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Abstract. In this paper, we give the first formal security analysis on the
one-more unforgeability of blind ECDSA. We start with giving a general
attack on blind ECDSA, which is similar to the ROS attack on the blind
Schnorr signature. We formulate the ECDSA-ROS problem to capture
this attack.

Next, we give a generic construction of blind ECDSA based on an
additive homomorphic encryption and a corresponding zero-knowledge
proof. Our concrete instantiation is about 40 times more bandwidth effi-
cient than the blind ECDSA in AsiaCCS 2019.

After that, we give the first formal proof of one-more unforgeability
for blind ECDSA, under a new model called algebraic bijective random
oracle. The security of our generic blind ECDSA relies on the hardness
of a discrete logarithm-based interactive assumption and an assumption
of the underlying elliptic curve.

Finally, we analyze the hardness of the ECDSA-ROS problem in the
algebraic bijective random oracle model.
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1 Introduction

A blind signature scheme [8] consists of an interactive protocol between a user
and a signer. The signer holds a secret key sk and the user holds a message m
of its choice. After the interaction, the user learns a valid signature σ on the
message m. The signer can neither learn the message that it signs, nor link the
transcripts of protocol that it creates.

The blind signature can be applied to various privacy sensitive scenarios, such
as anonymous credentials, eCash, and e-voting. In particular, for blind ECDSA,
Bitcoin developers are exploring its usage to blind coin swaps, trustless tumbler
services, and more [17,22].

The security model of blind signature is called the one-more unforgeability
against chosen message attack. It means that the adversary cannot generate
� + 1 blind signatures from � interactions with the signer. Blind Schnorr signa-
ture was shown to be one-more unforgeable if the one-more discrete logarithm
(OMDL) assumption and the ROS assumption hold [20]. Unfortunately, the ROS
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assumption is recently broken in [5]. The clause blind Schnorr signature [12] is
secure based on the OMDL assumption and the modified ROS assumption in
the algebraic group model.

Blind ECDSA. For decades of study, many constructions of blind signatures
are proposed [1,2,6,8,10,12–15,19], including those based on ECDSA [16,22].
ECDSA is one of the most widely deployed signature schemes in practice. For a
signing key x, the signature on a message m is a pair σ = (r, s) satisfying

s = k−1(H(m) + xr) mod p, r = f(kG),

where G is a generator of an ECC group of prime order p, k is randomly chosen
from Zp, H is a hash function, and f is a conversion function which returns the
x-part of the input ECC point modulus p.

Although blind ECDSA has already been explored in 2004 [16], to the best
of our knowledge, no formal security proof of one-more unforgeability has been
provided for it yet. In [22], the authors only give a heuristic argument for the
security of scheme. On the contrary, the security of blind Schnorr signature has
been studied for decades [12,20]. It is mainly because an elegant linearity exists
in the Schnorr signature, while it disappears in the ECDSA with the usage of
division k−1 and the conversion function f during the signature generation.

Our Contributions. In this paper, we solve the open problem of constructing a
blind ECDSA signature with a formal security proof of one-more unforgeability.
We have the following contributions.

1. General Attack on One-more Unforgeability. We first demonstrate an attack on
the one-more unforgeability of any blind ECDSA signature. We propose an
ECDSA-ROS problem to capture this attack. The hardness of the ECDSA-
ROS problem will be further analyzed in Sect. 5.

2. Generic Construction with Efficient Instantiation. We propose a generic con-
struction of blind ECDSA from an additive homomorphic encryption and a
corresponding non-interactive zero-knowledge (NIZK) proof.
Our blind ECDSA can be instantiated with the additive homomorphic
Castagnos-Laguillaumie (CL) encryption [7] with the corresponding NIZK
proof in [23]. Our scheme is about 40 times more bandwidth efficient than
[22].

3. Formal Security Proof. We give the first formal security proof of one-more
unforgeability of blind ECDSA. The proof uses a new model called Algebraic
Bijective Random Oracle (ABRO), which is a non-trivial combination of the
bijective random oracle (BRO) [9] and the algebraic group model (AGM) [11].
The new ABRO model is of independent interest.
We show that the one-more unforgeability of our generic blind ECDSA relies
on some assumptions related to the discrete logarithm and the underlying
elliptic curve.

A high level summary will be given in the rest of this section.
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1.1 ECDSA-ROS Attack on Blind ECDSA

Now we consider the following attack on the one-more unforgeability of blind
ECDSA. No matter how the blind ECDSA protocol is implemented, the user
eventually obtains � signatures (rj , sj) on messages mj for j ∈ [�] such that:

Rj = s−1
j (hjG + rjX), rj = f(Rj), hj = H(mj).

The adversary can break the one-more unforgeability if he can find (m∗, R∗, s∗)
and a vector ρ = (ρ1, . . . , ρ�) that satisfies:

H(m∗)
s∗ =

�∑

j=1

ρjhj

sj
, (1)

f(R∗)
s∗ =

r∗

s∗ =
�∑

j=1

ρjrj

sj
, (2)

R∗ =
�∑

j=1

ρjRj . (3)

The one-more forgery includes the extra signature (r∗ = f(R∗), s∗) on the mes-
sage m∗. We call this attack as the ECDSA-ROS attack, because Eq. 1 is similar
to the ROS attack on the blind Schnorr signature. The ECDSA-ROS attack does
not rely on solving the discrete logarithm of the public key X.

Hardness of the ECDSA-ROS Problem. We conjecture that the ECDSA-
ROS problem is hard to solve even under the recent attack on the ROS problem
[5], since the attacker needs to solve three equations simultaneously, with two
non-linear functions f and H involved. The hardness of the ECDSA-ROS prob-
lem will be further analyzed in Sect. 5.

1.2 Generic Construction

Our generic blind ECDSA can be constructed with any additive homomorphic
encryption HE and a corresponding NIZK proof. Suppose that the signer knows
a secret key x and the user knows the message m. They jointly compute R =
kakbG, where ka (resp. kb) is chosen by the signer (resp. the user). The user
encrypts H(m) and r = f(R) with HE and sends the ciphertext to the signer,
with a NIZK proof of the well-formedness of the ciphertext. The signer returns
the ciphertext of k−1

a (H(m)+rx) using the additive homomorphic property. The
user decrypts it and then divides the plaintext with kb to obtain s. The blind
signature is (r, s).

Efficiency Analysis. The blind ECDSA in [22] used a modified Paillier encryp-
tion with a modulus N = pqt, where q and t are two random large prime numbers.
Hence, it is even more inefficient than the standard Paillier encryption. Further-
more, [22] proposed a NIZK proof for the modified Paillier ciphertext with a
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binary challenge. In order to achieve a soundness error of 2−�s , the NIZK proof
has to be repeated for �s times. The resulting blind ECDSA in [22] is inefficient.

Our blind ECDSA can be instantiated with the additive homomorphic CL
encryption [7] with the corresponding NIZK proof in [23]. Consider 128 bit secu-
rity level, the ciphertext size of the CL encryption is 3654 bits, about 55% of the
ciphertext size of the modified Paillier encryption (6656 bits). The NIZK proof
for CL encryption in [23] is 1488 bytes, but the NIZK proof for modified Paillier
encryption in [22] is 69120 bytes for a soundness error of 2−80. Our scheme is
about 40 times more bandwidth efficient than [22].

1.3 Algebraic Bijective Random Oracle Model

We propose a new Algebraic Bijective Random Oracle (ABRO) model for the
security analysis of blind ECDSA. The idea comes from the bijective random
oracle (BRO) [9] and the algebraic group model (AGM) [11]. The BRO was used
to prove the unforgeability of ECDSA in [9]. The AGM was used to prove the
one-more unforgeability of the clause blind Schnorr signature [12]. Hence, the
ABRO model is a reasonable security model to analyze the security of blind
ECDSA.

The BRO models the algebraically disruptive behaviour of f similar to the
random oracles, which model the disordered behavior of cryptographic hash
functions. The BRO decomposes the conversion function f into three independent
functions as:

f = ϕ ◦ Π ◦ ψ,

where ϕ is a function which maps a group element G into {0, 1}L (which is the
x-part of G for ECDSA). Π is a bijective mapping from {0, 1}L to [0..2L − 1],
and ψ is a mapping from [0..2L − 1] to Zp. The BRO requires that the adversary
must query the oracles for the computation of Π and Π−1.

The AGM lies between the standard model and the generic group model. With
every group element Z that the adversary outputs, he also gives a representation
z of Z in terms of the group elements it has received so far. The AGM can be
instantiated in an algebraic wrapper, as introduced in [3].

New ABRO Model. Our new ABRO model is not a trivial combination of BRO
and AGM. Our goal is to minimize the use of AGM in the security model. The
ABRO model only requires the adversary to output a representation for the
group element R asked in the query Π(ϕ(R)). The representations are in terms
of group elements that has received so far, including the output of the signing
oracle and the Π−1 oracle.

In contrast with the AGM, the ABRO model does not require the adversary
to output representations for group elements used in other oracle queries. Since
the mapping Π does not appear in the real scheme, our model does not need to
be instantiated with the algebraic wrapper [3].

1.4 Security Proof of Blind ECDSA

ECDSA. As a stepping stone for understanding the security proof for blind
ECDSA, we briefly describe the security proof of ECDSA in the ABRO model.
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The public key X comes from the discrete logarithm (DL) problem instance
(G,X). For a valid forgery signature (r∗, s∗) on a message m∗, we have s∗R∗ =
H(m∗)G + r∗X and r∗ = f(R∗). In the BRO, either Π or Π−1 must be queried
for R∗ or r∗. By the setting of the ABRO, either the representation of R∗ is known
when Π(ϕ(R∗)) is asked, or the representation of R∗ is set by the simulator when
Π−1(ψ−1(r∗)) is asked. In either case, the representation of R∗ can be expressed
as a pair (a, b), where R∗ = aG + bX. Hence, the answer to the DL problem
logG X can be computed from s∗(aG + bX) = H(m∗)G + r∗X.

Blind ECDSA. The main contribution of the paper is the reduction of the
one-more unforgeability of blind ECDSA to the Multi-Base Discrete Logarithm
(MBDL) assumption in the ABRO model. The (n, q)-MBDL is the generalization
of the (n, 1)-MBDL problem in [4]: Given group elements (G,X,R1, . . . , Rn) and
q DL oracle queries (which takes (i, P ) as input and outputs logRi

P ), output
logG X, with the restriction that i must be distinct in all DL oracle queries. This
restriction is essential because logG X can be easily computed from logRi

G and
logRi

X.
In the security proof of one-more unforgeability, the blind signing oracle is

simulated by the DL oracle of the (n, q)-MBDL problem. Roughly speaking, the
simulator sets kG = Ri first. If the adversary asks the blind signature s with
respect to kG for some r and a message m, the simulator asks the DL oracle with
input (i,H(m)G+ rX). The DL oracle returns s such that sRi = H(m)G+ rX.
Hence s can be used to build a valid answer for the blind signing oracle query.
Similar to the security proof of ECDSA, we eventually get aG + bX = 0 from
the forgery signature for some a, b ∈ Zp. The value logG X can be extracted to
answer the MBDL problem. For the case of a = 0, we prove that it happens
in negligible probability. During the security proof, we also need an assumption
on the underlying elliptic curve that for all points on the elliptic curve, there is
only one subgroup whose order is p. This assumption is needed to ensure the
correctness of the simulation of the BRO oracle. This assumption holds for most
common elliptic curves defined in various standards.

1.5 Related Work

In the security analysis of the blind ECDSA in [22], the authors claimed that ‘the
proposed blind signature scheme has unforgeability if the ECDSA is unforgeable.’
However, this claim is not formally proven. In particular, they did not discuss
one-more type assumption (like other blind signature schemes) or ROS type
assumption (like the blind Schnorr signature).

2 Preliminaries

Notations. We denote the (closed) integer interval from a to b by [a, b]. We use
[b] as shorthand for [1, b].
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2.1 ECDSA

We define a group generation algorithm for elliptic curve.

– GpGen. On input a security parameter λ, it picks a prime q, an elliptic curve
E defined over Fp, and a cyclic group G in E(Fp) with a generator G of prime
order p. Finally, it outputs (p,G, G).

ECDSA requires two independent functions (denoted as H and f) to map
the messages and group elements into a field Zp respectively. The function H is a
cryptographic hash function. The function f is known as the conversion function,
mapping a point A to A.x mod p, which is an encoding of the x-coordinate of A
as an integer.

If x is a signing key and X = xG is the corresponding verification key, a
signature on a message m is a pair σ = (r, s) satisfying r = f(kG) and s =
k−1(H(m) + xr) mod p. Signatures are verified by recovering R = H(m)

s G + r
sX

and checking that f(R) = r.

2.2 Blind Signature

Syntax. We follow the definition of [12]. A blind signature scheme BS consists
of the following algorithms:

– par ← BS.Setup(1λ): the setup algorithm takes the security parameter λ in
unary and returns public parameters par;

– (sk, pk) ← BS.KeyGen(par): the key generation algorithm takes the public
parameters par and returns a secret/public key pair (sk, pk);

– (b, σ) ← 〈BS.Sign(sk),BS.User(pk,m)〉: an interactive protocol is run between
the signer with private input a secret key sk and the user with private input
a public key pk and a message m; the signer outputs b = 1 if the interaction
completes successfully and b = 0 otherwise, while the user outputs a signature
σ if it terminates correctly, and ⊥ otherwise. For a 2-round protocol the
interaction can be realized by the following algorithms:

(msgU,0, stateU,0) ← BS.User0(pk,m)

(msgS,1, stateS) ← BS.Sign1(sk,msgU,0)
(msgU,1, stateU,1) ← BS.User1(stateU,0,msgS,1)

(msgS,2, b) ← BS.Sign2(stateS ,msgU,1)
σ ← BS.User2(stateU,1,msgS,2)

(Typically, BS.User0 just initiates the session, thus msgU,0 = () and stateU,0 =
(pk,m).)

– b′ ← BS.Ver(pk,m, σ): the (deterministic) verification algorithm takes a pub-
lic key pk, a message m and a signature σ as input, and returns 1 if σ is valid
on m under pk and 0 otherwise.
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Game UNFA
BS(λ)

1 : par ← BS.Setup(1λ)

2 : (sk, pk) ← BS.KeyGen(par)

3 : k1 := 0; k2 := 0;S := ∅
4 : (m∗

i , σ∗
i )i∈[n] ← ASign1,Sign2(par, pk)

5 : a1 = (k2 < n)

6 : a2 = (∀i �= j ∈ [n] : (m∗
i , σ∗

i ) �= (m∗
j , σ∗

j ))

7 : a3 = (∀i ∈ [n] : BS.Ver(pk, m∗
i , σ∗

i ) = 1)

8 : return (a1 ∧ a2 ∧ a3)

Sign1(msg)

1 : k1 := k1 + 1

2 : (msg′, statek1) ← BS.Sign1(sk, msg)

3 : S := S ∪ {k1}
4 : return (k1, msg′)

Sign2(j, msg)

1 : if j /∈ S thenreturn ⊥
2 : (msg′, b) ← BS.Sign2(statej , msg)

3 : if b = 1

4 : S := S\{j}, k2 := k2 + 1

5 : return msg′

Fig. 1. The one-more unforgeability game for a blind signature scheme BS.

Correctness requires that for any λ and any message m, when running
par ← BS.Setup(1λ), (sk, pk) ← BS.KeyGen(par), (b, σ) ← 〈BS.Sign(sk),BS.User
(pk,m)〉, and b′ ← BS.Ver(pk,m, σ), we have b = 1 = b′ with probability 1.

One-More Unforgeability. The standard security notion of blind signatures
demands that no user, after arbitrary interactions with a signer and � of these
interactions were considered successful by the signer, can produce more than �
signatures. Moreover, the adversary can schedule and interleave its sessions with
the signer in any arbitrary way.

In Game UNFA
BS(λ) defined in Fig. 1 the adversary has access to two oracles

Sign1 and Sign2 corresponding to the two phases of the interactive protocol. The
game maintains two counters k1 and k2 (initially set to 0), where k1 is used as
session identifier, and a set S of “open” sessions. Oracle Sign1 takes the user’s
first message, increments k1, adds k1 to S and runs the first round on the signer’s
side, storing its state as state k1. Oracle Sign2 takes as input a session identifier
j and a user message; if j ∈ S, it runs the second round on the signer’s side; if
successful, it removes j from S and increments k2, representing the number of
successful interactions.

Blindness. Blindness requires that a signer cannot link a message/signature
pair to a particular execution of the signing protocol. The formal security model
of blindness is given in Appendix B.

3 Algebraic Bijective Random Oracle Model

In this paper, we propose a new model called algebraic bijective random oracle
model (ABRO) for proving the security of blind ECDSA. It is developed from the
Bijective Random Oracle (BRO) model and the Algebraic Group Model (AGM).

3.1 AGM and BRO

Algebraic Group Model. The algebraic group model (AGM) [11] lies between
the standard model and the generic group model. On the one hand, the adver-
sary has direct access to group elements; on the other hand, it is assumed to
only produce new group elements by applying the group operation to receive
group elements. In particular, with every group element Z that it outputs, the
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adversary also gives a representation z of Z in terms of the group elements it
has received so far. Security results in the AGM are proved via reductions to
computationally hard problems, like in the standard model.

Bijective Random Oracle Model. As introduced in Sect. 1, the BRO does
not allow the adversary to compute the conversion function f completely by
itself (which is similar to the restriction on computing the hash function in the
random oracle model). The BRO decomposes the function f as f = ϕ ◦ Π ◦ ψ
for some bijective mapping Π. The adversary has to query an oracle BRO to
compute Π, and an oracle BRO−1 to compute Π−1.

3.2 Algebraic Bijective Random Oracle Model

We define a new model by demanding the algebraic representation in the BRO.
All queries to the BRO oracle with a group element input must come with the
corresponding algebraic representation. We call this new model as Algebraic
Bijective Random Oracle (ABRO) Model.

Two changes are made from the definition of the BRO model with oracles
BRO and BRO−1.

1. The BRO−1 oracle takes as input an integer x ∈ [0..2L − 1] (L is the bit
length of x) and returns y = Π−1(x). In addition, the outputs of ϕ−1(y) are
added to the list of received group elements.1

2. The BRO oracle takes as input a group element R and its algebraic rep-
resentation r. The representation is in terms of group elements that it has
received so far, including the public key, signatures obtained from the signing
oracle, and the group elements defined above by BRO−1. The oracle outputs
x = Π(ψ(R)).

We can see that the algebraic representation requirement in the ABRO is
only needed for the query of the BRO oracle. This is the advantage of the ABRO
as compared to the trivial combination of the BRO and the AGM.

4 Blind ECDSA

We first give the blind ECDSA protocol. It uses an additive homomorphic
encryption and a corresponding non-interactive zero-knowledge (NIZK) proof.

4.1 Building Blocks

Additive Homomorphic Encryption. Denote HE = (Setup,KeyGen,Enc,
Dec) as an additive homomorphic encryption scheme, such that Encpk(m1) ·

1 Since ϕ is a semi-injective function for ECDSA, two group elements are added for
each BRO−1 query for the case of ECDSA.
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Encpk(m2) = Encpk(m1 + m2). Paillier encryption [18], modified Paillier encryp-
tion [22] and CL encryption [7] are some examples of additive homomorphic
encryption.

Denote the message space of HE as M. For HE that has a message space M
different from Zp (e.g., Paillier encryption), we further require that M is larger
than p3 + p2.

NIZK Proof. Denote NIZK = (Setup,Pf,Vf) as a non-interactive zero-know-
ledge proof for the relation R for the ciphertext of HE:

R = {(m1,m2, r1, r2) : c1 = Encpk(m1; r1) ∧ c2 = Encpk(m2; r2) ∧ m1,m2 ∈ Zp},

where r1 (resp. r2) is the randomness used to encrypt the message m1 (resp.
m2). If the HE has a message space of Zp (e.g., modified Paillier encryption [22],
or CL encryption [7]), the range proof of m1,m2 ∈ Zp is not needed.

4.2 Construction

The blind ECDSA protocol BS is as follows.

– Setup. On input a security parameter λ, it runs (p,G, G) ← GpGen(1λ)
and picks a cryptographic hash function H : {0, 1}∗ → Zp. It runs
par′ ← HE.Setup(1λ) and crs ← NIZK.Setup(1λ). It returns par = (p,G, G,
H, par′, crs).

– KeyGen. On input par, it picks sk := x ←$Zp and computes pk := X = xG.
– Sign, User. The user runs (upk, usk) ← HE.KeyGen(par) and sends upk to the

signer. Then they run the interactive blind signing protocols in Fig. 2.
– Verify. To verify a signature σ = (r, s) for a message m and a public key X, it

computes R = H(m)
s G + r

sX. It returns 1 if r = f(R), or returns 0 otherwise.

4.3 Assumptions

Before proving the security of ECDSA in the ABRO model, we first introduce
the assumptions needed for the security proof.

Firstly, we propose an assumption on the underlying elliptic curves chosen
by GpGen in the Setup phase above.

Assumption 1. Let (p,G, G) ← GpGen(λ) and E(Fq) is a group of points on
the elliptic curve E. There is only one subgroup in E(Fq) whose order is p.

Assumption 1 is not always true for all elliptic curves. In general, E(Fq)
can contain more than one subgroup whose order is a prime p>2. For exam-
ple, let E be the elliptic curve y2 = x3 + 2 over F7. Then E(F7) =
{∞, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}, and there are four differ-
ent subgroups whose order is 3:

{(0, 3), (0, 4),∞}, {(3, 1), (3, 6),∞}, {(5, 1), (5, 6),∞}, {(6, 1), (6, 6),∞}.
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BS.Sign((par, upk, X), x) BS.User((par, upk, X), m, usk)

ka
$←− Zp

R = kaG. Abort if R = O R kb
$←− Zp, h = H(m)

(r, ·) = R̃ = kbR = kakbG

Abort if R̃ = O ∨ r = 0

c1 = HE.Encupk(r; r1)

c2 = HE.Encupk(h; r2)

if NIZK.Vf((c1, c2, upk), π) = 1,
c1, c2, π←−−−−−−−− π = NIZK.Pf((r, h, r1, r2), (c1, c2, upk))

t
$←− [0, |M|/p − p2 − p]3

k̄ := k−1
a mod p

c = cxk̄
1 · ck̄

2 · HE.Encupk(tp) c s = HE.Decusk(c)/kb mod p

Abort if s = 0 ∧ Verify((r, s), m, X) = 0

return (r, s)

Fig. 2. The signing protocol of the blind ECDSA signature scheme. If the message
space of HE is equal to Zp, then t can be fixed to 0. Here, r1, r2 are Encrandomness.
For the range of t, firstly, here t is used for rerandomizing the message(xrk̄ + hk̄)
encrypted in the ciphertext c. Secondly, the range in which t is chosen is set to prevent
|xrk̄+hk̄+tp| ≥ |M|, Otherwise it will result in decryption error of c, i.e., |xrk̄+hk̄| �=
HE.Decusk(c) mod p.

However in practice, the common elliptic curves defined in various standards have
the order of the subgroup G that is closed to the order of the curves themselves.
In other words, Assumption 1 holds in practice. For example, for NIST P-256,

q = 0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff,

p = 0xffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551.

For secp256k1 used in Bitcoin,

q = 0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffffe fffffc2f ,
p = 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141.

Remark 1. Assumption 1 is crucial for our proof, since the argument that we use
in the proof “pU = O implies U ∈ E(Fq) falls in the subgroup G whose order is
p” is not always correct without using Assumption 1.

(n, q)-MBDL Problem. We give the (n, q)-MBDL problem in Fig. 3, which is
the generalization of the Multi-base Discrete Logarithm (MBDL) problem in [4].
The (n, 1)-MBDL problem is introduced by Bellare and Dai [4], and they give a
tight security reduction of the Schnorr signature to the (1, 1)-MBDL problem.
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Game MBDLA
GpGen,n,q(λ)

(p,G, G) ← GpGen(1λ);S := ∅; y ←$Zp;Y := yG

for i = 1, . . . , n,

xi ←$Zp;Xi := xiG

y′ ← ADlo(p,G, G, Y, X1, . . . , Xn)

return (y′ = y ∧ |S| ≤ q)

Oracle DLo(i, W )

if i ∈ S or i /∈ [n], return ⊥
S := S ∪ {i}
return logXi

(W )

Fig. 3. The (n, q)-MBDL problem.

4.4 Security Proof

Theorem 1. Assume that Assumption 1 holds for GpGen. Let Aalg be an alge-
braic adversary against the one-more unforgeability security of the blind EDCSA
signature running in time at most τ and making at most � queries to Sign1, qr

queries to the random oracle H and qb queries to the bijective random oracles. If
NIZK has soundness, then there exists an algorithm B1 solving the (�, �)-MBDL
problem, and an algorithm B2 breaking the collision resistant of H, both running
in time at most τ + O(� + qr + qb), such that:

Advom-unf
Aalg

(λ) ≤ Adv
(�,�)−MBDL
B1

(λ) + AdvcrB2
(λ) +

q2b
(p − 1)/2 − qb

+ (
qr · qb

p
)�+1.

Proof. The one-more unforgeability of our blind ECDSA is proved by a sequence
of games.

Game0. As shown in Fig. 4, the first game is the one-more unforgeability
game for scheme BS played with Aalg in the ABRO model. Hence we have
Advom-unf

Aalg
(λ) = AdvGame0

Aalg
(λ).

Game1. By Fig. 4, Game1 is the same as Game0 except that in the Fin pro-
cedure, it rejects the collision of the challenge message m∗ with any message
queried in the signing oracle. Hence AdvGame0

Aalg
(λ) ≤ AdvGame1

Aalg
(λ) + AdvcrB2

(λ),
where AdvcrB2

(λ) is the probability of breaking the collision resistance of H by
some algorithm B2.

Init Game0 Game1

1 : (p,G, G) ← GpGen(1λ)

2 : x ←$ Zp;X := xG;

3 : Pick Π : A → B

4 : U := (G, X);

5 : return p,G, G, X

Fin({m∗
i , (r∗

i , s∗
i )}i∈[�+1])

1 : if n2 > �, return ⊥

2 :
for ∀i, j ∈ [� + 1], i �= j

if H(m∗
i ) = H(m∗

j ), return ⊥
3 : for i = 1, . . . , � + 1

4 : if s∗
i = 0 ∨ r∗

i = 0, return ⊥
5 : U∗

i = H(m∗
i )G + r∗

i X

6 : if U∗
i = 1, return ⊥

7 : R∗
i = (U∗

i )
1/s∗

i

8 : α∗
i := ϕ(R∗

i )

9 : β∗
i = Π(α∗

i )

10 : if r∗
i �= ψ(β∗

i ), return 0

11 : return 1

BRO(R, ρ)

1 : if R �= ρ · U , return ⊥
2 : α = ϕ(R)

3 : return Π(α)

BRO−1(β)

1 : α = Π−1(β)

2 : (V, −V ) = ϕ−1(α)

3 : U = U ||V
4 : return α

Sign1()

1 : n1 := n1 + 1

2 : k ←$Zp;R := kG

3 : S := S ∪ {n1, k}
4 : U = U ||R
5 : return (n1, R)

Sign2(j, upk, c1, c2, π)

1 : if (j, kj) /∈ S, return ⊥
2 : if NIZK.Vf((c1, c2, upk), π) �= 1

3 : return ⊥
4 : t ←$ |M|/p − 1

5 : c := c
x
kj

1 c
1
kj

2 · HE.Encupk(tp)

6 : S := S \ {j, kj}
7 : n2 := n2 + 1

8 : return c

Fig. 4. Game0 and Game1 used in the proof of Blind ECDSA
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BRO(R, ρ) Game2

1 : if R �= ρ · U , return ⊥
2 : α = ϕ(R)

3 : if (α, ·) ∈ Π, return Π(α)

4 : β ←$B \ Rng(Π)

5 : Π ← Π ∪ {(α, β)}
6 : return β

BRO−1(β)

1 : if (·, β) ∈ Π, return Π−1(β)

2 : α′ ←$A \ Dom(Π)

3 : (U, −U) := ϕ−1(α′)

4 : if pU = O
5 : v ←$Zp;V := vG

6 : else

7 : V := U

8 : α = ϕ(V )

9 : if (α, ·) ∈ Π : Abort

10 : Π ← Π ∪ {(α, β)}
11 : U = U ||V
12 : return α

Fig. 5. Game2 used in the proof of Blind ECDSA.

Game2. By Fig. 5, Game2 is the same as Game1, except that the bijection
Π is now implemented by:

– BRO: lazy sampling in B.
– BRO−1: lazy sampling α′ in A and then try to convert it to an ECC point

U . If pU = O, it means that U ∈ G by Assumption 1. We picks a random
v ∈ Zp and sets α = ϕ(vG). Otherwise, we just set α = α′.

The input-output pairs (α, β) to these two oracles are stored in Π. By assump-
tion of the BRO model, A does not output a forgery without having posed the
corresponding bijective random oracle query first. Procedure Fin is not affected
by the switch to sampling and remains unmodified.

We assess the probability that Game2 aborts in BRO−1 as follows: a uniformly
distributed value of a set of cardinality at least 2L−qb is sampled and checked for
containedness in a set of at most qb elements. That is, the probability of Game2
aborts in BRO−1 is at most qb/(2L − qb). As these lines are executed at most qb

times in total, the overall probability of abort is bounded by q2b/(2L − qb). Since
ϕ is semi-injective, we have (p−1)/2 ≤ 2L. Since Game1 and Game2 are identical,
if no abort happens, we obtain AdvGame1

Aalg
(λ) ≤ AdvGame2

Aalg
(λ)+ q2b/((p−1)/2− qb).

Final Reduction. In our last step, we construct an algorithm B1 solving
the (�, �)-MBDL problem whenever Aalg wins Game2. Algorithm B1, which
has access to the oracle DLO takes as input a group description (p,G, G)
and (Y,X1, . . . , X�). It sets the public key X := Y , and runs Aalg on input
(p,G, G,X). Each time Aalg makes a Sign1() query, B1 sets Rj = Xj . It sim-
ulates Sign2(j, c1, c2, π) in the following way: firstly it uses the extractor of
the NIZK to extract rj , hj ∈ Zp from the proof πj . Then it queries the oracle



One-More Unforgeability of Blind ECDSA 325

upon (j, hjG + rjX) and get sj = logRj
(hjG + rjX). Finally, B1 returns c as

HE.Encupk(sj + tp), where t ←$ |M|/p − 12.
Finally, Aalg returns (m∗

i , r
∗
i , s∗

i ) for all i ∈ {� + 1}. Since the i-th forgery is
valid, we have r∗

i = f(R∗
i ) and:

s∗
i R

∗
i = H(m∗

i )G + r∗
i X. (4)

There are two possible cases:

1. For all i ∈ [� + 1], r∗
i = f(R∗

i ) is queried via BRO.
2. For some i ∈ [� + 1], ±R∗

i = f−1(r∗
i ) is queried in BRO−1.

Case 1. (γ∗
i , ξ∗

i , ζ∗
i , ,μ

∗
i ) is a representation of R∗

i asked in BRO, i.e.,

R∗
i = γ∗

i G + ξ∗
i X +

�∑

j=1

ζ∗
i,jRj +

qb∑

j=1

μ∗
i,jVj . (5)

Denote V̄j (resp. V ′
j := vjG) as the ECC points generated from line 6 (resp. line

4) of BRO−1 and μ̄i,j (resp. μ′
i,j) as the corresponding coefficients in Eq. (5). If∑

∀j μ̄i,j V̄j �= 0, B1 aborts since R∗
i is not in G. Otherwise, combining Eqs. (4)

and (5), we get

s∗
i ((γ

∗
i +

∑

∀j

μ′
i,jvj)G + ξ∗

i X +
�∑

j=1

ζ∗
i,jRj) = H(m∗

i )G + r∗
i X. (6)

By the Sign2 oracle query, we have sjRj = hjG + rjX. Then we have:

[s∗
i (ξ

∗
i +

�∑

j=1

ζ∗
i,jrj

sj
) − r∗

i ]

︸ ︷︷ ︸
=:χi

X + [s∗
i (γ

∗
i +

∑

∀j

μ′
i,jvj +

�∑

j=1

ζ∗
i,jhj

sj
) − H(m∗

i )]

︸ ︷︷ ︸
=:θi

G = 0.

If χi = 0 for all i ∈ [� + 1], it means

s∗
i = (ξ∗

i +
�∑

j=1

ζ∗
i,jrj

sj
)−1r∗

i . (7)

for all i ∈ [� + 1]3. Plugging (7) in (4), we have

r∗
i C∗

i = H(m∗
i )G (8)

2 This range is set to ensure that the distribution of simulated message sj + tp is the
same as the distribution of the real message xrk̄ + hk̄ + tp.

3 Note that r∗
i �= 0 and s∗

i �= 0 for a valid ECDSA signature. If χi = 0, it means that

ξ∗
i +

∑�
j=1

ζ∗
i,jrj

sj
would not be 0.
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where C∗
i = (ξ∗

i +
∑�

j=1

ζ∗
i,jrj

sj
)−1R∗

i −X. Observe that C∗
i is fixed when f(R∗

i ) is
queried via BRO4. Since r∗

i is randomly chosen after fixing C∗
i , and h∗

i = H(m∗
i )

is also randomly chosen from Zp in the random oracle H(·), the probability that
Eq. (8) holds is qr·qb

p at maximum for each i.
Case 2. By the simulation of BRO−1, if it is computed by line 6 of BRO−1,

B1 aborts since R∗
i /∈ G

5. Otherwise, R∗
i = ±viG. Combining it with Eq. (4), we

have ±vis
∗
i G = H(m∗

i )G+ r∗
i X. Then B1 can return (±vis

∗
i −H(m∗

i ))/r∗
i as the

solution to the MBDL problem since r∗
i �= 0.

Hence, we have AdvGame3
Aalg

(λ) ≤ Adv
(�,�)−MBDL
B1

(λ) + ( qr·qb
p )�+1 �

Theorem 2. The blind ECDSA has blindness if HE is IND-CPA secure and
NIZK has zero-knowledge property.

The security proof of blindness is given in Appendix B.

4.5 EUF-CMA Security of ECDSA in the ABRO Model

Similar to the proof of one-more unforgeability for blind ECDSA, we can prove
the EUF-CMA security of ECDSA directly in the ABRO model. As compared to
the ECDSA security proof in [9], the advantage of our proof is that our reduction
does not involve rewinding, and hence the reduction is tight.

The high level idea of the EUF-CMA security of ECDSA is described in
Sect. 1.4. We omit the details due to the space limit for the paper submission.

5 Hardness of the ECDSA-ROS Problem

In the previous section, we prove the security of our blind ECDSA without
directly using any assumption related to the ECDSA-ROS attack mentioned in
Sect. 1. In this section, we want to show that the ECDSA-ROS problem is hard
to solve if the DL assumption holds in the ABRO and the random oracle model.
Hence, we do not need to have an extra ECDSA-ROS assumption in the security
proof.

Recall that the ECDSA-ROS problem is that, given (rj , sj) on messages mj

for j ∈ [�], output (m∗, R∗, s∗) and a vector ρ such that:

H(m∗)
s∗ =

�∑

j=1

ρjhj

sj
,

f(R∗)
s∗ =

r∗

s∗ =
�∑

j=1

ρjrj

sj
,

R∗ =
�∑

j=1

ρjRj .

4 Also, f(−R∗
i ) refers to the same C∗

i .
5 If R∗

i satisfies s∗
i R∗

i = H(m∗
i )G + r∗

i X, there must be R∗
i ∈ G.
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Theorem 3. Assume that Aalg is the adversary solving the ECDSA-ROS prob-
lem, with qr queries to the random oracle H and qb queries to the bijective
random oracle. Then there exists an algorithm B solving the DL problem such
that:

AdvAalg(λ) ≤ AdvDL
B (λ) +

qr · qb

p
.

Proof. The algorithm B is given a DL problem (G,Y ) and wants to solve logG Y .
Assume that there is an adversary Aalg that can break the ECDSA-ROS problem.
Then B picks x ←$Zp and computes X = xG, which is forwarded to Aalg.
B samples random messages mj for j ∈ [�] and computes ECDSA signatures
(rj , sj). These are given to the adversary Aalg.

When Aalg queries the BRO with a new input (R,ρ), B returns a random
β ←$B \ Rng(Π) as reply. When Aalg queries the BRO−1 with input β, B picks
a random δ ←$Zp and returns ϕ(δY ) as reply. The function H is simulated as a
normal random oracle.

Finally, Aalg outputs (m∗, R∗, s∗) and a vector ρ. There are two cases:

1. r∗ = f(R∗) is queried via BRO.
2. ±R∗ = f−1(r∗) is queried in BRO−1.

Case 1: Observe that

s∗ = H(m∗)/
�∑

j=1

ρjhj

sj
= r∗/

�∑

j=1

ρjrj

sj
.

Let z∗ =
∑�

j=1
ρjrj

sj
/
∑�

j=1
ρjhj

sj
, the above means the adversary can find m∗,ρ

such that
H(m∗) = z∗r∗. (9)

But r∗ is calculated from the output of BRO is randomly distributed in Zp and
independent from z∗ (which is fixed by ρ when f(R∗) is queried), and H(m∗)
output is also randomly chosen from Zp, which means (9) happens with the
probability of qr·qb

p in maximum.
Case 2: By the simulation of BRO−1, if it is computed by line 6 of BRO−1, B1

aborts since R∗ /∈ G. Otherwise, B returns ϕ(δ∗Y ) as a reply for some δ∗ �= 0. If
the adversary can find a valid pair of (m∗, r∗, s∗) and a vector ρ = (ρ1, . . . , ρ�),
we have that satisfies:

R∗ = f−1(r∗) = δ∗Y =
�∑

j=1

ρjhj

sj
G +

�∑

j=1

ρjrj

sj
X. (10)

then B forwards (
∑�

j=1
ρjhj

sj
+

∑�
j=1

ρjrj

sj
x)/δ∗ to the challenger as the solution

to the DL problem. �
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The Best Attack Against the ECDSA-ROS Problem. We only reduce
the ECDSA-ROS problem to the DL problem in the ABRO model and random
oracle model above. Their relation in the standard model is not clear.

We conjecture that the best attack against the ECDSA-ROS problem is to
use Wagner’s generalized birthday algorithm [21]. We left the analysis on the
complexity of attack against the ECDSA-ROS problem as an interesting open
problem.

6 Conclusion

ECDSA is a significant signature scheme in applications, especially in cryptocur-
rency like Bitcoin and Ethereum. Blind signature is also popular in constructing
privacy-preserving applications. In this paper, we give the first formal security
proof for blind ECDSA. One of the assumptions that we use is the MBDL
assumption, which is relatively new. An interesting question is whether we can
prove the security of blind ECDSA under some well-studied assumptions, like
one-more discrete logarithm assumption. We leave this as future work.

Game BLINDB
BS(λ)

1 : b ←$ {0, 1}
2 : b0 := b; b1 := 1 − b

3 : par ← BS.Setup(1λ)

4 : b′ ← BINIT,U1,U2(par)

5 : return (b′ = b)

INIT(pk, m0, m1)

1 : sess0 := init

2 : sess1 := init

Oracle U1(i, Ri)

1 : if i /∈ {0, 1} ∨ sessi �= init thenreturn ⊥
2 : sessi := open

3 : (statei, ci) ← BS.User1(pk, Ri, mbi)

4 : return ci

Oracle U2(i, si)

1 : if sessi �= open thenreturn ⊥
2 : sessi := closed

3 : σbi ← BS.User2(statei, si)

4 : if sess0 = sess1 = closed then

5 : if σ0 = ⊥ ∨ σ1 = ⊥ then(σ0, σ1) := (⊥, ⊥)

6 : return (σ0, σ1)

7 : else return ε

Fig. 6. The blindness game for a blind ECDSA scheme BS.

A Comparison with Existing Blind ECDSA Protocols

We compare our blind ECDSA with the blind ECDSA proposed in [22].

Efficiency Analysis. We first analyze the blind ECDSA protocol in [22]. For
the security level of 3072-bit RSA, the modified Paillier ciphertext uses N , which
is a product of two large primes times p (3328 bits). The modified Paillier cipher-
text is an integer modulus N2, which is 6656 bits. The NIZK proof for each
modified Paillier ciphertext is two integers modulus N2 and an integer modulus
p, which is 864 bytes for each NIZK proof. To achieve a soundness error of 2−80,
the NIZK proof is run 80 times. The total bandwidth is 69120 bytes.

We can instantiate our blind ECDSA with the CL encryption using class
groups of imaginary quadratic order. Consider 128-bit security level, the size
of a class group element is 1827 bits [7]. A CL ciphertext has two class group
elements, which is 3654 bits. The NIZK proof for CL encryption is 1488 bytes
([23], Table 2) for a soundness error of 2−80.
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B Blindness

B.1 Security Model of Blindness

A formal definition of blindness can be found in Fig. 6. The adversary chooses
two messages m0 and m1, and the experiment runs the signing protocol acting
as the user with the adversary, first obtaining a signature (σb) on mb, and then
(σ1−b) on m1−b for a random bit b. If both signatures are valid, the adversary
is given (σ0, σ1) and must determine the value of b.

B.2 Security Proof of Blindness

Proof. Let A be an adversary playing in Game BLINDB
BS(λ). After its execu-

tion, A holds (m0, σ0), (m1, σ1) where σ0 is a signature on m0 and σ1 is a
signature on m1. The adversary A furthermore learns two transcripts T1 =
(R1, c

′
1,1, c

′
1,2, π1, c1) and T2 = (R2, c

′
2,1, c

′
2,2, π2, c2) from its interaction with the

first and the second signer session, respectively. The goal of A is to match the
message/signature pairs with the two transcripts.

We show that no adversary is able to distinguish whether the message m0 was
used by the experiment to create the transcript T1 or T2. We define Game1 that
is the same as Game BLIND, except that the proof π returned from the Oracle U1

is replaced by the simulator of the NIZK proof. If NIZK has the zero-knowledge
property, then no PPT adversary can distinguish these two games.

We define Game2 that is the same as Game1, except that the ciphertext
(c1, c2) returned from the Oracle U1 is changed from the encryption of mbi to
m1−bi . If HE is IND-CPA secure, then no PPT adversary can distinguish these
two games.

We define Game3 that is the same as Game2, except that the proof π returned
from the Oracle U1 is changed back to the real NIZK proof on message m1−bi .

Finally, we can see that in Game3 is the same as the original Game BLIND,
except that the bit b is flipped in these two games. �
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