
MLS Group Messaging: How
Zero-Knowledge Can Secure Updates

Julien Devigne1,2, Céline Duguey1,2(B), and Pierre-Alain Fouque2,3

1 DGA Mâıtrise de l’information, Bruz, France
julien.devigne@intradef.gouv.fr

2 Irisa, Rennes, France
{celine.duguey,pierre-alain.fouque}@irisa.fr

3 Univ Rennes1, CNRS, Rennes, France

Abstract. The Messaging Layer Security (MLS) protocol currently
developed by the Internet Engineering Task Force (IETF) aims at provid-
ing a secure group messaging solution. MLS aims for end-to-end security,
including Forward Secrecy and Post Compromise Secrecy, properties well
studied for one-to-one protocols. It proposes a tree-based regular asyn-
chronous update of the group secrets, where a single user can alone per-
form a complete update. A main drawback is that a malicious user can
create a denial of service attack by sending invalid update information.

In this work, we propose a solution to prevent this kind of attacks,
giving a checkpoint role to the server that transmits the messages. In
our solution, the user sends to the server a proof that the update has
been computed correctly, without revealing any information about this
update. We use a Zero-Knowledge (ZK) protocol together with verifiable
encryption as building blocks. As a main contribution, we provide two
different ZK protocols to prove knowledge of the input of a pseudo ran-
dom function implemented as a circuit, given an algebraic commitment
of the output and the input.

Keywords: Cryptographic protocols · Messaging Layer Security -
MLS · Secure messaging · Zero-knowledge

1 Introduction

Secure messaging protocols have been widely adopted over the last few years.
The privacy offered by encrypted communication seduces billions of users world-
wide. A significant number of application providers have settled their security
on the Double Ratchet Algorithm [37], often identified as Signal. This proto-
col provides End-to-End confidentiality, as well as Forward Secrecy (FS) and
Post Compromise Secrecy (PCS). The Double Ratchet however is dedicated to
one-to-one communications. MLS targets secure group messaging and is devel-
oped by the IETF. The goal is to obtain similar security properties as those in
one-to-one protocols. The group keys are computed and regularly updated in a

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 587–607, 2021.
https://doi.org/10.1007/978-3-030-88428-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_29

588 J. Devigne et al.

protocol called TreeKEM, based on a tree structure: each member of the group
is represented by a tree leaf and the group secret is given by the tree root. To
perform an update, a user sends to the other leaves secret information which
depend on their position in the tree. In this paper, we are concerned with an
open problem identified in the MLS draft: how to be sure that each user receives
a valid update information? In other words: how to be sure that the updating
user is not cheating? The current protocol provides verification elements for each
user to check whether the update he received is valid, but it does not prevent
a malicious updater to send misformed update information to all or part of the
group. Such attacks would prevent the updating process, seriously damaging FS
and PCS properties, that seduce the users. Consequently, we propose a solution
in which the users only receive valid updates: the server which transmits the
update messages can check their validity before forwarding them. The server is
given a check-point role and has no more power to create an update, malicious or
not, than in the original protocol. Hence we only add a layer of security, through
the server, without modifying the core of MLS. A main building block of our
solution is a ZK protocol, inspired from the recent multi party computation
(MPC) in the head solutions [27,30,34].

Our Contribution. As a first contribution, we show how to combine a ZK
protocol with a verifiable encryption solution to solve the open problem identi-
fied in the IETF draft for MLS, in a light version of the protocol. The idea is
to enable an intermediate server to perform a blind verification (on encrypted
and committed data) that each update information sent by the updater is cor-
rectly computed. The ZK proof is provided on a statement that mixes a circuit
evaluation (an HKDF derivation, defined in [36]) and an algebraic commitment
(typically a Pedersen commitment, described in [38]). The verifiable encryption
scheme proves to the server (i.e. the verifier) that the encrypted data is the one
that is committed to and verified in the proof.

As a second contribution, we propose two ZK protocols for statements that
compose an algebraic commitment and the circuit computation of a pseudo-
random function family (PRF) f . More precisely, we prove the knowledge of a
secret witness x such that public commitments Cx, Cy are algebraic commit-
ments of x and f(x), with f(x) remaining secret. Our approach is based on the
MPC in the head paradigm, introduced in [30]. We consider the recent ZK proof
system ZKBoo [27] and its improvements ZKBoo++ [18] as well as KKW [34].
Our first approach is directly inspired by a recent work of Backes et al. [6]. The
first step is to provide commitments to the bits of the secret input and output.
Then, we call the algebraic properties of the commitment scheme to link those
bits with values used in the circuit proof. Our second approach consists in con-
sidering a Boolean circuit that computes a tag t = f(x) + ax. The proof on this
circuit binds the secret input and output to the tag value. In a second step, we
use the homomorphic properties of the commitment to show that the committed
values are also bound by t. Finally, we invoke properties of the function f to
show that their exists only one solution to the tag equation.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 589

Previous works, in particular [19] and [1], have proposed solutions for such
algebraic and circuit composition statements. However, the former is inherently
interactive and the latter uses SNARKs, where the burden of the proof is mainly
on the prover side, which does not fit our use case as smartphones have resources
to be saved.

Related Work. Secure Messaging, and more particularly Ratcheted Key
Exchange (RKE), have been widely studied (e.g. [3,9,31,33,39]) since the first
analysis of the Signal protocol [22]. Literature for the group version is more lim-
ited. In [21] Cohn Gordon et al. introduced the notion of Asynchronous Ratch-
eted Trees (ART). These ART are Diffie Hellman based binary trees in which the
update process of a node involves entropy coming from both its children. In MLS,
the underlying TreeKEM protocol is inspired by ART. A main difference is that a
single leaf can generate the update data for each of its ancestor nodes. TreeKEM
has been initially formalized in the technical paper [11] and has then evolved
to reach the actual description available on the prevailing draft 11 [7]. Alwen et
al. formalize in [4] a Continuous Group Key Agreement (CGKA) derived from
the two-party Continuous Key Agreement defined in [3]. They provide a secu-
rity model for CGKA and show that TreeKem does not achieve optimal FS and
PCS security, but prove that using updatable public key encryption can lead
to a better security. Our solution is compatible with this improvement. In [2],
Alwen et al. focus on the addition and revocation process. Finally, Brzuska et
al. provide in [12] an analyse of the current draft 11, considering both TreeKem
and the Key Schedule on top of it.

Zero-Knowledge (ZK) proofs, have proved to be a powerful tool in cryptog-
raphy, since their conception in the mid 1980s. It has been shown that ZK
proofs exist for any NP language. However, efficient ZK protocols are designed
for a small class of language and do not extend to any NP languages. Sigma
protocols (Σ-protocols), clearly described in [23], are very efficient for proving
algebraic relations, whereas other protocols have been designed for proving state-
ments that can be expressed as a circuit. Among them, Garbled Circuits based
schemes, as introduced in [32], which are inherently interactive, and SNARKs,
as designed in [26,28,35]. SNARKs are non-interactive arguments (with com-
putational soundness) of knowledge with small proofs and light verification: the
burden of the proof is on the prover side. They are proven secure in the common
reference string (CRS) model: a common trusted public input has to be shared
by the prover and the verifier. Practical implementations based on pairings are
in use in real life protocols such as cryptocurrencies. STARK proofs [10] remove
the CRS requirement but the prover’s algebraic computations are still linear
in the circuit size. The MPC in the head paradigm, introduced in [30], leads
to very efficient proof system without CRS. The seminal paper [27] introducing
ZKBoo proposes the first efficient ZK proof of a hash function computation. Fur-
ther works significantly optimize the efficiency, such as Ligero [5], ZKBoo++ [18]
and KKW [34] (developed for the post quantum signature scheme Picnic) or [29].

In real life however, many applications need to provide proofs on statements
that mix algebraic and non algebraic parts. Expressing the algebraic part as

590 J. Devigne et al.

a circuit would considerably increase the circuit size and reduce the efficiency.
One could express each gate of a circuit as an algebraic relation that can be
proven with a Σ-protocol, but this solution is clearly non desirable as circuits
for hashing may have thousands of gates. Considering this, combining efficiently
algebraic and non algebraic proofs has revealed to be an important challenge.

In [19], Chase et al. propose two constructions, based on Garbled Circuits, to
provide a circuit proof on a committed input. Our solutions are close to theirs in
the sense that their first proposal uses bit wise commitment on an secret input,
and their second proposal includes a one-time mac computation in the circuit to
be garbled. However, their proposal heavily relies on the garbling protocol and
can not be transposed to the non interactive setting.

More recently, Agrawal et al. in [1] propose a solution for modular compo-
sition of algebraic and non algebraic proofs. Their solution is non interactive,
based on Sigma protocols and QAP-based SNARKs. As explained in their work,
the “key ingredient [they] need from a SNARK construction is that the proof
contains a multi-exponentiation of the input/output”. They compose it with a
proof that the exponents in a multi-exponentiation correspond to values com-
mitted to in a collection of commitments. From this result, they show how to
obtain proofs for AND, OR and composition of two statements, either algebraic
or circuit. The small proofs and the light verification step of SNARKS are desir-
able for privacy-preserving credentials or crypto-currencies proofs of solvency.
But the prover’s high computational effort is not adapted to our application
where the verifier turns out to have a larger computation power than the prover.

Finally, Backes et al. propose in [6] an extended version of ZKBoo++ that
allows algebraic commitments on the secret input of the circuit. Their protocol
is non interactive and the computational cost is balanced between the prover
and the verifier. Their solution requires to commit to each bit of the secret input
and to commit to internal values of the ZKBoo++ circuit proof. We extend their
result to the case of a committed output in our first zero-knowledge solution.
We focus on the MPC in the head paradigm in order to provide proofs in which
the amount of work is balanced between both parties.

Organization of the Paper. In Sect. 2, we recall the definitions concern-
ing ZK proofs, commitment schemes, and verifiable encryption. In Sect. 3, we
present the protocol MLS, focusing on the process to update the group secret,
and we describe our solution to improve the security of the update mechanism.
The Sect. 4 is dedicated to our two protocols, CopraZK and (bitwise) ComInOutZK,
for proving knowledge of the preimage of a PRF function when only commit-
ments of the input and the output are publicly available.

2 Backgrounds

Zero-Knowledge. Consider an NP relation R, i.e. given a witness w and an
input x, R(x,w) = 1 can be decided in polynomial time. Let L be the language
associated to R, L = {x|∃w such that R(x,w) = 1}. A ZK proof of knowledge

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 591

for L allows a prover to convince a verifier, that he knows a witness w for x,
without revealing w. It shall be correct (if the prover and the verifier are honest,
the verifier always accepts), sound (an efficient extractor that interacts with a
corrupted prover can exhibit a valid witness except with negligible probability),
and zero-knowledge (no information on w leaks from the proof). Following the
notation of [14], we write PK{w1, . . . ws : R(w1, . . . , ws, x1 . . . xt) = 1} to denote
the proof of knowledge of the secret witnesses w1, . . . ws that satisfy the relation
R with the public values x1, . . . , xt.

Σ-Protocols. These are specific three moves proofs of knowledge. The prover
first sends a commitment value q, receives a challenge e and answers with a value
t. Given (x, a, e, t), the verifier accepts or not. Those protocol provide correct-
ness, s-special soundness (given s transcripts with common commitments and
distinct challenges, one can extract a witness) and honest-verifier ZK (the ver-
ifier is suppose to generate the challenge honestly). They can be turned into a
non-interactive proof using Fiat-Shamir transformation [25]. In this case the
special-honest verifier clause disappears and the verification step consists in
reconstructing the challenge from the received data.

Commitment Schemes. A commitment scheme involves a Committer and
a Receiver who share public parameters. On entrance a message x and an
additional opening information r, the commitment protocol produces a value
c = Com(x, r) such that c shall not reveal any information about x; this is the
hiding property. The Committer can open its commitment c by revealing r and
x with the property that only the secret x shall produce a valid opening for c;
this is the binding property. For our first ZK protocol, we will require an extra
property, called equivocality. A commitment is equivocable if there exists a trap-
door T such that, given a commitment C, its opening information, and T , it is
possible to open C to any value. Equivocality comes with a specific extractor
that, given two different openings (x1, r1), (x2, r2) to a single commitment C, can
extract the trapdoor T . The Pedersen commitment scheme [38] is an equivoca-
ble scheme with unconditional hiding and computational binding. It is routinely
used because it interacts nicely with linear relations. This scheme is defined as
follows: let G be a cyclic group of prime order q, P a generator and Q ∈ G

such that the discrete log of Q in base P is unknown. Then, Com(x) = xP + rQ
where r is sampled at random in Zq. Let C1, C2 be commitments to values
x1, x2. If a, b ∈ Zq are public values, then one can efficiently prove the following:
PK{x1, x2, r1, r2 : C1 = x1P + r1Q ∧ C2 = x2P + r2Q ∧ ax1 + x2 = b mod q}.
The trapdoor for equivocality is given by the discrete log of Q in base P .

MPC in the Head. Ishai et al. introduced in [30] a new paradigm for ZK
proofs, called MPC in the head. This solution reveals to be very competi-
tive in terms of efficiency for ZK proofs performed on circuits. The idea is
that the prover performs a virtual MPC and obtains several views. He com-
mits to these views and opens only a sub-part of them required by the verifier.
ZKBoo [27] generalizes IKOS to any relation Rφ defined by a function φ : X → Y
(Rφ(y, x) ↔ y = φ(x)), as long as the function φ can be computed in a specific

592 J. Devigne et al.

manner identified as a (2,3)-decomposition. The prover first shares its secret
input x into (x1, x2, x3) = Share(x) such that x = x1⊕x2⊕x3. Then he runs the
MPC and obtains three distinct views w1, w2, w3 and from each of this view he
gets an output share yi = Output(wi), i ∈ {1, 2, 3} such that y1 ⊕y2 ⊕y3 = φ(x).

Verifiable Encryption. Verifiable encryption aims at convincing a verifier that
an encrypted data satisfies some properties without leaking any information
about the data itself. In such 2-party protocol, a prover and a verifier share in
a common input string a public key encryption scheme Enc, a public key pk for
Enc, and a public value y. At the end, the verifier either accepts and obtains the
encryption of a secret value x under pk such that x and y verify some relation
R or rejects. It is worth noticing that the prover does not need the secret key
sk, that usually belongs to a third party. Verifiable encryption often appears
in the domain of anonymous credentials, fair exchange signatures, or verifiable
secret sharing [40]. In [13], Camenish and Damg̊ard describe how to provide a
proof that an encrypted value is a valid signature, using any semantically secure
encryption scheme. The idea is to take advantage of the Σ-protocol for a relation
R(x, y), to prove that an encrypted value is the witness x for this relation. In
our application, we need to prove that the data that is encrypted, x, is the one
that is linked by a Pedersen commitment Cx = y. As a Pedersen commitment
comes with an associated Σ-protocol, the Camenish-Damg̊ard scheme applies
naturally. There are interesting ways towards more efficient schemes, e.g. [20]
or [16]. However, the main benefit of the Camenish-Damg̊ard solution is that we
can still use the encryption scheme required in MLS specification. We denote by
VerifEncEnc,pk(m : r) the encryption of a message m (using randomness r) under
the public key pk with the encryption scheme Enc and the associated proof. We
omit the randomness r when it is not necessary to explicitly mention it.

3 MLS Updates

We explain how the MLS update mechanism works and our more secure solution.

3.1 Message Layer Security

MLS is a protocol currently under development by the IETF to provide an End-
to-End secure group messaging application. The idea is to enable a group of
users to share a common secret that can be updated regularly by any member.
One of the open issues in the IETF draft is that the validity of an update
message can only be checked after it has been received. This open issue is clearly
identified in the current draft 11 ([7], Sect. 15.5). However, to our knowledge,
there is still no solution to this problem. Currently in MLS, the authors require
an hybrid public key encryption (HPKE) scheme, as designed in [8], composed
of a key encapsulation mechanism (KEM) to transmit a symmetric key k and
an AEAD encryption scheme that encrypts the data under k, as well as a key
derivation function. In the rest of this work, we denote by Encpk(m : r) the
HPKE encryption of a message m under the public key pk using randomness r.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 593

The asymmetric part of Enc is based on an elliptic curve E defined on a finite
field Z/pZ with base point P of order a prime q. MLS also supposes the existence
of a broadcast channel for each group, which distributes the messages to each
group member, conserving the order.

TreeKem. MLS key exchange TreeKem is based on a binary tree structure
(Fig. 1) where users correspond to leaves and each node is associated to a secret
value. Each user U has a long term identity signing key and an initial key package
for the encryption scheme Enc (both certified by a PKI). We will simply represent
the key package as a public/private key pair (pkU , skU).

Fig. 1. A view of the MLS tree. Nodes are implicitly numbered from left to right,
independently from their height. Leaves are associated to a user represented as a letter.
Each node i has a secret psi. A leaf secret is indexed with its user name.

The group key is derived from the root secret. Each child node knows the
secret of each of its ancestors and only of its ancestors. To each node i corre-
sponds a path secret psi and a secret and public key ski, pki = deriveKeyPair(psi)
(in the original protocol the keys are derived from an intermediate node secret
nsi itself derived from psi. We present a lighter version for the simplicity of the
exposure but the complete version is compatible with our solution.)

The derivation depends on the elliptic curve (see Appendix A). We define,
w.l.o.g, (ski, pki) = deriveKeyPair(psi) = (deriveSK(psi), deriveSK(psi)P) where
deriveSK is a PRF. A user knows the secrets psi and ski in his direct path,
composed of himself and his direct ancestors. Moreover, each user keeps an up-
to-date global view of the tree, as a hash value of each node’s public information.

Updates. To update the tree, a user B generates a new secret ps′
B. The

path secrets in the direct path will be successively derived from ps′
B . We

note Hp(psi) for the function HKDF − expand(psi, “path”, “”,Hash.length). The
update mechanism is given in Fig. 2. When B updates its secret psB → ps′

B, he
first computes the new node data for each node on his path:

– ps′
2 = Hp(ps′

B), pk2 = deriveSK(ps′
2) · P

– ps′
4 = Hp(ps′

2), pk4 = deriveSK(ps′4) · P
– ps′

root = Hp(ps′
4), pkroot = deriveSK(ps′

root) · P

594 J. Devigne et al.

Fig. 2. Update process. User B updates its secrets. Path secrets are updated along its
direct path (in red). The update secrets are sent to its copath nodes (in green). (Color
figure online)

Then he sends for each node on its copath the necessary secret material for
the users under this node to perform the same update. Following our example
in Fig. 2, B has to send ps′

2 to A, ps′
4 to nodes C and 6 and ps′

root to nodes
E, 10, F, 12, G, 14,H. As a child knows the secret key ski for each of its ancestors,
B will only have to encrypt ps′

2 under pkA, ps′
4 under pk6 and ps′

root under pk12.
From ps′

2 (respectively ps′
4), A (resp. C) shall be able to compute the root

secret. From this root secret is derived an epoch secret SE+1. Before sending
his Commit, B computes SE+1 and uses it to produce a confirmation key. This
value shall enable A and C to check that they have derived the correct root
secret and so, that they received a correct update. Other mechanisms such as
the transmission of the updated view of the tree, or of intermediate hash values
are provided for a user to check that he received a correct update. All those
mechanisms enable a verification after receiving the update information.

Hence, either the update is adopted only once some members have confirmed
that they received a valid update - at least one member in the subtree of each
node in the update copath, as recommended in draft 11. This can imply a huge
latency, if some users are seldom online, and non valid updates can lead to a
denial of service. Or the update is validated without feedback and the users that
received non valid secret values are ejected from the group de facto. In both case,
this seriously hampers with the security of the service provided by the protocol.

3.2 Securing MLS Updates

We now explain how to combine a ZK protocol and a verifiable encryption to
secure the update process in MLS. We first focus on a single step of the update
process (a user updates his direct parent) and then explain how this solution
can be extended to the global tree.

Server-Checking in MLS. As described in Fig. 2, let assume that B generates
a new secret ps′

B and computes:

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 595

– deriveKeyPair(ps′
B) to obtain a new key package and CB = Com(psB′ , rB′);

– ps′
2 = Hp(ps′

B) the new secret for node 2 and C2 = Com(Hp(ps′
B), r2);

– (sk′
2, pk′

2) = deriveKeyPair(ps′
2) the new keys for node 2 and the corresponding

Csk′
2

= Com(deriveSK(Hp(ps′
B)), rsk′

2
).

Suppose there exists a ZK protocol which, given public values Cx and Cy, pro-
vides the following proof: PK{x, rx, ry : Cx = Com(x, rx) ∧ Cy = Com(f(x), ry)}
for any PRF f . Then B can send to the server the public values CB ,
C2, Csk′

2
, pk′

2 together with a proof Π2 = PK{ps′
B , rB′ , r2, rsk′

2
: CB =

Com(ps′
B , rB′)∧C2 = Com(Hp(ps′

B), r2)∧Csk′
2

= Com(deriveSK(Hp(ps′
B)), rsk′

2
)∧

pk′
2 = deriveSK(ps′

2)P} (the last part of the proof being a classic discrete log
proof).

On another side, verifiable encryption (detailed in Sect. 2) allows to link the
message encrypted with VerifEnc with the data committed in C2. To sum up, B
will send for a node update, the public values CB , C2, Csk′

2
, and pk′

2, the proof
Π2 together with VerifEncEnc,pkA

(ps′
2). If the server accepts the proof, then he

transmits the public key pk′
2 as well as VerifEncEnc,pkA

(ps′
2) to A.

To extend the proof to the complete tree, one has to repeat the above steps
for each level. To certify the update value ps′

4 corresponding to the parent node 4,
B will send the server values C4, Csk′

4
, pk′

4, the proof Π4 = PK{ps′
2, r2, r4, rsk′

4
:

C2 = Com((ps′
2), r2) ∧ C4 = Com(Hp(ps′

2), r4) ∧ Csk4 = Com(deriveSK(Hp(ps′
2)),

rsk′
4
) ∧ pk′

4 = deriveSK(Hp(ps′
2))P} together with VerifEncEnc,pk6(ps′

4). The cru-
cial point is that, as the commitment C2 is linked with ps′

B in Π2, it can be
used as a base value for Π4 and so on. Some special care must be taken as we
commit, in a group of order q prime, to an element sk ∈ {0, 1}256 that does not
lie naturally in Z/qZ. We explain how to handle with this in Appendix A.

About the Server. Several reasons appear for calling on a third party. Firstly,
this central node with the largest computational power is the one that can discard
invalid updates with the most efficiency. If one relies on users to check for the
validity of the data they received, this means that one must wait for each user
to process the update and to send back an acknowledgement. As a user can be
off-line for a long time, this can be very inefficient. Another solution would be
to allow users to adopt the update as soon as they are individually convinced
it is correct, while providing a “backup solution”. This would probably imply
keeping old keys and drastically impoverish FS.

Secondly, in MLS architecture, all the update encrypted messages are gath-
ered and sent as one big message to all the users. It may be of interest to think
of a solution where only the needed encryption is sent to a specific user. In this
case, only the server will see all the messages together. He is then the only one
able to perform a verification on a global proof to see whether all the updates
are correctly generated from a single secret seed.

4 ZK for a PRF on Committed Input and Output

In this section, we provide two protocols to prove the knowledge of an input
x and randoms rx, ry, such that, for a public values Cx, Cy, and a function f

596 J. Devigne et al.

evaluated as a circuit, Cx = Com(x, rx) and Cy = Com(f(x), ry). Recall that
efficient ZK proofs for a function evaluation are operated on a circuit, whereas
efficient commitments are algebraic. Consequently, we want to achieve the best
of both worlds by combining a proof on a circuit and algebraic commitments.

Our first solution, ComInOutZK (Committed Input and Output ZK) is directly
inspired from [6], which provides a proof of a circuit evaluation on a committed
input and public output. We extend their work to a committed output.

Our second solution, CopraZK (Commitment and PRF alternative ZK),
requires some specific properties on the function f . We consider the circuit that
computes f(x,m)+αx where x is the key of the PRF and α is determined by the
commitment values. Calling some PRF-related properties, and the homomorphic
properties of the commitment, we show that the values committed in Cx and Cy

must be those that appear in the circuit evaluation.
We compare in Table 1 our two solutions with the SNARK based solution

of [1]. CopraZK adds a negligible number of algebraic operations. The prover
performs 4 multiplications on the curve (public key operations) and 8 compu-
tations in Z/qZ (symmetric operations). For the verifier, 6 computations on the
curve and 2 in Z/qZ are needed. Considering ZKBoo, the prover effort is O(σ|F |)
symmetric operations, where |F | is the number of AND gates of the circuit and
σ the number of rounds. Our solution requires O(σ(|F |+ |mod|))+ 8 symmetric
operations and 4 public key operations, where |mod| is the size of the circuit
for a modular addition which is negligible compared to |F |. The computational
cost is dominated by the symmetric part and finally, our solution requires on the
prover side (O(σ|F |) symmetric operations. The size of the proof and the work
on the verifier’s side are also dominated by the circuit part. One inconvenient is
that the security proof requires non usual hypothesis on the function f .

On the opposite side, ComInOutZK is valid for any circuit, only requires equiv-
ocality of the commitment scheme, which is a common hypothesis, and leaves
the circuit evaluation untouched. But it requires a non negligible number of alge-
braic commitments. Considering |x| (respectively |y|) the bit size of the input
(of the output), we obtain on the prover side O(|x| + |y| + 2σ) public key opera-
tions and O(σ|F |) symmetric operations. The verifier’s work is equivalent. The
proof size of ZKBoo is augmented with O(|x| + |y| + 6σ) curve points which is
asymptotically O((|x| + |y| + λ)λ) as σ augments with λ.

On the Challenge Size. When we expose our solutions, in both case we mention
a unique challenge, that is used for the algebraic Σ-protocol and for the ZKBoo
proof. This means that the challenge space size for the Σ-protocol is 3 and that
we shall perform λ/3 rounds to obtain a soundness error in 2−λ. The Σ-protocol
can benefit from a larger challenge space, that allows for a single round. As
explained in [6], it is possible to define distinct challenges eρ ∈ {1, 2, 3} for each
ZKBoo round and a global challenge e =

∑σ
i=1 3iei for the algebraic Σ-protocols,

hence the algebraic part of the proof can be performed a single time.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 597

Table 1. Efficiency of the different solutions for circuit proof on committed input and
output. pub stands for the cost of a public key operation (multiplication on the curve),
while sym stands for the cost of a symmetric operation. |F | is the circuit size, |x| the
input size and |y| the output size. In most applications, |F | � (|x|, |y|, λ).

Non
inter-
active

No CRS Prover’s
work

Verifier’s work Proof size

SNARK based [1] Yes No O((|F | +
λ) · pub)

O((|x| + |y| +
λ) · pub)

λ

CopraZK Yes Yes O(|F |λ ·
sym)

O(|F |λ · sym) O(|F |λ)

ComInOutZK Yes Yes O(|F |λ ·
sym+(|x|+
|y|+λ)·pub)

O(|F |λ ·
sym + (|x| +
|y| + λ) · pub)

O((|F | + |x| +
|y| + λ)λ)

4.1 ComInOutZK: A Bit-Wise Solution

In [6], the authors propose a non interactive proof PK{x : Cx = Com(x, rx)∧y =
f(x)} based on bit commitments and ZKBoo++. Their optimized solution
increases the ZKBoo++ prover’s and verifier’s work with O(|x|+σ) exponentia-
tions and multiplications on the group G of order q chosen for the commitment,
where |x| is the number of bits of the input x and σ is the number of rounds in
ZKBoo++. The proof size grows by O(|x| + σ) group elements and O(|x| + σ)
elements in Z/qZ. We adapt this strategy in the case of a committed output.
As the output of the circuit, y, shall remain secret, we will not be able to call
ZKBoo++ as a full black box. This is of prime importance when we prove the
zero-knowledge property.

The work of Backes et al. and our extension rely on a result given by the
homomorphic property of a commitment scheme such as Pedersen scheme. For
any scalar k, and any two commitments Com(x, rx), Com(y, ry), k ·Com(x, rx)+
Com(y, ry) = Com(kx + y, krx + ry). For any commitment Cb = Com(b, rb) to
a secret bit b and any public bit β, one can easily compute the commitment of
b⊕β as follows: if β = 0, Cb⊕β = Cb and if β = 1 then Cb⊕β = Com(1, 0)−Cb =
Com(1 − b,−rb). For any x =

∑|x|−1
i=0 2ix[i], denote Cx[i] = Com(x[i], rx[i]) a

commitment to the i-th bit of x. Then
∑|x|−1

i=0 2iCx[i] is a valid commitment
to x with opening randomness

∑|x|−1
i=0 2irx[i]. And one can easily compute a

commitment to x ⊕ β for an element β as Cx⊕β =
∑|x|−1

i=0 2iCx[i]⊕β[i], with
opening randomness

∑|x|−1
i=0 2i(−1)β[i]rx[i].

We describe in Fig. 3 the protocol on committed output only (ComOutZK), for
readability reasons. Combining Backes et al. protocol for committed input and
ours for committed output leads to ComInOutZK.

Let f be a function: Z
�
2 → Z

�
2, G be a group of prime order q, such that

2� ≤ p. There is a natural embedding Z
�
2 ↪→ G. Let P be a generator for this

598 J. Devigne et al.

Fig. 3. The ComOutZK protocol. Combining this protocol with the same mechanism on
the input given in [6] leads to ComInOutZK. The reconstruct step of the verification
consists in computing the commitment a from the response data and check its validity
with the challenge. Only the values in a that can not be reconstructed need being sent.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 599

group and Q an element of G such that logP (Q) is unknown. We consider a hash
function h : Z∗

2 → Z
�∗
2 and Com be the Pedersen commitment scheme.

The Theorem 1 states the security of our bitwise solution.

Theorem 1. Given that ZKBoo and the Πj are Σ protocols with 3-special
soundness and honest verifier Zero Knowledge property, and Com is a homo-
morphic and equivocal commitment scheme, then the protocol described in Fig. 3
is a Σ-protocol with 3-special soundness and honest verifier property.

Proof of the Security of ComInOutZK. We study separately the three properties
a Σ-protocol should verify.

Correctness. Assuming the Prover and the Verifier execute the protocol as
described, the Verifier never meets a rejection cause and then always accepts.

Soundness. Consider an algorithm Ext that has access to three distinct accepting
executions of the protocol on the same commit phase: (a, e1, p1), (a, e2, p2), and
(a, e3, p3), e1 	= e2 	= e3, for a public statement Cy. We show that Ext can exhibit
a witness (x∗, r∗) such that Cy = Com(f(x∗), r∗). We can not directly call the
Extractor from ZKBoo++ as we do not exactly execute ZKBoo. In our protocol,
the Verifier does not have access to the output of the circuit. However, we show
that this difference does not prevent Ext from succeeding. We describe in the
following how Ext works.

Firstly, from the distinct transcripts Ext can obtain three pairs of shares
xe1 , xe1+1, xe2 , xe2+1, xe3 , xe3+1. He also gets three pairs of output values ye1 ,
ye1+1, ye2 , ye2+1, ye3 , ye3+1 and the corresponding randomness rye1

, rye1+1 , rye2
,

rye2+1, rye3
, rye3+1. From the common commitment a, Ext gets Cy1 , Cy2 , Cy3 .

As the three transcripts are accepting, Ext knows that (considering, w.l.o.g.,
e1 = 1, e2 = 2, e3 = 3):

Cy1 = Com(ye1 , rye1
) = Com(ye3+1, rye3+1).

Cy2 = Com(ye2 , rye2
) = Com(ye1+1, rye1+1).

Cy3 = Com(ye3 , rye3
) = Com(ye2+1, rye2+1).

Then, if one of this equality verifies with different openings, then, due to the
equivocability of the commitment scheme, Ext can extract the trapdoor. Then
he can consider any value x̃, compute ỹ = f(x̃) and compute the appropriate
randomness to open Cy to ỹ.

Now we consider the case when the equalities on the commitments traduce
equalities of the openings. Ext thus obtains three values y1 = ye1 = ye3+1,
y2 = ye2 = ye1+1, y3 = ye3 = ye2+1 and a single y∗ = y1 ⊕ y2 ⊕ y3. From then, as
in the original ZKBoo proof he can execute back the MPC protocol and obtain
three shares x1 = xe1 = xe3+1, x2 = xe2 = xe1+1, x3 = xe3 = xe2+1 and a single
x∗ = x1 ⊕ x2 ⊕ x3 such that y∗ = f(x∗).

Now Ext needs to extract a randomness r∗ that opens Cy to y∗. Using as
a subroutine the extractors for the proofs Πj , Ext obtains couples (y′[j], ry′[j])
for j ∈ [0, |y| − 1]. From the protocol, as the transcripts are accepting ones,

600 J. Devigne et al.

Ext knows that Cy =
∑|y′|−1

i=0 2iCom(y′[i], ry′[i]). Ext selects one transcript, for

instance e1. He computes β = ye1 ⊕ ye1+1 and Cz =
∑|y′|−1

i=0 2iCy′[i]⊕β[i] =
∑|y′|−1

i=0 2iCom(y′[i] ⊕ β[i], (−1)β[i]ry′[i]). By the protocol, Cz = Cye1+2 −
Com(0, rz). If

∑|y′|−1
i=0 2i(y′[i] ⊕ β[i]) 	= ye1+2 and/or

∑|y′|−1
i=0 2i(−1)β[i]ry′[i] 	=

rye1+2−rz, then again, Ext obtains the trapdoor of the commitment scheme and

can open Cy to the value he wishes. Otherwise
∑|y′|−1

i=0 2i(y′[i]⊕β[i]) = ye1+2 and
∑|y′|−1

i=0 2i(y′[i]) = ye1+2⊕β = ye1+2⊕ye1⊕ye1+1 = f(x∗). Finally,
∑|y′|−1

i=0 2iry′[i]
opens Cy to f(x∗) and the extractor is done. The running time of the extractor
is bounded by the time of running back the MPC protocol (as for the ZKBoo
extractor) + the running time of the extractors ExtΠj

+ computing one XOR
and one commitment. Considering that an extractor for ZKBoo and the extrac-
tor for the proofs Πj run in polynomial time, Ext also runs in polynomial time.

Zero-Knowledge. We consider a simulator Sim that, on input a public state-
ment Cy, shall produce a transcript (a, e, p). As for the soundness, we cannot
call directly the ZKBoo simulator, SimZKB , as the output of the circuit is not
part of the statement. Sim runs as follows: he sets e and he samples random
tapes ke, ke+1 and random input shares xe, xe+1. Then he runs the protocol as
normal except that, when he meets a binary multiplication gate in the circuit, he
cannot compute the real value of the view we+1 (because it would depend on the
third view that he cannot compute because he does not know x) so he samples it
at random. This is indistinguishable form the real execution as binary multipli-
cation gates are, in a correct execution, randomized with an element from ke+2

that the Verifier cannot compute. Sim obtains output values ye, ye+1. He sam-
ples random re, re+1, computes Cye

= Com(ye, re) and Cye+1 = Com(ye+1, re+1).
In a second step, he samples random |y|−1 bit values y[j], j ∈ [1, |y|−1] and

associated randomness ry[j] and computes Cy[j] = Com(y[j], r[j]). He executes
the proofs Πj with challenge e. Then he evaluates Cy[0] = Cy − ∑|y|−1

j=1 Cy[j].
Using the simulator for the proof Π0, Sim obtains a transcript for Π0 for a
challenge e′. If e′ 	= e he runs SimΠ0 again. Given that Π0 is honest verifier, there
is a non negligible probability that e′ = e within a polynomial time. Defining β =
ye ⊕ ye+1, Sim can compute Cy[i]⊕β[i] only from the knowledge of Cy[i] and β[i].

Now Sim samples rz ∈ Zp and computes Cye+2 =
∑|y|−1

j=0 Cy[i]⊕β[i] +Com(0, rz).
He now has all the elements to produce an accepting transcript.

The transcript of the ZKBoo part of the proof is indistinguishable form a
real execution. The elements that Sim produces itself are commitments that will
not be opened, hence, by the hiding property of the commitment, the complete
simulated transcript is indistinguishable form a real execution of the protocol.

4.2 A Second Solution: CopraZK

Let us denote by Func(D,R) the set of all functions from D to R and by
FF(K,D,R) the set of all function families with parameter (key) in K, domain D
and range R. We write f : K×D → R for a function family in FF(K,D,R) (and

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 601

Fig. 4. Our protocol CopraZK.

call it a function, by ease of language). Let f be a function: Z�
2 × Z

∗
2 → Z

�
2 and

m a public input, m ∈ Z
∗
2. Let G be a group of prime order q, such that 2� ≤ q.

Let P be a generator for this group and Q an element of G such that logP (Q)
is unknown. Let h be a hash function Z

∗
2 → Z

�∗
2 and Com be the Pedersen

commitment scheme. They are the public parameters of the protocol.

602 J. Devigne et al.

Let Cx, Cy be public commitments, known to the verifier. The main idea is
to consider the circuit that computes the tag t = f(x,m) + αx where α is a
public coefficient derived from the commitment values Cx and Cy. A MPC in
the head proof on this circuit ensures that t is correctly computed from a secret
value x known to the prover. Considering Pedersen commitments, we complete
the circuit proof with an algebraic proof that the committed values in Cx and Cy

verify the relation t. This linear relation plus the properties of f defined below,
bind the values of Cx and Cy such that the verifier can be convinced that the
value committed in Cy is equal to the evaluation of f on the value committed
in Cx. A complete description is given in Fig. 4. We depict our protocol using
ZKBoo for the circuit part, but the proof adapts to any circuit based ZK proof.

Theorem 2 states the security of CopraZK, that is settled on two properties
of the family f . The correlation intractability [15] of its dual function f̃ (when
the role of the input and the key are switched) and a glider-PRF (general linear
input deviation resistant PRF) security that states that an adversary gains no
knowledge on x when given f(x,m)+αx. We provide more information on those
properties and a sketch of proof in Appendix B.

Theorem 2. Given that ZKBoo and the Πj are Σ protocols with 3 (respec-
tively 2) special soundness and honest verifier Zero Knowledge property (in their
interactive form), that Com is a homomorphic commitment scheme, and that f
is a glider-PRF function family such that f̃ is correlation intractable relatively to
relations {Ra,b : {x, y : y = ax + b}}, then the protocol described in Fig. 4 is a
Σ-protocol with 3-special soundness and full Zero-Knowledge.

5 Conclusion

In this work we provide a concrete solution to a practical problem that appears
in the MLS specification. We describe how existing cryptographic tools such
as ZK proofs and verifiable encryption can be combined to secure the update
process. As the regular update of the group secret is the key to obtain the FS
and PCS properties, we think our solution may be of interest.

Additionally, we propose two protocols to obtain ZK proofs on circuit with
committed input and output, such that our improvement proposal for MLS is
settled on protocols as efficient as possible. Hence, an interesting way for future
work is in the optimization of the verifiable encryption. The CL framework, intro-
duced by Castagnos and Laguillaumie in [17] and enriched with Zero-Knowledge
properties in [16], that considers a cyclic group G where the DDH assumption
holds together with a subgroup F of G where the discrete logarithm problem is
easy, may provide novel and efficient solutions.

A Key Size and Group Orders in MLS Updates

In [7], several suitable cipher suites are described. We focus on one of them
for a practical example, for a 128-bit security level. This suite uses X25519

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 603

for ECDH computation and SHA256 as a hash function (and base function for
HKDF implementation). Following [24], the private key sk is obtained from
a 256-bit string of secure random data (sk[0], sk[1], . . . , sk[255]) by applying
the following transform: sk[0]& = 248, sk[31]& = 127 and sk[31]| = 64. One
obtains, when interpreted as an integer value in little endian, a scalar of the
form 2254 + 8 ·
,
 ∈ �0; 2251 − 1�. We design by deriveSK the application of
SHA256 followed by the above transformation such that for any 32-byte sequence
of random data X, deriveSK(X) is a valid secret key for X25519. This encoding
can be integrated in the circuit computing the last derivation. The public key is
obtained by multiplying the secret key by the base point of the curve: given a
32-byte secret X, DeriveKeyPair(X) = (deriveSK(X), deriveSK(X)P). We adopt
this notation independently from the curve targeted.

Group Order and Commitments. In our proofs, we consider commitments
and discrete logarithm proofs in cyclic groups of order q, and circuits input
and output that naturally lie in Fq. This may not be the case. Considering
X25519 key derivation derived above, a new user’s secret ps′

B is a random element
in {0, 1}256, which, when interpreted as an integer, can be larger than q. As
explained in [6], it is possible to consider ps′

B mod q for the commitment and
to include to a modular computation in the circuit. If q is close enough to 2256

then it is a simple comparison and subtraction. This requires around 2 000 gates,
which is negligible compared to our circuit size. Another solution is to directly
sample ps′

B in Fq. This can be done by rejection sampling or as follow: sample
X sufficiently big compared to log2(q) (log2(X) > log2(q) + 64 as advised by
the NIST for instance), then simply considering X mod q can be done with a
negligible bias. For all the intermediate values in the tree, the first method can
be applied. The last step is the commitment of the secret key sk = Encode(X).
For this element, we directly consider the encoding provided with the curve.
The commitment Csk of sk in a group of order q will result in the same implicit
reduction modulo q than the computation of the public key. Then we can produce
an AND ZK proof that the value committed to in Csk is the discrete log of the
pk: PK{sk : Csk = skP + rQ ∧ pk = skP}.

B Security of Our Zero-Knowledge Protocols

We present a sketch of proof for the security of CopraZK given in Theorem 2. It
is settled on two properties for the function family f . Firstly, we need its dual
function f̃ to be correlation intractable with respect to the family of relations
Ra,b : {x, y : y = ax + b} for a, b random values. Correlation intractability was
introduced in [15] and says that, for any relation in the family Ra,b, for any
random key x, an adversary has a negligible probability to find an input m such
that (m, f(x,m)) satisfies the relation. Secondly, we need to be sure that the tag
does not leak information on the key. We define a general linear input deviation
resistant PRF (glider-PRF) as follows:

604 J. Devigne et al.

Definition 1 (glider-PRF security). A function family f ∈ FF(K,D,R) (with
appropriate domain and range) is said to be a glider-PRF if for all PPT adversary
A, and a random α ←$ R, there exists a negligible function negl such that:

Pr
[
x ← A(α)Og : g ←$F(D,R)

] − Pr
[
x ← A(α)Of(k,·)+α· : k ←$ K] ≤ negl(λ)

As we use Fiat-Shamir to get an non interactive protocol, our proof is settled
in the Random Oracle Model (ROM), which would satisfy our hypothesis. How-
ever, it seems contradictory to idealize as a random oracle the PRF f that is
concretely described as a circuit in the ZKBoo part of the protocol. Hence, the
ROM hypothesis only applies to the hash function h that generates the chal-
lenge and the correlation intractability and glider-PRF properties provide a way
to formalize a security proof when only some properties of the random oracle
are needed. The correctness of the protocol follows by inspection.
3-Special Soundness. From the 2-special soundness of the Sigma protocol Π, one
extract x̃, ỹ, r̃x, r̃y such that Cx = x̃P +r̃xQ,Cy = ỹP +r̃yQ and t = αx̃+ỹ. From
the 3-special soundness of ZKBoo, one extracts x′ such that t = f(x′,m) + αx′,
where t is a fixed value, the same as the one for the proof Π. Correlation
intractability of f̃ ensures that x′ 	= x̃ happens with negligible probability. We
note that the correlation intractability of f̃ requires the input of f to be ran-
domized. In MLS, this supposes considering a random value (for instance the
hash of the tree view) instead of the constant 0.
Zero Knowledge. We build a simulator Sim as follows: Sim sample a random
value t ←$Z/qZ. Then he calls the Simulator of ZKBoo, SimZKBoo, as a sub-
routine and obtains a transcript (aZKBoo,e,zZKBoo

). Then he calls the simulator
for the Sigma protocol Π, SimΠ , as a second subroutine, on the challenge e and
obtains a second transcript (aΠ , e, zΠ) (as SimΠ shall work for any challenge).
If f is glider-PRF-secure, then sampling a random t is indistinguishable from
the real distribution of t and finally, the output distribution of Sim is indistin-
guishable from the real execution output. In the context of MLS, the tag t must
be accessible to the server only. A user who would receive its valid update and
access the tag could compute the secret of its child, which he should not.

References

1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 22

2. Alwen, J., et al.: Keep the dirt: tainted TreeKEM, adaptively and actively secure
continuous group key agreement. Cryptology ePrint Archive, Report 2019/1489
(2019). https://eprint.iacr.org/2019/1489

3. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://eprint.iacr.org/2019/1489
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 605

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, Oct/Nov
2017. https://doi.org/10.1145/3133956.3134104

6. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin,
D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 286–313. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17253-4 10

7. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The messaging layer security (MLS) protocol. https://datatracker.ietf.org/doc/
draft-ietf-mls-protocol/

8. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.: Hybrid public key encryption
(2021). https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12

9. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

11. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: asynchronous decentralized
key management for large dynamic groups (2018)

12. Brzuska, C., Cornelissen, E., Kohbrok, K.: Cryptographic security of the MLS
RFC, Draft 11. Cryptology ePrint Archive, Report 2021/137 (2021). https://ia.
cr/2021/137

13. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 25

14. Camenish, J., Stadler, M.: Proof systems for general statements about discrete
logarithms (1997)

15. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Cryptology ePrint Archive, Report 1998/011 (1998). http://eprint.iacr.org/1998/
011

16. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

17. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

18. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1825–1842. ACM Press, Oct/Nov 2017. https://doi.org/10.
1145/3133956.3133997

https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-17253-4_10
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://doi.org/10.1007/978-3-319-63697-9_21
https://eprint.iacr.org/2018/046
https://ia.cr/2021/137
https://ia.cr/2021/137
https://doi.org/10.1007/3-540-44448-3_25
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997

606 J. Devigne et al.

19. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 499–530.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 18

20. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and
anonymous credentials supporting efficient verifiable encryption. Cryptology ePrint
Archive, Report 2019/1416 (2019). https://eprint.iacr.org/2019/1416

21. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
Cryptology ePrint Archive, Report 2017/666 (2017). http://eprint.iacr.org/2017/
666

22. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017,
pp. 451–466 (2017). https://doi.org/10.1007/s00145-020-09360-1

23. Damg̊ard, I.: On sigma protocols (2010)
24. Bernstein, D.J.: A state-of-the-art Diffie Hellman function. https://cr.yp.to/ecdh.

html
25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

27. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

29. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: TurboIKOS:
improved non-interactive zero knowledge and post-quantum signatures. Cryptol-
ogy ePrint Archive, Report 2021/478 (2021). https://eprint.iacr.org/2021/478

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250794

31. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

32. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press, November 2013.
https://doi.org/10.1145/2508859.2516662

33. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. Cryptology ePrint Archive, Report 2018/954 (2018).
https://eprint.iacr.org/2018/954

https://doi.org/10.1007/978-3-662-53015-3_18
https://eprint.iacr.org/2019/1416
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2017/666
https://doi.org/10.1007/s00145-020-09360-1
https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh.html
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://eprint.iacr.org/2021/478
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2018/954

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 607

34. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018. https://
doi.org/10.1145/3243734.3243805

35. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

36. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

37. Marlinspike, M., Perrin, T.: The double ratchet algorithm. Signal’s web site (2016)
38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

39. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

40. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17

	MLS Group Messaging: How Zero-Knowledge Can Secure Updates
	1 Introduction
	2 Backgrounds
	3 MLS Updates
	3.1 Message Layer Security
	3.2 Securing MLS Updates

	4 ZK for a PRF on Committed Input and Output
	4.1 ComInOutZK: A Bit-Wise Solution
	4.2 A Second Solution: CopraZK

	5 Conclusion
	A Key Size and Group Orders in MLS Updates
	B Security of Our Zero-Knowledge Protocols
	References

