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Abstract. CoinJoin is the predominant means to enhance privacy in
non-private cryptocurrencies, such as Bitcoin. The basic idea of Coin-
Join is to create transactions that combine equal-valued coins of multiple
users. This mixing of coins aims to prevent linkage of the users’ trans-
actional in- and outputs. The cryptocurrency Dash employs a built-in
CoinJoin service and, therefore, is ideal for empirically studying Coin-
Join. This paper presents the first empirical analysis of Dash, which
reveals that over 40% of all private transactions can be de-anonymized
depending on underlying assumptions. The main issue of these attacks
is the coin-aggregation problem, i.e. the need to combine outputs of sev-
eral CoinJoin transactions. The coin aggregation problem is not specific
to Dash and affects other cryptocurrencies as empirical evidence in Bit-
coin suggests. We show that the logical solution to the problem, namely
CoinJoin transactions with non-fixed arbitrary values, suffers from other
privacy weaknesses. We propose a novel mixing algorithm to mitigate the
need for coin aggregation without introducing additional privacy vulner-
abilities. In contrast to prior mixing algorithms, our approach removes
the need for fixed values by dynamically creating equal-valued CoinJoin
transactions. The mixing algorithm is not specific to Dash, and integra-
tion into other cryptocurrencies, especially into Bitcoin, is possible.

Keywords: Anonymous transactions · Linking heuristics ·
De-anonymization · Mixing

1 Introduction

More and more it seems as if cryptocurrencies have come to stay and are not
mere hype. The most widely used cryptocurrency Bitcoin [1] is often perceived
to provide anonymity. However, Bitcoin is not anonymous as it is possible to link
addresses that belong to the same user [18,34,38]. The goal of mixing protocols
is the prevention of these linkage attacks. CoinJoin [32] is the most widely used
protocol. It combines inputs and outputs from multiple users and creates a ran-
dom permutation that hides the correlation between input and output addresses
and, thus, between users. Even though Monero [13] and Zcash [16] are two cryp-
tocurrencies that achieve privacy by design, it is crucial to study and improve
CoinJoin for two reasons. First, Bitcoin is still the most commonly used cryp-
tocurrency, especially in the dark web [24], and supports CoinJoin to improve
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privacy without requiring to swap coins to a more privacy-preserving currency.
Second, Monero and Zcash are already banned in South Korea [26], and there
is a risk that other jurisdictions will follow. If privacy-preserving currencies are
banned, CoinJoin on top of Bitcoin is among the only possibilities for people in
the corresponding jurisdictions to add privacy to their cryptocurrency activities.

The cryptocurrency Dash [4] employs a built-in CoinJoin mechanism. Dash
has not been researched before, although Dash has a market capitalization of
over four billion USD, is the second-largest cryptocurrency with built-in pri-
vacy features, and the third most established privacy coin for transactions in
the dark web [24]. By the beginning of 2021 Dash’s blockchain accounted for
approximately 1.4 million blocks including over 31 million transactions.

1.1 Empirical Analysis of Anonymity

We present the first empirical analysis of anonymity in Dash that combines new
and existing attacks to evaluate Dash’s anonymity level and gain insights on
CoinJoin and its privacy. We introduce a novel attack that we call Backlink
attack. In essence, Backlink attack carefully combines multi-input heuristic [18,
34,38] and a newly developed heuristic to find address clusters.

We put forward the DC attack, which is a modification of the cluster-inter-
section attack according to Goldfeder et al. [25]. The DC attack revealed a funda-
mental problem with CoinJoin, namely the coin aggregation problem. As Dash
uses fixed values in their CoinJoin transactions, users generally need to aggre-
gate coins of several CoinJoin transactions that fuel the attack. To ascertain
whether the coin aggregation problem is also present in other cryptocurrencies,
we analyze the impact of our attacks for Bitcoin.

Results: It was found that 15.1% of non-mixing transactions that spend private
coins are linkable by the Backlink attack. In terms of address clusters, applying
the newly developed heuristic reduces the number of clusters by almost two-third
compared to only applying the multi-input heuristic. By applying the DC attack,
we were able to link over 40% of Dash’s private transactions depending on the
underlying assumptions of the attack.

In Bitcoin, around 23% of all transactions which spend outputs from a Coin-
Join transactions contain backlinks. In addition, more than one-tenth of all trans-
actions do so from CoinJoin transactions spend from at least two different Coin-
Join transactions, which indicates that coin aggregation is also a problem in
Bitcoin.

1.2 Cookie Monster Mixing

Our analysis suggests that the privacy issues in Dash result from the fact that
Dash only supports equal-valued mixing with fixed values and allows users
to combine their coins in a way that might de-anonymize them. We analyze
arbitrary-value CoinJoin as proposed by Maurer et al. [31] and show that it has
other privacy weaknesses, which is why it is not a suitable way to solve the coin
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aggregation problem. To remove the issue of only fixed values being mixed with-
out introducing additional privacy vulnerabilities, we propose a novel mixing
algorithm that we call Cookie Monster Mixing. The algorithm is inspired by the
cookie monster problem [22] and removes the need to split and combine coins
before and after mixing. Thus, the information that multiple coins of different
mixing transactions belong together is no longer present on-chain. As a con-
sequence, cluster-intersection attacks without additional off-chain information
are no longer possible. We have formalized the problem as an integer quadratic
problem and propose an efficient greedy algorithm to solve it. A prototype imple-
mentation reinforces the practical efficiency. Through experimentation, we have
validated that the greedy algorithm is nearly optimal.

1.3 Responsible Disclosure

We reported our findings to the Dash Core Group, one of the organizations work-
ing for the Dash network, and declared our willingness to support the implemen-
tation of the suggested countermeasures. With Dash Core Release 0.16.0.1 [6],
Dash has implemented some of our suggested countermeasures to improve pri-
vacy.

1.4 Related Work

A major concern of CoinJoin is that the users need to trust an external mixing
service that creates the transaction. Alternative approaches to mitigating this
weakness have been proposed, such as CoinShuffle [39] or its more efficient suc-
cessor CoinShuffle++ [40]. For Ethereum, a trustless tumbler Möbius has been
presented that achieves mixing through a smart contract based on ring signatures
and stealth addresses [33].

While CoinJoin is a mixing service that can be used as an extension of
traditional cryptocurrencies, new privacy-preserving cryptocurrencies have also
evolved, spearheaded by Monero [13] and Zcash [16]. Monero is based on the
CryptoNote protocol [42] and mainly uses ring-confidential transactions [36] to
achieve privacy. Conversely, Zcash is based on the Zerocash protocol [20] and
mainly uses zero-knowledge, succinct, non-interactive arguments of knowledge
to achieve privacy. The anonymity of both cryptocurrencies has since then been
subject to analyses [29,30,35,37].

Goldfeder et al. [25] showed that CoinJoin transactions in Bitcoin are vul-
nerable to the so-called cluster-intersection attack . Kalodner et al. [27] exper-
imentally validated the applicability of the cluster-intersection attack to Dash
on simulated transactions. In contrast, we apply the attack to the entire Dash
blockchain data. To do so, however, we needed to refine it, as there are several
underlying assumptions to take into account.

The major services for CoinJoin in Bitcoin are Wasabi Wallet [15], Samourai
Wallet [14] and JoinMarket [12]. All distinguish between pre- and post-mixing.
However, Wasabi and Samourai require fixed output values and thus might bene-
fit from the flexibility Cookie Monster Mixing provides in building their CoinJoin
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transactions. JoinMarket allows for flexible output values, albeit in a different
setting. Its protocol distinguishes between takers and makers where the taker
pays the makers to participate in the mixing.

2 Preliminaries

In this section, we briefly explain concepts necessary to understand our attacks
and countermeasures. We introduce transactions, the multi-input heuristic and
CoinJoin followed by a high-level description of the cluster-intersection attack .

2.1 Transaction

Fig. 1. Transaction

A transaction consists of a list of inputs and outputs. In simple terms, an output
comprises an amount of a given cryptocurrency CC and the hash hpk of a public
key pk, which is also called an address. Inputs are references to outputs of pre-
vious transactions. A transaction with two inputs and three outputs is depicted
in Fig. 1a. The two inputs refer to the outputs at indices outid1 and outid2 of
transactions with hashes txhash1 and txhash2 respectively. Each output oi for
i ∈ [a, b, c] of the transaction specifies an address hpki

and an amount #CCi of
the cryptocurrency. To spend an output oi of this transaction in a succeeding
transaction, a public key pk must be provided whose hash equals hpki

and a
signature that verifies for pk. It is common for a transaction to have multiple in-
and outputs, as the input value needs to be spent completely. For example, if the
inputs amount to 5 CC but the user only wants to spend 4 CC to hpka

and hpkb
,

they will create an output oc to send back the remaining 1 CC to an address
they control (hpkc

), which is also called change (address). Outputs that can be
referenced by a transaction, but have not yet been, are called unspent-transaction
outputs.

2.2 Multi-Input Heuristic

If a transaction has multiple inputs, the following address-linking heuristic can
be applied.
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Heuristic 21 (multi-input heuristic [18,34,38]). All addresses referred to in
the inputs of a transaction are controlled by the same entity.

The reason is that the computation of the signature of each input requires
the knowledge of the secret key. Other heuristics take advantage of the fact
that coins can only be spent in their entirety with the spending user usually
sending back the remaining amount of the cryptocurrency to a change address
they control [18,34,38]. Linking addresses results in sets of addresses, so-called
address clusters, which are likely controlled by the same entity.

2.3 CoinJoin

The basic idea of CoinJoin [32] is special CoinJoin transactions, which com-
bine the in- and outputs of multiple users. An example of such a transaction is
shown in Fig. 1b. The transaction has three inputs and three outputs from three
different users A, B and C. Here, we assume that all in- and outputs have the
same value. By merely examining the transaction it is not possible to determine
which input ix for x ∈ [A,B,C] belongs to which output oy for y ∈ [1, 2, 3].
As the inputs are controlled by three different users, the multi-input heuristic
(Heuristic 21) cannot be applied.

2.4 Cluster-Intersection Attack

Goldfeder et al. [25] showed that CoinJoin transactions in Bitcoin are vulnerable
to the so-called cluster-intersection attack , which works as follows. For each
output of a CoinJoin transaction, its anonymity set is determined by inspecting
the inputs of the transaction as, ideally, each input could be the origin of each
output. The anonymity set contains all possible address clusters that might
be the output’s origin. Additional information may likely reveal that the same
entity controls certain outputs of different CoinJoin transactions. In that case,
the corresponding anonymity sets can be intersected, i.e. address clusters that
are present in all sets can be identified. If there is only one address cluster in
the intersection, this cluster might be the origin of those outputs. Additional
information revealing that the same entity controls certain outputs of different
CoinJoin transactions can, for instance, be a single transaction spending such
outputs. Then, the information follows from the multi-input heuristic (Heuristic
21) and thus is on-chain information. Furthermore, it is also possible that the
payment recipient can derive the information off-chain, as seen in the following
example. Imagine a merchant receives two payments from the same customer,
and each of the payments is the output of a different CoinJoin transaction. If the
anonymity sets of both outputs only have a single address cluster in common,
the merchant can assume that this cluster belongs to the customer.

3 Dash

In this section, we introduce Dash and explain how it addresses privacy in its
PrivateSend feature as a necessary prerequisite for our attacks in Sect. 4.
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3.1 Overview

The cryptocurrency Dash, having forked from Bitcoin in 2014 [5], follows the
same basic structure: the decentralized transaction ledger is maintained in a peer-
to-peer network that uses a consensus mechanism to agree on new transactions.
The transactions are organized in blocks and the ledger is often called blockchain;
the nodes in the consensus mechanism are called miners. They are rewarded for
their participation through block rewards, i.e., newly generated units of the cryp-
tocurrency and transaction fees. Dash differs from Bitcoin mainly by implement-
ing a native CoinJoin feature, PrivateSend, and a feature that reduces the time
it takes until a transaction can be considered final, InstantSend. Both features
are achieved by so-called masternodes, which are special nodes participating in
the Dash network. In contrast to miners, masternodes do not directly participate
in the consensus mechanism but mainly provide PrivateSend and InstantSend
as a service. They are rewarded for their services with fees. Additionally, they
also receive parts of the block rewards in so-called CoinbaseTXs. InstantSend
solves the problem of confirmation time that is present in Bitcoin. To do so, a
quorum of masternodes locks the inputs of a proposed transaction, which leads
to competing transactions being rejected [8]. We do not consider InstantSend in
the rest of the paper, as we are concentrating on privacy.

3.2 PrivateSend

PrivateSend is a service provided by masternodes to prevent the linkage of
addresses from different transaction outputs potentially belonging to the same
entity. Put in simple terms, PrivateSend implements CoinJoin (see Sect. 2.3).
There are several services that support the process of finding other users to
group with in order to build a CoinJoin transaction. In an ideal scenario, only
these services learn the input-output mapping, i.e., the mapping of inputs to
corresponding outputs.

Fig. 2. PrivateSend mixing procedure
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The mixing process of Dash is depicted in Fig. 2 and works as follows: a user’s
wallet splits the value of some unspent-transaction outputs in a CreateDenom-
TX , and sends it to the network 1 . This step is a necessary prerequisite, as
mixing in Dash requires equal and fixed values. Next, the wallet reports a mixing
request to a randomly selected masternode 2 . This request includes certain
unspent-transaction outputs of the CreateDenomTX as inputs and equally as
many outputs with addresses that the wallet controls. If enough other users
(dashed lines) also reported their request to the masternode, it builds a Mixing-
TX 3 , consisting of all of the users’ input-output pairs. At this point, the master-
node reports the MixingTX back to each user’s wallet 4 , such that it can sign
the inputs. Before doing so, the wallet ensures that the outputs initially reported
in its request are contained in the list of outputs of the MixingTX . This check is
crucial in guaranteeing that the masternode cannot steal any coins by replacing
outputs with its own. If each wallet only signs so long as the check is successful,
the masternode cannot redirect money to their addresses since the sum of the
input values must exactly match the sum of the output values in MixingTXs.
The reason is that the fees required for mixing are decoupled from the Mixing-
TXs and therefore omitted for the sake of simplicity. After each wallet has signed
their inputs and sent the signatures to the masternode 5 , the masternode can
send the MixingTX to the network 6 . Each wallet then has private unspent-
transaction outputs, which can be used as inputs for further mixing rounds or
spent in PrivateSendTXs, the final transaction type used in PrivateSend. A
PrivateSendTX is a transaction, whereby the wallet implementation ensures
that it only spends private unspent-transaction outputs from MixingTXs.

4 Empirical Anonymity Analysis

In this section, we analyze the anonymity provided by CoinJoin in the context
of Dash and Bitcoin. For the analysis of Dash, we ran a Dash full node, ver-
sion 0.16.1.1 [6] and build an analysis pipeline using BlockSci [28] with version
0.5.0. First, we retrieved the raw blockchain data up to December 31, 2020,
which corresponds to a chain of 1 397 530 blocks. Then we detected the type
of transactions that are relevant for our attacks. In the backlink attack, we
linked address clusters based on the multi-input heuristic (see Heuristic 21) and
a new clustering heuristic. Finally, we refined the cluster-intersection attack by
adding false-positive rejection mechanisms and addressing uncertainty about its
underlying assumptions to make the attack applicable to Dash (DC attack). The
differences of our analysis of Bitcoin are stated in Appendix A.

4.1 Transaction Type Detection

We ran a transaction type detection algorithm for the identification of relevant
transactions for PrivateSend. This algorithm processes the data retrieved from
our full node, and it takes advantage of the fact that the mixing denomina-
tions in Dash are of the form 1.00001 × 10k for k ∈ [−3, . . . , 1]. Due to this
structure, it seems unlikely that it would not be a mixing denomination if we
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were to encounter such a value. As a consequence, our detection mechanism
should produce few to no false positives. By design of our detection mechanism,
a transaction can only have one type, i.e., there is no ambiguity. We consider
each transaction that does not match any of the following types to be an Oth-
erTX. MixingTX is a transaction with equally many inputs and outputs, all
with the same denomination. This is due to the fact that the fee is decoupled
from mixing. Thus, there is exactly one output for each input. We addition-
ally require that there are at least three inputs as at least three participants
are required for mixing (see Dash’s whitepaper [23]). CreateDenomTX is a
transaction that is not a MixingTX if there are at least two outputs, while one
output needs to have one of the mixing denominations. Furthermore, we allow
at most two non-mixing-denominated outputs since one of them might be the
change output and thus of arbitrary value. The other might be a special output
required to pay mixing fees. PrivateSendTX is a transaction that is not a
MixingTX if it has more than one input and all the inputs are mixing denom-
inations. However, we only consider it a PrivateSendTX if it has exactly one
output since a PrivateSendTX does not allow change [10].

Fig. 3. Dash transaction types

In Fig. 3 the transactions are listed by their
type, where the total number of transactions
was 31 563 841. Only 0.4% (110 846) of all
transactions are PrivateSendTXs.
Bitcoin. In Bitcoin, we found that out
of 493 118 000 transactions, 1 767 452 (0.4%)
were CoinJoinTXs (the counterpart of Dash’s
MixingTXs). For the transactions entering
into and spending from CoinJoinTXs, we
detected 5 865 534 (1.2%) PreCoinJoinTXs
and 7 228 843 (1.5%) PostCoinJoinTXs.

Fig. 4. Backlink analysis

4.2 Backlink Attack

We introduce the Backlink attack, which directly links addresses occurring in the
output of a MixingTX , i.e., linking them to output addresses of a CreateDenom-
TX . There are transactions in Dash that spend outputs of MixingTXs and at
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the same time outputs of CreateDenomTXs. We call such a transaction a Back-
linkTX and the output of the CreateDenomTX a backlink. Such a transaction is
shown in Fig. 4. The transaction’s first input is a reference to the fourth output
of the CreateDenomTX , which is the backlink.1 Thus, as a direct result of the
multi-input heuristic (see Heuristic 21), the addresses of the MixingTX , hpkc

and
hpkd

, are linkable, as under the assumptions of the multi-input heuristic there is
a link to hpk4 , which is an output address of the CreateDenomTX .

However, the linkable addresses can be further linked as all input and all
output addresses of a CreateDenomTX are most likely controlled by the same
entity. The reason for this is that CreateDenomTXs are generated by a user’s
wallet. This leads to the following address clustering heuristic:

Heuristic 41. All in- and output addresses of a CreateDenomTX are controlled
by the same entity.

As a result, hpkc
and hpkd

of the BacklinkTX in Fig. 4 can not only be linked
to hpk4 (multi-input heuristic, dashed line) but also to hpk1 to hpk3 and to the
address corresponding to the output of txhash at index outid (Heuristic 41, dotted
line). Note that reasonable clustering results are only achieved by combining
both heuristics. Applying the multi-input heuristic would allow linking to the
backlink. However, without Heuristic 41, the backlink address would, in general,
be in a single cluster and not reveal any additional information about the user’s
transaction history before mixing.

To detect backlinks, we do the following. We first iterate over all transac-
tions. Then, we check each transaction as to whether it has inputs referencing
MixingTXs as well as inputs referencing CreateDenomTXs. To identify the cor-
responding clusters, we add our heuristic to the clustering module of BlockSci,
which already implements the multi-input heuristic.

We found that out of the 174 834 transactions that are not MixingTXs but
spend mixing outputs, 26 402 (15.1%) have backlinks. In terms of addresses from
the outputs of MixingTXs, we found that out of 6 833 911 addresses, 836 230
(12.2%) are linkable. Applying only the multi-input heuristic resulted in 23 580
clusters. We reduced that number by almost two thirds by additionally applying
our Heuristic 41, which resulted in only 7 920 clusters.

Bitcoin. The attack slightly differs in Bitcoin as there are no explicit Create-
DenomTXs. Instead of CreateDenomTXs, we consider the PreCoinJoinTXs.
Thus, a BacklinkTX in Bitcoin is a PostCoinJoinTX with at least one input from
a PreCoinJoinTX . We found that out of 7 228 843 PostCoinJoinTXs, 1 674 070
(23.2%) have backlinks. This shows that backlinks are also present and even more
problematic in Bitcoin.

4.3 DC Attack

We introduce the DC attack as a modification of the cluster-intersection attack
(Sect. 2.4). First, we give a high-level description of the cluster-intersection attack
1 Note that the reference says [denomhash, 3] to refer to the fourth output as indexing

starts with 0.
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in the context of Dash, followed by a discussion of which modifications are neces-
sary to apply the attack. Finally, we present the Dash cluster-intersection attack
(DC attack).

Fig. 5. Cluster intersection in Dash

An overview of the cluster-intersection attack in Dash is depicted in Fig. 5.
The PrivateSendTX has inputs from both MixingTX 1 and MixingTX 2. If we
trace back the inputs, the set of CreateDenomTXs that can be reached from
the MixingTX 1 input contains CreateDenomTX A and CreateDenomTX B.
Likewise, the set reachable from the MixingTX 2 input contains CreateDenom-
TX B and CreateDenomTX C. If we intersect the sets, CreateDenomTX B is
the only CreateDenomTX remaining.

Modifications. For actual transaction data, we do not know how many rounds
users have been mixing for and whether the mixing originated from a single link-
able address cluster [19,25]. Thus, we need to modify the attack. To compensate
for not knowing how many rounds of mixing the inputs of a PrivateSendTX
took, we consider a range of mixing rounds. To address the assumption that all
inputs originated from a single cluster, we developed a two-fold approach.

First, we add a mechanism to reject a cluster if there is a subset of inputs
that would result in another cluster. This cluster can be seen as an alternative
explanation for the subset of inputs. The minimum size of the subset is adjustable
via a parameter (alt). If, for example, ground-truth data indicated that clusters
containing 90% of the inputs are common, then an alt value of 80% could be
suitable for blockchain analysts to safeguard the evidential value of their findings.
In that case, the analysts would reject a cluster, if 80% or more of the inputs
could be explained by another cluster.

Second, we add a mechanism to detect some obvious false positives that are
based on the following observation. A cluster cannot have more Dash spent in its
PrivateSendTXs than have been created in its CreateDenomTXs. This is why we
compute a mix balance for each cluster as follows. Firstly, we sum the value of all
outputs of CreateDenomTXs that are spent in MixingTXs. Then, we subtract
the value of all inputs of a transaction that is not a MixingTX but is spending
from MixingTXs. In simple terms, we determine the value that has been input
into mixing and subtract the value that has been spent after mixing. Suppose
the attack now suggests linking two clusters, such that the sum of their mix
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balances is negative. In that case, we know that we either encountered a false
positive or that our clustering of pre-mix addresses was incomplete. In either
case, we must reject the result because the two cases cannot be distinguished
without ground-truth data.

Algorithm 1. DC attack
procedure DC_ATTACK(ptx, alt)

candidate = None
r = 2
maxr = DETERMINE_MAX_ROUNDS(ptx)
while r ≤ maxr do

clusts = ∅
for inp ∈ ptx.inps do

clusts[inp] = EXTRACT_CLUSTS(r, inp)
intersec =

⋂

inp∈ptx.inps
clusts[inp]

if LEN(intersec) == 1 then
if CORR_REJ(intersec, alt, clusts) then

candidate = GET(intersec)
break

if BALANCE_CONF(candidate) then
return candidate

return None

This results in the Dash
cluster-intersection attack (DC
attack), which is a modified
version of the algorithm pro-
posed by Goldfeder et al. [25].
The algorithm is stated in
Algorithm1. The LEN method
always returns the number of
elements of the passed argu-
ment. The algorithm’s input
is a PrivateSendTX ptx and
the parameter alt as described
above. We set the start-
ing value for the number of
rounds r to 2, since 2 is the
minimum number of mixing
rounds required in Dash. The
maximal possible number of
rounds changed at the begin-
ning of 2019 from 8 to 16 with protocol version 0.13.0.0 [7]. Thus, to
prevent the algorithm from detecting obvious false positives, we determine
for every PrivateSendTX , the maximal possible number of rounds maxr in
DETERMINE_MAX_ROUNDS as follows. We retrieve the block in which the trans-
action occurred. If the year extracted from the block’s timestamp is greater
than 2018, we set maxr to 16 and 8 otherwise. Next, the algorithm iterates
over all rounds. In every round, for each input, all clusters that are attainable
within r rounds of mixing are determined (EXTRACT_CLUSTS). Then, the inter-
section intersec of all found cluster sets is computed. If there is exactly one clus-
ter in the intersection, we perform an additional check, CORR_REJ. This checks
whether there is a subset of the inputs whose size is greater than or equal to alt
of LEN(ptx.inps), which would lead to a different cluster than intersec. If this is
not the case, candidate is set to the cluster in intersec (GET). The loop is left
regardless of CORR_REJ. Finally, we check that candidate is not a false positive
according to the mix balance, which is performed by BALANCE_CONF and works
as explained above.

The results of the DC attack are shown in Fig. 6. Setting parameter alt
to 100% corresponds to complete certainty in the assumption that all inputs
resulted from one linkable cluster. In that case, no alternative explanation is
taken into account and over 40% of the PrivateSendTXs are linkable. In the
case of alt being equal to 0%, all results would be rejected by definition.

Bitcoin. Goldfeder et al. already demonstrated the applicability of the clus-
ter-intersection attack in Bitcoin [25]. Thus, the crucial question in this work
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Fig. 6. DC attack linkable PrivateSendTXs for parameter alt ranging from 10% to
100%

is whether there is on-chain information fueling the attack. The special vulner-
ability to cluster intersection in Dash results from the fact that users need to
aggregate value in PrivateSendTXs. Thus, a PrivateSendTXs has several inputs
from different MixingTXs in general that can be seen as such on-chain informa-
tion.

To determine whether such on-chain information is also present in Bitcoin,
we did the following. We checked for every PostCoinJoinTXs whether there
are inputs from at least two different CoinJoinTXs. If this was the case, there
was on-chain information as it is possible to intersect the anonymity sets of
the different CoinJoinTXs. We found that out of the 7 228 843 PostCoinJoin-
TXs, 919 532 (12.7%) have inputs from at least two different CoinJoinTXs. This
indicates that the coin aggregation problem is also present in Bitcoin.

5 Enhancing Privacy of Mixing

We show how to enhance the privacy of mixing and discuss direct countermea-
sures to mitigate the vulnerability to the Backlink attack. After discussing why
fundamental changes to Dash seem unavoidable to prevent the DC attack, we
propose a new mixing algorithm that removes the vulnerability to the cluster-
intersection attack . This algorithm is of independent interest as it is not specific
to Dash.

5.1 Preventing backlinks

The anonymity problems that come with backlinks are approachable within the
design of Dash and Bitcoin. First, not all outputs of a CreateDenomTX must
be input to MixingTXs. There may be change, such as discussed above in the
example of Fig. 4. Additionally, Dash allows for CoinControl, i.e. letting users
in their wallet manually select inputs of a transaction [9]. While this is a useful
feature, in the case of a user creating a BacklinkTX, we recommend explicitly
warning them as backlinks remove the anonymity gained by mixing. A user’s
wallet should strictly separate any coins from CreateDenomTXs and those orig-
inating from a MixingTX . This idea is incorporated in the Bitcoin fungibility
framework ZeroLink [17] that distinguishes a pre-mix and a post-mix wallet.
With version 0.16.0.1 [6] Dash improved its user interface following our recom-
mendations after we disclosed our findings to them.

5.2 Cookie Monster Mixing

The vulnerability to the cluster-intersection attack results from the coin aggre-
gation problem, that is the need to combine coins of different mixes. In Dash, this
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is a consequence of restricting the mixing to specific values. The logical solution
would be to allow arbitrary values. However, arbitrary-value mixing suffers from
privacy weaknesses caused by value analysis as discussed in Appendix B. Thus,
we propose a new mixing algorithm, Cookie Monster Mixing. The basic principle
behind Cookie Monster Mixing is to create a MixingTX where there are at least k
outputs with the same value and k is the anonymity level the transaction should
provide. This is related to the cookie monster problem [22]. Given a set of jars
filled with various numbers of cookies, the cookie monster wants to eat all the
cookies. However, the cookie monster has to proceed in rounds, select a subset of
jars, and eat the same number of cookies from each jar in this subset. The goal
is to eat the cookies in as few rounds as possible. In contrast, the objective in
Cookie Monster Mixing is to maximize the number of cookies for a fixed number
of rounds under constraints instead of minimizing rounds.

In Cookie Monster Mixing, a mixing service provider takes the role of the cookie
monster, while the jars are inputs with a specific value of the cryptocurrency to
be mixed. In Dash, the masternodes act as mixing service providers. Deviating
from the cookie monster problem, let the number of rounds r be fixed. In each
round j ∈ {1, . . . , r}, the mixing service provider may choose a target value tj and
a subset of the input values from which tj is subtracted. The subtracted value
is added to the output set, while the objective is to maximize the total output
value. Intuitively that relates to maximizing the total value of anonymous coins.
Additionally, there are two constraints. First, the size of the subset of inputs
selected per round needs to be at least k. Second, each selected input needs to
have a value at least as large as tj . Together the constraints ensure that the
outputs determined via tj have at least an anonymity set size of k as they have
the same value and thus might have originated from any of the inputs selected
in that round.

Integer Quadratic Problem. The problem can be formulated as the following
integer quadratic problem (IQP).

Constants

– v1, . . . , vn: non-negative integers (values of n inputs)
– k: positive integer (minimum number of values to select per round)

Variables

– x1, . . . , xn: 0 − 1 vectors of length r (where xi denotes the rounds in which
value vi has been selected)

– t: non-negative integer vector of length r (target values to be subtracted)

maximise

n∑

i=1

〈xi, t〉 (1)

s. t. 〈xi, t〉 ≤ vi, for each i ∈ {1, . . . , n} (2)
n∑

i=1

xi,j ≥ k, for each j ∈ {1, . . . , r} (3)
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The Objective (1) is to maximize the total anonymized value, while Con-
straints (2) and (3) ensure that it is actually possible to subtract tj from the
selected inputs and that at least k inputs are selected per round j respectively.

Algorithm 2. Greedy solver
procedure SOLVER(in_vals, k, r)

if LEN(in_vals) < k || r == 0 then
return ∅

target_vals = ∅
tmp_vals = ∅
rval = EXTRACT_K_LARGEST(k, in_vals)
target_vals.add(rval)
for val ∈ in_vals do

if val > r_val then
tmp_vals.add(val − rval)

else if val < r_val then
tmp_vals.add(val)

return target_vals.concat(SOLVER(
tmp_vals, k, r − 1))

Greedy Algorithm. We
propose a greedy algorithm
that approximates the inte-
ger quadratic problem. It is
stated in Algorithm2. The
input to the algorithm is a
list of input values in_vals,
as well as k and r as
defined above. in_vals can
be obtained from the mul-
tiset of inputs I by replac-
ing each input with its value.
LEN returns the number of ele-
ments in a list and EXTRACT
_K_LARGEST extracts the kth

largest element of a list. The
algorithm returns target_vals, which is a list of values referring to the target
values tj of the integer quadratic problem.

As long as the abort criterion (i.e., LEN(in_vals) < k || r == 0) is not fulfilled,
the algorithm extracts the kth largest element of in_vals, which is assigned to
rval. Since this element can be seen as the target value of the greedy algorithm
in that round, it is added to target_vals. Then, the input values are updated as
follows. In case a value is greater than rval, their difference is added to tmp_vals.
Otherwise, if the value is smaller than rval, the value itself is added to tmp_val.
If they are equal, the value is omitted. This behavior corresponds to inherently
selecting all possible inputs per round in terms of the integer quadratic problem.
The algorithm runs in polynomial time. There are at most r recursive calls and
the runtime of each call is mainly determined by the time it takes to extract
the kth largest element of a list. If this is implemented by sorting, the algorithm
runs in O(r · n log n).

Our greedy algorithm is not optimal, which can be seen by the following
example. Let in_vals = [2, 2, 1], k = 2 and r = 2. In the first round, the algorithm
extracts 2 as the second largest element and adds it to target_vals, while 1 is
added to tmp_vals. In the recursive call, ∅ is returned, as the length in_vals is
1 and thus smaller than k which satisfies the abort criteria. Consequently, the
output value achieved in terms of Objective (1) is only 4, as target_vals = [2] and
the greedy algorithm inherently selects all possible inputs per round, which are
the first two of in_vals in the first round. The optimum 5, however, is achieved
by setting a1 = a2 = x1,1 = x2,1 = x3,1 = x1,2 = x2,2 to 1 and x3,2 to 0.
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Evaluation of Algorithm2. To measure the quality of our greedy algorithm
in terms of maximizing Objective (1), we evaluated it against the optimal solu-
tion. Therefore we modelled the integer quadratic problem as given by Objective
(1) and Constraints (2) and (3) in IBM’s Optimization Programming Language
(OPL) and used the mixed integer optimizer from IBM LOG CPLEX Optimiza-
tion Studio V12.10.0 [11].

For the values of the inputs (in_vals), we first considered all clusters of
CreateDenomTXs retrieved by applying the multi-input heuristic and Heuristic
41 as discussed in Sect. 4.2. For each cluster, we summed up the values of all
outputs that were referenced by MixingTXs. This results in a distribution of
Dash that users were mixing in the past. It is therefore better suited for evalu-
ation than purely random values. We varied both, r and the number of inputs
that we chose randomly from the distribution. We set k to 3 following the Dash
whitepaper, which suggests at least three participants per mixing round [23].
The results are shown in Fig. 7a averaged over 100 runs indicating that Fig. 2
is nearly as good as the optimal solution. The average wall-clock time of the
solver is reported in Fig. 7b. In contrast, Algorithm2 took less than a second
for each choice of parameters. Therefore, particularly for multiple inputs and
rounds, using a solver is infeasible, which is why Algorithm 2 should be used
instead.

Fig. 7. Evaluation of Algorithm 2 against optimizer

Using Cookie Monster Mixing removes the need for splitting and aggregating
coins before and after mixing. Thus, the on-chain information that multiple coins
of different mixes belong together is no longer present, preventing the DC attack.
To prevent cluster-intersection attacks from off-chain information as well, Cookie
Monster Mixing needs to be combined with privacy-aware wallets and browsers.

Acknowledgments. We would like to thank Christoph Egger, Paul Gahman, Vikto-
ria Ronge and Kyle Soska for their helpful comments as well as all the reviewers of this
work for their constructive feedback. Work was supported by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under reference number 442893093
and as part of the Research and Training Group 2475 “Cybercrime and Forensic Com-
puting” (grant number 393541319/ GRK2475/1-2019).



476 D. Deuber and D. Schröder

A Differences in the Analysis in Bitcoin

This section highlights the general differences in the analysis of Bitcoin and Dash.
For Bitcoin, we ran a full node, version 0.20.0 [2] and used BlockSci [28] with
version 0.7.0. We retrieved the raw blockchain data corresponding to a chain of
612 793 blocks with 493 118 000 transactions.

The main difference occurs in the transaction type detection as Bitcoin nei-
ther knows CreateDenomTXs nor PrivateSendTXs. Thus, besides the CoinJoin-
TXs, we also consider PreCoinJoinTXs and PostCoinJoinTXs. A PreCoinJoin-
TX is any transaction that has at least one output being referenced by a Coin-
JoinTX . Likewise, a PostCoinJoinTX is any transaction referencing at least one
output of a CoinJoinTX . We further exclude all CoinJoinTXs from PreCoin-
JoinTXs and PostCoinJoinTXs. In comparison with Dash, the CoinJoinTXs
would correspond to MixingTXs, the PreCoinJoinTXs to the CreateDenomTXs,
and the PostCoinJoinTXs to the PrivateSendTXs. Detecting PostCoinJoinTXs
and PreCoinJoinTXs is straightforward once CoinJoinTXs are detected. How-
ever, the detection of CoinJoinTXs is difficult as there are multiple different
CoinJoin services in Bitcoin (e.g. [12,14,15]) that neither require the number of
inputs and outputs to be the same nor restrict their inputs to specific denomi-
nations as is the case in Dash. BlockSci already implements a CoinJoin detec-
tion mechanism which, however, is tailored to JoinMarket [12] transactions and
therefore does not recognize the transactions of other CoinJoin services such as
Wasabi Wallet [15] or Samurai Wallet [14]. For this reason, we adapted the Coin-
Join detection mechanism of the open-source Blockstream Bitcoin explorer [21]
as it is capable of detecting CoinJoinTXs of several services. However, we also
adopted the elements of BlockSci’s algorithm [3] that were not specific to Join-
Market.

Algorithm 3. CoinJoin detection
procedure COJO_DETECTION(tx)

if LEN(tx.inps) < 2 || LEN(tx.outs) < 3 then
return False

target = MIN(MAX(LEN(tx.outs)/2, 2), 5)
found = False
for out ∈ tx.outs do

if out.val == 546 || out.val == 2730 then
return False

if OCC(val , tx.outs) >= target) then
found = True

if OCC_MOST(tx.outs) < OCC_UNIQ(tx.outs) then
return False

return found

Our algorithm is stated
in Algorithm3. The algo-
rithm returns True if the
provided transaction tx
is (most likely) a Coin-
Join transaction. The
LEN method returns the
number of elements of
the passed argument, MIN
and MAX work as expected.
OCC computes the num-
ber of occurrences of the
value val in the pro-
vided outputs. OCC_MOST
returns the number of
occurrences of the value that occurs the most while OCC_UNIQ returns the num-
ber of unique output values. The first thing the algorithm does is check whether
the transaction has at least two inputs and three outputs. The reason for this is
that mixing requires at least two participants. At least one participant generally
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receives some change, which is why there is always at least one additional output
aside from the two mixed ones. Next, a target between two and five is computed.
This is used to check whether there are at least target many outputs with the
same value, where target corresponds to half the number of outputs but is kept
between two and five as done by Blockstream [21]. As suggested by BlockSci, a
transaction with so-called dust outputs is unlikely a CoinJoin transaction, which
is why output values should not be equal to 546 or 2 730 [3]. These values are
the smallest possible output values allowed by Bitcoin Core depending on the
version. The last check is to prevent false positives as there needs to be at least
as many equal-valued outputs as there are unique ones. The reason is that in a
CoinJoinTX unique outputs should only be change outputs.

B Limitations to Arbitrary-Value Mixing

Fig. 8. CoinJoin transaction

We proposed Cookie Monster Mixing (see Sect. 5.2) as arbitrary-value mixing is
not a suitable solution for the coin aggregation problem due to privacy weak-
nesses based on value analysis. When mixing coins with an arbitrary value,
outputs can usually be linked to the corresponding inputs by inspecting the val-
ues, as discussed by Maurer et al. [31]. Considering the CoinJoin transaction
in Fig. 8a taken from Maurer et al. [31], the transaction can only consist of the
two sub-transactions (dotted line and dashed line), such that it is possible to
link inputs i1 and i2 to outputs o1 and o2, as well as i3 and i4 to o3 and o4,
respectively. To prevent this linkage, Maurer et al. [31] propose output-splitting
algorithms. Given two transactions, their basic splitting algorithm works by cal-
culating the difference between the sums of the corresponding output lists. Next,
one of the outputs of the list with the larger sum is split to produce this dif-
ference [31]. Thus, multiple input-output relations are possible. Applied to the
two sub-transactions in Fig. 8a, the algorithm results in the transaction depicted
in Fig. 8b. Output o3 in Fig. 8a has been split in o3.1 and o3.2 such that i1 and
i2 belong to either o1 and o2 or o3.2 and o4. The reason is that the sum of the
values of i1 and i2 equals 33, as do the sums of o1 and o2 as well as o3.2 and o4.
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However, even if output-splitting results in multiple potential input-output
relations, it is still possible to determine the actual input-output relation by
inspecting the values. In Fig. 8b, i1 and i2 are far more likely to result in o1 and
o2 than in o3.1 and o4. The reason is that under the assumption that one of the
outputs is change, input i2 would not have been required as i1 is larger than 19
(o3.1) and 14 (o4).

As their basic output-splitting algorithm does not affect the input linkability,
that is i1 and i2 as well as i3 and i4 are linkable, Maurer et al. [31] propose a
version of the algorithm that implements input shuffling. Instead of using the
difference between the sums of the corresponding output lists, the sum of a
random subset of inputs is used to split the outputs. Thereby, the number of
inputs is a parameter of the algorithm. In terms of Fig. 8a, the input shuffling
algorithm might employ the sum of i1, i2 and i4. While this seems to be an
improvement over the basic algorithm, it is especially dangerous if the inputs
are linkable by heuristics. Intuitively, the gained privacy relies on an ambiguity
on the input side, which is introduced by using the sum of a random subset in
output splitting. However, if it is known which inputs belong together, there is
no gain in privacy at all.
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