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treatmentReveg 1.0690450 1.066918 707.1069 0.5713194 0.5453801
Note that a log-linear model was fitted, so the exponent of coefficients tells us the proportional
change when moving from the control to the treatment group. For example, cockroach
abundance (Blattodea) decreased by a factor of about e3.3 = 27 on revegetation, while
the other four orders increased in abundance with revegetation. Can you construct an
approximate 95% confidence interval for the change in abundance of beetles (Coleoptera)
on revegetation?

Exercise 14.8: Indicator Species for Offshore Wind Farms?
Which fish species are most strongly associated with offshore wind farms in
Lena’s study?

Reanalyse the data to obtain univariate test statistics and univariate P-
values that have been adjusted for multiple testing. Recall that the key term
of interest, in terms of measuring the effects of offshore wind farms on fish
communities, is the interaction between Zone and Year. Is there evidence that
any species clearly have a Zone:Year interaction, after adjusting for multiple
testing? What proportion of the total Zone:Year effect is attributable to these
potential indicator species?

Plot the abundance of each potential indicator species against Zone and
Year. What is the nature of the wind farm effect for each species? Do you
think these species are good indicators of an effect of wind farms?

14.5 Random Factors

One limitation of design-based inference approaches like mvabund is computation
time; another is difficulties dealing with mixed models to account for random factors
(as in Chap. 6). There are additional technical challenges associated with constructing
resampling schemes for mixed models, but the main obstacle is that resampling mixed
models is computationally intensive, to the point that resampling a “manyglmm”
function would not be practical for most datasets. A model-based approach, making
use of hierarchical models, holds some promise, and we hope that this can address
the issue in the near future.

14.6 Other Frameworks for Making Inferences About
Community–Environment Associations

This chapter has focused on design-based inference using GEEs. What other options
are there for making inferences about community–environment associations? A
few alternative frameworks could be used; their key features are summarised in
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Table 14.1. Copula models are mentioned in the table and will be discussed in more
detail later (Chap. 17).

Table 14.1: Summary of the main differences in functionality of four frameworks for
modelling multivariate abundances

Framework Fast? Ordination? Composition?a Co-occurrence?b

Hierarchical GLMs × � � �
GEEs �� × � ×
Copulas � � � �
Dissimilarity-based algorithms ��� � × ×
aThat is, can they appropriately account for changes in sampling intensity, for valid inferences about
community composition?
bThat is, can they be used to study patterns in co-occurrence of taxa, e.g. by quantifying correlation

14.6.1 Problems with Dissimilarity-Based Algorithms

Multivariate analysis in ecology has a history dating back to the 1950s (Bray &
Curtis, 1957, for example), whereas the other techniques mentioned in Table 14.1
are modern advances using technology not available in most of the twentieth century,
and only actually introduced to ecology in the 2010s (Walker and Jackson, 2011;
Wang et al., 2012; Popovic et al., 2019). In the intervening years, ecologists developed
some algorithms to answer research questions using multivariate abundance data,
which were quite clever considering the computational and technological constraints
of the time. These methods are still available and widely used in software like
PRIMER (Anderson et al., 2008), CANOCO (ter Braak & Smilauer, 1998), and free
versions such as in the ade4 (Dray et al., 2007) or vegan (Oksanen et al., 2017)
packages.

The methods in those packages (Clarke, 1993; Anderson, 2001, for example)
tend to be stand-alone algorithms that are not motivated by an underlying statistical
model for abundance,2 in contrast to GEEs and all other methods in this book (so-
called model-based approaches). The algorithmic methods are typically faster than
those using a model-based framework because they were developed a couple of
decades ago to deal with computational constraints that were much more inhibiting
than they are now. However, these computational gains come at potentially high
cost in terms of statistical performance, and algorithmic approaches are difficult to
reconcile conceptually with conventional regression approaches used elsewhere in
ecology (Chaps. 2–11). So while at the time of writing many algorithmic techniques
are still widely used and taught to ecologists, a movement has been gathering pace

2 Although the methods in CANOCO have some connections to Poisson regression.



14.6 Modelling Frameworks for Multivariate Abundances 353

in recent years towards model-based approaches to multivariate analysis in ecology,
whether a GEE approach or another model-based framework for analysis. A few of
the key issues that arise when using the algorithmic approach are briefly reviewed
below.

Recall that a particular issue for multivariate abundances is the abundance prop-
erty, with strong mean–variance patterns being the rule rather than the exception and
a million-fold range of variances across taxa not being uncommon (e.g. Fig. 10.3). Al-
gorithmic methods were not constructed in a way that can account for the abundance
property; instead, data are typically transformed or standardised in pre-processing
steps to try to address this issue, rather than addressing it in the analysis method
itself. However, this approach is known to address the issue ineffectively (Warton,
2018) and can lead to undesirable and potentially misleading artefacts in ensuing
analyses (for example Warton et al., 2012b, or Fig. 14.2).

Another issue with algorithmic approaches is that because they lack an explicit
mean model, they have difficulty capturing important processes affecting the mean,
such as variation in sampling intensity. Adjusting for changes in sampling intensity
is essential to making valid inferences about changes in community composition. It
is relatively easy to do in a statistical model using an offset term (as in Sect. 10.5)
or a row effect (Sect. 14.3), but algorithmic approaches instead try to adjust for this
using data pre-processing steps like row standardisation. This can be problematic
and can lead to counter-intuitive results (Warton & Hui, 2017), because the effects of
changing sampling intensity can differ across datasets and depend on data properties
(e.g. the effects of sampling intensity on variance are governed by the mean–variance
relationship). Related difficulties are encountered when algorithmic approaches are
used to try to capture interactions or random factors.

A final issue worthy of mention is that we always need to mind our Ps and Qs.
But without a model for abundance, the assumptions of algorithmic approaches are
not made explicit, making it harder to understand what data properties we should be
checking. This also makes it more difficult to study how these methods behave for
data with different types of data properties, but the results we do have are less than
encouraging (Warton et al., 2012b; Warton & Hui, 2017).

14.6.2 Why Not Model-Based Inference?

Design-based inference was used in this chapter to make inferences from models
about community–environment associations. As in Chap. 9, design-based inference
is often used in place of model-based inference when the sampling distribution
of a statistic cannot be derived without making assumptions that are considered
unrealistic or when it is not possible to derive the sampling distribution at all. A bit
of both is happening here, with high dimensionality making it difficult to specify
good models for multivariate abundances and to work out the relevant distribution
theory. However, progress is being made on both fronts.
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Fig. 14.2: Simulation results showing that while algorithmic approaches may be
valid, they are not necessarily efficient when testing no-effect null hypotheses. In
this simulation there were counts in two independent groups of observations (as in
Anthony’s revegetation study, Exercise 12.2), with identical means for all response
variables except for one, which had a large (10-fold) change in mean. Power (at the
0.05 significance level) is plotted against the variance of this one “effect variable”
when analysing (a) untransformed counts; (b) log(y + 1)-transformed counts using
dissimilarity-based approaches, compared to a model-based approach (“mvabund”).
A good method will have the power to detect a range of types of effects, but the
dissimilarity-based approaches only detect differences when expressed in responses
with high variance

A specific challenge for model-based inference procedures is that the number of
parameters of interest needs to be small relative to the size of the dataset. For a
model that has different parameters for each taxon (as in Eq. 14.2), this means that
the number of taxa would need to be small. For example, Exercise 11.6 took Petrus’s
data and analysed just the three most abundant genera of hunting spiders. This model
used six parameters (in β) to capture community–environment associations. If such
an approach were applied to all 12 hunting spider species, 24 parameters would be
needed to make inferences about community–environment associations, and standard
approaches for doing this would not be reliable (especially considering that there
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are only 28 observations). A parametric bootstrap could be used instead, but as
previously, this is computationally intensive and not a good match for a hierarchical
GLM, unless you are very patient.

There are a few ways forward to deal with this issue that involve simplifying
the regression parameters, β, e.g. assuming they come from a common distribution
(Ovaskainen & Soininen, 2011) or have reduced rank (Yee, 2006). Using hierarchical
GLMs for inference about community–environment associations is an area of active
research, but at the time of writing, issues with model-based inference had not been
adequately resolved. Although they may well be soon!


	14 Multivariate Abundances and Environmental Association
	14.1 Generalised Estimating Equations
	14.2 Design-Based Inference Using GEEs
	14.2.1 Mind Your Ps and Qs
	14.2.2 Test Statistics Accounting for Correlation
	14.2.3 Computation Time
	14.2.4 The manyany Function

	14.3 Compositional Change and Diversity Partitioning
	14.3.1 Quick-and-Dirty Approach Using Offsets

	14.4 In Which Taxa Is There an Effect?
	14.5 Random Factors
	14.6 Modelling Frameworks for Multivariate Abundances
	14.6.1 Problems with Dissimilarity-Based Algorithms
	14.6.2 Why Not Model-Based Inference?



