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Abstract. Soundness of symbolic security with respect to computa-
tional security was originally investigated from the point of cryptographic
protocol design. However, there has been an emerging interest in apply-
ing it to the automatic generation and verification of cryptographic algo-
rithms. This creates a challenge, since it requires reasoning about low-
level primitives like exclusive-or whose actual behavior may be inconsis-
tent with any possible symbolic behavior.

In this paper we consider symbolic and computational soundness of
cryptographic algorithms defined in terms of block ciphers and exclusive-
or. We present a class of algorithms in which security is defined in terms
of IND$-CPA-security, that is, security against an adaptive chosen plain-
text adversary’s distinguishing the output of the cryptosystem from a
random string. We develop conditions for symbolic security and show
that they imply computational security. As a result of this, we are able
to identify a class of cryptosystems to which results such as Unruh’s
[25] on the impossibility of computationally sound exclusive-or do not
apply, in the sense that symbolic security implies computational security
against an adaptive adversary. We also show how our results apply to a
practical class of cryptosystems: cryptographic modes of operation.

1 Introduction

Symbolic methods have been in use in cryptography for a long time, starting
with Dolev and Yao’s seminal paper [12], progressing on to powerful crypto pro-
tocol analysis tools, and most recently, to methods for the automated generation
and analysis of cryptographic algorithms. Ideally, one would like these methods
to be sound with respect to some computational model, so that symbolic secu-
rity implies computational security. Although results in this area exist, it has
been found difficult to extend them to certain low-level primitives such as group
operations. To the best of my knowledge, it was Unruh [25] who first pointed
out the difficulty, using low-level behavior of exclusive-or that can’t be captured
in a symbolic model.

Such behavior can have a direct effect on security proofs of cryptosystems.
For example, many proofs of indistinguishability depend upon proving that the
probability of a collision between random functions is negligible. But consider
the counter-example below, which is similar, but not identical, to Unruh’s.1

1 I am grateful to an anonymous reviewer for this example.
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Example 1. Let f be a random function from λ-length bitstrings to λ-length bit-
strings (blocks, for short) computed by a challenger, and let r0, . . . , rm be ran-
domly chosen bitstrings. Suppose that the challenger sends f(r0), r1, . . . , rλ+1 to
the adversary, and the adversary returns a subset S of {r1, . . . rλ+1} to the chal-
lenger, who returns f(r0 ⊕

⊕
ri∈S ri), where

⊕
ri∈S ri stands for the exclusive-or

of all ri such that ri ∈ S. The adversary can never succeed in distinguishing the
challenger’s output from random in the symbolic model, since each term sent
by the challenger is a different term standing for a different randomly generated
bitstring. However, in the computational model the set of λ-bit strings is the
vector space Z

λ
2 , and so no set of m > λ bitstrings can be linearly independent

modulo ⊕. Thus there is a subset S of r1, . . . , rm such that
⊕

ri∈S ri = 0λ,
which the adversary can find via Gaussian elimination. It can then send S to
the challenger, which computes f(r0 ⊕

⊕
ri∈S ri) = f(r0) and returns it to the

adversary. In this way the adversary can force the first and last bitstrings sent
by the challenger to be equal, and so its output is distinguishable from random.

One important feature of this counterexample is that the adversary is given
all the information it needs in order to make its choice. If it was not shown any
of the bitstrings before the final response from the encryptor, it would not know
which subset would result in a collision with f(r0). Thus, for any subset it chose,
the probability of a collision would be 2−λ. In some cases it may not be practical
to deprive the adversary of adaptive choice altogether, but it may be possible to
limit it so that its contribution to the adversary’s advantage is negligible. For
example, we can limit the adversary’s choice of functions that it can compute.
Consider the case in which the adversary is limited to choosing, instead of any
subset of r1, . . . , rm, one of a polynomial number q(λ) of subsets of r1, . . . , rm.
In this case, the probability of a collision between f(r0) and f(r0 ⊕

⊕
ri∈S ri),

for some S chosen by the adversary, would be bounded by q(λ) ·2−λ, a negligible
function of λ. In this paper we will consider cryptosystems that impose a stronger
condition on the adversary, in which not only adaptive choice, but any choice,
is limited. For the purposes of this paper, it has the advantage that, not only it
is simpler to reason about, but, as we shall see, there are non-trivial classes of
cryptosystems that have this property. To the best of my knowledge this feature
of a cryptosystem does not have a specific name; we shall call it polynomially
bounded execution choice (PBEC). We will define this more formally later on.

Consider the following example: the cryptographic mode of operation Cipher
Block Chaining.

Example 2 (Cipher Block Chaining (CBC)). Let E be a block cipher, and let
f = EK denote encryption with E using a key K. The input to the algorithms is
a sequence x1 through xn of plaintext blocks, and the output is a list of ciphertext
blocks C0, . . . , Cn returned only after all plaintext blocks are received:

1. C0 = r, where r is a randomly generated block known as an initialization
vector (IV), and;

2. Ci = f(xi ⊕ Ci−1) for i > 0.



Moving the Bar on Computationally Sound Exclusive-Or 277

Suppose that f is indistinguishable from a random function. Suppose also
that the number of different terms f(s) and ri that the adversary can request
the encryptor to compute is bounded by a polynomial in λ. Thus the maximum
number of messages and the maximum length of a message must also be poly-
nomially bounded, say by p1(λ) and p2(λ) respectively. It follows that the set
of all terms that the adversary could possibly request the encryptor to compute
is contained in the set D0 = {ri | 1 ≤ i ≤ p1(λ)} ∪ D1 = {f(Ci,j−1 ⊕ xi,j) |
(1 ≤ i ≤ p1) ∧ (1 ≤ j ≤ p2(λ) − 1)}, where Ci,j (respectively xi,j) denotes the
i’th ciphertext (respectively, plaintext) block in the j’th message. The cardinal-
ity of this set is p1(λ) · p2(λ), so the probability of a collision is bounded by
p1(λ)2 · p2(λ)2 · 2−λ, thus giving us polynomially bounded execution choice.

In the remainder of this paper we describe a class of cryptosystems using
the symbols f for EK as in Example 2, ⊕ for bitwise exclusive-or, a set R of
bound variables r standing for random bitstrings, and a set of free variables X
standing for blocks of adversarial input. A symbolic history of such a cryptosys-
tem describes a sequence in which an adversary sends plaintext blocks to an
encryptor and gets encrypted blocks in return. However, in a symbolic history
the plaintext blocks are replaced by free variables, and the ciphertext blocks are
replaced by symbolic terms that serve as recipes for computing the ciphertext
blocks, with the free variables standing as placeholders for the plaintext. We
show that such a cryptosystem satisfies IND$-CPA-security (essentially, indistin-
guishability from random against an adaptive chosen plaintext adversary) if the
following hold:

1. Nondegeneracy: There is no subset of terms sent in any symbolic history H
whose elements ⊕-sum to zero.

2. Safety: There are no two subterms f(s) and f(t) of terms sent in any symbolic
history H such that the normal form of s ⊕ t is x ⊕ u and u can be derived
by ⊕-summing terms received by the adversary before it sends x.

3. Polynomially bounded execution choice.

The rest of this paper is organized as follows. In Sect. 2 we give background
and related work. We give symbolic preliminaries necessary for understanding the
paper in Sect. 3. We describe our symbolic and computational models in Sect. 4
and give a precise statement of our main theorem sketched above. In Sect. 5 we
prove the theorem. In Section 6 we describe some applications to cryptographic
modes of operation. In Sect. 7 we conclude and discuss future work.

2 Background and Related Work

Probably the earliest work on proving computational soundness and complete-
ness of symbolic methods for cryptographic proofs of security for protocols is
that of Abadi and Rogaway in [2], against passive attackers. Shortly afterword,
Backes et al. [4] and Micciancio and Warinschi [24] separately proved soundness
and completeness of a symbolic model including a full Dolev-Yao adversary that
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interacts with principals over a network it completely controls. This work and the
work that followed tended to avoid equational theories (e.g. d(e(k,m)) = m) as
much as possible, relying instead on derivation rules (e.g. k, e(d,m) � m). These
are equally expressive, as long as you can rely on the cryptographic mechanisms
to rule out ill-formed terms such as d(k,m). Moreover, since well-designed pro-
tocols generally outlaw such ill-formed terms, this is a reasonable restriction.
Appropriate abstractions have even been found for more equationally rich algo-
rithms such as Diffie-Hellman [9]. But it is harder to distinguish ill-formed terms
for exclusive-or, since ⊕ is self-cancelling. Unruh’s and others’ examples give evi-
dence that including the ⊕ theory in such systems may be problematic.

In spite of these issues, some progress has been made on computational sound-
ness of symbolic models with equational theories. In [7] Baudet et al. develop
computational implementations of equational theories for which soundness can
be proved assuming a passive adversary, thus avoiding Unruh’s counter-example.
In [20] Kremer and Mazaré extend this to a computationally sound implemen-
tation of static equivalence (a symbolic analogue of indistinguishability) against
an adversary that can adaptively request the encryptor to send members of a set
of pre-defined message. We note, however, that Example 1 is secure according to
their computational definition of static equivalence. This is not because of any
fault in their computational realization. Rather, it is because static equivalence
itself, which is expressed in terms of conditions on possible histories of message
exchanges, does not fully capture the abilities of an adaptive adversary.

In the meantime, work has been ongoing on developing symbolic methods for
reasoning about cryptoalgorithms that use exclusive-or and other Abelian group
theories, much of it motivated by recent interest in the automatic generation
and verification of cryptoalgorithms. In this approach, multiple instances of a
particular class of algorithms (e.g. cryptographic modes of operation [17,22], gar-
bled circuit schemes [11], collision-resistant hash functions [23], padding-based
public key encryption algorithms [6]) are generated, usually automatically, and
then checked for security and other desirable properties. Because a large number
of candidate cryptosystems are generated, the verification techniques must be
efficient. Symbolic verification of cryptosystems can often be easily automated,
so symbolic verification techniques that can be proved sound and/or complete
with respect to a computational model of security have become of more inter-
est. Interestingly, many of the cryptosystems to which this automatic generation
and verification approach have been applied involve exclusive-or or other types
of group operations. However, these techniques tend to be applied to specific
classes of algorithms, so general soundness and completeness results have not
been as important. Indeed, we note that many of the cryptosystems have similar
restrictions on the adversary; for example the modes of operation in [17,22] are
PBEC, and the adversary in [11] is honest-but-curious.

We also discuss some related work on the symbolic design and analysis of
cryptographic modes of operation. Gagné et al. [14] have developed a Hoare
logic for proving semantic security of block cipher modes of encryption, and a
program implementing the logic that can be used to automatically prove their
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security. However, their work concentrates on heuristically driven theorem prov-
ing techniques rather than on evaluating symbolic security conditions. We also
note the work of Bard [5], who considers circumstances under which security for
modes of encryption can be reduced to a collision-freeness property. Although
[5] does not address symbolic security directly, our approach to deriving crite-
ria for collision-freeness owes much to it. The work of Malezomoff et al. [22]
and Hoang et al. [17] is probably the closest to that in this paper. They prove
adaptive chosen plaintext security for cryptographic modes of operation based
on deterministic block ciphers [22] and authenticated modes of encryption using
block ciphers with tweaks [17] by defining a set of symbolic conditions checked
on automatically generated modes using a messagewise schedule, in which the
encryptor delays returning ciphertext until it has received all plaintext blocks,
and they prove these conditions sufficient for security. The results in this paper
extend the results of [22] to sufficient symbolic conditions for arbitrary schedules.

3 Symbolic Preliminaries

In this section we give definitions and results term in term algebras and unifi-
cation used in this paper. Readers interested in a more in-depth discussion may
find it in Baader and Nipkow’s book Term Rewriting and All That [3].

A signature is a finite set of function symbols Σ of different arities.
We write TΣ(X ) for the set of all terms constructed using function sym-
bols from Σ and variables from a countable infinite set X . TΣ(X ) is referred
to as a term algebra. If T ⊆ TΣ(X ), we write Sub(T) for the set of sub-
terms of elements of T. 2 Thus, if T = {f(g(x),a),h(f(a,b))}, Sub(T) =
{f(g(x),a),g(x),a,x,h(f(a,b)), f(a,b),b}. The set X is divided into a count-
able set of names bound by a quantifier ν and a countable set of free variables.
We write Var(t) (respectively bv(t), fv(t)) for the set of variables (respectively,
bound variables, free variables) present in a term t. We say that a term is ground
if it contains only function symbols and bound variables.

A Σ-equation is a pair t = t′. where t, t′ ∈ TΣ(X ). A set E of Σ-equations
induces a congruence relation =E on terms t, t′ ∈ TΣ(X ), so that t =E t′ if
and only if t can be made equal to t′ via applications of equations from E.
An equational theory is a pair (Σ,E), where Σ is a signature and E a set of Σ-
equations. We will refer to a term algebra TΣ(X ) together with an equational the-
ory (Σ,E) as (TΣ(X ), E). For example, suppose Σ = {d/2, e/2,k/0,a/0}, and
E = {d(x, e(x,y)) = y}. Then e(k,d(k, e(k,a))) =E e(k,a), by setting x = k
and y = a in the equation d(x, e(x,y)) = y.

A substitution σ is a mapping from free variables to TΣ(X ) that is the iden-
tity on all but a finite subset of the free variables known as the domain of σ.
Substitutions are homomorphically extended to TΣ(X ). Application of σ to a
term t is denoted by σt. The composition of two substitutions is σθt = σ(θt). A
substitution σ is an E-unifier of a system of equations S = {. . . , si =? ti. . . .} if
2 We write symbolic terms in bold and computational terms in italic to make it easier

to distinguish between the two.
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σsi =E σti for every si =? tj ∈ S. For example, consider S = {w =? e−1(k, z)}
over the algebra (TΣ(X ), {e−1(x, e(x,y)) = y}) described in the previous para-
graph. Then the substitutions σ1 : w 	→ e−1(k, z) and σ2 : z 	→ e(k,w) are both
unifiers of S modulo E. We will be interested in the algebra whose signature is
the free unary symbol f plus an exclusive-or operator ⊕ and a null operator 0. We
say that a term is f -rooted if it is of the form f(s) for some term s. The ⊕ operator
is associative and commutative and satisfies X ⊕ 0 = 0 and X ⊕ X = 0. Equal-
ity of two terms modulo this theory is equivalent to equality under the theory
(R⊕ �AC) where AC is the associative and commutative rules for ⊕, and R⊕ is
a set of rewrite rules, {X ⊕ 0 → X, X ⊕ X → 0, X ⊕ (X ⊕ Y) → Y} oriented
from left to right. A rewrite rule � → r is applied to a term t by first finding a
subterm s of t such that s = σ� modulo AC for some substitution σ, and then
replacing s in t with σ�. Thus 0 ⊕ a ⊕ b can be reduced to a ⊕ b by noting that
0 ⊕ a ⊕ b = (0 ⊕ a) ⊕ b = σ� ⊕ b modulo AC, where � is the left-hand side of
X ⊕ 0 → X, and σX = a. In addition, every term t reduces after a finite number
of steps to a normal form ↓⊕t to which no further rewrite rules can be applied,
and this normal form is unique up to AC-equivalence. We refer to (R⊕ �AC) as
the ⊕ theory for brevity, and use T(Σf ,⊕)(X ) to refer to the term algebra with
signature {f/1,⊕/2,0/0} and equational theory ⊕.

4 Symbolic and Computational Models

In this section we give a brief description of how we model the relationship
between symbolic terms and computational functions. This is based on the
abstract and concrete models of cryptosystems introduced by Baudet et al. in [7],
with the main difference being that we allow free variables in the symbolic model
to be replaced in the computational model by the output of Turing machines,
instead of restricting ourselves to concrete computational representations of sym-
bolic terms.

4.1 The Computational Model

We begin by giving a definition of IND$-CPA security below. It uses the assump-
tion that a block cipher is a member of a family of pseudorandom permutations
index by a key K.

Definition 1. Let E be a cryptosystem built using a keyed pseudorandom permu-
tation from λ-length blocks to λ-length blocks. Let K be a key chosen uniformly at
random. Suppose that a challenger, by flipping a coin, chooses either an encryp-
tion oracle that computes EK on input from an adversary or a $-oracle that
returns a uniformly randomly chosen bitstring of the same length as the encryp-
tion oracle’s response. The adversary is then allowed multiple queries to the ora-
cle, and at the end of the game it outputs a bit. We say that AEK (1λ) = 1 if the
adversary outputs 1 after interacting with the encryption oracle, and A$(1λ) = 1
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if the adversary outputs 1 after interacting with the $-oracle. We define the
adversary’s advantage to be

|Pr(K $→ Key;AEK (1λ) = 1) − Pr(A$(1λ) = 1)|
We say that E is IND$-CPA secure if there is a negligible function τ of λ such

that the advantage of any PPT adversary is bounded by τ(λ).

4.2 Relationship Between Computational and Symbolic Models

We use the construction of Baudet et al. [7] as the basis for ours. Let λ be a
security parameter. Each sequence of n ground terms T ⊂ T(Σ,⊕)(X ) determines
a probability distribution Tλ over {0, 1}λ·n called the computational realization
Tλ of T. This is defined as follows: To compute the output of a bound variable
r, we choose a λ-length bitstring uniformly at random. If r occurs more than
once in T, it is replaced with the same random λ-length bitstring wherever it
occurs. We also replace 0 by a bitstring of λ zeroes, ⊕ by bitwise exclusive-or on
λ-length bitstrings, and f by a keyed pseudorandom permutation. Each time the
recipe defined above is followed, it will produce an n ·λ-length bitstring sampled
from the distribution Tλ, called an output of T and denoted by �T�λ. This is
an abuse of notation, since T may have many possible outputs, but in general
we will use �T�λ to mean “the output just produced by T”, so which output is
meant should be clear. In addition, when we can do so without confusion, we
will drop the λ.

We expand on [7] to consider the case where T contains free variables. Free
variables play a special role: they are place holders for inputs to a term. In our
case they will always stand for inputs from the adversary. In particular, the free
variables x1, . . .x� appearing in T stand for inputs supplied to the computa-
tional realization T of T by θ1, . . . , θ� where each θi is a suite of θi,λ programs
run by the adversary, whose input is the adversary’s state, that supply λ-bit
blocks used as input to Tλ. Note that we do not require that the θi themselves
be computational realizations of elements of T(Σ,⊕)(X ); they can be arbitrary
probabilistic polynomial-time Turing machines. We call a map θ that maps a
finite set of variables of T(Σ,⊕)(X ) to such programs and is the identity on all
other variables a computational substitution. If θ is a computational substitu-
tion, and T is a finite subset of T(Σ,⊕)(X ), we define θT to be the substitution
obtained by replacing each variable x used by the computational functions in T
with θx. The composition of two computational substitutions is defined in the
natural way.

If a θ is a computational substitution to t we define �θt� to be the output
obtained from t by using �θx� wherever a free variable x appears in t.

4.3 MOO⊕ Cryptosystems and Symbolic Histories

A symbolic MOO⊕ history3 (symbolic history for short) gives a recipe for con-
structing a sequence of messages exchanged between an adversary and an encryp-
3 The term comes from”mode of operation”.
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tor. The adversary’s input to the encryptor is represented by free variables,
where each free variable sent by the adversary is unique. The encryptor’s output
to an adversary is a sequence of T(Σf ,⊕)(X ) terms representing computations
on input from the adversary, whose free variables are limited to variables previ-
ously received from the adversary in the history. MOO⊕ histories are analogous
to the frames defined by Abadi and Fournet [1]; that is, they represent records
of protocol executions.4

To give an example of a symbolic history, we consider the case, using cipher
block chaining, in which an adversary interacts with an encryptor that allows it
to encrypt two messages in parallel, timing its response so that the adversary
receives the two IVs first, and the two first blocks of ciphertext right after sending
the two first blocks of plaintext:

νr1.νr2[r1, r2.x1.x2.f(r1 ⊕ x1).f(r2 ⊕ x2)]

A MOO⊕ program specifies the possible interactions between the adversary
and the encryptor. A MOO⊕ program is a program of bounded size that specifies
1) the encryptor’s schedule for receiving input and sending output and 2) what
terms the adversary can request the encryptor to evaluate and when.

Since the adversary in the IND$-CPA game is polynomially bounded, there
is a polynomial function p of the security parameter λ such that the number
of blocks it can send and receive is bounded by p(λ). This means that, for
any symbolic history H, a concrete adversary using security parameter λ can
execute H as long as length(H) ≤ p(λ). Thus, for every history H, there is an
infinite set VH of values λ of the security parameter (namely, all (λ such that
length(H) ≤ p(λ)) such that the adversary can interact with Hλ. Moreover, if
H′ extends H, then VH′ ⊆ VH. This makes it possible to allow arbitrarily long
histories in the symbolic model.

5 MOO⊕ Games and Security Proofs

In this section we define a sequence of games and use them to prove our main
result: that if a MOO⊕ -cryptosystem satisfies PBEC, then there are symbolic
conditions that imply IND$-CPA security.

There are four such games, described in Section Sect. 5.1: Gcrypt, in which f
is a pseudorandom permutation, Grperm, where f is a random permutation of
strings, Grstr, where f is a random function from λ-length strings to λ-length
strings, and Grsymb in which f is a random function from symbolic terms to
λ-length blocks. We also show that the output of Grsymb is random as long as
the cryptosystem is nondegenerate, and then show via game transformations
that Grstr and Grsymb are identical up to bad, where the bad event is a collision
between the input of any two f -rooted terms computed by the encryptor.

4 We could indeed define histories as frames, but since in this work we have no need of
the main feature of frames (that they are substitutions) we choose a simpler option.
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In Sect. 5.2 we formally define the symbolic conditions, and show that, as
long as the cryptosystem satisfies PBEC, then the probability of bad is negligible.
We then use these results to derive security criteria for cryptographic modes of
operation.

5.1 MOO⊕ Games Grstr and Grsymb

We begin by defining the games. We note that all four games are identical except
for the method used to compute f . We will thus begin by describing a generic
game Ggen which can be instantiated to any of the four games by choosing
the appropriate method for computing f . Moreover, since the adversary’s the
advantage in distinguishing between Gcrypt, Grperm, and Grstr can be estimated
by assumption or known results from the literature, we will only describe in
detail how f is computed in Grstr and Grsymb

Ggen proceeds in a series of steps. In each step the adversary sends the
encryptor a sequence of symbolic terms I.O and a set of λ-length bitstrings B,
such that I is a (possibly empty) sequence of free variables x1. . . . .xn, O is a
sequence of terms, and B is a sequence of bitstrings b1 . . . bn such that bi =
�σxi�, where σ is the substitution computed by the adversary. The encryptor
checks whether the adversary is able to submit a request at this point, and if
so, if this is a legal request to submit. If it is not, the game is aborted. If the
request is valid, the encryptor returns the encrypted blocks specified by O.

We now describe how the encryptors in Grstr and Grsymb work. In the fol-
lowing, we say “the encryptor” when both encryptors behave the same way.
Otherwise we identify the encryptor as a Grstr or a Grsymb encryptor.

The encryptor maintains a symbolic history H describing its interaction with
the adversary so far, as well as two databases that describe the output �σH�. The
first database, DBI, stores the plaintext blocks sent by the adversary and the
second, DBO, stores results of the random functions computed by the encryptor.

DBI consists of tuples of the form [x, �σx�], where x is a free variable, and
�σx� is the output of σx, where σ is the substitution computed by the adversary.
DBO contains two types of tuples. The first are of the form [r, outstr], where r is
a bound variable and outstr is �r�. The second are of the form [instr,F, outstr],
where F is a set of f -rooted terms, and instr and outstr are λ-length bitstrings.
The entries in this form of tuple are computed differently in Grstr and Grsymb.
At the beginning, H, DBO and DBI are all empty. They are extended by the
encryptor as the protocol evolves.

We now describe the computations made by the encryptors. Suppose that
an encryptor, whether in Grstr or Grsymb, receives an input �σI� from the
adversary and is required to return �σO�. It performs the following steps for
each variable or f -rooted term t = f(s) ∈ Sub(O) that has not been computed
already, computing each bitstring �σs� such that s is a proper subterm of t
before computing �σt�.
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1. If I = x1, . . . ,xk, where the xi are free variables, it stores [xi, �σxi�] in DBI.
2. For any bound variable r ∈ Sub(O) such that there is no tuple [r, str] in

DBO, it chooses a λ-length bitstring str′ uniformly at random and stores
[r, str′] in DBO.

3. For each f(t) ∈ Sub(O) such that there is not already a tuple [a,W, b] in
DBO with f(t) ∈ W, the encryptor computes instr using the outputs stored
in DBI and DBO. That is, if

t = (
m⊕

i=0

⊕αixi) ⊕ (
n⊕

i=1

⊕βiri) ⊕ (
q⊕

i=1

⊕γif(si))

where the αi, βi, and γi are booleans, then for each αi �= 0 (respectively,
βi �= 0, γi �= 0) the encryptor finds the tuple [xi, �σxi�] ∈ DBI (respectively,
[ri, �ri�] ∈ DBO, [instr,W, outstr] ∈ DBO such that f(si) ∈ W), and com-
putes the ⊕-sum of the final bitstrings of the tuples found. The result is
bitstring instr0 that will be used as the input to f .

4. If there is already a tuple [instr,F, outstr] ∈ DBO such that f(t) ∈ F then
the encryptor takes no action. If not, Grstr and Grsymb differ as follows:
(a) If there is already a tuple [instr1,F, outstr1] ∈ DBO such that instr0 =

instr1, the Grstr encryptor replaces it with [instr1,F ∪ {f(t)}, outstr1].
Otherwise, it picks a random λ-length bitstring outstr0 and stores the
tuple [instr0, {f(t)}, outstr0] in DBO. σf(t) is defined to be outstr0.

(b) The Grsymb encryptor picks a random λ-length bitstring outstr0 and
stores [instr0, {f(t)}, outstr0] in DBO. σf(t) is defined to be outstr0.

5. The encryptor uses the output values stored in DBI and DBO to construct
�σO�, and returns it to the adversary.

A pseudocode description of the top-level algorithm is given in Algorithm1.
Descriptions of the two implementations of f are given in Algorithms 2 and 3.
Both of these make use of the subroutine given in Algorithm4.

We note that the entire tuple [instr,F, outstr] is not necessary to compute f
in either Grstr or Grsymb. Grstr does not need the second entry in the tuple, and
Grsymb does not need the first. Their only purpose is to reduce the number of
steps needed to transform the two games in a pair of identical-until-bad games.
We make the real dependencies of these functions explicit in the following lemma.

Lemma 1. Let frstr denote the function defined by frstr(instr) = outstr if
[instr,F, outstr] ∈ DBO in Grstr, and let frsymb denote the function defined by
frsymb(f(t)) = outstr if [instr, {f(t)}, outstr] ∈ DBO in Grsymb. Then frstr is
a random function from λ-bit strings to λ-bit strings, and frsymb is a random
function from f -rooted terms in H to λ-bit strings.

Proof. This follows directly from the fact that, in the case of Grstr, outstr is
chosen at uniformly at random when and only when a tuple [instr, f(t), ] needs
to be added to DBO for a new string instr, and in the case of Grsymb, outstr
is chosen uniformly at random when and only when a tuple [instr, {f(t)}, ] is
added to DBO for a new f -rooted term f(t). ��
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Algorithm 1. Ggen

1: . . . Begin Setup . . . K
$← {0, 1}λ . . . End Setup . . .

2: Freevar, Bdvar ⊂ Term
3: Integer: i, n, λ ; String: instr, outstr ; Term: x, t, s,u,v ; Set of Records:

DBI, DBO, a, a0; Boolean: b, b′, STOP ; Freevar: x,xi, Bdvar: , r, ri; Seq of Terms:
U1,U2,O,O′,H,W; Seq of Freevars: I

4: DBI, DBO ← ∅; H ← []; i ← 0; b ← 0 ; STOP ← 0
5: a ← ∅ {a is the information the encryptor has sent to the adversary}
6: while STOP �= 1 do
7: i ← i + 1 ; [I.O] ← A(1λ, a) {Adversary picks next tuple to execute}

{Below, encryptor checks that adversary’s request is valid}
8: if valid(H, I.O) then
9: H ← H.I.O

10: while I = x.I′ do
11: outstr ← A(1λ, a) {Adversary sends plaintext block to encryptor}
12: DBI ← DBI ∪ {[x, outstr]} {Encryptor stores plaintext block in DBI}
13: I ← I′

14: end while
15: U1 ← set of all bound variables in sub(O) not yet computed
16: U2 ← set of all f -rooted terms in sub(O) not yet computed
17: while U1 �= ∅ do

18: Choose r ∈ U1 ; outstr
$← {0, 1}λ

19: DBO ← DBO ∪ {[0, {r}, outstr]}
20: U1 ← U1 \ {r}
21: end while
22: while U2 �= ∅ do
23: Choose a minimal element f(s) of U2 in the subterm partial order {We say

u < v in the subterm partial order if u is a proper subterm of v.}
24: DBO ← Compute-f(f(s),DBO)
25: U2 ← U2 \ {f(s)}
26: end while
27: while O = t.O′ do
28: a0 ← Construct(t, DBI ∪ DBO)
29: a ← a.a0 ; O ← O′

30: end while
31: end if
32: STOP ← A(1λ, a)
33: end while
34: b ← A(1λ, a)
35: return b

Example 3. We can now use the Grstr encryptor to model an attack on CBC
when the blockwise schedule is used. In the blockwise schedule, each ciphertext
block is sent by the encryptor as soon as it is able to compute it.

1. The adversary sends the encryptor a request for the initialization vector r0.
The encryptor sets H equal to r0. The encryptor computes a random bitstring
outstr0, stores [{r0}, outstr0] in DBO, and sends outstr0 to the adversary.
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Algorithm 2. Subroutine Compute-f(f(s), DBI, DBO) (for Grstr )
1: if ∃[instr,F ∪ {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: instr ← construct(s, DBI, DBO)
5: if ∃F, outstr0 s.t. [instr,F, outstr0] ∈ DBO then
6: DBO ← (DBO \ {[instr,F, outstr0])} ∪ {[instr, {f(s)} ∪ F, outstr0]}
7: else
8: outstr1

$← {0, 1}λ ; DBO ← DBO ∪ {[instr, }{f(s)}, outstr1]}
9: end if

10: end if
11: return (DBO)

Algorithm 3. Subroutine Compute-f(f(s), DBI, DBO) (for Grsymb)
1: if ∃[instr, {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: instr ← construct(s, DBI, DBO)

5: outstr
$← {0, 1}λ

6: DBO ← DBO ∪ {[instr, {f(s)}, outstr]}
7: end if
8: return (DBO)

Algorithm 4. Subroutine Construct(s,DBI ∪ DBO)
1: if s is a free variable x then
2: Find [x, outstr] ∈ DBI] ; c ← outstr
3: else if s is a bound variable r then
4: Find [0, r, outstr] ∈ DBO ; c ← outstr
5: else if s is an f -rooted term then
6: Find [instr,F, outstr] ∈ DBO such that s ∈ F; c ← outstr
7: else if s =

⊕k
i=1 ⊕si, where each si is an f -rooted term or a free variable then

8: outstr ← construct(s1, DBO) ; c ← outstr ⊕ construct(
⊕k

i=2 ⊕si, DBO)
9: end if

10: return c

2. The adversary computes �σx1� = 0λ and sends it to the encryptor, along
with {x1}.{f(x1 ⊕ r0)}. The encryptor sets H = r0.x1.f(x1 ⊕ r0). It then
stores [x1, 0λ] in DBI. Next it chooses a random bitstring outstr1 and sets

�σ1f(x1 ⊕ r0)� = �f(0 ⊕ r0)� = f(outstr0) = outstr1

and stores [outstr0, {f(x1 ⊕ r0)}, outstr1] in DBO. It returns �f(r0)� =
outstr1 to the adversary.

3. The adversary computes �σx2� = �r0 � ⊕ � f(r0)� = outstr0 ⊕ outstr1 and
sends it to the encryptor, along with the sequence x2.f(x2 ⊕ f(x1 ⊕ r0)). H
is updated by the encryptor as before. The encryptor computes the string
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Algorithm 5. Grstr and Grsymb Algorithm ((f(s), DBI, DBO)
1: if ∃[instr,U ∪ {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: W ← ∅
5: instr ← construct(s, DBI, DBO)

6: outstr
$← {0, 1}λ

7: outstr0 ← outstr
8: if ∃F, outstr1 s.t. [instr,F, outstr1] ∈ DBO then
9: bad ← 1

10: outstr0 ← outstr1
11: W ← F
12: DBO ← (DBO \ {[instr,F, outstr0]})
13: end if
14: DBO ← DBO ∪ {[instr,W ∪ {f(s)}, outstr0]}
15: end if
16: return (DBO)

�σ(x2 ⊕ f(x1 ⊕ r0))� = �r0 � ⊕ � f(r0) � ⊕ � f(r0)� = outstr0 ⊕ outstr1 ⊕
outstr1 = outstr0. It finds the tuple [outstr0, {f(x1 ⊕ r0)}, outstr1] in DBO,
which it replaces with [outstr0, {f(x1 ⊕ r0), f(x2 ⊕ f(x1 ⊕ r0))}, outstr1],
forcing a collision between the inputs to the two f -rooted terms. It then
sends outstr1 to the adversary.

We note that such an attack is not possible when the Grsymb encryp-
tor is used. In that case the strings returned by the encryptor will be inde-
pendently randomly generated, since the symbolic terms r0, f(x1 ⊕ r0) and
f(x2 ⊕ f(x1 ⊕ r0)) are all different. We now give the result that will be needed
to prove our main theorem.

Lemma 2. Algorithms 2 and 3 are equivalent to the identical-until-bad algo-
rithms given in Algorithm5.

Proof. We first prove the result for Algorithm3. Since lines 7 through 11 in
Algorithm 5 result in no change once the underlined code is removed, we remove
them. Once that is done, W is always empty, so we can remove line 4 and remove
W from line 12. This gives us Algorithm3.

For Algorithm 2, we open up a new “else” clause in Algorithm 5 and move
statement 6 inside it. This is equivalent to Algorithm5 because the statement is
not used in the first clause. We then note that we can move line 14 inside both
clauses of the “if” statement without changing the results. The rest is eliminating
unnecessary assignments and variables, giving us Algorithm2. ��

By the fundamental lemma of game-playing [8], the adversary’s advantage in
distinguishing between the use of the frstr and frsymb functions in constructing
H is bounded by the probability that bad is set to 1 in either of them. This
only happens when �σu� = �σv�, where f(u) and f(v) are subterms of terms
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returned by the encryptor, so we will concentrate on estimating the probability
of this occurring when the frsymb function is used.

5.2 Conditions Implying IND$-CPA Security

In this section we define PBEC MOO⊕ cryptosystems. We also define two sym-
bolic conditions that, together with PBEC, imply IND$-CPA and use the games
described in Sect. 5.1 to show that is the case. We first give some notation:

Definition 2. Let H be a symbolic history, t a term, and x a free variable.

1. We say that H �⊕ t if t can be derived by ⊕-summing a subset of H.
2. We define H[x] to be the sequence of terms exchanged between the adversary

and the encryptor before the adversary sends x, i.e. H = H[x].x.H′, where
x �∈ sub(H[x]).

3. We say that x >H u if H[x] �⊕ u

Next, we define the two conditions.

Definition 3. Let H be a symbolic history.

1. If f(s) and f(t) are terms in sub(H), we say that {f(s), f(t)} is an unsafe
pair if there is a free variable x such that ↓⊕(s ⊕ t) =AC x ⊕ u for some
term u such that x >H u, and that {f(s), f(t)} is a safe pair otherwise. We
say that a symbolic history is safe if it contains no unsafe pairs, and that it
is safe otherwise. Finally, we say that a MOO⊕ program is safe if it admits
only safe histories, and that it is unsafe otherwise.

2. We say that a symbolic history H is degenerate if there is a subset of H that
⊕-sums to 0. If a MOO⊕ program C admits a degenerate history, we say it
is a degenerate program. If not, we say it is non-degenerate.

Proposition 1. 1. Let {f(s), f(t)} be an unsafe pair in a symbolic history H.
Then there is an adversary that can compute a substitution σ such that
�σf(s)� = �σf(t)� with probability 1.

2. No degenerate MOO⊕ program is IND$-CPA-secure.

Proof. 1. By hypothesis, ↓⊕(s ⊕ t) = x ⊕ u, where x >H u. Since �σu� has thus
already been computed by the time �σx� is computed, the adversary can thus
choose σx such that �σx� = �σu�.

2. If there is a subset T of the terms returned by the encryptor in a symbolic
history, such that

∑
t∈T ⊕t =⊕ 0, then for any substitution σ computed by

the adversary,
∑

t∈T ⊕ � σt� = 0 as well. ��

Definition 4. Let C be a MOO⊕ program. Let HC(n) denote the set of all C
symbolic histories of length ≤ n. We say that C satisfies polynomially bounded
execution choice (PBEC) if there is a polynomial p(n) such that the number of
different f-rooted subterms of HC(n) is ≤ p(n) for all n.
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Theorem 1. Nondegenerate, safe, PBEC, MOO⊕ programs are IND$-CPA
secure.

Proof. Let C be a MOO⊕ cryptosystem. The proof is by game transformation,
starting with Gcrypt (f is a block cipher), followed by Gperm (f is a random
permutation), Grstr, and then by Grsymb. WLOG we assume that the adversary’s
computational bounds are the same for all games.

Advantage in Distinguishing Gcrypt from Gperm and Gperm from Grstr: By
assumption, the adversary’s advantage in distinguishing the block cipher from a
random permutation is bounded by some negligible quantity ελ. In addition, it
is known [8] that the adversary’s advantage in distinguishing Gperm from Grstr

bounded by q(λ) ·(q(λ)−1) ·2−λ−1, where q(λ) is the maximum number of times
the function f may be computed when the security parameter is λ. The maximum
number of blocks exchanged between the adversary and the encryptor is bounded
by a polynomial function � of λ, and, C is PBEC, we have q(λ) is bounded by
w(�(λ)) where w is a polynomial. Thus q(λ) is polynomially bounded, and hence
so is q(λ) · (q(λ) − 1) · 2−λ−1.

Probability of a Collision Between Two f -rooted terms in Grsymb: Safety
implies that for any pair of terms f(s) and f(t), the Grsymb adversary knows
nothing about the potential value �σ(s ⊕ t)� at the time it is computing σ on
the free variables of s and t, so P (�σ(s ⊕ t)� = 0) for any given f(s) and f(t) is
2−λ.

Advantage in distinguishing between Grstr and Grsymb : Suppose that the
encryptor has already computed a set A of f -rooted terms. Let B be the set
of f -rooted terms the adversary can potentially request to be evaluated. By
hypothesis | A |≤ q(λ) and | B |≤ �(λ), where both are polynomially bounded.
The number of possible new collisions offered by B is | A | · | B | +1/2 | B | ·(|
B | −1), which is bounded by q(λ) · w(�(λ)) + 1

2 · w(�(λ)) · (w(�(λ)) − 1). Since
the adversary has at most �(λ) opportunities to request evaluated terms from
the encryptor, the probability of two input strings being equal is bounded by

(�(λ) · w(�(λ)) · (q(λ) +
1
2

· (w(�(λ)) − 1))) · 2−λ

Summing up the Results: Finally, we recall from Proposition 1 that in the non-
degenerate case the output of the Grsymb encryptor is random, so the adversary’s
advantage in distinguishing the Grsymb encryptor from random is zero. Summing
the remaining advantages in the sequences of games, we obtain an advantage of

ε(λ) + q(λ) · (q(λ) − 1) · 2−λ−1 + (�(λ) · w(�(λ)) · (q(λ) +
1
2

· (w(�(λ)) − 1))) · 2−λ

��

We now finish up with a result on cryptographic modes of operation.
Although to the best of my knowledge there is no definition that precisely sets
out the properties that modes must have, some conditions that are satisfied by
most modes in the literature are given below.
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Definition 5. A MOO⊕ program is well-behaved if it satisfies the following
properties:

1. The i’th term returned by the encryptor in any message is the i’th iteration
of a deterministic recursive function;

2. for any single message, ciphertext blocks are returned according to a fixed
schedule;

3. symbolic histories of different encrypted messages may be interleaved in an
arbitrary fashion, and;

4. the number of new f -rooted terms in any term returned by the encryptor is
bounded by a constant D.

Corollary 1. Any safe, non-degenerate well-behaved MOO⊕ program is is
IND$-CPA secure.

Proof. By Theorem 1 it is enough to show the program is PBEC, i.e. that for
any n the set of f -rooted terms in HC(n) is bounded by a polynomial function
of λ.

We call a symbolic history unary if it is a history the encryption of a sin-
gle message, or an initial subsequence of such histories. Consider any length n
interleaving of unary symbolic histories. We note that the symbolic terms sent
in any such interleaving are the same no matter how the interleaving is done. We
also note that at most n unary histories may be interleaved (the bound being
achieved when the resulting symbolic history consists of n initial terms), and
the length of any symbolic history may be at most n (the bound being achieved
when a unary history of length n is used). Thus the number of different f -rooted
terms in HC(n) is bounded by D · n2. Since the adversary is PPT , n is bounded
by a polynomial function of λ. ��

We illustrate these results with an example.

Example 4. Consider Cipher Feedback (CFB) mode, in which C0 = r, and Ci =
f(Ci−1)⊕xi for i > 0, where r is a random block. Clearly, CFB is well-behaved.
We show that CFB encryption is secure under the blockwise schedule, in which
ciphertext is sent to the adversary as soon as it is computed. We note that no set
of ciphertext terms ⊕ sums to 0, so CFB is nondegenerate. We now let f(Ci,j)
and f(C�,k) be two different f -rooted terms appearing in a symbolic history
H, where Ci,j denotes the i’th ciphertext block in the encryption of message
j. Without loss of generality we may assume that f(Ci,j) appears after f(C�,k)
in H. We note that Ci,j = f(Ci−1,j) ⊕ xi,j, and f(Ci−1,j) �∈ sub(Hxi,j

). Thus,
(f(Ci,j), f(C�,k) is a safe pair. It follows that CFB is SBN-secure, and hence by
from Corollary 1 it is IND$-CPA secure.

6 Using Our Results to Analyze Modes

In this section we show how the results of this paper can be applied to the
analysis of cryptorgraphic modes of operation. We begin by stating and proving
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some lemmas that allow us decide security by examining properties of single f
rooted terms appearing in a symbolic history instead of properties of pairs of
such terms.

Lemma 3. Suppose that a mode C admits a history H containing a term
f(x ⊕ t) where x >H t. Then C is unsafe. Moreover, if H �⊕ f(x ⊕ t), C is not
IND$-CPA.

Proof. Suppose that the first condition of the lemma holds. Then consider
an adversary that runs H followed by H′, where H′ is identical to H except
for different (both bound and unbound) variable names. Let f(x′ ⊕ t′) be the
copy of f(x ⊕ t) computed in H′. Then x′ >H x ⊕ t ⊕ t′. If H �⊕ f(x ⊕ t),
then the adversary is able to derive f(x ⊕ t) and f(x′ ⊕ t′) from H.H′ and
is able to both compute the substitution σx = x′ ⊕ t ⊕ t′ and observe that
σf(x ⊕ t) = σf(x′ ⊕ t′), thus distinguishing the two blocks from random. ��

Lemma 4. Let C be a well-behaved MOO⊕ program, such that for any f(s)
appearing as a subterm of a term in some symbolic history H, s has at least one
f -rooted or bound variable summand that does not appear in any term sent by
the encryptor prior to computing s. Then C is safe. If it is also non-degenerate,
then it is IND$-CPA secure.

Proof. Suppose C is not safe. Let H be an unsafe history, and let f(s), f(x ⊕ t)
be the first unsafe pair in H, where x >H ↓⊕(s ⊕ t). The proofs in the case in
which f(x ⊕ t) is computed after f(s) and f(s) is computed after f(x ⊕ t) are
similar, so we prove only the first case. If f(x ⊕ t) is computed after f(s), then
t must contain a summand f(w) that does not appear in any term sent by the
encryptor prior to computing t. But f(w) is not a summand of s, it must be
a summand of s ⊕ t, contradicting our hypothesis. Thus, since x �>H f(w), we
have x �>H s ⊕ t.

The conclusion that, if C is also non-degenerate, then it is IND$-CPA secure,
follows directly from Theorem 1. ��

For modes, security often depends on the schedule in which ciphertext is
returned to the adversary. The most conservative is the messagewise sched-
ule, in which ciphertext blocks are not returned until all plaintext blocks have
been received. The most eager is the blockwise schedule, in which the ciphertext
blocks are returned as soon as they are computed. The delay-by-one schedule
lies between the two: the ciphertext block encrypting the i’th plaintext block is
returned after the i + 1’st block is received.

We now apply Lemmas 3 and 4 to some modes discussed by Bard [5]. They
are listed in Table 1. The first column give the name of the mode. The references
give where the mode was first described (if known), and where an attack was
first described, if relevant. The second column describes the mode. The third
column describes the most conservative schedule (if any) under which the mode
is insecure, and the fifth the most eager schedule under which it is secure.
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Table 1. Different modes and their security properties

Mode Description Insecure Why Secure Why

CBC [13,18] C0 = r

Ci = f(xi ⊕
Ci−1)

C0 sent

before x1

Lemma3

x1 >H r

1-delay Lemma 4

Ci−1 sent

after xi

PCBC C0 = r

Ci = f(xi ⊕
xi−1 ⊕ Ci−1)

C0 sent

before x1

Lemma3

x1 >H r

1-delay Lemma 4

Ci−1 sent

after xi

CFB C0 = r

Ci =

f(Ci−1) ⊕ xi

none bw Lemma 4

f(Ci−1) new

in Ci

OFB E0 =

f(r), Ei =

f(Ei−1)

Ci = Ei ⊕ xi

none bw Lemma 4

f(Ci−1) new

in Ci

IGE [10,15] C0 = r, P0 =

r′

Pi = xi

Ci = f(Pi ⊕
Ci−1) ⊕ Pi−1

bw

P0 secret

Lemma 3

xi >H Ci−1

1-delay Lemma 4

xi sent after

Ci−1

S-ABC [19] C0 = r, E0 =

r′

Ei = xi ⊕
f(Ei−1)

Ci = f(Ei ⊕
Ci−1) ⊕ Ei−1

none bw Lemma 4

f(Ei ⊕ Ci−1)

new in Ci

H-IACBC [16,18] C0 = E0 =

f(r), Ei =

f(xi ⊕ (Ei−1)

Ci = Ei ⊕ Si

Si ⊕ Sj =⊕
S′
i ⊕ S′

j

any 2 mess.

streams

C0 sent

before x1

Lemma3 plus

identities on

Si

1-delay Lemma 4

Ci−1 sent

after xi

7 Conclusion and Open Problems

We have identified symbolic conditions sufficient to guarantee IND$-CPA security
for a class of cryptosystems that use exclusive-or. We used these results to gen-
erate conditions applicable to cryptographic modes of operation. Our approach
relies on the use of identical-until-bad games that allow us to pinpoint a prop-
erty implying a cryptosystem’s security. Even though this property (in this case,
negligible probability of collisions) is not always preserved in the computational
model, it is possible to determine further conditions that guarantee that it will
be, avoiding known problems with the computational soundness of exclusive-or.

This work opens up several directions for future research.

Verification of Symbolic Criteria: The first is to develop algorithms for checking
the symbolic criteria developed in this paper, and for generating cryptosystems
that meet them. We have already begun work on developing verification algo-
rithms and a tool for generating and checking cryptosystems (https://symcollab.

https://symcollab.github.io/CryptoSolve/
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github.io/CryptoSolve/). In addition, we have begun to study the complexity of
the problem. In particular, in [21]it is shown that degeneracy is undecidable by
reducing it to the Post correspondence problem.

Enriching the Set of Cryptographic Primitives and Properties: Block ciphers
and exclusive-or are not the only cryptographic primitives that can be reasoned
about symbolically. Some others include hash functions, modular exponentiation,
finite field and Abelian group operations, and bilinear pairings. Computational
interpretations of the symbolic versions of many of these have already been
covered by Baudet et al. in [7] for the case of a passive adversary, but may still
need to be adapted for the case of an adaptive one. For properties, we would be
interested not only in secrecy properties but properties such as authentication,
collision-freeness and so forth.

Weaker Properties: Several of the properties we use in this paper are stronger
than strictly necessary. In particular, polynomially bounded execution choice-
limits the adversarial choices, but although MOO⊕ programs satisfy it, all that
is really required is that the adversary’s adaptive choice be polynomially limited.
Indeed, this is the case for the cryptosystem used as an example by Kremer and
Mazaré in [20]. The adversary first non-adaptively compromises a proper subset
of the principals in a network, and then interacts with the remaining principals
in a polynomially bounded execution choice fashion. Counting opportunities for
adaptive execution choice is more complex than counting opportunities for exe-
cution choice, but identifying design choices such that make such counting easier
may make the analysis more tractable.

In addition, the safety property defined in this paper is stronger than is
strictly necessary: it is possible for a cryptosystem to have internal collisions
that are not visible to the adversary. For example, consider the symbolic history
νr.r.x1.x2.f(r ⊕ f(x1) ⊕ f(x2)).5 The pair (f(x1), f(x2)), and the adversary can
force a collision by setting x1 = x2. However, in that case the ciphertext r.f(r) is
still indistinguishable from random. But the technique used to prove IND$-CPA
for safe cryptosystems does not extend easily to cryptosystems whose only unsafe
pairs are invisible, because safeness or unsafeness of a pair may now depend on
where it is located with respect to other f -rooted terms in a symbolic history.

Design and Analysis of Protocols: Although the work we describe is applied
to cryptosystems, they are cryptosystems that are themselves simple protocols,
whose security depends on communication rules governing the schedule used
by the encryptor to return ciphertext. Thus the question of whether or not
these results can be extended to more complex protocols is more a question of
to what degree than of whether it is possible at all. Thus it may be possible
to augment previous work on computationally sound symbolic cryptographic
protocol analysis, which has employed more of a top-down approach in which
algorithms are modeled as equation-free abstractions, with a more bottom-up
approach in which one starts with equational theories that are more tightly
connected to the computational model. However, the question of scale is not a
5 I am grateful to Christopher Lynch for this example.

https://symcollab.github.io/CryptoSolve/


294 C. Meadows

trivial one, in particular, since, as Unruh has shown, providing too much adaptive
choice to an adversary can break the link between symbolic and computational
security. This question will need to be studied in more depth.
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